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Abstract

In this thesis, we investigate machine learning methods for human motion analysis. We intro-
duce algorithms for human pose estimation and activity recognition that do not build upon
conventional cameras and that can cope with noisy and incomplete input data. We propose
methods that capture human movements using body-worn inertial sensors or using a depth
camera. In a training phase, the measurements from these modalities are complemented with
precise and complete movement information recorded with a camera-based motion capture sys-
tem. A novel approach for learning models of human motion is introduced based on non-linear
dimensionality reduction and regression that enables human pose estimation and simultaneous
activity recognition, given only the inertial sensor or depth data. As an application scenario,
we present a customizable method for medical gesture-based human-machine interaction that
fills an existing gap in the operating room, as confirmed by surgeons.



ii



iii

Zusammenfassung

Diese Arbeit befasst sich mit maschinellem Lernen zur Analyse menschlicher Bewegungen.
Es werden Algorithmen zur Erkennung von Körperhaltungen und Aktivitäten vorgestellt, die
auf klassische Kameras verzichten und mit unvollständigen und verrauschten Daten zurecht
kommen. Die vorgestellten Verfahren benutzen am Körper getragene Inertialsensoren oder
eine Tiefenkamera als Eingabemedium. In einer Trainingsphase werden die Messungen dieser
Modalitäten um präzise Bewegungsdaten ergänzt, die mit einem Kamerasystem erfasst werden.
Ein neuartiger Ansatz zum Lernen von Bewegungsmodellen aus diesen Daten wird vorgestellt,
der auf nicht-linearer Dimensionsreduktion und Regression beruht und es ermöglicht, Körper-
haltungen und Aktivitäten allein aus den Sensormessungen bzw. den Tiefenbildern zu erken-
nen. Als Anwendung wird eine Methode zur gestenbasierten medizinischen Mensch-Maschine-
Interaktion vorgestellt, für die Chirurgen zufolge im Operationssaal deutlicher Bedarf besteht.
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Chapter 1
Motivation

Human motion is an unremarkable part of everyday life and yet an exciting subject to study.
Involving hundreds of bones, joints and muscles, the motion of the human body has fasci-
nated physicians and scientists throughout the centuries. Apart from serving the purposes of
transportation and labor, human motion is also used for communication and can thus convey
lots of information, be it intentional or implicit. Analyzing human motion therefore can have
various benefits, ranging from understanding the physical interaction of bones and muscles to
interpreting human behavior and intentions.

While the static anatomical structure and the mechanical properties of muscles and bones
have been largely explored by scientists such as Leonardo da Vinci (1452-1519) and Galileo
Galilei (1564-1642), the complex processes behind human motion remained unclear, if not
miraculous, until the 19th century. One of the first steps towards modern human motion anal-
ysis can be attributed to Eadweard Muybridge (1830-1904), a British photographer. Muy-
bridge succeeded in capturing multiple pictures of moving persons in a fast sequence (Figure
1.1). This way, human motion was for the first time broken down into distinct, observable
body poses. Technological advances of the 20th century, including the refinement of pho-
tography and video technology, have resulted in improved approaches for capturing human
movements, allowing scientists to complete their understanding of the body in motion. The
advent of the computer then brought the quest for human motion analysis techniques that
can automatically extract body poses and other motion information from images and sensor
signals. As a consequence, novel and challenging applications have appeared, ranging from
character animation in the movie industry, through surveillance systems that monitor human
actions, to gesture-based approaches for human-computer interaction.

1.1 Human Motion Analysis

This work deals with three aspects of human motion analysis: pose estimation, action recog-
nition and gesture recognition. In human pose estimation (Section 1.1.1), the objective is to
digitally capture the exact movements of a person in three-dimensional space over time. Ac-
tivity recognition (Section 1.1.2) aims at inferring an abstract notion of what a person is doing
at each instant. Gesture recognition (Section 1.1.3) is the process of detecting a set of move-
ments that are typically used for human-computer interaction. Our approach to these fields
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Chapter 1. Motivation

Figure 1.1: Photographs from ”The Human Figure in Motion”. Eadweard Muybridge, 1878.

is inspired by research in the computer vision community, where a general goal is to extract
meaningful information from limited and noisy visual observations. We particularly inves-
tigate how to bring human motion analysis into scenarios where conventional camera-based
systems face significant challenges. Consider as an example the operating room environment,
where lighting is highly variable and occlusions by personnel and equipment disrupt the line
of sight between cameras and persons to monitor. Long-term motion analysis in everyday
environments is another example where classical cameras can hardly be used. In this work, we
therefore focus on observations that come from novel depth cameras and inertial body-worn
sensors (Section 1.2). To cope with the noisy and ambiguous data provided by these devices,
we explore machine learning techniques that allow learning important characteristics of feasi-
ble human movements from training data (Section 1.3). The introduction concludes with an
outline of existing and potential future applications for human motion analysis (Section 1.4).

1.1.1 Pose Estimation

Intuitively, a human pose is an instantaneous, spatial configuration of the body. As a pose
can be characterized in an arbitrary level of detail, pose estimation methods typically use a
human body model as a parametrizable representation of a real body. The complexity of such
body models can vary strongly, depending on the particular application scenario (Figure 1.2).
In many cases, a pure skeleton (or stick-figure) model is used consisting of limb segments that
are connected through joints. Each joint can have one or more angles of flexion and a human
pose is, in this case, fully determined by the angular configuration of all joints. Skeletal body
models are sufficient if the articulated motion of the body is of main interest. In cases where
the outer appearance of a human in motion is studied, volumetric models are more appropriate
that include a representation of the deformable body surface. Throughout this work, we use
a skeletal body model for its simplicity and flexibility (see Appendix A).

The problem of inferring a human pose from some type of observations is a classical pa-
rameter estimation problem. Given a set of observed quantities, such as image features or
sensor measurements, and an assumed body model, the question is: Which parameters make
the model fit best to the observations? It is clear that the complexity of this problem grows
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a) b) c) d) e) f )

g) h) i) j)

Figure 1.2: Human body models and pose estimation examples. a)-c) Volumetric human body
models. d)-f) Skeleton or stick-figure human body models. g)-h) Pose estimation examples
using volumetric body models. i)-j) Pose estimation examples using skeleton body models.
Pictures from [86, 143, 41, 138, 12, 48, 45, 141].

with the number of parameters to estimate and with the level of noise in the observations.
In terms of skeletal body models, pose estimation becomes an example of inverse kinematics.
The guiding question is: Which set of joint angles allows a set of end effectors (e.g. hands,
feet) to reach a set of given targets (e.g. image features)? Unfortunately, being an inverse
problem, human pose estimation is ill-posed in many cases. This means that there might not
always be a solution, or at least no unique solution, and that poses do not depend continuously
on the observed features. The main reasons are the complexity of the human body and the
fact that observations are often incomplete, noisy and ambiguous. As an example, consider a
walking human that is seen from a side view. The perspective projection onto the 2D image
plane causes depth cues to be lost and, depending on illumination, it can be difficult to tell
which leg of the person is extended at a given moment. When other input modalities, such as
inertial sensors, are used to capture human motion, there can be even less constraints that help
estimating the human pose in 3D. As a result, finding the pose that best matches a given set
of observations is challenging. Classical solution techniques, such as numerical optimization,
can find local optima, instead of the globally best solution, or fail entirely. In this work, we
concentrate on the machine learning approach, where the goal is to learn typical aspects of
human motion in advance from example data to overcome the aforementioned challenges.

1.1.2 Activity Recognition

Activity recognition is a problem on a higher level of abstraction than pose estimation. In
a pure activity recognition setting, the exact body poses of a person are only of limited
interest. The objective is rather to assign an activity class, out of a set of expected activities,
to the motion of a person at every time instant. The understanding of what an activity
actually is, varies throughout the literature. Depending on the granularity of a given activity
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recognition scenario, an activity can be anything from a repetitive movement fragment, such
as raising an arm, to a sequence of complex movements serving one common purpose, e.g.
cooking. In this work, we pursue a customary compromise and use the term activity for
short but complete movements, such as walking, clapping or making a golf swing. Note that
we will use the terms action and activity synonymously, as opposed to other authors that
focus on distinguishing short motion fragments (actions) from long-term combinations thereof
(activities). A systematic review of activity recognition is available, e.g. in [162].

Similar to pose estimation, activity recognition requires an underlying model that can
determine several aspects: Which activities are expected? How are activities typically or-
dered? Which activities are more likely to occur than others? How are activities related to
the observed features? A typical approach to build such a model is by means of statistical
modeling, where some sort of example data is given. In a training phase, the example data is
used to estimate answers to the questions above. This learning attempt is called supervised, if
the training data contains previously known activity labels, or unsupervised, if no such prior
knowledge is available. In this work, we will focus on supervised learning of activities. Given a
learned activity model and a sequence of input observations, activity recognition can either be
performed online or offline. In the former case, the aim is to recognize activities immediately
at every time instant. In the latter case, a whole movement sequence is first recorded and can
then be analyzed in its entirety. We address the online recognition case.

Challenges of activity recognition are mainly due to the complexity of possible activities
and the variations between different executions of identical activities. It is also difficult to
determine exact beginning and ending instants for activities when no future information is
available. For instance, consider the case that two activities are known: waving and scratching
the head, both performed with the right hand. While a person is raising his or her arm, there
is hardly any possibility to know which of the two activities is performed. Only when the
hand is close to the head there might be sufficient information to decide for either waving or
scratching. Another typical challenge with activity recognition is how to handle anomalies, i.e.
movements that do not belong to any of the expected activities. It is important but difficult
not to attribute such unknown movements to any of the known activity classes. When the
sensitivity for detecting anomalies is set too high, variations of expected movements might
also be treated as an anomaly, which is undesired.

While activity recognition is a typical classification problem, in this work, we investigate
activity recognition in a tight conjunction with pose estimation. Many activity recognition
algorithms work on data that is the outcome of a pose estimation method (e.g. joint angles).
Our objective is to target both problems simultaneously, aiming to realize a mutual benefit. We
therefore do not rely on typical activity recognition ingredients, such as Hidden Markov Models
(HMMs), but construct models that serve both, activity recognition and pose estimation.

1.1.3 Gesture Recognition

Gesture recognition is closely related to activity recognition. Given a series of observations, e.g.
image features or sensor measurements, the goal is to automatically recognize body movements
that belong to a certain set of gestures. As we have seen with activities, there is a similar
uncertainty in the literature about how to define a gesture. While some authors see gestures
as instantaneous body poses, such as holding up an index finger, other authors treat extended
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a) b) c)

d) e) f )

Figure 1.3: Examples of gestures used in typical gesture recognition systems. a)-c) Vocabu-
laries of hand and full-body gestures used in categorical gesture recognition approaches. d)-f)
Illustrations of spatio-temporal gestures. Pictures from [79, 61, 149, 7, 44, 57].

body movements as gestures, such as waving a hand. Exhaustive surveys of gesture recognition
approaches for human-computer interaction are available in [73, 102].

Gesture recognition typically serves the purpose of letting persons interact with computer-
ized systems without having to use the keyboard or mouse. Depending on what type of control
is desired in a particular scenario, one can distinguish between categorical gestures and spatio-
temporal gestures (Figure 1.3). Categorical gestures are used to issue discrete commands, such
as ”click the mouse”. Consequently, gesture recognition systems need to identify specific hand
or body poses in this case. Often it does not matter where these poses are performed and
for how long. Gesture vocabularies specify the exact pose for each gesture and define which
commands are associated to the gestures. For example, the hand poses in Figure 1.3 a) each
represent one function that the user can trigger. When the system sees a hand with thumb
and index finger extended, it will react in a pre-specified manner. On the other hand, spatio-
temporal gestures do not directly correspond to discrete commands but are translated to some
kind of movement in the system to be controlled. When recognizing spatio-temporal gestures,
the exact location of a gesture matters, as well as the velocity and temporal extent. In Figure
1.3 e), the user can change the location of a virtual object with the movements of his right
arm. In this work, we investigate an approach that combines categorical and spatio-temporal
gestures to achieve a novel and flexible way of interacting with computerized systems.

1.2 Input Modalities

The first step in human motion analysis is to capture human movements using some type of
input modality, or sensing device. A readily available solution for this purpose is to use optical
motion capture systems. In this case, multiple cameras, often infrared cameras, are mounted
around a designated tracking area. In order to detect and recognize individual body parts of a
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moving person, reflective markers need to be attached to the person’s limbs. Motion capture
systems are able to track the three-dimensional location of the markers within the tracking
area. A human body model is fitted to these marker locations using inverse kinematics, and the
resulting joint angles are returned as the final motion capture output. When using an optical
motion capture system, there is thus no need for further human pose estimation algorithms.
Optical motion capture systems are used for many applications, such as industrial ergonomic
studies, medical gait analysis or in the movie industry to transfer movements of a real person
to virtual characters. We describe a motion capture system developed as a tool for this work
in Appendix B. The system mainly serves the purpose of obtaining precise full-body motion
data for training and as a ground truth for evaluating our proposed algorithms.

While very precise in their ability to track human movements, motion capture systems
have disadvantages that surface when considering less controlled environments. The require-
ment to wear markers or even a specific motion capture suit is cumbersome when the person
is pursuing some type of work or activity of everyday life. Recent marker-less motion cap-
ture systems remove the need for markers, however, at the cost of a very high sensitivity to
visibility and lighting conditions. Typically, multiple regular cameras are arranged around a
common area and the silhouette of a person is extracted in each of the camera views. This
information is used to reconstruct 3D features that help estimating the human pose. Such
marker-less systems often assume ideal illumination throughout the scene and clear, texture-
less backgrounds. Obviously, these assumptions are hard to fulfill in many real-life application
scenarios. In this work, we therefore present motion analysis approaches that build upon par-
ticular types of input modalities: depth cameras (Section 1.2.1) and inertial sensors (Section
1.2.2). Throughout the thesis, we use the terms observations and features to refer to the input
data for our algorithms extracted from the measurements of these modalities.

1.2.1 Depth Cameras

Recent technological advances have led to the development of cameras that allow acquiring
dense, three-dimensional scans of a scene in real-time (Figure 1.4). Previously, 3D data was
mainly available through multi-camera reconstruction systems, where several regular cameras
are connected and depth is recovered by means of triangulation. Using infrared light, depth
cameras are almost independent of lighting conditions and variations in visual appearance of
a person, e.g. due to clothing. In every image pixel, these cameras provide a measurement of
the distance from the camera sensor to the closest object surface. Using the known intrinsic
camera parameters, the depth images can easily be converted into point clouds in metric space.
This means that distances between points, e.g. on the surface of a person’s body, correspond
to true metric distances. There are two main types of depth cameras that operate based on
different physical principles: Time of Flight (ToF) cameras and structured light cameras. ToF
cameras require very sophisticated hardware and are thus comparably expensive. Structured
light cameras are simpler to construct and therefore less expensive. The Microsoft Kinect
[101], recently introduced in the gaming market, has helped depth imaging to spread rapidly,
with a multitude of computer vision applications appearing in a short time.

ToF cameras measure the distance from a sensor array into the scene by means of mod-
ulated infrared light [88]. Rays from an infrared light flash are emitted and sent into the
scene, where they hit object surfaces. Partially, these rays are reflected and travel back to the
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Figure 1.4: Examples of typical depth cameras. a) ToF camera with two infrared flashes and
optics at the center [121]. b) ToF amplitude image. c) ToF depth image with color-coded
depth (blue: close; red: distant). d) 3D Point cloud resulting from depth image. e) Kinect
device with an infrared projector, an infrared camera and an RGB camera [101]. f) Kinect
RGB image. g) Color-coded Kinect depth image. h) Resulting point cloud.

ToF camera. As shown in Figure 1.5 a), the returning rays exhibit a shift in the modulation
phase that is measured in the sensor array. This phase shift is directly proportional to the
distance the light traveled from the camera to an object and back. The term time of flight is
thus misleading, as it is not actually the time that is measured. While ToF cameras have a
relatively low resolution, they simultaneously provide depth and intensity images which can be
used as regular grayscale images. The intensity images are created from the amplitude shift
of incoming reflected light rays. Cameras based on the structured light principle project a
known infrared light pattern into the scene and capture the projected pattern using a regular
infrared camera, see Figure 1.5 b). The depth at any image location is estimated by evaluating
the distortion of the projected pattern. The Kinect combines a structured light camera with
a regular RGB camera that can be calibrated to the same reference frame.

Although depth cameras are very attractive for computer vision applications, their data
is degraded by noise and various types of artifacts. ToF cameras currently have resolutions
around 200 × 200 pixels, the Kinect has a VGA resolution of 640 × 480 pixels. Moreover,
note that the 3D data captured by depth cameras is only available for object surfaces that
are facing the camera. No 3D points are generated at locations that cannot be reached by
the light rays emitted from the depth camera. The available data thus strongly depends on
the view perspective of the depth camera. In fact, the data generated by ToF cameras or the
Kinect is often referred to as being 2.5D (as opposed to 3D) for this reason. Nonetheless, this
information facilitates problems such as segmenting a person from the background.

Typical noise in ToF cameras is due to systematic errors and other sources impacting the
measurements [88]. For example, each ToF camera has a particular distance error that varies
throughout the measurement range. Moreover, surfaces with low infrared reflectance prop-
erties (often black surfaces) result in inconsistent depth estimates. So-called ”flying pixels”
appear at object boundaries due to the fact that individual ToF camera pixels can receive
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Figure 1.5: Working principles of depth cameras. a) The phase shift between emitted and
received infrared light waves, as measured by a ToF camera, is proportional to the depth. b)
Structured infrared light pattern projected by the Kinect and seen in the IR camera.
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Figure 1.6: Accelerometers compared to orientation sensors. a) Accelerometer data from four
inertial sensors attached to arms and legs of a person during a clapping movement with three
repetitions. b) Orientation sensor data for the same clapping sequence.

multiple depth measurements. Finally, when observing a full human with a ToF camera, the
currently low resolution leads to thin body parts being represented by just a few pixels. The
Kinect provides higher resolution depth images, but different surface properties can also lead
to depth irregularities. In addition, the structured light principle used by the Kinect causes
shadow-like artifacts to appear around objects (or body parts) that are closer to the camera.

1.2.2 Inertial Sensors

Compared to cameras, inertial sensors provide an entirely different type of measurements, yet
they are an interesting input modality for human motion analysis. When attached to the
body of a person, wireless inertial sensors enable free movement without any consideration
of line-of-sight or illumination. Originating from aviation and military applications, inertial
sensors nowadays are almost ubiquitous – every modern mobile phone has an integrated inertial
sensor. Wireless stand-alone sensors are currently available in small formats, such as 2cm3, and
allow for a battery-based operation of several hours [161]. Exemplary sensors with a wireless
receiver are shown in Figure 1.7 a). Continued miniaturization will lead to even smaller sensors
in near future. Current early prototypes demonstrate the feasibility of integrating sensors into
garments, such that they become barely noticeable for their users [107].

Simple inertial sensors measure acceleration in three orthogonal spatial directions. Such
accelerometers are not very suitable for human pose estimation, as different body poses can
result in almost identical sensor measurements, whenever the person does not move. Figure
1.6 a) shows accelerometer data for three clapping movements. There are significant peaks
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Figure 1.7: Inertial orientation sensors and their measurements. a) Four Trivisio wireless
sensors and a USB receiver [161]. b) Images from an example movement sequence (top row)
with recorded orientation sensor data (bottom row). Corresponding frames are indicated.

corresponding to the impacts, but the rest of the movements is almost indistinguishable. More
advanced inertial sensors add gyroscopes that measure rotational acceleration along three axes.
Together, such sensors can provide estimates of three-axial orientation. A familiar intuition
behind these orientation measurements comes from airplanes whose orientation is typically
expressed in terms of yaw (heading direction), pitch (vertical incline) and roll (rotation around
the aircraft body). Figure 1.6 b) shows orientation data for the three clapping moves – the
varying poses are clearly differentiable. A disadvantage of orientation sensors is their tendency
to accumulate error, known as drift. Recent sensors therefore use additional information, for
instance a magnetic compass, to complement their relative inertial measurements. Sensor
fusion algorithms are employed to achieve stable orientation measurements [44].

Attaching several inertial orientation sensors to the limbs of a person, we obtain a contin-
uous stream of orientation measurements with three values per sensor (or four, in quaternion
representation). Typical sensors operate at around 60 Hz and each sensor can be addressed
separately. This way, identifying individual body parts becomes straightforward, as opposed
to the need of recognizing body parts from visual observations. Figure 1.7 b) shows pictures
from an exemplary motion sequence of a person and the corresponding orientation data. Ob-
viously, the data is smooth and varies significantly with different body poses. On the other
hand, only a low-dimensional signal is recorded. A single frame in a video contains thousands
of intensity values, whereas six orientation sensors result in a mere 18 values per frame.

1.3 Machine Learning

Having illustrated the aspects of human motion analysis and the input modalities we address
in this work, we now outline the basics of our focused methodological approach. Machine
learning refers to the process of generating knowledge from empirical example data, collected
by observing a process or system of interest. Typically, examples of inputs and outputs of
this system are available, but nothing or little is known about the underlying mechanisms
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that relate inputs and outputs. In other words, the system is a black-box. Machine learning
algorithms are given the observed data for training and try to infer the unknown principles
of the system. In an ideal case, a machine learning algorithm does not only memorize the
training samples, but is able to apply the learned principles to new data. The machine learning
algorithm can thus be used to predict the behavior of the system with respect to previously
unseen data. This ability to generalize is a crucial and challenging aspect of every machine
learning algorithm. Once a model of the system’s mechanisms has been learned, the need
to analytically model all entities and processes involved in the system is alleviated. In many
practical cases, creating such complete analytical models is an intractable task.

In terms of human motion analysis, machine learning can be helpful in several ways. First,
static human body models, such as those shown in Figure 1.2, can be complemented with a
model of dynamics by learning feasible human movements from training data. Such learned
dynamics models can facilitate solving the ill-posed problem of estimating body poses from
limited observations. Second, machine learning can be used to learn the appearance of human
motion in arbitrary modalities, such as video or inertial sensor measurements. In this case,
training requires motion data and the corresponding representation in the desired modality to
be available simultaneously. After training, when new, previously unseen observations appear,
the corresponding body poses can be estimated without modeling the complex imaging or
sensor acquisition process. Third, machine learning can help categorizing human actions into
classes and enable to recognize different types of activities from arbitrary observations.

Unfortunately, the boundaries of what machine learning methods can achieve are quite
clear. The curse of dimensionality is one of the most important limiting factors: The higher the
number of parameters in an estimation problem is, the more training data we need – increasing
in an exponential fashion. In other words, there is never enough training data. Moreover, even
well-designed and elaborate machine learning algorithms are prone to overfitting the training
data, which results in poor generalization capabilities.

As briefly outlined before, machine learning methods can be generally categorized into su-
pervised and unsupervised approaches. Supervised methods learn a mapping between a given
set of inputs and the corresponding outputs. In human motion analysis, we will encounter
this situation when learning the appearance of the human body in depth images and inertial
sensor measurements. The term supervised implies that, during training, exemplary solutions
to the problem at hand are available. Human activity recognition is another typical example
of supervised learning, where the training data consists of motion information and associated
activity labels. In unsupervised learning, a dataset is given for training without any additional
information. The goal of an unsupervised learning algorithm is to learn specific model param-
eters that can best explain the data or simply to unveil the hidden, underlying structure of
the data. In this work, we will deal with the latter situation in terms of manifold learning,
used for extracting a low-dimensional representation of feasible human poses.

Another way of categorizing machine learning methods is in terms of generative and dis-
criminative approaches. Generative learning methods attempt to model the state space of a
given unknown system and the mapping from states to observations. In human motion anal-
ysis, states correspond to parametric representations of human poses, e.g. expressed using a
body model. A generative method could learn a model of feasible human poses and a map-
ping from such poses to their corresponding appearance, e.g. in video. Pose estimation then
consists of searching for poses generating an appearance that best matches the true image
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observations. In contrast, discriminative learning methods do not model the system state
explicitly, but instead focus on the direct mapping from observations to states. For human
motion analysis, a discriminative method thus learns to directly predict human poses from
observations. In this work, we investigate both, generative and discriminative approaches and
discuss their respective properties and practical applicability.

1.4 Applications

There is a plethora of applications for human motion analysis methods. In the following,
we give an overview of existing and potential application scenarios for the three subfields of
human motion analysis focused in this work: human pose estimation, activity recognition and
gesture recognition. The overview follows related scientific work of the last decade.

1.4.1 Entertainment and Animation

Methods for capturing human poses and movements play an important role in entertainment
and animation applications. Motion capture systems are a commodity in the movie industry,
where articulated virtual characters, such as human figures, robots or animals, need to be
animated. To achieve a realistic appearance, such animations are rarely created by manipu-
lating models on a timeline using keyboard and mouse. Instead, the motion of real persons is
digitized and transferred to virtual characters – see Figure 1.8 a). A pose parameterization
with joint angles is very suitable in this context, as these angles can be directly transferred to
virtual body models, even if the proportions are not in an exact match with the real person
[71]. Several techniques have been proposed to remove the need for a marker-based motion
capture system, e.g. in [127, 151], where multi-camera systems are used instead, or in [147],
where inertial sensors roughly capture human movements. Another typical animation task is
to re-arrange existing motion capture sequences in animations, which includes modifying the
timing, the style and the dynamics of a motion sequence. Recent methods allow animators to
perform simple, abstract movements to vary these parameters, as explained e.g. in [157, 39, 65].
The central idea is that natural-looking animations can be best achieved by means of acted
performances, instead of by tuning parameters.

Human motion tracking is currently strongly impacting the gaming industry. While clas-
sical gaming interfaces were based on keyboards, joysticks or other button-based controllers,
human motion is increasingly used as a direct input. Several approaches to control virtual
characters in games by means of inertial sensors on the body of the player have been proposed,
e.g. in [144]. The Microsoft Kinect [101] has brought the possibilities of performance-based
animation into gaming by capturing the player’s movements with a depth camera in real-time
[146, 51]. The Kinect also allows human movements to be used for user interface tasks. Hu-
man pose estimation can also help people in more serious entertainment scenarios, for instance
when certain movements need to be learned or trained. In [90], a person wears a motion cap-
ture suit and can see his or her own martial arts moves in a head-mounted display, along with
a virtual character that shows the corresponding perfect movement. A similar system is pre-
sented in [91] that employs inertial sensors and a single camera instead of a full marker-based
motion capture system. Analogous approaches for learning dance movements also exist.
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a) b) c)

Figure 1.8: Human motion tracking for entertainment applications. a) Tom Hanks equipped
with motion capture markers and the corresponding animated character (from the movie The
Polar Express, 2004). b) Surface-based motion capture using chroma-keying. c) Kinect game
illustration showing body tracking for two persons. Pictures from [67, 152, 101].

1.4.2 Industrial Monitoring and Surveillance

Industrial applications of human motion analysis mainly focus on two aspects: Monitoring and
assisting workers in assembly tasks and evaluating ergonomics, either for achieving suitable
work environments or for product design. When the current activity of an assembly line
worker is known, his or her progress can be determined and specific assistive systems can be
triggered. In [153, 154, 111], the authors present methods using inertial sensors and ultrasonic
hand tracking that monitor the activity of workers at a car assembly line. The workflow is
modeled beforehand with a finite state machine and workers are alerted when they omit one
of the workflow steps. It is also possible to automatically provide suitable tools when a new
workflow step begins. The authors of [97] describe a system for human activity recognition
based on visual human tracking that can be used in robotic assistance scenarios. Here, a
robot is performing tasks to help a human, e.g. an assembly line worker, and adapts its
actions based on the behavior of the assisted person. One further step is taken in [145], where
human motion is directly transferred to the movements of a robot. The authors learn a latent
space representation that allows translating human poses into robotic control signals.

Human motion analysis also plays an important role in ergonomic studies. As part of the
German public research project AVILUS (2008–2011), human body tracking methods were
explored for the purpose of evaluating car and aircraft cockpit designs using virtual reality
techniques [13]. A person, equipped with motion capture markers, is sitting on a chair and
through a head-mounted display (HMD), he or she can see a virtual model of the surrounding
cockpit. The movements of the person are tracked and transferred into the virtual scene
so that interactions become possible, such as reaching for buttons or touching handles. The
motion capture algorithm described in this work (Appendix B) was developed for the AVILUS
project and was evaluated by a car manufacturer using the DTrack tracking system [2]. An
anatomically correct anthropometric body model is presented in [22, 12]. This model can
simulate the outer appearance for various body types and is therefore particularly suitable for
ergonomic studies, where different body proportions can be evaluated automatically.

14



1.4. Applications

a) b) c)

Figure 1.9: Human motion analysis for medical applications. a) Gait analysis using depth
images from a ToF camera. b) Marker-based tracking of an epilepsy patient for analysis of
motion patterns during seizures. c) Workflow recognition in the operating room based on
visual data from a multi-camera 3D reconstruction system. Pictures from [31, 74, 115].

1.4.3 Medical Motion Analysis

In the medical domain, analyzing human motion can serve various purposes, ranging from
disease diagnosis, through an evaluation of rehabilitation progress, to monitoring of elderly
people during their everyday life. A common theme in many medical applications is to pro-
vide physicians with a quantification of human motion. Currently, it is typical practice that
physicians visually assess the movements of a patient and derive judgments based on their
personal experience and descriptive, disease-specific categorizations of mobility patterns. The
aim of computer-based motion analysis in this context is to decrease the influence of subjective
factors in diagnosis and to make assessments more repeatable.

An obvious use for tracking body movements is in orthopedic motion analysis. In [9], a
system based on accelerometers is described for evaluating the gait coordination capabilities
of osteoarthritis patients, in particular after hip arthoplasty. A gait analysis system using a
time of flight camera to capture human motion is presented in [74]. Here, a simple skeleton
model is fitted to the depth data showing a person on a treadmill from a side perspective.
The algorithm returns parameters often used for gait analysis, such as cadence or range of
step motion. The center of mass displacement during walking, another gait parameter of
interest to physicians, is estimated by the method in [131] from accelerometer measurements.
While the aforementioned methods are meant for a stationary application in a physician’s
practice, there are also several approaches for patient monitoring over extended periods of
time in their everyday surroundings. Such approaches, often based on accelerometers, can
be used to keep track of activity levels of cardiovascular disease patients. Research shows
that sufficient physical activity is a key factor in prevention of cardiovascular events, such as
stroke or myocardial infarction. In rehabilitation, motion analysis can be used to assist stroke
patients in regaining their walking capabilities [181]. Another application is telemedicine for
elderly care. Here, patients are equipped with wearable sensors that monitor their movements
and their physical well-being. In case of any unexpected event, such as a fall, help can be
requested automatically [78]. In [106], a method is proposed that recognizes activity changes
of patients as well as walking periods. When prescribed activity levels are not reached, the
patient can be informed and alerted accordingly.
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Neurologists working with Parkinson’s, epilepsy or Multiple Sclerosis patients increasingly
use motion analysis methods, as these neurological diseases often cause movement disorders.
Multiple Sclerosis patients suffer from a severe degradation of their motor abilities that can
end in complete paralysis. Their disease progress, and thus the appropriate type of treatment,
is determined from the patients’ performance in several mobility assessment tests [116]. Cap-
turing patient motion in these tests using cameras or inertial sensors can help to quantitatively
compare the patients’ mobility over time. Parkinson’s patients suffer from symptoms such as
tremor (shaking extremities), bradykinesia (slowed-down movements) and on-off-phases that
can be partially regulated with medication [103]. Here, automatic motion analysis systems
can help detecting inappropriate medication levels that result in specific measurable motor
effects. The authors of [83] describe a system for automatic recognition of on-off-phases of
Parkinson’s patients from accelerometer data. Using such information, physicians can better
determine the effect of medication on a particular patient than by means of irregular visual
observations or patient self-assessments [116]. Research in epilepsy treatment shows that an-
alyzing the duration and strength of epileptic seizures is crucial for correctly classifying the
disease. In [31], a camera-based method is described that allows capturing seizure patterns
quantitatively in long-term clinical epilepsy monitoring units. The authors also show that the
extracted information can help determine where in the brain of a particular patient the neu-
rological cause for epilepsy is located [110]. Other researchers focus on prediction of epileptic
seizures from motion information combined with electroencephalogram (EEG) data [43].

A completely different medical application scenario for human motion analysis, and activity
recognition in particular, is workflow monitoring. Modern healthcare is heavily concentrating
on quality assurance and therefore most procedures follow a standardized workflow. The oper-
ating room (OR) is a typical example, where surgeries or interventions consist of several phases
and multiple steps. Depending on the current step, personal roles can change and different
tools and devices can be required. In [5, 6], methods are presented that can automatically
determine the workflow phase based on accelerometers attached to the arms of a surgeon and
sensors on several tools. The authors identify remaining surgery time prediction as a potential
practical use and also automated documentation of surgeries [114]. A purely visual approach
is taken in [115], where workflow phases of a surgery are learned and recognized using data
from a multi-camera 3D reconstruction system, as shown in Figure 1.9 c).

1.4.4 Human-Machine Interaction

In human-machine interaction, there is a clear trend towards physical interface technologies
that allow persons to use their body for communicating with a computerized system, instead
of pressing keyboard buttons or using a mouse. Several authors use inertial sensors to capture
human motion for gesture recognition [132, 44, 84]. In these approaches, inertial sensors suffice,
as compared to using cameras, because full human body tracking is not desired. The authors
of [132] propose a method that allows persons to control entertainment appliances, such as
a television, with a Wii remote controller. This controller has been introduced for gaming
and contains acceleration sensors. In [44], orientation sensors are proposed as a tangible user
interface for controlling a media player. A personalizable gesture recognition system based on
accelerometers is presented in [84] for design studios. Designers can use gestures to navigate
in virtual design models during presentations to their customers. The method allows its users
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to define their preferred gestures. A radical approach, called imaginary interfaces, is proposed
in [57]. Here, a camera is attached to a necklace and tracks a person’s hand movements in
front of the body. The user can imitate a coordinate system with the fingers of one hand
and use the other hand for interacting with an interface that the user knows and therefore
has in his imagination. This way, the user can control a simple remote application, e.g. a
sketch board, from any location, even without a screen – see Figure 1.3 f). The authors of [96]
propose to use gestures, captured using accelerometers in a mobile phone, as a method for user
authentication. A person-specific gesture pattern thus replaces conventional authentication
approaches, such as entering a personal identification number. Another visionary application
with acceleration sensors is introduced in [126]. The system aims at recognizing the cultural
background of persons in communication situations from culture-specific gestures.

The operating room is a potentially very suitable environment for gesture recognition
methods, as sterility requirements often do not permit surgeons to touch keyboards or mice
[77]. In this context, several authors concentrate on using cameras for capturing hand gestures
of surgical staff [85, 172, 52, 173]. The methods provide a set of gestures that the systems
know and let the surgeon control intra-operative systems, such as image browsers. Such image
browsers are widely spread in operating rooms, in particular during image guided interventions.
To overcome the sensitivity of classical cameras to lighting conditions, recent work focuses on
ToF cameras for gesture recognition. The authors of [61] propose to recognize upper-body
gestures, see Figure 1.3 c). In [89, 149], hand gestures are detected with a ToF camera to
allow for touch-less interaction with an intra-operative medical image viewer. In this work, we
present a novel gesture-based interface approach for the operating room that uses body-worn
inertial sensors and learns arbitrary gestures demonstrated by a surgeon.
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Chapter 2
Thesis Overview

Given the number of applications for human motion analysis presented before and the multi-
tude of related methodological challenges, it is crucial to define the scope of this work in terms
of its overall objectives. In the following, we give an overview of our objectives, the achieved
contributions and the structure of the thesis. We also introduce our notational scheme.

2.1 Objectives

The overall goal behind the work presented in this thesis is to develop algorithms for human
pose estimation, activity recognition and gesture recognition that can be applied in complex
environments, such as the operating room, where traditional, camera-based methods face
significant challenges. Consequently, we focus on inertial sensors and depth cameras as input
modalities. We can formulate the guiding objectives behind this work as developing algorithms
for human motion analysis that...

• can cope with sparse, noisy and ambiguous input information,

• make use of supplementary, informative observations in a training phase,

• learn prior models of human motion from training data,

• are applicable in real-time in challenging environments.

The rationale behind these objectives is as follows. Realistic application scenarios often do not
allow using comprehensive input modalities and only very restricted observations are available.
In particular, our use of inertial sensors and single depth cameras leads to very sparse and
noisy input data. This issue can be facilitated by complementing the sparse information
with additional input modalities, such as marker-based motion capture, that are only present
during a training phase. Machine learning algorithms can use this comprehensive training data
to extract models of human motion and to learn the relationship between the sparse input
data and full human poses. As the computational complexity of machine learning algorithms
concentrates on the training phase, we can achieve real-time performance at application time.

19



Chapter 2. Thesis Overview

2.2 Contributions

This thesis incorporates the results of several research projects related to human pose estima-
tion, activity recognition and gesture recognition. At a high level of abstraction, the major
contributions, resulting from the objectives described above, can be summarized as follows:

• A novel algorithm for simultaneous human pose estimation and activity recognition using
a discriminative machine learning approach. This algorithm models the mapping from
input observations to human full-body poses using non-linear regression techniques that
we train based on multiple-activity example data.

• A novel algorithm for simultaneous pose estimation and activity recognition using a gen-
erative machine learning approach. This algorithm builds upon dimensionality-reduced
models of feasible human poses that we obtain using manifold learning. We propose an
efficient Bayesian tracking approach that allows switching between multiple activities.

• A novel algorithm for gesture-based human-machine interaction in the operating room.
This algorithm uses inertial sensors and allows surgeons to control intra-operative com-
puterized devices without interfering with sterility requirements. The algorithm can
learn arbitrary gestures from examples, as desired by a surgeon.

• Application of novel input modalities, wearable inertial sensors and depth cameras, that
offer limited observations but enable human motion analysis in challenging settings. Our
use of inertial sensors differs from existing work since we approach these devices as an
alternative to computer vision input modalities.

2.3 Outline

The contents of each part of this thesis are structured as follows. The references given below
refer to our original publications that the respective chapters build upon.

• Part I is an introduction to the topics of this thesis and the related background (Chap-
ters 1 and 2). In Chapter 3, we discuss the most important mathematical techniques
that our methods build upon. The methods covered are regression, where our focus is on
kernel regression and Gaussian process regression, and dimensionality reduction, where
we focus on manifold learning. The coverage is for the sake of completeness and familiar
readers can skip this chapter.

• Part II focuses on activity recognition and pose estimation. In Chapter 4, we present
a discriminative method for simultaneous activity recognition and pose estimation from
body-worn inertial orientation sensor data [138]. Chapter 5 covers generative approaches
for activity recognition and pose estimation based on manifold learning [139, 136, 140].
We present our evaluation on using inertial sensors and depth cameras as input. Chapter
6 is an excursus from the main theme of the thesis and deals with an alternative approach
for pose estimation from depth data that is not based on machine learning [141, 142].
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• Part III focuses on gesture recognition and brings concepts investigated in the previous
chapters to the application scenario of the operating room. In Chapter 7, we describe our
approach for human-computer interaction that uses inertial sensors to capture gestures
and machine learning for gesture recognition. Surgeons can freely define gestures that
are most suitable for controlling intra-operative computerized systems [16, 134, 135].

• Part IV concludes the thesis. Chapter 8 contains a summary and a discussion of our
main learnings. Chapter 9 addresses related possible future research directions.

• Part V is an appendix and contains supplementary material. Appendix A introduces
the human skeleton body model that is used throughout the thesis. In Appendix B,
we describe the optical marker-based motion capture system that was developed as an
introductory work to this thesis and that serves for acquisition of training and ground
truth data. A list of authored and co-authored publications is given in Appendix C.

2.4 Notation

Throughout this work, we will adhere as much as possible to the following notational scheme:

Entity Notation Example

Scalar values Lower-case, plain letters a, b ∈ R
Vectors Bold-face lower-case letters x,y ∈ R2

Matrices Bold-face capital letters A ∈ Rm×n

Sets Calligraphic font letters P = {1, 2, 3}
Functions Plain letters f(x) or F (y)

When indicating the dimensions of a matrix, e.g. A ∈ Rm×n, the first index (here: m) refers
to the number of rows and the second index (here: n) gives the number of columns of the
matrix. Table 2.1 lists particular symbols used in this work and their general meaning.
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Symbol Description

α Discrete index of an activity or gesture.
dy Dimensionality of full-body pose space.
dx Dimensionality of observations, e.g. inertial sensor or camera data.
dz Dimensionality of manifold embedding space.
K Number of skeleton joints.
L Number of anatomical landmarks.
M Number of considered activities or gestures.
N Number of given points in a dataset, e.g. poses or observations.
n Number of particles in the particle filter algorithm.
T Number of motion capture targets.
t Discrete time index, often used as a subscript.

x ∈ Rdx Observation vector of dx dimensions, e.g. sensor or camera data.
X ∈ RN×dx Matrix of N observation vectors as rows.
X = {x1, . . . ,xN} Set of N observation vectors.
y ∈ Rdy Vector of dy joint angles representing a human full-body pose.
Y ∈ RN×dy Matrix of N human full-body pose vectors as rows.
Y = {y1, . . . ,yN} Set of N joint angle vectors.
z ∈ Rdz Dimensionality-reduced human body pose in dz dimensions.
Z ∈ RN×dz Matrix of N dimensionality-reduced human poses as rows.
Z = {z1, . . . , zN} Set of N dimensionality-reduced human poses.

x̂ Estimated quantity.
x̃ Variation of a quantity.
x̄ Averaged quantity.

Table 2.1: Notational scheme used throughout the thesis.

22



Chapter 3
Mathematical Background

In this chapter, we introduce the main mathematical techniques used in our work. These
techniques are regression and dimensionality reduction, where we focus on manifold learning.

3.1 Regression

Regression methods can be used to recover an unknown functional relationship f(x) = y,
given noisy observations Y = {y1, . . . ,yN} of the output variable, at certain values of the input
variable X = {x1, . . . ,xN}, where yi ∈ Rdy and xi ∈ Rdx . Knowledge about this relationship
allows predicting y for new values of x. In the case of classical regression analysis, one makes
an assumption on the type of the functional mapping f , e.g. that it is linear. Based on this
assumption, a parametric model of appropriate type is fitted to the observed data points, for
instance using least squares methods. Non-parametric regression methods do not assume a
particular parametric form for the sought functional relationship f . Regression is in this case
purely data-driven, i.e. statistics of the distribution of observed functional values are used to
model the functional relationship and, thus, to predict functional values. In this work, we use
non-parametric regression methods and thus our focus will be on kernel regression (KR) and
Gaussian process regression (GPR).

3.1.1 Kernel Regression

Kernel regression refers to a class of non-parametric regression techniques where the value
of the unknown function f(x) at any location x is computed from the functional values of
the known points xi in the neighborhood of x using a kernel function for weighting. Among
several kernel regression variants, a frequently used method is the Nadaraya-Watson estimator
[105, 17]. Let X = {x1, . . . ,xN} be a set of locations where the values of f are known, and let
Y = {y1, . . . ,yN} be the corresponding functional values. Based on a kernel function, such as
a Gaussian kernel k(xi,xj) = exp(−1

2
‖(xi−xj)/σ‖2) with a width parameter σ, the functional

value ŷ at any location x can be estimated as

ŷ = f̂(x) =
N∑
i=1

k(x,xi)∑N
j=1 k(x,xj)

yi. (3.1)
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Figure 3.1: Illustration of the Nadaraya-Watson estimator. At the locations {x1, . . . ,xN}, the
noisy functional values {y1, . . . ,yN} are known (black dots), but the function f itself (dashed
green line) is not available. The estimate for ŷ = f(x) is a weighted average of all known
functional values yi. The blue shaded circles are proportional to the associated weight.

The estimate is a weighted sum of the functional values yi for all N known points, where the
weights are given by the fraction. The largest contribution in the summation is attributed
to functional values yi at locations xi in the vicinity of x. For such locations, k(x,xi) will
be maximal. Depending on the choice of σ, the influence of functional values at locations
further away from x will decrease until becoming negligible. The denominator in Equation 3.1
ensures that the weights sum up to one. Therefore, the estimated function value is actually
a convex combination of the known values. This is a favorable property, as it means that the
estimates will always lie within the convex hull of the given data points. Figure 3.1 illustrates
kernel regression with the Nadaraya-Watson estimator. In this one-dimensional example, a
Gaussian is centered at each given input xi. Each Gaussian determines the influence range of a
particular input point. This influence range can be adjusted by changing the width parameter
σ, which is equal for all Gaussians. At a given new location x, the values of the Gaussians for
all xi determine the influence of the respective function value yi in the prediction of ŷ = f(x).

3.1.2 Gaussian Process Regression

A different kind of non-parametric regression method with interesting properties is based
on Gaussian processes. A Gaussian process is a stochastic process, where every realization in
space or time consists of a random variable with a normal (Gaussian) distribution. In addition,
any finite subset of these random variables have a joint multivariate normal distribution [125].
Intuitively, Gaussian processes can be thought of as distributions over functions. In this
context, the random variables of a Gaussian process are the function values f(x), and the
index set of the Gaussian process is the set of possible function inputs, i.e. the set where x is
drawn from. Initially, we will assume that the functions we are interested in are real-valued,
f : Rdx → R and dy = 1. The extension to vector-valued functions will follow (Section 4.3.1).

A Gaussian process can be uniquely determined by a mean function µ(x) and a covariance
function k(xi,xj). The covariance function determines the covariance between the random
variables of the Gaussian process, i.e. the covariance of any pair of function values f(xi) and
f(xj), but is defined in terms of the inputs, xi and xj. This means that the covariance
between function values whose corresponding inputs are close will be high. The random
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Figure 3.2: Illustration of Gaussian processes for regression. a) Three random functions
sampled from the prior distribution N (0,K), characterized by a specific covariance function.
The shaded area represents the mean plus the standard deviation for each location, i.e. for
each random variable of the Gaussian process. b) Three random functions sampled from a
prior distribution with a different covariance function. c) Conditioned on known training data
points (black dots), the distribution is restricted to functions that fit the data.

variable representing a function value f(x) for an unknown input x will thus correlate well
with the function values for close-by known inputs. A typical choice for the mean function
is a constant zero µ(x) = 0. As a covariance function, different versions of the Gaussian are
often used [41, 125], such as k(xi,xj) = exp(−1

2
‖(xi − xj)‖2) in the simplest case.

Once mean and covariance function of a Gaussian process are specified, a prior distribution
over functions is determined. We can now draw samples from this distribution that will be
individual functions – or more precisely, sets of random functional values following the mean
and covariance functions of the Gaussian process. Let X = {x1, . . . ,xN} be a set of input
points, where xi ∈ Rdx and X is the corresponding matrix and let K be an N ×N covariance
matrix with entries kij = k(xi,xj). A function sampled from the Gaussian process is then
given by the vector

y ∼ N (0,K), (3.2)

where y ∈ RN , N (·, ·) indicates a normal distribution and 0 is an N -dimensional vector of
zeros. Note that each entry of y is the scalar functional value corresponding to one of the N
input points xi. However, the obtained functional values will not represent any function of
particular interest, as we have not yet incorporated any information on known functional val-
ues f(xi). Assuming we have a training dataset of observed functional values Y = {y1, . . . , yN}
corresponding to the inputs X , where yi ∈ R and y := [y1, . . . , yN ]>, we can condition the
prior distribution on this training data. The resulting posterior distribution will only represent
functions that are consistent with the training observations. Figure 3.2 illustrates three func-
tions drawn from the prior distribution N (0,K) and three functions drawn from the posterior
distribution conditioned on four training data points.

Let x ∈ Rdx and y ∈ R be a pair of input and functional values that are not part of the
training data. The joint prior distribution of the training data and the new pair is then the
extension of Equation 3.2, such that[

y
y

]
∼ N

(
0,

[
K k(x)

k(x)> k(x,x)

])
, (3.3)

where k(x) is a N × 1 vector with entries k(x)i = k(x,xi). Conditioning this joint prior dis-
tribution on the observed (training) data as detailed in [125], we obtain a predictive posterior
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distribution N (µ(x), σ(x)), with mean and variance given by

µ(x) = k(x)>K−1y, (3.4)

σ(x) = k(x,x)− k(x)>K−1k(x). (3.5)

These equations are the core of Gaussian process regression. Given a training dataset of
corresponding inputs X and functional values Y , a prediction of the functional value ŷ = f(x)
for a new location x can be obtained using Equation 3.4, the predictive mean. In fact, this
expression is a linear combination of functional values y = [y1, . . . , yN ]> from the training
data, weighted with kernel terms that quantify the correlation of the new input x with the
known training locations xi and the correlation within the training data. Equation 3.5, the
predictive variance, can be seen as an assessment of prediction uncertainty. Note that this term
does not depend on the training observations y. As illustrated in Figure 3.2 b), the variance
is proportional to the distance of the unknown input x to any known training location xi.
Intuitively, the prediction uncertainty is high where known inputs are far away.

A crucial ingredient of Gaussian process regression is the chosen covariance function
k(xi,xj). Although the regression model is non-parametric, the type of covariance function
that is used determines the properties of the functions that a Gaussian process can represent.
See Figure 3.2 a)-b) for an illustrative example of random functions modelled by Gaussian
processes with different covariance functions. In practice, the simple Gaussian covariance
function stated above would be replaced by an extended version, such as

k(xi,xj) = α2 exp

(
− 1

2β2
(xi − xj)

2

)
+ γ2δij, (3.6)

where δij equals 1 if i = j and 0 otherwise [125]. Here, the values α, β and γ are introduced
that are referred to as hyperparameters, to emphasize that Gaussian process regression is still
non-parametric in the classical sense. The hyperparameter α influences the overall variance
of the functions modeled by the Gaussian process. The hyperparameter β determines the
so-called length-scale of the modeled functions. The length-scale can intuitively be seen as an
analogy to the frequency of a signal. The hyperparameter γ represents the assumed noise level
in the training data. Referring to the illustration in Figure 3.2 a), where random functions are
drawn form a Gaussian process with a given covariance function, changing α would affect the
amplitude of the functions. An increasing value of β would cause the functions to vary more
slowly, small β would result in more oscillations, as in Figure 3.2 b). The choice of γ would
influence how closely the functions pass through the given points in Figure 3.2 c).

Suitable values for the hyperparameters are obtained by optimization over the training
dataset. We minimize the negative log marginal data likelihood [125, 41] with respect to the
hyperparameters θ = (α, β, γ):

− log p(y|X, θ) =
1

2
y>K−1y +

1

2
log |K|+ N

2
log 2π, (3.7)

In this sum, only the first term contains the training data observations y. This term measures
how well the Gaussian process model fits the training data. The second term in the sum can
be seen as a measure of model complexity and serves the purpose of preventing overfitting [41].
The last term is a normalization constant. For details on solving this optimization problem
numerically, we refer the interested reader to [125].
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3.1.3 Other Methods

In this work, we focus on kernel regression and Gaussian process regression for the following
reasons. Kernel regression according to the Nadaraya-Watson estimator is conceptually intu-
itive, expressed in a closed form (Equation 3.1) and does not require any iterative training
procedure. The kernel width parameter σ can be estimated from the variance of the input val-
ues X = {x1, . . . ,xN} in the training data. Gaussian process regression requires optimization
in the training phase to determine the hyperparameters. However, the appeal of Gaussian
process regression lies in its probabilistic character. It allows not only obtaining an estimate
of the functional value f(x) for an unknown input x (Equation 3.4), but also to assess the
prediction certainty for any new input by means of the predictive variance of the Gaussian
process (Equation 3.5). In our method presented in Chapter 4, we use the predictive variance
to derive a weighting scheme that combines multiple Gaussian process regression models, each
specialized on a specific type of human motion data.

Another non-linear regression method with interesting properties is based on the Relevance
Vector Machine (RVM) [160]. The RVM essentially follows the formulation of the Support
Vector Machine (SVM) for regression [17], but expressed in a probabilistic Bayesian framework.
The RVM requires a costly iterative optimization procedure to find suitable values for a set of
hyper-parameters from training data. However, after training, the RVM bases its predictions
on a very small number of relevance vectors that are prototypical examples from the training
dataset [160]. This sparsity of the RVM allows for high computational efficiency with large
training datasets and provides remarkable generalization properties. At the same time, the
RVM is probabilistic, such that a predictive certainty is available, similar to Gaussian process
regression. In Chapter 5, we employ regression in a generative model of human motions and
compare the performance of kernel regression with that of Relevance Vector Regression.

3.2 Dimensionality Reduction

The objective of dimensionality reduction is to find a new representation for a set of given
data points that has fewer dimensions than their original representation. We will denote
the original dataset as Y = {y1, . . . ,yN}, where yi ∈ RD and N is the total number of
given points. The corresponding points after dimensionality reduction will be denoted as
Z = {z1, . . . , zN}, such that zi ∈ Rd and d < D, often even d� D. We will also use the matrix
notation Y = [y1, . . . ,yN ]> and Z = [z1, . . . , zN ]>. In the desired case, the dimensionality-
reduced representation preserves properties of the data points, such as their variance or their
neighborhood relations, as much as possible. However, since fewer dimensions are used after
dimensionality reduction, handling and analyzing the data becomes more efficient.

3.2.1 Linear Methods

In this work, we focus on manifold learning methods, i.e. on non-linear dimensionality re-
duction techniques. In order to motivate the need for non-linear dimensionality reduction,
we first introduce typical linear methods, such as Principal Component Analysis (PCA) and
Multi-dimensional Scaling (MDS), and consider their effect on linear and non-linear datasets.
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a) b) c)

d) e) f )

Figure 3.3: Illustration of the effect of dimensionality reduction using PCA. a) Approximately
linear point distribution. b) Principal components (eigenvectors). c) Projection of original
points onto first principal component. Points are distributed along the axis of largest variance.
d) Non-linear point distribution. e) Principal components. f) Projection onto first principal
component. Points from different parts of the structure underneath the data map together.

3.2.1.1 Principal Component Analysis

PCA is a common linear dimensionality reduction method that can determine a linear pro-
jection mapping Y to new points Z in a subspace with different coordinate axes orientation.
Dimensionality reduction is achieved by truncating this representation. After arranging the
original points Y in a N × D matrix Y = [y1, . . . ,yN ]>, we subtract the mean from the
points. Using the N × N centering matrix1 HN = IN − 1

N
11>, mean subtraction can be

written concisely as HNY. Based on the D × D covariance matrix C = (HNY)>(HNY) =
Y>HNHNY = Y>HNY, the linear PCA projection is determined from the eigenvalue de-
composition C = VΛV>. Here, Λ is a diagonal matrix of eigenvalues and V is an orthogonal
matrix with the associated eigenvectors vi as columns. The eigenvectors corresponding to the
largest eigenvalues represent the directions of largest variance in the original point set Y . Sim-
ilarly, eigenvectors with less significant eigenvalues represent directions with smaller variance
– see Figure 3.3. The coordinates of the dimensionality-reduced points can be obtained as the
rows of the N × d matrix

Z = (HNY)Vd, (3.8)

where Vd is a D× d matrix with the d eigenvectors corresponding to the d largest eigenvalues
of C as columns. The information that is omitted in the projection is limited to the D − d
dimensions in the dataset with smallest variance. With an appropriate choice of d, PCA thus
allows explaining most of the variance of a dataset with significantly reduced dimensionality.

1Here, IN is the N ×N identity matrix and 1 denotes the N × 1 vector consisting of ones.
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3.2.1.2 Multi-dimensional Scaling

As we have seen, the PCA projection is obtained from the eigenvalue decomposition of the
covariance matrix for a given dataset. In some applications, we instead have a matrix of dis-
tances (or dissimilarities) between all pairs of points available. For dimensionality reduction,
we might be more interested in preserving these distances than in maximizing variance. This
idea leads to Multi-dimensional Scaling (MDS), an algorithm that can compute coordinates
for a set of points in an arbitrary dimensionality d, such that the inter-point distances ap-
proximate those given in a Euclidean distance matrix. In particular, d can be smaller than
the dimensionality D of the space where the Euclidean distances have been measured. As
an illustrative example, MDS can be used to create a two-dimensional map of the cities of a
country, given only the mutual distances between the cities.

Let D be an N ×N matrix where the entries dij are squared Euclidean distances between
all pairs of points in a set Y = {y1, . . . ,yN} of N points. The objective of MDS is to find the
coordinates of a set of d-dimensional points Z = {z1, . . . , zN}, such that the error

E(Z,D) =
N∑
i=1

N∑
j=1

dij − ‖zi − zj‖2 (3.9)

is minimized. It can be shown that the solution to this minimization problem is determined
from an eigenvalue problem [175]. To this end, the distance matrix D is first double-centered,
resulting in B = −1

2
HNDHN , where HN is the centering matrix defined above. The eigenvalue

decomposition of B into B = UΛU> leads to a diagonal matrix Λ containing the eigenvalues,
and an orthogonal N × N matrix U with the corresponding eigenvectors ui as columns.
Assuming the eigenvalues are sorted in a decreasing order, we can extract as Λd the diagonal
matrix with the d largest eigenvalues and as Ud the N × d matrix with the corresponding
eigenvectors as columns. The coordinates of the points approximating the Euclidean distances
in D are then the rows of the N × d matrix

Z = UdΛ
1/2
d . (3.10)

Instead of Euclidean distances, other dissimilarity measures can also be used, as discussed
below. In fact, Euclidean distances in MDS lead to a solution that is identical to the PCA
solution [175]. This relation becomes clear when observing that the double-centered squared
distance matrix B can be rewritten as B = (HNY)(HNY)>. This is the Gram matrix
of the mean-subtracted points HNY. Recall that in PCA, the eigenvalue decomposition of
the covariance matrix C = (HNY)>(HNY) is computed instead. As shown in [175], the
non-zero eigenvalues of the Gram matrix are also the eigenvalues of the covariance matrix.
The eigenvectors ui of the Gram matrix and the eigenvectors vi of the covariance matrix
are related through

√
λiui = (HNY)vi ∀i. We can see that the left side of this equation

corresponds to Equation 3.10, when considering an individual eigenvector, and the right side
similarly corresponds to Equation 3.8, the PCA projection.

3.2.2 Manifold Learning

While PCA and MDS are highly valuable in many practical applications, they can only pro-
vide linear dimensionality reduction. In other words, a dataset with a non-linear structure
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a) b)

Figure 3.4: Examples of two-dimensional manifolds embedded in three-dimensional Euclidean
space. a) A spherical surface in 3D with a local surface patch laid out as a 2D plane. c) A
structure often called the Swiss roll in 3D and unfolded to a 2D plane.

will be projected to a linear subspace, with the risk of losing significant information. The
variance of a dataset in each spatial dimension can be less informative than the underlying
non-linear structure of the dataset, for instance through neighborhood relations among the
points. However, PCA will in general not preserve this structure. Figure 3.3 illustrates the
effects of PCA on an approximately linear dataset and a non-linear dataset that follows an
underlying structure. The dataset in Figure 3.3 a) has a clear direction of largest variance
that correlates with the structure of the data. However, the variance of the points in Figure
3.3 d) is not directly related to the non-linear structure of the dataset. Projecting the points
onto this direction will disrupt the neighborhood relations between the points, as the manifold
structure of the data will be disregarded. Similarly, MDS will not be able to account for the
underlying manifold structure, as it approximates the Euclidean distances between all pairs
of points, no matter whether they are in a spatial neighborhood.

Intuitively, a manifold is a generalization of a curve or surface to a higher dimension [94].
A manifold has an intrinsic dimensionality that can be thought of as the number of param-
eters required to uniquely specify a point on the manifold. In the context of dimensionality
reduction, we are interested in situations where a manifold is embedded in a space that has
more dimensions than the intrinsic dimensionality of the manifold. Manifold learning tech-
niques attempt to reveal the manifold structure of a given dataset. The goal is to represent
the data with as many dimensions as the dimensionality of the manifold, instead of using the
full, probably wasteful dimensionality of its surrounding space.

More formally, a d-dimensional manifold is a topological space in which the neighborhood
of each point is homeomorphic to the Euclidean space Rd [94]. Leaving the details of mathe-
matical topology to the interested reader [40, 94], we will think of a d-dimensional manifold
as a structure that is locally similar to the Euclidean space of d dimensions. As an example,
consider the earth as a sphere in 3D space. Locally, i.e. on the scale of meters and kilo-
meters, we can easily represent the surface of the earth on a 2D plane. However, this local
2D structure globally resides in a 3D space. The earth surface can thus be thought of as a
manifold with intrinsic dimensionality of two2, embedded in a 3D surrounding space (Figure
3.4). In the context of data analysis, a typical observation is that points in a space of given

2Note that typical manifold learning methods might not be able to unfold a spherical 3D structure as in
Figure 3.4 a), as there are no boundaries where a disconnection for unfolding could take place. The Swiss roll,
illustrated in Figure 3.4 b), has clear boundaries that facilitate its unfolding to a 2D structure.
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Figure 3.5: Illustration of the effect of measuring Euclidean and geodesic distances on 2D
manifolds embedded in 3D space. a) Sphere: the Euclidean distance is measured through the
interior of the sphere, the geodesic distance follows the surface. b) Swiss roll: the Euclidean
distance takes a shortcut through space, the geodesic distance follows the planar manifold.

dimensionality lie on or close to a manifold of lower dimensionality. Consider human poses
represented by vectors of joint angles. Each pose is a point in a space that has as many di-
mensions as there are joints. However, the vast majority of points in this space correspond to
poses that are physiologically unfeasible. In particular, when dealing with a specific activity,
such as walking, the corresponding poses will cluster near a manifold that has significantly
fewer dimensions than the full pose space. It is often not easy to determine this intrinsic di-
mensionality of the data (see Section 3.2.3). In the walking example, we can assume that the
manifold is one-dimensional, as a single parameter is sufficient to determine a particular pose
in the cyclic walking pattern. In this work, we consider the three popular manifold learning
methods Isomap, Locally Linear Embedding and Laplacian Eigenmaps.

3.2.2.1 Isomap

Isomap, short for isometric feature mapping, was one of the first manifold learning approaches
presented in the literature [156]. It is essentially an extension of Multi-dimensional Scaling.
In the MDS algorithm, a point set is constructed based on a given matrix of Euclidean inter-
point distances. However, these distances do not take into account the topology of the manifold
structure that the points might be following. Figure 3.5 illustrates Euclidean distances in 3D
between two points on a manifold and the corresponding distances along the 2D structure of
the manifold. The distances along the manifold are referred to as geodesic distances3. In the
Isomap algorithm, Euclidean distances between pairs of points in a dataset are replaced with
geodesic distances, the remainder of the algorithm is identical to MDS.

A typical way of computing geodesic distances within a given set of points is by means of
a graph. As before, let Y = {y1, . . . ,yN} be a dataset of N points with yi ∈ RD. We define a
graph, where the given points are the vertices and edges are introduced whenever two points
yi and yj are neighbors in the manifold structure. Such a graph can be represented by an
N ×N edge weight matrix W with entries

wij =

{
‖yi − yj‖ if yi ∈ N (yj)
∞ otherwise.

(3.11)

3The term comes from geodesy, the discipline where the size and shape of the earth are studied. A geodesic
is originally the shortest path between two points on the earth’s surface, given by a segment of a large circle. In
the general sense we are considering, geodesic distances are defined on arbitrary shapes in arbitrary dimensions.
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Here, we assume that the geodesic distances can be approximated locally (i.e. between adjacent
points) by means of Euclidean distances. The neighborhood N (yi) for a point yi can be given
by the k nearest neighbors, or by an ε-ball around yi. In practice, setting up the weight
matrix amounts to computing a pair-wise distance matrix D, followed by setting entries to∞
wherever appropriate. Points that are located on topologically separated parts of the manifold
should not share a common edge in the graph. In the example of Figure 3.5 c)-d), there would
be no direct connection between the points R and S in the graph. Instead, the graph would
approximate the surface of the Swiss roll.

Given the edge weight matrix W, we can approximate the geodesic distances between all
points in Y using all-pairs shortest paths algorithms, such as Dijkstra’s algorithm [28] or the
Floyd-Warshall algorithm [28]. These algorithms compute inter-point distances by following
shortest paths along the edges in the graph and summing up the Euclidean edge weights.
We then store the squares of the approximated geodesic distances in an N × N matrix D.
This matrix is then used as an input to MDS, instead of the Euclidean distance matrix. The
remaining steps of MDS, the eigenvalue decomposition and the extraction of the final points
from the eigenvalues and eigenvectors, are identical to MDS as described above.

3.2.2.2 Locally Linear Embedding

Similar to Isomap, Locally Linear Embedding (LLE) also focuses on local neighborhoods of
points in a given dataset [130]. However, LLE does not require costly shortest path compu-
tations. The key concept of LLE is that the local surrounding of any point yi ∈ Y is linear
and, thus, that every such point can be represented as a linear combination of its neighboring
points. For dimensionality reduction, a mapping is determined that preserves the local linear
combination weights in a lower dimensionality. The assumption is that the local linear combi-
nations of points will overlap and therefore approximate the non-linear manifold on a global
scale. More formally, the objective of LLE is to find the entries wij of an N×N weight matrix
W, such that the reconstruction error

ε(W) =
N∑
i=1

‖yi −
∑

yj∈N (yi)

wijyj‖2, (3.12)

is minimized. Here, N (yi) is the set of k nearest neighbors of a point yi. The optimal solution
is sought under the constraint that the rows of W sum up to one. This means that every
point is reconstructed in a convex combination of its neighbors, leading to a neighborhood
representation that does not depend on the orientation of any coordinate frame [130]. The
entries of the weight matrix can actually be computed in a closed form based on local covariance
matrices for each considered point neighborhood. Given the weights, the objective is to find
a set of points Z = {z1, . . . , zN} with zi ∈ Rd that satisfy the linear combination weights in d
dimensions. The corresponding error to be minimized for point coordinates zi, while keeping
the weights fixed, is

E(Z,W) =
N∑
i=1

‖zi −
∑

zj∈N (zi)

wijzj‖2. (3.13)

As detailed in [130], this cost function can be rewritten such that the optimal solution is
determined from the eigenvalue decomposition of the matrix (I −W)>(I −W) = VΛV>.
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The coordinates of the desired points are the rows of the N × d matrix Z = Vd, where Vd

consists of the columns of V corresponding to the d smallest non-zero eigenvalues. Note that in
the case of PCA, we are looking for the eigenvectors corresponding to the largest eigenvalues,
as PCA aims at maximizing variance.

3.2.2.3 Laplacian Eigenmaps

Laplacian Eigenmaps is a manifold learning method that builds upon spectral graph theory,
where the so-called graph Laplacian plays a crucial role [14]. The graph Laplacian is a matrix
that encodes information about the structure of the graph, e.g. its connectedness properties.
As in the case of Isomap, we consider the graph with the given points Y as vertices and with
edges between points that are neighbors. Let W be an N ×N matrix of edge weights

wij =

{
e−‖yi−yj‖

2/2σ2
if yi ∈ N (yj)

0 otherwise.
(3.14)

As before, the neighborhood N (yi) can be given by the k nearest neighbors of yi or by an
ε-ball around yi. The weight for an edge connecting neighboring points is expressed by a
Gaussian kernel with a width parameter σ that either has to be specified or that can be
estimated based on given data [177]. Note that, as opposed to using Euclidean distances, the
value of the Gaussian kernel will increase when points are more similar. As an alternative,
the kernel-based weight in Equation 3.14 can also be replaced by a binary value of 1.

The objective of Laplacian Eigenmaps is to find the points Z = {z1, . . . , zN} in d dimen-
sions, such that zi and zj are close whenever yi and yj are close. This objective can be written
as a minimization of the error

E(Z,W) =
N∑
i=1

N∑
j=1

wij‖zi − zj‖2. (3.15)

In the summation, the contribution of the distance between zi and zj is high whenever the
corresponding weight wij is large, i.e. whenever the corresponding original points yi and yj are
close. In the minimization, the distance between these points will thus be penalized stronger.
The minimization problem in Equation 3.15 can be formulated as an eigenvalue problem by
means of the graph Laplacian. Typically specific constraints are included, e.g. to prevent the
trivial solution of zi = 0 ∀i. The graph Laplacian is the matrix L = D −W, where D is
a diagonal degree matrix with entries dii =

∑
j wij. Here, the degree matrix quantifies the

connectivity for every point, i.e. the degree to which it is connected to other points. The
desired embedding points Z can be determined from the solution of the generalized eigenvalue
problem Lvi = λDvi. In matrix form, the desired points are Z = Vd, where Vd is an
N ×d matrix with columns vi being the eigenvectors corresponding to the d non-zero smallest
eigenvalues. The low-dimensional points are the rows of this matrix.

3.2.3 Practical Considerations

The proposed manifold learning methods share the common objective of non-linear dimen-
sionality reduction, but each of the methods has particular properties that make the methods
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suitable for different settings. Each of the approaches is based on investigating neighborhood
relations among the given points in their original, high-dimensional representation. As op-
posed to PCA, the manifold learning methods do not project the points onto a linear subspace,
but find a low-dimensional point representation that implicitly minimizes some type of error.
In all cases, this minimization problem is solved in closed form by means of an eigenvalue (or
spectral) decomposition. For this reason, these methods are referred to as spectral methods.

3.2.3.1 Preserved Properties of Original Data

The error that is minimized reveals which properties of the original dataset each of the tech-
niques tries to preserve. Isomap preserves the geodesic distances between all points along
the underlying manifold. In LLE, the local neighborhood structure for all points is preserved
in the form of the local linear reconstruction weights. Laplacian Eigenmaps preserves neigh-
borhood relations in the sense that low-dimensional points are positioned close to each other
whenever the corresponding original points are close. We can therefore see that Isomap is a
global method, in that it seeks a solution based on global constraints that involve all points
simultaneously. LLE and Laplacian Eigenmaps are local methods that aggregate constraints
on a local level, i.e. constraints between subsets of neighboring points. Local methods can
be favorable when it is hard to satisfy all global constraints. An approximate global solution
might, in such a case, be less valuable than one that fulfills the local constraints precisely.
Human motion data is an example where local neighborhood properties between similar poses
are crucial, while the relations between distant poses are of minor interest.

3.2.3.2 Implicit Assumptions

While relatively simple to implement, manifold learning methods are based on a number
of assumptions about the data that should be fulfilled for meaningful results. First and
foremost, the so-called manifold assumption simply states that the data is indeed distributed
on or close to a manifold embedded in a higher-dimensional space. This implies that the
data points vary smoothly and continuously along the manifold [100]. In the case that this
assumption is not fulfilled, manifold learning will not necessarily give results that are superior
to a linear dimensionality reduction method, such as PCA. Determining whether a dataset
fulfills the manifold assumption is, however, not straightforward. Intuitively, data often follows
a manifold when the dominant type of transformation in the data only affects a limited number
of underlying parameters. For example, consider the following examples of suitable data:

• Human motion data, e.g. represented by sets of joint angles, for selected activities, such
as walking on a treadmill. Several authors have shown that feasible human poses lie on
a manifold within the high-dimensional space of pose parameters [42, 72, 98, 19].

• Image datasets with a smooth variation in imaging parameters, such as viewpoint or
lighting [156, 119, 120]. Manifold learning can distribute the images in a low-dimensional
space such that the dimensions represent the directions of perceptual change in the
dataset. Images are also ordered by the degree of variation for each parameter. New
images can be synthesized by interpolating the given images along the manifold.
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Figure 3.6: Temporal super-resolution by means of manifold learning. Top row : Frames
inserted between two existing frames of a video sequence by insertion of new frames along the
manifold structure connecting the given frames. Bottom row : Linear interpolation between
the two given frames based on image intensities. Picture from [119].

• Videos where consecutive frames are characterized by a smooth variation of the depicted
object. Examples include moving humans or animals, or faces with a varying expression.
Manifold learning allows identifying repetitive scenes or achieving natural looking tem-
poral super-resolution by interpolating frames along the underlying manifold instead of
interpolating purely based on pixel intensities (see Figure 3.6) [130, 156, 118, 150, 10].

• Medical image datasets where individual images represent a given anatomical struc-
ture under varying physiological parameters, such as a beating heart or the lung under
breathing deformations [170, 70, 50]. Manifold learning allows estimating the physiolog-
ical parameters from the images only, e.g. for image-based respiratory breathing gating.

• Patches from medical images representing the same anatomy but obtained using different
modalities, such as computed tomography (CT) or magnetic reconance imaging (MRI)
[169]. Although the intensities of identical structures can vary non-linearly between the
modalities, manifold learning allows to relate image patches across the modalities.

Another implicit assumption about the data made by manifold learning algorithms is that the
given points provide a sufficiently dense sampling of the manifold [100]. When the number
of available points is small with respect to the complexity of the manifold structure, the
computed embedding can degenerate, e.g. resulting in disconnected components. Similarly, a
non-uniform sampling of the manifold, with local aggregations of points, can lead to clustering
in the low-dimensional representation.

3.2.3.3 Out-of-Sample and Reconstruction Mappings

The manifold learning methods presented in this work have in common that they neither pro-
vide an explicit out-of-sample mapping, nor an explicit reconstruction mapping. This means
that, once a manifold embedding for a given set of point has been computed, additional points
cannot be added to the embedding in a principled way (out-of-sample mapping). On the other
hand, it means that there is no transformation that maps any new point in embedding space
to the original, high-dimensional representation (reconstruction mapping). An out-of-sample
mapping exists in the case of PCA, where the given point set is used to compute a trans-
formation that is also valid for new points. This transformation is given by the matrix of d
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retained eigenvectors Vd in Equation 3.8. Isomap, LLE and Laplacian Eigenmaps directly ex-
tract the low-dimensional point coordinates from the eigenvectors of the respective eigenvalue
decomposition. Mapping new points to an existing low-dimensional representation and back
is, however, a common problem. A straightforward application is to project a query point into
an embedding space for nearest neighbor classification.

Therefore, several out-of-sample extensions have been proposed in the literature for dif-
ferent manifold learning algorithms [60, 25]. For instance, in [25], an out-of-sample mapping
for Laplacian Eigenmaps is presented that takes the form of the Nadaraya-Watson estimator
(see Section 3.1.1). A new point is thus mapped to an existing embedding by treating the
known original points Y and their dimensionality-reduced counterparts Z as outputs and in-
puts of a kernel regression problem. In fact, an analogous reconstruction mapping, projecting
embedding points back to their high-dimensional representation, is also derived in [25]. This
approach can also be used in conjunction with manifold learning methods other than Lapla-
cian Eigenmaps. The Locality Preserving Projections (LPP) method [60] provides an explicit
transformation mapping based on a similar derivation as in Laplacian Eigenmaps.

3.2.3.4 Choice of Parameters

Manifold learning methods are largely non-parametric and data-driven, but a few parameters
have to be considered before applying one of the methods to a given dataset. First and
foremost, most algorithms require a specification of the dimensionality d for the manifold
embedding. This dimensionality should reflect the intrinsic dimensionality of the data, i.e.
the number of parameters that are varied in the underlying process that generates the data.
A classical example is an image dataset showing a 3D object from various orientations along
two spatial axes [119, 156]. The full dimensionality of this dataset is w × h, where w and
h are the width and height of the images in pixels. However, the intrinsic dimensionality
is d = 2, corresponding to the two underlying parameters that are varied in the dataset.
Figure 3.7 shows the dataset after arrangement according to the coordinates of individual
images in a 2D manifold embedding. Apart from the intuition, one way of estimating the
intrinsic dimensionality in the case of Isomap, is to consider the decrease of residual error
(Equation 3.9) when increasing the dimensionality [156]. Typically, there is a dimensionality
value where adding dimensions to the manifold embedding does not improve the residual
error any more. For methods other than Isomap, there is no guarantee that the error to
be minimized (Equations 3.13 and 3.15 for LLE and Laplacian Eigenmaps) decreases with
increasing dimensionality. Several heuristic methods have been proposed for estimating the
intrinsic dimensionality of a dataset, e.g. based on graph-theoretic techniques [30, 29] or based
on maximum likelihood estimation [95].

Another adjustable setting for all considered manifold learning methods is the definition
of the neighborhood relation N (yi). This relation determines which points in the original
dataset are neighbors for a given point yi. Changing the way the neighborhood is computed
(e.g. k-nearest neighbors or ε-ball) and modifying the neighborhood range (i.e. k or ε, respec-
tively), can significantly impact the resulting manifold embedding. The importance of the
neighborhood reflects that manifold learning methods generally rely on measuring dissimilar-
ities only for close points. In many practical cases, only small dissimilarities are meaningful
and large dissimilarities do not help in determining connections between given points. As an
example, consider Figure 3.7, where distances between similar images are proportional to the
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degree of parameter change, while distances between completely different images are mainly
determined by a random overlap of intensity patterns. Similar to the intrinsic dimensionality
parameter, a suitable choice of neighborhood is often also based on an intuition about the
properties of the given data. Heuristic approaches also exist that adapt the neighborhood size
based on the local density of the given points [177].

Once the way of determining a point neighborhood has been selected, a remaining open
question is how to measure similarities between points. Point similarities are measured, both,
to determine whether points are neighbors and to analyze the local relations between neigh-
boring points. The straightforward choice of similarity measure is to use Euclidean distances.
However, based on particular properties of the data at hand, other similarity measures might
be more suitable [120]. For grayscale images, computing the sum of squared differences (SSD)
between two images is equivalent to the Euclidean distance [170]. In medical imaging, this
metric is sufficient for images from one imaging modality, but when multi-modal datasets are
considered, more sophisticated similarity measures should be employed, such as normalized
cross-correlation (NCC) or mutual information (MI). Another application-specific similarity
measure is used in [10], where a method for analyzing endoscopic videos is presented. A
sophisticated similarity measure is required to achieve rotational invariance with respect to
the axis of the endoscope. An investigation of similarity measures for image-based manifold
learning is given in [150]. In the case of human motion analysis, Euclidean distances, or vari-
ations thereof, between vectors of joint angles representing body poses are often used with
satisfactory results [42, 100].
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Figure 3.7: Images of an object under varying viewing angles around two spatial axes. The
full dimensionality of this image space is 64 × 32, determined by the number of pixels in
each image. The intrinsic dimensionality corresponds to the two varied underlying orientation
parameters. Images are arranged according to their coordinates in a 2D manifold embedding
using Isomap and post-processing [119], given an unordered input. Picture adapted from [119].
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Chapter 4
Regression for Human Motion Analysis

4.1 Introduction

In human pose estimation, we are given some type of limited observations x ∈ Rdx of a moving
person, such as features from a depth image or inertial sensor measurements, and would like
to predict the unknown full-body pose y ∈ Rdy . Let F (y) = x denote the natural functional
mapping that represents the imaging process or the physical measurement process of inertial
sensors. This mapping is lossy, as it projects high-dimensional poses to lower-dimensional
observations, and is thus non-bijective. In particular, this means that the inverse mapping
of F , the observation-to-pose mapping F−1(x) = y is non-functional. Intuitively, different
body poses can have an almost identical appearance in images or sensor measurements, and
determining a unique pose from such ambiguous observations is difficult. Yet this is exactly
what discriminative pose estimation methods do by modeling the observation-to-pose mapping.
In this work, we denote the direct mapping from observations to poses as f(x) = y.

The attractiveness of the discriminative approach, as opposed to the generative counterpart
that we focus in Chapter 5, lies in its conceptual and computational simplicity. Learning the
observation-to-pose mapping allows for a direct prediction of full-body poses, given only an
appearance descriptor that can be easily extracted from each image or sensor measurement.
In contrast, generative methods imply a search in pose space for the pose that best fits the
observations. This typically requires statistical inference methods, such as a particle filter,
or costly iterative optimization. Discriminative methods also do not explicitly model and
track a system state but predict poses independently from each incoming observation. As a
result, there is no need for initialization and pose estimation can quickly recover from failure
immediately after an outlier observation.

Discriminative prediction of human poses has been studied for various types of observations,
such as image features or 3D reconstruction data [53, 56, 145, 166]. Typically, non-linear
regression methods are used for modeling the observation-to-pose mapping in a non-parametric
way. The general idea is to use training datasets of corresponding full-body poses and feature
descriptors for learning a regressor that allows predicting poses, given only novel feature
descriptors. In our setting, we record synchronized full-body poses (using a motion capture
system) and inertial sensor data. In contrast to previous work, we train multiple regressors,
each for a distinct activity, and devise a mechanism for simultaneous activity recognition.
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4.2 Related Work

Here, we give an overview of related work in the field of discriminative human pose estimation
and activity recognition. Existing approaches can mainly be categorized based on the type of
input observations and the regression method that are used. We then outline other work on
sensor-based human motion analysis that is not necessarily related to machine learning.

Input Observations. Agarwal and Triggs [3, 4] learn a regression mapping from human
silhouettes in images, represented using shape context descriptors, to full-body poses. Zhao
et al. [179, 178] use SIFT features, extracted from multiple perspective images of a person,
as an input for regression. Sun et al. [155] capture human motion using a multi-camera 3D
reconstruction system and predict full-body poses from voxel-based features. Fossati et al. [45]
use trajectories of body parts tracked in monocular videos as an input for regression. Okada
and Soatto [113] propose a method that effectively selects Histogram of Oriented Gradients
(HOG) features from images for discriminative pose estimation. Girshick et al. [51] extract
distance-based features from Kinect depth data for general-activity regression of human poses.
Our work is the first to use inertial sensor data similarly to optical features for estimating
human full-body poses based on regression.

Regression Methods. Many existing discriminative approaches focus on variants of Rele-
vance Vector Machine regression (RVM) [4, 155, 158] and Gaussian process regression (GPR)
[45, 164, 179]. The basic regression techniques are often complemented with application-
specific extensions to alleviate the ambiguity of the observation-to-pose mapping. The authors
of [45] use a trained GPR model to obtain an initial pose estimate from image features and
add a refinement step that optimizes the match between the predicted pose and the obser-
vations using a particle filter. In [4], an RVM is used for modeling the observation-to-pose
mapping and, in addition, to obtain an auto-regressive mapping within pose space. This sec-
ond regressor introduces temporal consistency by relating pose predictions to previous poses.
In [113], multiple locally linear regressors are trained, based on the assumption that different
visual features are relevant for different motion patterns. A support vector classifier is first
employed, given a set of HOG features, to select one of the local regressors that then predicts
a full-body pose. In [51], a random forest is trained for regression from depth features to
full-body poses. Bissacco et al. [18] combine motion and appearance information, represented
using Haar-like features, and use multiple regressors for pose prediction.

Except for [51], all methods mentioned so far focus on reconstructing poses for a single
type of activity, such as walking. The reason for this limitation is that the observation-to-
pose mapping f(x) = y becomes even more ambiguous, as the number of considered poses
increases. In fact, training a single regressor on poses corresponding to multiple activities is
hardly feasible, except when enormous amounts of training data are available and a method
is used that can efficiently handle the learned information at runtime [51]. Our approach is to
combine multiple regressors, each trained on a specific activity, into one discriminative model.
We propose two mechanisms to determine the contribution of each activity-specific regressor.
One of these mechanisms uses the predictive variance of each GPR model, the other adds a
Support Vector Machine (SVM) classifier trained to assign sensor measurements to activities.
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Inertial Sensors as Input Modality. Human motion analysis based on wearable inertial
sensors has been targeted by several authors. However, due to the sparsity of inertial sensor
data, the focus was mostly on activity recognition [8, 80], as opposed to reconstructing full-
body poses of a person. Existing methods for full-body tracking using inertial sensors [129, 167,
182, 183] try to recover the pose directly from the measurements, relying on physical models,
inverse kinematics and stochastic filtering. For instance, Zhou et al. [182] use accelerometers
to compute the pose of one arm based on kinematic constraints. Roetenberg et al. [129] fuse
inertial and ultrasonic sensor streams using a Kalman filter, allowing to track position and
orientation of the four limbs and the torso. A Kalman filter-based approach is also described
by Zhu et al. [183], where magnetic sensors are used for tracking a single arm. Our method
removes the need for complex, physical motion models, since learned prior knowledge on
human motion is used to cope with the noisy and ambiguous sensor data.

Slyper and Hodgins [147] compare accelerometer measurements to a database of poses and
replay motion sequences matching the measurements in an approximation of the true motion.
The method proposed in [167] is able to track full-body poses using ultrasonic sensors and
accelerometers. However, their approach relies on a combination of multiple different sensors
that can be cumbersome for the user. A similarly low number of inertial sensors as in our
case is used by Pons-Moll et al. [122]. In their recent work, orientation sensors serve to resolve
ambiguities in a monocular video-based full-body pose tracking approach. While their system
allows for activity-independent body tracking, the sensors only provide assistive constraints to
complement the camera images. Our method does not require visual observations and allows
for simultaneous activity recognition and full-body pose tracking from inertial sensors.

4.3 Activity Recognition and Pose Estimation using In-

ertial Sensors

In this section, we describe our discriminative approach for human pose estimation and si-
multaneous activity recognition from inertial sensor data. Challenges of such an an approach
are mainly due to the properties of inertial sensors that typically exhibit high drift rates and
provide only a limited number of constraints. When employing four inertial sensors, one on
each limb of a person, we are able to record a continuous stream of a mere 12 values (3 ori-
entation angles per sensor). Instead of trying to learn the observation-to-pose mapping for
poses of multiple activities, we propose to learn separate, person-specific models for each con-
sidered activity. The training data consists of corresponding sets of sensor data and full-body
joint angles that we record offline using motion capture. In the testing phase, only the sensor
data is available for pose estimation, allowing the person to move freely and follow their daily
routine (Figure 4.1). We introduce different techniques for combining the predictions of the
activity-specific motion models and to classify the activities.

4.3.1 Method Overview

Let x ∈ Rdx be a vector containing the concatenated instantaneous measurements of all inertial
sensors. Also, let y ∈ Rdy (dx � dy) denote a vector of joint angles that fully determine a
pose in terms of an articulated body model. We assume that we are considering a set of M
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Observation-to-Pose
Mapping

Training Data
Sample Motions Recorded
with Sensors and Optical
Motion Capture System

Output: Pose (Joint Angles)Input: Observations (Sensor Data)

Figure 4.1: Schematic of the proposed pose estimation approach. A person is equipped with a
few inertial sensors measuring orientation angles. Full body pose is predicted using a regressor
that has been trained on the mapping between the sensor data x and the joint angles y.

activities of interest, identified with an index α ∈ {1, . . . ,M}. The sensor measurements for a
specifc activity α, consisting of Nα poses, are denoted as X α = {xα1 , . . . ,xαNα} or arranged in a
matrix Xα = [xα1 , ...,x

α
Nα

]>. The corresponding pose vectors Yα = {yα1 , . . . ,yαNα} are written
as a matrix Yα = [yα1 , ...,y

α
Nα

]>. Let ȳα denote the mean joint configuration for activity α
and let Ȳα be the set of the respective mean-subtracted pose vectors yαi − ȳα.

For each activity α, we train a Gaussian process regression model Gα = {X α, Ȳα, θα} by
optimizing the hyperparameters θα according to Equation 3.7. Each model Gα represents the
observation-to-pose mapping fα(xαi ) = yαi that is valid for one particular activity. Given new
sensor data xt at time t that is not part of the training data, we are interested in determining
the activity α̂t the person is performing and in estimating the full-body pose ŷt. We propose
the following two approaches for combining the predictions of all M activity-specific GPR
models and to obtain an activity classification:

• The prediction of each GPR model is weighted according to the predictive variance of
the model for the given sensor input. The predictive variances of all GPR models allow
determining the activity α̂ performed by the person.

• An SVM classifier trained on sensor data is used to determine the activity α̂ performed
by the person. The pose predictions of the individual GPR models are weighted in a
sliding window according to the SVM classification.

Figure 4.2 shows how the inputs X and the pose predictions Y are related by the regression
mapping. We will use this type of visualization throughout the thesis to allow for an easy
comparison of the presented methods in terms of spaces and the corresponding mappings.

4.3.2 Activity Classification and Pose Inference

Since we train multiple GPR models Gα, one for each activity considered in the training
dataset, we need to define how to obtain a single full-body pose estimate ŷt for each new
sensor observation xt. Let us first see how to obtain the prediction ŷαt for one individual GPR
model Gα. We use the predictive mean µα(xt) of the model, in analogy to Equation 3.4 but
extended to the vector-valued case. The predictive mean is essentially a weighted combination
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Figure 4.2: Diagram illustrating the relationship between observations (X ) and full-body poses
(Y), induced by the learned regression mapping. Compare also to Figures 5.4 and 7.4.

of the joint angle configurations in the respective training dataset:

ŷαt := µα(xt) = ȳα + Yα>K−1α kα(xt). (4.1)

The notation ŷαt implies that this is only an estimate of the true, unknown joint angle config-
uration yt corresponding to xt, as given by the model for activity α. Here, kα(x)i = k(x,xαi )
and Kα is an Nα × Nα matrix with entries kαij = k(xαi ,x

α
j ). We use a squared exponential

covariance function k(·, ·) as defined in Equation 3.6. Equation 4.1 can be efficiently evalu-
ated online for each incoming sensor reading, since K−1 can be precomputed. Note that the
equation is defined separately for each activity α ∈ {1, . . . ,M} in the training dataset.

4.3.2.1 Model Averaging using Predictive Variances

One possible approach to combine the full-body pose predictions of all activity-specific GPR
models is by exploiting the ability of Gaussian processes to give an assessment of prediction
uncertainty. This assessment allows telling which activity a particular observed pose most
likely belongs to. Following Equation 3.5, we can write the predictive variance of model Gα
given a new sensor observation xt as

vαt := σα(xt) = k(xt,xt)− kα(xt)
>K−1α kα(xt). (4.2)

The quantity σα(xt) can be interpreted as a measure of how close the new sensor reading xt is
to the values in the training dataset of the model Gα. We can now define a simple classification
rule that determines the activity α̂t that most likely matches the new pose. We simply select
the activity for which the corresponding GPR model has the lowest predictive variance,

α̂t = arg min
α∈{1,...,M}

vαt . (4.3)

Chen et al. [27] present a scheme for combining predictions of several GPR models, where
each model is trained on a different sub-part of one training dataset (bootstrap aggregation).
We propose to transfer this model averaging scheme to our setting of multiple GPR models
that are trained on distinct, activity-specific datasets. The pose estimate ŷt for a new sensor
measurement xt is then a weighted combination of the individual predictions ŷαt from all
models,

ŷt =
M∑
α=1

wαt · ŷαt , (4.4)
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where the weight wαt for a GPR model with index α is defined as

wαt =
(vαt )−λ∑M
α′=1(v

α′
t )−λ

(4.5)

for a constant λ ∈ N+. The weights for the activity-specific models are proportional to the
predictive variance vαt of each model (Equation 4.2). To ensure that the weights sum to
one, and thus form a convex combination, each weight is divided by the sum of all weights.
The weighting scheme assigns high importance to predictions from models that are certain
about their estimate for the new pose. Lower weights are assigned to predictions from models
showing a high predictive variance. The parameter λ governs the smoothness of the weighting
scheme. See Figure 4.3 b)-d) for an illustration of the weighting scheme.

An inherent advantage of this weighting approach is that transitions between different
activities are smooth in the pose reconstruction. When the classification of subsequent frames
changes from one activity to another, the influence of both corresponding GPR models is
shifted gradually. Furthermore, even if the classification is incorrect, the prediction of the true
model is not completely neglected and can positively influence the final pose estimation.

4.3.2.2 Model Averaging using SVM Classification

As an alternative to combining the predictions of multiple GPR models by means of the
predictive variance, we propose to use a multi-class SVM classifier based on the standard
one-against-all approach [1]. The training data for the classifier is generated by concatenating
the sensor measurement matrices Xα over all activities in the training dataset into a matrix
X and supplying the known class labels for each sensor measurement in a vector C. After
training the SVM, we estimate the current activity α̂t using the SVM classification for a given
sensor measurement xt. The full-body pose prediction ŷt can be simply obtained from the
corresponding GPR model Gα̂t . However, in order to increase the robustness with respect to
scattered misclassifications, we add a sliding window over the sequence of incoming observa-
tions. All observations in a window of length ω prior to the current observation xt are first
classified using the SVM. The pose estimate ŷt is again a linear combination of the predictions
from all models, as in Equation 4.4. However, the weight for an individual model α,

wαt =
#αω
ω

(4.6)

now reflects the relative contribution of this model within the window. Here, #αω is the
number of frames in the current window classified as activity α. The more frames in a window
are classified as a certain activity, the higher is the influence of the corresponding GPR model.
Compared to the approach presented before that weights the contribution of all GPR models
according to their predictive variance, this method selects a single GPR prediction most of the
time. In the case of activity transitions, the contribution of two or more involved GPR models
is shifted gradually. The window length parameter ω determines how quickly the influence of
particular models shifts. See Figure 4.3 e)-f) for an illustration of this weighting scheme.

4.3.3 Evaluation

We performed several types of experiments in order to assess our method quantitatively and
qualitatively. In the following sections, we first introduce the dataset we recorded in this
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Figure 4.3: Illustration of the two proposed schemes for combining pose predictions of multiple
activity-specific GPR models and for classifying activities. For clarity, only three activities are
considered in this example (walk, wave, clap). a) True sequence of activities. b) Predictive
variance for each of the three GPR models (Equation 4.2). c) Weights for the pose predictions
of each GPR model (Equation 4.5). d) Predicted activity classification for the GPR approach
(Equation 4.3). e) Weights for the pose predictions of each GPR model based on the SVM
approach (Equation 4.6). f) Predicted activity classification for the SVM approach.
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Activity Description

1. Clap Clapping both hands in front of the body.
2. Golf A golf swing holding an imaginary golf bat in the hands.
3. Hurrah Raising up both arms as in an expression of joy.
4. Jack Jumping jack movement involving both arms and legs.
5. Knee Repetitive knee bends with both arms extended forwards.
6. Laces Kneeing down and binding shoelaces with both hands.
7. Pickup Picking an object up from the floor with one hand.
8. Scratch Scratching the head with one hand.
9. Walk Walking in circles in a relaxed speed.

10. Wave Waving with one hand above the head.

Table 4.1: Activities included in the inertial sensor and motion capture dataset. Each activity
starts and ends in an idle upright standing pose with both arms relaxed along the body.

work. This dataset is also used for the experiments in Chapter 5. Thereafter, we describe our
experiments on pose estimation accuracy and precision of activity recognition.

4.3.3.1 Inertial Sensor and Motion Capture Dataset

We recorded a dataset of corresponding full-body poses Yα = {yα1 , . . . ,yαNα} and sensor mea-
surements X α = {xα1 , . . . ,xαNα} for each activity α ∈ {1, . . . ,M}, using an optical marker-
based motion capture system (Appendix B) that we synchronized with six wearable inertial
orientation sensors [161]. Here, Nα is the number of frames we recorded for activity α. In the
dataset, a full-body pose is given by a vector yαi of dy = 33 dimensions representing the joint
angles of our skeleton body model (Appendix A). An observation vector xαi has dx = 12 di-
mensions, representing pitch and roll for each of the sensors. We omit the yaw values that are
measured by a compass, to be independent of a person’s orientation with respect to magnetic
north. Sensors were placed on the wrists, upper arms and shin-bones of each person. Figure
B.1 b) shows an actor equipped with markers required by the infrared tracking system. The
sensors were attached to the rigid frame of the motion capture targets. The dataset contains
the M = 10 activities explained in Table 4.1. Each of the movements was recorded with 9
actors and 5 repetitions per actor. Every movement recording has a length of around 600
frames. For a systematic quantitative evaluation, we combined the movement recordings to
sequences containing all 10 activities in a row. Figure 1.7 illustrates the acquisition process
and shows the sensor data for one of the combined sequences. We made our dataset available
for public download [133].

4.3.3.2 Activity Classification

We evaluated the activity classification capabilities of our method, once for each of the two
model averaging approaches described above. For brevity, we will refer to the approach com-
bining multiple GPR model predictions and classifying activities using the predictive variance
as mGPR. The other approach, using an SVM classifier for activity recognition, will be referred
to as mSVM. Experiments were performed using the sequences containing all 10 activities that
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we created from the movement recordings. As each activity was recorded separately per person
and per repetition, ground truth activity labels were available. In a cross-validation manner,
we used one of the available sequences for testing each time, while saving the remaning ones
for training. Given that our dataset consists of 9 persons and 5 repetitions each, a total of 45
sequences were analyzed, each with approximately 2000 frames. As every movement recording
begins and ends with an idle upright standing pose and this pose can be classified as any ac-
tivity, we removed these idle standing frames from the testing data. To this end, we scanned
the ground truth data for poses that are closer to a reference pose than a specified threshold.
Computed over all sequences, this way 15% of all frames were removed.

Figure 4.4 shows the activity classification results for each of the two approaches in terms of
confusion matrices. The values are averaged over all training sequences for all persons. Entry
(i, j) of a confusion matrix gives the relative number of frames belonging to activity i that
were classified as j. A perfect classification algorithm would generate a confusion matrix with
ones on the diagonal and zeros everywhere else, as the diagonal entries represent the correct
classification rates for each activity. For mGPR, we achieved an average correct classification
rate of 70% and the confusion matrix has mostly marginal values off the diagonal. A very
similar result can be found for the mSVM approach, while the average correct classification rate
reaches a slightly higher 74%. Both, for mGPR and for mSVM, false positive classifications
tend to concentrate on the walking activity. A possible explanation is that this activity
involves movement of the whole body and consists of many distinct poses that have a similarity
to poses of other activities. At the same time, both approaches achieve the highest correct
classification rates for walking. Misclassifications also occur for both approaches between
waving and scratching head. This behavior is inevitable, as both activities consist of raising
the right hand up and differ only in a small portion of the movements. A significant difference
between the two approaches can be seen in the correct classification rates for hurrah and
jumping jack. These rather large movements are only correctly recognized in 50 to 60% of all
frames for mGPR, while the mSVM approach achieves 82% in both cases.

4.3.3.3 Pose Estimation

In the cross-validation series of experiments described above, we also measured the precision
of pose estimation, both for the mGPR and the mSVM approach. As a ground truth, we used
the full-body pose motion capture data that is also available for the testing sequences. We
devised two metrics to measure the deviation of the estimated pose ŷt from the ground truth
pose yt at each frame t. The angular error eang(t) quantifies the average angular difference
over all dy degrees of freedom of the skeleton model, corresponding to individual joints,

eang(t) =
1

dy

dy∑
i=1

|ŷ(i)
t − y

(i)
t |. (4.7)

Here, the superscript notation in parentheses indicates individual vector entries. The distance
error edist(t) makes use of a forward kinematic function f

(i)
kin : Rdy → R3 that computes the

spatial location of the i-th joint, given a vector of joint angles. The metric quantifies the
average Euclidean distance between estimated body joints and their ground truth locations,

edist(t) =
1

dy

dy∑
i=1

∥∥∥f (i)
kin(ŷt)− f (i)

kin(yt)
∥∥∥ , (4.8)
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Figure 4.4: Activity classification results averaged over all experiments based on the GPR
model averaging scheme (mGPR) and the SVM-based approach (mSVM). Entry (i, j) of each
of the confusion matrices corresponds to the relative number of frames belonging to activity
j that were classified as i. Matrix entries < 0.01 are hidden for clarity.

mGPR mSVM
Activity eang edist eang edist

clap 4.49 36.2 5.30 43.2
golf 7.34 64.4 8.33 69.9
hurrah 9.65 70.2 7.84 52.3
jack 7.48 56.4 7.90 51.1
knee 6.72 66.8 7.24 71.8
laces 8.03 79.1 9.22 90.3
pickup 6.88 62.2 7.54 67.7
scratch 4.28 30.3 5.34 37.4
walk 6.88 45.4 6.25 42.7
wave 4.55 26.8 4.82 30.1

Average 6.64 53.8 6.98 55.6

Table 4.2: Pose estimation accuracy for all considered activities, evaluated using the GPR
approach (mGPR) and the SVM approach (mSVM) for averaging the predictions of all GPR
models. Deviations from ground truth poses are provided as joint angles (eang in degrees per
joint) and as distances (edist in millimeters per joint), averaged over all experiments.

50



4.4. Discussion

Table 4.2 displays the results of our experiments in terms of both error metrics. The values
are averaged over all frames of the testing sequences, including all persons and repetitions.
Pose estimation precision is very similar for the mGPR and the mSVM approach with average
angular errors of ēang = 6.64◦ and ēang = 6.98◦, respectively. The distance error is also in a
similar range for both variants. The mSVM approach results in a slightly larger error ēdist =
55.6mm, as opposed to ēdist = 53.8mm for the mGPR variant, but this effect is negligible.
An explanation for this similar behavior is that both approaches predict poses using Gaussian
process regression. While activity classification does influence how the predictions of individual
activity-specific GPR models are combined, misclassifications mainly occur when poses are
similar between different activities. In such cases, there is thus just a slight negative effect
on the predicted poses. When inspecting pose estimation accuracy for individual activities,
one notices that the lowest error is made for clapping, scratching head and waving. This is
intuitive, as these movements only involve one or both arms, while the rest of the body remains
still. On the other hand, higher errors can be found for hurrah, jumping jack or pickup. These
movements are performed using the whole body and also exhibit larger dynamics, so that
poses differ more between repetitions of the same activity.

Figure 4.5 visualizes the pose reconstruction result for four sample sequences, showing
the predicted angles for the main joints, the corresponding ground truth and the angular
error throughout the sequences. Overall, the pose estimation quality achieved in this work
is comparable to the results of other state-of-the-art discriminative pose estimation methods,
such as [4, 45, 148, 155, 179]. In fact, these methods use higher-dimensional input data, for
instance human silhouettes captured in restrictive camera setups.

4.4 Discussion

In this chapter, we have presented a discriminative pose estimation method that allows recon-
structing the full-body pose of a person, given only the limited observations of a few wearable
inertial sensors attached to the person’s limbs. Our method uses Gaussian process regression
for learning the non-linear mapping between sensor observations and full joint angle config-
urations. We train our method on the movements of individual persons for each activity of
interest. To cope with the ambiguous nature of the observation-to-pose mapping, a separate
Gaussian process regression model is learned for each of the activities. We present two ap-
proaches for combining the pose predictions of each separate model into one final estimate.
The first approach makes use of the predictive variance of each GPR model to assess which
model is most certain about its prediction. The second approach relies on an additional SVM
classifier that recognizes activities based on incoming sensor observations and gives the highest
weight to the GPR model corresponding to the predicted activity.

Our experiments show that a few body-worn inertial sensors are sufficient for reconstructing
full-body poses for movements the method has been trained on. The main limitation of the
discriminative approach is that pose and activity predictions are based directly on the input
sensor observations, without any underlying model of human motion. This leads to a high
sensitivity to outlier measurements, which can be seen in the achieved classification and pose
estimation results. In the next chapter, we will present a generative approach for human pose
estimation and activity recognition to address this issue.
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Figure 4.5: Illustration of pose estimation results for four sample sequences. For each sequence,
the top graph shows the reconstructed angles for the main body joints over the length of the
sequence. The second graph is the corresponding ground truth. The reconstruction error is
plotted in the third graph. Skeletons are displayed for the frames indicated with black vertical
bars (red: reconstructed pose, blue: ground truth pose).
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Chapter 5
Manifold Learning for Human Motion Analysis

5.1 Introduction

In the previous chapter, we investigated ways of predicting full-body poses y ∈ Rdy from
limited observations x ∈ Rdx by modeling the observation-to-pose mapping f(x) = y. We
proposed to use regression techniques to learn this discriminative mapping from training data.
A disadvantage of such an approach is that we actually do not include a model of human
motion in our predictions. In other words, we do not keep in mind which poses the human
body can actually take and how feasible poses are related to each other. Instead, we solely focus
on the appearance of body poses in an input modality, such as inertial sensor measurements.
Problems arise particularly in the presence of outlier observations that the learned observation-
to-pose mapping cannot handle correctly.

We now turn to another approach for human pose estimation that involves a generative
model of human poses and movements. Here, we concentrate on learning feasible human
poses from training data, allowing us to create a state space of potential body poses that
we can then explore, given new input observations. In this state space, a vector z ∈ Rdz

is a representation of a human pose that can generate both, its full pose vector y and the
associated appearance vector x. We use manifold learning to construct the state space in such
a way that it allows reasoning meaningfully and efficiently about poses. For instance, the state
space enables determining which poses are feasible and which poses most likely precede an
activity switch. In fact, we will also model a state-to-observation mapping F ′(z) = x that is
a functional, non-inverse mapping, as is the (unknown) natural pose-to-observation mapping
F (y) = x (see Section 4.1). Using the state-to-observation mapping, we can traverse the state
space and look for poses that best match incoming observations.

The approach for pose estimation and activity recognition presented in this chapter is based
on identifying the low-dimensional manifold of feasible human poses embedded within the high-
dimensional space of pose parameters [42]. While the full pose space has as many dimensions
as there are joints in the human body model, as little as two or three dimensions suffice to
uniquely characterize points on the pose manifold [42, 72, 19, 98, 53]. As discussed in Section
3.2.2, manifold learning methods represent similar body poses with close-by low-dimensional
manifold embedding points, leading to a compact parameterization of human poses. The
non-linearity of human motion makes linear methods, such as PCA, hardly applicable [42].
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Clapping Golfing Walking Knee bends Combined

Figure 5.1: Manifold embeddings generated from human full-body pose data for different
activities. Each point on the manifolds corresponds to a valid full-body pose. Clapping and
knee bends: the movements have a linear, sequential pattern. Golfing: the movement consists
of a linear part and a cyclic part. Walking: the movement has a cyclic, repetitive pattern.
The embedding created from the pose data of all four activities is degenerated.

Human pose tracking based on manifold embeddings for single activities, e.g. walking, has
been successfully demonstrated before [98, 42]. However, the generalization to include multiple
activities is not straightforward [35]. In fact, a global embedding comprised of several activities
will be dominated by inter-activity differences and characteristics of individual activities will
not be represented sufficiently. This issue is illustrated in Figure 5.1. We therefore propose
to combine multiple activity-specific manifold models into one compound motion model. This
makes our method general, enabling us to track multiple activities, and at the same time
specific, since specialized motion models for each activity are available.

The activity-specific motion models consist of manifold embeddings that capture the move-
ment characteristics of each considered activity. The embeddings are generated from full-body
pose training data that we acquire in a training phase using a motion capture system. In this
chapter, we use as observations inertial sensor measurements and, in separate experiments,
features extracted from depth images. We model the state-to-observation mapping F ′(z) = x
using regression and analogously introduce a state-to-pose mapping f ′(z) = y that back-
projects embedding points to their original full-body pose representation. As shown in Figure
5.2, these mappings allow predicting full-body poses and observation vectors from any given
location in embedding space, resulting in a full generative human motion model.

We formulate the tracking problem within the Bayesian framework and employ a parti-
cle filter in manifold embedding space for state inference. Compared to optimization-based
techniques, the particle filter increases robustness against local optima in state space by con-
tinuously tracking multiple pose hypotheses. We adapt the particle filter to the multiple-model
setting by defining an efficient activity switching mechanism that governs the distribution of
particles and their transition across different manifold embeddings. Our particle weighting
scheme favors pose hypotheses that match the incoming observations (see Figure 5.2). Se-
lecting the best-fitting pose hypothesis at each time allows us to simultaneously classify the
performed activity and to estimate full-body poses. We also propose an effective measure
of confidence for full-body pose predictions that enables us to detect movements that are
not part of the training data. Recognizing such anomalies is crucial for an applicability of a
training-based body tracking method in real-life scenarios.

As the method presented in this chapter is independent of the input modality that is used,
we first describe the method as a general pose estimation and activity recognition framework
(Section 5.3). Thereafter, we investigate its performance on input data coming from inertial

54



5.2. Related Work

body-worn sensors (Section 5.4). Apart from an assessment of activity recognition rates and
pose estimation accuracy, we also analyze the behavior of the proposed method for a large
number of considered activities, the sensitivity to sensor placement on the body and the
effect of stylistic movement variations. Finally, we similarly analyze our method for input
observations coming from a depth camera (Section 5.5).

5.2 Related Work

In this section, we outline related work on generative human motion analysis methods. After
highlighting various generative approaches proposed in the literature, we focus on applications
of manifold learning for human motion analysis. The section concludes with an overview of
methods using depth cameras for pose estimation and activity recognition.

Generative Pose Estimation Methods. Generative full-body pose estimation methods
are based on the assumption that the mapping F (y) = x from poses to observations is avail-
able. Human body tracking then requires searching for the most likely pose, given new ob-
servations. Methods using inverse kinematics for pose estimation follow this general approach
[21, 159]. Here, a numerical optimization technique is used to find the full-body pose pa-
rameters such that a synthetic body model reaches a set of targets. These targets can be,
for instance, locations of anatomical landmarks identified in images. The major difficulty in
this case is the high dimensionality of full-body pose space that causes a high computational
complexity for pose estimation. Several authors address this issue using sampling approaches,
such as the particle filter [12, 128, 38]. While these methods are capable of reconstructing
the body pose for arbitrary movements, the computational cost is still significant [26] and
prevents applicability in real-time scenarios. Fortunately, complexity can further be reduced
by restricting the search to learned low-dimensional subspaces of full-body pose space that
capture characteristics of particular movement types [165, 98, 174]. Similar to Darby et al.
[34] and Jaeggli et al. [72], we combine the advantages of sampling-based inference and di-
mensionality reduction by applying a particle filter in a low-dimensional motion model space.

Manifold Learning for Motion Analysis. Various methods have been employed for gen-
erating low-dimensional motion models from training data, e.g. PCA [128, 33] or Gaussian
Process Latent Variable Models (GP-LVM) [165, 174]. We build upon manifold learning meth-
ods since they can capture non-linear characteristics of high-dimensional data by preserving
local neighborhood relations. As has been shown in the literature [42], human motion data
typically clusters in manifold structures, embedded in the high-dimensional full-body pose
space. The particular manifold embedding technique to be used is not a crucial decision. For
instance, Jaeggli et al. [72] employ Locally Linear Embedding (LLE) (Section 3.2.2.2). Black-
burn and Ribeiro [19] rely on Isomap (Section 3.2.2.1) for generating manifold embeddings
from human motion data. Lu and Sminchisescu [98] show promising results using Laplacian
Eigenmaps (Section 3.2.2.3) for tracking human motion. Compared to GP-LVMs, manifold
learning methods do not require expensive optimization in the training phase and ensure
that similar high-dimensional points (i.e. full-body poses) are represented with close-by low-
dimensional embedding points [92]. The latter property is valuable for low-dimensional pose
tracking, since small, incremental movements in embedding space result in small pose changes.
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The main challenge of methods based on learned, prior motion models is their limited
ability to generalize from the training data. Lee and Elgammal [93] present an approach for
relieving the dependence on visual observations that are very similar to those in the training
data. To this end, the authors learn both, a kinematic manifold (representing full-body pose
data) and a related appearance manifold (representing characteristics of visual observations).
While this allows for a certain variation in the view-point of the camera, there is still the
restriction to movement types that are part of the training data. Most techniques proposed
in the literature therefore commonly focus on individual activities, such as walking [165, 98,
174, 81]. Attempts to track multiple activities have been made with a low-dimensional space
that is shared by different activities [34] and with separate spaces for each considered activity
[32, 72]. However, the computational complexity of these approaches grows significantly for
more than two activities. Our method, integrating activity-specific manifold embeddings into
a compound motion model, can cope with at least 18 activities (see Section 5.4).

When using a particle filter for state inference, a crucial algorithmic issue is how to dis-
tribute particles among multiple motion models and how to represent activity switching. In-
stead of applying separate particle filters on each activity-specific model, we follow Isard and
Blake [69] and augment the classical particle filter with a discrete state variable, indicating
a motion model for each particle. In the recent work of Darby et al. [34], Hidden Markov
Models are learned for each activity in order to guide particle propagation along the learned
low-dimensional embeddings. We achieve a similar goal by means of probabilistic, learned
priors that, at the same time, allow us to control inter- and intra-activity particle distribution.
Moreover, as opposed to our method, the authors of [34] extract observations from a minimum
of two video camera views of a person.

Inertial Sensors as Input Modality. We refer the reader to Section 4.2 for an overview of
related work on human pose estimation and activity recognition methods using inertial sensors
as an input modality. In the literature, there is currently no work relying on inertial sensors
in combination with a generative, learned human motion model, as proposed in this work.

Depth Cameras as Input Modality. Recently, several approaches for human activity
recognition using ToF images have been proposed. For instance, Penne et al. use a ToF
camera for hand gesture recognition with the aim of manipulating a medical 3D dataset
[149, 89]. The method is based on a classifier trained to distinguish the surface appearance
of a set of pre-defined hand poses. Holte et al. describe a technique for recognizing upper-
body gestures, such as raising one or both arms, from ToF camera images [61]. Jensen et al.
propose an approach for gait tracking using whole-body ToF images [74]. The method is based
on localizing leg joint positions in range images of a person walking on a treadmill. Zhu et al.
present a technique for upper-body tracking by fitting a body model to the ToF data, after
identification of anatomical landmarks [184]. A more general, whole-body tracking approach
is described by Plagemann et al. [117, 49]. Their method detects interest points in each ToF
image and associates them with hands, head and feet of a body model. Shotton et al. [146]
present a method for body joint detection in Microsoft Kinect depth images. Their method is
based on a learning approach that classifies individual depth image pixels to one of multiple
body parts, such as upper arm, elbow or thigh. As opposed to separately targeting activity
recognition [149, 89, 61] and tracking [74, 184, 49, 146], we perform these tasks simultaneously.
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Figure 5.2: The compound motion model is comprised of several activity-specific models. Each
of these consists of a manifold embedding of feasible poses, pose likelihood priors and learned
mappings to observation space (fz→x) and full-body pose space (fz→y). We use a particle
filter to track multiple pose hypotheses zi for different activities (red circles). The likelihood
of each pose hypothesis is evaluated by predicting an observation vector x̂i and comparing it
against the incoming true observation xt. The highest-likelihood pose hypothesis is used for
determining the activity α̂t and the estimated full-body pose ŷt.

5.3 Generative Activity Recognition and Pose Estima-

tion Framework

5.3.1 Method Overview

We address the problem of human full-body tracking and activity recognition from limited
and noisy observations. In the following sections, we will use the term observation to refer to
measurements from an arbitrary sensing modality, such as a depth camera or several inertial
sensors. Given a set of M activities of interest identified by an index α ∈ {1, . . . ,M}, we start
by building a compound motion model from training data containing both full-body poses
y ∈ Rdy and observation vectors x ∈ Rdx . Then, during testing, we wish to estimate the
performed activity α̂t and the full-body pose ŷt at each time step t only from novel incoming
observations xt (Figure 5.2). We formulate the tracking problem in a Bayesian framework
using a generative model of feasible human poses.

For being able to cope with multiple activities, we define a compound motion model con-
taining multiple activity-specific models. Each of these models is comprised of the following
four components that are described in the upcoming sections:

1. Manifold embedding: A dimensionality-reduced representation of the full-body pose
training data for activity α. The manifold embedding efficiently parameterizes feasible
human poses for this activity and provides a search space for pose tracking.

2. Predictive mappings: Regression mappings from the embedding space to full-body
pose space and to observation space. The mappings allow predicting, from any point in
the embedding space for activity α, a (synthetic) measurement vector (for comparison
to incoming observations) and a full-body pose (see Figure 5.4).
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Figure 5.3: Components of learned motion models for 8 different activities. a) Two-
dimensional manifold embeddings obtained using Laplacian Eigenmaps on full-body pose
training data. b) Example full-body poses corresponding to embedding locations highlighted
in red. c) Pose likelihood priors in embedding space. Blue colors represent low probabilities,
red colors represent high probabilities. d) Activity switching priors in embedding space.

3. Pose likelihood prior: A probability distribution in manifold embedding space, giving
the likelihood of any point to represent a feasible pose of activity α. The likelihood prior
allows further restricting search space during tracking.

4. Activity switching prior: Likelihood of a switch of activity from any pose in embed-
ding space. The switching prior models the proposed activity switching mechanism and
creates a link between the separate, activity-specific manifold embeddings.

We define the system state, to be estimated in every time step, as an activity index α ∈
{1, . . . ,M} and a pose z ∈ Rdz in low-dimensional embedding space (dz � dy). The state
thus identifies an activity-specific motion model and a pose in its manifold embedding space.
To find the state that best fits incoming observations in each time step, we employ a particle
filter. As opposed to non-linear optimization methods that can get caught in local state
space optima, the particle filter allows simultaneously tracking multiple pose hypotheses and
selecting the most appropriate motion model.

5.3.2 Learning Low-dimensional Motion Models

In a training phase, each of the M activity-specific motion models is learned from full-body
pose data and corresponding observation vectors, i.e. inertial sensor measurements or depth
camera features. The full-body data is acquired using a motion capture system (Appendix
B) and has dy = 33 dimensions, representing the joint angles of our simple skeleton model
(Appendix A). In the following sections, we describe the components of each motion model.
Figure 5.3 gives an illustration of the components for 8 different activities.
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Figure 5.4: Diagram illustrating the relationship between observations (X ), full-body poses
(Y), manifold embeddings (Z) and the regression mappings. Compare to Figures 4.2 and 7.4.

5.3.2.1 Manifold Embedding

Let the set of full-body training poses for a single activity α be denoted as Yα = {yα1 , . . . ,yαNα},
where Nα is the number of poses for this activity. Learning the manifold underlying the full-
body data gives us a low-dimensional representation zαi for each pose yαi . We denote the set of
all dimensionality-reduced points for activity α as Zα = {zα1 , . . . , zαNα}. The low-dimensional
embedding points Zα efficiently represent the manifold of feasible poses for activity α (Figure
5.3). Using this representation for tracking enables us to restrict the search space to likely
poses, instead of exhaustively searching the high-dimensional full-body pose space.

While different manifold learning methods, such as Isomap or LLE, can be used in this
context, we rely on Laplacian Eigenmaps [14] for the locality preservation property of this
method. As discussed in Section 3.2.2, the objective of Laplacian Eigenmaps is to find low-
dimensional point coordinates such that close points in the high-dimensional representation
(i.e. human poses) are mapped to close-by low-dimensional points. This enables us to use the
dimensionality-reduced embedding space for tracking subtle pose changes. Note that during
tracking, poses are not required to coincide exactly with the known embedding points zαi ,
allowing us to track poses that deviate from the training data.

For the construction of the neighborhood graph in Laplacian Eigenmaps, we use the k-
nearest neighbors approach and determine k experimentally. As a similarity measure between
any two poses yαi and yαj , we define an extended Euclidean distance

djoint(y
α
i ,y

α
j ) = ‖β>(yαi − yαj )‖2, (5.1)

where β ∈ Rdy is a constant weighting vector that gives a higher importance to joints that are
close to the root of the skeleton between the hips [100]. This way, poses are considered close
if the skeleton configuration in its general components is similar, while differences close to the
end of each kinematic chain (e.g. at the hands) are more tolerable.

5.3.2.2 Predictive Mappings

Intrinsically, manifold learning methods, and Laplacian Eigenmaps in particular, neither pro-
vide an out-of-sample mapping (to add new points to an existing embedding), nor a predictive
mapping (for reconstructing high-dimensional representations for given embedding points)
[81]. To relate poses z in low-dimensional embedding space to observations and to full-body
poses, we therefore need to define mappings based on the training data. Similar to Kanaujia et
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al. [81, 98], we use kernel regression according to the Nadaraya-Watson estimator (see Section
3.1.1). However, as an adaptation to our multiple-activity setting, we learn separate mappings
for each of the manifold embeddings. The state-to-pose mapping fαz→y : Rdz → Rdy allows us
to predict a full-body pose ŷ = fαz→y(z) from any given location z in embedding space,

fαz→y(z) =
Nα∑
i=1

kz(z, z
α
i )∑Nα

j=1 kz(z, z
α
j )

yαi , (5.2)

and the state-to-observation mapping fαz→x : Rdz → Rdx similarly allows predicting an obser-
vation vector x̂ = fαz→x(z) from an embedding space location z,

fαz→x(z) =
Nα∑
i=1

kz(z, z
α
i )∑Nα

j=1 kz(z, z
α
j )

xαi . (5.3)

We use a Gaussian kernel function kz(zi, zj) ∝ exp(−1
2
‖(zi− zj)/σz‖2) with a width σz deter-

mined from the standard deviation of the embedding points in the training data. Intuitively,
the mappings compute a weighted average of the full-body poses yαi and observation vectors
xαi in the training data, with weights proportional to the similarity of the embedding location
z to each of the embedding points zαi .

In our experiments, we also use Relevance Vector Machine regression (RVM) for learning
the predictive mappings [160, 158]. While in the case of kernel regression, the whole training
dataset serves for a prediction from a new pose z in embedding space, RVM makes predictions
only based on a small subset of the training data that is determined in a learning phase. Con-
sequently, regression based on RVMs can be computationally more efficient. The performance
of both methods in our full-body tracking method is evaluated in Section 5.4.

5.3.2.3 Pose Likelihood Prior

Using the training data for each activity, we can derive the likelihood for arbitrary poses in
low-dimensional embedding space. Intuitively, poses z that are close to the embedding points
zαi learned from training data should have the highest likelihood. A straightforward way of
obtaining such a pose likelihood prior [98, 81] is to use a kernel density estimate (KDE),

pαpose(z) =
1

Nα

Nα∑
i=1

kz(z, z
α
i ), (5.4)

where kz(·, ·) is a Gaussian kernel as defined above. Using this definition, poses z are considered
more likely if they are in a dense part of embedding space that contains many manifold
embedding points. However, this implies an undesired bias towards poses belonging to slow
movements. Such movements typically result in many very similar poses that are grouped
together in embedding space. In order to remove this bias, we rewrite Equation 5.4 as

pαpose(z) = max
i∈{1,...,Nα}

kz(z, z
α
i ). (5.5)

This expression can be seen as a distance transform with a Gaussian distance function kz(·, ·).
The pose likelihood prior can be discretized and precomputed for computational efficiency.
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5.3.2.4 Activity Switching Prior

We also define a prior distribution pαswitch(z) for every motion model that describes how likely
a switch of activity is, given a pose z in embedding space. To ensure generality, we allow
activity switching from any pose with a constant minimum probability pk. However, we let the
probability of switching increase for poses that typically occur between subsequent activities.
In our experiments, the upright standing pose is used as an intermediate pose y0. Depending
on the application scenario, other intermediate poses can also be defined. We denote the
likelihood of switching activity from any embedding position z as

pαswitch(z) = min(1, kαy (y0, f
α
z→y(z)) + pk) (5.6)

= min(1, kαy (y0, ŷ) + pk), (5.7)

where kαy (yi,yj) ∝ exp(−1
2
(yi−yj)

>(Σα
y )−1(yi−yj)) is a multivariate Gaussian kernel function

with a diagonal covariance matrix Σα
y derived from the training full-body poses Yα. The

vector ŷ is a predicted full-body pose. Equation 5.6 thus is proportional to the similarity of
the full-body pose predicted from z to the intermediate pose y0.

5.3.3 Bayesian Tracking Using Multiple Motion Models

The testing phase of our method consists of tracking the pose in low-dimensional embedding
space. For each time step t, we seek the most likely pose zt in embedding space, given the
observations xt. More formally, in a standard Bayesian tracking formulation with a Markovian
assumption, one wishes to find the optimum of the posterior distribution

p(zt|xt) = p(xt|zt) p(zt|xt−1), (5.8)

comprised of the observation model p(xt|zt), which represents the likelihood of an observation
given a position in embedding space, and the prior p(zt|xt−1). The prior is modeled based on
the posterior of the previous time step p(zt−1|xt−1) and an update given by a dynamics model :

p(zt|xt−1) =

∫
p(zt|zt−1) p(zt−1|xt−1) dzt−1. (5.9)

The dynamics model p(zt|zt−1) determines how pose estimates are updated from one time step
to the next. Since we are using multiple motion models for tracking, we extend the tracking
formulation with the discrete activity index αt ∈ {1, . . . ,M}. Equation 5.8 then becomes

p(zt, αt|xt) = p(xt|zt, αt) p(zt, αt|xt−1). (5.10)

Similar to [69], we also augment the dynamics model p(zt|zt−1) from Equation 5.9 with an
activity index, yielding the factored dynamics model

p(zt, αt|zt−1, αt−1) = p(zt|zt−1, αt, αt−1) p(αt|zt−1, αt−1). (5.11)

The first term in Equation 5.11, which we refer to as pose dynamics model, governs the
evolution of poses in their embedding space representation. The second term, named activity
transition model, describes the activity switching process.

61



Chapter 5. Manifold Learning for Human Motion Analysis

5.3.3.1 Pose Dynamics Model

We define the new activity-aware pose dynamics model as follows:

p(zt|zt−1, αt, αt−1) =

{
p(zt|zt−1) if αt = αt−1,
pαtpose(zt) else.

(5.12)

When there is no switch of activity (i.e. αt = αt−1), dynamics are governed by a random
walk in embedding space. This is modeled as a normal distribution centered at the previous
pose in embedding space, p(zt|zt−1) = N (zt; zt−1,Σ

αt
z ). Here, Σαt

z is the diagonal covariance
matrix of the low-dimensional representation Zαt of the training poses Yαt . In the case of an
activity switch (i.e. αt 6= αt−1), the dynamics model follows the pose likelihood prior pαtpose(z)
of activity αt (see Section 5.3.2.3). In other words, the most likely poses after switching to a
new activity αt are those learned from the training data of this activity.

5.3.3.2 Activity Transition Model

In our model, all sequences of consecutive activities are considered equally likely, such that
p(αt = j|zt−1, αt−1 = i) is equal for all activity indices j 6= i. The probability of switching
from a given activity αt−1 to any other activity then only depends on the previous pose zt−1
in embedding space. Thus, we state our activity transition model using the activity switching
prior defined in Section 5.3.2.4 as

p(αt|zt−1, αt−1) =

{
1 if αt = αt−1,
p
αt−1

switch(zt−1) else.
(5.13)

Our approach can be easily extended to model a Markov process on the level of activities,
using a set of transition probabilities between all considered activities instead of Equation 5.13
[69]. In this work, however, we do not focus on particular sequences of activities and thus
model switching to all activities as equally likely.

5.3.3.3 Observation Model

Our observation model p(xt|zt, αt) represents the likelihood of an observation xt, given a point
zt in the embedding space of activity αt. We define it as a product of three terms – a prediction
term, a pose smoothness term and a pose likelihood prior:

p(xt|zt, αt) = kαtx (xt, f
αt
z→x(zt)) · kαty (ŷt−1, f

αt
z→y(zt)) · pαtpose(zt) (5.14)

= kαtx (xt, x̂) · kαty (ŷt−1, ŷ) · pαtpose(zt). (5.15)

The prediction term kαtx (xt, f
αt
z→x(zt)) uses the learned mapping fαz→x(z) to predict observations

from a pose zt. The likelihood of zt based on this term is maximal if the prediction perfectly
matches the true observation xt. In order to reduce the influence of outlier observations, the
smoothness term kαty (ŷt−1, f

αt
z→y(zt)) penalizes embedding locations if their predicted full-body

pose differs strongly form the previous pose ŷt−1. The pose likelihood prior, defined in Section
5.3.2.3, encourages poses that are close to the training data. The multivariate Gaussian kernel
functions kαx (·, ·) and kαy (·, ·) have diagonal covariance matrices Σα

x and Σα
y determined from

the training observations X α and full-body poses Yα of activity α.
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5.3.4 State Inference Using a Particle Filter

Our goal is to estimate the most likely activity α̂t and pose ẑt in the low-dimensional repre-
sentation after making observations xt at each time t. We employ a particle filter [68, 69] to
sample the posterior density in Equation 5.10. The particle filter algorithm allows estimating
Bayesian models where an exact inference is not feasible and where the assumptions of the
Kalman filter (linearity, Gaussian distribution) are not met. A potentially large number of
particles is distributed and propagated through state space to approximate the posterior den-
sity of the Bayesian model. The computational complexity of the particle filter grows with the
dimensionality of the state space. In the high-dimensional space of full-body pose parameters,
particle filtering can be prohibitive [12]. However, it is computationally efficient in our setting,
as we employ the particle filter in the low-dimensional manifold embedding space.

Each individual particle can be seen as a state hypothesis. As the system state in our
context is given by an activity index α and a location z in the corresponding manifold em-
bedding space, we model each of n particles as a pair pit = (αit, z

i
t), i ∈ {1, . . . , n}. Initially,

all particles are distributed across the activity-specific manifold embeddings of our compound
motion model. The initial particle locations are randomly chosen by sampling the likelihood
prior distribution pαpose(z) for each activity. Every particle has an associated weight wit that
quantifies its relative importance or, more intuitively, the suitability of the state hypothesis
represented by the particle. The initial weights are selected uniformly.

We follow the sequential importance resampling (SIR) variant of the particle filter that
consists of the following steps, performed at each time step t (see also Figure 5.5):

1. Resample: Given the particle locations and weights from the previous time step,
{pit−1, wit−1}, we obtain the new set of locations {p̃it−1} by selecting n new particles
from the previous locations with a probability that is proportional to the given weights.

2. Predict: A prediction pit is computed for each particle by applying the dynamics model,
i.e. by sampling from p(zt, αt|z̃it−1, α̃it−1). This implies switching the i-th particle to a
randomly chosen other activity with a probability of pα

∗

switch(z̃it−1), where α∗ := α̃it−1. For
particles that do not switch activity, the prediction step is a random walk.

3. Evaluate: Each particle pit at its new location is weighted by evaluating the observation
model and storing the associated weight as wit = p(xt|zit, αit). Finally, we normalize the
weights such that

∑
nw

i
t = 1, as the particle weights represent a probability distribution.

The distribution of particles across the activity-specific manifold embeddings at each time
t gives an insight on which activity is most likely being performed. We only consider the
particles with a weight higher than a threshold and estimate the activity α̂t as the most
frequent activity among these particles. Let W denote a set of indices corresponding to the
highest-weight particles with the estimated activity index α̂t. We let these particles contribute
to the pose estimate ẑt in low-dimensional space:

ẑt =
∑
i∈W

wit∑
j∈W wjt

· zit. (5.16)

Here, the pose hypotheses zit of all particles with indices in W are averaged using the respective
particle weights. In order to obtain a convex combination, the weights are normalized to sum
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1. Resample 2. Predict 3. Evaluate

Figure 5.5: Illustration of the particle filter algorithm for n = 8 particles. Particles are
indicated as crosses, the diameter of the circles represents their weights. The particles from
time step t − 1 are first resampled according to the weights. Note that some particle can be
sampled multiple times or not at all. The resampled particles are predicted, usually by means
of a random walk. In the evaluation step, the new weights for time step t are computed.

to unity. Note that the index set W only contains particles of one particular activity. Given
ẑt, we predict the full-body pose ŷt using the state-to-pose mapping (Equation 5.2) as

ŷt = f α̂tz→y(ẑt). (5.17)

Figure 5.6 illustrates the tracking algorithm and, in particular, how particles sample the
activity-specific manifold embeddings. In the exemplary sequence, the person switches from
waving to golfing. The compound motion model has been trained on ten activities (see Section
5.4). The illustration shows four of the ten manifold embeddings for several frames of the
sequence. Initially, the person is waving and most particles are concentrated around a pose on
the waving embedding. A small number of particles also samples all other manifolds for the
case that a sudden change of activity occurs. As the person leans forward for golfing, particles
quickly start accumulating on the golfing manifold, since the predicted observations of these
particles increasingly match the real measurements. Subsequent resampling steps cause the
majority of particles to follow. The proposed compound motion model is thus capable of
quickly adapting to activity changes. A video illustration is available online [133].

5.3.5 Anomaly Detection

The compound motion model allows us to derive a measure of confidence for full-body pose
predictions. This measure can be used to detect anomalies in the movements of a testing
person, i.e. movements that are not part of the training dataset. In such a situation, the
activity classification and full-body pose predictions given by the algorithm are most likely
inaccurate and can be disregarded. We define the predictive confidence ct ∈ R at each time
step t as

ct = log(kα̂tx (xt, f
α̂t
z→x(ẑt))) = log(kα̂tx (xt, x̂)), (5.18)

where kαx (·, ·) is a multivariate Gaussian kernel function with a covariance matrix Σα
x derived

from the observations X α in the training data. The confidence is maximal when the observation
vector x̂, predicted from the current pose ẑt using the state-to-observation mapping f α̂tz→x,
approaches the true observed measurement xt. We declare movements anomalous if ct drops
below a threshold for a given number of subsequent frames.
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Figure 5.6: The particle filter-based activity switching mechanism on a sample sequence chang-
ing from waving to golfing. a) Four of the ten activity-specific manifold embeddings (wave,
pick up, golf and scratch head) are displayed for several frames. Particles are shown as red
crosses. The particle representing the state estimate ẑt in each of the frames is circled in
dark. Green crosses indicate the state trace of previous frames. b) Predicted activities α̂t, as
determined from the particles with highest weight. c) The corresponding predicted (red) and
ground-truth body poses (blue).
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5.4 Using Inertial Sensors as Input Modality

Approaches for tracking the three-dimensional pose of a person’s body have mostly been stud-
ied in the field of computer vision, where observations are typically image features, such as
human silhouettes [165, 42, 12, 4]. Vision-based methods depend on illumination, view-point
and line-of-sight between the tracked person and one or more cameras. Such constraints are
not practicable when specific activities need to be studied over extended periods of time.
Exemplary applications include industrial ergonomic studies or motion analysis for medical
diagnosis of motion disorders, e.g. Multiple Sclerosis [116]. These scenarios require the re-
covery of full-body motion for a set of activities of interest, while the subjects move freely.
In the following sections, we describe our experiments on recognizing activities and tracking
full-body poses using the proposed framework and inertial sensors as an input modality. In
Section 5.5, we will show our experiments for input observations coming from a depth camera.

5.4.1 Evaluation

After assessing the performance of activity classification and full-body pose estimation, we
evaluate the anomaly detection approach. Experiments using a varying number of particles
are described thereafter. We investigate the scalability of our method with respect to a large
number of considered activities, the sensitivity to sensor placement on the body and the
sensitivity to stylistic variation of movements.

5.4.1.1 Dataset and Training Setup

We used the dataset that was also employed in the evaluation of our discriminative sensor-
based pose estimation method, see Chapter 4. An illustration of the sensor data is shown in
Figure 1.7. For training, we used corresponding sequences of sensor and motion capture data
to learn our compound motion model. From the full-body pose data, we learned manifold
embeddings Zα of dz = 2 dimensions for each of the M = 10 activities in the dataset. During
testing, the motion capture data served as ground truth and only sensor data was used as an
input. The testing data consists of 5 sequences per actor containing all activities performed in
a row. While testing on any of these sequences, the remaining 4 sequences per actor were used
for training (cross-validation scheme). We used two regression methods for comparison. The
mappings from manifold embedding space to observations (fαz→x) and to full-body pose space
(fαz→y) were defined using kernel regression (KR) and Relevance Vector Machine regression
(RVM). Unless denoted otherwise, results were obtained using n = 400 particles.

5.4.1.2 Activity Classification

As outlined in section 5.3.4, we classify the activity performed in each frame based on the
activity indices of the particles with the highest weight. Once this activity is estimated, the
activity-specific motion model used for predicting the full-body pose is determined. Wrong
activity classification can therefore adversely affect tracking results.

Figure 5.7(a) shows classification results for one of the testing sequences. As can be seen
in the top graph, misclassifications are scarce and mainly occur at the beginning and end of
activities, where the person is standing idle. These frames can be classified as any activity,
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since the training data for every activity contains frames of idle standing. The bottom graph
of Figure 5.7(a) reveals the number of particles per activity-specific manifold embedding. For
clarity, we only show four of ten manifold embeddings that were learned. The distribution
of particles across the embeddings is an indicator of how well a particular motion model fits
the sensor data. We can see that a small number of particles continuously samples all of the
manifold embeddings. High concentrations of particles on a particular manifold embedding
occur almost exactly when the corresponding activity is performed.

Figure 5.8 gives the classification results for all activities over all testing sequences, eval-
uated using KR and RVM for the predictive mappings. On average, we achieved a correct
classification rate (i.e. a true positive rate) of 79% for all non-idle frames (RVM) and 89%
(KR), respectively. As in our evaluation of the discriminative sensor-based pose estimation
method in Section 4.3.3, the quantitative results do not contain the classifications for the
idle-standing frames. Although the RVM approach is less precise, both confusion matrices are
mostly diagonal. Significant confusion only occurs between the activities waving and scratch-
ing head. In fact, both consist of raising the right arm close to the head. Misclassification in
this case therefore does not necessarily affect the precision of full-body pose estimation.

5.4.1.3 Pose Estimation

We measured how precisely the poses estimated by our method match the ground truth using
the two metrics presented in Chapter 4. The angular error eang (Equation 4.7) gives the
deviation from the ground truth in terms of joint angles. The distance error edist (Equation
4.8) is the difference in 3D space between predicted joint locations and the ground truth.
Using the RVM approach, we achieved ēang = 7.54◦ per joint and ēdist = 55.3mm, averaged
over all frames of the testing sequences. The kernel regression approach allowed for a higher
pose estimation accuracy with ēang = 6.23◦ per joint and ēdist = 45.2mm. As shown in
Table 5.3, the deviation from the ground truth only increases for fast movements with a
large variability, such as jumping jack or walking. Figure 5.9 provides a qualitative view of
the achieved results. Our approach compares favorably to state-of-the-art pose estimation
methods working on visual image data, e.g. [4, 167, 155], where similar average angular and
distance errors are reported as achieved with our method from inertial sensor data.

5.4.1.4 Anomaly Detection

In order to evaluate the capability of our method to detect anomalous movements (belonging
to activities that are not part of the training data), we performed a series of experiments
on the testing sequence shown in Figure 5.7(a), using the kernel regression method. We
repeatedly ran our algorithm on the sequence, each time leaving out one of the activities from
the training data, thus simulating situations where different unknown activities are performed.
Results are reported in Table 5.2 in terms of true positive (rTP) and false positive rates (rFP).
In an ideal case, all frames corresponding to the anomalous activities should be recognized as
such, resulting in rTP = 1. Conversely, rFP = 0 would indicate that no frames with known
activities are falsely labelled as anomalies.

Depending on which activity was left out from the training data set, our approach achieves
up to rTP = 0.97. On average, rFP = 0.04. Note that removing particular activities from the
training data results in very low true positive rates, such as rTP = 0.13 for waving and rTP = 0
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(b) Activity classification and anomaly detection with missing motion models for laces and jumping jack.

Figure 5.7: Activity classification results for a testing sequence with 10 activities. a) Top:
Ground truth classification and predicted activities for each frame of the sequence. Bottom:
Number of particles per frame sampling four of the activity manifolds (400 particles in total).
b) Top: Ground truth classification and predicted activities with missing learned models for
two activities. Middle: Confidence ct (Equation 5.18) plotted over the length of the sequence.
The periods recognized as belonging to anomalous activities are indicated in red. Bottom: Full-
body pose reconstruction error edist (Section 5.4.1.3) plotted over the length of the sequence.
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Figure 5.8: Activity classification results averaged over all experiments based on kernel re-
gression (KR) and Relevance Vector Machine regression (RVM). Entry (i, j) of each of the
confusion matrices corresponds to the relative number of frames belonging to activity j that
were classified as i. Matrix entries < 0.01 are hidden for clarity.

RVM KR
Activity eang edist eang edist

clap 5.62 40.5 4.95 37.8
golf 8.17 71.8 6.10 51.2
hurrah 7.53 44.0 6.79 40.2
jack 9.68 63.9 8.80 58.1
knee 10.69 88.0 4.87 45.6
laces 7.47 73.2 5.90 60.5
pickup 6.67 59.8 5.90 51.4
scratch 4.41 28.5 4.43 27.7
walk 10.16 54.7 9.65 50.7
wave 5.01 28.8 4.93 28.5

Average 7.54 55.3 6.23 45.2

Table 5.1: Pose estimation accuracy for all considered activities, evaluated using kernel regres-
sion (KR) and Relevance Vector Machine regression (RVM) for the predictive mappings fz→y
and fz→x. Deviations from ground truth poses are provided as joint angles (eang in degrees
per joint) and as distances (edist in millimeters per joint), averaged over all experiments.
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Figure 5.9: Illustration of full-body pose estimation results for selected frames of a testing
sequence. The predicted poses (red) are overlaid ontop of the ground truth poses (blue)
obtained using a motion capture system. The indicated numbers for each of the poses are
the instantaneous angular error eang in degrees per joint (top) and the distance error edist in
millimeters per joint (bottom).

KR
Activity rTP rFP

clap 0.24 0.04
golf 0.86 0.01
hurrah 0.88 0.04
jack 0.86 0.04
knee 0.83 0.05
laces 0.97 0.05
pickup 0.92 0.04
scratch 0.00 0.04
walk 0.84 0.04
wave 0.13 0.04

Average 0.65 0.04

Table 5.2: Anomaly detection results for experiments with activities intentionally removed
from the training data. True positive and false positive rates indicating the relative number
of frames correctly or incorrectly classified as anomaly, respectively.
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Figure 5.10: Influence of the total number of particles on the tracking algorithm. a) Average
frame rates for experiments with 100, 200, 300, 400 and 500 particles. b) Average angular error
eang with standard deviations for each of the experiments with varying number of particles.
Error and standard deviation decrease slightly for higher numbers of particles. c) A similar
behavior is present for the average distance error edist.

for scratching head. This effect is due to the similarity of these two activities. For instance,
when scratching head is missing in the training data, the corresponding frames are classified
as waving with a sufficiently high confidence measure ct. As a result, no anomaly is reported.
Figure 5.7(b) illustrates the anomaly detection process for the situation when two activities,
binding laces and jumping jack, were intentionally removed from the training data. Obviously,
the frames where these activities are performed, are misclassified. However, the confidence
ct clearly drops during these periods, allowing our method to recognize the anomaly. Frames
falsely detected as anomaly occur only occasionally (e.g. during golfing) and can be caused
by movements that deviate significantly from the training data. In this case, however, the
full-body prediction is not negatively affected, since the activity is correctly classified and the
correct motion model is used. The error plot in Figure 5.7(b) shows that the full-body pose
prediction strongly deviates from the ground truth only when the person is performing the
jumping jack and binding laces movements that were missing in the training data.

5.4.1.5 Computational Performance and Number of Particles

We evaluated the effect of varying the total number of particles n in terms of processing
performance and pose estimation quality. The experiments described so far were repeated
with different values for n, ranging from 100 to 500. The kernel regression-based approach
was used and the data of one actor. As shown in Figure 5.10, the frame rates achievable
with our Matlab implementation decrease with more particles. However, nearly interactive
frame rates can be achieved with a reasonable number of particles, such as 200 or less. For
comparison, we included the frame rates for the RVM-based approach in Figure 5.10 a). RVM
regression is able to speed up the overall algorithm by a factor that is almost constant for
all numbers of particles. It is worth noting that the pose reconstruction quality, measured as
eang and edist, deteriorates only slightly for small numbers of particles. Likewise, the correct
classification rates decrease slightly from 92% for 500 particles to 89% for 100 particles.
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Figure 5.11: Sensitivity of activity recognition and pose estimation to the number of activities
learned simultaneously. a) Activity classification rates for different numbers of simultaneously
considered activities. b) Pose estimation accuracy for different numbers of activities.

5.4.1.6 Scalability to Many Activities

Learning activity-specific motion models can potentially lead to degeneracy problems when a
large number of activities is considered simultaneously. In such cases, a lot of overlapping poses
between different activities can be expected, causing confusion for the activity recognition
method. To evaluate the behavior of the proposed method for different numbers of activities,
we used the dataset of 18 gestures listed in Table 7.1, performed by one subject in four
repetitions. The distinction between activities and gestures is irrelevant, except for the fact
that the gestures are more prone to being confused than activities, as only arm movements
are included. Examples of gestures in this dataset are raising and moving one or both arms
horizontally in front of the body, tracing out circles with one or both arms, etc. In a series of
experiments, we randomly selected subsets of µ ∈ {4, 6, 8, 10, 12, 14, 16, 18} activities from the
18 available ones for training and for testing. Different recordings were used for training and for
testing. Each random selection of µ activities was repeated 10 times, the results were averaged.
Figure 5.11 shows that varying the number of considered activities affects classification rates,
but does not affect the accuracy of pose estimation. Moreover, the confusion in activity
classification is moderate, even for as many as 18 simultaneously learned activities.

5.4.1.7 Sensitivity to Sensor Placement

In order to evaluate how sensitive our method is to an exact placement of the inertial sensors,
we performed an experiment with one actor and 8 activities, varying the position of the
sensors on the person’s body. Using a training sequence containing all activities, recorded with
the sensors in a reference position, we tested on sequences with incremental rotational and
translational deviation of the sensors. Translation was changed to 4, 8 and 12 cm (along arms
and legs) from the reference position, rotation (around the arm and leg axis) was changed
to approximately 30, 60 and 90 degrees. Figure 5.12 a) shows that activity recognition is
more sensitive to rotational deviation than to translations. However, rotations up to 30◦

and translations up to 4 cm almost do not affect correct classification rates. We argue that
rotational deviations close to 90◦, where recognition rates drop below 60%, are not to be
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Figure 5.12: Sensitivity to sensor placement and stylistic variation. a) Activity classification
rates for incremental rotational and translational deviations in sensor placement from a refer-
ence position. b) Activity classification rates for five incremental degrees of stylistic variation
for four exemplary actions. c) Accuracy of pose estimation for the same settings.

expected in real-life scenarios, where sensors can shift and rotate slightly while being worn.
The results also imply that the sensors can be taken off and on again without new training.

5.4.1.8 Sensitivity to Stylistic Variation

Although our method is based on person-specific training data, stylistic variations in perform-
ing the learned movements will likely occur in practical applications. To assess the capability
of the proposed approach to cope with such variations, we performed a series of experiments.
For four exemplary actions (walk, wave, golf and clap) we recorded six additional sequences,
where the actor was varying movement style with incremental severity. We used the first
sequence for training and tested on the other five, as shown in Figure 5.12 b)-c). In variation
1, the person performed the movements as similar to the training data, as possible. Classifi-
cation rates range from almost 100% for walk to above 80% for wave. The average angular
error lies, for variation 1, between 3◦ per joint per frame and 7◦. The variations for the walk
action included striding, jogging and simulated running on a treadmill, while the trained style
was very slow and regular walking. At the most severe degree of variation, the person moved
in a very sloppy way. Waving and clapping were performed with different amplitudes and in
different spatial locations. Figure 5.12 b)-c) illustrates that stylistic variation does affect ac-
tivity classification rates and precision of pose estimation. However, classification rates remain
above 70% for most of the stylistic variations. In the case of walk, above 95% of frames were
correctly classified, even for the treadmill running style. The angular error between estimated
and ground truth poses increases to 5◦ for golf and to 12◦ for walk. As all predicted poses are
reconstructed from the known poses in the training data, this behavior can be expected.

5.5 Using Depth Cameras as Input Modality

Depth cameras, such as Time-of-Flight (ToF) cameras or the Kinect, are an attractive imaging
modality, as they provide dense 3D scans of a scene in real-time. In this section, we discuss the
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results of our evaluation of the generative activity recognition and pose estimation framework
on data from a ToF camera. Before explaining the experimental setup and outcome, we
describe our feature extraction approach. While the inertial sensor data is sparse enough
to be used in its entirety without dedicated feature extraction, we need to define a way
of obtaining feature descriptors usable in our method from raw depth images. To prevent
being dependent on error prone body part detection in ToF data, we design a global feature
representation describing the human body shape at each instant. As opposed to feature
descriptors commonly used for 3D shape recognition [76, 61], our feature representation varies
continuously with the performed motion.

5.5.1 Feature Extraction

Approaches for pose tracking that depend on detecting body parts in the depth data, e.g.
[117, 49], are susceptible to noise and self-occlusions. Another strategy for feature extraction
is to use general 3D shape descriptors, such as shape contexts or spin images [76]. This
type of features have been used for gesture recognition from depth data [61]. However, these
descriptors are mainly suitable for shape classification and do not adequately represent subtle
pose changes, as required for full-body tracking. We propose a simple but general feature
descriptor that, first, does not rely on body-part detection and, second, varies smoothly with
the movements of a person. In fact, it is the generative manifold learning-based motion model
that enables full-body tracking from such simple depth cues. Given a ToF depth map Dt at
time t, we obtain a feature vector xt ∈ Rdx in three steps:

1. Preprocessing to remove noise and to convert the depth map to 3D information.

2. Segmentation of the person from the scene background.

3. Extraction of simple features related to the boundaries of the observed 3D point cloud.

We apply a median filter to the depth map to remove noise. The filtered depth map is
then transformed to a 3D point cloud using the intrinsic parameters of the ToF camera [58].
The coordinates (X, Y, Z) of a 3D point corresponding to a depth map pixel Dt(x, y) can be
computed as  X

Y
Z

 =

 ((x− cx) ·Dt(x, y)) / fx
((y − cy) ·Dt(x, y)) / fy

Dt(x, y)

 , (5.19)

where (cx, cy) is the principal point of the ToF camera and (fx, fy) is its focal length. We
will denote the set of 3D points obtained this way as D̃t. Note that this representation of the
scene is invariant to scaling that can be caused, for instance, by the person moving towards or
away from the camera. We proceed in an analogous way with a background depth map Dbg

that we process using Equation 5.19 to obtain the 3D point cloud D̃bg.
In order to segment a person in front of the ToF camera, we perform static background

subtraction [87], as illustrated in Figure 5.13 a)-c). We discard all 3D points in D̃t if their
Z coordinate is close to that of the corresponding points in D̃bg. The centroid ct of the
remaining 3D points is computed and the 3D space occupied by the points is divided into b
cells, followed by determining the bounding box of each cell. We then extract the vectors vt,k
for k ∈ {1, . . . , b}, connecting the centroid to the bounding box corners that are furthest apart
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Figure 5.13: ToF feature extraction process. a) Filtered depth image, b) background image, c)
3D segmented foreground, d) feature descriptor based on 3D vectors (lines) from the centroid
of the segmented person to extremal points on the surface boundary (crosses).

and closest to the camera – see Figure 5.13 d). These corner points are equivalent to a sparse
silhouette representation but in 3D. The feature descriptor is then given by xt = [vt,1 . . .vt,b]

>.
Using relative vectors from the centroid to the corner points vt,k as entries of the feature
descriptor makes the descriptor invariant to translations of the person parallel to the camera.
For noise reduction, we apply a moving average that includes the previous feature vector xt−1.

5.5.2 Evaluation

The following sections present the results of our evaluation. Since a synchronized dataset of
depth images and motion capture data was not available online at the time of writing, we
recorded our own dataset using a PMDVision CamCube ToF camera, see Figure 1.4 a) [121],
and an ART Dtrack2 tracking system [2]. The ToF camera has a resolution of 204 × 204
pixels. Depth features were extracted from the ToF images by subdividing the background-
subtracted 3D point cloud into 16 cells (8 vertical, 2 horizontal). The feature descriptor thus
has dx = 16 × 3 = 48 dimensions. As in our experiments with the inertial sensor data, we
generated manifold embeddings of dz = 2 dimensions from the full-body pose motion capture
data using Laplacian Eigenmaps.

Our ToF-based dataset is structured similarly to the inertial sensors dataset described
before. We considered M = 10 activities: clapping, golfing, hurrah (arms up), jumping jack,
knee bends, picking something up, punching, scratching head, playing the violin and waving.
Each of the movements was recorded 6 times with 10 actors. The testing data consists of 6
sequences per actor containing all activities in a row (∼ 1500 frames per sequence). Only the
depth features were used for testing, the motion capture data served as ground truth. Our
experiments on classification (Section 5.5.2.1) and pose estimation (Section 5.5.2.2) were per-
formed in a cross-validation scheme, i.e. each testing sequence was generated from one of the
recordings per activity and actor, using the remaining five for training. All presented experi-
ments have been performed with n = 300 particles. In the evaluation on depth data, we used
kernel regression (KR) for modeling the predictive mappings from the manifold embeddings
to observation space and to full-body pose space.
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Figure 5.15: Activity classification results for one of the testing sequences. Ground truth
classification (green) and predicted activities (blue) are shown for each frame of the sequence.

5.5.2.1 Activity Classification

Figure 5.15 shows exemplary activity classification results for one of the testing sequences.
Misclassifications mainly occur at the beginning and end of activities, which corresponds to
periods of the idle standing pose that is common to all activities. The confusion matrix
in Figure 5.14 gives the classification rates for all activities over all testing sequences. On
average, we achieved a correct classification rate of 92% for all non-idle frames. As in our
experiments on inertial sensor-based input data, we disregarded the classifications for all idle-
standing frames in our quantitative results. The matrix is mostly diagonal, minor confusion
only occurs between activities that consist of similar full-body poses, such as waving and
scratching head. Misclassification in these cases can hardly be avoided but does not necessarily
affect the precision of full-body pose estimation.

5.5.2.2 Pose Estimation

We measured how precisely the poses estimated by our method match the ground truth using
the two metrics presented in Chapter 4. The angular error eang (Equation 4.7) gives the
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KR
Activity eang edist

clap 3.00 20.1
golf 4.02 37.4
hurrah 5.47 28.5
jack 8.78 53.1
knee 4.64 41.3
pickup 3.51 29.9
punch 3.67 23.8
scratch 2.56 15.7
violin 3.64 24.8
wave 2.83 16.2

Average 4.21 29.1

Table 5.3: Pose estimation accuracy for all considered activities. Differences to ground truth
poses are shown as joint angles (eang in degrees per joint) and as distances (edist in millimeters
per joint), averaged over all experiments. Standard deviations σang and σdist are provided.

deviation from the ground truth in terms of joint angles. The distance error edist (Equation
4.8) is the difference in 3D space between predicted joint locations and the ground truth.
Averaged over all frames of the testing sequences, we achieved ēang = 4.21◦ per joint and
ēdist = 29.1mm. As shown in Table 5.3, the deviation from the ground truth only increases
for fast movements with a large variability, such as jumping jack. Figure 5.16 illustrates the
achievable accuracy for a qualitative inspection. Our results are comparable to other state-of-
the-art methods using visual observations as input, e.g. [4, 167].

5.6 Discussion

In this chapter, we have presented a framework for simultaneous activity recognition and full-
body pose estimation from limited and noisy observations. In order to cope with the sparsity
and the often ambiguous nature of the measurements, we learn a compound model of human
motion from full-body pose training data. The method is efficient, since we track poses in
a low-dimensional space of manifold embeddings and use non-linear regression to relate the
embedding space to observations and to full-body poses. We have evaluated the method with
inertial sensor data and depth images from a ToF camera as an input. Our experiments
showed that the method can recognize motions of multiple activities and track human full-
body poses from inertial sensor data and depth images. Furthermore, the method tolerates
stylistic variation of movements and deviations in sensor placement. We conclude the chapter
with a discussion of a few key insights.

Tracking Unknown Movements. Our method requires that the motion model is initially
trained on a set of activities that are expected to occur in a particular application scenario.
While the model allows stylistic variation between instances of the same motion (Section
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Figure 5.16: Illustration of input ToF data and corresponding pose estimation results for three
activities (knee bends, golfing, picking something up). Estimated (red) and ground truth poses
(blue) are shown below each of the ToF samples.
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5.4.1.8), completely unseen movements will not be reconstructed precisely. However, our
method will still provide a pose estimate that matches the new observations as close as possible.
When the predictive confidence is low, the movement will be labeled as anomalous. In an
application scenario where a correct action recognition is vital, this would allow the pose
estimation system to be deactivated in order to prevent erroneous predictions. As soon as
a known movement is performed, the multiple-hypothesis tracker will furthermore quickly
recover the correct pose. We also do not require pose initialization, since when tracking
begins, particles are distributed to sample all learned feasible poses.

Properties of the Particle Filter. As shown in Section 5.4.1.5, the total number of par-
ticles is not a critical parameter to our method. The main reasons for this favorable behavior
are twofold: (1) the low dimensionality of search space as compared to methods operating in
a high-dimensional parameter space and (2) the fact that full-body pose predictions are gen-
erated by regression mappings from training data. The latter property ensures that full-body
poses will never deviate significantly from the known movements. In fact, when using kernel
regression, the space of possible pose predictions is restricted to a convex combination of the
poses in the training data. Moreover, small variations in embedding positions, as realized by
using larger numbers of particles, only have a small influence on full-body pose predictions.

The only constraint on the number of particles is that there are sufficiently many particles
on every manifold embedding, even when most particles follow a high-likelihood hypothesis.
This is to ensure that a sudden change of activity by the person can be recognized quickly.
Therefore, the appropriate total particle number mainly depends on the minimum activity
switching probability pk (Section 5.3.2.4) and the number of considered activities M . Let
us assume we use n = 400 particles and pk = 0.3, as in our experiments. In this case,
0.3 · 400 = 120 particles will, in each step of the particle filter, randomly switch away from
their current manifold embedding and and will be distributed across 9 of the 10 embeddings.
The remaning 400 − 120 = 280 particles will follow a high-likelihood pose hypothesis and
will therefore be concentrated on one manifold embedding. We would thus constantly expect
120/9 ≈ 13 particles on each of the 9 other embeddings. In our experiments, this number was
sufficient for allowing our method to quickly catch up with activity switches.

Invariance Properties of Depth and Inertial Sensor Data. The depth images from
ToF cameras allow us to easily segment the foreground and to extract features that are in-
variant to a translation of the person in front of the camera. We do not explicitly address
rotational invariance, e.g. to handle a person turning around the vertical axis. We argue
that this is sufficient for interactions where the person is facing the camera. Although the
sequences in the experiments included small variations, more severe rotations of the person
would require to include lateral poses in the training data. Experiments using a 2D version of
our depth descriptor confirm the advantage of using the 3D information, as well as the ability
of our simple depth descriptor to capture the 3D information. Obviously, the general nature
of our activity recognition and pose estimation framework also allows selecting different, more
advanced 3D depth features. When using wireless inertial sensors as a source of input obser-
vations, the person is almost completely unlimited in his or her movements. As long as the
wireless reception between the sensors and the receiver is maintained, neither translational
nor rotational movements of the person have any effect on the measured sensor observations.
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Comparison to the Discriminative Method. It is worthwhile comparing the activity
recognition and pose estimation framework to the discriminative method presented in Chapter
4. Comparability is straightforward, as we used the same sensor-based training and testing
dataset in both cases and both algorithms also perform simultaneous activity recognition
and pose estimation. The generative method based on manifold learning achieves a correct
classification rate of 89% of all non-idle frames. Both versions of the discriminative method
(mGPR and mSVM) can only correctly recognize the performed activity in 70% and 74% of all
frames, respectively. In terms of pose estimation accuracy, the discriminative method reaches
the RVM variant of the generative approach. However, in the KR version, the generative
method is clearly superior. While the discriminative method achieves ēang = 6.64◦ per joint
and a distance error of ēdist = 53.8mm, the results for the manifold-based algorithm are
ēang = 6.23◦ and ēdist = 45.2mm per joint.

The improvement by the generative approach is even more evident when considering the
maximal angular error over all testing sequences. While the discriminative method leads to a
maximum angular error of 80.8◦, the generative method only deviates from the ground truth
poses by a maximum of 46.5◦ per joint per frame. A detailed inspection of pose estimation
results shows that the proposed low-dimensional, generative motion model increases the ro-
bustness against outlier sensor measurements. In such cases, the particle filter introduces a
temporal coherence between subsequent frames, while the discriminative method more easily
loses track in single frames and confuses activities. In the light of practical applicability, the
gained advantage of the generative method over the discriminative approach is considerable,
given that even spurious misclassifications can negatively affect the user experience. However,
due to its flexibility and computational simplicity, the discriminative method is suitable as an
initialization method for other pose estimation approaches.

Inertial Sensors Compared to Depth Camera Data. Our experiments demonstrate
that depth camera data can lead to better results, both in terms of activity recognition and
pose estimation. While the best average angular and distance error values for the sensor-based
dataset are ēang = 6.23◦ and ēdist = 45.2mm per joint, the depth data allows for a notably
better ēang = 4.21◦ and ēdist = 29.1mm per joint. Using depth features, our generative method
correctly classified 92% of all frames in the testing dataset, compared to a maximum of 89%
for the inertial sensor dataset. The total number of considered activities, testing persons and
frames is analogous in both, the inertial sensor dataset and the ToF dataset.

In interpreting these results, one has to keep in mind that the observation vectors extracted
from the depth images contain more information than the inertial sensor data. As stated
before, we employed only six inertial sensors to provide an unobtrusive way of capturing a
person’s movements. Given that we used two streams of orientation values per sensor (omitting
the yaw value to be independent of magnetic north), activity recognition and pose estimation
takes place based on a merely 12-dimensional input. On the other hand, the feature vectors
we obtain from the depth data are 48-dimensional, and thus more informative. While pose
estimation and activity recognition from depth data has attractive applications, we believe that
the (only slightly worse) results we achieved with the inertial sensors are quite noteworthy.
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Chapter 6
Graph-based Human Pose Estimation using
Depth Data

6.1 Introduction

In the previous chapters, we have investigated machine learning methods for human pose esti-
mation and activity recognition. We have approached the problem of predicting human body
poses and classifying activities from a discriminative and a generative perspective. Manifold
learning proved to be a valuable technique for creating low-dimensional prior models of human
motion that can help to cope with the challenges of sparse and noisy observation data. We
have also seen the limitations of learning-based methods related to generalization that are
mainly due to the dependence on the amount and the quality of the training data.

We now consider an entirely different approach to human pose estimation that does not
rely on machine learning. In this excursus from the main theme of our work, the objective is
to make maximum use of the depth data delivered by a ToF camera or Kinect. In our previous
experiments with depth data, we used a straightforward feature extraction mechanism and
showed how to overcome the simplicity of these features using a learning-based method. Here,
we do more justice to the depth data and explore how far we can go in pose estimation, given
this data alone. In fact, the data provided by ToF cameras and the Kinect delivers both, 3D
coordinates and 2D grid information. Additionally, ToF cameras generate grayscale images
and the Kinect produces RGB images that are easily co-registered with the depth data. In this
chapter, we do not address the activity recognition problem, but focus on tracking the limbs
of a person. The application scenario we target is gesture-based human-machine interaction,
where a person is facing a screen and also a depth camera mounted nearby.

Human gestures are a natural means of communication and allow complex information to
be conveyed. Using gestures for interaction with computers can be of great benefit, particularly
in scenarios where traditional input devices are impractical. The method we present in this
chapter is based on robustly identifying anatomical landmarks in the depth data that then
serve as targets for fitting a skeleton. We propose to represent the background-subtracted
depth data by means of a graph that facilitates the detection of body parts. In addition, we
use the optical flow between consecutive intensity or RGB images for depth disambiguation
when body parts occlude each other.
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Figure 6.1: Illustration of the robustness of geodesic distances against pose changes. Top:
Background-subtracted depth images for various poses. Bottom: Geodesic distances from the
body center to all other surface points. Colors range from blue (zero distance) to red (maximal
distance). Note that the distance to hands and feet remains almost constant across all poses.

Representing the 3D points on the surface of a person as a graph allows us to measure
geodesic distances between different points on the body. While the Euclidean distance between
two body points is measured through 3D space and thus can vary significantly with body
movement, the geodesic distance is defined along adjacent graph nodes, i.e. along the surface
of the body. Consequently, the geodesic distance between two points on the body, e.g. the
centroid and an extremity, can be assumed constant, independent of body posture [117, 104]
(Figure 6.1). We can therefore extract anatomical landmarks by searching for points at mutual
geodesic distances that correspond to the actual measurements of a person. Using only depth
and intensity data also decreases our dependence on visual appearance. Thus, we avoid typical
problems that arise when using intensity-based feature descriptors for interest point detection,
e.g. lack of texture and illumination or perspective changes.

When body parts occlude each other, the graph constructed from the 3D points can de-
generate. In this case, separating the occluding body part from the part behind it becomes
difficult, leading to undesired graph edges. These edges between points on different body parts
result in erroneous geodesic distances, and consequently, lead to undetected anatomical land-
marks. We address this issue by taking into account the motion occurring between subsequent
frames. In particular, we identify and remove the undesired graph edges based on optical flow
fields that are computed from the intensity or RGB images.

The method presented in this chapter takes full advantage of the available information
by simultaneously using depth images (for segmentation and generation of 3D points), in-
tensity or RGB images (for optical flow) and the graph-based representation (for geodesic
distances). Compared to other depth camera-based human body tracking approaches, ours is
able to quickly recover from tracking failures due to the robust anatomical landmark detection
approach. We use a ToF camera and a Kinect device in our experimental evaluation. The
experiments show that the method is able to effectively track the full-body pose in several
ToF and Kinect sequences containing various human movements.
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6.2 Related Work

Techniques for human pose estimation from visual observations can be broadly categorized
into learning-based approaches that facilitate the problem by means of training data (e.g.
[164, 72, 155, 136]) and approaches that estimate human poses from observed features without
prior knowledge. We provided a literature overview of learning-based methods for human pose
estimation in Chapter 5, including a section on approaches using depth data as input.

Visual Human Pose Estimation Without Learning. Methods that do not rely on
machine learning (e.g. [82, 184, 12, 122, 75, 108]) are typically highly dependent on a reliable
feature extraction, as the appearance of the human body is heavily affected by illumination and
pose changes, and by noise in the observation data. As opposed to learning-based methods,
there is no prior knowledge of feasible human movements or human appearance that can
help disambiguate insufficient observations. Most pose estimation methods without prior
motion or appearance models therefore build upon the rich data obtained from multi-view
reconstruction systems. For instance, Kehl and van Gool [82] use a multi-camera setup and
generate 3D volumetric reconstructions for human pose estimation. Gall et al. [47] fit a skeleton
to multi-camera data by repeatedly deforming and refining a surface mesh that is rigged to
an articulated body model. Other approaches focus on tracking the surface of a person in 3D
[62, 23, 24]. These methods are able to recover fine details of the outer appearance, including
clothing. The key disadvantage is the remaining requirement of a multi-camera reconstruction
system. Obviously, the quality of the depth data we obtain from a ToF camera or the Kinect
cannot match that of a 3D reconstruction system. However, the data is available without the
complexity of 3D reconstruction algorithms in real-time.

When no learned models of human motion are available, efficient state inference techniques
also play a crucial role to deal with the high dimensionality of full-body pose space. Bandouch
et al. [12] employ a particle filter for state estimation in a multi-view setup. However, their
approach reaches low, non-interactive frame rates. The authors of [46] address this problem
by combining particle filtering with local optimization on multiple hierarchical layers. In [122],
inertial sensors are attached to the human body to complement visual observations and thus
to guide the search for correct human poses.

Using ToF Cameras for Human Pose Estimation. Several authors have recently ex-
plored the use of ToF cameras for an analysis of human motions (e.g. [20, 149, 74, 185, 136]).
In [149], a system is described that recognizes simple hand gestures for navigation in medical
imaging applications. Hand movements are also tracked in [99]. The method of Jensen et
al. [74] allows tracking the movement of legs in side-views for medical gait analysis. Holte et
al. [61] propose a method that integrates ToF range and intensity images for human gesture
recognition. Their approach is not used for pose tracking, but is able to classify upper-body
gestures, such as raising an arm. The authors avoid identifying anatomical landmarks by
using a global pose descriptor. Zhu et al. [184] present a full-body pose estimation system
that relies on fitting templates for each body part to the ToF data. In [185], the authors
combine a template fitting technique based on dense point correspondences with an interest
point detector for increased robustness. While the approach can track full-body motion, it
relies on an independent, heuristic treatment for each body part.
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Using the Kinect for Human Pose Estimation. After its recent appearance, the Mi-
crosoft Kinect has caused a multitude of applications to appear, including approaches for
human body tracking. For instance, Hu et al. [66] extract leg movement information for med-
ical gait analysis using a Kinect that is mounted on a moving walker. While appropriate for
their intended purpose, this method cannot track full-body poses. Shotton et al. [146] present
a method for body joint detection in Kinect depth images. Their method is based on a learn-
ing approach that classifies individual depth image pixels to one of multiple body parts, such
as upper arm, elbow or thigh. A random forest classifier is trained with a large database of
labeled depth images. The training database is generated by applying motion capture data to
a variety of synthetic body models, thus obtaining training data for various body proportions.
In [51], the authors present an alternative pose estimation technique based on random forest
regression. While both approaches decrease the sensitivity to person-specific appearance, they
still depend on the movements contained in the training dataset. In addition, the performance
of the algorithms is to a large extent due to the volume of the used training dataset and to
the exceptional computational capabilities available during the training phase [51, 146].

Graph-based Human Pose Estimation. Similar to our approach, Plagemann et al. [117]
use a ToF camera and create a graph representation of the 3D data for detection of anatomical
landmarks. Their technique extracts interest points with maximal geodesic distance from the
body centroid and classifies them as hands, head and feet using a classifier trained on depth
image patches. The method does not explicitly address the problem of self-occlusions between
body parts and reportedly struggles in such situations [117]. Without modifying the interest
point detection technique, the authors add in [49] a pose estimation method embedded in
a Bayesian tracking framework. Our proposed method uses optical flow measured in ToF
intensity images to cope with body self-occlusions.

Optical Flow for Depth Disambiguation. Optical flow has been used in [37] for motion
estimation and segmentation of a person in a monocular pedestrian tracking application.
Okada et al. [112] describe a person tracking method that combines disparity computation in
a stereo setup with optical flow. Similar to our approach for disambiguation in the case of
self-occlusions, an interest region map is propagated through the tracking sequence using the
computed flow vectors. While this method allows tracking the bounding boxes of the head
and upper body, our technique estimates the joint angles of a full skeleton body model in
every frame. To the best of our knowledge, using optical flow for segmentation of occluding
body parts in depth-image based human body tracking is a novel approach, enabling us to
track arbitrary full-body movements from a frontal perspective.

6.3 Geodesics and Optical Flow for Pose Estimation

6.3.1 Method Overview

We are given a sequence {Tt}NDt=1 of ND depth measurements, where each Tt = (Dt, It) consists
of a depth image Dt and an intensity image It, both of size nx × ny. When using a ToF
camera, It denotes the grayscale amplitude image. For the Kinect device, It refers to the RGB
image. While ToF cameras acquire both images with the same sensor, the Kinect uses two
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separate cameras for the depth and the RGB images. Thus, the RGB image first needs to
be aligned to the reference frame of the depth image, e.g. using stereo calibration techniques.
Alternatively, the Kinect programming interface by PrimeSense [124] also provides methods
that allow directly accessing color pixels corresponding to given depth image coordinates based
on an internal matching procedure. In the following, we assume that there is a correspondence
between any depth pixel Dt(i, j) and an intensity image pixel It(i, j).

Given a sequence of depth and intensity images of a person, our goal is to estimate the
full-body pose ŷt ∈ Rdy of the person at each frame t, parameterized by the dy joint angles of
our simple skeleton model (Appendix A). We assume that, in an initialization step, the person
faces the camera for a few seconds and takes on a T-pose with the arms extended sideways.
During this phase, approximate limb lengths of the person are captured for calibration. The
main method consists of the following steps, performed in each frame (see Figure 6.2):

1. Depth image preprocessing. The depth image is first median filtered to reduce the
amount of noise. In addition, a 3D point cloud representation is computed from the
depth data (Section 6.3.2).

2. Graph construction from depth data. We create a graph with the 3D points as ver-
tices and introduce edges whenever two 3D points fulfill a specific spatial neighborhood
property (Section 6.3.3).

3. Creation of geodesic distance map. The graph is used to generate a map of geodesic
distances from the body center to all other body points. The distances represented in
this map can be assumed invariant to articulation changes (Section 6.3.3.1).

4. Localization of anatomical landmarks. We locate L anatomical landmarks Pt =
{pti}Li=1 using the geodesic distance map, where pti ∈ R3, and determine the discrete
landmark labels λ(pti), e.g. head, left knee, right hand (Section 6.3.3.2).

5. Disambiguation using optical flow. The optical flow between the previous and the
current frame, measured using the intensity images It−1 and It, is used to track body
parts that occlude each other (Section 6.3.4).

6. Skeleton fitting to anatomical landmarks. We finally employ a model-based skele-
ton fitting approach to estimate the full-body pose that best fits the extracted anatomical
landmarks (Section 6.3.5).

6.3.2 Depth Image Preprocessing

After median-filtering the incoming depth image Dt, we subtract a previously recorded back-
ground image to segment the person in the foreground. We then transform the segmented
depth image into a 3D point cloud based on the known intrinsic parameters of the depth
camera (see Section 5.5.1). Let Xt = {xij} denote the resulting set of nxny 3D points. We
assume that, after creating the 3D point cloud, we are still able to identify the 2D depth
image coordinates belonging to a given 3D point. Our notation indicates that the point xij
corresponds to the depth image pixel with coordinates (i, j).
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Figure 6.2: Schematic of the depth-image human body tracking method. In each frame t,
the algorithm constructs a geodesic distance graph based on the 3D-converted depth image
and extracts anatomical landmarks (A). For each undetected landmark k, the disambiguation
process using optical flow on the intensity image is executed (B). The corrected geodesic
distance graph for a body part k allows detecting the missing anatomical landmarks.
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6.3.3 Graph Construction from Depth Data

We construct a graph Gt = (Vt, Et), where Vt = Xt are the vertices and Et ⊆ Vt × Vt are the
edges. Whether two vertices, i.e. 3D points, are connected with an edge or not is based on
their spatial distance in 3D and on their vicinity in the 2D depth image. We thus define the
set of edges as

Et = {(xij,xkl) ∈ Vt × Vt | ‖xij − xkl‖ < δ ∧ ‖(i, j)> − (k, l)>‖∞ ≤ 1}, (6.1)

where ‖ · ‖ is the Euclidean and ‖ · ‖∞ is the maximum norm and (i, j)>, (k, l)> are the 2D
coordinates of the two points xij,xkl in the depth image. For each edge e = (x,x′) ∈ Et, we
store a weight w(e) = ‖x− x′‖. We thus connect points with a 3D Euclidean distance of less
than δ that project to neighboring pixels in 2D. Incorporating the 2D neighborhood allows
us to efficiently construct the graph in linear time by traversing the depth image once. The
classical way of constructing a neighborhood graph from a set of 3D points would first require
the expensive computation of all pairwise point distances in 3D.

6.3.3.1 Creation of Geodesic Distance Map

Using Gt, we are able to measure geodesic distances between different body locations, as op-
posed to measuring Euclidean distances between the corresponding 3D points. The advantage
of geodesic distances is that the local topology of the body is taken into account (see also
Section 3.2.2.1). The geodesic distance dG(x,x

′) between two points x,x′ ∈ Vt is given by

dG(x,x
′) =

∑
e∈SP (x,x′)

w(e), (6.2)

where SP (x,x′) contains all edges along the shortest path between x and x′. Intuitively, the
geodesic distance between two locations on the body is thus the length of the shortest path
over the body surface. Our central assumption is that all anatomical landmarks remain at
a nearly constant geodesic distance from the body center of mass, independent of body pose
[117]. Let ct denote the 3D point that is closest to the centroid of the segmented point cloud
Xt. We then define the geodesic distance map Mt, of the same size as the depth image Dt, as

Mt(i, j) = dG(c
t,xij). (6.3)

Examples of geodesic distance maps are given in Figure 6.1. To determine the geodesic distance
from the body center for the 3D point belonging to the depth image pixel Dt(i, j), we evaluate
the geodesic distance map at Mt(i, j). Given a single source point, the shortest paths to all
other graph points can be computed using Dijkstra’s single source shortest paths algorithm
[28]. In an efficient implementation, this algorithm has a complexity of O(|Vt| · log |Vt|).

6.3.3.2 Detection of Anatomical Landmarks

Having constructed the graph Gt and the geodesic distance map Mt in frame t, we proceed
by locating L = 11 anatomical landmarks Pt = {pti}Li=1 and determining their discrete labels
λ(pti). We distinguish between primary landmarks P ′t ⊂ Pt (body center, head, hands, feet)
and secondary landmarks P ′′t ⊂ Pt (chest, knees, elbows).
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a) d) e)c)b)

Figure 6.3: Illustration of the depth disambiguation approach using optical flow. a)
Background-subtracted ToF depth image with a hand in front of the torso. b) Geodesic
distance map computed using the graph Gt with the origin at the body center. The occluding
arm is too close to the torso for being separated. c) Body segment map for the arm obtained
in the previous frame. d) Optical flow field (x-component) from previous to current frame. e)
Geodesic distance map after removal of undesired edges in Gt. The arm is now separated and
has the expected geodesic distance from the body center.

The first primary anatomical landmark is given by the body center of mass ct. To extract
the extremities, we use the geodesic distance map to select all points x with dG(x, ct) > τ .
Here, τ is a person-specific threshold that approximates the distance from the body center to
the shoulders. We therefore obtain spatially isolated sets of points that we treat as belonging
to different limbs. For each of these isolated sets, we store the point with largest geodesic
distance from the body center, yielding the set of primary anatomical landmarks P ′t.

Given the locations of the primary anatomical landmarks, we need to determine their la-
bels in order to detect the secondary landmarks, i.e. the chest, elbows and knees. During
initialization, where the person takes on a T-pose, we create an initial labeling of the anatom-
ical landmarks. Each landmark p0

i detected in the initialization frame (t = 0) is assigned
an appropriate label λ(p0

i ) based on the assumed T-pose. In any subsequent frame t, we
determine the labels for the primary landmarks by matching the detected positions pti to the
known landmarks in the previous frame. The label for the i-th landmark is thus

λ(pti) = λ(p̃t−1), where p̃t−1 = arg min
p∈P ′t−1

‖pti − p‖. (6.4)

We can then extract the location of the secondary landmarks P ′′t , i.e. the chest, elbows and
knees, by measuring geodesic distances from the localized primary anatomical landmarks.
That is, we select points on the body as the chest, the elbows and the knees that are located
at respective distances from the body center, the hands and the feet.

6.3.4 Depth Disambiguation Using Optical Flow

In cases when the extremities are clearly separated from each other, the graph-based landmark
identification approach allows us to detect all primary and secondary landmarks. However,
when body parts occlude each other, the graph Gt will likely contain edges that connect points
on different body parts. In such a situation, two points x,x′ ∈ Vt on distinct body parts can
easily satisfy the two conditions of Equation 6.1. Consequently, the geodesic distances will be
computed inappropriately. Figure 6.3 b) gives an example where an arm in front of the torso
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is connected to the upper body and the geodesic distance from the body center to the hand is
underestimated. Without correction, anatomical landmarks on the arm cannot be detected.

We therefore propose a disambiguation approach that makes use of movement occurring
between frames. Assuming that distinct body parts move separately, this approach allows us
to disconnect points belonging to different body parts. We introduce a binary map indicating
the location of the entire occluding body segment in the depth image. This map is propagated
from frame to frame using optical flow, until the body parts become separable again.

6.3.4.1 Creation of Body Segment Map

Let ptm ∈ P ′t be the location of a primary anatomical landmark at time t and let btm denote
the corresponding body part, i.e. an arm or a leg. We define the body segment map Smt for
btm to be a binary image of the same size as the depth image Dt, such that

Smt (i, j) =

{
1 if dG(p

t
m,xij) < µ,

0 otherwise.
(6.5)

All pixel locations (i, j) in the map are assigned a value of 1 if the geodesic distance between
their corresponding 3D point xij and the landmark ptm does not exceed µ. This threshold
is chosen based on the length of the person’s limbs (determined during initialization), such
that the entire body segment btm is included in the segment map. Figure 6.3 c) shows a body
segment map for the person’s left arm.

6.3.4.2 Map Propagation Using Optical Flow

For every primary landmark ptm that is not detected using the approach described in section
6.3.3.2, we obtain the corresponding body segment map Smt−1 from the previous frame. If
the landmark was detectable in that frame, we construct the map according to Equation
6.5, otherwise we assume that the map is available from previous propagation steps. Let
Ft = (Ft,x,Ft,y) denote the optical flow between the intensity images It−1 and It. Note that
we use the ToF grayscale amplitude image or the Kinect RGB image, respectively. Ft,x(i, j)
is the x-component of the estimated movement for pixel (i, j) between the two images, and
similarly for y. While different methods for obtaining Ft can be used, we employed the classical
Horn-Schunck method with satisfactory results [63]. Figure 6.3 d) shows an exemplary flow
field. We use the optical flow to update the map Smt−1 such that it reflects the assumed position
of body part btm in frame t. The propagated map Smt is computed so that

Smt (i+ Ft,x(i, j), j + Ft,y(i, j)) = Smt−1(i, j). (6.6)

A set of image processing steps are applied to the propagated map, including morphological
operations, to remove noise and cavities caused by artifacts in the optical flow field.

6.3.4.3 Removal of undesired graph edges

Using the updated and corrected map, we can remove the undesired edges in the graph Gt
that connect points on body segment btm to the body part in the background, e.g. the torso.
We update the set of edges as Et = Et − F , with

F = {(xij,xkl) ∈ Et | Smt (i, j) 6= Smt (k, l)}, (6.7)
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where xij is the 3D point corresponding to the location (i, j) in the body segment map. In
other words, all edges are removed where one point lies within the body segment map and the
other point does not. Figure 6.3 e) illustrates the geodesic distances from the body center after
the edges between the occluding arm and the torso have been disconnected. The corrected
graph allows us to identify the primary and secondary anatomical landmarks on body segment
btm by re-computing the geodesic distances from the body center and selecting points with a
maximal distance, as described in Section 6.3.3.2.

In the situation that multiple primary anatomical landmarks cannot be detected, we repeat
the process described above for every missing landmark, each time propagating the appropriate
body segment map and disconnecting undesired graph edges. Note that the map propagation
step, although based upon optical flow between subsequent frames, does not fail when there
is no movement. In such cases, the optical flow field is close to zero and the body segment
map simply remains unchanged.

6.3.5 Skeleton Fitting Using Inverse Kinematics

Once the anatomical landmarks Pt have been identified and labeled in frame t, we estimate
the full-body pose parameters ŷt ∈ Rdy by fitting a skeleton to the detected points. Our
skeleton model is described in Appendix A and has d = 33 degrees of freedom. It consists of
K = 22 joints, denoted as {si}Ki=1, that are distributed over five kinematic chains. Starting
with the torso chain that is registered in the body centroid ct, the full-body pose is determined,
intuitively, by attracting selected joints of the kinematic chains (effectors) to the locations of
the anatomical landmarks (targets). To match the L = 11 anatomical landmarks extracted
from the depth images, we select the following joints from the K body model joints as effectors:
the hands, elbows, feet, knees, the head, the pelvis and one of the spine joints. Formally, our
objective is to find the optimal joint angle configuration ŷt such that the residual error

E(y, t) =
L∑
i=1

∥∥∥pti − f (i)
kin(y)

∥∥∥+ c(y) (6.8)

is minimized. Here, f
(i)
kin : Rdy → R3 is a forward kinematic function that computes the 3D

position of the i-th joint, given a vector y of joint angles. We assume that the i-th joint is
the effector corresponding to the i-th anatomical landmark. The term c(y) penalizes joint
angle configurations that violate a set of constraints (see Appendix B). This term increases
polynomially when any of the joint angles approaches its pre-specified lower and upper limits.

To determine the optimal joint angle configuration ŷt at each time step t, we employ an
iterative Gauss-Newton optimization approach that, starting with an initial value ŷ0

t , computes
updates ∆y such that ŷi+1

t = ŷit+∆y, until convergence. In each frame, we use the joint angles
of the previous frame as an initial value, ŷ0

t = ŷt−1. Assuming incremental body movement
between subsequent frames, this increases convergence rates and decreases the probability of
hitting local minima. In addition to the estimated joint angles ŷt, the skeleton fitting step also
gives us the corresponding 3D locations {ŝi}Ki=1 of all skeleton joints. Note that these locations
will be close to the location of the anatomical landmarks, but there will not necessarily be a
coincidence. This is a favorable effect, as it will limit the impact of outlier landmark detections.
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6.3.6 Evaluation

We evaluated our body tracking method using a ToF camera and a Microsoft Kinect device (see
Figure 1.4). The ToF camera is a PMDVision CamCube [121] with a resolution of 204× 204
pixels for both, intensity and depth images. The Kinect [101] captures depth and RGB images
at a resolution of 640× 480 pixels. We performed the following two sets of experiments:

• ToF data: To assess our method on ToF data, we compared the skeleton predictions
produced by our method to ground truth skeleton data obtained using a marker-based
motion capture system (Appendix B). 20 testing sequences were recorded using the ToF-
camera. Each of the sequences consists of around 400 frames, captured at a frequency
of 10 Hz. The recorded movements range from simple motions, such as waving an arm,
trough complex full-body movements with occlusions between body parts. Figure 6.7
gives an overview of the movements in our ToF-based evaluation set.

• Kinect data: To assess our method on Kinect data, we used the skeleton informa-
tion generated by the NITE skeleton tracker from PrimeSense [124] as a reference. The
Kinect-based data we used for evaluation consists of 10 testing sequences, each approx-
imately of 600 frames in length, recorded at a frequency of 30 Hz. The movements are
similar to those performed in the ToF dataset.

In our experiments, the depth and intensity images were pre-processed using a median filter
to decrease the level of noise. We segmented the person from the background in each frame
by subtracting a static depth image of the lab acquired beforehand. At each time step,
we low-pass filtered each of the spatial optical flow field components. Our current Matlab
implementation reaches tracking rates of 2-6 frames per second for ToF data. Performance on
the Kinect data is slightly lower, given its higher resolution and thus higher complexity in the
graph computations.

6.3.6.1 Full-body Pose Estimation on ToF Data

For recording ground truth full-body poses, we used an optical marker-based motion capture
system based on the ART Dtrack 2 tracking system [2] (Appendix B). The motion capture
system was synchronized with the ToF camera and registered to its coordinate frame. Motion
capture markers were placed on the back of the person to prevent interference with the depth
measurements. The motion capture system provides the true 3D positions {si}Ki=1 of the
K = 22 body joints of the skeleton model described in section 6.3.5. As an error metric,
we computed in every frame the average Euclidean distance between the estimated and true
locations of these body joints. We define the distance error for our ToF experiments as

etof(t) =
1

K

K∑
i=1

‖si − ŝi‖, (6.9)

where ŝi is the estimated 3D position of the i-th skeleton joint and si is the corresponding
ground truth. Note that, even in the case of a perfectly estimated full-body pose, etof(t) will
not be zero, since the markers of the motion capture system do not coincide with our detected
anatomical landmarks. Moreover, the motion capture system fits the skeleton to assumed
locations of joints within the body, whereas our fitting targets are on the body surface.
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Averaged over all testing sequences, our method achieved a distance error of ētof = 70.1
mm with a standard deviation of 9.8 mm. Figure 6.4 shows plots of the distance error over
the length of two typical testing sequences. The overlaid full-body pose prediction and ground
truth for selected frames allows for a better interpretability of the results. The left graph
corresponds to one of the easier sequences where only the arms are moved, however, including
body self-occlusions. In this case, the distance error averaged over all joints is around 50 mm.
The maximum error in each frame rarely exceeds 100 mm. On the right side, results are shown
for a more difficult sequence including full-body movement. Especially when legs are raised,
the average error increases to around 100 mm. The effect of the maximal value of 250 mm
for individual joints is visualized in example 7 (Figure 6.4), where the position of the right
knee deviates from the ground truth. This being a worst-case example, our method compares
favorably to current state-of-art methods for ToF-based full-body pose tracking (e.g. [49]).

6.3.6.2 Full-body Pose Estimation on Kinect Data

The open-source NITE framework, maintained by PrimeSense [124], provides a skeleton track-
ing algorithm that we used as a reference for evaluating the performance of our method on
Kinect data. For this purpose, we recorded the NITE skeleton predictions for each frame
together with the corresponding depth and intensity images. In our ToF-based experiments
(Section 6.3.6.1), we used the same body model for skeleton fitting and for the motion capture
ground truth, leading to a one-to-one correspondence between estimated and ground truth
joints. The skeleton model employed in the NITE framework, however, is structured differ-
ently and only consists of K̃ = 15 joints. We denote the locations of these joints as {s̃i}K̃i=1.
To measure the deviation of joint locations predicted by our method, we manually created
an assignment of matching joints between the two body models. Let κ(i) be the index of the
NITE joint corresponding to the i-th joint of our model. We define the distance error for our
Kinect experiments as

ekinect(t) =
1

K̃

K̃∑
i=1

‖si − s̃κ(i)‖. (6.10)

Averaged over all Kinect-based testing sequences, our method achieved a distance error of
ēkinect = 108.4 mm. This value is higher than in the ToF-based experiments, as there is no
exact correspondence in body joints between the two used body models. We observed that a
deviation of approximately 30 mm was present even when the predicted skeleton and the NITE
skeleton visually were in the same pose. Figure 6.5 shows a plot of the distance error over
a typical Kinect-based testing sequence involving full-body movements and hand occlusions.
For a better understanding of the difference between the averaged and maximal error, Figure
6.6 provides the deviations for each of the K̃ = 15 joints that were compared. Most notably,
the deviations for body parts that are crucial for gesture-based interaction, such as the hands
and elbows, are below 100 mm. There is a significantly higher error for both knees that is
mainly due to a different location of the knee joint between both skeleton models. As can
be seen in Figure 6.8, the NITE skeleton tracker tends to underestimate the lower leg length,
placing the knee joint lower than in our model.
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Figure 6.4: Illustration of quantitative pose estimation results for ToF depth images. The two
graphs show the distance error etof(t) over the length of two exemplary testing sequences. The
average error over all joints is plotted (blue), along with the maximum error in each frame
(green). Left: Typical sequence where only hands are moved, including self-occlusions. Right:
Typical sequence involving full-body movement. Results for selected frames are visualized
below with overlaid estimated (blue) and ground truth poses (red).
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Figure 6.5: Quantitative pose estimation results on Kinect depth data. Distance error ekinect(t)
over the length of one exemplary testing sequence involving arm and full-body movements.
The average error over all joints is shown blue, the maximum error in each frame is green.
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Figure 6.6: Quantitative pose estimation results on Kinect depth data. Distribution of distance
error across the 15 joints used for comparison to the NITE skeleton model.

6.3.6.3 Qualitative Assessment

Figure 6.7 provides example images from our ToF-based testing sequences for a qualitative
assessment of our method. As can be seen, the estimated full-body poses match with the ToF
depth images. Poses are predicted faithfully, even in cases where arms or legs move towards
or away from the camera. In particular, the situation where a hand is stretched forward and
occludes the arm itself is handled well. The second row of images in Figure 6.7 shows cases
where one or both hands move in front of the torso. Here, our method relies on the optical
flow-based disambiguation approach described in Section 6.3.4. Tracking does not fail, even
when more than one limb moves in front of the body. The speed of movements is not a critical
parameter to our technique, as long as the positions of primary anatomical landmarks can be
matched successfully across subsequent frames.

Figure 6.8 illustrates the pose estimation results on our Kinect-based testing data. Each
row shows four depth images overlaid with a projection of the detected anatomical landmarks
and the fitted skeleton. Displayed below are 3D views of each pose, where the output of the
NITE skeleton tracker is shown for direct comparison. While the poses appear almost identical,
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it is worth noting that the poses predicted by our approach tend to look more anatomically
plausible. The reason here is the underlying human body model with kinematic constraints
and fixed, person-specific limb lengths that is fitted to anatomical landmarks. In contrast,
the NITE tracker detects interest points (i.e. joints) and connects them to obtain a skeleton.
In our experiments, both methods failed to correctly track the person when turning out of
the frontal pose towards the image plane for more than 60 degrees. The NITE tracker can
cope with the challenging situations of limb self-occlusions that our method solves by means
of optical flow. However, in such situations, the NITE skeleton becomes unstable and joint
positions start jittering. Our approach faced problems when two arms or legs crossed each
other in front of the torso. In such cases, parts of one limb were cut off by the occluding limb,
resulting in inaccurate landmark detections.

6.4 Discussion

In this chapter, we have presented a method for tracking human full-body poses from sequences
of ToF camera or Kinect depth images. The approach does not require any training data and
is able to track arbitrary movements for gesture-based human-computer interaction. Our
method takes full advantage of the data provided by typical depth cameras by utilizing both,
depth and intensity information. Based on the depth data, we segment the person in front of
static background and construct a graph-based representation of the 3D points. This graph
allows us to robustly identify anatomical landmarks in each frame by selecting points with a
maximal geodesic distance from the body center of mass. In cases where body parts occlude
each other, we rely on optical flow, computed on the intensity images, to disconnect occluding
limbs from the body part behind. We conclude the chapter with a brief discussion of a few
key insights.

Inherent Assumptions. While our method builds upon an initialization phase, the user is
only required to hold a T-pose for determining the approximate limb lengths and localizing
the initial anatomical landmark locations. A similar calibration pose has to be taken by users
of the NITE skeleton tracking method. Another assumptions of our method is that persons
are facing the camera and do not fully rotate around their vertical axis. We argue that
this assumption is reasonable for many application scenarios of gesture-based human-machine
interaction. We also assume that the person is always visible from head to toe in the depth
images. In other cases, the body part detection and propagation steps would fail. However,
short phases of occlusions can be handled, as long as body parts re-appear at similar locations
as before the occlusion. Also, the presented method can easily be adapted to consider only
upper-body movements, if necessary.

Comparison of ToF and Kinect-based Tracking. Using ToF and Kinect data in parallel
and running our algorithm on both types of depth information has led us to several obser-
vations. The higher resolution of Kinect depth images leads to a higher stability in detected
landmark locations, as compared to the ToF data. This increase in resolution, however, also
negatively affects runtime performance of our algorithm that depends on graph construction
and on the Dijkstra algorithm [28]. A positive aspect of the Kinect data is that regions with
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Figure 6.7: Pose estimation results on ToF depth images. In each of the three rows, depth
images are overlaid with projections of the estimated skeleton pose (yellow). Blue markers in-
dicate the positions of detected anatomical landmarks that play the role of targets for skeleton
fitting. Below each row, perspective views of the corresponding estimated poses are displayed,
emphasizing the 3D appearance of the predictions.
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Figure 6.8: Pose estimation results on Kinect depth images. Depth images are overlaid with
the detected anatomical landmarks (yellow markers) and the fitted skeleton (blue). Below each
image is a 3D view of the predicted skeleton (blue) and of the corresponding NITE skeleton
prediction (red).
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invalid measurements result in values that are clearly separable from valid depth measure-
ments. Noise in ToF data often appears indistinguishable from regular depth measurements,
requiring to make heavier use of filtering.

Comparison to Machine Learning Approaches. This chapter was an excursus from
the main theme of this work, machine learning methods for human motion analysis. The
excursus was motivated by the interesting properties of depth data generated by ToF cameras
or the Kinect that give the impression of enabling human pose tracking without the need for
machine learning. While the 2.5D data does provide more informative observations than, for
instance, a monocular video stream, identifying anatomical landmarks and fitting a skeleton
body model remains a non-trivial task. Compared to machine learning methods, such as ours
evaluated in Section 5.5, the direct approach is more sensitive to noise and occlusions, as there
is no prior information on feasible human poses that can complement missing input data or
help in the case of outlier observations. The obvious advantage of a learning-less method is
that arbitrary poses can be tracked, and not just the poses corresponding to a set of learned
activities. However, recent methods using a large amount of training data [146, 51] show
that machine learning techniques can even be suitable for person-independent tracking on
various activities. In fact, learning-based methods have the significant advantage of moving
computational complexity away from the online application phase to an offline training step.
Our methods presented in Chapters 4 and 5 easily achieve real-time performance after training,
which is not the case for the learning-less approach described in this chapter.

Future Work. While the current implementation based on Matlab does not provide real-
time frame rates (we currently achieve 2-6 frames per second), we believe there is the po-
tential for improving computational efficiency, without requiring GPU acceleration. Future
work should focus on improving the labeling process for detected anatomical landmarks that
currently depends on matching to the locations of anatomical landmarks in previous frames.
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Chapter 7
Gesture-based Interaction in the Operating
Room

7.1 Introduction

In the previous chapters, we have presented and discussed various approaches for human
activity recognition and full-body pose estimation from limited observations, such as inertial
sensors or depth camera images. We now turn to a particular application scenario, the clinical
operating room (OR), where our focus is on recognizing and tracking human gestures. The
objective is to let a surgeon interact with computer-based medical systems without the need
to touch a keyboard or a mouse. Our input modality of choice are wireless inertial sensors,
as these sensors provide a high movement flexibility inside the operating room, compared to
cameras. In this chapter, we make use of several concepts and methods introduced in the
previous chapters, but adapted to the gesture recognition scenario.

The OR is a highly complex environment and surgical staff often work under high pressure.
For their assistance, various types of computerized medical systems are used in the OR, for
instance to visualize volumetric patient data or to monitor vital parameters. However, when
interacting with such devices during surgery, surgeons face challenges. Sterility regulations
restrict the use of classical mouse-driven or touch-based user interfaces and control terminals
are often required to be spatially separated from the main operating site [77]. Also, inter-
ventional workflow might not allow the surgeon to leave this site and, while handling medical
instrumentation, the surgeon might only have very limited freedom of movement. Typical
solutions for this situation include delegating physical control over computerized systems to
less-skilled assistants [52, 77]. This, however, increases the amount of verbal communication
and raises the chance of misunderstandings. The added level of indirection can also adversely
affect the precision of the surgeon and lead to inefficiency [77].

In this chapter, we present a solution for a touch-free user interface that gives surgeons
direct control over computerized systems by means of gestures. Our approach learns gestures
from samples given by a surgeon in a training phase. The surgeon is not required to adhere to a
set of pre-defined gestures but can define gestures that are most suitable in a particular surgical
workflow. Gestures are captured using a few wireless inertial sensors on the surgeon’s arms that
can easily be integrated into garment (Figure 7.1). The sensors make our system independent
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Figure 7.1: Gesture-based control of a medical image viewer application. Four wireless inertial
sensors (right) are placed on the person’s arms underneath the blouse. In this example, a
vertical arm gesture is used to zoom the visualization of a medical image viewer application.

of cameras, enabling robust gesture recognition in the presence of critical OR conditions,
including difficult lighting, cluttered backgrounds and occlusions by staff and equipment.

Our method uses manifold learning to capture the underlying structure of the movements
for each trained gesture. The learned manifold models provide a low-dimensional search space
for gesture recognition and tracking. As opposed to the pose estimation methods presented in
previous chapters, we do not make use of full-body pose data in the training phase, but only
rely on the inertial sensors. We argue that requiring a motion capture system to obtain the
full-body pose data, even if it is only in a training phase, is a significant burden for surgeons.
In fact, we do not require knowledge of the exact full-body poses for gesture recognition, as
we are mainly interested in classifying and tracking gestures from inertial sensor data.

While recognizing gestures, the learned manifold models enable us not only to determine
which gesture is performed, but also to infer the particular pose within one gesture. Existing
gesture-based user interfaces give users either categorical or spatio-temporal control [57, 84].
Our method combines both approaches. As a result, surgeons can select discrete functions of
the target system, since their gestures are automatically recognized (categorical control). At
the same time, their particular arm movements in space are used to precisely adjust continuous
parameters related to the selected functions (spatio-temporal control), see Figure 7.2.

Consider the following illustrative application scenario. During minimally-invasive aortic
repair procedures, a stent graft is inserted through an artery into the aorta to exclude an
aneurysm from blood circulation. Positioning the stent graft is guided by imaging modalities
that combine intra-operative X-ray views and tomographic patient scans [36]. For the complex
task of inserting the stent graft, a hypothesized surgeon would like to control the visualization
himself, instead of giving instructions to an assistant. Knowing that his right hand is occupied
during catheter insertion, the surgeon trains the gesture recognition system on three gestures
he performs with his left arm. He uses a circular movement for browsing slices in the tomo-
graphic scan, a vertical movement for zooming and a horizontal movement for translating the
image. During an actual intervention in the OR, where lights are dimmed, the surgeon needs
to adjust the visualization while inserting the stent graft. To activate gesture recognition, he
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pronounces a voice command and starts tracing a circle with his left arm. The system immedi-
ately recognizes the intended browsing functionality. Having found the region of interest, the
surgeon keeps his arm still and moves it back and forth for fine adjustment. To increase the
zoom factor, he then moves his arm horizontally. The image is scaled in proportion to his arm
movement. Another voice command stores the current setting and deactivates gesture control.
The surgeon can now continue inserting the stent graft without accidentally modifying the
visualization with his movements.

In our experiments, we evaluate our gesture-based interaction approach in the scenario
of controlling a medical image viewer application. Quantitative experiments show that the
proposed method can simultaneously recognize up to 18 gestures to a high accuracy from as
little as four inertial sensors. We also describe the outcome of a qualitative user study that
encourages a practical application of our method in the operating room.

7.2 Related Work

Using gestures for human-machine interaction has been studied intensively and surveys are
available, e.g. in [73, 102]. Gesture-based human-machine interaction has recently received
particular attention in the context of consumer devices or entertainment applications [96, 146,
132]. Throughout the literature, different modalities are used to capture gestures, such as
pens [176] or sensors, but cameras are the most frequent choice. Several authors have even
targeted the operating room scenario, e.g. [85, 52, 149, 171]. For instance, Graetzel et al. [52]
use a stereo camera setup for tracking the hand of a surgeon and thereby controlling the mouse
pointer on a screen. Kipshagen et al. [85] present a medical image viewer that can be controlled
by means of hand gestures that are tracked with two video cameras. Soutschek et al. [149]
employ a ToF camera for interaction with the display of an intra-operative imaging device.
Guerin et al. [54] describe a gesture-based system that allows controlling a surgical robot.
The aforementioned approaches are all vision-based and thus face challenges in realistic OR
environments, where optimal lighting and line-of-sight between the surgeon and the cameras
cannot always be ensured. We address this issue by capturing gestures with a few body-worn
inertial sensors instead of cameras.

Inertial sensors attached to the surgeon’s body are a promising alternative that allow
circumventing the restrictions of camera-based systems. In addition, wireless sensors enable a
surgeon to perform gestures independent of his or her location and orientation within the OR.
Previous research on gesture recognition using wearable inertial sensors includes [84, 59, 163,
44]. To our knowledge, inertial sensor-based gesture recognition for the operating room has
not been proposed before. Kela et al. [84] measure short hand gestures using accelerometers
and evaluate the usefulness of these devices in controlling home entertainment systems. The
authors present a gesture recognition approach based on a Hidden Markov Model (HMM).
Hand gestures, such as quick up-down movements or circles, are recognized in [59] based on
a Dynamic Time Warping (DTW) mechanism. The authors of [163] and [44] recognize the
suitability of orientation sensors for gesture recognition, as opposed to pure accelerometers.
We also employ this particular type of devices.

A similar concept to our combination of categorical and spatio-temporal control has sur-
faced before, however, in the context of 2D interaction [123, 55]. Pook et al. [123] present
a specific type of menus for graphical user interfaces that allow users to select commands
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and adjusting their parameters in one mouse sweep. Parameter tuning is realized by means
of scroll bars that are integrated into the individual menu items. Guimbretière et al. [55]
discuss an extended approach for interaction in pen-based environments. In a single gesture
with the pen, a user can select features, adjust parameters and enter hand-written text. Both
techniques do not allow for a user-dependent configuration of gestures and the interaction
depends on classical, mouse-based 2D interfaces. The method of Wachs et al. [171] aims at
3D gesture-based interaction in the OR and can process gestures for binary commands and
gestures for spatio-temporal control. However, as opposed to our approach, both types of
interaction cannot be combined simultaneously.

The contributions of our proposed system for gesture-based interaction can be summarized
in three propositions: (1) Gestures can be defined freely according to the requirements of a
particular interventional scenario. By demonstrating an example per gesture to the system,
surgeons do not have to adhere to a pre-defined set of movements that might interfere with
their hand usage during surgery. (2) Gestures are not only recognized for triggering discrete
actions, e.g. ”click the mouse”, but simultaneously allow tracking the movements within a
gesture in 3D for fine-tuning continuous parameters, such as the size of a displayed image. (3)
Our gesture recognition method creates dimensionality-reduced gesture models from training
sensor data and directly predicts the current gesture and the relative pose within the gesture
from previously unseen sensor measurements.

7.3 Gesture Recognition Based on Manifold Learning

The gesture-based user interaction method introduced in this chapter is based on the generative
method for human pose estimation and activity recognition presented in Chapter 5. We assume
the reader is familiar with the former method and focus on particular adaptations to the gesture
recognition scenario. Overall, the method consists of a training phase, where gesture models
are learned from example sensor data for each considered gesture, and a testing phase, where
the models are used to recognize gestures from previously unseen sensor data.

7.3.1 Method Overview

In our understanding, a gesture is at the same time categorical and spatio-temporal [57]. A
user performs a gesture to invoke a particular function of the target system and to control
this function in a fine-grained, continuous manner. Our gesture recognition method therefore
has two goals: (1) to recognize which gesture a user is performing at each time instant and
(2) to identify the relative spatial pose within that particular gesture. To this end, we define
a gesture to be an arbitrary movement including one or both arms that has a temporal extent
and encompasses many smoothly-varying poses. In the example shown in Figure 7.2, a user
chooses a horizontal movement of both arms for browsing slices in a medical volumetric dataset.
As soon as he starts raising his hands, the intended gesture (browse) is recognized and the
browsing function is activated. His exact hand movement is now translated to a relative pose
value between 0 and 1. This value is then mapped to the value range of any parameter he
desires to adjust. In the example, the parameter controlled by the user is the slice number
between 1 and 256 of a medical image viewer application.
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Figure 7.2: Spatio-temporal gesture control of a browsing function in a medical image viewer.
Selected body poses (top), the corresponding stream of orientation sensor data (middle) and
the resulting relative pose value between 0 and 1 (bottom) are shown. Shortly before À, the
gesture is recognized as browsing. Thereafter and through Á and Â, the relative pose value
is computed and mapped to the range of available slices in the medical dataset (right).

7.3.2 Learning Gesture Manifolds

In the training phase, we learn prior models of gestures from sample sensor data. While our
generative method for human pose estimation and activity recognition (Chapter 5) builds
motion models from full-body pose training data, we rely only on the sensor information
for gesture recognition. This way, we eliminate the need to use a motion capture system in
the training phase, while still being able to capture movement characteristics for multiple
gestures. As discussed below, the exact pose of the person is not of interest to us in the
gesture-recognition scenario. Instead, we derive an abstract, relative pose representation that
is sufficient for adjustment of user interface parameters.

Let M be the number of considered gestures and let X α = {xα1 , . . . ,xαNα}, α ∈ {1, . . . ,M},
be a training dataset of labeled sensor measurements for each gesture. As before, we write the
dataset in matrix form as Xα = [xα1 , . . . ,x

α
Nα

]>. Here, Nα is the number of available sensor
vectors for gesture α. For each gesture, the two sensor vectors xαmin and xαmax are assumed to
be known, e.g. by manual labeling in the training phase. These vectors represent poses at
the beginning and end of the actual control part of a gesture and let us separate introductory
movements, such as raising an arm. To obtain a compact parameterization of feasible sensor
values for each gesture α, we use Laplacian Eigenmaps [14] and map the training data X α

to a low-dimensional representation Zα = {zα1 , . . . , zαNα}, such that zαi ∈ Rdz and dz � dx.
Here, we select the k-nearest neighbors approach for setting up the neighborhood graph and
rely on Euclidean distances. This straightforward choice of similarity measure is reasonable
as the input data X α consisting of sensor measurements itself has few dimensions and does
not exhibit any properties that necessitate a more sophisticated metric.
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Figure 7.3: a) The proposed method recognizes multiple user-defined gestures (top) and tracks
the relative pose within a gesture by means of learned gesture manifolds (middle). The region
on each manifold used for actual control (green) is within [zmin, zmax]. The relative gesture
pose, given by a value in the interval [0, 1], is computed from the relative location of a pose
on a manifold embedding and is used for smooth parameter adjustment (bottom).
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Figure 7.4: Diagram illustrating the relationship between observations (X ), manifold embed-
dings (Z) and the learned regression mappings. Compare also to Figures 5.4 and 4.2.

Figure 7.3 shows exemplary two-dimensional manifold embeddings for four gestures. Note
that these embeddings, generated from inertial sensor data, are similar in nature to the embed-
dings generated from full-body pose data (compare e.g. to Figure 5.3). The crucial property
of the manifold embeddings is that the local spatial distribution of vectors in the original
representation is preserved. In particular, similar sensor measurements will map to close-by
embedding points, even if they occur at different times within a gesture.

We relate the space of sensor measurements and the low-dimensional manifold embeddings
using regression mappings according to the Nadaraya-Watson estimator (Section 3.1.1). The
mappings allow predicting sensor vectors x̂ from given embedding points z (reconstruction
mapping) and projecting new sensor values x to points ẑ in embedding space (out-of-sample
mapping). Note that in our pose estimation and activity recognition method, we did not define
an out-of-sample mapping, but a reconstruction mapping and a projection from manifold
embedding space to full-body pose space. The latter mapping is not required in the method
presented here, as we do not have any full-body pose training data. Figure 7.4 illustrates
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the relationships between the regression mappings, the sensor observations and the manifold
embeddings. In analogy to Equation 5.2, we define a reconstruction mapping for a gesture
with index α as

fαz→x(z) =
Nα∑
i=1

kz(z, z
α
i )∑Nα

j=1 kz(z, z
α
j )

xαi . (7.1)

A sensor vector can be predicted from any location z in manifold embedding space as x̂ =
fαz→x(z). The mapping is a weighted average of all training sensor vectors xαi ∈ X α, with the
largest weights attributed to sensor vectors that project to a manifold embedding location
zαi that is close to z. Here, we express distance in terms of a Gaussian kernel kz(zi, zj) ∝
exp(−1

2
‖(zi − zj)/σz‖2) with a width σz derived from the standard deviation of the learned

manifold embedding points. By interchanging the roles of sensor values and manifold embed-
ding points, we obtain the out-of-sample mapping for gesture α,

fαx→z(x) =
Nα∑
i=1

kx(x,x
α
i )∑Nα

j=1 kx(x,x
α
j )

zαi . (7.2)

This mapping allows predicting the location ẑ = fαx→z(x) in the manifold embedding space
of gesture α from a given sensor vector x. The Gaussian kernel kx(·, ·) is defined in analogy
to kz(·, ·), with a width σx derived from the standard deviation of the sensor vectors in the
training data. We describe below how we make use of this out-of-sample mapping within our
particle filter-based generative tracking approach.

7.3.3 Recognizing and Tracking Gestures

In the testing phase, our aim is to estimate the manifold index α̂t and location ẑt that best
explain the sensor measurements xt at any time t. In addition, we wish to compute the relative
pose value ẑt ∈ [0, 1] that serves to control arbitrary parameters of a target system.

Analogous to our method described in Chapter 5, we employ a particle filter [68] for this
purpose that continuously explores the gesture-specific manifold embeddings. Every particle
pit = (αit, z

i
t), 1 ≤ i ≤ n, represents one gesture pose hypothesis. Initially, all n particles

are randomly distributed across the manifold embeddings. In every iteration of the particle
filter, we let the particles propagate through the manifold embeddings, ensuring that only
positions close to the learned embedding points are sampled (see Figure 7.5). With a certain
probability, particles are allowed to switch between different manifold embeddings. We model
this probability to be high in embedding space regions that correspond to an idle pose sepa-
rating gestures. The prior probability and the switching probability are defined in analogy to
Equations 5.5 and 5.6, respectively. To evaluate the fitness of the i-th particle, we define the
observation likelihood

p(xt|zit, αit) = kx(xt, f
αit
z→x(z

i
t)) · kz(zit, fα

i
t

x→z(xt)) (7.3)

Note that this expression simultaneously employs the regression mappings defined in Equations
7.1 and 7.2. In the first term of the product, a sensor vector is predicted from the particle’s
current position zit and is compared to the true measurement xt. The Gaussian kernel kx(·, ·)
is has a maximal value when the two quantities are most similar. In the second term, xt is
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Figure 7.5: Top row : Sample images of a test subject performing one of the learned gestures.
Bottom row : Manifold embedding for the same gesture with distribution of particles, shown
in red, for each of the above images. The point ẑt is given by a dark circle.

directly mapped to embedding space and the projection is compared to the particle’s location
zit. Particles that score best in both directions are favored. By combining the contributions of
both, the out-of-sample mapping fαx→z(x) and the reconstruction mapping fαz→x(z), we reduce
the ambiguity that is inherent to each mapping alone and increase the chance to give high
weight to particles that are most appropriate, given the sensor observation.

The final estimated gesture index α̂t is selected as the most frequent index αit among the
best-scoring particles. Among these particles, those with αit = α̂t are used to compute the final
position ẑt in embedding space. In a last step, we translate this position to a relative pose value
ẑt ∈ [0, 1]. To this end, we transfer the Cartesian coordinate ẑt into a polar representation
(rt, θt), such that the pole is at the centroid of the manifold embedding Z α̂t , and keep the
angular component θt. Since the angular representation [θcmin, θ

c
max] of the points [zαmin, z

α
max]

labeled in the training phase is known, we can compute the desired relative pose value as

ẑt =

{
(θt − θα̂tmin)/(θα̂tmax − θα̂tmin) if θα̂tmin ≤ θt ≤ θα̂tmax,

0 otherwise.
(7.4)

Illustrations of the pose value ẑt in practice can be found in Figures 7.2 and 7.3.

7.3.3.1 Temporal Gesture Segmentation

Having estimated α̂t, ẑt and ẑt, we can determine the likelihood that the current pose is in fact
a gesture and not another movement that might be similar. This process is often referred to as
gesture segmentation. Note that the method will always generate an estimate for the gesture
index, the manifold embedding position and the relative pose value, even if the performed
movement is totally unrelated to the training data. Detecting such unknown (or non-gesture)
movements is analogous to detecting anomalies, as discussed in Section 5.3.5 for our activity
recognition and pose estimation method. Consequently, we declare the current pose to be part
of an unknown (or non-gesture) movement, when the predictive confidence

ct = log(kx(xt, f
α̂t
z→x(ẑt))) (7.5)

falls below a preset threshold. This measure evaluates how closely the estimated state ẑt,
projected to sensor space using the predictive regression mapping, matches the true sensor
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Gesture

1. Left arm stretch and retract left of body
2. Right arm stretch and retract right of body
3. Left arm forward and backward in front of the body
4. Right arm forward and backward in front of the body
5. Left hand left and right in front of the body
6. Right hand left and right in front of the body
7. Both hands outwards and back in front of the body
8. Left hand up and down in front of body
9. Right hand up and down in front of the body

10. Both hands up and down in front of the body
11. Left hand left and right above the head
12. Right hand left and right above the head
13. Left hand front and back above the head
14. Right hand front and back above the head
15. Left arm circular movement in front of body
16. Right arm circular movement in front of body
17. Both hands parallel left and right in front of body
18. Both hands parallel up and down in front of body

Table 7.1: Short description of gestures used in the full gesture dataset for evaluation.

observation xt. During a non-gesture movement, the gesture prediction will likely be incorrect
and can be disregarded. Note that the non-gesture movement detection based on Equation
7.5 allows the user to exit gesture recognition at any time by performing movements that were
not shown to the system in the training phase.

7.3.4 Evaluation

To evaluate our gesture-based interaction method for the OR, we conducted qualitative and
quantitative experiments. We used two to six Colibri wireless orientation sensors [161] attached
to the arms of our testing persons. The inertial sensor and motion capture dataset described
in Chapter 4 was not used in this evaluation, as the movements contained in the dataset are
not specifically targeting the gesture recognition scenario. Instead, we defined and recorded
gestures for evaluation that included moving an arm horizontally or vertically, tracing out
circles, or other movements with one or both arms. The full set of gestures is listed in Table
7.1. Our implementation with Matlab and C++ components runs in realtime and the frame
rate is only bounded by the update frequency of the inertial sensors.

7.3.4.1 Gesture Recognition

The gesture recognition accuracy of our method was evaluated systematically on a dataset
of 18 different gestures, each recorded four times. We created labeled sequences of multiple
gestures in a row, each between 1000 and 5000 frames. Experiments were performed in a cross-
validation manner, each time using one of the sequences for training and one of the others
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Figure 7.6: a) Correct gesture classification rates for different numbers of inertial sensors and
an increasing total number of learned gestures. b) ROC curves for automatic differentiation
of learned gestures from non-gesture movements.

for testing. While measuring the percentage of frames with correctly recognized gestures, we
varied the number of simultaneously trained gestures and the number of inertial sensors. As
shown in Figure 7.6 a), best gesture recognition rates were achieved with six inertial sensors.
In this case, 95% of all frames were correctly recognized with a set of four gestures, and 88%
when the method was trained on 18 gestures. Although the recognition rates decrease for
less than six sensors, even only two sensors (one on each arm) yield correct recognition rates
above 80% for all considered numbers of gestures. Our method thus scales well with respect
to the number of gestures to be recognized simultaneously. In fact, we expect that less than
10 gestures need to be distinguishable in practical applications.

7.3.4.2 Gesture Segmentation

It is crucial for a gesture-based interaction method to distinguish instances of learned gestures
from arbitrary other movements. Using six inertial sensors, we varied the threshold associated
with the confidence measure ct and measured the percentage of frames with gesture movements
recognized as such (true positive rate, rTP) and the percentage of non-gesture frames wrongly
identified as gestures (false positive rate, rFP). We trained the method on different numbers
of gestures and randomly created sequences where only one of multiple gestures was known
to the method. Figure 7.6 b) shows the resulting precision-recall (ROC) curves. The best
combination of high true positive rates and low false positive rates was achieved in the setting
with four gestures. In this case, above 90% of gestures were detected with less than 10% of
false positives. Although distinguishing non-gesture movements becomes more difficult when
many gestures are learned simultaneously, the gesture segmentation results remain reasonable,
even for 18 learned gestures.

7.3.4.3 Influence of Training Dataset Size

As a short training phase is desirable for users [84], in particular in the medical setting, we
evaluated the behavior of our method with respect to a varying number of repetitions per
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Gesture Feature

3. Left arm forward and backward in front of the body Browsing slices
6. Right hand left and right in front of the body Horizontal scroll
7. Both hands outwards and back in front of the body Image zoom
9. Right hand up and down in front of the body Vertical scroll

11. Left hand left and right above the head Level adjustment
12. Right hand left and right above the head Value adjustment

Table 7.2: Short description of gestures and associated features of the medical image viewer
application, as employed in the user study. The image viewer displays a 3D medical tomo-
graphic dataset. The gesture numbers refer to the full set of gestures listed in Table 7.1.

gesture in the training data. We recorded a dataset of 8 gestures with an increasing number of
repetitions, ranging from 1 to 8. The sequence with 8 repetitions was taken for testing, while
training on the other sequences, one by one. Apparently, training on a single repetition per
gesture cannot sufficiently account for typical variation when performing a gesture multiple
times. However, gesture recognition rates matched those displayed in Figure 7.6 a) for two
repetitions per gesture, without additional improvement up to the case of 7 repetitions per
gesture. We argue that performing two repetitions per gesture for training is not a significant
burden, considering that the system only rarely needs to be re-trained.

7.3.4.4 User Study

We conducted a user study to evaluate the usability of our proposed approach. In our test
setup, we used a medical image viewer application as the target system. This application
lets the user load and browse medical volumetric image data. We selected a subset of 8
different gestures, each assigned to one of the main features of the image viewer. Table 7.2
lists these gestures and the associated application features. For allowing users to activate and
deactivate gesture control in addition to the automatic method based on the confidence value
ct, we implemented two exemplary techniques. The users could work with a voice recognition
module that reacts to the commands ”start” and ”stop”, or alternatively, with a hand-held
wireless switch with two respective buttons.

Ten test subjects participated in our study with an average age of 28 years, three of them
were female. After providing basic instructions to each participant, we recorded training data
for every gesture with three repetitions. After 15 minutes of free exploration of the system
by each user, we asked them to perform a well-defined test task, consisting of locating an
aortic stent in a loaded CT dataset and navigating to its bifurcation. For evaluation, we also
provided the users with desired target values for all parameters. To reach the target values,
the users had to use the trained gestures (Table 7.2). The procedure was performed twice
per participant, once using voice recognition and once the hand-held switch to activate and
deactivate gesture control. We measured the time the users needed to complete the task for
each of the methods and computed the deviation of each of the adjusted parameters from
the target values. At the end, the users were asked to fill a questionnaire. As illustrated in
Figure 7.7, the user feedback was generally positive. The results show that the sensors are not
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1 2 3 4 5

10. Overall satis�ed with the system.

9. Activation mechanism is convenient.

8. Getting used to the system is easy.

7. Okay to wear sensors for a long time.

6. Sensors do not inhibit movements.

5. Training phase is adequately short.

4. The system feels responsive.

3. Gesture control is precise.

2. Faster than using mouse/keyboard.

1. Gestures are recognized as intended.

Figure 7.7: Average results of the usability survey for 10 testing subjects. The values indicate
subjective consent to the phrases given on the left, on a scale from 1 (strongly disagree) to 5
(strongly agree). Standard deviations for each item are shown.

inhibiting the usual movement and can be worn for extended periods of time. Furthermore,
most of the users agree on the responsiveness and precision of the system. The more skeptical
response to the speed comparison with respect to using keyboard and mouse (question 2) can
be explained with the fact that the participants have a bias towards using familiar, classical
user interfaces. During our study, we noticed that users especially liked being able to move
freely within the room. Regarding the activation mechanism, eight of the ten participants
preferred the hand-held wireless switch over the voice recognition system. This might be due
to the fact that users feel faster response and more direct control over the system when using
a switch, as compared to voice commands. In both approaches, the participants achieved an
acceptable accuracy in setting the target parameter values. Using the voice command method,
users reached the expected parameter values with a deviation of 2% of the respective parameter
range. For the hand-held switch, precision was within 4% of the parameter range. This gave
enough freedom to the users for accurately controlling the target application. Overall, the
study encourages an applicability of the gesture-based interaction method in practice.

7.4 Discussion

We have presented a gesture-based interaction solution for the operating room based on wire-
less inertial sensors. Our approach allows surgeons to define a personalized set of gestures
in a training phase that best fits particular requirements. Using manifold learning, we pa-
rameterize the inertial sensor training data for each considered gesture in a low-dimensional
representation. Apart from automatically recognizing performed gestures from the sensor data,
our method simultaneously tracks the relative pose within each gesture, allowing the surgeon
to control continuous, smoothly varying parameters. This corresponds to a combination of
categorical and spatio-temporal interaction paradigms in one approach. In our quantitative
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experiments, we demonstrate that gestures are recognized with high correct classification rates,
even when 18 gestures are learned simultaneously. Practical application scenarios would rather
require 4-8 different gestures. We believe that our gesture-based interaction approach can also
be applied to other collaborative workspace domains, such as industrial assembly lines, with
minor modifications.

Using inertial sensors for gesture-based interaction in the operating room allows us to
avoid shortcomings of camera-based solutions. Lighting conditions are very challenging in an
operating room and there are lots of occlusions due to personnel and medical equipment, such
that cameras can hardly be used to capture gestures. In addition, surgeons typically interact
with multiple computer screens in the operating room, such that their orientation towards
each individual screen is different and not fronto-parallel. Inertial sensors do not depend on
any line-of-sight and on the orientation of the surgeon. Moreover, the freedom of moving
within the operating room is not restricted at all. In [15], we have presented an adaptation
of our gesture-based interaction method that uses depth features extracted with the Kinect
as an input. Results in terms of gesture recognition accuracy are comparable to the sensor-
based approach. Users initially like the fact that no sensors need to be attached to their arms,
however, they quickly realize that their freedom of movement is restricted, as they have to face
the Kinect for interaction. An additional advantage of inertial sensors is that each sensor has
a unique identification code. This way, we can easily include multiple persons in gesture-based
interaction by distributing the sensors.

In our quantitative evaluation in Chapter 5.4, we highlighted the robustness of our manifold-
based pose tracking method to changes in sensor placement. Due to the methodological simi-
larity, we argue that the conclusion is equally valid for our gesture-based interaction method.
Surgeons can take the sensors off and on again, without requiring new training. The sensor
placement only needs to be in a reasonable vicinity of their location during training. Surgeons
typically have to completely undress before a surgery and to wear specific sterile operating
room clothing. If integrated into this clothing, and keeping in mind continued miniaturization,
the inertial sensors would not impose any additional burden to the surgeons.

Our evaluation shows promising results of using the method in an experimental setup. We
also received initial positive feedback from surgeons that see our approach as a viable user
interaction strategy for the operating room. The surgeons we presented the method to were a
minimally invasive abdominal surgeon (> 20 years experience), a vascular surgeon (> 20 years
experience), a neuro-surgeon (1 year experience) and a trauma surgeon (3 years experience).
While the automatic differentiation between learned gestures and other movements achieves
true positive rates above 90%, the surgeons suggested to rely on an additional tool (e.g. a pedal
that is frequently used in operating rooms) to activate and deactivate automatic gesture-based
control within critical workflow stages.
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Chapter 8
Discussion

Habe nun, ach! Philosophie,
Juristerey und Medicin,
Und leider auch Theologie!
Durchaus studirt, mit heißem Bemühn.
Da steh’ ich nun, ich armer Thor!
Und bin so klug als wie zuvor;1

J. W. von Goethe, Faust I

8.1 Summary

In this thesis, we have investigated various approaches for human motion analysis, focusing on
pose estimation, activity recognition and gesture recognition. There are numerous applications
for such methods, ranging from entertainment through industrial monitoring to medical motion
analysis. Based on our guiding principle to provide solutions for scenarios where classical
camera-based methods face significant challenges, we employed inertial sensors and depth
imaging devices for capturing human motion. In order to cope with the noisy and often
ambiguous input data, the central idea was to infer additional information on human motion in
a training phase where supplementary observations are available. We used an optical marker-
based motion capture system as a source of complete and precise human full-body pose data.
Machine learning techniques were the core of the presented methods and served the purpose of
modeling mappings between observations and full-body poses and creating models of human
motion. After training, these models allowed recognizing activities and gestures and predicting
poses, given only the sensor or depth data.

We started by directly modeling the mapping from observations, i.e. inertial sensor or
depth camera data, to poses. To model this non-functional inverse mapping, we used Gaus-
sian process regression, learning the mapping separately for each considered activity. In this
discriminative setting, we introduced two options for combining the activity-specific pose pre-
dictions into one final pose estimate: one is using the probabilistic nature of Gaussian process
regression and the other uses an SVM classifier. As a result, we derived a simultaneous activity

1An English translation of this excerpt can be found in [168].
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classification scheme. The method was evaluated on inertial sensor data and achieved results
that are comparable to the state-of-art in discriminative human pose estimation. However,
this method focuses entirely on the non-functional relationship between the human appear-
ance (here, as measured by inertial sensors) and the underlying body poses. Consequently,
the method is sensitive to outliers in the incoming observations. Also, predictions for each
consecutive frame are completely independent and no temporal coherence is enforced, as there
is no underlying state model of human motion.

In the following, we presented a generative framework for human activity recognition and
pose estimation with an integrated prior model of human poses that are likely in a particular
application scenario. We used full-body pose training data to extract a low-dimensional search
space for human poses based on a manifold representation specific to each considered activ-
ity. Regression served the purpose of linking pose hypotheses in the low-dimensional manifold
embedding space to observations and to full-body poses, thus avoiding to model the inverse
observation-to-pose mapping. We employed an adapted version of the particle filter algorithm
to continuously track multiple pose hypotheses in the manifold embedding space. A mech-
anism was introduced that lets particles switch between activity-specific motion models and
allows determining the pose and activity that best match incoming observations. An anomaly
detection mechanism enabled us to automatically identify human poses that the system had
not been trained on to prevent attributing such poses to a known activity. We evaluated
the method on inertial sensor data and depth data from a ToF camera. As expected, the
generative method achieved superior results, as compared to the discriminative approach pre-
sented before. Moreover, the depth features showed to provide slightly better hints for pose
estimation and activity recognition than inertial sensor data.

As an excursus from our main theme, we then proposed an alternative human pose esti-
mation method for depth data that is not based on machine learning. Instead, the idea was
to leverage as much as possible the characteristics of depth cameras that provide more than
the depth data. For this purpose, our approach was to represent the depth information as a
graph, allowing us to estimate geodesic distances between arbitrary points on the human body
surface. As opposed to standard Euclidean distances, geodesic distances are nearly invariant
to articulated pose changes and thus help us identify anatomical landmarks, e.g. hands and
feet, from assumed constant geodesic distances to a reference point on the body surface. To
deal with body self-occlusions, where geodesic distances cannot be estimated correctly, we
proposed to compute assistive optical flow fields on the intensity images that are provided
by current depth cameras. We evaluated this method using ToF cameras and the Kinect
and compared the pose estimation performance to the popular NITE skeleton tracker. While
providing competitive precision without the need for any training, the method also has disad-
vantages, compared to our learning-based approaches. First, several restrictive assumptions
are made, such as that the person is continuously facing the depth camera and that the person
is entirely visible. Second, simultaneous activity recognition is not available.

Based on our generative framework for activity recognition and pose estimation, we finally
presented a solution specialized for a particular application scenario. Switching away from
recognizing activities in general, we introduced a system that lets surgical staff define arbitrary
gestures for touch-less interaction with computerized devices in the operating room. Inertial
sensors were used as an input modality, providing complete freedom of movement within the
operating room, independent of lighting and occlusions. As the requirement of precise full-
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body pose estimation is alleviated for gesture recognition, we removed the need to capture
full-body pose data in a training phase. Instead, we used the inertial sensor data directly to
learn the low-dimensional manifold representation of feasible poses. We transformed the pose
estimation capability of our generative framework to the ability of predicting a relative, one-
dimensional pose value. This pose value served the purpose of adjusting arbitrary user interface
parameters with fine-grained gesture movements. From a user interaction perspective, this
approach enables a simultaneous use of categorical and spatio-temporal gestures, as the system
automatically recognizes which gesture is performed and what the relative pose value is at each
time instant. We evaluated our method with the exemplary application of controlling several
properties of a medical image viewer. Quantitative experiments indicated promising gesture
recognition rates and initial feedback from experienced surgeons was highly encouraging.

8.2 Learnings

From a high-level perspective, the learnings from this work can be summarized as follows:

• Inertial orientation sensors are an interesting alternative input modality for human
motion analysis. Compared to accelerometers, the orientation information provides dis-
tinctive cues for pose estimation, even when only a few sensors are placed on the body
of a person. Similar to accelerometers, orientation sensors are small and lightweight and
available in wireless versions. Future technological developments will lead to sensors
that are integrated into flexible cloth, making them barely noticeable for their users.

• Depth cameras, such as ToF cameras or the Kinect, provide 2.5D scans of a scene in
real-time and are thus attractive input modalities for human motion analysis. While
segmentation of a person from background can be significantly facilitated with depth
data, as compared to classical camera images, pose estimation still requires a sophis-
ticated algorithmic approach. Challenges are mainly related to the noise in the depth
measurements and the currently limited resolution of depth cameras. In addition, ToF
cameras and the Kinect operate based on infrared light and are thus hardly usable out-
doors in direct sunlight. However, depth imaging technology is still in an early stage
and future cameras will solve several of the current shortcomings.

• Machine learning techniques can help learning general characteristics of human mo-
tion, such as which human poses are feasible. Instead of creating an explicit physiological
and dynamical human body model, only a training dataset of recorded example move-
ments is required. Machine learning can also be used to learn mappings between human
poses in different representations, including vectors of joint angles, inertial sensor mea-
surements or appearance descriptors in image or depth data. A crucial issue with any
machine learning method are its generalization properties. When the amount of training
data is too small in relation to the complexity of the behavior or mapping to be learned,
over-fitting can occur. This means that the training data itself is approximated well
but generalization to other, previously unseen data is limited. In the case of human
motion analysis, training data that is sufficient for individual types of movements does
not necessarily allow to generalize to arbitrary movements. Similarly, training data for
one person is often not sufficient to allow tracking poses of another person. Recent work
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has shown that vast training datasets can help machine learning methods to track poses
for arbitrary activities and persons [146, 51]. A significant advantage of learning-based
pose estimation approaches over direct methods without learning is that computational
complexity is shifted away from the online application phase to an offline training phase.
Additionally, machine learning methods for pose estimation often have implicit activity
recognition capabilities.

• Manifold learning methods are suitable for generating low-dimensional representations
of human motion data, e.g. from motion capture or inertial sensor measurements. In
general, human motion data fulfills the main assumption of manifold learning, that the
original points (i.e. poses) lie on or close to a manifold embedded in a high-dimensional
space (i.e. full-body pose space). Local neighborhood properties between human poses
are preserved by manifold learning, which allows efficiently parameterizing human mo-
tion data. Meaningful results can be obtained when considering each type of human
motion separately, as opposed to combining motion data for multiple activities. An
important prerequisite for using manifold learning is to define a similarity measure that
fits the properties of a given dataset, e.g. human motion data.

• Regression methods, and in particular non-parametric approaches such as kernel re-
gression or Gaussian process regression (GPR), are useful tools for learning mappings
between human poses and their appearance as measured by different modalities, such
as inertial sensors or depth cameras. While kernel regression in its typical form of the
Nadaraya-Watson estimator is a closed-form expression without any training, GPR is
based on a probabilistic framework and requires iterative optimization in a training
phase. The advantage of GPR is that not only a prediction of a functional value (e.g. a
human pose) can be obtained, but also a measure of predictive certainty. This certainty
value can be used for combining multiple regression models into one joint predictor.
Relevance Vector Machine (RVM) regression also requires training, but can beat other
methods in terms of computational performance. Only a subset of the training data,
given by the relevance vectors that are determined during training, are used for predic-
tions in the application phase.

• Generative and discriminative models of human motion can both be designed for hu-
man pose estimation and activity classification, each with specific advantages and disad-
vantages. Discriminative models focus on predicting body poses or activities, given some
observations of human motion, such as sensor or depth data. Regression is often used to
learn this predictive observation-to-pose mapping from training data. While computa-
tionally very efficient, such discriminative methods are sensitive to outlier observations,
as no internal state and no model of feasible human poses is available. Generative models
have an explicit state representation that can generate simulated observations and body
poses, e.g. based on learned regression mappings. Pose estimation and activity recogni-
tion is achieved by searching the state space to find a pose that best matches current
incoming observations. Generative models introduce temporal coherence and can better
deal with ambiguous input data, as this input is not directly used for pose prediction.
However, generative models require techniques for state estimation, e.g. a particle fil-
ter, which can be costly from a computational point of view. This disadvantage can be
alleviated by employing a dimensionality-reduced state space representation.
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Perspectives

Having summarized the contributions of this thesis and the key learnings from the associated
work, we conclude by pointing out potential future research directions. In this outlook, we
separately consider several aspects related to the thesis.

9.1 Human Pose Estimation

Research has focused on classical cameras for human pose estimation for decades, until depth
cameras appeared a few years ago. This technology simplified formerly challenging computer
vision problems right out of the box, such as background segmentation. Pose estimation itself
has also benefited from the added third dimension, without the need for complex multi-view
reconstruction systems. When the Kinect appeared, its body tracking capabilities received
particular attention [146]. For a moment, quite a few believed that all problems of human pose
estimation have been solved. Needless to say that the Kinect tracker does have limitations, for
instance when tracking subtle movements, particularly when body parts cross or occlude each
other. A general question that remains, after having outlined the advantages and limitations
of machine learning-based methods for pose estimation, is whether or not such approaches can
be robust and flexible enough for practical applications.

In fact, the Kinect body tracker is a machine learning algorithm [146, 51], although typical
ingredients of such an approach, e.g. a training phase, seem to be missing. The creators of
the algorithm have rather demonstrated the potential of machine learning. Their method uses
smart depth features in a vast, partly synthetically generated training dataset of arbitrary
human poses. Exceptional computation facilities allowed the authors to learn a random forest
classifier that is robust, generalizes well and offers high runtime performance. With a slightly
different focus, we have also proposed a machine learning-based approach for human pose
estimation from depth data. Our objective was not to track general movements of arbitrary
persons to an acceptable degree, but to specialize on poses for application-specific movements,
such as the activities of assembly line workers in an industrial environment or the movements of
a surgeon in the operating room. While the general tracking approach obviously requires a very
large amount of training data, our approach can cope with small, personalized training datasets
for a series of considered activities. Machine learning can enable tracking and recognizing these
activities that are important for a particular scenario, given incomplete and noisy input data.
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We thus believe that further research in human pose estimation and motion tracking should
focus on machine learning methods. Solutions can be developed for various types of require-
ments, including general motion tracking where person-specific training is not desired, to
customizable approaches in situations where a series of workflow-related activities are of main
interest. The use of depth imaging for human tracking will probably increase in the near
future, along with the quality of depth cameras. Nonetheless, there are applications where
the line-of-sight requirement of depth cameras and the missing full 3D data (only 2.5D data
is provided) will have a prohibitive effect. In these cases, hybrid approaches integrating any
combination of regular cameras, depth cameras and body-worn sensors can be worthwhile. An
example of such a hybrid approach is shown in [122, 11], where inertial sensors on the body of
a person help disambiguating poses in a video-based system. Applications where cameras can
hardly be used at all for human tracking include medical long-term motion analysis or future
user interfaces for the operating room.

9.2 Performance-based Character Animation

The presented discriminative method for human pose estimation and activity recognition using
body-worn inertial sensors can be the basis for a performance-based animation system. In
animation industry, human motion capture is a common tool for creating character animations
by transferring the movements of a real person to a virtual character. Animators typically
have to edit the motion capture data to match the constraints of a particular animation,
especially in terms of timing [157, 39]. Natural human movements are characterized by highly
intertwined spatial and temporal parameters and modifying either of these can significantly
alter the appearance and expression of a given movement sequence. Thus, retiming a human
motion sequence is often tedious and requires complex expert tools [65].

Based on our method, one professional person, perhaps a dancer, could perform a series of
movements, completely independent of the timing constraints of a particular animation. An
animator could then transfer the motion-captured professional movements to virtual charac-
ters, however, not by relying on keyboard and mouse. Instead, the animator could use his or
her own body to directly and intuitively control the sequence of recorded movements. Conse-
quently, the animator would not have to master the desired movements in their full precision
but could concentrate on particular timing constraints. Moreover, the animator would not be
bound to a motion capture system when creating animations from the recorded professional
movements. By using inertial sensors to track his or her body, the animator would be able to
move freely without caring about optical markers and camera visibility.

In a training phase, the animator, equipped with inertial sensors, records a control move-
ment for each professional motion sequence. These control movements can vaguely resemble
the professional sequences up to the capabilities of the animator, but can also be very simplified
proxy movements that match the sequences only in terms of temporal structure. The method
presented in this work only needs to be extended with a component for synchronization of the
control movements in the training data to the professional motion sequences. Once this syn-
chronization is achieved, a discriminative mapping from inertial sensor data of the animator
to full-body poses can be defined, as before. To synchronize the inertial sensor sequences in
the training data and the full-body pose data, we propose to use Canonical Time Warping
[180], a variant of Dynamic Time Warping that allows for multi-modal input sequences.
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After training, the animator can use the control movements to act out the desired temporal
arrangement of the professional motion sequences. As the details of the movement, e.g. a
dance, are encoded in the full-body motion capture data, the animator does not have to
concentrate on the precision of the movement itself, but only on its timing, its repetitions or
its direction of playback. As opposed to animation editing using keyboard and mouse, the
animator can take advantage of the expressiveness of his or her own movements. The activity
recognition capabilities of our method allow the animator to select multiple different motion
sequences just by performing the corresponding control movements in the desired order. This
way, the animator can simultaneously arrange multiple professional motion sequences in the
animation time line and intuitively specify their temporal properties.

9.3 Medical Long-term Motion Analysis

The approaches for human activity recognition and pose estimation based on inertial sensor
data presented in this thesis can also be the basis for applied research in medical long-term
motion analysis. While existing systems for ambulatory activity monitoring, e.g. in elderly
care, mainly aim at an overall quantification of patient mobility [116, 83, 131] or at an auto-
matic detection of dangerous events [103, 78], a machine learning approach could be used for
more patient-specific motion analysis. Learning to recognize a variety of everyday activities,
performed in an everyday surrounding, is a problem that is far away from a practical solution.
However, particular types of movements that are relevant to a given medical condition could
be trained for each patient and occurrences of these selected activities during everyday life
could be isolated and analyzed. The training setup, where full-body poses are recorded with a
motion capture system synchronized to the inertial sensors, could be established in a clinical
setting. Each patient would go through the training procedure once, before being able to leave
for everyday life, equipped only with wireless inertial sensors.

Such a system would be suitable for diagnosis and monitoring of various medical condi-
tions. Diseases with motion disorders, such as Multiple Sclerosis, Parkinson’s or Epilepsy,
are of particular interest. Multiple Sclerosis patients regularly have to go through a mobility
assessment for an evaluation of their disease progress. Standardized, pre-defined protocols
of assessment movements exist [116] but an occasional performance in front of a physician is
influenced by nervousness of the patient and subjectivity. Using inertial sensors, the protocol
movements could be trained for each patient at the clinical setup and then measured as per-
formed over longer periods of time under everyday life circumstances. Clinical studies indicate
that treatment quality could benefit from such a quantitative, long-term mobility assessment
as the inter-observer reliability would increase [116]. In Epilepsy treatment, a significant prob-
lem in determining the patient-specific disease causes is that patients themselves do not notice
many seizures [31, 110]. Consequently, physicians base their judgement only on the fraction
of seizures observed by personnel or remembered by the patients. Automatically detecting
seizures using sensors in a stream of random everyday-life movements is very challenging, as
seizure patterns are highly patient-specific. Our sensor-based system could be used to learn
these particular seizure patterns for a more reliable identification of seizures.

Further work directed towards a practical implementation of such an application should
focus on several aspects. First and foremost, suitable commercially available sensors need
to be identified that provide orientational measurements, that are small and lightweight and
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that have an appropriate battery lifetime. Given current technological developments, such
sensors will be available in the upcoming couple of years. Then, a suitable setup needs to
be developed such that patients can easily attach and wear the sensors on their own. Our
prototypical implementation currently directly transmits the sensor readings to a computer for
storage and on-line evaluation. For the long-term monitoring scenario, a small device needs
to be distributed together with the sensors that communicates with the sensors and stores
the readings locally for a later transmission to an evaluation computer. This would save
computational power and battery lifetime for the wearable setup. A stationary evaluation
module needs to be developed that displays the reconstructed series of activities and poses to
the physician, possibly together with further disease-specific assessments. From an algorithmic
perspective, an application with patients in uncontrolled environments also requires additional
work on the robustness of sensor-based activity recognition.

9.4 User Interfaces for the Operating Room

Potential for future work also exists in the direction of gesture-based user interfaces for the
operating room. Recent consumer electronics devices, such as the iPad or iPhone, have set
standards in terms of intuitiveness of interaction. Touch-based interfaces are flexible and the
capabilities of the underlying system are often clearly exposed without requiring users to study
manuals. In fact, highly complex professional systems, such as medical computerized devices,
lag behind when it comes to their user interfaces. Complaints of medical professionals that
the user interfaces of medical equipment are too cumbersome are increasing [77]. The gesture-
based interaction method discussed in this thesis can be seen as one step in the direction of
a modern user interface for the operating room that adapts itself to surgical workflow and to
preferences of surgical staff. As touch interfaces known from consumer electronics are hardly
suitable for the operating room due to sterility requirements, our gesture-based method is
a viable alternative that also alleviates significant disadvantages of camera-based methods.
Most importantly, surgical staff that is equipped with a few inertial sensors does not have to
face cameras and free movement within the operating room is possible.

Based on our current prototypical implementation, further work should mainly focus on
usability of the system in a practical setting. First and foremost, a consistent user interface
encapsulating the training and application phase needs to be developed. Currently, a skilled
expert is in charge of controlling the training recordings and creating the link to the runtime
system. Obviously, these steps should be accomplishable by medical staff. Depending on
which intra-operative target devices need to be controlled using our gesture-based interface,
software interfaces need to be implemented that allow accessing the devices. The critical issue
here is that interaction with third-party device vendors is required and access to program-
ming interfaces needs to be granted by these vendors. Furthermore, a user interface has to be
implemented that allows connecting the gesture recognition output of our method to specific
functions of the target devices. Such a user interface could be based on a graphical represen-
tation with components for sensors and functions of target devices that can be arranged using
the mouse. We have developed an initial prototype in this direction [16].

Longer-term work could focus on automatically changing the bindings of gestures to func-
tions of target devices based on the input of an external workflow recognition and management
system. Based on the current workflow phase, a learned gesture could, thus, be used for con-
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trolling different functionalities. An extensible software framework architecture would allow
connections between input devices, learned gestures and functions of target devices to be
changed dynamically at run-time. Automatic recognition of workflow stages is an active and
challenging field of research [114, 115]. While in general incorrect workflow phase recognitions
can lead to very undesirable effects, a workflow-aware user interface system would not neces-
sarily pose a threat on patient safety. For instance, when the workflow recognition module
is unsure about the current phase, the gesture-to-function bindings could remain in their last
secure state. Once a certain estimate of the workflow phase is available (or a short intervention
by surgical staff), the interface would react and change its behavior to match the new phase.
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Appendix A
Human Body Model

In this work, we frequently use a simple, skeletal human body model. The body model deter-
mines the information that is recorded as ground truth and training data and it determines
what exactly is predicted with the presented pose estimation algorithms.

A.1 Degrees of Freedom

Given the lengths of all skeletal segments of the body model, we can uniquely describe a body
pose by means of a vector y ∈ Rdy of joint angles. We describe in Appendix B how to determine
the person-specific limb lengths in a calibration procedure. In our representation, we simplify
a real human skeleton both, in terms of the number of joints, and in terms of the flexibility
of each joint. The joints considered in our body model are illustrated in Figure A.1 b) and
listed in Table A.1. We model ball joints with three degrees of freedom and hinge joints with
either one or two degrees of freedom. In total, our model has 22 joints and dy = 33 degrees of
freedom. The model stores internally for each joint a vector that determines the spatial axis
of rotation for each degree of freedom. Additionally, each joint is associated with a lower and
an upper angular bound to prohibit unfeasible body poses. The model is parameterized such
that a vector of zeros y = [0, . . . , 0]> ∈ Rdy results in an idle standing pose.

A.2 Kinematic Chains

As illustrated in Figure A.1, a kinematic chain is a concept originating from robotics. Here, the
movement capabilities of a robotic arm are parameterized by the angles of its joints. The joint
locations of the robotic arms are referred to as effectors, and there is typically one end-effector
that performs some type of work. When the angles are given, the effector locations can be
determined easily, as the lengths of all robotic segments are known and also the rotational axes
for each joint. This type of computation is called forward kinematics. When the desired targets
for one or more effectors are given, the angles are sought such that the distance between the
effectors and the targets becomes minimal. This more complicated problem is called inverse
kinematics. We model the human skeleton as a structure with five kinematic chains (two legs,
two arms, torso). The root of the torso and the leg chains is in the pelvis, the root of the arm
chains is in the clavicle. Hands and feet can be considered as end-effectors.
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Clavicle

Elbow

Hand
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Ankle

Neck

Spine 5

Spine 4

Spine 3

Spine 2

Spine 1

Shoulder

Hip

Extremities: Torso:

a) b)

Figure A.1: a) Illustration of a kinematic chain as it is common in robotics. The angles α1, α2

and α3 determine the spatial location of the effectors p2,p3 and the end-effector p4. Desired
target locations for the effectors are denoted as t2, t3 and t4. b) Skeletal human body modeled
with five kinematic chains (torso and four extremities). The root is at the pelvis.

Chain Joint Type Count d.o.f.

Torso Spine 1 Hinge 1 1
Spine 2 Hinge 1 2
Spine 3 Hinge 1 2
Spine 4 Hinge 1 2
Spine 5 Hinge 1 2
Neck Hinge 1 2

Arms Clavicle Hinge 2 1
Shoulder Ball 2 3
Elbow Hinge 2 1
Hand Hinge 2 1

Legs Pelvis Hinge 2 1
Hip Ball 2 3
Knee Hinge 2 1
Ankle Hinge 2 1

Total: 22 33

Table A.1: Joints in our human body model with their distribution over the kinematic chains,
their type and their respective number of degrees of freedom (d.o.f.).
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Marker-based Motion Capture

In this appendix, we illustrate the marker-based motion capture system that is used throughout
this work for acquisition of human motion data. The motion captured data serves for training
the machine learning algorithms and as a ground truth in our evaluations. We developed our
motion capture system based on a commercial infrared marker-based tracking system [2] that
can precisely track the spatial location of reflective markers on a person’s body. The precision
of the tracking system is in the order of millimeters. Our work creates the link between these
marker locations and the human body model described in Appendix A, allowing us to record
sequences of human full-body poses represented as sets of joint angles (Figure B.1).

While other marker-based motion capture systems exist in the market, the approach devel-
oped in this work makes particular use of the capabilities of the ART Dtrack tracking system
[2] and allows for a quick and automatic calibration of body parameters for each new user.
Typical commercial motion capture systems require a manual specification of limb lengths
before tracking can start. In our approach, the limb lengths are computed from marker tra-
jectories in a sequence of arbitrary body movements. In the following sections, we first outline
the hardware and software setup that is the basis for our motion capture system. Then, we
turn to the person-specific skeleton calibration approach. Finally, we discuss how we fit the
skeleton body model to the marker locations provided by the tracking system.

B.1 System Overview

The Dtrack tracking system consists of infrared cameras, a central computer and a set of
T motion capture targets (Figure B.1). Each target consists of several reflective marker
spheres that are rigidly arranged in a characteristic pattern. The central computer triggers
the cameras at each time instant t and each camera extracts the location of the markers in
2D image coordinates. This information is used on the central computer for 3D triangulation.
As every target can be identified by its unique marker pattern, the tracking system returns
the location ttk ∈ R3, k ∈ {1, . . . , T} for each target as a whole. The tracking system can also
determine the orientation of each target that is returned as a rotation matrix Rt

k ∈ R3×3.

For human motion capturing, we use T = 15 targets distributed over the body. Figure
B.1 b) illustrates the targets when worn by a person. The target locations do not necessarily
coincide with any anatomical landmarks, such as joints. Our goal is to compute, at each time

131



Appendix B. Marker-based Motion Capture

Tracking target

2D image coordinates2D image coordinates

Output:
3D world coordinates

IR camera IR camera

a) b)

Figure B.1: Overview of the marker tracking process. a) The tracking system computes the
3D locations and orientations for every tracking target worn by a person (picture adapted
from [186]). b) Person with 14 tracking targets for motion capture.

instant, the locations of all K skeleton joints, denoted as {si}Ki=1, where K is the total number

of joints in the body model. For this purpose, we first obtain preliminary joint locations {s̃i}K̃i=1

that are directly coupled to the tracking targets and use data from the calibration procedure.
The number of preliminary joint locations K̃ is less than K, as there are joints that are not
associated to any tracking target. Given the preliminary joint locations, we fit the skeleton
body model using an inverse kinematics approach. To prevent losing track of targets due to
body self-occlusions, we use six to eight tracking cameras. The cameras are positioned around
a cubic tracking volume with a side length of approximately three meters.

B.2 Person-specific Skeleton Calibration

Our motion capture algorithm fits the human skeleton body model to the locations of the
targets as returned by the tracking system. Before tracking, the person-specific proportions of
this skeleton model need to be determined for being able to accomodate the target locations.
Typical marker-based motion capture systems require the user to manually specify these pro-
portions by supplying rough estimates of the lengths of arms, legs and other limbs of each
new user. Inspired by the work of O’Brien et al. [109] and Hornung et al. [64], we avoid this
cumbersome step and provide an automatic calibration procedure. In this approach, the user
is equipped with motion capture targets and performs a sequence of calibration movements.
These movements are arbitrary, with the requirement that the degrees of freedom of all body
joints are exerted. The trajectories of the markers throughout the calibration sequence then
allow computing the locations of the joints and the lengths of the limb segments.

Consider for the following discussion the schematic in Figure B.2. The rotations Rt
k and

translations ttk returned by the tracking system at each time t are expressed in the world
coordinate system. In order to compute the length of the limb segments, we need to determine
the rotation centers between all pairs of tracking targets on adjacent limb segments. For every
target, there is an offset vector, expressed in the target’s local coordinate system, pointing
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World
Origin

Segment i

Segment j

Joint

a) b)

Joint

Trajectory of
Limb Segment i

Trajectory of
Limb Segment j

Joint

Joint

Figure B.2: Estimation of a joint position from tracking targets on two adjacent limb segments
i and j. a) At each frame t, rotations and translations in world coordinates for the two targets
(red) are given. The local offsets ci, c

′
i and cj, c

′
j from each target to its adjacent joints are

constant throughout all frames. Transformed to the world coordinate system, the offsets
surrounding one joint ideally meet in the same point (green). b) Using this constraint, the
offsets are estimated from the trajectories of the limb segments over several frames.

to the inward joint and one offset vector pointing to the outward joint (Figure B.2). Let us
identify the targets on two adjacent limb segments with the indices i and j. We will denote
the inward and outward offsets for the first target as ci, c

′
i ∈ R3 and cj, c

′
j for the second

target. Expressed in the global coordinate frame, the two offsets c′i and cj that point towards
each other should actually coincide,

Rt
ic
′
i + tti = Rt

jcj + ttj. (B.1)

This gives us a constraint we can use to compute the rotation center (i.e. the joint location)
for the pair of limb segments, given the rotations and translations of the corresponding motion
capture targets. Rearrangement of the terms in Equation B.1 to isolate the unknown offsets
yields

Rt
ic
′
i −Rt

jcj = ttj − tti, (B.2)

and this equation can be rewritten as a matrix-vector product

[
Rt
i −Rt

j

] [ c′i
cj

]
=
[

ttj − tti
]
. (B.3)

Solving this equation directly, we would only take into account the constraint for one single
frame t. Instead, to obtain a robust estimate of c′i and cj, we stack up Equation B.3 for a
sequence of s frames, t ∈ {1, . . . , s} and solve the resulting linear system of equations R1

i −R1
j

...
...

Rs
i −Rs

j

[ c′i
cj

]
=

 t1j − t1i
...

tsj − tsi

 (B.4)

in the least squares sense [109]. We actually set up one linear system as in Equation B.4 for each
pair of adjacent limb segments i and j until the offsets to all joints are known. In practice, we
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Figure B.3: Exemplary output of the person-specific body calibration algorithm. 3098 frames
are used for computation of the indicated limb segment lengths (in millimeters).

use calibration sequences of roughly 30 seconds, corresponding to s = 1800 frames, given that
the tracking system operates at a frequency of 60 Hz. As a result of the calibration procedure,
we store for each tracking target the two offset vectors ci and c′i pointing to its inward and
outward joints. The limb lengths are determined from the computed world coordinates of all
joints locations, averaged over the entire calibration sequence. An example calibration output
from our Matlab implementation is shown in Figure B.3.

B.3 Inverse Kinematic Skeleton Fitting

After the person-specific calibration procedure, we initialize a human skeleton model with the
computed limb lengths. Before applying a skeleton fitting technique, we first transform the
target locations to preliminary joint locations {s̃ti}K̃i=1. To achieve this, we use the offsets for
every target that we obtain as described above. Let i and j be the indices of the targets
surrounding the k-th joint. We set the corresponding preliminary joint location to

s̃tk =
1

2
(Ric

′
i + ti + Rjcj + tj). (B.5)

As this equation contains the outward pointing offset c′i from target i and the inward pointing
offset cj from target j, we basically average the joint location as seen from the two targets.
For terminal joints, i.e. joints that only have one incident limb segment, we simply use the
preliminary joint location from one target. Figure B.4 b) shows preliminary joint locations,
together with the locations of the tracking targets.

Having determined the K̃ preliminary joint locations, we proceed by fitting the skeleton
model to these locations. We follow an inverse kinematics approach, considering every limb of
the skeleton model as a kinematic chain. In inverse kinematics, the locations for one or more
goals1 are given that should be reached with the effectors on the kinematic chain. The output
of inverse kinematics is a set of joint angles for the kinematic chain that allow the effectors to
reach the goals. In robotics, there is often just one end-effector and one goal. In our case, we
define several effectors per kinematic chain and use the preliminary joint locations as goals.
Let κ(i) be the index of the body joint (here: the effector) that should be fitted to the i-th

1We use the term goal instead of the term target to avoid confusion with the motion capture targets.
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a) b) c)

Tracking
Targets

Preliminary
Joint
Locations

Fitted
Skeleton

Figure B.4: Overview of the skeleton fitting process. a) Target locations and orientations as
returned by the tracking system (red). b) Preliminary joint locations (green) estimated using
pre-computed information from the skeleton calibration process. c) Final result after fitting a
body model (blue) to the joint locations.

preliminary joint location (here: the goal). Our formal objective is then to find the optimal
joint angle configuration y ∈ Rdy , such that the residual error

E(y, t) =
K̃∑
i=1

∥∥∥s̃ti − fκ(i)kin (y)
∥∥∥+ c(y) (B.6)

is minimized. Here, f
(i)
kin : Rdy → R3 is a forward kinematic function that computes the 3D

position of the i-th skeleton model joint, given a vector y of joint angles. The term c(y)
penalizes joint angle configurations that violate the joint angle bounds specified in the human
body model. This term increases polynomially when any of the joint angles approaches its
lower or upper limits.

To determine the optimal joint angle configuration yt at each time step t, we employ an
iterative Gauss-Newton optimization approach that, starting with an initial value y0

t , computes
updates ∆y such that yi+1

t = yit+∆y, until convergence. In each frame, we use the joint angles
of the previous frame as an initial value, y0

t = yt−1. Assuming incremental body movement
between subsequent frames, this increases convergence rates and decreases the probability of
hitting local minima. In addition to the joint angles yt, the skeleton fitting step also gives us
the corresponding 3D locations {sti}Ki=1 of all skeleton joints. Note that these locations will
be close to the preliminary joint locations that we obtained directly from the motion capture
targets, but skeleton fitting will ensure that the final joint locations agree with the proportions
of the body model. Figure B.4 c) shows the result of skeleton fitting and illustrates that the
skeleton has more joints than there are preliminary joints locations.

The skeleton fitting procedure introduces favorable robustness properties against motion
capture targets that get lost temporarily. As each preliminary joint location is computed from
the position and orientation of two neighboring motion capture targets (Equation B.5), we can
estimate the preliminary joint location even when one of the targets is lost. Consider as an
example the wrist joint that is computed from the hand target and the lower arm target. When
either the hand or the arm target is lost, the preliminary location of the wrist joint remains
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intact and the skeleton can be fitted. In the less likely case that both targets surrounding
one joint get lost, the preliminary joint location will also become invalid, but the properties
of the skeleton model will prevent body tracking from failing. If an interior joint, such as the
elbow, is lost for this reason, skeleton fitting will find a plausible location for the joint, even in
absence of an explicit inverse kinematics target. If an outer joint is lost, such as the wrist (i.e.
both, the hand and lower arm targets are lost), the corresponding part of the body model will
keep the angular values from the last valid measurement. This will not necessarily match the
true pose of the limb at this moment, but the returned pose will be a feasible human pose.
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Authored and Co-authored Publications

Journal Publications

• L A Schwarz, A Mkhitaryan, D Mateus, and N Navab. Human skeleton tracking from
depth data using geodesic distances and optical flow. Image and Vision Computing,
30(3):217–226, 2012.

• L A Schwarz, D Mateus, and N Navab. Recognizing multiple human activities and
tracking full-body pose in unconstrained environments. Pattern Recognition, 45(1):11–
23, 2012.

Peer-Reviewed Conference Publications

• L A Schwarz, A Bigdelou, and N Navab. An adaptive solution for intra-operative gesture-
based human-machine interaction. ACM Conference on Intelligent User Interfaces (IUI),
2012.

• A Bigdelou, T Benz, L A Schwarz, and N Navab. Simultaneous categorical and spatio-
temporal 3D gestures using Kinect. IEEE Symposium on 3D User Interfaces (3DUI),
2012.

• L A Schwarz, A Bigdelou, and N Navab. Learning gestures for customizable human-
computer interaction in the operating room. Medical Image Computing and Computer
Assisted Intervention (MICCAI), pages 129–136, 2011.

• L A Schwarz, A Mkhitaryan, D Mateus, and N Navab. Estimating human 3d pose from
time-of-flight images based on geodesic distances and optical flow. IEEE Conference on
Automatic Face and Gesture Recognition - Outstanding Paper Award, 2011.

• L A Schwarz, D Mateus, V Castaneda, and N Navab. Manifold learning for ToF-based
human body tracking and activity recognition. British Machine Vision Conference
(BMVC) - Best Supplementary Material Prize, 2010.

• L A Schwarz, D Mateus, and N Navab. Multiple-activity human body tracking in uncon-
strained environments. International Conference on Articulated Motion and Deformable
Objects (AMDO) - Best Paper Award, pages 192–202, 2010.
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Workshop Publications

• A Bigdelou, L A Schwarz, T Benz, and N Navab. A flexible platform for developing
context-aware 3d gesture-based interfaces. ACM Conference on Intelligent User Inter-
faces (IUI), 2012.

• L A Schwarz, D Mateus, J Lallemand, and N Navab. Tracking planes with time of flight
cameras and J-linkage. IEEE Workshop on Applications of Computer Vision (WACV),
pages 664–671, 2011.

• L A Schwarz, D Mateus, and N Navab. Discriminative human full-body pose estimation
from wearable inertial sensor data. Modelling the Physiological Human (3DPH), pages
159–172, 2009.

Book Chapters

• D Mateus, C Wachinger, S Atasoy, L Schwarz, and N Navab. Learning manifolds:
design analysis for medical applications. In: Suzuki Kenji (Ed.): Machine Learning in
Computer-Aided Diagnosis: Medical Imaging Intelligence and Analysis. IGI Global, 2011.

• B Becker, S Cui, M Huber, P Keitler, G Klinker, S Lieberknecht, P Lükewille, D Pustka,
R Scheibe, L A Schwarz, B Schwerdtfeger, C Wächter, A Weiss, and K Zürl. Lokalisation
und Tracking. In: Schreiber W. and Zimmermann, P. (Eds.): Virtuelle Techniken im
industriellen Umfeld: Das AVILUS-Projekt - Technologien und Anwendungen. Springer
Berlin/Heidelberg, 2011.
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