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Abstract—We focus on the design of linear beamforming general BC tanultiple access chann@WAC) rate duality for
based onquality-of-service (QoS) power minimization and rate statistical CSI [7] and missing convex reformulations.
balancing in the downlink (DL) of a satellite communication To overcome this problem, we introduced additional zero-

system with mobile and static users. Since only the rank-one : . . e
covariance matrices of the channels to mobile users are knaw forcing (ZF) constraints in [1] for avoiding interferencetae

we introduce average rate requirements for these users comry =~ Mobile users. For this partial ZF strategy, we were able to
to the perfect channel state information (CSI) rate requirements establish a proper uplink-downlink-SINR-duality and, m@or
for the static users. Due to the structure of the ergodic rate, over, solve the resulting problems in the dual MAC via the
we cannot directly resort to the optimization techniques fo the fixed-point framework in [5] and [6]. However, enforcing ZF
purely complete CSI vector broadcast channel (BC). Therefore, . . , .
we propose two suitable lower and upper bounds on the ergodic constraints on the m9b"e users chapnels, we gtronglym:dast
rates. Incorporating these bounds in the optimization probems, the QoS feasible region and, therewith, the achievable wite
instead of the ergodic expressions, the usual power minimazion the remaining static users.
algorithms can be applied: This allows the computation of bonds In this work, we follow a different approach. We propose
on the optima of the considered problems. Furthermore, emmly- g characterize two simple lower and upper bounds on
ing an additional power allocation on the obtained solutiors, we . . . .
achieve outcomes that reside close to the expected optima. the ergodic ra.tes. ReP'aC'”g the ergodic rate requweman.ts
(P) and (B) with requirements on the bounds, the resulting
optimizations can in turn be solved via the usual algorithms
and methods. Therewith, we are able to calculate close lower
and upper bounds on the optimum of the initial problems. The
We consider the DL of a satellite communication systeso obtained beamformers can then be used for an additional
with mobile and static single-antenna receivers as destgtritpower allocation in the BC that keeps the spatial charastieri
in [1]. Modeling the DL as a vector BC [2], we focus onof the beamformers constant and only adapts the powers
power efficientlinear beamformer design techniques that arimtended for the different users. The achieved outcomesapp
able to deal with mobile and static users at the same time. ffobe close to the expected optima (&) and (B).
this end, we consider the following two problem formulason The remainder of this work is structured as follows. The sys-

(P) QoS power minimizatiorgiven QoS requirements for theteém model and the achievable and ergodic rates are intrdduce
users, expressed as minimum rates, shall be fulfilled usiligSection Il and Ill, respectively. Next, mathematicalrfar-
minimum resources, i.e., total transmit power; lations of (P) and(B) are given. In Section V, the ergodic rate

(B) rate balancinggiven an upper bound on the total transmiower and upper bounds are introduced. Sections VI and VI

power, the ratios between achieved rate and sugges@&d! with the power minimization and rate balancing prolsiem
target shall commonly be maximized for all users. with requirements on the bounds, while the additional power

allocation strategy is presented in Section VIII. Finatlye
proposed methods are numerically evaluated in Section IX.

Index Terms—Power minimization; rate balancing; vector BC

I. INTRODUCTION

The difficulty with (P) and(B) in satellite communications
is that only the statistics of the channels to mobile usegs, i
the rank-one covariance matrices (cf. Section II), are know 1. SYSTEM AND CHANNEL MODEL
for the DL phase because of the limited channel estimation| . +ha considered vector BC, aVi antenna transmitter, i.e.,

capabilities due to the large round-trip time. Therefore, Whe satellite simultaneously conveys independent dgtzats
resort to ergodic rate requirements for these users cgntrglrc ~ Nz(0 i) to K single antenna receivers. The data signals
to the perfect CSI rate targets for static users. Moreover, W, IinearI;/ precoded with the beamformegse CV, k €
design the beamforrr_1er_s b"’?sed on the statistical CSI cgntr ![, ..., K}. The superposition of the beamformer outcomes
to [3],_W_here tran§m|SS|on IS deS|gned based on perfect_q Ithen transmitted to all users. Denoting the vector chianne
to optimize ergodic rate formulations. Unfortunately, ngsi for userk ashil € C'*N and the experienced additive noise
ergodic rate expressions, we cannot employ the efficient B, ~ Nz (0 ’;2) its received signal reads as

timization strategies that are known for the purely complet R
CSI vector BC (e.g., [4], [5], and [6]) due to the lack of a Yk = byt + RS tisi +

This work was supported by Deutsche Forschungsgemeiris¢B&iG) The lj'sers are differentiated into Fhe two disjoint grolips
under fund Jo 724/1-1. andsS with |S| = K — |P|, corresponding tperfect CSlusers,



e.g., fixed ground stations with line of sight to the satelliti.e., as the average of logarithmic functions These func-
and statistical CSlusers, respectively, e.g., moving mobilesions r, are sub-linearly increasing witli;,, monotonically
that suffer from local scattering and shadowing close to tliecreasing withl;, and sub-linearly increasing with > 0

ground. While we have accurate knowledge of the chanrfel the common scaling, = a.S;, andI, = «oI},. Hence, this

§tatesﬁk to perfect CSI useré € P, only the statistics of is also valid for the average. ]
h; ~ Nc(0,Cy), i.e., the covariance matri€', is available However, contrary to,, Ry cannot be represented in terms
for the beamformer design of the statistical CSI users. of the signal-to-interference-plus-noise-rat{&INR). That is,

Fortunately, the channel covariance matriégsto the S| the ergodic rate rather depends on the absolute valués of
statistical CSI users are essentially rank-one: the dpgitia and I, than on their ratio.
nature ofh;, remains essentially constant because of the large
distance from the satellite to the earth’s surface, whets@s- IV. PROBLEM FORMULATIONS

fective gain (norm and phase) varies depending on shadowingsjven the QoS requirements, k € {1, ..., K}, expressed

effects and scatterers cl_ose to the user. In th_e remaindeisof 45 minimum rate and ergodic rate targets, the power minimiza
paper, we restrict to this rank-one assumption. Moreoer, fon problem(P) reads as
simplify expositions, we only refer to the normalized chahn
hi. £ o, 'hy, and covariance€y, = o, >Cy = vyv}l, with vy, , K ) e > pr VkeP,
. . . min > |[tk|l5 st (5)

being the properly scaled dominant eigenvectoiCaf Note (t1,tic} 1 Ry >pr VkeS.
that we can writeh, ~ v,wy with wy, ~ N¢(0,1).

We remark that the constraints in (5) are active in the op-

I1l. ACHIEVABLE AND ERGODIC RATES timum due to the monotonicity properties gf and Ry (see
For a given set of beamforming vectdjit } X, , the follow- !_emma 1). Additionally, note that_(5_)_ does not have a sofutio
ing mutual information is achieved at tigh user in general. In [10], a simple feasibility test was proposed f
e exclusively perfect CSI users (see also Section VI-A).
ri = log, (1 + HZ“::%) . (1) The closely related balancing optimizati¢B) reads as

To exploit (1), the transmitter needs to know the current max B st i”t 12< P Tk > Bpr  VEEP, ©)
channel statéh;,. However, being only aware of its statistics, g (¢,,..tx} = kllz =2t Ry,>Bpe VkES,

given by vy, we cannot use (1) for designing beamformers

to statistical CSI users: € S. Instead, we resort to theWhere the transmit power i$% in the optimum and the
ergodicmutual information which appropriately describes theesulting rates are balanced, i.e., the rate of Us&r Sopipr.
statistical CSI user’s average rate when assuming suffigienNote that (6) always has a solution contrary to (5).

long time slots for the DL phase and sufficiently fast fluc- As has been discussed in [11] and [12] for perfect CSI, (5)
tuations inwy. The kth user’s ergodic mutual informationand (6) are inverse problems. Denoting the optimum of (6) as
Ry, £ Ep, [r)] reads as (cf. [1], [8]) Bopt(Fix) and the optimum of (5) a&(p1,. .., pk), then

Ry, = 10g1(2)§( . |1U£Iti‘2)_logl(2)g( f;kllvi‘ti\z)v (2 P(Bopt(Loc)p1; - - - Bopt( P ) prc) = Pox Y

holds [12]. SinceSop(Pix) is monotonically increasing iy,

(6) can be solved via a bisection whetés adjusted such that
AR oty 1 X (=D)ma” 3y P(Bpi....,Bpxk) is equal toPy.

$(z) S " Eila) =e ( 7~ log(a) ngl nin ) ®) Unfortunately, considering the ergodic rate constrainés;

ther of the problems can be solved directly. In the BC, the

00 o—t . L
andE, (z) = [~ <~ dt is the exponential integral. rates are neither convex nor concave functions of the viasab
By definition, the ergodic raté;, has great similarities to [t}
1Ji=1

X . X X ;.. Therefore, (5) and (6) are nonconvex. Moreover,
ri in (1). Denoting the average signal and interference as hije the rate constraints fok € P can equivalently be

Sy = vt |2 I, = Zi¢k|vgti|2a (4) formulated as minimum SINR requiremenis = 27 — 1,
this is not possible for the ergodic rate constraints. Thues,
respectively, we find the following monotonicity propestie  cannot reformulate problem (5) to that in [11], i.e., a power
minimization with individual SINR constraints, and restot
the (convex) optimization techniques in [12] and [6] or the
feasibility test in [10]. Hence, we cannot solve (6) with.(5)

where we defined : Ry o — Ry ¢ as [9]

Lemma 1. The rater; and the ergodic rate?;, in (1) and (2),
respectively, are non-negative and strictly ...

(&) sub-linearly increasing wittb, for fixed I,

(b) monotonically decreasing with, for fixed Sy, and V. BOUNDS ONERGODIC MUTUAL INFORMATION

(c) sub-linearly increasing withn for the common scaling N )
Sy = aS, and I, = all, with a > 0 and fixed(S}, I.). To overcome these difficulties, we propose two pairs of

lower and upper bounds fdg;, next. To this end, some basic
Proof: Noting that |hfit,[> = |wx|?Sx and properties of the-function in (3) are exploited. The bounds
> iz i til? = |wy|* Iy, the ergodic rate is defined as are designed in a way, such that we can apply the usual
i ?S methods and algorithms when replacing the ergodic ratds wit
R, =E [logz (1 + ﬁuﬁ)}v the proposed bounds in (5) and (6) (see Section VI).
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v~ 0.5772

Al g(i/x) According to this proposition, we expect the upper bound to
——-log(1+x) be loose wherik' < N and ZF beamforming strategies are ap-
--=log(1+z)—7v plied, whereas we expect the bound to be tight in interfezenc

31 log(1+e7x) limited scenarios, e.g., faV < K (see Section 1X).

B log(1+e™"z)+d B. Second Lower and Upper Bound on the Ergodic Rate
=2 Motivated by the observation that the bounds @i /x)
// 4 in (8) are tight foreitherx = 0 or x — oo, we searched
L 7~ 01709 %_f',/ . for more adequate bounds. In fact, we found thét) =
o ol log(1 4+ e~7 z) is tight for both,x = 0 and z — co.
0 : A/' 1 1 1 Actually, h(z) is atight lower boundfor ¢(1/z). That is,
—10 -5 0 - in5dB 10 15 20 o(1/z) > log(1 +e 7 z). (11)

Figure 1. Plot ofs(1/) and its bounds versus in dB. For smallz > 0, above inequality is clearly satisfied since both

functions,s(1/x) andlog(1 +e~7 z), are zero forx = 0, and

A. First Lower and Upper Bound on the Ergodic Rate , ) e
i ) have smoothly decreasing derivatives satisfying (cf. [9])
For the first upper and corresponding lower bound, we

exploit the following properties of(1/z). s(1/x)],_ =1>Flog(l+e " a)|,_, ==

Lemma 2. The differencely;(z) = log(1 + x) — ¢(1/z) is Furthermore, the differenag,(z) = ¢(1/x) —log(1+e™ " x)
zero forz = 0, positive forz > 0, and strictly monotonically approaches zero from above for— oo, i.e., [cf. (3)]

increasing inz. In the limitz — oo, dyi(z) approaches the o = (yn B
Euler-Mascheroni constant ~ 0.5772 [9]. xl;n;Osz(z) = lim e= (*Vﬂog(z)* 21 nina™ ) —log(¢™7x)
The proof is shown in Appendix A. A direct consequence — lim e= (_7+10g($)) —log(x)+~ = 0.
T—r00

of Lemma 2 is that(1/x) is bounded by
Therefore, (11) is also valid for large. For mediumz, we

log(1 +2) —v < <(1/2) <log(1 + ) (8) can see in Figure 1 that (11) holds with strict inequality.
and the difference 1 (z) = <(1/z)—log(14z)+ is positive, Th_e figure also suggest thdt,(x) is b_ound_ed abovg_. To
approaches zero far — oo, and is monotonically decreasingfind its supremum, we note thaf di2(x) is strictly positive
in z. This can also be seen in Figure 1, where we plottd@r low z, negative for larger, and apparently approaches zero
¢(1/x) with its lower and upper bounds versusn dB. only for a finite z; and in the limitz — oo. Thus, dia(z)
Based on (8), we propose the following conservative low@PPears to be pseudo-concave, why we employed a dedicated

bound on the ergodic mutual information [cf. (2) and (4)]; Pisection search [13, Chapter 8] to accurately determire th
. maximal distancel = max,>o di2(x) andzg.

1
Ry > RBYY = logy (1+ Sy + Ix) — logy (1 + It) — os(@) Given d ~ 0.1709, that is achieved aty; ~ 2.3665(2
— log, (1 4.8 ) _ 9) 3.7411dB), we can bound(1/x) as (cf. Figure 1)

1+1,
A drawback of this lower bound is that it becomes negative log(1 +e™" z) < o(1/x) < log(1 +e™"x) + d. (12)
for small but reasonablé;, what is per definition impossible Based on these bounds fofl/x), we simply obtain a lower
for R; (see Lemma 1). Moreover, above conservative boudund onRy, via replacing the first and secor@)-term in (2)
is only tight if both S, — o0 and I, = 0, i.e., when ZF is with the lower and upper bound in (12), respectively. That is
applied and we consider the high SNR regime. Using (9), the B> RO _1 ) S, J 13
worst case error td, is -7y ~ 0.8327 bits per channel use. k=4 = Og2( + W) T log()" (13)
Based on the monotonicity oflui(z), i.e., dui(lx) < Accordingly, an appropriate upper bound 8y results, when
du1(Ix + Sk), we can find the following ergodic rate uppefye replace the first and second)-term in (2) with the upper

bound: —1) s and lower bound in (12), respectively, i.e.
Ry <R\ = 1og2<1 - ) (10) o)
Ry < T =logy (14 550 ) + iy (14)

.,
Tog(®)"

1+1%
which is tight for either S =~ 0 or sufficiently largel. In
fact, we find the following proposition proven in Appendix B.  opviously, the lower bound‘t_@f) and the upper bound

Proposition 1. The ergodic rateR; (2) is upper bounded Fff) are not tight in general. Whereal_éf) becomes negative
—(1) . . —(1 . —

by R,(c) in (10) and differs fromR, ~ by a small error, i.e., for sufficiently small effective SINR, i.e.m—sh ~ 0, Rgf)

Ry > ES) — & with § > 0. Here, § is given by is always larger thani/log(2) even if the effective SINR

. —=(2) . —(1
is zero. Hence,R;," is clearly looser thaanC) for low

= —1c(1/I;) —logy (1 + 1 < 2 g
d 10g<2>§( /1) ~logy(1+ Ii) + log(2) = log(2) S, or sufficiently largel,. However, the worst case error

and has the following properties: is considerably smaller than for the bounds in the previous
(i) ¢ is monotonically decreasing with,, subsection. Given arbitrarg,, and Iy, Fff) and Ef) differ

(i) 0= @ for I, = 0, and 6 = 0 for I, — oo. from Ry by maximally% ~ 0.4934 bits per channel use.



V1. QOS POWERMINIMIZATION WITH BOUNDS Zle er > K — N [10, Theorem 1]. Any point belonging to

As mentioned in Section 1V, directly solving (5) is difficult the interior of the polytope can be achieved with finite sum
To this end, we replace the ergodic rate requirements ByWer. For MMSE targets; = 1, no power is allocated to the

constraints on the proposed boundsR)f denoted as respective user. However, note that= 1 results inp; = u
- for k € S, which might be negative dependent on the bound
R® = log, (1 + %) + 4, (15) that is represented b2 (cf. Table I).
izk |V Li

wherev andy, depend on the represented bound (see Table®). pual Downlink Model and SINR Duality

I R0 RO g =@ A key tool for solving (16) with the fixed-point algo-
& =& ¥ & 7 rithms of [6] is a reformulation into the dual uplink. Thenei
v e 0 ,% +% K single-antenna transmitters send independent signalts wit
. . . power py, k € {1,..., K} over the dual channels, = h;,
Table | p

for k € P andb;, = %vk for k € S to anN-antenna receiver.
The receiver estimates the sent signals using linear expusli
By doing so, the resulting problem can equivalently b#r, k¥ € {1,..., K} and suffers from noise) ~ Nc(0,T).
formulated as a power minimization with SINR requirementdence, thekth user’s SINR in the dual MAC reads as
MAC Moy |2
SINRIC = e e (19)
Knowing that exactly the same SINRs are achievable in the
with 7, =27 —1for k € P, 3, = 27" —1for k € S, and  yector BC and the dual vector MAC if the same total transmit
the definition of the “signal-to-interference-and-noia&a” power is employed [14], we can equivalently solve (16) in
[RHEt, |2 keP the dual MAC. The BC solution is then found with, =
SINR,, = 2w lhzi‘ti\z ’ (17) arfr Vk € {1,..., K} and the scalar§a; } X, are obtained
% k €S. via solving a system of linear equations (see [14] for ds}ail

For a feasibility test and for the optimization in (16)C. Interference Function and Problem Solution
\'/:ve qzzﬂ.tdwectlg/ apply tlhebustuatl (rjngthodds and ilgor't?Ts'The precoder design in the BC essentially reformulates to
€asibliily can for example be lested based on a refornoniatl, joint optimization of the transmit power allocatign =
to maximummean-square-errofMSE) constraints [10] (see 1 px]T and the equalizergy, & € {1 K1 in the
Subsection VI-A). Note that feasibility of (16) implies f@a duél M,AC. For this task. we sug’jgest to,app;ly the generic
bility of (5) when R represents a lower bound &, k € S. :

Y h bounds. feasibilitv of (16 interference function framework of [5] and [6] in order to
OWEVer, when we use upper bounds, 1easi "W_Q (16) eal with the large number of users and transmit antennas in
obviously only a necessary condition for the feasibility(5f.

satellite communications. To this end, we define the effecti

Given feasibility, we can use efficient fixed-point method _ AC
based on the SINR-uplink-downlink-duality and the Stadda;?]terference of usek as 2 (p, fi) = pi/SINRY™ [cf. (19)]

interference function framework (see [14], [6]) for SOIV_such that the (vector) interference function is given by
ing (16). Depending on whether we use upper or lower Z(p,F)=[Zi(p, f1),--., 2 (p, fr)]". (20)
bounds forRy, k € S, the obtained optimum gives either

a conservative or an optimistic bound for the optimum of (5)\0t¢ that Z(p, F) is standard according to [5] for
ixed equalizersF = [f1,...,fx]. Therefore, choosing

A. QoS Feasibility the optimum equalizers, given byopr(p) = (In +

—1
Following [10], we reformulate the SINR targets in (16Y—i#k bib?pi) biypr VE € {1,..., K}, also leads to a
as maximum MSE requirements by noting that the maximusandard |'nterference funcUor@SIF) [5] that IS given by
SINR and theminimum MSEMMSE) of userk are related via Z(P) = [ming, Zi(p, f1), ..., ming, Zx (p, fx)]

SINR, = WSE,C*L Additionally, sincer;, = log,(1+SINRy) This observation and the fact that we can wiép, F') =

REPRESENTATION OF THE PROPOSED BOUNDS FOR THE ALGORITHM

K
min > |[tx]|5 s.t.: SINR, > VE€P, (16)
{tla---atK}kzl

and R = log, (1 + SINRy) + 11, we can represent the MMSEY (F)p +&(F), i.e., as a linear function ip, led to the two
requirements as flxle(-:i—pomlt algorithms in [6] for solving the resulting powe
minimization problem in the dual MAC [cf. (19)]
MMSE, < ep = L =32 " VRel g in1T : i
e v Toih DD (18) 21;81 p st p>diag(v)Z(p) (21)

Note that» does not appear in (18) since it is directlywith the vector of SINR targets = [y1,...,vx|". The details
incorporated in the SINR definition of the statistical CS¢rss of these algorithms can also be found in [1].

With (18) and under someegularity conditionson the
effective channels{h;},cp and {vj}res, the MMSE tar- VIl. RATE BALANCING WITH BOUND CONSTRAINTS
gets {e;} | are feasible iff they lie within a polytop® ReplacingR with R? in (6), we can write the balancing
whose bounding half-spaces are the individual box comgtraiproblem in a similar form as (21). Reformulating the prob-
0<er<1Vke{l,...,K} and the sum MMSE constraintlem in terms of SINR requirements, applying the duality of



Section VI-B, and_using the interference function defimtio —Ljpperé,(cl>
in (20), the balancing problem (6) leads to 3 o lower R
=k
égag%ﬂ st: 1Tp< Py p>diag(v(8)Z(p) (22) - —— lower E,Efz
= o —(2
with ¥(8) = [11(8), - - -, (BT, W (B) = 207 — 1 for k € % 215 :thiea:IRZkF [1]
P, and~(3) = 287x—# — 1 for k € S. g power-loading

We remark that, contrary to (6), the optimum of (22) may
become negative for negatiye (cf. Table I) and sufficiently
low Px. When p is negative, some minimal transmit power
PN is necessary for achieving® > 0, & € S. This Pfn by omm ‘
may be found via solving (16) with SINR targets = 0 for 010 20 36 410 510 66 %0 30
kePandy, =2""—1forkes. Pr, in dB

Problem (22) can be solved with the help of (21). Based @iyure 2. Achievable balancing levlin a fully loaded system wittK =
the observation in (7), we can perform a bisection search 4 users andV = 100 transmit antennas.

B where in each step the power minimization (21) is SOIV‘Which produces a sequend®™},, that is monotonically
until the given transmit power i#} at its optimum. Here, a increasing, i.e.p("+1) > g(n), Whe7rl1 starting withg(©) — 0
lower and an upper bound. ghmay be found via thg umfgrm and converges to the global optimizer of (25) if it exists.
power allocation and the single user rates, respectiveltaild Similarly, the balancing problerg) can be formulated as
and an implementation of the algorithm can be found in [1]. '

maxf s.t. 170 <Py 6> pdiag(p)T(0). (27)

6>0

VIIl. A DDITIONAL POWERALLOCATION

When calculating the BC beamformers and the actuaffy" its solution, we suggest again a bisectiorsoin each step
achieved rates from the solutions of (21) or (22), we ¢ this bisection we test whether there exists a power diloca

observe: whiler, obviously meets the proposed rates fof that satisfies the constraints. We realize this feasibiétt
k € P, R, of usersk € S differs from the proposed ones.With (26). Starting fromg(©) = 0, if the iteration results in a
This motivates an additional power allocation for reduding o with 1o > P, then 3 results in infeasible ;argets.
necessary resources or increasing the achieved balarezing Ptherwise, when the iteration converges t@ avith 176 <

tor. To this end, we represent tigéven beamformers as Py, f results in feasible targets. Initial bounds f@§, are
determined in the same way as in Section VII. A lower bound

try = T\ Ok, (23) can be obtained with uniform power allocatién= Px1 and

. ) ) ) an upper bound with the single user power allocatiéns
with unit-normr;, andf;, € Ry denoting the portion of the Pyey forke {1,...,K}.

transmit power that is intended for userand aim at solving

the following problemifor fixed 7.}, IX. NUMERICAL RESULTS
1) minimize P = 3_;, 6; Subject to the rate requirements For a numerical verification of the proposed methods, we
"k Z. Pk vk € ]P’_and R’? Z_ pi Yk € S;_ K consider a GEO-stationary satellite that is directed to iehin
2) maximize/ subject to limited transmit power, _, 6 < (11°east and 48°north) and has a rectangular antenna drray o
Poc andri 2 Bpi vk € P and%%k = Bpi Vi €S, + N =100 elements. TheK perfect and statistical CSI users
Note that7(0)=[71(), ..., Tx(9)]" with 6=(6s,....0x]", are randomly placed within an area that covers Europe and
O 1 LeP the channels{hy}rep and {vi}res were realized with the
Tx(0) = { R (24) free space path loss model (e.g., see [15]).
k
On/ Ry k€8 For the Figures 2 and 3, we considerediully loaded

is a SIF [5], i.e., it satisfies the following three axioms:  scenario withK' = 100 users,|P| = [S| = 50, and an
overloadedscenario withK = 120 users,|P| = [S| = 60. In

Al) T(@)>0for6>0 (Positivity) ) o T
A2) T(0)>T(0)for0>6 >0 (Monotonicity) ?oth scenlarlos,lt(he2 us:/lrs have targets; = 1ta(;1d1%2i ; 2 |
A3) AT(8) > T(\0) for A > 1 (Scalability) or i € {1,...,K/2}. Moreover, we generate channe

) ] realizationshy, k € P, andwvy, k € S and plotted the average
Herg, axioms A1)-A3) result dlreTctIy from Lemm-all gnd. (24)chieved balancing leveb,: versush;, in dB for the following

With (24) andp = [p1, ..., px]", the power minimization reqits: 5) the result of (22) with the bounds in Table b)

problem from1) can equivalently be written as the result of the partial ZF strategy from [1]) the result of
min1T s.t. 6> diag(p)T(8). (25) the aqlditional power loading (27) with theQSpatiaI beamferm
6>0 directions{7} X, from (22) with R® = E,(c ).

Figure 2 shows the results for the fully loaded setup, where
Bopt grows unboundedly withP,, while Figure 3 considers
the overloaded setup, whefg saturates for highPy. In
both figures, we set the lower bound curves to zero whgn
0™ = diag(p)T(0"~Y), (26) is smaller than the minimum necessary transmit power for

Due to the monotonicity property of (6) in A2) together
with the scalability property in A3), the constraint in (2iS)
active. This motivates the fixed-point algorithm of [5]



20 Qpperﬁi” /,l_l_ -- Now, subtractingog(1+x) and adding(ﬁ) at both sides,
—e— lower BV - multiplying them with1/log(2), and replacing: andé, with
—* % I, and Sy, respectively, we see that [cf. (10)]
. 1.5 {{ —— lower E;f) 2 0
B - 8- upper Ry ,/' | Ry~ = 10%2(1 + Iilc + Sk) —1log2(11 + Ii)
(o] . —
g 1H partlal ZF [1] P4 2 log(2)§(1k+5’k) - 10g(2)g(i) - Rk
s power-loading, , Next, starting withdy (z+6,) —du1(x) >0, we see that
0.5 . 0 <log(l+z+ ;) —log(1+ ) — s (3355) +(2)
E,_--ar'/ <y-log(l+z)+c(2) <vy
—0 o I I | | | .
0 10 20 30 40 50 60 70 S0 becausedUl(:r) < dUl(x + 51) < v (see L_e_m.ma 2). Do_lng
Pryin dB the same replacements as above and dividing both sides by

Figure 3. Achievable balancing levglin an overloaded system with = 10g(2), it directly follows that
120 users andV = 100 transmit antennas. @

. 1 1
satisfying R > 0 vk € S. Note thatR®) exceedsr") for ~ ftr — Ik < iy —logo(1+1x) — @< (1) < ey

low and mediumPy since it has a considerably smaller worsfynere the middle part is essential{ygl(—Q)dLl(Ik) and, there-

case error (see Figure 2). This gap is even larger in Figurqo’{;e’ monotonically decreasing with,, equal to 10&2) for

. 1) . . . .
smceE,(g ' is only tight for I, = 0 and S;, — co which is not I, = 0, and becomes zero fdj, — oo (cf. Subsection V-A).
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