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ABSTRACT

In this paper, a new maximum a posteriori probability
estimation of ambiguities and baselines is proposed for dif-
ferential carrier phase positioning. It performs a recursi-
ve least-squares estimation with an extended Kalman filter,
that uses double difference code and carrier phase measure-
ments and Gaussian a priori knowledge about the baseline
length, elevation/ pitch angle and azimuth/ heading. The
maximum a posteriori probability estimator finds the opti-
mum trade-off between a solution that minimizes the range
residuals and one which is close to the priori knowledge.

It is shown that the Gaussian a priori knowledge ena-
bles a ten times faster convergence of the float solution, and
it substantially suppresses multipath and, thereby, prevents
divergence of float ambiguities and baselines. Moreover,
the Gaussian a priori knowledge allows some errors in the
a priori information, i.e. it is more robust than deterministic
a priori knowledge.

INTRODUCTION

In the past two years, there has been a large number of
accidents on German inland waterways: There were col-
lisions of vessels and cargo ships, others run aground or
against shore or watergates. The damages add up to six-
digit Euro values per accident in average, and were often
caused by navigation errors.

In this paper, a new method for reliable and accurate dif-
ferential carrier phase positioning is described for mariti-
me navigation. It is an extension of our recent paper [1],
in which we proposed the maximum a posteriori probabi-
lity estimation of ambiguities and baselines. The estimator



uses Gaussian a priori knowledge on the baseline length,
pitch angle and heading, and multi-frequency code carrier
linear combinations to improve the reliability of ambiguity
resolution. The a priori knowledge reduces the size of the
search space, and the linear combinations increase the wa-
velength to noise ratio of the combinations, which enables
a substantial reduction of the probability of wrong fixing.
The Gaussian a priori knowledge was used for the search
and fixed baseline solution, but not yet for the computation
of the float solution.

The objectives of this paper are threefold: First, Gaussi-
an a priori knowledge about the baseline length, pitch an-
gle and heading is included in the computation of the float
solution. Secondly, a state space model is used by an ex-
tended Kalman filter to further improve the accuracy of the
float solution. Thirdly, the benefit of the Gaussian a priori
knowledge is analyzed for environments with and without
multipath. Note that the integer search is not discussed in
this paper as it is described in details in [1]-[4].

Fig. 1 shows a coupled cargo ship and a baseline between
two GNSS receivers, for which a new differential carrier
phase positioning method is developed in this paper: The
baseline length and elevation/ pitch angle are known to a
certain extent and, thus, are introduced as a priori know-
ledge in the heading determination.

Fig. 1 Reliable navigation at German river Mosel: The
heading shall be determined precisely by recursive least
squares estimation with some Gaussian a priori knowled-
ge about the baseline length and pitch angle.

Fig. 2 visualizes the benefit of baseline a priori knowled-
ge on integer ambiguity resolution. The wavefronts from
three satellites are depicted, which intersect in numerous
points and, thus, leave an ambiguity. The search space can
be constrained to a certain amount by the code solution
(black circle), but the latter one is not yet accurate enough
to find the correct ambiguity. The introduction of Gaussi-
an a priori knowledge on the length and pitch angle of the
baseline substantially reduces the size of the search space,
but still allows some uncertainty in the a priori knowledge.

Angular constraint

Length constraint
reference receiver

Fig. 2 Integer ambiguity search space: Its size is substanti-
ally reduced by some a priori knowledge about the baseline
length and pitch angle.

ESTIMATION OF AMBIGUITIES AND BASELINE
WITH GAUSSIAN A PRIORI KNOWLEDGE

Measurement model

The double difference code and carrier phases∆ρkn,
∆ϕk

n from satellitek ∈ {1, . . . ,K} at timen and the a
priori knowledge about the baseline lengthlap and elevati-
on/ pitch angleν1,ap shall be considered in a single measu-
rement vector, which is modeled as
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where∆ekn denotes the single difference of unit vectors
pointing from satellitek and a reference satellite to the re-
ceiver,ξn is the baseline,N are the integer ambiguities,ln
is the true length andν1,n is the true pitch/ elevation an-
gle of the baseline. It shall be parameterized in spherical
coordinates in a local reference frame, i.e.

ξn =





ln cos(ν1,n) cos(ν2,n)
ln cos(ν1,n) sin(ν2,n)

ln sin(ν1,n)



 . (2)

Thus, there are onlyK + 3 unknowns, which are in a non-
linear relationship to the measurement vectorzn. Note that
the a priori knowledge is modeled as a stochastic quantity
in (1), i.e. a Gaussian distribution with mean valuesln and
ν1,n and some errorsεlap,n andεν1,ap,n

. These errors we-
re introduced as the true baseline parameters are not per-
fectly known in some applications, e.g. the length of a pu-
sher train of coupled cargo ships is not stationary and also
the pitch angle between the front and back of cargo ships
slightly varies with the motion of the water. Consequent-
ly, a weighted least-squares baseline estimation based on
the measurement model of (1) ensures a solution, which
represents the optimum trade-off between low range resi-
duals and a baseline close to the a priori knowledge.

State space model

The accuracy of the joint baseline and ambiguity esti-
mation can be improved if a state space model is intro-
duced. In maritime navigation, the length and pitch angle
show only small variations over time, and the heading/ yaw
angle is the primary parameter of interest. Therefore, the
pitch angle, the heading and its rate, and the baseline length
are included in the state vector and are modeled as Gauss-
Markov processes, i.e.









ν1,n
ν2,n
ν̇2,n
ln
N









︸ ︷︷ ︸

xn

=









1
1 δt

1
1

1









︸ ︷︷ ︸

Φ









ν1,n−1

ν2,n−1

ν̇2,n−1

ln−1

N









︸ ︷︷ ︸

xn−1

+









wν1,n

wν2,n

wν̇2,n

wln

wN









︸ ︷︷ ︸

wn

, (3)

whereδt denotes the time interval between two measure-
ments. Obviously, there is a non-linear relationship bet-
ween the state vectorxn of (3) and the measurementszn

of (1), which are rewritten as

zn = hn(xn) + vn, (4)

wherehn (xn) is implicitly defined by (1) and (3).

Recursive least-squares estimation
with extended Kalman filter

In this paper, the baseline and ambiguity estimation shall
be performed with a Kalman filter based on the measure-
ment and state space models of (1) and (3). The Kalman
filter includes a linear prediction, i.e.

x̂
−
n+1 = Φnx̂

+
n

P
x̂

−

n+1
= ΦnP x̂+

n
Φ

T
n +Qn+1, (5)

where the second row is obtained from error propagation
with Qn+1 representing the process noise covariance ma-
trix. Once the new measurement is available, the state esti-
mate is updated, i.e.

x̂
+
n = x̂

−
n +Kn

(
zn − hn(x̂

−
n )
)
, (6)

whereKn is the Kalman gain, which is computed such that
the variance of the norm of the a posteriori state estimate is
minimized, i.e.

Kn = argmin
Kn

E{‖x̂+
n − E{x̂+

n }‖
2}. (7)

This minimization of a variance of a highly non-linear
function of Gaussian random variables can not be perfor-
med in closed form. Therefore, the functionhn (xn) shall
be linearized around an initial statex0, i.e.

hn(xn) = hn(x0) +
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where all partial derivatives can be computed in closed
form, and are stacked into a single matrix:

Hn =
[

∂h
∂ν1,n

∂h
∂ν2,n

∂h
∂ν̇2,n

∂h
∂l

∂h
∂N1 . . .

∂h
∂NK

]

.

(9)
This linearization ofhn (xn) enables the solution of (7) in
closed form:

Kn = P x̂−

n
HT

n

(

HnP x̂−

n
HT

n +Σn

)−1

, (10)

whereΣn denotes the covariance matrix of the measure-
ment noisevn.

MAXIMUM A POSTERIORI PROBABILITY
ESTIMATION OF AMBIGUITIES AND BASELINE

In this section, we derive the maximum a posteriori
(MAP) probability estimator of the float solution, and show



that it is equivalent to a least-squares estimator based on the
measurement model of (1). Let us use the following model
for the vector of double difference phase and code measu-
rements of a single epoch without a priori knowledge:

Ψ = Hξ +AN + b+ ε, (11)

with the double difference geometry matrixH, the baseli-
ne vectorξ ∈ R3×1, the ambiguity design matrixA, the
vector of integer ambiguitiesN ∈ ZK×1, the vector of
biases due to multipathb, and measurement noiseε. Note
thatΨ can refer to both uncombined and combined measu-
rements [5]-[8]. A maximum likelihood estimator determi-
nes the baseline and ambiguities such that their probability
is maximized for a given set of measurementsΨ, i.e.

max
ν1,ν2,l,N

p (ν1, ν2, l,N |Ψ)

= max
ν1,ν2,l,N

p (Ψ|ν1, ν2, l,N) ·
p(ν1, ν2, l,N)

p(Ψ)
, (12)

where the rule of Bayes was used. The first factor describes
the measurement noise, which is typically modeled by a
Gaussian distribution, i.e.

p (Ψ|ν1, ν2, l,N) = c0 · e
− 1

2‖Ψ−Hξ(ν1,ν2,l)−AN−b‖2
Σ−1 .
(13)

The second factor in (12) includes a joint probability densi-
ty, which is interpreted as a priori knowledge. This a prio-
ri knowledge shall be modeled as statistically independent
Gaussian distributions, i.e.

p(νx) =
1

√

2πσ2
νx,ap

e
−

(νx−νx,ap)2

2σ2
νx,ap , x ∈ {1, 2}

p(l) =
1

√

2πσ2
lap

e
−

(l−lap)2

2σ2
lap

p(N) =
1

√

2π|ΣN |
e
− 1

2‖N−Nap‖
2

Σ
−1
Nap . (14)

The distributionp(Ψ) in (12) can be considered as a nor-
malization:

p(Ψ) =

∫

p (Ψ|ν1, ν2, l,N)

p (ν1, ν2, l,N) dν1dν2dldN , (15)

which does not explicitly depend on the baseline parame-
ters and ambiguities and, thus, does not affect the maximi-
zation of (12). Replacing the densities in (12) by (13) and
(14), taking the logarithm, dividing by−1/2 and omitting
irrelevant pre-factors turns the maximization into the follo-
wing minimization:

min
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where the first term describes the measurement residuals
and the second one includes weighted offsets from the a
priori known mean values. If an a priori knowledge about
one or more baseline / ambiguity parameters is not availa-
ble, the respective standard deviations are set to0, which
removes their contribution from the cost function. The
weighted sum of5 terms in (16) can also be written as a
single weighted sum by augmenting the measurement vec-
tor byν1,ap, ν2,ap, lap, andN ap, which then results in the
same measurement model as in (1).

BENEFIT OF GAUSSIAN A PRIORI KNOWLEDGE

In this section, the benefit of Gaussian a priori knowled-
ge on the recursive least-squares estimation of ambiguities
and baselines is analyzed. The measurement model of the
previous section is slightly generalized to a block-wise pro-
cessing, i.e. measurements were grouped together in blocks
of 5 epochs to make the rate of the heading/ yaw angle ob-
servable. The single difference unit vectors∆ekn were com-
puted from a snapshot of8 visible satellites as observable at
our institute in Munich once the full Galileo 27/3/1 Walker
constellation becomes operational. All following simulati-
on results refer to5 Hz single frequency code and carrier
phase measurements. The simulation scenarios of the base-
line, measurement and process noises, and of the a priori
knowledge are summarized in Tab. 1, and are considered
typical for maritime navigation.

Tab. 1 Simulation scenario

Initial baseline:
l0 = 100 m, ν10 = 2◦, ν20 = 45◦, ˙ν20 = 1◦/s
Measurement noise:
σϕ = 1cm, σρ = 1m
Process noise:
σν1 = 0.001◦, σν̇2 = 0.03◦/δt, σl = 0, δt = 0.2s
A priori baseline length knowledge:
σlap = 5cm
Setting of pitch a priori knowledge and multipath:
Fig. 3-4:σν1,ap = ∞, no MP
Fig. 5-6:σν1,ap = 0.1◦, no MP
Fig. 8-9:σν1,ap = ∞, MP
Fig. 10-11:σν1,ap = 0.1◦, MP

Fig. 3 shows the convergence of the constrained a po-
steriori float ambiguity estimates forσlap = 5 cm but no
a priori knowledge about the pitch angle. In this case, it
takes140 s until all float ambiguity estimates are at most
0.1 cycles apart from an integer number. The reduction of
the float ambiguity errors within this time span clearly in-
dicates the benefit of the state space model and a Kalman
filter.

Fig. 4 shows the convergence process of the constrai-
ned a posteriori baseline parameters for the same simulati-
on scenario. The estimate ofν1 is much more noisy than the
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Fig. 3 Convergence of constrained float ambiguity estima-
tes for Gaussian a priori knowledge withσlap = 5cm,
σν1,ap = ∞ and no multipath.
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Fig. 4 Convergence of constrained baseline estimates for
Gaussian a priori knowledge withσlap = 5cm, σν1,ap = ∞
and no multipath.

one ofν2, which is a consequence of their different absolu-
te values: The sensitivity of the cost function of (16) w.r.t.
ν1 at ν10 = 2◦ is much smaller than the sensitivity w.r.t.
ν2 at ν20 = 45◦, which results in a noisier estimate. One
can also observe the process noise after the convergence is
reached.

Fig. 5 and 6 show the benefit of an improved a priori
knowledge of the pitch angle: The reduction of the uncer-
tainty toσν1,ap = 0.1◦ (which corresponds to a length un-
certainty of17.4 cm for l = 100 m) substantially shortens
the convergence process, and enables reliable float ambi-
guities and baseline estimates within less than10 epochs.
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Fig. 5 Convergence of constrained float ambiguity estima-
tes for Gaussian a priori knowledge withσlap = 5cm,
σν1,ap = 0.1◦ and no multipath.
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Fig. 6 Convergence of constrained baseline estimates
for Gaussian a priori knowledge withσlap = 5cm,
σν1,ap = 0.1◦ and no multipath.

BENEFIT OF GAUSSIAN A PRIORI KNOWLEDGE
IN THE PRESENCE OF MULTIPATH

In this section, the benefit of Gaussian a priori knowled-
ge on the pitch angle shall be analyzed in the presence of
code multipath. The latter one shall be modeled as inde-
pendent random-walk processes for each double difference
and is shown in Fig. 7. Note that the code multipath errors
vary within 20 cm within the first20 epochs, which ena-
bles an unbiased convergence of float ambiguities. It shall
be noted that this is an optimistic assumption but that there
is a need for an initialization in an environment without too
severe multipath.
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Fig. 7 Code multipath delays: Independent random-walk
processes for each double difference.
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Fig. 8 Convergence of constrained float ambiguity estima-
tes for Gaussian a priori knowledge withσlap = 5cm,
σν1,ap = ∞ and multipath.

Fig. 8 indicates that some ambiguities diverge and, thus,
can not be fixed correctly if no a priori knowledge about the
pitch angle is available. Similarly, the pitch angle estimates
become biased as shown in Fig. 9.

An accurate a priori knowledge about the pitch angle
enables a substantial multipath suppression in one additio-
nal direction. Fig. 10 shows that the divergence of the float
ambiguities can be significantly reduced, and a reliable fi-
xing can be achieved within20 epochs despite the multi-
path. The convergence process for the baseline parameters
is depicted in Fig. 11. One can observe that the error in the
pitch angle is reduced by a factor5 compared to Fig. 9.

0 50 100 150 200 250 300
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time [s]

E
rr

or
 o

f c
on

st
ra

in
ed

 b
as

el
in

e 
es

tim
at

es

 

 

ν
1
 [deg]

ν
2
 [deg]

ν′
2
 [deg/s]

l [m]

Fig. 9 Convergence of constrained baseline estimates for
Gaussian a priori knowledge withσlap = 5cm, σν1,ap = ∞
and multipath.
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Fig. 10 Convergence of constrained float ambiguity esti-
mates for Gaussian a priori knowledge withσlap = 5cm,
σν1,ap = 0.1◦ and multipath.

CALIBRATION OF DOUBLE DIFFERENCE CAR-
RIER PHASE MEASUREMENTS

Reliable differential carrier phase positioning with low
cost single-frequency GNSS receivers needs fast and pre-
cise on-board calibration as frequent loss of locks can be
observed for the carrier phases. Moreover, receiver diffe-
rential clock errors can be as large as a few microseconds,
and ambiguity resolution using code measurements is slow
in the presence of severe multipath.

Therefore, a robust on-board calibration technique was
developed and tested with two u-blox LEA 6T receivers in
urban and rural environments as shown in Fig. 12 and 15:
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Fig. 11 Convergence of constrained baseline estimates
for Gaussian a priori knowledge withσlap = 5cm,
σν1,ap = 0.1◦ and multipath.

The only requirement is that the receiver is moving on a
straight line which is approximately two orders of magni-
tude larger than the baseline length (i.e.100 m for a typi-
cal baseline of1 m), such that the heading can be derived
from a set of absolute position solutions. This requirement
is almost always fulfilled on highways due to a sufficient-
ly high speed. The heading information together with an a
priori knowledge about the baseline length and pitch angle
enable a calibration of the double difference carrier phases.

Fig. 12 On-board calibration of two GNSS receivers - test
I: The yellow track shows the absolute position solutions,
that are heavily affected by code multipath. The double dif-
ference carrier phases are calibrated between (1) and (2),
where the baseline and straight street are aligned and, thus,
the heading can be derived from a linear least-squares fit-
ting of absolute position solutions. Afterwards, the car is
entering a roundabout, and the heading is exclusively deri-
ved from the calibrated carrier phases.
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Fig. 13 Estimation of heading at roundabout: The heading
can be determined with a significantly higher precision
from calibrated double difference carrier phase measure-
ments than from a sequence of absolute code-based positi-
on solutions. One can also observe that the coasted carrier
phases do not drift within the considered time-span.
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Fig. 14 Estimation of heading on highway: The higher
speed enables a faster carrier phase calibration. The coa-
sting of carrier phases results again in a significantly less
noisy heading information compared to one derived from a
sequence of absolute code-based position solutions.

In detail, the method starts with a computation of abso-
lute code-based position solutions from a few epochs, then
transforms these absolute ECEF coordinates into geodetic
coordinates, and performs a linear least-squares fitting of
the latitudes as a function of longitudes. In a second step,
the latitude and longitude of the first receiver are fixed and
the longitude of the second receiver is determined with the
Newton method using the known latitude/ longitude of first



Fig. 15 On-board calibration of two GNSS receivers - test II: The calibration was performed within4 s on highway A6
near St. Ingbert (Germany) at a speed of approximately100 km/h. The calibrated carrier phases were then coasted over40 s
corresponding to a distance of∼ 1 km. The computed heading estimates are shown in Fig. 14.

receiver, the linear relationship between latitude and lon-
gitude for the second receiver, and the a priori knowledge
about the baseline length and elevation/ pitch angle. The
Newton method also provides the positions of both recei-
vers in ECEF coordinates, which enables the computation
of the baseline. Finally, the double difference phases are
set to the product between the single difference unit vectors
pointing from the satellites to the receiver and the baseline.

Fig. 13 and 14 show a comparison of the heading estima-
tes based on calibrated double difference carrier phases and
a sequence of absolute position solutions. The calibration
was performed within10 s in the urban environment and
within the first4 s in the rural environment. Afterwards,
the carrier phases were coasted, i.e. no further calibration
or adjustment was performed. Obviously, the coasted car-
rier phases result in a much less noisy and less multipath
affected heading information. The length of the baseline
was1.078 m, the pitch angle was0◦.

CONCLUSION

In this paper, a maximum likelihood estimation of ambi-
guities and baselines was proposed for reliable differential
carrier phase positioning. It uses Gaussian a priori know-
ledge of the baseline length and pitch angle, and performs
a recursive least-squares estimation with a Kalman filter to
obtain the float solution. It is shown that the maximum a
posteriori probability estimator finds the optimum trade-off
between a solution, which only minimizes the range resi-
duals and one, which only minimizes the distance to the
a priori information. The obtained simulation results show
that the Gaussian a priori knowledge enables a ten times
faster convergence of the float solution compared to the
one without a priori information, it substantially suppres-
ses multipath errors, and that it allows some errors in the
a priori information, i.e. it is much more robust than de-
terministic a priori knowledge. Finally, an efficient method
for on-board calibration of carrier phase measurements was
suggested and tested with real measurements.
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