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Abstract—We focus on the design of linear beamforming
based onquality-of-service (QoS) power minimization and rate
balancing in the downlink (DL) of a satellite communication
system with mobile and static users. Since only the rank-one
covariance matrices of the channels to mobile users are known,
we introduce average rate requirements for these users contrary
to the perfect channel state information (CSI) rate requirements
for the static users. Due to the structure of the ergodic rates,
we cannot directly resort to the optimization techniques for the
purely complete CSI vector broadcast channel (BC). Therefore,
we propose two suitable lower and upper bounds on the ergodic
rates. Incorporating these bounds in the optimization problems,
instead of the ergodic expressions, the usual power minimization
algorithms can be applied. This allows the computation of bounds
on the optima of the considered problems. Furthermore, employ-
ing an additional power allocation on the obtained solutions, we
achieve outcomes that reside close to the expected optima.

Index Terms—Power minimization; rate balancing; vector BC

I. I NTRODUCTION

We consider the DL of a satellite communication system
with mobile and static single-antenna receivers as described
in [1]. Modeling the DL as a vector BC [2], we focus on
power efficientlinear beamformer design techniques that are
able to deal with mobile and static users at the same time. To
this end, we consider the following two problem formulations:

(P) QoS power minimization: given QoS requirements for the
users, expressed as minimum rates, shall be fulfilled using
minimum resources, i.e., total transmit power;

(B) rate balancing: given an upper bound on the total transmit
power, the ratios between achieved rate and suggested
target shall commonly be maximized for all users.

The difficulty with (P) and(B) in satellite communications
is that only the statistics of the channels to mobile users, i.e.,
the rank-one covariance matrices (cf. Section II), are known
for the DL phase because of the limited channel estimation
capabilities due to the large round-trip time. Therefore, we
resort to ergodic rate requirements for these users contrary
to the perfect CSI rate targets for static users. Moreover, we
design the beamformers based on the statistical CSI contrary
to [3], where transmission is designed based on perfect CSI
to optimize ergodic rate formulations. Unfortunately, using
ergodic rate expressions, we cannot employ the efficient op-
timization strategies that are known for the purely complete
CSI vector BC (e.g., [4], [5], and [6]) due to the lack of a
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general BC tomultiple access channel(MAC) rate duality for
statistical CSI [7] and missing convex reformulations.

To overcome this problem, we introduced additional zero-
forcing (ZF) constraints in [1] for avoiding interference at the
mobile users. For this partial ZF strategy, we were able to
establish a proper uplink-downlink-SINR-duality and, more-
over, solve the resulting problems in the dual MAC via the
fixed-point framework in [5] and [6]. However, enforcing ZF
constraints on the mobile users’ channels, we strongly restrict
the QoS feasible region and, therewith, the achievable rates of
the remaining static users.

In this work, we follow a different approach. We propose
and characterize two simple lower and upper bounds on
the ergodic rates. Replacing the ergodic rate requirementsin
(P) and (B) with requirements on the bounds, the resulting
optimizations can in turn be solved via the usual algorithms
and methods. Therewith, we are able to calculate close lower
and upper bounds on the optimum of the initial problems. The
so obtained beamformers can then be used for an additional
power allocation in the BC that keeps the spatial characteristic
of the beamformers constant and only adapts the powers
intended for the different users. The achieved outcomes appear
to be close to the expected optima of(P) and (B).

The remainder of this work is structured as follows. The sys-
tem model and the achievable and ergodic rates are introduced
in Section II and III, respectively. Next, mathematical formu-
lations of(P) and(B) are given. In Section V, the ergodic rate
lower and upper bounds are introduced. Sections VI and VII
deal with the power minimization and rate balancing problems
with requirements on the bounds, while the additional power
allocation strategy is presented in Section VIII. Finally,the
proposed methods are numerically evaluated in Section IX.

II. SYSTEM AND CHANNEL MODEL

In the considered vector BC, anN antenna transmitter, i.e.,
the satellite, simultaneously conveys independent data signals
sk ∼ NC(0, 1) to K single antenna receivers. The data signals
are linearly precoded with the beamformerstk ∈ CN , k ∈
{1, . . . ,K}. The superposition of the beamformer outcomes
is then transmitted to all users. Denoting the vector channel
for userk as h̃H

k ∈ C1×N and the experienced additive noise
asnk ∼ NC(0, σ

2
k), its received signal reads as

yk = h̃H
k tk + h̃H

k

∑K
i6=ktisi + nk.

The users are differentiated into the two disjoint groupsP

andS with |S| = K−|P|, corresponding toperfect CSIusers,
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e.g., fixed ground stations with line of sight to the satellite,
and statistical CSIusers, respectively, e.g., moving mobiles
that suffer from local scattering and shadowing close to the
ground. While we have accurate knowledge of the channel
statesh̃k to perfect CSI usersk ∈ P, only the statistics of
h̃k ∼ NC(0, C̃k), i.e., the covariance matrix̃Ck, is available
for the beamformer design of the statistical CSI users.

Fortunately, the channel covariance matricesC̃k to the |S|
statistical CSI users are essentially rank-one: the spatial sig-
nature ofh̃k remains essentially constant because of the large
distance from the satellite to the earth’s surface, whereasits ef-
fective gain (norm and phase) varies depending on shadowing
effects and scatterers close to the user. In the remainder ofthis
paper, we restrict to this rank-one assumption. Moreover, to
simplify expositions, we only refer to the normalized channel
hk , σ−1

k h̃k and covarianceCk = σ−2
k C̃k = vkv

H
k , with vk

being the properly scaled dominant eigenvector ofCk. Note
that we can writehk ≃ vkwk with wk ∼ NC(0, 1).

III. A CHIEVABLE AND ERGODIC RATES

For a given set of beamforming vectors{ti}Ki=1, the follow-
ing mutual information is achieved at thekth user

rk = log2

(

1 +
|hH

k tk|2
1+

∑
i6=k |hH

k
ti|2

)

. (1)

To exploit (1), the transmitter needs to know the current
channel statehk. However, being only aware of its statistics,
given by vk, we cannot use (1) for designing beamformers
to statistical CSI usersk ∈ S. Instead, we resort to the
ergodicmutual information which appropriately describes the
statistical CSI user’s average rate when assuming sufficiently
long time slots for the DL phase and sufficiently fast fluc-
tuations inwk. The kth user’s ergodic mutual information
Rk , Ehk

[rk] reads as (cf. [1], [8])

Rk = 1
log(2) ς

(

1∑
K
i=1

|vH

k
ti|2

)

− 1
log(2) ς

(

1∑
K
i6=k

|vH

k
ti|2

)

, (2)

where we definedς : R+,0 7→ R+,0 as [9]

ς(x) , ex E1(x) = ex
(

−γ − log(x)−
∞
∑

n=1

(−1)nxn

n!n

)

(3)

andE1(x) =
∫∞
x

e−t

t dt is the exponential integral.
By definition, the ergodic rateRk has great similarities to

rk in (1). Denoting the average signal and interference as

Sk = |vH
k tk|2 Ik =

∑

i6=k|vH
k ti|2, (4)

respectively, we find the following monotonicity properties.

Lemma 1. The raterk and the ergodic rateRk in (1) and (2),
respectively, are non-negative and strictly . . .

(a) sub-linearly increasing withSk for fixedIk,
(b) monotonically decreasing withIk for fixedSk, and
(c) sub-linearly increasing withα for the common scaling

Sk = αS′
k and Ik = αI ′k, with α > 0 and fixed(S′

k, I
′
k).

Proof: Noting that |hH
k tk|2 = |wk|2Sk and

∑

i6=k|hH
k ti|2= |wk|2Ik, the ergodic rate is defined as

Rk = E
[

log2

(

1 + |wk|2Sk

1+|wk|2Ik

)]

,

i.e., as the average of logarithmic functionsrk. These func-
tions rk are sub-linearly increasing withSk, monotonically
decreasing withIk, and sub-linearly increasing withα > 0
for the common scalingSk = αS′

k andIk = αI ′k. Hence, this
is also valid for the average.

However, contrary tork, Rk cannot be represented in terms
of the signal-to-interference-plus-noise-ratio(SINR). That is,
the ergodic rate rather depends on the absolute values ofSk

andIk than on their ratio.

IV. PROBLEM FORMULATIONS

Given the QoS requirementsρk, k ∈ {1, . . . ,K}, expressed
as minimum rate and ergodic rate targets, the power minimiza-
tion problem(P) reads as

min
{t1,...,tK}

K
∑

k=1

‖tk‖22 s. t.:

{

rk ≥ ρk ∀k ∈ P,

Rk ≥ ρk ∀k ∈ S.
(5)

We remark that the constraints in (5) are active in the op-
timum due to the monotonicity properties ofrk andRk (see
Lemma 1). Additionally, note that (5) does not have a solution
in general. In [10], a simple feasibility test was proposed for
exclusively perfect CSI users (see also Section VI-A).

The closely related balancing optimization(B) reads as

max
β,{t1,...,tK}

β s. t.:
K
∑

k=1

‖tk‖22≤Ptx,

{

rk≥βρk ∀k∈P,

Rk≥βρk ∀k∈S,
(6)

where the transmit power isPtx in the optimum and the
resulting rates are balanced, i.e., the rate of userk is βoptρk.
Note that (6) always has a solution contrary to (5).

As has been discussed in [11] and [12] for perfect CSI, (5)
and (6) are inverse problems. Denoting the optimum of (6) as
βopt(Ptx) and the optimum of (5) asP (ρ1, . . . , ρK), then

P (βopt(Ptx)ρ1, . . . , βopt(Ptx)ρK) = Ptx (7)

holds [12]. Sinceβopt(Ptx) is monotonically increasing inPtx,
(6) can be solved via a bisection whereβ is adjusted such that
P (βρ1, . . . , βρK) is equal toPtx.

Unfortunately, considering the ergodic rate constraints,nei-
ther of the problems can be solved directly. In the BC, the
rates are neither convex nor concave functions of the variables
{ti}Ki=1. Therefore, (5) and (6) are nonconvex. Moreover,
while the rate constraints fork ∈ P can equivalently be
formulated as minimum SINR requirementsγk = 2ρk − 1,
this is not possible for the ergodic rate constraints. Thus,we
cannot reformulate problem (5) to that in [11], i.e., a power
minimization with individual SINR constraints, and resortto
the (convex) optimization techniques in [12] and [6] or the
feasibility test in [10]. Hence, we cannot solve (6) with (5).

V. BOUNDS ONERGODIC MUTUAL INFORMATION

To overcome these difficulties, we propose two pairs of
lower and upper bounds forRk next. To this end, some basic
properties of theς-function in (3) are exploited. The bounds
are designed in a way, such that we can apply the usual
methods and algorithms when replacing the ergodic rates with
the proposed bounds in (5) and (6) (see Section VI).
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Figure 1. Plot ofς(1/x) and its bounds versusx in dB.

A. First Lower and Upper Bound on the Ergodic Rate

For the first upper and corresponding lower bound, we
exploit the following properties ofς(1/x).

Lemma 2. The differencedU1(x) = log(1 + x) − ς(1/x) is
zero forx = 0, positive forx > 0, and strictly monotonically
increasing inx. In the limit x → ∞, dU1(x) approaches the
Euler-Mascheroni constantγ ≈ 0.5772 [9].

The proof is shown in Appendix A. A direct consequence
of Lemma 2 is thatς(1/x) is bounded by

log(1 + x) − γ ≤ ς(1/x) ≤ log(1 + x) (8)

and the differencedL1(x) = ς(1/x)−log(1+x)+γ is positive,
approaches zero forx → ∞, and is monotonically decreasing
in x. This can also be seen in Figure 1, where we plotted
ς(1/x) with its lower and upper bounds versusx in dB.

Based on (8), we propose the following conservative lower
bound on the ergodic mutual information [cf. (2) and (4)]:

Rk ≥ R
(1)
k = log2

(

1 + Sk + Ik
)

− log2
(

1 + Ik
)

− γ
log(2)

= log2

(

1 + Sk

1+Ik

)

− γ
log(2) . (9)

A drawback of this lower bound is that it becomes negative
for small but reasonableSk, what is per definition impossible
for Rk (see Lemma 1). Moreover, above conservative bound
is only tight if bothSk → ∞ and Ik = 0, i.e., when ZF is
applied and we consider the high SNR regime. Using (9), the
worst case error toRk is γ

log(2) ≈ 0.8327 bits per channel use.
Based on the monotonicity ofdU1(x), i.e., dU1(Ik) ≤

dU1(Ik +Sk), we can find the following ergodic rate upper
bound:

Rk ≤ R
(1)

k = log2

(

1 + Sk

1+Ik

)

, (10)

which is tight for either Sk ≈ 0 or sufficiently largeIk. In
fact, we find the following proposition proven in Appendix B.

Proposition 1. The ergodic rateRk (2) is upper bounded
by R

(1)

k in (10) and differs fromR
(1)

k by a small error, i.e.,

Rk ≥ R
(1)

k − δ with δ ≥ 0. Here,δ is given by

δ = 1
log(2) ς

(

1
/

Ik
)

− log2
(

1 + Ik
)

+ γ
log(2) ≤

γ
log(2)

and has the following properties:

(i) δ is monotonically decreasing withIk,
(ii) δ = γ

log(2) for Ik = 0, and δ = 0 for Ik → ∞.

According to this proposition, we expect the upper bound to
be loose whenK ≤ N and ZF beamforming strategies are ap-
plied, whereas we expect the bound to be tight in interference
limited scenarios, e.g., forN < K (see Section IX).

B. Second Lower and Upper Bound on the Ergodic Rate

Motivated by the observation that the bounds onς(1/x)
in (8) are tight foreither x = 0 or x → ∞, we searched
for more adequate bounds. In fact, we found thath(x) =
log(1 + e−γ x) is tight for both,x = 0 and x → ∞.

Actually, h(x) is a tight lower boundfor ς(1/x). That is,

ς(1/x) ≥ log(1 + e−γ x). (11)

For smallx > 0, above inequality is clearly satisfied since both
functions,ς(1/x) and log(1+ e−γ x), are zero forx = 0, and
have smoothly decreasing derivatives satisfying (cf. [9])

d
d x ς(1/x)

∣

∣

x=0
= 1 > d

d x log(1 + e−γ x)
∣

∣

x=0
= 1

eγ .

Furthermore, the differencedL2(x) = ς(1/x)− log(1+e−γ x)
approaches zero from above forx → ∞, i.e., [cf. (3)]

lim
x→∞

dL2(x)= lim
x→∞

e
1

x

(

−γ+log(x)−
∞
∑

n=1

(−1)n

n!nxn

)

−log(e−γx)

= lim
x→∞

e
1

x

(

−γ+log(x)
)

−log(x)+γ = 0.

Therefore, (11) is also valid for largex. For mediumx, we
can see in Figure 1 that (11) holds with strict inequality.

The figure also suggest thatdL2(x) is bounded above. To
find its supremum, we note thatdd xdL2(x) is strictly positive
for low x, negative for largex, and apparently approaches zero
only for a finite xd and in the limitx → ∞. Thus,dL2(x)
appears to be pseudo-concave, why we employed a dedicated
bisection search [13, Chapter 8] to accurately determine the
maximal distanced = maxx≥0 dL2(x) andxd.

Given d ≈ 0.1709, that is achieved atxd ≈ 2.3665(,
3.7411dB), we can boundς(1/x) as (cf. Figure 1)

log(1 + e−γ x) ≤ ς(1/x) ≤ log(1 + e−γ x) + d. (12)

Based on these bounds forς(1/x), we simply obtain a lower
bound onRk via replacing the first and secondς(·)-term in (2)
with the lower and upper bound in (12), respectively. That is,

Rk ≥ R
(2)
k = log2

(

1 + Sk

eγ +Ik

)

− d
log(2) . (13)

Accordingly, an appropriate upper bound onRk results, when
we replace the first and secondς(·)-term in (2) with the upper
and lower bound in (12), respectively, i.e.

Rk ≤ R
(2)

k = log2

(

1 + Sk

eγ +Ik

)

+ d
log(2) . (14)

Obviously, the lower boundR(2)
k and the upper bound

R
(2)

k are not tight in general. WhereasR(2)
k becomes negative

for sufficiently small effective SINR, i.e., Sk

eγ +Ik
≈ 0, R

(2)

k

is always larger thand/ log(2) even if the effective SINR

is zero. Hence,R
(2)

k is clearly looser thanR
(1)

k for low
Sk or sufficiently largeIk. However, the worst case error
is considerably smaller than for the bounds in the previous
subsection. Given arbitrarySk and Ik, R

(2)

k andR
(2)
k differ

from Rk by maximally 2d
log(2) ≈ 0.4934 bits per channel use.
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VI. QOS POWER M INIMIZATION WITH BOUNDS

As mentioned in Section IV, directly solving (5) is difficult.
To this end, we replace the ergodic rate requirements by
constraints on the proposed bounds ofRk denoted as

RB
k = log2

(

1 +
|vH

k tk|2
ν+

∑
i6=k

|vH

k
ti|2

)

+ µ, (15)

whereν andµ depend on the represented bound (see Table I).

RB
k

R
(1)
k

R
(1)
k R

(2)
k

R
(2)
k

ν 1 1 eγ eγ

µ −

γ

log(2)
0 −

d
log(2)

+ d
log(2)

Table I
REPRESENTATION OF THE PROPOSED BOUNDS FOR THE ALGORITHM.

By doing so, the resulting problem can equivalently be
formulated as a power minimization with SINR requirements

min
{t1,...,tK}

K
∑

k=1

‖tk‖22 s. t.: SINRk ≥ γk ∀k ∈ P, (16)

with γk = 2ρk − 1 for k ∈ P, γk = 2ρk−µ − 1 for k ∈ S, and
the definition of the “signal-to-interference-and-noise ratio”

SINRk =







|hH

k tk|2
1+

∑
i6=k |hH

k
ti|2 k ∈ P,

|vH

k tk|2
ν+

∑
i6=k

|vH

k
ti|2 k ∈ S.

(17)

For a feasibility test and for the optimization in (16),
we can directly apply the usual methods and algorithms.
Feasibility can for example be tested based on a reformulation
to maximummean-square-error(MSE) constraints [10] (see
Subsection VI-A). Note that feasibility of (16) implies feasi-
bility of (5) whenRB

k represents a lower bound ofRk, k ∈ S.
However, when we use upper bounds, feasibility of (16) is
obviously only a necessary condition for the feasibility of(5).

Given feasibility, we can use efficient fixed-point methods
based on the SINR-uplink-downlink-duality and the standard
interference function framework (see [14], [6]) for solv-
ing (16). Depending on whether we use upper or lower
bounds forRk, k ∈ S, the obtained optimum gives either
a conservative or an optimistic bound for the optimum of (5).

A. QoS Feasibility

Following [10], we reformulate the SINR targets in (16)
as maximum MSE requirements by noting that the maximum
SINR and theminimum MSE(MMSE) of userk are related via
SINRk = 1

MMSEk
−1. Additionally, sincerk = log2(1+SINRk)

andRB
k = log2(1+SINRk)+µ, we can represent the MMSE

requirements as

MMSEk ≤ εk = 1
1+γk

=

{

2−ρk ∀k ∈ P,

2−ρk+µ ∀k ∈ S.
(18)

Note that ν does not appear in (18) since it is directly
incorporated in the SINR definition of the statistical CSI users.

With (18) and under someregularity conditionson the
effective channels{hk}k∈P and {vk}k∈S, the MMSE tar-
gets {εk}Kk=1 are feasible iff they lie within a polytopeP
whose bounding half-spaces are the individual box constraints
0 ≤ εk ≤ 1 ∀k ∈ {1, . . . ,K} and the sum MMSE constraint

∑K
k=1 εk ≥ K −N [10, Theorem 1]. Any point belonging to

the interior of the polytope can be achieved with finite sum
power. For MMSE targetsεk = 1, no power is allocated to the
respective user. However, note thatεk = 1 results inρk = µ
for k ∈ S, which might be negative dependent on the bound
that is represented byRB

k (cf. Table I).

B. Dual Downlink Model and SINR Duality

A key tool for solving (16) with the fixed-point algo-
rithms of [6] is a reformulation into the dual uplink. Therein,
K single-antenna transmitters send independent signals with
power pk, k ∈ {1, . . . ,K} over the dual channelsbk = hk

for k ∈ P andbk = 1√
ν
vk for k ∈ S to anN -antenna receiver.

The receiver estimates the sent signals using linear equalizers
fk, k ∈ {1, . . . ,K} and suffers from noiseη ∼ NC(0, I).
Hence, thekth user’s SINR in the dual MAC reads as

SINRMAC
k =

|fH

k bk|2pk

‖fk‖2

2
+
∑

i6=k |fH

k
bi|2pi

. (19)

Knowing that exactly the same SINRs are achievable in the
vector BC and the dual vector MAC if the same total transmit
power is employed [14], we can equivalently solve (16) in
the dual MAC. The BC solution is then found withtk =
αkfk ∀k ∈ {1, . . . ,K} and the scalars{αk}Kk=1 are obtained
via solving a system of linear equations (see [14] for details).

C. Interference Function and Problem Solution

The precoder design in the BC essentially reformulates to
a joint optimization of the transmit power allocationp =
[p1, . . . , pK ]T and the equalizersfk, k ∈ {1, . . . ,K} in the
dual MAC. For this task, we suggest to apply the generic
interference function framework of [5] and [6] in order to
deal with the large number of users and transmit antennas in
satellite communications. To this end, we define the effective
interference of userk asZk(p,fk) = pk/SINRMAC

k [cf. (19)],
such that the (vector) interference function is given by

Z(p,F ) = [Z1(p,f1), . . . ,ZK(p,fK)]T. (20)

Note that Z(p,F ) is standard according to [5] for
fixed equalizersF = [f1, . . . ,fK ]. Therefore, choosing
the optimum equalizers, given byfopt,k(p) =

(

IN +
∑

i6=k bib
H
i pi

)−1
bk

√
pk ∀k ∈ {1, . . . ,K}, also leads to a

standard interference function(SIF) [5] that is given by
I(p) =

[

minf1
Z1(p,f1), . . . ,minfK

ZK(p,fK)
]T

.
This observation and the fact that we can writeZ(p,F ) =

Ψ (F )p+ ξ(F ), i.e., as a linear function inp, led to the two
fixed-point algorithms in [6] for solving the resulting power
minimization problem in the dual MAC [cf. (19)]

min
p≥0

1
Tp s.t.: p ≥ diag(γ)I(p) (21)

with the vector of SINR targetsγ = [γ1, . . . , γK ]T. The details
of these algorithms can also be found in [1].

VII. R ATE BALANCING WITH BOUND CONSTRAINTS

ReplacingRk with RB
k in (6), we can write the balancing

problem in a similar form as (21). Reformulating the prob-
lem in terms of SINR requirements, applying the duality of
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Section VI-B, and using the interference function definition
in (20), the balancing problem (6) leads to

max
β,p≥0

β s.t.: 1
Tp ≤ Ptx p ≥ diag(γ(β))I(p) (22)

with γ(β) = [γ1(β), . . . , γk(β)]
T, γk(β) = 2βρk − 1 for k ∈

P, andγk(β) = 2βρk−µ − 1 for k ∈ S.
We remark that, contrary to (6), the optimum of (22) may

become negative for negativeµ (cf. Table I) and sufficiently
low Ptx. Whenµ is negative, some minimal transmit power
Pmin

tx is necessary for achievingRB
k ≥ 0, k ∈ S. This Pmin

tx
may be found via solving (16) with SINR targetsγk = 0 for
k ∈ P andγk = 2−µ − 1 for k ∈ S.

Problem (22) can be solved with the help of (21). Based on
the observation in (7), we can perform a bisection search on
β where in each step the power minimization (21) is solved
until the given transmit power isPtx at its optimum. Here, a
lower and an upper bound onβ may be found via the uniform
power allocation and the single user rates, respectively. Details
and an implementation of the algorithm can be found in [1].

VIII. A DDITIONAL POWER ALLOCATION

When calculating the BC beamformers and the actually
achieved rates from the solutions of (21) or (22), we can
observe: whilerk obviously meets the proposed rates for
k ∈ P, Rk of usersk ∈ S differs from the proposed ones.
This motivates an additional power allocation for reducingthe
necessary resources or increasing the achieved balancing fac-
tor. To this end, we represent thegivenbeamformers as

tk = τk
√

θk, (23)

with unit-normτk andθk ∈ R0,+ denoting the portion of the
transmit power that is intended for userk, and aim at solving
the following problems for fixed{τk}Kk=1:

1) minimizePtx =
∑K

i=1 θi subject to the rate requirements
rk ≥ ρk ∀k ∈ P andRk ≥ ρk ∀k ∈ S;

2) maximizeβ subject to limited transmit power
∑K

k=1 θk ≤
Ptx andrk ≥ βρk ∀k ∈ P andRk ≥ βρk ∀k ∈ S.

Note thatT(θ)=[T1(θ), . . . ,TK(θ)]T with θ=[θ1, . . . ,θK ]T,

Tk(θ) =
{

θk/rk k ∈ P

θk/Rk k ∈ S
(24)

is a SIF [5], i.e., it satisfies the following three axioms:

A1) T (θ) > 0 for θ ≥ 0 (Positivity)
A2) T (θ) ≥ T (θ′) for θ ≥ θ′ ≥ 0 (Monotonicity)
A3) λT (θ) > T (λθ) for λ > 1 (Scalability)

Here, axioms A1)–A3) result directly from Lemma 1 and (24).
With (24) andρ = [ρ1, . . . , ρK ]T, the power minimization

problem from1) can equivalently be written as

min
θ≥0

1
Tθ s. t.: θ ≥ diag(ρ)T (θ). (25)

Due to the monotonicity property ofT (θ) in A2) together
with the scalability property in A3), the constraint in (25)is
active. This motivates the fixed-point algorithm of [5]

θ(n) = diag(ρ)T (θ(n−1)), (26)
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Figure 2. Achievable balancing levelβ in a fully loaded system withK =
100 users andN = 100 transmit antennas.

which produces a sequence{θ(n)}n that is monotonically
increasing, i.e.,θ(n+1) ≥ θ(n), when starting withθ(0) = 0

and converges to the global optimizer of (25) if it exists.
Similarly, the balancing problem2) can be formulated as

max
θ≥0

β s. t.: 1
Tθ ≤ Ptx θ ≥ β diag(ρ)T (θ). (27)

For its solution, we suggest again a bisection onβ. In each step
of this bisection we test whether there exists a power allocation
θ that satisfies the constraints. We realize this feasibilitytest
with (26). Starting fromθ(0) = 0, if the iteration results in a
θ(n) with 1

Tθ(n) > Ptx, thenβ results in infeasible targets.
Otherwise, when the iteration converges to aθ with 1

Tθ ≤
Ptx, β results in feasible targets. Initial bounds forβopt are
determined in the same way as in Section VII. A lower bound
can be obtained with uniform power allocationθ = Ptx1 and
an upper bound with the single user power allocationsθ =
Ptxek for k ∈ {1, . . . ,K}.

IX. N UMERICAL RESULTS

For a numerical verification of the proposed methods, we
consider a GEO-stationary satellite that is directed to Munich
(11°east and 48°north) and has a rectangular antenna array of
N = 100 elements. TheK perfect and statistical CSI users
are randomly placed within an area that covers Europe and
the channels{hk}k∈P and {vk}k∈S were realized with the
free space path loss model (e.g., see [15]).

For the Figures 2 and 3, we considered afully loaded
scenario withK = 100 users, |P| = |S| = 50, and an
overloadedscenario withK = 120 users,|P| = |S| = 60. In
both scenarios, the users have targetsρ2i−1 = 1 andρ2i = 2
for i ∈ {1, . . . ,K/2}. Moreover, we generated 10 channel
realizationshk, k ∈ P, andvk, k ∈ S and plotted the average
achieved balancing levelβopt versusPtx in dB for the following
results:a) the result of (22) with the bounds in Table I;b)
the result of the partial ZF strategy from [1];c) the result of
the additional power loading (27) with the spatial beamformer
directions{τk}Kk=1 from (22) withRB

k = R
(2)
k .

Figure 2 shows the results for the fully loaded setup, where
βopt grows unboundedly withPtx, while Figure 3 considers
the overloaded setup, whereβopt saturates for highPtx. In
both figures, we set the lower bound curves to zero whenPtx

is smaller than the minimum necessary transmit power for
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Figure 3. Achievable balancing levelβ in an overloaded system withK =
120 users andN = 100 transmit antennas.

satisfyingR(i)
k > 0 ∀k ∈ S. Note thatR(2)

k exceedsR(1)
k for

low and mediumPtx since it has a considerably smaller worst
case error (see Figure 2). This gap is even larger in Figure 3
sinceR(1)

k is only tight for Ik = 0 andSk → ∞ which is not
possible simultaneously forN < K. Moreover, both lower
bound schemes outperform the partial ZF scheme proposed
in [1] for sufficiently largePtx.

Employing the additional power allocation for the simu-
lations withR

(2)
k (we employedmaximum-ratio-transmission

beamformerswhenβopt is zero) the achieved balancing level
is considerably improved. In fact, this curve is close to the
tight upper bound based onR

(1)

k and therefore also close to

the optimum of (6). The second upper boundR
(2)

k appears to

be looser than the first oneR
(1)

k for low Ptx. Only for very

high Ptx in the fully-loaded setupR
(2)

k is competitive toR
(1)

k .

X. CONCLUSIONS

We presented power efficient linear DL beamformer designs
with perfect CSI rates and bounds on ergodic rates. The
proposed bounds have small worst-case errors and some are
shown to be tight, what allowed us to compute tight bounds on
the optima of the considered problems. In [16], these bounds
on the optima are compared to the global optima.

APPENDIX
A. Proof of Lemma 2

From [9], we know thatς(z) ≤ log(1+1/z) and can directly
infer non-negativity ofdU1(x) via replacingz with 1/x. Here,
equality only holds forz → ∞, i.e.,x = 0. The monotonicity
property follows directly from

d
d xdU1(x) =

1
x2 ς(1/x)− 1

x(1+x) ≥ 1
x2

1
1+1/x − 1

x(1+x) = 0,

where we usedd
d z ς(z) = ς(z) − 1/z and ς(z) ≥ 1

1+z [9].
Here, equality holds if eitherx = 0 or x → ∞. Finally, using
limx→∞ log(1 + x) = limx→∞ log(x) and (3) we obtain

lim
x→∞

dU1(x)= lim
x→∞

log(x)−e
1

x

(

log(x)−γ−
∞
∑

n=1

(−1)n

n!nxn

)

=γ.

B. Proof of Proposition 1
The proof is based on the consequences of Lemma 2. For

x, δx ≥ 0, we have thatdU1(x+ δx) ≥ dU1(x) sincedU1(·) is
a monotonically increasing function. That is,

log(1 + x+ δx)− ς
(

1
x+δx

)

≥ log(1 + x)− ς
(

1
x

)

.

Now, subtractinglog(1+x) and addingς
(

1
x+δx

)

at both sides,
multiplying them with1/ log(2), and replacingx andδx with
Ik andSk, respectively, we see that [cf. (10)]

R
(1)

k = log2(1 + Ik + Sk)− log2(1 + Ik)

≥ 1
log(2) ς

(

1
Ik+Sk

)

− 1
log(2) ς

(

1
Ik

)

= Rk.

Next, starting withdU1(x+δx)−dU1(x)≥0, we see that

0 ≤ log(1 + x+ δx)− log(1 + x)− ς
(

1
x+δx

)

+ ς
(

1
x

)

≤ γ − log(1 + x) + ς
(

1
x

)

≤ γ

becausedU1(x) ≤ dU1(x + δx) ≤ γ (see Lemma 2). Doing
the same replacements as above and dividing both sides by
log(2), it directly follows that

R
(1)

k − Rk ≤ γ
log(2) − log2(1 + Ik)− 1

log(2) ς
(

1
Ik

)

≤ γ
log(2) ,

where the middle part is essentially1
log(2)dL1(Ik) and, there-

fore, monotonically decreasing withIk, equal to γ
log(2) for

Ik = 0, and becomes zero forIk → ∞ (cf. Subsection V-A).
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