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Abstract

Different pricing rules have been developed and discussed for iterative com-
binatorial auctions. We analyze some famous combinatorial auction designs
concerning efficiency and discuss the advantages and boundaries of their pric-
ing rules.

First we examine the possibility for full efficiency and equilibrium strategies
with linear prices. So far, equilibrium strategies have only been found for com-
binatorial auctions with non-linear and personalized prices for very restricted
sets of bidder valuations. We provide an extension of the Combinatorial Clock
auction and proof that it actually leads to efficient outcomes in an ex-post
equilibrium for general valuations with linear ask prices, which is not obvious
given the negative results on linear competitive equilibrium prices in the liter-
ature. A theoretical analysis on the worst case efficiency of the Combinatorial
Clock auction highlights the problems in valuations, in which the auction is
inefficient. We complement the analysis with numerical simulations involving
realistic value models which reflect the impact both of our modifications and
deviations of our assumptions.

Second we perform a worst case analysis concerning efficiency on the PAUSE
format and show how modifications lead to full efficiency. While the computa-
tional complexity of determining the winners is shifted to the bidders in that
format we show that the bidders’ bid complexity becomes NP-hard. Simula-
tion results show advantages over the Combinatorial Clock auction.

Third we analyze how existing combinatorial auctions deal with side con-
straints. Side constraints have mostly been ignored in the design of iterative
combinatorial auctions, but are often requisite for the participants to express
preferences and thus for auctions to yield the results envisaged. We define
winning and deadness levels as a general pricing rule, which can be used in
any auction format independent of the bidding language and side constraints.
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We establish positive results concerning efficiency and equilibrium strategies
for an auction format that uses deadness levels. A discussion how such ask
prices relate to other efficient auction designs reveals that deadness levels have
advantages compared to other simpler pricing rules, because they allow for
higher ask price increases.
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Chapter 1

Introduction

The fast growing development of the Internet allows for the exchange of com-
plex preference profiles and lays the foundation for the design of new mar-
ket mechanisms. The promise of these mechanisms is to increase allocative
efficiency and thus lead to higher economic welfare by allowing market par-
ticipants to reveal more comprehensive information about cost structures or
utility functions. In recent years, a growing body of literature is devoted to the
design of such smart markets (Gallien and Wein, 2005; McCabe et al., 1991),
with combinatorial auctions (CAs) emerging as a pivotal example (Cramton
et al., 2006b). In CAs, multiple items are sold simultaneously. Nowadays, CAs
are being used for the sale of spectrum licenses in Europe and the US (Cram-
ton, 2009a), for transportation (Caplice, 2006), and in industrial procurement
(Bichler et al., 2006; Sandholm and Begg, 2006). Much recent research is ded-
icated to the design and analysis of CAs and respective decision support tools
(Adomavicius and Gupta, 2005; Bapna et al., 2007; Bichler et al., 2009; Guo
et al., 2007; Scheffel et al., 2011; Xia et al., 2004).

1.1 Research Question

Unfortunately there is no ”one size fits all” CA that satisfies all the require-
ments of real world applications. While researchers were able to design efficient
CAs over the last 15 years, these auctions have serious drawbacks in practice.
On the other hand the few CAs that have been used in practice have almost
no theoretical desirable properties. As a consequence the outcome of such auc-
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CHAPTER 1. INTRODUCTION

tions is unpredictable and the strategic considerations for bidders are high as
an equilibrium strategy is unknown.

We try to give answers to the following questions:

• What is needed to make practical CAs efficient?

• Can we make efficient CAs more practical?

• Side constraints are almost never considered in the design of CAs but
they are indispensable in real worl applications. How do side constraints
impact the existing CA designs?

• Can we define generic pricing rules that can both handle side constraints
and support efficient CAs with a strong solution concept?

1.2 Research Goals

Finding efficient auctions with strong incentive properties turns out to be very
hard for CAs with general valuations. While strategy-proofness might not be
possible, researchers have been trying to find iterative CAs which still satisfy a
strong solution concept, such as an ex-post equilibrium, for restricted types of
valuations. For the design of electronic multi-item markets it is of significant
interest whether such auction designs exist at all, and which assumptions they
require.

Mathematical models of auctions and markets have often been criticized as
unrealistic, as some of the assumptions are too strong and do not hold in prac-
tical applications (Rothkopf and Harstad, 1994). For example, the celebrated
Arrow-Debreu model assumes continuous, monotonic, and strictly concave
utility functions and was heavily criticized for being unrealistic (Georgescu-
Roegen, 1979). Existing game-theoretical models of iterative CA formats
such as the Ascending Proxy Auction (APA) (Ausubel and Milgrom, 2006a),
iBundle(3) (Parkes and Ungar, 2000) or dVSV (de Vries et al., 2007) require
also unrealistic assumptions in order to achieve an ex-post equilibrium strat-
egy. Nevertheless, the models are significant contributions to the literature,
not necessarily for their immediate practical applicability with human bidders,
but because they show under which conditions full efficiency with a strong so-
lution concept can be achieved in an iterative CA, and that this is possible at
all.

2



1.3. CONTRIBUTION

Therefore we analyze exisiting CA theoretically to better understand their
performances in the lab and the field and improve them or at least show what
is necessary for full efficiency.

But we need also to aim for satisficing solutions, i.e., auction designs which
provide high levels of efficiency even if bidders are restricted in the number
of bids that they can reasonably submit. Game-theoretical models of CAs
describe situations in which the auction is efficient. They do not provide
an understanding of their efficiency when bidders deviate from their equilib-
rium bidding strategy or use heuristics in package selection. Lab experiments
can provide insights into how bidders behave in CAs, but they are costly
and limited to a small number of experiments. We argue that in addition to
game-theoretical modeling, computational experiments provide an important
complement for understanding the robustness of theoretical results on CAs
against strong assumptions, which are often required in theory. Such a sensi-
tivity analysis is important for applications in the field and respective systems,
but often beyond what can be achieved with formal models. Computational
experiments should not be used instead of, but in addition to formal models.

Therefore we ran several computational experiments to analyze the impact of
deviations of auction rules and bidding strategies.

We further show the impact of side constraints on existing CAs and develope
pricing mechanism that can handle them and even lead to efficient results in
an CA framework with a strong solution concept.

1.3 Contribution

We provide new results on two famous CAs and how modifications can lead to
full efficiency with a strong solution concept. We show in addition the impact
of realistic side constraints also on these formats and propose new pricing rules
that can handle those side constraints.

Ausubel et al. (2006) write that ”in environments with complementary goods,
a clock auction with a separate price quoted for each individual item cannot
by itself generally avoid inefficiency.” It has been shown that anonymous
and linear competitive equilibrium prices are not rich enough to yield efficient
outcomes with general biddere valuations (Kelso and Crawford, 1982). For the
Combinatorial Clock (CC) auction we make an interesting observation: The
ask prices in the CC auction are not necessarily what the winners have to pay,
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CHAPTER 1. INTRODUCTION

as a winner determination can be performed. In other words, ask prices in
the CC auction are not competitive equilibrium prices. This is a way around
the negative results on CAs with linear competitive equilibirum prices, which
might allow for full efficiency. We show under which circumstances the CC
auction can achieve full efficiency and even allow for an ex-post equilibrium
strategy.

We first get an understanding, in which situations the CC auction is inefficient,
and show that an extended version of the CC auction with an appropriate
price update and a Vickrey payment rule (called CC+ auction) can achieve
full efficiency with an ex-post equilibrium. Our theoretical analysis sheds light
on the reasons for inefficiency in the CC auction and shows that, in contrast
to the widespread belief, also linear-price CAs can lead to full efficiency. We
do not propose the CC+ auction as a new auction format, but use this term
to refer to modifications in the CC auction format, which are necessary for full
efficiency.

In our extension of the CC auction, the CC+ auction, bidders submit bids on
all packages with a positive valuation in each round as an ex-post equilibrium
strategy. Even though there is a strong solution concept and incentives to
follow the equilibrium strategy, we can not assume that bidders are able to
submit enough bids or follow enough auction rounds, such that the auctioneer
can always determine an efficient solution.

Therefore, we also describe the results of computational experiments with diffe-
rent value models from the Combinatorial Auction Test Suite (CATS) (Leyton-
Brown et al., 2000) and analyze the impact of bidding strategies, which we
observed in the lab in a large number of computational experiments. For
example, we look at bidders who are limited in the number of bids they can
provide in each round, or such who randomly select some packages from those
with the highest payoff. We show that all auction formats achieve high levels
of efficiency beyond 90% in smaller value models. It is interesting to focus on
the comparison of the CC and the CC+ auction and those strategies in which
bidders are heavily restricted in the number of bids (up to 10) they can submit
in each round. For smaller value models with bidders interested in up to 129
packages, the CC+ auction yields a significantly higher efficiency than the CC
auction, beyond 98%. In larger value models with bidders interested in 443 or
32,767 packages, this advantage vanishes and there is no longer a significant
difference between the efficiency of the CC and the CC+ auction. Still, the
average efficiency in this Real Estate 5x3 model is beyond 92% with restricted
bidders. This explains the high efficiency results observed in lab experiments
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(Kagel et al., 2010; Porter et al., 2003; Scheffel et al., 2011), but it also high-
lights that such results do not necessarily carry over to auctions with more
than ten items.

The simulations also highlight some virtues of the CC and the CC+ auction
compared to non-linear and personalized price auctions such as iBundle. The
number of auction rounds of the CC and the CC+ auction are similar, but
much lower than those of the iBundle auction. The number of bids submitted
in iBundle is orders of magnitude higher than in the CC+ auction, although
the efficiency is not worse. This might well make a difference in practical appli-
cations. We also simulated the Clock-Proxy auction with similar assumptions,
but assumed that bidders submitted bids on all packages with a positive payoff
at final clock prices in the Proxy phase. Due to this restriction, the Clock-
Proxy auction was not fully efficient. The much larger number of package bids
in the Proxy phase led to a modest increase in efficiency, but at the cost of a
separate core-selecting auction phase.

Another interesting CA format is PAUSE. There is only little work in the
literature on decentralized auctions, therefore, we study PAUSE theoretically
and experimentally. Our theoretical analysis shows the growing complexity
for the bidders in PAUSE and gives a worst case bound concerning efficiency,
if bidders follow a certain strategy. The determination of a lower bound in
CAs has to our knowledge not been done and published yet, but it reveals
important insights what can go wrong concerning bidder behavior, value mod-
els and auction rules. In this context we analyze PAUSE with computational
experiments. Mendoza and Vidal (2007, 2008) developed some sophisticated
bidding strategies for distributed auctions, however, in our experiments we
focus on more simple strategies in which bidders reveal as little as possible
about their valuations. Further, we use another value model with more items.
To compare and benchmark we run computational experiments with the CC
auction, which is known for its sparse need of solving the Combinatorial Al-
location Problem (CAP) (Porter et al., 2003). With a few modifications also
PAUSE can be provable fully efficient but in that case PAUSE reduces to a
version of iBundle.

Side constraints are almost always present in real world application, but we
do not know their impact on existing CA formats. We show for example
that the CC auction and PAUSE have several difficulties to incorporate side
constraints in their design, but that iBundle is able to retain its properties even
if a certain class of side constraints is required. The simple price update rules
in iBundle, APA, or dVSV are the reason for many auction rounds required
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CHAPTER 1. INTRODUCTION

in these auctions. There is actually no strong reason for unit price updates in
these auction formats.

Therefore we describe game-theoretical properties of generic pricing rules,
which may serve as a foundation for practical auction designs. We show that
CAs with this pricing rule satisfy an ex-post equilibrium. We compare this
CA to the family of efficient CAs. This pricing rule complements the existing
theory on ascending CAs, as it indicates how high the price increment can be
in each round without losing the strong solution concept that these auction
formats provide.

Although, we do not attempt to propose a practical auction format, we show
that the new pricing rule can actually save auction rounds and reduce the
communication effort. This benefit comes at the expense of computational
complexity.

In other words we extend the theory on CAs to account for allocation con-
straints. We describe when bidders have strong incentives to reveal their pref-
erences truthfully, thus leading to less speculation, more predictable outcomes
and higher efficiency. This is an important baseline for any practical auction
design.

1.4 Outline

This book has the following structure:

• Chapter 2 introduces the relevant theoretical concepts and gives an
overview of the relevant CA formats.

• Chapter 3 deals with the Combinatorial Clock auction. We analyze worst
case bounds on efficiency, introduce new rules to obtain 100% efficiency
with a strong solution concept for general valuations and validate our
theoretical results with computational experiments.

• Chapter 4 describes the PAUSE auction format, the advantages of mul-
tiple stages, the growing bid complexity and a worst case bound on effi-
ciency. Also here new rules can lead to full efficiency. A comparison in
computational experiments with the Combinatorial Clock auction shows
the strength and weaknesses of PAUSE.

6



1.4. OUTLINE

• In Chapter 5 we analyze the impact of side constraints on the existing
auction formats and show the relevance of such constraints for real world
applications.

• Chapter 6 presents new pricing rules for iterative CAs which are so
general that they can handle different bidding languages and side con-
straints. We show also that they might be superior to existing pricing
rules of efficient auction designs.

• Chapter 7 concludes by summarizing the results of our research and
giving an outlook on the future work.

Parts of the following publications1 have gone directly or indirectly into this
work. In particular, parts from Chapter 2 are based on Ziegler (2007). Chap-
ter 3 is based on Bichler et al. (2011), which was written with my colleagues
Pasha Shabalin and Martin Bichler. Chapter 4 is based on Ziegler and Schef-
fel (2011), which was written with my colleague Tobias Scheffel. Chapter 5
and Chapter 6 are based on Ziegler et al. (2011), which was written with my
colleagues Ioannis Petrakis and Martin Bichler. Chapter 1 and 2 contain also
parts of these works.

1some of them are still under review
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Chapter 2

Theoretical Background

Over centuries humans are trading goods or services using different kinds of
mechanisms. This chapter gives an overview of different market mechanisms,
the desired goals and necessary background information for the book at hand.

2.1 Market Mechanism

A market mechanism is the process of automatic pricing by the interplay of
supply and demand in markets with a variety of suppliers and buyers in the
market. The three market factors of supply, demand and price go hand in a
close reciprocal relationship, so that changes from one of these factors result
in changes in each of the other two factors. A special role in this interplay
of market factors has the price, since it balances supply and demand in the
market and thus causing an equilibrium state.

The design of market mechanism is an exciting field of economics, mathematics
and computer science. It is concerned with the development of rules to control
the interactions between suppliers and buyers for a marketplace and to set
incentives to promote trading opportunities. This is achieved through the
implementation of an overarching structure (design) in which the participants
receive an incentive to ensure that they behave according to these rules.

An auction is a special case of a market mechanism with the goal to deter-
mine an unknown equilibrium price. Therefore prospective buyers submit their
bids for goods or services to the auctioneer. The auction mechanism deter-
mines which bids become winning, and defines the payment flows between the

9
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participants. Background of this pricing are information asymmetries in the
market. A supplier (auctioneer) does not know the buyers willingness to pay.
If he sets too high prices, he can not sell his goods. If he sets his prices too
low, he does not exhaust the potential revenue. Buyers on the other hand
know their respective willingness to pay. In this situation an auction is able
to provide a flexible pricing mechanism that in an ideal case results in the sale
at the current market price and the optimal allocation of the goods.

Single item auctions are well studied for over 50 years. But due to the develop-
ment of the Internet and the growing computational power auction designs are
possible in which several goods are traded and bidders are able to reveal more
complex preference profiles. The promise of these mechanisms is to increase
economic welfare by allowing market participants to reveal more comprehen-
sive information about cost structures or utility functions. Figure 2.1 shows
the different kinds of multidimensional auctions.

Multiple attributes (A=a1,a2,a3)
Multi-attribute Auctions

Multiple items 
and attributes 

Multiple attributes 
and units

Multiple items (A,B,C)
C bi i l A i

Multiple units (A,A,A)
Multi-unit Auctions

Combinatorial Auctions

Figure 2.1: Multidimensional Auctions (Bichler et al., 2002).

In a multi-unit auction several homogenous goods are sold, and the total quan-
tity can be split between winners. Items in a multi-attribute auction have
important attributes other than only the price. Bidders need to specify values
for each attribute, which can include product properties as well as conditions
of the transaction. In a combinatorial auction many heterogenous goods are
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traded simultaneously. We focus on that kind of auctions in the following and
give a detailed description and definition in Section 2.5.

2.2 Relevant Gametheoretical Concepts

Coalitional game theory and equilibrium theory are strongly related to the
theory of auction design. There are many aspects in these theories that help
to understand the architecture and outcomes of auctions. Game theory as
well as auction theory study a system of self-interested players/bidders in
conditions of strategic interaction. The theory of the core in the coalitional
game can be transferred to the auction theory as bidders are players and
the auctioneer is either one of them or the bank etc. As in game theory
bidders follow strategies which may result in desired equilibria. The auction
design with its rules may restrict bidders to certain strategies to end up in a
certain outcome. To know the strategies and its weaknesses is an important
research field for bidders and auctioneers not to end up with undesired results.
Certain strategies can lead to efficient outcomes and an auction design goal
is to emphasize these strategies as bidders shall bid straightforward (truthful
demand revelation in response to prices). This section states the relevant
concepts from game- and equilibrium theory and shows the relations between
them.

2.2.1 Solution Concepts

Definition 1. A solution concept is a formal rule for predicting how a game
will be played.

We basically look at three different solution concepts:

• Dominant Strategy Equilibrium. Each player’s strategy is a best
response, regardless of the strategies of the other players. It is robust to
uncertainty about the strategies adopted by the other players and their
private information.

11
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• Ex-Post Nash Equilibrium. Each player’s equilibrium strategy re-
mains an equilibrium even after learning the realization of each player’s
private information. It is robust to the distribution of private informa-
tion.

• Bayesian Nash Equilibrium. Each player plays a best response to
the strategies of the other players. Best responses are evaluated after
a player learns his private information, but before he learns the private
information of the other players.

Although the Nash Equilibrium is a fundamental concept in game theory
which states that in an equilibrium every player selects the payoff maximizing
strategy given the strategies of the other players. It makes strong assumptions
on the knowledge of informations about the other players and loses its
advantages in games with multiple equilibria (Parkes, 2001).

Example 1. Two radio stations (a and b) have to choose formats for their
broadcasts. There are three possible formats: Pop Music, Rock Music or News.
The disjoint audiences for the three formats are 50%, 30%, and 20%, respec-
tively. If they choose the same formats they will split the audience for that
format equally, while if they choose different formats, each will get the total
audience for that format. Audience shares are proportionate to payoffs. The
payoffs (audience shares) are in Table 2.1: There are two Nash-Equilibria - the

b
Pop Rock News

Pop 25, 25 50,30 50, 20
a Rock 30,50 15, 15 30, 20

News 20, 50 20, 30 10, 10

Table 2.1: Multiple equilibria.

upper middle cell and the middle-left one, in both of which one station chooses
Pop and gets a 50 market share and the other chooses Rock and gets 30. But
it does not matter which station chooses which format. The total payoff is the
same in both cases, namely 80. Both are efficient, in that there is no larger
total payoff than 80.
Multiple Nash-Equilibria creates a danger. The danger is that both stations
will choose the more profitable Pop format - and split the market, getting only
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25 each. Actually, there is an even worse danger that each station might as-
sume that the other station will choose Pop, and each choose Rock, splitting
that market and leaving each with a market share of just 15.
More generally, the problem for the players is to figure out which equilibrium
will in fact occur. In still other words, a game of this kind raises a coordination
problem: how can the two stations coordinate their choices of strategies and
avoid the danger of a mutually inferior outcome such as splitting the market?

This raises the question whether there exist an appropriate solution concept
and which one is it. A Bayes Nash Equilibrium resigns the assumption of full
information. Thus it is an extension of the Nash equilibrium to games with
incomplete information. Each player plays a best response to the strategies
of the other players. Best responses are evaluated after a player learns his
private information, but before he learns the private information of the other
players. Hence, the players strategy maximizes his expected utility given his
private information, the joint distribution of others private information, and
the strategies of the other players. Private information is drawn from a com-
mon joint distribution and beliefs about strategies are consistent.

Definition 2. (Bayes Nash Equilibrium) A strategy profile s∗ = (s∗1, ..., s
∗
n) is

a Bayes Nash equilibrium iff

E [ui(s
∗, t)] ≥ E

[
ui(s

′

i, s
∗
−i, t)

]
∀s′i, t, i (2.1)

The informational assumptions in a Bayesian equilibrium are that every bidder
i ∈ I knows the probability of other bidders being a particular type t. However,
there is a huge number of types which makes the analysis of Baysian equilibria
in complex auctions as CAs almost impossible.

A stronger solution concept is the one of a dominant strategy equilibrium.
A dominant strategy is given if a player follows the same payoff maximizing
strategy independently from the strategies of other players. Mechanisms with a
dominant strategy equilibrium are called strategy proof, since no assumptions
about the information available to players about each other are made, and
every player selects his own optimal strategy without requiring the others to
act rational.

Definition 3. (Dominant strategy equilibrium) A strategy profile s∗ =
(s∗1, ..., s

∗
n) is a dominant strategy equilibrium iff

ui(s
∗
i , s−i, t) ≥ ui(s

′

i, s−i, t) ∀s, t, i (2.2)
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The classical example of a dominant strategy is the game of the prisoners’
dilemma.

Example 2. The classical prisoners’ dilemma is as follows:
Two suspects, a and b, are arrested. The police has insufficient evidence for a
conviction, and, having separated both prisoners, visit each of them to offer the
same deal: if one testifies for the prosecution against the other and the other
remains silent, the betrayer goes free and the silent accomplice receives the full
ten-year sentence. If both stay silent, both prisoners are sentenced to only
three years in jail for a minor charge. If each betrays the other, each receives a
seven-year sentence. Each prisoner must make the choice of whether to betray
the other or to remain silent. However, neither prisoner knows for sure what
choice the other prisoner will make. So this dilemma poses the question: How
should the prisoners act? If you knew the other prisoner would stay silent,

Prisoner b
betray silent

betray −7,−7 0,−10
Prisoner a silent −10, 0 −3,−3

Table 2.2: Prisoners’ Dilemma.

your best move is to betray as you then walk free instead of receiving the minor
sentence. If you knew the other prisoner would betray, your best move is still to
betray, as you receive a lesser sentence than by silence. Betraying is a dominant
strategy. The other prisoner reasons similarly, and therefore also chooses to
betray. Yet by both defecting they get a lower payoff than they would get by
staying silent. This demonstrates that a dominant strategy equilibrium need
not be a Pareto optimum viz. need not support an efficient allocation.

Theorem 1. Every dominant strategy equilibrium is also a Nash-Equilibrium.

Proof. The proof follows from the definitions of both equilibria directly.

A third type of equilibrium is the most relevant one for our analysis of iterative
CAs - the ex-post Nash equilibrium.

Definition 4. (Ex-post Nash equilibrium) A strategy profile s∗ = (s∗1, ..., s
∗
n) is

an ex-post Nash equilibrium iff the utility functions ui apply to

ui(s
∗, t) ≥ ui(s

′

i, s
∗
−i, t) ∀s

′
i, t, i
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Ex-post Nash assumes that the strategies are known, but there is uncertainty
about the other bidders’ types. In other words, truthful bidding in every round
of an auction is an ex-post (Nash) equilibrium, if for every bidder i ∈ I, if all
other bidders follow the truthful bidding strategy, then bidder i maximizes his
payoff in the auction by following the truthful bidding strategy independent
of the type t of other bidders (Mishra and Parkes, 2007).

Ex-post equilibria in particular avoid speculation about other bidders’ valua-
tions and could therefore reduce the strategic complexity for bidders consid-
erably, leading to higher efficiency, and also an increased adoption of iterative
CAs. Note that this is weaker than a dominant strategy equilibrium, where
bidders do not have to speculate about other bidders’ valuations and strategies.
In contrast to dominant strategy and ex-post equilibria, Bayes-Nash equilibria
do always exist, but they require bidders to speculate on both, the type and
the strategy of others. We refer to dominant and ex-post equilibria as strong
solution concepts. For iterative CAs we focus on ex-post equilibria, as prefer-
ence elicitation in an indirect mechanism typically does not allow for dominant
strategy equilibria (Conitzer and Sandholm, 2002).

2.2.2 The Core

Another auction design goal is to end up with an outcome, no coalition is
willing to renege once the result is announced - the core outcome.

Some further notation is required. There is a set K of m indivisible items
indexed with k, which are auctioned among n bidders. Let i, j ∈ I denote the
bidders and vi : S → R denote a value function of bidder i, which assigns a
real value to every subset S ⊆ K of items. An allocation X ∈ Γ of the m items
among bidders is X = {X1, ..., Xn}, with Xi∩Xj = 0 for every i 6= j. Xi is the
package of items assigned to bidder i. The social welfare of an allocation X
is
∑

i∈I vi(Xi), and an efficient allocation X∗ maximizes social welfare among
all allocations X, such that ∀X,

∑
i∈I vi(X

∗
i ) ≥

∑
i∈I vi(Xi). Let pi(S) denote

the ask price on package S ⊆ K by bidder i viz. the price bidder i has to
pay for package S. By Π(X,P) the auctioneer revenue/payoff at the current
allocation X and prices P is denoted and πi(S,P) denotes the payoff to bidder
i on package S with:

πi(S,P) = vi(S)− pi(S) (2.3)
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Definition 5 (Coalitional Value Function). The coalitional value function w :
P(I)→ R is defined as:

w(C) =

max
X∈Γ

∑
i∈C

vi(Si) , if auctioneer ∈ C ⊆ I

0 , else
(2.4)

Subsets C of I are called coalitions.

The coalitional value function w is zero if the auctioneer is not part of the
coalition C, otherwise it is defined as the maximum total value created from
the trade among these bidders and the auctioneer.

The overall utility or payoff, which the bidders and the auctioneer must share,
is w (I) ≥ Π+

∑
i∈I πi. Obviously, every bidder i and the auctioneer want their

portion to be as big as possible. A kind of Nash-Equilibrium is a payoff vector
(Π, π), which cannot be improved for all bidders and auctioneer simultaneously,
thus cannot be dominated.

Theorem 2. All payoff vectors (Π, π), which satisfy the inequation

w (C) ≤ Π +
∑
i∈C

πi ∀C ⊆ I (2.5)

are not dominated.

Proof. : A dominated payoff vector must satisfy (particularly for a coalition
C) the requirement

w (C) > Π +
∑
i∈C

πi. (2.6)

This does not apply to the payoff vectors, which satisfy inequation 2.5.

Definition 6 (The Set of Core Payoffs). The set of core payoffs is defined as:

Core (I,w) =

{
(Π, π) : Π +

∑
i∈I

πi = w (I) ,w (C) ≤ Π +
∑
i∈C

πi (∀C ⊂ I)

}
(2.7)

If any payoff vector (Π, π) is not in the core, then there is a coalition C for
which the total payoff w (C) is higher than the members’ total payoffs in
(Π, π). So there is some way to share the difference so that all members of C
are strictly better off. In this case the payoff vector (Π, π) is said to be blocked
by coalition C.
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Remark 1. Note the dominant strategy equilibrium in Example 2 is not in the
core, since coordinating their testimonies, the prisoners could be better off and
thus blocking the outcome illustrated.

Definition 7 (Competitive Equilibrium, CE). Prices P and allocation
X∗ = (S∗1 , ..., S

∗
n) are in competitive equilibrium if:

πi (S
∗
i ,P) = max

S⊆K
[0, vi (S)− pi (S)] ∀i ∈ I (2.8)

Π (X∗,P) = max
X∈Γ

∑
i∈I

pi (Si) (2.9)

In CE the allocation X∗ maximizes the payoff of every bidder and the
auctioneer at the given prices P . The auction ends effectively because bidders
are not willing to change the allocation by submitting any further bids.
Allocation X∗ is said to be supported by prices P in CE.

Theorem 3. : If allocation X is supported in a competitive equilibrium then
it is an efficient allocation.

A proof of Theorem 3 can be found in Bikhchandani and Ostroy (2006). CE
prices always exist, as prices pi = vi satisfy the CE conditions.

Theorem 4. : (Π, π) ∈Core(I,w) if and only if there exists prices P such
that constraints 2.8 and 2.9 are satisfied.

Theorem 4 was shown by Bikhchandani and Ostroy (2002) and states that
there is an equivalence between the core of the coalitional game and the set of
CE prices. All core outcomes can be priced, and all CE outcomes are in the
core.

Theorem 4 is only valid in the case of one auctioneer/seller and invalid for
combinatorial exchange markets where more than just one auctioneer/seller is
involved. In that case only the direction that CE prices correspond to core
payoffs can be proven but not vice versa (Bikhchandani and Ostroy, 2002).

17



CHAPTER 2. THEORETICAL BACKGROUND

Efficient Allocation

Core
<=>
CE

Figure 2.2: Venn-Diagram: Relation between Competitive Equilibrium, Core
Outcome and Efficient Allocation.

CE

Core

Efficient Allocation

Figure 2.3: Venn-Diagram (general case): Relation between Competitive
Equilibrium, Core Outcome and Efficient Allocation.

2.3 Design Goals

In auction theory the following four traditional design goals are relevant for
the design of an auction. Unfortunately it is shown that not all of these goals
can be fulfilled in one CA design.

• Efficiency. In an efficient auction, the social welfare is maximized.

• Strategy Proofness. In an auction with strategy proofness, misreport-
ing one’s valuation for items never gives an advantage.

• Core Property. Given the prices, no coalition of bidders and the auc-
tioneer can form a mutually beneficial renegotiation among themselves.
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• Individual Rationality. Each bidder expects a non–negative payoff for
participating.

Knowing that an auction mechanism has a certain property would help par-
ticipants to decide on their response strategies and provide information about
the bidding process and the expected results. For example, in an auction
with strategy proofness such as the Vickrey-Clarke-Groves (VCG) mechanism
a wise bidder would truthfully report his valuation for packages as this is the
dominant strategy for each bidder. As for an auction with core property, it
would not be a good idea to resell winning items in a subgroup of participants
aiming at a better payoff.
Furthermore, several auction designs can achieve an equilibrating status as a
result of gaming. This property is interesting because participants of an auc-
tion are able to predict the result of their bidding and the possible actions of
other bidders, which helps them to decide on their individual strategies.

The single-item ascending Clock auction (aka. Japanese auction) achieves all
these four desirable economic properties. It is individually rational, efficient,
strategy-proof, and the payoff vector is in the core. When all bidders know
their private valuations, truthfully revealing one’s demand is a dominant strat-
egy. It would be desirable to achieve such properties for CA designs as well.
Unfortunately the VCG design is the unique mechanism that satisfies indi-
vidual rationality, efficiency, and strategy-proofness (Ausubel and Milgrom,
2006b). However, its results can be outside the core, which leads to a num-
ber of problems in practical settings (Ausubel and Milgrom, 2006b; Rothkopf,
2007).

Although package bidding in CAs yield higher levels of efficiency in the lab
in the case of complementarities compared to simultaneous auctions without
package bids, equilibrium strategies are unknown for many CA formats used
in the field. The exponential number of possible package bids leads to high
strategic complexity for bidders and the bidding strategies observed in the lab
are diverse, with some bidders bidding on many and others bidding on only a
few packages of interest in each round (Goeree and Holt, 2010; Scheffel et al.,
2011). Finding efficient CA designs which satisfy a strong game-theoretical
solution concept can help reduce the strategic complexity and lead to higher
efficiency as a result. Even if the assumption for such equilibrium strategies
is not given in particular applications, it helps to understand the sources of
inefficiency observed in the lab or in the field.
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In the case in which the allocation rule seeks to maximize efficiency, the pay-
ments that correspond to an incentive compatible bidding strategy are the
famous VCG payments. This statement is proved by the following theorem,
first appeared in Holmstrom (1979):

Theorem 5. Suppose that for each bidder his set of types, θi is smoothly
path connected and that for each decision outcome X, the value to bidder i
of outcome X, vi(Xi, ti) is differentiable in its second argument. Then any
efficient, incentive compatible direct mechanism is a VCG mechanism.

While this initially appears to be the silver bullet for the design of CAs, VCG
mechanisms turned out to be impractical in most applications (Ausubel and
Milgrom, 2006b; Rothkopf, 2007). For situations with multiple items but unit
demand (Demange et al., 1986) and for multiple homogeneous goods with
marginal decreasing values (Green and Laffont, 1979; Holmstrom, 1979), it
has been shown that there are generalizations which can be used to implement
efficient, strategy-proof mechanisms.

2.4 Challenges

Besides the traditional design goals there is a set of additional challenges an
auction design has to face. In most cases those challenges are direct conse-
quences of bidders’ irrationality and the complexity of the real world. For
example, in real applications it is possible that bidders only have limited bud-
gets and fail to bid at their true valuations. Several common problems are
listed in the following.

• Exposure Problem. In case of complementarities, bidders run the
risk of winning only a part of a complementary collection of items in an
auction without package bids.

• Threshold Problem. Allowing package bids may favor bidders seek-
ing larger packages, because small bidders do not have the incentive or
capability to top the tentative winning bid of the large bidder.

• Coordination Problem. Even if small bidders have the incentive and
capability to top the tentative winning bid of the large bidder, they still
need to coordinate their bids in order to outbid the larger bidder.
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• Tacit Collusion. Bidders use signalling such as jump bidding to coop-
erate in an auction.

• Budget Binding. Bidders can be influenced by budget-constrained bid-
ders who e.g. bid for items directly at their budgets and cause high prices
for every bidder.

• Parking. In order to maintain eligible bidders temporarily bid for pack-
ages they are not interested in.

• Waivers. In some auctions bidders are allowed to withdraw their bids,
which may lead to more complex situations.

• Hold Up. Bidders signalize their strong willingness of winning an item
and reselling it afterwards to prevent others from competing with them.

It is hardly possible for an auction mechanism to avoid all those problems,
but normally some of them can be diminished or eliminated in one design. For
example, all mechanisms that allow for package bidding are supposed to solve
the exposure problem, since bidders are able to express their complementary
or substitute valuations for items. In some designs, e.g. the CC auction, prices
are increased by the auctioneer at a certain amount, so that tacit collusion
by jump bidding is prevented. However, if bidders use other methods for
signalling like bidding for a group of specific items to coordinate with other
bidders, CC is not able to avoid this kind of tacit collusion. Some of those
problems are direct consequences of specific auction designs. For example,
parking is a unique problem in auctions with activity rules or waivers exist
only in auctions allowing bidders to withdraw their bids.

2.5 Combinatorial Auctions

In Cramton et al. (2006b) CAs are referred to as those auctions in which bidders
can place bids on combinations of items, called packages, rather than just on
individual items. If we consider this as definition of CAs we are removing from
consideration the Simultaneous Ascending Auction (SAA) (Cramton et al.,
1998) which is widely used in practice to allocate collections of items. Since
we intend to use in our analysis these and similar auction formats we consider
in this book the following definition of CAs:
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Definition 8. A combinatorial auction is a mechanism by which m items
are allocated among n players, called bidders, who have values for subsets of
items and there exists at least one bidder i such that vi(S) 6=

∑
k∈S vi(k) for

some S ⊆ {1, . . . ,m}. The allocation is done in such a way to optimize some
relevant performance measure or objective.

The performance measurements encountered in the literature as well as in
practical applications are efficiency, i.e., finding an allocation which maximize
social welfare, or, equivalently, the sum of the estimates of the bidders true
values, and sellers revenue. We concentrate on efficiency in this book.

The enlargement of allowing to bid on packages also increases strategic and
computational complexity. The three main problems of CAs are the following:

• A large challenge for CAs is the Combinatorial Allocation Problem
(CAP), also referred to as the Winner Determination Problem (WDP),
which computes an allocation of packages to bidders that maximizes the
auctioneer revenue. The CAP can be interpreted as a weighted set pack-
ing problem (Lehmann et al., 2006) and thus is NP-complete (Rothkopf
et al., 1998). Therefore no polynomial time algorithm can be expected
for solving this problem. It can be mathematically formulated as an
integer problem:

max
xi(S)

∑
S⊆K

∑
i∈I

xi(S)vi(S)

s.t.∑
S:k∈S

∑
i

xi(S) ≤ 1 ∀k ∈ K

xi(S) ∈ {0, 1} ∀i, S

If package S is allocated to bidder i, xi(S) equals 1, otherwise 0. The
value of the objective function is the maximum of the auctioneer’s reve-
nue. In the CAP a set of items is to be allocated across a set of bidders.

In Figure 2.4 are nine items pictured as black squares and three bidders.
The framed items illustrate packages with values to bidder i as shown.
There are no other valued packages as these ones. For example bidder
1 values the package identified (a) with v1(a) = 2 and (b) with v1(b) =
8. The optimal solution, in which the total value across all bidders is
maximized, is to allocate package (a) to bidder 1 and package (e) to
bidder 3, with no allocation to bidder 2, for a total of 11.
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Bidder 1 Bidder 2 Bidder 3
(a,2) (b,8) (c,4) (d,6) (e,9)

Figure 2.4: An example of the combinatorial allocation problem.

The CAP in which vi(S) =
∑

k∈S vi(k) for all i and all S ⊆ {1, . . . ,m}
is obviously equivalent to solve to m independent, single-item auctions,
a topic well researched and well understood. See Milgrom (2004) and
references within for an account of the main results in single-item auction
theory.

• The Preference Elicitation Problem (PEP) includes the valuation
problem, in which a bidder has to figure out, which packages he is inte-
rested in, and value these from an exponential set of possible packages.
Which of the 2m − 1 packages should a bidder bid on? Furthermore,
various new possibilities of bidding strategies occur. What is the best
strategy respectively the optimal bid price?

• The problem of Communication Complexity is closely related to PEP
and deals with the question, how many bids must be submitted to the
auctioneer to calculate an efficient allocation. As communication might
be of exponential size, sensible bidding languages may address this prob-
lem by providing a compact representation of the bidder’s preferences.

The challenge of the auction mechanism is to make it as simple as possible
concerning computational, strategic, valuation and communication complexity
without compromising on desired economic properties (such as efficiency).

As indicated in Definition 8 CAs cannot offer a better expressiveness of pure
additive valuation functions. They make only sense, if one of the following
conditions hold for at least one bidder i:

• Complementarities (aka super-additivity):

vi(S ∪ T ) > vi(S) + vi(T ) S, T ⊂ K, S ∩ T = ∅ (2.10)
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• Substitutabilities (aka sub-additivity):

vi(S ∪ T ) < vi(S) + vi(T ) S, T ⊂ K, S ∩ T = ∅ (2.11)

Condition 2.10 appears if two items or packages are more worth than the sum
of them alone, e.g. a bidder wants to purchase his first computer. He needs the
computer plus a monitor, as they are just working together and singly being
useless to the bidder. Condition 2.11 describes the opposite, e.g. a bidder is
interested in buying one TV set and auctioned are many. He certainly values
a package of many TV sets lower than the sum of the single values.

2.5.1 Assumptions

Achieving efficiency on markets when economic agents strategically pursue
their individual self-interest is a fundamental problem in Economics. Gen-
eral equilibrium models show that in classical convex economies with multiple
products, the Walrasian price mechanism verifies the efficiency of a proposed
allocation (Arrow and Debreu, 1954) while communicating as few real variables
as possible (see Mount and Reiter (1974) and Hurwicz (1977)). Furthermore,
Jordan (1982) shows that the Walrasian mechanism is a unique voluntary me-
chanism with this property. However, these results assume that all production
sets and preferences are convex and do not apply to non-convex economies
with indivisible goods, such as CAs.

Bikhchandani and Mamer (1997) show that without convexity assumptions
full efficiency cannot be achieved with linear CE prices for general valuations
(see Nisan and Segal (2006) for an overview).

The following assumptions hold for our analysis of CAs if not otherwise stated:

• independent private valuations: The values of each bidder do not
depend on the private information of the other bidders;

• free disposal: The value function satisfies v(S ∪T ) ≥ v(S) for all com-
binations S and T . In particular, disposing an item from a combination
cannot increase the combination value;

• quasilinear utility: The utility or payoff of any bidder i on a package
S is given by πi(S) = vi(s)− bi(S);
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• zero auctioneer valuations: The auctioneer values all items at zero.
His revenue is the total payment he receives at a price;

• items are indivisible;

2.5.2 Performance Measures

The next two definitions give performance measures, which can be used to
analyze an auction outcome.
Allocative efficiency can be measured as the ratio of the value of the final
allocation X to the value of the efficient allocation X∗ (Kwasnica et al., 2005).

Definition 9 (Allocative Efficiency). Allocative efficiency is defined as:

E (X) :=

∑
i∈I

vi

( ⋃
S⊆K:xi(S)=1

S

)
∑
i∈I

vi

( ⋃
S⊆K:x∗i (S)=1

S

) (2.12)

Note that the efficiency depends only on the final allocation, and not on the
final prices.

Another measure is the revenue distribution, which reveals in what way the
overall gain is distributed between the bidders and the auctioneer. If the
auction terminates with an inefficient allocation a part of the overall gain is
lost. The revenue distribution calculates the fraction the auctioneer gains
compared to the overall gain the final allocation X creates.

Definition 10 (Revenue Distribution). Revenue distribution is defined as:

R (X) :=

∑
S⊆K

∑
i∈I

xi (S) pi (S)

∑
i∈I

vi

( ⋃
S⊆K:x∗i (S)=1

S

) (2.13)

Thus it is possible to have two auction outcomes with significantly different
auctioneer revenues while the allocative efficiency is the same.

Figue 2.5 gives an overview how the social welfare can be split among the
participants.

25



CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.5: Revenue Distribution among bidders, auctioneer and losses.

2.5.3 Bidding Languages

This section addresses the issue of the representation of bids in CAs. Every im-
plementation of a CA must determine the formal specifications on how bidders
submit their bids to the auctioneer.

Formal specifications particularly define how bids can be expressed in terms of
logical connectives. The space of possible bids in CAs is usually huge, as large
as the space of possible valuations. Specifying a valuation in a CA of m items,
requires providing a value for each of the possible 2m−1 non-empty subsets. A
naive representation would thus require 2m− 1 real numbers to represent each
possible bid. The main aim of a bidding language is to be both expressive and
simple. When attempting to choose one there is always a trade off between
expressiveness and simplicity. On the one hand the language should express
important valuations well, and on the other hand it should be as simple as
possible.
The reader is referred to Nisan (2006) for a detailed description. For the work
at hand it is sufficient to discuss two different basic bidding languages - OR
and XOR.

• OR-Bids: Each bidder can submit an arbitrary number of bids.
Implicit here is that he is willing to obtain any number of disjoint
bids for the sum of their respective prices. Not all valuations can be
represented in the OR-bidding language. It is easy to verify that the
following proposition completely characterizes the descriptive power of
OR-bids.
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Proposition 1. OR-bids can represent all bids that do not have any
substitutabilities, i.e., those where for all S ∩ T = ∅ the inequality

v(S ∪ T ) ≥ v(S) + v(T )

holds, and only them.

• XOR-Bids: Each bidder can submit an arbitrary number of bids. Im-
plicit here is that he is willing to obtain at most one of these bids.

Proposition 2. XOR-bids can represent all valuations.

XOR-bids can represent everything that can be represented by OR-bids,
as well as some valuations that cannot be represented by OR-bids− those
with substitutabilities. Yet, the representation need not be succinct:
There are valuations that can be represented by very short OR-bids and
yet the representation by XOR-bids requires exponential size.

Proposition 3. Any additive valuation on m items can be represented by OR-
bids of size m. The simple additive valuation requires XOR-bids of size 2m.

2.5.4 Iterative Combinatorial Auctions

Iterative combinatorial auctions (ICAs) allow bidders to submit multiple bids
during an auction and provides iteratively information feedback on the ongoing
bidding process, in order to assist and guide bidders in expressing and finding
their valuations on the items auctioned. ICAs have several advantages over
sealed-bid auctions. They are by now the most promising way of addressing
the PEP. In contrast to sealed-bid auctions such as the VCG auction bidders
do not need to submit the entire valuation function at once and thus are not
forced to compute the entire valuations before the auction starts. ICAs al-
low bidders to provide informations in an incremental way, they only need
to reveal partial and indirect information about their valuations. During the
auction process bidders learn about other bidders valuations, which may help
defining the own and may produce better results in case of correlated values
(Milgrom and Weber, 1982). Besides, transparency is another practical con-
cern in CAs. It is important for bidders to verify and validate the outcome
of an auction. Especially for losing bidders it is desirable to understand why
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they lost.
Though all these possible advantages favor ICAs, they offer also new oppor-
tunities to bidders for manipulation. That is why the biggest challenge in the
ICA design is to ensure focused bidding without allowing bidders to compro-
mise the economic goals of efficiency. ICA designs are confronted with the
following challenges:

• Use a sensible ask price calculation to guide the bidder;

• Mitigate the threshold problem;

• Prevent collusive bidding and signaling through code or jump bidding;

• Ensure auction progress by activity rules or sensible improvement mar-
gins;

• Ensure termination but avoid premature termination;

• Diminish the possibility to delay bidding until late in the auction by
using sensible eligibility rules;

• Use a simple but expressive bidding language to lower the commu-
nication costs;

In this book we concentrate and analyze the three different ICAs depicted in
Table 2.3:

Auction Type Price Feedback Bidding language
CC centralized linear, anonymous OR/XOR

PAUSE decentralized none OR
iBundle centralized non-linear, personalized XOR

Table 2.3: Overview of the three main ICAs analyzed in this book.

2.5.4.1 Typical Process in an ICA

The typical process in an ICA is illustrated in Figure 2.6. Over a predefined
period of time, usually called an auction round, the following three steps are
gone through:
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• bid submission;

• bid evaluation;

• feedback to the bidders;

The information feedback to the bidders includes usually the provisional allo-
cation and possibly a price feedback which can be used as minimal ask prices
for the next round to guide the bidders through the auction. Bid improvement
rules may also require a minimal percentage improvement over the current
highest bid to either ensure or speed up auction progress. The auction ter-
minates either at a fixed time or after a certain stopping rule is satisfied (e.g.
no new bids are submitted). For a detailed description of the design space for
ICAs the reader is referred to Parkes (2006).

Figure 2.6: Process of an Iterative Combinatorial Auction (Bichler et al., 2009).

Auction designs in the field of ICAs can basically be broken down into price-
based and non priced-based approaches. Whereas price-based auctions provide
ask prices as information feedback to coordinate the bidding process, non price-
based auctions however do not require that bidders submit bids in response
to ask prices. Their underlying structure is fundamentally different and their
elicitation process is based on richer query models. In general, there are three
classes of non price-based approaches (cf. Parkes (2006) for further informa-
tion):

• decentralized approaches: The CAP is moved to the bidders, who are
responsible for submitting bids and also allocations of items respectively
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packages with a high revenue given existing bids. PAUSE (cf. Chapter
4) is such an auction.

• proxy auctions: Proxy agents provide an interface between bidders
and the auction. Bidders provide incremental value information to the
proxy agents and the agents submit bids on behalf of the bidders through
a predetermined bidding procedure. Proxy agents may query bidders
actively.

• direct elicitation approaches: The auctioneer formulates explicit
queries, and a bidder’s strategy determines how to respond to these
queries.

2.5.4.2 Priced-based ICAs

Using price-based approaches, in which the auctioneer provides ask prices to
coordinate the bidding process, the questions arises, what pricing schemes do
exist and how can these prices be calculated. The following pricing schemes
have been discussed in the literature:

Definition 11 (Linear and Anonymous Prices). A set of prices
pi(S), i ∈ I, S ⊆ K is called:

• linear (or additive), if

∀i, S : pi(S) =
∑
k∈S

pi(k) (2.14)

• anonymous, if

∀i 6= j, S : pi(S) = pj(S) (2.15)

Prices are linear if the price of a package is equal to the sum of prices of
its items, and prices are anonymous if prices of the same package are equal
for every bidder. Non-anonymous ask prices are also called discriminatory or
personalized prices. A combination results in four possible sets of ask prices:

• a set of linear and anonymous prices P = {p(k)}
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• a set of linear and personalized prices P = {pi(k)}

• a set of non-linear and anonymous prices P = {p(S)}

• a set of non-linear and personalized prices P = {pi(S)}

Many ICAs are designed to converge to CE prices or even to a minimal CE price
set. To terminate with minimal CE prices is a desirable property, since they
correspond to VCG payments for a restricted class of valuations. Termination
with CE prices that support VCG payments brings straightforward bidding
in an ex-post equilibrium (Parkes, 2006). Besides, implementing minimal CE
prices avoids the problems of the VCG auction when VCG payments are not
supported by minimal CE prices (Ausubel and Milgrom, 2006a). A minimal
CE price set is equivalent to a bidder-optimal core outcome.

Definition 12 (Minimal Competitive Equilibrium Prices). Minimal CE prices
minimize the auctioneer revenue Π (X∗, P ) on the efficient allocation across
all CE prices.

Minimal CE prices can be derived by solving the dual of the relaxation of the
CAP:

min
p(i),p(k)

(∑
i

p(i) +
∑
k

p(k)

)
s.t.

p(i) +
∑
k∈S

p(k) ≥ vi(S) ∀i, S

p(i), p(k) ≥ 0 ∀i, k

(CAP-DLP) (2.16)

The values of the dual variables quantify the monetary cost of not awarding the
item to whom it has been provisionally allocated, viz. p(k) can be interpreted
as anonymous and linear prices, the term

∑
k∈S

p(k) is the price on package S

and

p(i) := max
S

{
vi(S)−

∑
k∈S

p(k)

}
is the maximal payoff of the bidder i at the prices p(k).
The relaxation might cause an overestimation of the item prices, since the
feasible polytope may increase. It is sufficient and almost necessary that va-
luations satisfy the goods are substitutes condition, so that exact linear CE
prices exist and the relaxed CAP equals CAP (Kelso and Crawford, 1982).
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Definition 13 (Goods are Substitutes, GAS). Goods are substitutes when
increasing the price of one item does not reduce the demand for the other
item.

However this condition precludes the possibility of items with complementary
values, thus is very restrictive and rare in real-world scenarios as most known
applications of CAs rather deal with complementary goods. CE prices must be
sometimes non-linear and non-anonymous.

Bikhchandani and Ostroy Bikhchandani and Ostroy (2002) show that minimal
CE prices provide an upper bound on VCG payments and in special cases when
bidders are substitutes is given they are equivalent.

Definition 14 (Bidders are Substitutes Condition, BAS). For any subset of
bidders C ⊆ I, w(C) equals the value of the efficient allocation for CAP|C.
This amount would be the social surplus if only the bidders in C were present.
The bidders are substitutes condition requires:

w(I)−w(I \ C) ≥
∑
i∈C

[w(I)−w(I \ i)] ∀C ⊆ I (2.17)

If BAS fails, the VCG payments are not supported in any price equilibrium
and truthful bidding is not an equilibrium strategy.

A number of ICAs require a slightly stronger condition to terminate with
minimal CE prices.

Definition 15 (Bidder Submodularity Condition, BSM). BSM requires that
for all C ⊆ C ′ ⊆ I and all i ∈ I there is:

w(C ∪ {i})−w(C) ≥ w(C ′ ∪ {i})−w(C ′) (2.18)

If BSM holds, ascending price CAs implement VCG payments and thus
minimal CE prices Ausubel and Milgrom (2006a).
GAS valuations implies BSM and is almost necessary. And clearly a BSM
coalitional value function also satisfies BAS.

As a result it can be stated that if one bidder does not satisfy GAS, BSM is
not necessarily satisfied and thus implementation of minimal CE prices cannot
be guaranteed.
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So far, the APA, iBundle(3), and the dVSV auction are the only known ICAs
which achieve full efficiency for restricted types of bidder valuations. If the
coalitional value function satisfies the BSM condition, straightforward bid-
ding is a best-response strategy which leads to an ex-post equilibrium and the
auction results in the VCG outcome (Ausubel and Milgrom, 2002). Straight-
forward bidding means that bidders only bid on those packages that maximize
their payoff based on current ask prices in each round. These auction for-
mats are based on non-linear and personalized prices and can be modeled as
an algorithm (primal-dual or subgradient) to solve the corresponding linear
program. We refer to these auction formats as non-linear personalized price
auctions (NLPPAs) in the following.

If the bidders’ valuations in an NLPPA are not buyer submodular, bidders have
an incentive to shade their bids and not follow the straightforward strategy.
Even if bidders knew that their valuations are buyer submodular and they
would not need to speculate about other bidders’ types, it is not obvious
that other bidders are able to follow the straightforward strategy in such an
environment. Both computational and lab experiments have illustrated the
large number of auction rounds necessary for these NLPPAs (Schneider et al.,
2010), in which nearly all valuations have to be elicited to achieve efficiency.

As an alternative, linear-price CAs have been suggested resembling the ficti-
tious Walrasian tâtonnement. Linear prices are desirable for their simplicity
and the reduced communication complexity in real world applications. One
line of research is based on a restricted dual of the relaxed CAP, in which the
pseudo-dual variables are used as ask prices in the auction (Bichler et al., 2009;
Kwasnica et al., 2005; Rassenti et al., 1982). Fluctuations of the ask prices
and the complexity of the ask price calculation are problems of this approach
for some applications.

In contrast, Porter et al. (2003) suggest a simple mechanism with ascending
linear ask prices, called the CC auction. This mechanism has achieved high
levels of efficiency in the lab (Kagel et al., 2010; Porter et al., 2003; Scheffel
et al., 2011) and has a number of obvious advantages. It maintains strictly
ascending, linear ask prices, and limits the computational burden on the auc-
tioneer as he only has to solve the NP-complete CAP in the last rounds if
there is excess supply. Also, the information revelation between rounds makes
it quite robust against collusion and limits the bidder’s possibilities for signal-
ing. For these reasons, the Netherlands and the UK have recently started to
use a version of the CC auction for price discovery in the sale of spectrum li-
censes (Cramton, 2009a). It is also being used in electricity markets and other
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high-stakes auctions, in which anonymous linear prices are often an important
requirement (Cramton et al., 2006a). Unfortunately, no equilibrium strategy
is known, and it is unclear for bidders which strategy they should follow.

2.5.5 Simultanous Ascending Auction

The simultaneous ascending auction (SAA) (Cramton et al., 1998) was first
developed for the U.S. Federal Communications Commission’s (FCC) spec-
trum auctions and has subsequently been adopted with slight modifications
for many spectrum auctions worldwide.

Items are auctioned simultaneously during discrete rounds, where no sale
takes place until the bidding is concluded on all items. The auction proceeds
with an unspecified number of bidding rounds. At the end of each round, the
highest bid becomes the leading bid, and the results are made available to
all bidders before the start of the next round. At the end of the last round
the leading bidder on each item is designated the sole winner on that item.
Cramton et al. (1998) provides a detailed description.
Key aspects are (Kelly and Steinberg, 2000):
Activity Rules: Eligibility Requirements : Each round, a bidder is designated
active on a particular item, if either he has the leading bid from the previous
round or has submitted an acceptable improving bid in the current round.
Bidders are required to remain active on items covering an amount which is
at least Ai percent of the total amount for which they wish to remain eligible
to bid. These eligibility requirements are intended to thwart the deception
effect, whereby a bidder might bid cautiously, waiting to see how the others
bid while not revealing his own interests until late in the auction.
Bid Increments : In order to be acceptable, a bid must improve the previous
leading bid by at least the specified minimum amount set by the auction
authority. This helps maintain the speed of the auction.
Bid Waivers: The activity rules are balanced by an allocation of a small
number of bid waivers to each bidder to be used at will to maintain eligibility
for a round without meeting the eligibility criteria. Bid waivers may be
viewed as an effort to increase bidder flexibility.
Bid Withdrawals: A leading bidder is permitted to withdraw his bid
during the course of the auction, but is penalized by being required to
pay the difference between his bid and the price for which the package
is ultimately sold; a winning bidder withdrawing after the close of the
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auction suffers an extra penalty. Bid withdrawals may be viewed as an ef-
fort to reduce the exposure risk to bidders attempting to realize their synergies.

The process yields a CE in simple settings, but when competition is weak it
suffers from collusive bidding strategies. Besides if some items are complements
the SAA has to deal with the exposure problem, which occurs when a bidder
wins some, but not all, of a complementary collection of items in an auction
without package bids.

2.5.6 Vickrey-Clarke-Groves Auction

This section gives a brief overview of the generalized Vickrey auction (aka the
Vickrey-Clarke-Groves (VCG) mechanism), its auction rules, advantages and
disadvantages. For further description and proofs the reader is referred to
Ausubel and Milgrom (2006b).
The generalized Vickrey auction is a sealed-bid auction (aka one-shot auction),
which means bidders submit their bids on all packages S, they are interested
in, at once and the auctioneer calculates the allocation X and the prices P .
Thus after one round the auction terminates.

Auction rules: The bidders generating the highest overall revenue win. Thus
the efficient allocation is calculated by the CAP. Winning bidders pay what
they bid, but receive a VCG discount :

pi(S
∗
i ) = bi(S

∗
i )− (w(I)−w(I \ {i})) (2.19)

where (w(I)−w(I \ {i})) denotes the VCG discount and bi(S) represents
the bid price submitted by bidder i on package S. The difference bi(S

∗
i ) −

(w(I)−w(I \ {i})) is denoted as the VCG payment.

Example 3. : K = (A,B) and I = (1, 2)
The efficient allocation is indicated by the *, bidder 1 receiving item (A) and

A B AB
b1 8∗ 9 12
b2 6 8∗ 14

Table 2.4: VCG mechanism.
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bidder 2 item (B). Bidder 1 has to pay a price of p1(A) = [8−((8 + 8)− 14)] =
6 for (A) and bidder 2 a price of p2(B) = [8− (16− 12)] = 4 for (B).

Advantages:

• Truthful reporting in the VCG mechanism is a dominant strategy, as the
bidder do not have to pay their bid prices. Bidding below the valuations
makes no sense as the risk increases not winning the package, while no
better chances of a higher payoff is given. Bidding above the valuations
makes also no sense, since a bidder could end up with a negative payoff.

• Assuming bidders report their true valuations, the outcome is efficient,
since the auctioneer knows all valuations and can thus compute the
efficient allocation with CAP.

• Losing bidders pay zero.

Theorems by Green and Laffont (1979), Holstrom (1979) show that, under
weak assumptions, the VCG mechanism is the unique mechanism with these
three properties Ausubel and Milgrom (2006b).

Disadvantages: Probably the most important disadvantage of the VCG me-
chanism is that auctioneer revenues can be very low or even zero, even when
the item that were sold are valuable. This problem is related to the VCG
discount. The following example illustrates the problem:

Example 4. : K = (A,B) and I = (1, 2)
The efficient allocation is indicated by the *, bidder 1 receiving item (A) and

A B AB
b1 8∗ 0 10
b2 0 8∗ 10

Table 2.5: VCG mechanism: auctioneer revenue.

bidder 2 item (B). Bidder 1 has to pay a price of p1(A) = [8−((8 + 8)− 10)] =
2 for (A) and bidder 2 a price of p2(B) = [8−(16− 10)] = 2 for (B). Resulting
in an auctioneer revenue of 4. If both bidders would value the package (AB)
with just 8 the auction would terminate with the same efficient allocation but
the auctioneer revenue would decrease to zero.
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Another eminent defect of the auction design is the monotonicity problem, that
occurs when increasing competition by adding bidders might cause a reduction
of the auctioneer revenue.

Example 5. : K = (A,B) and I = (1, 2, 3)
Adding bidder 3 reduces auctioneer revenues from 10 to 4. This is problematic

A B AB
b1 0 0 12
b2 10 10 10
b3 10 10 10

Table 2.6: VCG mechanism: monotonicity problem.

in two ways. First, the seller might seek to exclude bidder 3 or disqualify his
bid. Thus the auctioneer has to be trusted. Second, bidder 2 could profitably
sponsor a fake bidder 3, thus the auction is vulnerable to shill bidding and
collusion.

Other problems are a high valuation complexity since complete information
about all packages is required, computing the VCG payments is NP-hard
and transparency about the dominant strategy is often not given to bidders.

Although the disadvantages of the VCG mechanism are eminent, it is neverthe-
less an important theoretical construct that provides insight into fundamental
properties of auction mechanisms in general. VCG auctions are often used as
reference point to derive meaningful statements about other auction designs.

2.5.7 iBundle/ Ascending Proxy Auction

iBundle uses personalized and non-linear prices. It calculates a provisional
revenue maximizing allocation at the end of every round and increases the
prices based on the bids of non-winning (unhappy) bidders. Parkes and Ungar
(2000) suggest different versions of iBundle called iBundle(2), iBundle(3), and
iBundle(d). iBundle(3), which will be used in this book, maintains personlized
package prices throughout the auction. That means in every round the prices
for every unhappy bidder are increased by the increment ε for every package on
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which he has submitted a bid. The auction terminates if no bidder is unhappy1.
For a detailed description we refer to (Parkes and Ungar (2000)). iBundle has
some desirable properties as efficiency and a strong solution concept when the
BSM condition holds.

The ascending proxy auction (APA) has been proposed in the context of the
FCC spectrum auction design (Ausubel and Milgrom, 2006a). The APA is
similar to the iBundle design by Parkes (2001), except from the fact that
it emphasizes proxy agents, which essentially lead it to a sealed-bid auction
format.

Ausubel and Milgrom concentrate on the case of transferable utility. In par-
ticular, they focus their attention on an APA in which winning bidders pay
what they bid and losing bidder pay zero. Each proxy bidding strategy is to
bid the minimum increment straightforwardly, i.e., to select the package that
has the highest potential payoff and bid the minimum increment on it. They
state:

Theorem 6. In the transferable utility model, the payoff imputation deter-
mined by the APA is a core imputation with respect to the reported preferences.

This theorem tells little about the effciency of the outcome. In fact, only in the
case in which bidders report truthfully their preferences to the proxy agent the
auctions outcome is efficient. And only in the case in which the BSM condition
is satisfied truthful reporting is an ex -post Nash equilibrium strategy profile
of the APA. In the general case, Ausubel and Milgrom prove the following

Theorem 7. In the transferable utility model, given any pure strategy profile
for the other bidders, bidder i has a best reply that is a profit-target strategy.

A profit-target or semi-sincere strategy is a strategy in which bidder i reports
a value for each S equal to max{0, vi(S) − πi}, i.e., each package true value
is reduced by the same amount πi , which is the bidders minimum profit
target. Although of theoretical interest this result is of limited use in practice
since in order to compute his optimal profit target a bidder needs to have full
information about other bidders valuations. Ausubel and Milgrom proves also
the following

1To assure that every bidder is happy at termination bidders are able to bid a zero
amount on the empty package (bi(∅) = 0), which can be allocated to them.
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Theorem 8. In the transferable utility model, for every bidder-optimal point π
in the core, the strategy profile in which each bidder i plays its πi profit-target
strategy is a Nash equilibrium with associated profit vector π.
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Chapter 3

Combinatorial Clock Auction

The Combinatorial Clock (CC) auction has become very popular for its sim-
plicity and for its highly usable price discovery, derived by the use of linear
prices. Unfortunately, no equilibrium bidding strategies are known. Given
the importance of the CC auction in the field, it is highly desirable to un-
derstand whether there are efficient versions of the CC auction, providing a
strong game theoretical solution concept. So far, equilibrium strategies have
only been found for CAs with non-linear and personalized prices for very re-
stricted sets of bidder valuations. We provide an extension of the CC auction,
the CC+ auction, and show that it actually leads to efficient outcomes in an
ex-post equilibrium for general valuations with only linear ask prices. We also
provide a theoretical analysis on the worst case efficiency of the CC auction,
which highlights problems in the valuations, in which the CC is very inefficient.
As in all other theoretical models of CAs, bidders in the field might not be
able to follow the equilibrium strategies suggested by the game-theoretical pre-
dictions. Therefore, we complement the theoretical findings with results from
computational experiments using realistic value models. This analysis helps
to understand the impact of deviations from the equilibrium strategy and the
robustness of such auctions. The experimental analysis shows that the CC
auction and its extensions have a number of virtues in practical applications,
in particular a low number of auction rounds and bids submitted compared to
auction designs with non-linear and personalized ask prices.

Apart from a few lab experiments, little theoretical research has focused on the
CC auction as of yet. Ausubel et al. (2006) argue that anonymous and linear
prices are not generally rich enough to yield efficient outcomes. The arguments
are based on Ausubel and Milgrom (2002), who show that with linear prices
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bidders have an incentive to engage in demand reduction to favorably impact
prices, which implies that the auction outcome is not fully efficient. Therefore,
the version of the CC auction used for spectrum auctions in Europe and the
Clock-Proxy design extend the clock auction by an additional phase, in which
sealed bids can be submitted (Ausubel et al., 2006; Cramton, 2009a) and a
payment rule is defined with the intention of providing incentives for truthful
bidding. So far, no formal equilibrium analysis for such two-phased auctions
has been available and the theoretical efficiency results only consider the auc-
tion format in the second phase, where the bids are typically restricted by an
activity rule and the bids submitted in the Clock phase.

3.1 Related Theory and Definitions

So far, only ICA designs with non-linear and personalized prices have been
shown to be fully efficient. Bikhchandani and Ostroy (2002) prove that only
with personalized non-linear prices does a CA always achieves a CE.

In most practical applications of ICAs, linear and anonymous ask prices are
essential. For example, day-ahead markets for electricity sacrifice efficiency for
the sake of having linear prices (Meeus et al., 2009). Also, the main auction
formats which have been used or discussed for selling spectrum in the USA
use linear prices (Brunner et al., 2010). The CC auction is probably the most
widespread ICA format, but the negative results by Gul and Stacchetti (1999)
seem to indicate that there is no hope of making the CC auction fully efficient
for general valuations.

A notable difference between the CC auction and auctions with pseudo-dual
linear prices or the efficient ICAs (APA, iBundle, dVSV), is that bidders need
not pay the ask prices of the final round. The winner determination in the
final round can select a bid and the corresponding ask price from a previous
round, so that there is a distinction between final ask prices and payments.
This distinction opens up the possibility of achieving efficiency with linear ask
prices and a strong game-theoretical solution concept for general valuations in
the CC auction. The latter is important, as any restriction on the valuations
is typically unknown.

Definition 16. Final ask prices are the ask prices of the last round of an
iterative auction.
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Definition 17. A payment is the amount of money a bidder has to pay for
his winning items.

We show conditions, under which the CC auction with linear ask prices satisfies
an ex-post equilibrium for general valuations and provide sensitivity analysis
to understand, how robust the CC auction is against violations of these condi-
tions. A CA design needs to elicit at least all losing bids, in order to be fully
efficient. We first show problems of the CC auction with the straightforward
bidding strategy, which is typically being assumed in related equilibrium anal-
yses. Then we adapt the rules of the CC auction to avoid such efficiencies and
derive a bidding strategy, which leads to an ex-post equilibrium.

We focus on linear-price CAs, in which an ask price pk for each of the m items
is available; the price of a package S is the sum of the prices of the items in
this package. We assume that the demand of each bidder are the packages
which maximize his utility.

Definition 18. (Blumrosen and Nisan, 2007) For a given bidder valuation
vi and given item prices p1, ..., pm, a package T ⊆ K is called a demand of
bidder i if for every other package S ⊆ K we have that vi(S) −

∑
k∈S pk ≤

vi(T )−
∑

k∈T pk.

A feasible allocation X and a price vector pk are in CE when the allocation
maximizes the payoff of every bidder and the auctioneer given the prices. A
Walrasian equilibrium can then be described as a vector of item prices.

Definition 19. A Walrasian equilibrium is a set of nonnegative prices
p1, ..., pm and an allocation X if for every bidder i, Xi is the demand of bidder
i at those prices and for any item k that is not allocated pk = 0.

Simple examples illustrate that Walrasian equilibria do not exist for general
valuations in CAs if goods are indivisible; in other words, for certain types
of bidder valuations it is impossible to find linear CE prices which support
the efficient allocation X∗ (Blumrosen and Nisan, 2007). Let us assume that
bidder 1 has a value of 10 for the items (1), (2), and also for the package (1, 2),
and bidder 2 has only a positive valuation of 12 for the package, but not for the
singletons. The optimal allocation is to allocate the package (1, 2) to bidder 2.
The prices will be 10 for each item, otherwise bidder 1 would demand one of
the items, and consequently 20 for the package (1, 2). Bidder 2 will, however,
not demand the package at a price of 20, and no equilibrium exists.
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The economic GAS property is a sufficient condition for the existence of Wal-
rasian equilibrium prices (Kelso and Crawford, 1982). Later, Gul and Stac-
chetti (1999) proved that for all bidders it is almost necessary that GAS to
ensure efficiency with linear CE prices. Intuitively, this property implies that
every bidder continues to demand the items which do not change in price,
even if the prices on other items increase. Overall, the GAS condition is very
restrictive as most known practical applications of CAs deal more with com-
plementary goods.

Actually, Gul and Stacchetti (2000) show that even if bidders’ valuation func-
tions satisfy the goods are substitutes condition, no ascending CA exists that
uses anonymous and linear prices and arrives at the VCG solution. This means
that bidders may have an incentive to demand smaller packages of items in
order to lower their payments.

3.2 The CC Auction

We concentrate on the CC auction as introduced by Porter et al. (2003) and
give a precise description in Algorithm 1. Prices for all items are initially
zero. In every round bidders identify a package of items, or several packages,
which they offer to buy at current prices. If two or more bidders demand an
item then its price is increased by a fixed bid increment in the next round.
It is schematically illustrated in Figure 3.1. This process iterates. The bids

Another approach: Combinatorial Clock (CC) auction
(Porter, Rassenti, Roopnarine, Smith)

> Practical implementation of the fictitious “Walrasian auctioneer”
Auctioneer announces a price vector– Auctioneer announces a price vector

– Bidders respond by reporting quantity vectors
– Price is adjusted according to excess demand
– Process is repeated until the market clears

A    B   C    D

Bid 1
Bid 2

A    B   C    D

Iterative Combinatorial Auctions, SWQM May 2007 12

Figure 3.1: Overdemand and price increase in the CC auction.

which correspond to the current ask prices are called standing, and a bidder
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is standing if he has at least one standing bid. In a simple scenario in which
supply equals demand, the auction terminates and the items are allocated
according to the standing bids. If at some point there is excess supply for at
least one item and no item is over-demanded, the auctioneer determines the
winners to find an allocation of items that maximizes his revenue by considering
all submitted bids. If the solution displaces a standing bidder, the prices of
items in the corresponding standing bids rise by the bid increment and the
auction continues. The auction ends when no prices are increased and bidders
finally pay their bid prices for winning packages. We analyze a version that
uses an XOR bidding language.

3.2.1 Efficiency of the CC Auction

We analyze the worst-case efficiency of the CC auction with bidders following
the straightforward strategy, which is typically assumed in game-theoretical
models of ICAs. We also evaluate a powerset strategy, which describes the
situation in which bidders reveal all packages with a positive valuation at the
current prices. We draw on this strategy in subsequent sections.

Definition 20. A straightforward bidder bids only for his demand in each
round at the current ask prices p1, ..., pm.

Note that a straightforward bidder might bid on several packages in a round
if they apply to the definition of demand (cf. Definition 18).

Definition 21. The powerset bidder bids on all packages S with a non-negative
value vi(S)−

∑
k∈S pk ≥ 0 at the current set of ask prices p1, ..., pm.

We show that if all bidders follow the straightforward strategy, the efficiency of
the CC auction can be as low as 0%. For this, we refer to a recent theorem by
Kagel et al. (2010) on the efficiency of auctions which maximize the auctioneer’s
revenue based on bid prices.

A standard package auction is defined such that it selects an allocation X to
maximize the auctioneer’s revenue X ∈ argmaxX

∑
i∈I bi(Xi) and has bidder

i pay bi(X i). bi(Xi) denotes the highest price that i bids for a package Xi

during the course of the auction.

A standard package auction can be modeled as a cooperative game with trans-
ferable utility, in which the payoff vector or imputation is given by the auc-
tioneer’s revenue Π =

∑
i∈I bi(Xi), and bidder i’s payoff πi = vi(Xi)− bi(Xi).
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Data: package bids bi(S)
Result: allocation X and prices pi(X i)
initialization

for k=1 to m do pk ← 0
for i=1 to n do Xi ← ∅

repeat
overdemand← FALSE; oversupply← FALSE
for i=1 to n do

bidders submit bids βi(S)
for k=1 to m do

if ≥ 2 bidders i 6= j demand item k then
pk ← pk + ε
overdemand ← TRUE

end
if item k is not part of a bid pi(S) then

oversupply ← TRUE
end

if overdemand = TRUE then exit iteration
else if oversupply = FALSE then exit loop
else

for k=1 to m do
Assign pi(S) with k ∈ S to the set of standing bids B
Calculate X based on all bids submitted in the auction

if a bidder holding a bid in B is displaced, i.e. no bid by this
bidder is in X, then

foreach item k which was displaced: do
pk ← pk + ε

end

else X is the final allocation
end

until stop

Algorithm 1: CC auction.

The value of a coalition including the auctioneer and the bidders in C ⊆ I is
w(C) =

∑
i∈C vi(X

∗
i |C).

Theorem 9. (Kagel et al., 2010) In a standard package auction, let B denote
the set of final bids and X the final allocation in the auction. If for all bid-
ders i, vi(Xi) − bi(Xi) ≤ vi(X i) − bi(X i), then the allocation X is efficient:∑

i∈I vi(X i) = w(I). If the efficient allocation is unique, then the condition
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vi(Xi)− bi(Xi) ≤ vi(X i)− bi(X i) is necessary as well as sufficient for X to be
efficient.

To promote these results, the auction mechanism must encourage bidders
to bid aggressively all the way up to their full values (bi(Xi) = vi(Xi)) for
efficiency-relevant packages, i.e., packages that may become winning packages.

3.2.2 Worst-case Efficiency with Straightforward Bid-
ders

b(1) b(2) b(3) ... (1) (2) (3) ... (1, 2) (1, 3) ...

v1 10*

v2a 4* 10

v2b 10

v3a 4* 10

v3b 10

... ... ...

r = 1 1 1 1 ... 11 22a,2b 23a,3b ...

r = 2 2 2 2 ... 21 42a,2b 43a,3b ...

r = 3 3 3 3 ... 31 62a,2b 63a,3b ...

r = 4 4 4 4 ... 41 82a,2b 83a,3b ...

r = 5 5 5 5 ... 51 102a,2b 103a,3b ...

r = 6 6 6 6 ... 61

r = 7 7 6 6 ... 71

...

r = 10 10 6 6 ... 101

Table 3.1: Example of a demand masking set of bidder valuations and CC auction
process assuming straightforward bidders.

If a bidder follows the straightforward strategy in the CC auction, he does
not bid on all relevant packages in the course of the auction. The example
in Table 3.1 illustrates a characteristic situation that we refer to as demand
masking set. The upper part of the table describes valuations of 2m − 1
bidders for m items, while the lower part shows both ask prices for items and
corresponding package bids in individual rounds r. The indices of the bid
prices for different packages indicate which straightforward bidder submits the
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bid on the respective package. There is one bidder called bidder 1 and for each
h ∈ {2, ...,m} there are two bidders ha and hb. Bidder 1 values item (1) at
a value of 10 and does not value any other item. For h = 2, ...,m, bidders
ha and hb value the package (1,h) at 10 and bidders ha the item (h) at 4,
and are not interested in any other package. Without loss of generality, we
assume a bid increment of 1. Straightforward bidders ha and hb demand the
package (1,h) until round 6, at which point they demand nothing. After round
6 there is excess supply and the auctioneer solves the winner determination
problem, which displaces the sole remaining standing bidder, who bids on item
(1). Thus the price on item (1) further increases until bidder 1 wins item (1)
in round 10, and the auction terminates with a social surplus of 10. However,
the efficient allocation assigns item (1) to bidder 1, and item (h) to bidder ha
for a social welfare of 10 + 4(m− 1). 10/(10 + 4(m− 1)) converges to 0 as m
approaches infinity.

We provide a formal definition of a demand masking set and derive a worst-case
bound for these situations as a function of m.

Definition 22. A demand masking set of bidder valuations is given if the
following properties are fulfilled. There is a set of bidders I with |I| ≥ 3, a
set of items K = {1, ...,m} with T ⊆ K and a partition H of K\T . Let Sh be
the elements of H with h ∈ {2, ..., |H| + 1 = g}. For each Sh there are two
bidders ha and hb. Bidder 1 values package T with ξ. For h ∈ {2, ..., g} bidders
ha value the packages Sh with νh and T ∪̇Sh with µ and bidders hb value only
package T ∪̇Sh with µ. No bidders are interested in the other packages, i.e., the
marginal value of winning any additional item to the positively valued packages
is zero.

T {Sh} {T ∪̇Sh}
v1 ξ 0 ξ

{vha} 0 νh µ

{vhb} 0 0 µ

Table 3.2: Demand masking set of bidder valuations.

Note that the valuations of zero as shown in Table 3.2 do not need to be strictly
zero, but rather sufficiently small so as not to influence the economy.
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Theorem 10. If bidder valuations are demand masking and all bidders follow
the straightforward strategy in the CC auction, then the efficiency converges to

2
m+1

in the worst case.

Proof. The following proof is provided for two or more items for sale and 2m−1
bidders. With less than 2m− 1 bidders and XOR bidding efficiency can only
increase. Without loss of generality, we assume item-level bid increments of
ε = 1 in each round r ∈ R ⊂ N. We consider the value µ as given and
determine ξ and νh such that efficiency decreases to the worst case of 0%.

case a) µ ≥ ξ +
∑

h νh:

The efficient solution is to sell T ∪ Sh to one of the bidders ha or hb. The CC
auction terminates with the efficient outcome in this case.

case b) µ < ξ +
∑

h νh ∧ ξ = µ:

The proof is by showing that a straightforward bidder ha cannot bid on Sh
throughout the auction in a demand masking set of valuations. For this, the
payoff πha(T ∪̇Sk) must be higher than πha(Sh) for each bidder ha in each round
of the auction r ∈ R:

vha(T ∪̇Sh)−pha,r(T ∪̇Sh) > vha(Sh)−pha,r(Sh) ∀h ∈ {2, ..., g},∀r ∈ R (3.1)

Since we know that vha(T ∪̇Sh) = vhb(T ∪̇Sh) = µ, and all bidders bid straight-
forward, we know that the price for all the items in K rise in each round by ε.
Therefore, inequality (1) can be rewritten as

µ− |T ∪̇Sh|tε > νh − |Sh|tε
ε=1
=⇒ r <

µ− νh
|T |

∀h ∈ {2, ..., g},∀r ∈ R (3.2)

Inequality (2) shows that as long as t is smaller than the right-hand side, a
straightforward bidder always bids on the package T ∪̇Sh. We can now deter-
mine a round rmin = min{r|r ≥ µ−νh

|T | ,∀ha}, in which the payoff πha(T ∪̇Sh)
is for the first time smaller or equal to the payoff πha(Sh). We call rmin the
decisive round. If either the right side or both sides of inequality (1) become
negative in round rmin, bidder ha cannot bid on Sh or the auction ends for
bidder ha as also the ask price for T ∪̇Sh is higher than vha(T ∪̇Sh). If straight-
forward bidder ha does not reveal his preferences for Sh throughout the auction,

49



CHAPTER 3. COMBINATORIAL CLOCK AUCTION

then the auctioneer selects any of the other bids with a revenue of µ, resulting
in an efficiency of µ/(ξ +

∑
h νh).

We determine maximal νh such that in round rmin the payoff of bidder ha on
package Sh is negative, which minimizes efficiency. We know that as long as
bidder ha’s payoff is negative in the decisive round rmin, i.e., νh−|Sh|rmin < 0,
then bidder ha does not bid on Sh. We also know that rmin = d(µ−νh)/|T |e is
the decisive round. We can now maximize νh such that νh−|Sh|d(µ−νh)/|T |e <
0, resulting in νhmax = max{νh|νh < |Sh|µ/(|T |+ |Sh|)}. In order to maximize∑

h νh and so minimize the efficiency µ/(ξ+
∑

h νh) we set |T | = 1 and |Sh| = 1
for all h ∈ {2, ..., g}. This results in an efficiency of E(X) = µ/(ξ+

∑
h (µ

2
− ρ))

with ρ > 0. With ρ → 0 and ξ = µ efficiency decreases to 2/(g + 1) which is
2/(m + 1) in the worst case. Note that it does not matter if ξ is smaller or
larger than

∑
h νh.

case c) µ < ξ +
∑

h νh ∧ µ 6= ξ:

Efficiency can only increase compared to case b) considering the worst case.

Either the enumerator of E(X) = max{ξ,µ}
max{ξ+

∑
h νh,µ+

∑
h νh}

increases or the denom-

inator decreases.

• ξ > µ: ⇒ E(X) = ξ
ξ+

∑
h νh

= µ+δ
µ+δ+

∑
h νh

with δ > 0 is always greater

than the efficiency E(X) in case b).

• ξ < µ: ⇒

– either E(X) = µ
ξ+

∑
h νh

which is greater than E(X) = µ
µ+

∑
h νh

the

efficiency of case b).

– or E(X) = µ

µ+
∑g−1

h=2 νh
which is also greater than E(X) = µ

µ+
∑g

h=2 νh

the efficiency of case b).

In the example of Table 3.1, νh is smaller than 5 for all h. With m = 3 and
νh = ν = 5−ρ for all h, efficiency is approximately 50% = 10/(10+ν(m−1)),
which is equal to 2/(m+1) in the worst case. Obviously if the number of items
m and the corresponding number of bidders increases to fulfill the requirements
of a demand masking set, efficiency converges to 0% in the worst case. While
such a situation that leads to 0% efficiency can be considered a degenerated
case that does not happen that often in practice, we found regular situations
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in simulations with realistic value models in which the case of m = 2 or m = 3
occurred, which still leads to efficiencies of 67% or 50% in the worst case.
Note that these are not necessarily the only characterizations of value models
in which such low efficiency can occur.

3.2.3 Worst-Case Efficiency with Powerset Bidders

One of the reasons for the popularity of ascending auctions is that they require
only partial revelation of the private information (Blumrosen and Nisan, 2007).
In a CA this is less of an advantage, as it is still necessary to elicit all valuations
except those of the winning bids in the efficient allocation in the worst case.
This means that if there are z winning package bids in an efficient allocation,
n2m − z valuations need to be elicited by the auctioneer to guarantee full
efficiency. For example, ascending auctions with non-linear and personalized
prices such as iBundle, the APA, or dVSV are protocols that in each round
elicit the demand set of each bidder and provably find an efficient solution at
the expense of an exponential number (in m) of auction rounds (Blumrosen
and Nisan, 2007). In such an NLPPA with straightforward bidders at least all
valuations of all losing bidders are elicited.

As an alternative to straightforward bidding, the auctioneer can try to encour-
age bidders to bid on many packages from the start. In the best case, bidders
reveal all packages with positive payoff, i.e., they follow a powerset strategy.
Unfortunately, even if bidders follow the powerset strategy, the CC auction
does not necessarily terminate with an efficient solution.

Theorem 11. If all bidders follow the powerset strategy, the efficiency of the
CC auction converges to 0% in the worst case.

Proof. Since efficiency cannot be negative it is sufficient to present an example,
in which the efficiency is almost 0%. Assuming two bidders and three items
for sale. The two bidders have valuations for packages as shown in Table 3.3.
They value all other packages with zero. The final ask prices are p(1) = 2,
p(2) = 2 and p(3) = 1, and the final allocation assigns package (1, 2) to bidder
1, which is inefficient if µ > 4. Efficiency decreases to 0% if µ→∞.

We assume no free disposal concerning the valuations in Table 3.3. Otherwise,
bidder 1 has a valuation of µ also for package (1, 2, 3), and this would get sold

51



CHAPTER 3. COMBINATORIAL CLOCK AUCTION

(1, 2) (2, 3)

v1 4 µ

v2 2 0

Table 3.3: Valuations that lead to inefficiencies in the CC auction with assuming
powerset bidders.

to bidder 1 for a price of 5. The payoff for bidder 1 in this allocation would
be µ − 5, which would be efficient, as the sum of the bidders’ payoffs and
the auctioneer revenue gets maximized. Free disposal can lead to situations,
in which powerset bidding drives up prices to very high levels and reduces
bidders’ utility. It can also lead to high inefficiency (see 3.2.3.1). Consequently,
powerset bidding is even more unlikely in a CC auction with free disposal.

Inefficiencies in the CC auction with powerset bidders occur if there are two
overlapping packages by the winning bidder, and there is only competition on
the package with the lower valuation. This drives up the prices only on the
lower valued package, which is finally sold, although the bidder has a higher
valuation for the other package, for which he cannot increase his bid.

3.2.3.1 Powerset Strategies with Free Disposal

In the following, we describe an economy with powerset bidders and free dis-
posal. We show that the CC auction leads to very high prices, thus reducing
the bidders’ utility, even in cases where there is no competition. The example
shows that the inefficiency in these situations can be almost as low as 50%.

(1) (2) ... (m)
v1 µ 0 ... 0
v2 0 (µ/m)− ε ... 0
... ... ... ... ...
vm 0 0 ... (µ/m)− ε

Table 3.4: Valuations in an economy with powerset bidders and free disposal.

Given the valuations in Table 3.4 and an economy without free disposal, the
bidders would all bid on a single item only, and the CC auction would stop
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after the first round at a price of the minimum bid increment ε. In an example,
assume m = n = 100, ε = 1, and µ ≥ 200. The allocation assigning bidder i
item (i) is efficient and would maximize overall welfare. Bidder 1 would get a
payoff of µ−1, while all other bidders achieve a payoff of (µ/100)−1. With an
auctioneer revenue of 100, the social welfare is 199π/100. If we assume m is the
number of items, then the social welfare would be maximized at (2m−1)µ/m.

Now, with free disposal, bidder 1 would bid on all 2(m−1) packages that enfold
the item (1) in each round until a price of µ/m is reached and he wins all
items. His payoff would be 0 and the auctioneer would make a revenue of µ,
which is inefficient. With m→∞ efficiency converges to 50%.

3.2.4 Modifications

The analysis in Section 3.2 shows that even if bidders reveal all profitable
packages in each round, the CC auction can be inefficient. However, a small
change in the price update rule allows all losing package valuations to be
elicited and makes the CC auction fully efficient with powerset bidders.

Definition 23. A partial revelation price update rule in the CC auction also
increases prices for each overdemanded item and in addition for each item of
a standing bid which is displaced by the winner determination.

The difference to the original price update rule is very small. While the original
CC auction terminates if all bidders holding a standing bid get any package
in the final allocation (not necessarily one of their standing bids), the partial
revelation price update rule requires a bidder to get exactly his standing bid
allocated. Thus one bidder holding two or more standing bids causes prices to
increase and the auction to continue.

Corollary 1. If all bidders follow the powerset strategy, the CC auction with
the partial revelation price update rule and sufficiently small bid increments
terminates with an efficient outcome.

Proof. Based on the statement of Theorem 9, we only need to show that the
valuations of relevant packages get revealed with powerset bidders in the mod-
ified CC auction. By construction of the partial revelation price update rule
powerset bidders, who are not part of the efficient allocation, reveal all their
valuations. But the rule also ensures that all the bidders in the efficient al-
location reveal their valuations on all packages except the ones that are in

53



CHAPTER 3. COMBINATORIAL CLOCK AUCTION

the winning allocation. As long as a bidder bids on more than one package
the auction continues as each bidder can only win one package. As long as a
bidder bids on a package that is not winning, prices increase and he can keep
bidding. Thus the CC auction with the partial price update rule elicits all va-
luations except the ones of winning packages and terminates with an efficient
allocation.

The auction can still suffer from small inefficiencies due to the minimal bid
increment. Last-and-final bids have been suggested as means to get rid of
these inefficiencies (Parkes, 2006). They allow bidders to submit a final bid on
a package which is above the ask price of the previous round, but below the
current ask price for a package. For the sake of clarity, we omit this rule in
our analysis.

3.3 The CC+ Auction

Even if the powerset strategy leads to full efficiency in a modified CC auction
with linear ask prices, it is not obvious why a bidder should follow the powerset
strategy. We show that the powerset strategy is an ex-post equilibrium, but
that it requires an even stronger price-update rule and a VCG payment rule
(Ausubel and Milgrom, 2006b). We refer to this auction design as a CC+
auction. A description of the CC+ auction with powerset bidders is provided
in Algorithm 2. Modifications to the original CC auction are underlined.

Definition 24. A full revelation price update rule in the CC+ auction in-
creases prices on items as long as at least a single bidder bids on the item.

We aim for a strong game-theoretical solution concept. A desirable property is
a profile of strategies with an ex-post equilibrium, in which a bidder does not
regret his bid even when he is told what everyone’s type is after the auction.
Note that we are not attempting to achieve a dominant strategy equilibrium,
as preference elicitation in an indirect mechanism can invalidate dominant
strategy equilibria existing in a single-step version of a mechanism (Conitzer
and Sandholm, 2002). We discuss the types of speculation that are possible
in a CC+ auction with full information in Section 3.3.1.1. It illustrates that
ex-post equilibria are not as strong as dominant strategy equilibria, but they
are much stronger than Bayesian Nash equilibria, because they do not require
agents to speculate on other bidders’ types or valuations. When iterative
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preference elicitation is used to implement a mechanism which is a dominant-
strategy direct-revelation mechanism in a sealed-bid version, then each agent’s
best (even in hindsight) strategy is to act truthfully if the other agents act
truthfully (Conen and Sandholm, 2001).

Definition 25. Truthful bidding in every round of an auction is an ex-post
equilibrium if for every bidder i ∈ I; if bidders in I−i follow the truthful
bidding strategy, then bidder i maximizes his payoff in the auction by following
the truthful bidding strategy (Mishra and Parkes, 2007).

Data: package bids bi(S)
Result: efficient allocation X∗ and prices pi(X

∗
i )

initialization
for k=1 to m do pk ← 0
for i=1 to n do Xi ← ∅

repeat
overdemand← FALSE; oversupply← FALSE
for i=1 to n do

submit a bid βi(S) on each package S,
which applies to vi(S)−

∑
k∈S(pk) ≥ 0

for k=1 to m do
if ≥ 1 bidders demand item k then

pk ← pk + ε
overdemand ← TRUE

end
if item k is not part of a bid pi(S) then

oversupply ← TRUE
end

if overdemand = TRUE then exit iteration
else if oversupply = FALSE then exit loop
else

Calculate the final allocation X∗ based on all submitted bids
exit loop

until true
Calculate VCG prices p∗V CG based on all submitted bids

Algorithm 2: CC+ auction with powerset bidding.
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3.3.1 Efficiency and Incentive Compatibility

We show that the CC+ auction maintains linear ask prices and achieves an
efficient solution, while being incentive compatible. Note that we do not need
to make any restrictive assumptions on the bidders’ valuations. To prove the
efficiency, already the slightly weaker partial revelation price update rule is
sufficient (cf. proof for Corollary 1).

Corollary 2. A powerset strategy is an ex-post equilibrium in the CC+ auction
with the full revelation price update rule.

Proof. The proof for the ex-post equilibrium strategy is from the VCG me-
chanism. Let tj denote the type of bidder j. We look at the bidder j and
assume all other bidders follow the truth revealing powerset strategy. Bid-
der j receives a payment of

∑
i 6=j ui(X, t

′
i)−

∑
i 6=j ui(X−j, t

′
i) from the center.

The final payoff to bidder j reporting type t′ and an allocation X and a VCG
payment rule is uj(X, tj) +

∑
i 6=j ui(X, t

′
i)−

∑
i 6=j ui(X−j, t

′
i). A bidder in this

payment rule cannot affect the choice of X−j. Hence, j can focus on maxi-
mizing uj(X, tj) +

∑
i 6=j ui(X, t

′
i), i.e., his utility and the sum of the other’s

utilities. As the auction will maximize
∑

i ui(X, t
′
i), j’s utility will be maxi-

mized, if t′j = tj. The partial revelation price update rule is not sufficient for
an ex-post equilibrium: In the example in Table 3.5, the CC+ auction with a
partial revelation price update rule ends up with final ask prices of p(1) = 3
and p(2) = 4, before the VCG prices are calculated. If the auctioneer calculates
VCG prices based on the submitted bids, then bidder 2 pays 3 − (7 − 5) = 1
for the item (1). If bidder 2 knew v3(2), he could have bid up to 6 on item (2).
This would increase the final ask price for (2) to 7, and lead to a new VCG
price of 3 − (10 − 7) = 0 for (1) for bidder 2. In a VCG mechanism, bidder
2 could not influence the bid submission of bidder 3 in a similar way, which
is why the VCG mechanism has a dominant strategy. Therefore, in the CC+
auction with a partial revelation price update rule, the strategy of bidder 2 is
not independent of other bidders’ types. Even if the other bidders bid truth-
fully, a bidder could improve his payoff by deviating from a truth revealing
powerset strategy, if he knew the other bidders’ types and the other bidders
truthfully follow the powerset strategy.

As all bidders reveal all valuations, a bidder cannot improve his payoff by uni-
laterally deviating from the truthful powerset strategy in a respective CC+
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(1) (2)
v1 0 3
v2 3* 0
v3 2 7*

Table 3.5: Valuations that do not lead to an ex-post equilibrium with powerset
bidders when using the partial revelation price update rule in the CC+
auction.

auction, or influence whether the other bidders reveal their valuations truth-
fully. Therefore, the bidder’s truthful powerset strategy is independent of the
other bidders’ types. This result shows what types of price update and payment
rules are sufficient for a powerset strategy to satisfy an ex-post equilibrium.
While the partial revelation price update rule is sufficient for efficiency, when
all bidders follow a powerset strategy, a full revelation price update rule is
necessary to achieve an ex-post equilibrium.

However the type of speculation that the partial revelation price update rule
allows is extremely unlikely in practical situations and would only make sense
under full information which is never the case in auctions.

3.3.1.1 Ex-Post Equilibrium

Does the CC+ auction satisfy a dominant strategy or an ex-post equilibrium?
In the single-unit case, there has been an interesting recent discussion on the
types of ascending auctions that actually satisfy a dominant strategy equilib-
rium. Isaac et al. (2007) have shown that while the clock version of an as-
cending single-item auction has a dominant strategy, the widespread English
auction, which allows jump bids, has not.

The CC+ auction can be seen as a multi-item generalization of the ascending
clock auction. Also, the VCG auction can be thought of as a single-round
version of the CC+ auction, in which the bidder’s dominant strategy is to
bid truthfully on all possible packages, similar to a powerset strategy. Both
auctions satisfy a dominant strategy equilibrium. Does the CC+ auction also
satisfy a dominant strategy, or is it restricted to an ex-post equilibrium? In
the following, we provide an example in which signals revealed throughout the
CC+ auction can make it beneficial for a bidder to deviate from his truth-
telling powerset strategy when also others deviate from this strategy.
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(1) (2) (1, 2)
v1 2* 0 0
v2 0 3* 0
v3 0 0 4

Table 3.6: Example of the difference between the VCG auction and the CC+
auction.

The valuations for three bidders and two items are given in Table 3.6. The
VCG price of bidder 1 is 2− (5− 4) = 1 for item (1), and his payoff is 1. Now,
assume that bidder 1 knows that bidder 2 will increase his bid on (2) to 4, if
the ask price for (1) was 3. In round 2, the price clock ticks to 2 for each item
and all three bidders signal demand at these prices. In round 3, prices are 3 for
both items and again bidders 1 and 2 will signal demand. This will encourage
bidder 2 to signal demand even in round 4 for item (2), when bidder 1 drops
out. Now, bidder 1 gets a VCG price of 3 + (7 − 4) = 0 and consequently
increased his true payoff from 1 to 2. Bidder 2 learns through the course of
the CC+ auction that there is a demand for (1) at a price of 3, which would
not be possible in a direct revelation VCG auction.

This cannot happen in a clock auction with only a single item, as the bid-
ders can only drop out or continue to signal demand on a single item. This
illustrates that the dominant strategy equilibrium does not extend from the
single-item clock auction to its multi-item generalization. The powerset strat-
egy in a multi-item CC+ auction is therefore an ex-post equilibrium and not
a dominant strategy equilibrium.

3.3.2 Communication Complexity

Nisan and Segal (2006) show that determining an optimal allocation requires
an exponential number of queries from the auctioneer to the bidders. There
are subtle differences, however, in the amount of information that is elicited
by different auction formats. A VCG auction and a CC+ auction ask bidders
to reveal all n2m valuations to the full extent. In a CC+ auction, a bidder sees
the price clock increase on various items and learns at which prices nobody
demands a particular item any more. In a VCG auction, bidders only know
that a bid on a particular package was lost. In both cases, the auctioneer
learns all valuations of all bidders. Using the partial revelation price update
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rule in the CC+ auction with z winning bids, only n2m − z losing valuations
are elicited.

In NLPPAs such as the APA, iBundle(3), or dVSV, the auctioneer elicits
n2m−z preferences in the worst case. It might also be that the winners do not
need to reveal all valuations on losing packages. However, a strong solution
concept is only satisfied if buyer submodularity is given. Clearly, communica-
tion complexity will always remain a stumbling block for any of the theoretical
models in situations with more than a few items only. The assumption of fol-
lowing a straightforward strategy in exponentially many auction rounds only
holds in automated settings with proxy agents. The same is true for the pow-
erset strategy, even if the number of auction rounds is much lower. We address
this issue and the robustness of the efficiency results with respect to deviations
from the powerset strategy in Section 3.4.

Similar to work on NLPPAs, the CC+ auction is, however, of theoretical value
as it shows sufficient rules and assumptions to design an ascending CA that
uses linear ask prices and achieves an efficient outcome with a strong solution
concept for general valuations. This provides a theoretical foundation for CC
auctions.

3.3.3 Alternative Payment Rules

The CC+ auction suffers from some of the problems of the VCG design, in
particular that the outcome might not be in the core (Ausubel and Milgrom,
2006b). In other words, there are some bidders who could make a counteroffer
to the auctioneer that both sides would prefer to the VCG outcome. In such
situations, the auctioneer can increase his sales revenue by excluding certain
bidders, which is also referred to as revenue non-monotonicity. The bidders
could also increase their payoff through shill bidding. These vulnerabilities of
VCG outcomes are considered serious problems for applications in the field.
In some settings, it is sufficient to have a mechanism which is in the core, but
which is as close to incentive compatibility as possible.

Day and Raghavan (2007) have recently suggested bidder-Pareto-optimal
prices in the core as an alternative to VCG prices. An outcome of an auc-
tion is bidder-Pareto-optimal in the core if no Pareto improvement is possible
within the core. This means that if we lower one bidder’s payment, some
other bidder’s payment must increase to remain in the core. Such an outcome
minimizes the total payments within the core.
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Definition 26. (Day and Raghavan, 2007) An outcome is bidder-Pareto-
optimal if there is no other core outcome weakly preferred by every bidder
and strictly preferred by at least one bidder in the winning coalition.

Note that if items are complements, core prices exceed VCG prices strictly.
Day and Milgrom (2007) show that a core-selecting auction provides minimal
incentives for bidders to deviate from truthful reporting, if it chooses a bidder-
Pareto-optimal outcome. Day and Raghavan (2007) also describe a constraint
generation approach that generates bidder-Pareto-optimal core prices rapidly
for sealed bid auctions. The payment scheme minimizes the total availability
of gains from unilateral strategic manipulation. The final bids of each bidder
on all packages in a CC+ auction can also be used to calculate bidder-Pareto-
optimal core prices.

Corollary 3. The CC+ auction with powerset bidders terminates with a core
outcome if it charges bidder-Pareto-optimal prices as payments instead of VCG
prices.

Proof. Since the CC+ auction elicit all valuations from all bidders and the
algorithm from Day and Raghavan (2007) calculates core prices upon the sub-
mitted bids the statement is shown.

Note that even with the weaker partial revelation price update rule, Corollary 3
holds. In contrast to the Clock-Proxy auction (Ausubel et al. (2006)), bidders
in the CC+ auction do not need to type in valuations to a proxy agent after the
CC auction has finished, and the bidder-Pareto-optimal prices are calculated
right away.

3.4 Computational Experiments

Computational experiments provide additional insight and complement the
game theoretical analysis of the first sections. They can show the robustness
of a design against deviations from equilibrium strategies. In the previous
section, we show that the powerset strategy leads to efficiency in the CC+
auction. Powerset bidding is typically not viable for bidders except for small
CAs. So far, only a few papers provide results on individual bidding behavior
in CAs. Scheffel et al. (2011) report that lab subjects submit around 10 to 12
bids per round in linear-price auctions independent of the number of packages
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with a positive valuation. Kagel et al. (2010) report that bidders bid only on
a fraction of the profitable packages in the CC auction. Global bidders bid
between 12 and 14 percent of the profitable packages in one treatment with
six items and 21 to 28 percent in a treatment with four items.

This section describes the results of computational experiments and analyzes
efficiency, revenue, number of auction rounds, and the number of submitted
bids with artificial bidders in the CC and variations of the CC+ auction with
respect to deviations from the powerset strategy. The bidding agents follow
either the straightforward or the powerset strategy, plus we also implement
agents with restrictions on the number of packages submitted in each round.

3.4.1 Experimental Setup

The experimental setup is based on three treatment variables, namely the
auction formats, the value model and the bidding strategy.

3.4.1.1 Auction Formats.

Apart from the CC and the CC+ auction, we analyze iBundle and Clock-Proxy
auction formats in our experiments. Our implementation of iBundle follows the
description in Parkes and Ungar (2000). iBundle is fully efficient given that
bidders follow a straightforward bidding strategy. The Clock-Proxy auction
has been described in (Ausubel et al., 2006). It consists of a CC auction in
the first phase with an XOR bidding language, and a second stage sealed-bid
phase. The second phase is then implemented following the rules of iBundle or
the Ascending Proxy Auction (Ausubel and Milgrom, 2006a), with automated
proxy bidders, who follow a straightforward bidding strategy.

In our implementation, the Clock phase of the Clock-Proxy auction terminates
as soon as there is no overdemand in an auction round any more. In contrast,
the standalone CC auction will not terminate after a round with excess supply.
If the winner determination displaces a bidder who was active in the last round,
the auction continues. The winner determination after the Clock phase of the
Clock-Proxy auction is necessary to determine the minimum bid prices for
proxy bids. These prices are set to the prices of the winning bids of the Clock
phase. All bids submitted in the Clock phase are automatically submitted to
the Proxy phase independent of the prices. Note that we assume, bidders in the
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Proxy phase actually submit bids on all possible packages with a positive payoff
given the Clock prices. This is a very favorable assumption, since we assume
that bidders are restricted in the Clock phase in some treatments. However,
this provides a reasonable upper bound on the efficiency of the Clock-Proxy
auction. Of course, restrictions on the number of package bids submitted will
also hold in the Proxy phase in any but small value models.

3.4.1.2 Value Models.

Since there are hardly any real-world CA data sets available, we base our ex-
periments on synthetic valuations generated with the Combinatorial Auctions
Test Suite (CATS) (Leyton-Brown et al., 2000).

The Transportation value model uses the Paths in Space model from the
CATS. It models a nearly planar transportation graph in Cartesian coordi-
nates, in which each bidder is interested in securing a path between two ran-
domly selected vertices (cities). The items traded are edges (routes) of the
graph. Parameters for the Transportation value model are the number of items
(edges) m and graph density η, which defines an average number of edges per
city, and is used to calculate the number of vertices as (2m)/η. The bidder’s
valuation for a path is defined by the Euclidean distance between two nodes
multiplied by a random number, drawn from a uniform distribution. Con-
sequently only a limited number of packages, which represent paths between
both selected cities, are valuable for the bidder. This allows the consideration
of even larger transportation networks in a reasonable time. In this work we
use a value model with 25 items and 15 bidders. Every bidder has interest in
16 different packages on average.

The Real Estate 3x3 value model is based on the Proximity in Space model
from the CATS. Items sold in the auction are the real estate lots k, which
have valuations v(k) drawn from the same normal distribution for each bidder.
Adjacency relationships between two pieces of land p and q (epq) are created
randomly for all bidders. Edge weights rpq ∈ [0, 1] are then generated for each
bidder, and they are used to determine package valuations of adjacent pieces
of land:

v(S) = (1 +
∑

epq :p,q∈S

rpq)
∑
k∈S

v(k)
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In this work we use the Real Estate 3x3 value model with nine lots for sale.
Individual item valuations have a normal distribution with a mean of 10 and
a variance of 2. There is a 90% probability of a vertical or horizontal edge,
and an 80% probability of a diagonal edge. Edge weights have a mean of 0.5
and a variance of 0.3. All experiments with the Real Estate 3x3 value model
are conducted with five bidders, who are interested in a maximum package
size of 3, because large packages are always valued more highly than small
ones. This is also motivated by real-world observations by An et al. (2005),
in which bidders typically have an upper limit on the number of items they
are interested in. Without this limitation, the auction easily degenerates into
a scenario with a single winner for the package containing all items.

In order to analyze a value model with many items, a very large number of
possible packages for each bidder, and the impact of the threshold problem, we
also use a Real Estate 3x5 value model. This model contains two different
bidder types one big bidder interested in all 15 items, and five smaller bidders.
Each small bidder is interested in a randomly determined preferred item, all
horizontally and vertically adjacent items and the items adjacent to those. This
means that a small bidder is typically interested in six to eleven items with local
proximity to their preferred item. For each bidder we draw the baseline item
valuation vi(k) from a uniform distribution separately. Complementarities oc-
cur upon vertical and horizontal adjacent items based on a logistic function to

determine package valuations: vi(S) =
∑
M∈P

((
1 + a

100(1+eb−|M|)

)
∗
∑
k∈M

vi(k)

)
,

with P being the partition of S containing maximal connected packages M .
For our simulations we choose a = 340 and b = 8 for the big bidder and a = 160
and b = 4 for all small bidders, and draw the baseline valuations for the big
bidder on the range [3, 9] and for the small bidders on the range [3, 20].

The size of a value model describes the number of possible bids which a bidder
can evaluate. While in the Transportation value model bidders are interested
in only 16 packages on average and in the Real Estate 3x3 value model in 129,
small bidders in the Real Estate 3x5 value model are interested in 443 packages
on average and the big bidder is interested in 215 − 1 = 32, 767 packages. We
find that the size of the value model has an impact on the average efficiency
achieved if bidders do not reveal all their valuations throughout the auction,
as is the case with a straightforward strategy in iBundle or a powerset strategy
in the CC+ auction.

Since we find similar results in other models, we concentrate only on the ones
described above for clarity and move the others to Appendix A.1.
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3.4.1.3 Bidding Agents.

In our theoretical analysis, we introduce the straightforward and the powerset
strategies. The powerset bidder evaluates all possible packages in each round,
and submits bids for all packages which are profitable given current prices. In
addition to the powerset bidder, we analyze bidders which are restricted to bid
only on the best six or the best ten packages in each round, similar to bidders in
the lab. These bidders choose those packages with the highest payoff. Inspired
by observations in the lab, we also model a heuristic 5of20 bidder. This
bidder randomly selects five out of his 20 best packages based on his payoff
in a round. This bidder allows the evaluation of the robustness of the auction
against randomness in the bidding strategies.

In contrast, the straightforward bidder only bids on his demand in each
round, i.e., on those package(s) that maximize his payoff given current prices.

3.4.1.4 Treatment Structure

We use a 7×7×5 factorial design (cf. Table 3.7), in which all value models are
analyzed in different auction formats with all of the above bidding strategies.
Each treatment is repeated 50 times with different random seeds for value
models and bidding strategies, resulting in 11,750 auctions. The auctions use
a minimum increment of 1 and the XOR bidding language. The results on the
Transportation large, Pairwise Synergy and Airports value models are moved
to the Appendix A.1.

Value Model Auction Format Bidding Strategy

Transportation CC Straightforward
Real Estate 3x3 CC+ (partial, Core) Heuristic 5 of 20
Real Estate 5x3 CC+ (full, Core) Powerset6

Transportation large (A.1) × CC+ (partial, VCG) × Powerset10
Pairwise Synergy low (A.1) CC+ (full, VCG) Powerset

Pairwise Synergy high (A.1) iBundle
Airports (A.1) Clock-Proxy

Table 3.7: Treatment factors.
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3.4.2 Experimental Results

We present the aggregate results of our computational experiments with the
three different value models1. We evaluate straightforward and powerset bid-
ders, but also bidders following heuristic bidding strategies in order to provide
an indication of the impact of heuristic bidding strategies as they can be found
with human bidders in the lab or in the field on efficiency.

The results are presented in Tables 3.8 to 3.10 and in Appendix A.1. We
measure mean and minimum efficiency, and mean revenue to characterize the
auction outcome. Furthermore, we compare number of rounds and total num-
ber of bids submitted by the bidders. iBundle leads to a very large number of
auction rounds in all but small value models. For the Real Estate 5x3 value
model the computation time was such that only a single auction took over 60
hours and 500 rounds as the winner determination takes increasing amounts
of time. We decided not to report iBundle results on this value model, as such
auctions would not be conducted with human bidders in the field. For similar
reasons we also do not report on the results of the Clock-Proxy auction in
the the Real Estate 5x3 value model, in which essentially the Proxy phase is
equivalent to iBundle with powerset bidders.

Result 1. (Mean efficiency across auction formats and bidder types) The
mean efficiency for the CC and the CC+ auction is higher than 96.9% for
all restricted bidder types (Heuristic 5of20, Powerset6, and Powerset10) and
all tested value models, except the Real Estate 5x3 value model, where the bid-
ders were interested in a very large number of packages. In the Real Estate 5x3
model, the CC and the CC+ auction yielded an average efficiency of 91.9-94%
for restricted bidder types, which is due to the fact that a smaller proportion
of the valuations are elicited in larger value models if bidders are restricted
to less than ten bids per round. If all bidders follow a powerset strategy, the
CC+ auction is almost fully efficient. Small inefficiencies of < 0.3% in some
cases are due to the minimum bid increment. With an ε bid increment and
m items, the outcome of a CC+ auction without last-and-final bids can be
(m − 1)ε away from full efficiency. An unrestricted powerset strategy in the
CC auction leads to 96.8% efficiency on average for all value models that we
analyzed, illustrating the robustness of this simple auction format.

1We applied the nonparametric Wilcoxon rank sum test for testing the difference between
the treatments: ∼ is used to indicate an insignificant order, �∗ indicates significance at the
10% level, �∗∗ indicates significance at the 5% level, and �∗∗∗ indicates significance at the
1% level.
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hhhhhhhhhhhhhhhMeasure

Bidder Type

Straightforward 5of20 Powerset6 Powerset10 Powerset

Mean Efficiency in % CC 99.48 97.02 97.38 96.96 96.83
CC+ (partial) 99.52 99.87 99.86 99.85 99.92
CC+ (full) 99.62 99.88 99.84 99.87 99.93
iBundle 100.00 93.74 97.54 97.89 97.22
Clock-Proxy 99.96 99.93 99.95 99.95 99.96

Min. Efficiency in % CC 94.81 84.65 86.71 83.22 83.15
CC+ (partial) 94.81 96.69 96.69 96.69 98.60
CC+ (full) 94.81 96.69 96.69 96.69 98.60
iBundle 100.00 74.72 85.71 89.44 74.56
Clock-Proxy 97.90 98.60 98.60 98.60 99.48

Mean Rounds CC 29.10 25.36 25.22 25.10 24.96
CC+ (partial) 29.04 31.22 31.40 31.10 30.90
CC+ (full) 44.78 37.80 37.94 37.50 37.26
iBundle 77.08 277.84 193.48 130.44 75.86
Clock-Proxy∗ 24.24 23.54 23.30 23.30 23.02

Mean # of Bids CC 295.18 452.50 479.92 562.50 805.88
CC+ (partial) 295.12 475.72 505.56 586.30 828.92
CC+ (full) 332.88 471.36 501.08 582.22 825.44
iBundle 7785.48 5791.42 5051.68 4941.52 6440.32

Mean Revenue in % CC 69.43 83.74 83.30 84.23 84.30
CC+ (partial, Core) 55.34 58.80 58.23 58.67 58.77
CC+ (full, Core) 55.02 56.31 55.83 56.33 56.31
CC+ (partial, VCG) 49.19 52.77 52.64 52.78 52.76
CC+ (full, VCG) 46.32 47.29 46.87 47.41 47.40
iBundle 59.58 56.01 53.84 54.18 54.14
Clock-Proxy 58.74 58.42 58.40 58.40 58.24

Table 3.8: Transportation with 25 items and 15 bidders (VCG bidder gain 37.25%).
*Clock-Phase only.

hhhhhhhhhhhhhhhMeasure

Bidder Type

Straightforward 5of20 Powerset6 Powerset10 Powerset

Mean Efficiency in % CC 96.52 98.00 96.99 97.97 99.03
CC+ (partial) 96.37 99.04 97.47 98.15 100.00
CC+ (full) 96.47 99.04 97.47 98.15 100.00
iBundle 100.00 93.92 98.91 99.30 43.02
Clock-Proxy 97.87 99.16 98.35 98.35 100.00

Min. Efficiency in % CC 71.85 85.63 80.64 75.18 90.02
CC+ (partial) 71.85 93.17 80.64 75.18 99.90
CC+ (full) 71.85 93.17 75.18 75.18 99.90
iBundle 100.00 81.05 92.74 96.04 14.40
Clock-Proxy 71.85 93.17 75.18 75.18 99.95

Mean Rounds CC 288.44 270.04 269.88 268.44 264.36
CC+ (partial) 291.44 293.64 295.10 291.70 287.38
CC+ (full) 329.02 299.14 300.00 295.72 294.82
iBundle 1537.18 19951.04 16176.36 9756.16 1.00
Clock-Proxy∗ 274.76 268.42 264.26 264.26 263.24

Mean # of Bids CC 1914.74 5421.78 6397.74 10061.70 80269.48
CC+ (partial) 1922.86 5484.46 6467.54 10127.52 80337.72
CC+ (full) 1995.94 5484.72 6465.74 10126.56 80340.70
iBundle 484560.06 452946.94 4022475.72 414268.22 645.00

Mean Revenue in % CC 87.12 96.02 94.38 95.71 97.07
CC+ (partial, Core) 68.02 84.20 75.40 82.21 86.60
CC+ (full, Core) 67.80 83.46 74.77 81.56 85.91
CC+ (partial, VCG) 56.68 82.98 71.87 80.45 85.89
CC+ (full, VCG) 55.84 81.52 70.55 79.45 84.79
iBundle 86.07 81.46 83.72 84.14 0.00
Clock-Proxy 73.60 83.49 82.00 82.00 85.92

Table 3.9: Real Estate 3x3 with 9 items and 5 bidders (VCG bidder gain 15.31%).
*Clock-Phase only.

iBundle achieves full efficiency with straightforward bidders as predicted by the
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hhhhhhhhhhhhhhhMeasure

Bidder Type

Straightforward 5of20 Powerset6 Powerset10 Powerset

Mean Efficiency in % CC 83.01 93.80 90.19 92.09 99.29
CC+ (partial) 83.17 93.93 90.09 91.93 99.87
CC+ (full) 83.09 93.90 90.09 91.93 99.86

Min. Efficiency in % CC 60.78 74.32 74.32 74.32 89.61
CC+ (partial) 60.78 74.32 74.32 74.32 99.07
CC+ (full) 60.78 74.32 74.32 74.32 99.07

Mean Rounds CC 42.34 40.98 40.04 39.58 38.40
CC+ (partial) 42.62 42.64 43.10 42.78 42.58
CC+ (full) 44.70 43.36 43.66 43.40 43.06

Mean # of Bids CC 247.74 919.22 1099.54 1780.52 368823.10
CC+ (partial) 248.10 929.68 1109.38 1795.28 369040.14
CC+ (full) 251.16 929.74 1109.30 1795.32 369040.14

Mean Revenue in % CC 78.79 89.67 85.94 88.29 96.93
CC+ (partial, Core) 64.93 77.47 74.09 76.86 87.50
CC+ (full, Core) 64.75 77.36 73.99 76.76 87.35
CC+ (partial, VCG) 59.49 70.16 67.88 70.41 84.23
CC+ (full, VCG) 58.25 69.90 67.82 70.23 83.89

Table 3.10: Real Estate 5x3 with 15 items and 5+1 bidders (VCG bidder gain
15.5%).

theory. With heuristic 5of20, powerset6, and powerset10 bidders the average
efficiency results are in most instances significantly worse, but in the Real
Estate 3x3 value model also better than the CC+ auction for Powerset6 and
Powerset10 bidders.

The Clock-Proxy auction achieves the highest levels of efficiency regardless of
the bidding strategy. This is due to the fact that that the bidding agents were not
restricted in the Proxy phase and submitted bids on all packages, for which their
valuation exceeded the ask prices of the Clock phase. Not only that the second
core-selecting Proxy phase requires an elaborate software infrastructure, bidders
in the field are not likely to submit as many bids in the second phase, for the
same reasons as we assumed restricted bidding in the Clock phase. The reason
that the Clock-Proxy auction was not 100% efficient is that bidders cannot
submit bids on all possible packages, but just on those where the valuation is
higher than the bid price in the last clock round. Note that the efficiency gains
over the CC+ auction were small. We did not report on experiments with
restricted bidders in the Proxy phase, because this would require additional
assumptions. However, if we enforced also strong restrictions in the Proxy
phase, the efficiency of the Clock-Proxy auction was at or below the level of
the CC+ auction.

In the following, we refer to the Real Estate 5x3 value model as a large value
model, because bidders are interested in 443 or even 32,767 packages. All other
value models are referred to as small. Note that in realistic applications, we do
not expect bidders to have several hundred or thousands of positive valuations
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for packages, and the ”small” value models describe realistic problem sizes
with up to 129 packages with a positive valuation. Note that we do not report
on iBundle and the Clock-Proxy auction for the large Real Estate 5x3 value
model, because the computation time for the proxy phase of this large value
model exceeded several days for a single auction.

Result 2. (Efficiency of the CC and the CC+ auction in small and large
value models) In the small value models, the CC+ auction achieves signifi-
cantly higher efficiency than the CC auction (CC+ �∗∗∗ CC or CC+ �∗∗ CC,
depending on the value model and on the type of the powerset bidder). In
the large RealEstate 5x3 value model with powerset bidders, the CC+ auction
has significantly higher efficiency (CC+ �∗∗∗ CC), but there are no significant
differences for restricted bidding strategies.

In small value models, powerset6 and powerset10 bidders reveal a larger pro-
portion of their valuations, which has a positive effect on the efficiency. In the
larger RealEstate 5x3 value model, a smaller proportion of the valuations are
revealed in each round and the advantages of the CC+ auction compared to
the CC auction vanish. Note that even for such a large value model, the mean
efficiency is around 92% even for powerset bidders, who are restricted to six
or ten bids per round, and almost 94% for heuristic 5of20 bidders.

From our theoretical treatment, we know that the efficiency of the CC auction
can be almost 0% in the worst case. In the following, we take a look at the
lowest efficiency, which has been achieved in experiments with different CATS
value models.

Result 3. (Minimum efficiency for restricted and unrestricted powerset bid-
ders) In Airport, Transportation and Pairwise Synergy value models, the CC
auction and iBundle have significantly lower minimum efficiency than the CC+
auction for restricted and unrestricted powerset bidders (see also Appendix
A.1). In the Real Estate 3x3 and 5x3 value models, the minimum efficiency
goes down to 74% for restricted bidders. With powerset bidders, the mini-
mum efficiency in the CC auction, was always significantly lower than in the
CC+ auction which was almost fully efficient also in the worst case (CC+ �∗∗∗
CC). Despite straightforward bidding strategies in some value models, in which
the Clock-Proxy auction outperforms the CC+ auction, minimum efficiency is
similiar in both auction formats.

Result 4. (Number of rounds and bids) The difference in the number of rounds
and bids between CC and CC+ is always significant (CC+ �∗∗∗ CC ), but
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rather small. Note that the number of rounds of a CC+ auction with full rev-
elation price update rule is not necessarily higher than in the CC+ auction
with a partial revelation price update rule, since prices on more items are in-
creased by the CC+ auction with full revelation price update rule. The number
of rounds in iBundle is orders of magnitude higher than in the CC or the CC+
auction. With powerset bidders iBundle terminates prematurely due to the ter-
mination rule, which can result in low revenue and number of rounds, as for
example in the Real Estate 3x3 value model. In this value model, there were
several thousand auction rounds in iBundle. The rounds of the Clock-Proxy
auction were below that of the CC auction, because the auction stops as soon
as there is no overdemand on any of the items. The statistic does not reflect
the number of rounds in the Proxy phase.

We always used a minimum bid increment of 1. Clearly, the number of auction
rounds can be decreased by increasing the bid increment, but at the expense
of efficiency. Note that the valuations in the Real Estate 3x3 value model
were determined in a very different way to the Real Estate 5x3 model, as was
explained in Section 3.4.1. The valuations for items and packages were on
different levels, leading to a different number of auction rounds and a different
number of bids submitted.

Result 5. (Average revenue) The average auctioneer revenue is the highest
in the CC auction and decreases significantly with the introduction of bidder-
Pareto-optimal core prices and even more so with VCG prices (CC �∗∗∗ CC+
(Core) �∗∗∗ CC+ (VCG)). The revenue of iBundle with straightforward bidders
is significantly higher than that of the CC+ auction with powerset bidders and a
VCG rule. The revenue generated by the Clock-Proxy auction is similar to that
of the CC+ auction with bidder optimal core prices, except from straightforward
bidding agents, where the Clock-Proxy auction achieves higher revenue.

Note that iBundle is always in the core with straightforward bidders, while the
VCG mechanism is not, which can lead to lower revenue if valuations are not
buyer submodular.

Result 6. (iBundle) iBundle needs significantly more rounds and bids per
auction than the CC and CC+ auction. But the auctions achieve high levels
of efficiency and revenue on average regardless of the bidder types. However
the outliers are much more and bigger, which makes the auction outcome less
predictable.
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3.4.3 Summary

As theory predicts, iBundle is fully efficient in the computational experiments
with straightforward bidders, and so is the CC+ auction with powerset bidders.
This full efficiency comes at a cost in both auction formats. The number of
auction rounds in the CC+ auction is only slightly increased compared to the
CC auction, but the number of bids submitted by powerset bidders was much
higher, in particular with the large Real Estate 5x3 value model. Note that the
number of bids revealed in iBundle with straightforward bidders was an order
of magnitude higher than the number of bids submitted by a fully efficient
CC+ auction with powerset bidders in all value models. For example, in the
Transportation value model, the fully efficient CC+ auction led to 825.44 bids
on average, whereas iBundle led to 7785.48 bids. This was even worse in the
case of the Real Estate 3x3 value model (80,340.70 in CC+ vs. 484,560.00
bids on average in iBundle), and the Real Estate 5x3 value model, where more
than 4.8 million bids were submitted in the experiments that we run.

If bidders are not able to follow such equilibrium strategies, either for the
number of rounds or the number of bids that need to be submitted, and are
restricted in the number of bids submitted in each round, full efficiency can
no longer be guaranteed. To gain an understanding of how such restrictions
impact the efficiency, we have run simulations with the heuristic 5of20, power-
set6, and powerset10 bidders. Interestingly, the auctions still yield fairly high
levels of efficiency on average, mostly higher than 90%. Note, however, that
the number of rounds and the number of bids submitted in iBundle is much
higher than in the CC or the CC+ auctions. In most applications with hu-
man bidders, more than fifty auction rounds would not be acceptable, and the
auctioneer would have to increase the minimum bid increment significantly in
iBundle, which can lead to additional inefficiencies. The Clock-Proxy auction
yielded higher levels of efficiency, but only under the assumption that bid-
ders submitted bids on all packages with positive payoff in the second phase.
In the field, bidders will likely bid on a subset of these packages. We found
that in simulations where the restrictions of the Clock phase also hold in the
Proxy phase, the efficiency of the CC+ auction was higher than that of the
Clock-Proxy auction.
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3.5 Conclusion on CC

Combinatorial auctions have led to a substantial amount of research and found
a number of applications in high-stakes auctions for industrial procurement,
logistics, energy trading, and the sale of spectrum licenses. Anonymous linear
ask prices are very desirable and sometimes even essential for many of these
applications (Meeus et al., 2009). Unfortunately, Walrasian equilibria with
linear prices are only possible for restricted valuations. Already Kelso and
Crawford (1982) showed that the ”goods are substitutes” property (aka gross
substitutes) is a sufficient and an almost necessary condition for the existence
of linear competitive equilibrium prices. Later, Gul and Stacchetti (2000)
found that even if bidders’ valuation functions satisfy the restrictive ”goods are
substitutes” condition, no ascending VCG auction exists that uses anonymous
linear prices. Bikhchandani and Ostroy (2002) show that personalized non-
linear competitive equilibrium prices always exist. Several auction designs are
based on these fundamental theoretical results and use non-linear personalized
prices. While these NLPPAs achieve efficiency, they only satisfy an ex-post
equilibrium if the valuations meet buyer submodularity conditions, and they
lead to a very large number of auction rounds requiring bidders to follow the
straightforward strategy throughout.

These theoretical results assume ask prices throughout the auction to be equiv-
alent to the final competitive equilibrium prices and the payments of bidders.
The CC auction differentiates, which is also a way around the negative the-
oretical results. Still, the CC auction (Porter et al., 2003) cannot be fully
efficient. We provide worst-case bounds on the efficiency of the CC auction
with straightforward bidders, and propose an extension of the CC auction, the
CC+ auction design, which achieves full efficiency with bidders following a
powerset strategy. This design modifies the price update rule of the CC auc-
tion and adds a VCG payment rule. We show that with such a VCG payment
rule, a powerset strategy leads even to an ex-post equilibrium. Note that there
are no restrictions on the type of valuations of bidders, which is important for
any application. The discussion also shows that the number of ask prices that
need to be communicated by the auctioneer, as well as the number of bids
required by bidders, is significantly lower than in NLPPAs.

Clearly, a powerset strategy is prohibitive for any but small combinatorial
auctions and some other auction rules of the CC+ auction are impractical
for real world applications. Actually, the CC+ auction is almost equivalent
to a VCG auction, except that bidders learn the highest valuations of items
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throughout the auction, which they do not in a sealed-bid auction. Since
the CC+ auction is iterative, however, we step back from dominant strategies
and limit ourselves to an ex-post equilibrium. This is in line with previous
results on the VCG auction (Green and Laffont, 1979; Holmstrom, 1979), which
show that any efficient mechanism with the dominant strategy property are
equivalent to the VCG mechanism, always leading to identical equilibrium
outcomes. Later, Williams (1999) found that all Bayesian mechanisms that
yield efficient equilibrium outcomes and in which losers have zero payoffs lead
to the same expected equilibrium payments as the VCG mechanism. So it is
not surprising that the CC+ auction also uses a VCG payment rule to satisfy
an ex-post equilibrium.

The CC+ auction is of theoretical and practical relevance. We show that with
a simple change in the price update rule, the efficiency of the CC auction can
be increased. From a theoretical point of view, we show under which conditions
full efficiency with a strong solution concept for general valuations is possible
with a clock auction. This helps understand possible sources of inefficiency
in the field. We ran sensitivity analysis to investigate how robust the CC+
auction is against deviations from the equilibrium strategies. Interestingly,
even if the number of bids submitted in each round is severely restricted or
bidders heuristically select some of their ”best” bids in each round, both the
CC and the CC+ auction achieve very high efficiency levels. The results also
explain some of the high efficiency and robustness results of the CC auctions in
the lab. However, we also show that the efficiency decreases with an increase
in the number of packages of interest to bidders, which can be explained by
communication complexity being a fundamental problem in all combinatorial
auctions (Nisan and Segal, 2001).

Apart from the CC auction, some authors suggested CAs with pseudo-dual
linear prices (Bichler et al., 2009; Kwasnica et al., 2005). Such prices are
determined based on the restricted dual of the linear programming relaxation
of the winner determination problem. As of yet, there is no formal equilibrium
analysis for these auction formats, and the complicated price calculation would
make such an analysis very challenging. Note that the efficiency of the CC
auction in the simulations in Bichler et al. (2009) was close to the best auction
formats with pseudo-dual linear prices.
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PAUSE

A major issue of many CAs is the requirement to optimally solve the NP-hard
CAP. To release a centralized auctioneer from that computational burden he
can shift it to the bidders. One of the few discussed decentralized CAs is
PAUSE, in which bidders suggest new allocations to the auctioneer. In our
theoretical analysis we examine the bidders’ bid complexity and determine a
worst case bound concerning efficiency, if bidders follow a profit maximizing
strategy. Based on these results we conduct computational experiments with
different bidding and computation strategies, and analyze their impact on effi-
ciency, auctioneer’s revenue and auction runtime. Surprisingly, even if agents
deviate from the optimal bid price calculation, PAUSE still achieves high lev-
els of efficiency and auctioneer’s revenue compared to the Combinatorial Clock
auction.

4.1 The PAUSE Auction

Decentralizing the CAP is the approach of the Progressive Adaptive User
Selection Environment (PAUSE) auction proposed by Kelly and Steinberg
(2000). In PAUSE bidders submit not only their own bids, the desired packages
of items and the price, but have to propose a new allocation including their
new bids and existing bids, being better than the current provisional allocation.
Checking bid validity and publishing accepted bids remains the auctioneer’s
only tasks. Another simplification for the auctioneer is that there is no need
for a price calculation mechanism in the iterative process like in most other
ICAs.
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PAUSE especially concentrates on achieving the following properties: It should
permit bidders to submit any combinatorial bid they choose (fully combina-
torial) and allow losing bidders to clearly see why they lost (transparent).
Furthermore it should allow the auctioneer to determine the winner easily for
auctions of any size and achieve high auctioneer payoffs. It should also prevent
jump bidding and mitigate the threshold problem.

Definition 27 (Composite Bid). A composite bid (denoted by XCB) is a set
of disjoint package bids (including bidder’s own bids) that covers all items in
the auction, but can include prior bids by any of the bidders. However, prior
bids by another bidder j that are included in the composite bid of bidder i must
have been submitted by j during a single round of the auction. The bid price
p(XCB) of a composite bid is the sum of its package bid prices.

A composite bid consists of the following informations that are registered in a
database; the database is accessible to all bidders:

• the total bid price of the composite bid;

• for each package bid in the composite bid:

– the price of the package bid;

– the identity of the bidder of the package bid;

– the specification of the package viz. the items that make up the
package;

In general a bidder has positive valuations on only a subset of items in the
auction - and in any given round, he is interested perhaps only in a subset
of these. However, for the items he has no interest on, the bidder fills his
composite bid by using prior bids by any of the bidders.
The following example illustrates how composite bids are build. Lets assume
there are five items in the auction, (A), (B), (C), (D), (E) where Stage 1 ended
with a bid of 2 on each item by bidders 1, 2, 3, 4, 5 respectively; thus with a
revenue to the auctioneer from these five bids totaling 10. In stage 2 composite
bids have to be submitted with package sizes up to two items. Bidder 1 has a
high valuation for the package (AD), and submits a composite bid consisting
his own bid of b1(AD) = 10 on the package (AD), together with the prior bids
of 2 each on (B), (C), and (E) from bidders 2, 3, and 5, with revenue to the
auctioneer of p(XCB) = [10 + 2 + 2 + 2] = 16 from bidder 1’s composite bid.
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In the subsequent round bidder 2 forms a composite bid, including a bid from
himself of b2(BC) = 8 on the package (BC), together with previous bids. Here
he has two possibilities to fill his own bid with (A), (D) and (E). Either he
takes the prior bids of 2 on each item from bidders 1, 4, and 5 or the bids of 10
on (AD) and 2 on (E) from bidders 1 and 5. The second possibility produces
the higher revenue to the auctioneer of p(XCB) = [8 + 10 + 2] = 20 comparing
to Π(X̂,P) = [8 + 2 + 2 + 2] = 14 taking the first possibility.
In PAUSE only the second possibility is available since a monotonic increase
of the value of a composite bid is requested [14 6> 16].

Definition 28 (Validity of a Composite Bid). A composite bid is valid if the
following properties hold:

1. The composite bid is a collection of disjoint package bids covering all
items in the auction.

2. The value of the composite bid is increased by at least the minimum
increment ε but no more than 2ε.

Definition 29 (A Round in the PAUSE Auction Format). In each round all
valid composite bids are registered in the database and the highest composite
bid is accepted by the auctioneer (aka winning composite bid). A round ends
when bidding ends.

PAUSE is a multi-round, multi-stage CA decentralizing the CAP. A PAUSE
auction with m items has m stages.

Stage 1 consists of a SAA (cf Section 2.5.5) on all items. During this stage
bidders can only place individual bids on items - no package bidding is al-
lowed. The stage ends when bidding ends and the auctioneer determines the
provisional allocation by simply choosing the best bid on every item.

In each round of a successive stage h = 2, 3, . . . ,m a bidder participate in
an ascending price auction and is required to submit a composite bid, which
covers all items and includes only disjoint package bids each of maximum
cardinality of h. Bidders are allowed to use bids that other agents have placed
in previous rounds. For each new package bid in a composite bid, the bidder
has to outbid the currently winning composite bid by at least ε. After each
round the auctioneer declares the highest composite bid as the provisional
allocation and registers the highest submitted package bids in the database. A
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Data: item bids bi(k) and composite bids XCB
i

Result: allocation X and prices bi(X i)
initialization

for k=1 to m do bk ← 0
for i=1 to n do Xi ← ∅

stage 1: SAA
repeat

for i=1 to n do
bidders submit bids bi(k)

for k=1 to m do
bk ← maxi bk

V ←
∑

k bk
S ← (bk=S, i)

until no new bids
stage h ≥ 1

for h=2 to m do
repeat

for i=1 to n do
bidders submit composite bids XCB

i

auctioneer checks bid validity:
if ∃k /∈ XCB

i then exit iteration
else if b(S), b(T ) ∈ XCB

i : S ∩ T 6= ∅ then exit iteration
else if b(S) ∈ XCB

i : |S| > h then exit iteration
else if XCB

i includes non-exisiting bids of other bidders then
exit iteration
else if p(XCB) < V + ε then exit iteration
else if p(XCB) > V + 2ε then exit iteration
else V ← max{p(XCB), V }
X ← argmaxXCB

i
V

S ← (bS, i)
until no new bids

Algorithm 3: PAUSE auction.

stage ends when bidding finishes. At the end of each stage h, all agents know
the best bid for every subset of size h or less so far.

For our theoretical analysis we assume bidders follow a straightforward strat-
egy, by bidding on the package which yields the highest possible payoff at cur-
rent prices. Since there is no known equilibrium bidding strategy in PAUSE
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this assumption is justified by the typical use in game theoretical analysis and
as it seems natural since bidders reveal as little information as possible keep-
ing the chance for high profits. We assume further that the straightforward
bidders do not consider a combination of their package bids, since they are
able to bid on those combinations in a single package bid in later stages, thus
avoiding a possible exposure problem, which would leave a bidder winning a
package of items at prices he is not willing pay.

4.1.1 Rationality for Multiple Stages

The idea might arise that all stages h < m are just for transparency and to
simplify the auction for the bidder.
The following example clarifies the opposite.

Example 6. : K = (A,B) and I = (1, 2)

A B AB
v1 5 10∗ 16
v2 10∗ 5 16

Table 4.1: Rationality for multiple stages.

If the auction would start in stage 2 both bidders would only bid on the
package (AB), since that would maximize their payoff and at the end one
bidder would receive it by paying pi(AB) = 16. But it is obvious, that the
efficient allocation indicated by the * would be achieved, if PAUSE starts
with Stage 1 and bidders are incentivized to participate in every stage. To
achieve this aim strict eligibility rules are necessary.

Using this restriction of the size of packages in every stage PAUSE partly
solves the efficiency problem of the CC auction with demand masking sets of
valuations. Still this problem can also arise in PAUSE (cf Section 4.1.3).

Another thought might be why is it necessary to allow bidders in stgae h also
to bid on packages that are of size smaller than h.
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Conjecture 1. It is necessary to allow bidders to bid in Stage h on packages
S with |S| < h.

Example 7. Suppose bidder i has at the end of stage 2 the highest bid on
package (AB). In stage 3 bidder j bids on (ABC) and the package is part of
the current winning composite bid. Since bidder i still demands (AB) he must
be able to increase his bid on this package.

4.1.2 Bidder Complexity

Each bidder i has a demand set:

Di,h :=

{
S : vi (S) ≥ max

j
bj (S) , i 6= j ∧ |S| ≤ h

}
(4.1)

A demand set contains all packages S for which bidder i has a higher valuation
than the price of the current highest bid from another bidder j (maxj bj (S))
and the cardinality of S must not be greater than h. If bidders want to
determine the ask price for a package S, they have to calculate the price
(p
(
XCS (S)

)
) of a set of complement disjoint bids, not overlapping with S

and covering all items in K\S.

Kelly and Steinberg (2000) designed PAUSE under the premises of an OR-
bidding language, meaning a bidder can win more than just one of his bids,
and super-additive valuation functions. We adopted these assumptions in our
analysis of the Bid Determination Problem (BDP) and the worst case efficiency
bound.

Definition 30. The Bid Determination Problem: To maximize bidder i’s cur-
rent payoff πi ∈ R+

0 , he has to bid on the package(s) S determined by:

max
S∈Di,h

(
vi (S)− p

(
XCB

)
+ p

(
XCS (S)

)
− ε
)
≥ πi (4.2)

The inequation ensures that bidder i bids on package(s) S only, if the prospec-
tive payoff will not be less than his current payoff. The optimal determination
of p

(
XCS(S)

)
isNP-hard, as it is a CAP on the complementary set, which has

to be calculated for every package S ∈ Di,h to determine the straightforward
bid.
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4.1.3 Efficiency

The efficiency of PAUSE can be as low as 0% if bidders bid straightforward.

Consider a special case of a demand masking set of bidder valuations: For
each item, there is one bidder. Each i-th bidder values the big package which
contains all items with VK and the i-th single item with V . All other package
valuations are zero. We set mV > VK > V so that at the efficient allocation
every bidder wins a single item.

item i K item i′ 6= i
i-th bidder V VK 0

Table 4.2: Special case of a demand masking set of bidder valuations.

The following example in Table 4.3 shows a demand masking set of valuations
of bidders in I = {1, 2} for the items in K = {1, 2} and sketches the PAUSE
auction process with straightforward bidders. PAUSE does not achieve the
efficient allocation indicated by the asterisks, but terminates with 51.5% effi-
ciency.

1 2 1, 2 p(XCB) π1 π2

v1 100∗ 0 103
v2 0 100∗ 103

Stage1 11 12 0 2 99 99
Stage2 0 0 31 3 100 0

0 0 42 4 0 99
...

Termination 1031 103 0 0

Table 4.3: Bidders’ valuations and auction process - an example of low efficiency in
PAUSE.

Theorem 12. PAUSE terminates with an allocation that is at least 1/m effi-
cient, if all bidders follow the straightforward strategy and have super-additive
valuations.

Proof : The proof leans towards the example in Table 4.3. Given the premises
stated in the theorem, inefficiencies can only occur in PAUSE, if the auction
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terminates allocating big packages, although disjoint subsets of them would
support the efficient allocation.

Lets assume stage 1 terminates with bids

bi(i) = maxi 6=j vj(i) + ε ∀i ∈ I (4.3)

W.l.o.g. these bids can be considered to support the efficient allocation. The
current auctioneers revenue Πh=1 would be

∑
i bi(i).

In order to terminate with another allocation we demand no improvement on
any of these individual bids. That means once any of these bids pi(i) /∈ XCB ⇒
∃S ∈ K which applies to

vi(S)− (p(XCB)) > vi(i)− (p(XCB)− p(XCS(i)))
∧ |S| ≤ h

(4.4)

i.e. bidder i has a better alternative than bidding on the individual item i once
his provisional payoff drops to zero.

If vi(S) is part of the final allocation, we want p(XCS(S)) to be as small as
possible considering the worst case. Thus we determine S = K. That means
as long as h < m every bid bi(i) for all i is part of the composite bid, which
further means that no new bids are submitted before stage m. In stage m the
following must apply:

∃i ∈ I with vi(S)− (Πm) > πi (4.5)

Since in this case bidder i bids on the package S, all other bidders j ∈ I\ {i}
have a current payoff πj = 0 and thus also the following inequation must hold:

vj(S)− (Πm + ε) > vj(j)− (bj(j) + p(XCS(j)))∀j 6= i (4.6)

Efficiency is then calculated by

E(XCB) = maxi vi(S)∑
i vi(i)

(4.7)

To determine the worst case efficiency we need to minimize the numerator and
maximize the denominator. Thus we can determine w.l.o.g. v(S) = vi(S) and
v(i) = vi(j)∀i.
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Since the most strict condition on vi(S) is

vi(S) >
∑

j bj(j) + vi(i)− bi(i) + ε (4.8)

the worst case efficiency results in:

minv E(XCB) = minv
vi(S)∑
i vi(i)

ε=1︷︸︸︷
= m+v(i)+1

m·v(i)
v(i)→∞︷︸︸︷

= 1
m

(4.9)

Note assuming a bid increment ε = 1 the equations 4.9 only apply if the
valuation v(i) is sufficiently large, i.e. depending on m this valuation must be
greater than 2 or 1 respectively. �

While such situations which lead to 1/m efficiency can be considered degener-
ated cases that will not happen too often in practice, it is very likely to achieve
high efficiency on average with more realistic value models.

4.2 The PAUSE+ Auction

PAUSE with straightforward bidders is obviously not efficient. But it needs
only a slight modification concerning the requirements of the composite bids in
order to gain provable full efficiency with straightforward bidding. If bidders
need not to outbid the current composite bid in order to get their own bids
transferred to the database the PAUSE auction reduces to a special kind of
iBundle. In other words bidder may submit an invalid composite bid but
made of valid bids on each package, i.e. higher than the incumbent bid on
each package. This basically means that each of the bidder in turn submits
his composite bid and the database is updated with all valid package bids
from among all these bids submitted and then the composite bid is checked for
validity by the auctioneer and if valid becomes the new provisional allocation
if its total price is higher than the current allocation. With this relaxation we
call the new auction format PAUSE+.

The implications of the new rule are that straightforward bidders do not only
maximize their potential payoff considering their composite bid but also based
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Data: item bids bi(k) and composite bids XCB
i

Result: allocation X and prices bi(X i)
initialization

for k=1 to m do bk ← 0
for i=1 to n do Xi ← ∅

stage 1: SAA
repeat

for i=1 to n do
bidders submit bids bi(k)

for k=1 to m do
bk ← maxi bk

V ←
∑

k bk
S ← (βk=S, i)

until no new bids
stage h ≥ 1

for h=2 to m do
repeat

for i=1 to n do
bidders submit composite bids XCB

i

auctioneer checks bid validity:
if ∃k /∈ XCB

i then exit iteration
else if b(S), b(T ) ∈ XCB

i : S ∩ T 6= ∅ then exit iteration
else if b(S) ∈ XCB

i : |S| > h then exit iteration
else if XCB

i includes non-exisiting bids of other bidders then
exit iteration
else if p(XCB) < V + ε then continue
else if p(XCB) > V + 2ε then continue
else V ← max{p(XCB), V }
X ← argmaxXCB

i
V

S ← (bS, i)
until no new bids

Algorithm 4: PAUSE+ auction; differences to PAUSE are underlined.

on their single package, i.e. straightforward bidders have to compare their
potential payoff by their bids in the database with the potential payoff resulting
from outbidding the highest package bids in the database.

Theorem 13. If bidders with super-additive valuation functions following the
straightforward strategy in PAUSE+ and at least the last composite bid is op-
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timal concerning efficiency given the bids in the database then the auction
terminates with the efficient solution.

Proof. Given the new rule PAUSE+ reduces to iBundle except from the re-
striction of each stage. That means that in every stage PAUSE+ collects all
necessary bids to allocate the items efficiently considering only the allowed
package size of that stage. Since this statement applies also to the last stage
and bidder valuations are super-additive it applies to the whole auction.

Since iBundle is already impractical for real world settings except for very
small settings PAUSE+ becomes even more impractical due to the m stages.
Because of this argument and the fact that PAUSE+ gives up some of the nice
characteristics of PAUSE (e.g. to be an ascending auction) we intentionally did
not implement that version for the analysis in our computational experiments.

4.3 Computational Experiments

To analyze the impact of our theoretical results on the outcome of the PAUSE
auction in realistic settings, we conduct computational simulations, which con-
sists of three main components. A value model, which defines valuations of all
packages for each bidder, auction formats, which define the rules, and bidding
agents, who follow certain strategies.

4.3.1 Value Model

We use a 3 x 6 Real Estate value model that is based on the Proximity in
Space model from the Combinatorial Auction Test Suite (CATS) in Leyton-
Brown et al. (2000). Our model contains two different bidder types, one big
(national) bidder, interested in all items, and five smaller (regional) bidders.
Each small bidder is interested in a randomly determined preferred item, all
horizontal and vertical neighbors and their respective neighbors. This means
small bidders are interested in 6 to 11 items with local proximity to their
preferred item. Two examples are shown in Table 4.4, in which the preferred
items of small bidders are Q and K, and all gray shaded items in the proximity
of the preferred item have a positive valuation.
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A B C D E F
G H I J K L
M N O P Q* R

A B C D E F
G H I J K* L
M N O P Q R

Table 4.4: Examples of preferred items Q and K of two small bidders. All their
positive valued items are shaded.

Figure 4.1: Functions for calculating their complementarities of the small
(regional) and the big (national) bidders.

For each bidder we draw the baseline item valuation vi(k) from a uniform
distribution separately. We assume that bidders experience only low comple-
mentarities on small packages, but complementarities increase heavily with a
certain amount of adjacent items. We further assume that adding items to
already large packages do not increase the complementarities anymore. The
explanation for these assumptions is the lack of economies of scale with small
packages and a saturation of this effect with larger packages. Therefore, com-
plementarities arise based on a logistic function, which assigns a higher value to
larger packages than to smaller ones. Complementarities occur upon vertical
and horizontal adjacent items based on a logistic function to determine pack-

age valuations: vi(S) =
∑
M∈P

((
1 + a

100(1+eb−|M|)

)
∗
∑
k∈M

vi(k)

)
, with P being

the partition of S containing maximal connected packages M . This comple-
mentarity structure takes the lack of economies of scale with small packages
and a saturation effect with larger packages into account. For our experiments
we choose a = 320 and b = 10 for the big bidder and a = 160 and b = 4 for
all small bidders, and draw the baseline valuations for the big bidder on the
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range [3, 9] and for the small bidders on the range [3, 20].

4.3.2 Auction Formats

We analyze two different auction formats in our economic environment. The
PAUSE auction, as described in Section 4.1 with a minimum increment of 3
and the CC auction as described in Chapter 3.

4.3.3 Bidding Agents

In PAUSE we use two different bidding strategies and two different approaches
to determine the bid price. As introduced in Section 4.1 we implement the
straightforward (BR) bidding strategy, and a Greedy bidding strategy that
allows the agents to reduce their demand set to one package calculated by
max(vi(S)/|S|),∀S ∈ Dh,i in every stage. As shown by our theoretical analysis
the optimal calculation of the corresponding complement set XCS (S) is NP-
hard, therefore we explore two different types of calculating it, an optimal
(oCS ) and a heuristic (hCS ) approach. We propose the following heuristic,
with k

(
XCS

)
denoting the set of items covered by the bids in XCS:

1) XCS := ∅
2) while k

(
XCS

)
6= K\S

XCS = XCS ∪ arg max
bi(T )|

T⊆K\(S∪k(XCS))

bi(T )

We start with an empty complement set XCS, determine all active bids not
overlapping the current considered package S, choose the bid with the highest
price and add it to our complement set XCS. Then we determine the next bid,
not overlapping S and k(XCS) with the highest bid price. We repeat until our
complement set covers all items of K\S.

For our experiments with the CC auction we use the straightforward bidder and
a heuristic bidder (5of20 ) bidding on 5 of his 20 best packages in every round,
more details to this in Bichler et al. (2009). Additionally we implemented
a preselect bidder (pres10 ) who determines his 10 most valuable packages
before the auction starts, and bids in each round on all of them applying to
vi(S) ≥ p(S).
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4.3.4 Results

We run 50 simulations for every of the 4 bidding agents in PAUSE and for the
3 different bidding strategies in CC. All experiments run on an Intel Core2Duo
processor with 2.67 GHz, 4 GB of RAM, Windows Vista and the open source
IP solver ”lp solve”.

PAUSE
BRoCS BRhCS GreedyoCS GreedyhCS

∅ Efficiency in % 97.71 97.52 90.54 91.01
∅ Auctioneers’ revenue in % 88.02 88.44 73.62 73.54
∅ Bidders’ revenue in % 9.69 9.08 16.92 17.48
∅ Rounds 126.98 127.74 101.48 101.32
∅ Unsold items 0.00 0.00 0.00 0.00
∅ Auction runtime in sec. 22714.29 2166.12 26.85 25.37
∅ Number of final bids 54.95 55.07 33.33 33.14
∅ Size of winning packages 5.03 5.60 2.87 2.75

Table 4.5: Summary of simulation results of PAUSE.

CC
BR 5of20 pres10

∅ Efficiency in % 81.81 91.70 90.95
∅ Auctioneers’ revenue in % 76.22 87.96 88.68
∅ Bidders’ revenue in % 5.59 3.74 2.27
∅ Rounds 43.14 47.02 44.88
∅ Unsold items 3.96 1.66 1.50
∅ Auction runtime in sec. 44.81 45.34 11.10
∅ Number of final bids 35.49 145.35 52.63
∅ Size of winning packages 6.50 5.34 10.58

Table 4.6: Summary of simulation results of CC.

As expected by our theoretical analysis, straightforward bidding in PAUSE
with more items and higher competition leads to a better efficiency than the
lower bound. We find that BRoCS agents achieve in many cases a solution near
the efficient one (Figure 4.2) and a high auctioneer’s revenue (Table 4.5). In
PAUSE all considered agents are able to find a highly efficient solution, even
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Greedy agents, who generate only ∼60% final bids compared to BR agents.
Surprisingly, calculating the complement set XCS with our heuristic (hCS )
leads only to a small deviation in all measures (except the runtime) from the
results with agents calculating XCS optimally.

Result 7. Determining the complement set XCS suboptimally has only a small
impact on the auction outcome.
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Figure 4.2: Auction efficiency with different bidding strategies and auction formats

In contrast to PAUSE, the CC auction mostly ends in allocations with lower
efficiency and auctioneers’ revenue. We suspect mainly the high number of
unsold items (Table 4.6) to lead to such inefficiencies, together with the bigger
size of winning packages (∅6.5 with BR agents vs. ∅5.03 with BRoCS agents
vs. ∅5.45 in efficient solutions) and the lower number of final bids. To analyze
the pure impact of unsold items we ran additional simulations with CC auc-
tions, in which we enforce the agents to bid in the first round on all items they
are interested in and found, that the efficiency increases to 89.93% on average
with BR agents.

Result 8. An auction mechanism forcing agents to bid also on smaller pack-
ages, guides them in solving their coordination problem.

Result 9. CC needs fewer rounds to clear than PAUSE auctions.

This results from the only moderate increasing of the allowed package size and
from the package increment vs. the linear item increment in CC auctions.

Concerning bidders’ calculation complexity shows Figure 4.3 that with an in-
creasing number of items a small BRoCS agent is interested in, the required
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Figure 4.3: Bidders’ required time over the auction dependent on the number of
items they are interested in.

calculation time in the auction increases exponentially. We omit the result of
the big bidder, who needs around six hours (particularly ∅ 21.451 sec.) per
auction. The boxplot further exhibits, with 7 items or more of interest, a single
BRoCS agent in PAUSE requires more calculation time than the complete CC
auction process.

Result 10. Determining the straightforward bid in PAUSE drastically increase
the bidders’ complexity.

Comparing the BR bidders in PAUSE with the pres10 bidders in CC or the
Greedy bidders in PAUSE with the BR bidders in CC we find the following
result.

Result 11. With a similar number of active bids, PAUSE leads to higher
efficiency.

PAUSE collects package bids of every size due to the restrictions of the package
size in every stage. This helps to find allocations with high revenue, while in
CC more bigger sized package bids are collected which often overlap with each
other and so prohibit a ”good” allocation.

4.4 Conclusion on PAUSE

We provide a deeper theoretical insight in the decentralized PAUSE auction
and present experimental results of two different auction mechanisms. We
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analyze effects of the straightforward bidding strategy in PAUSE. First we
discover following this strategy leads to a growing bid determination complex-
ity, as bidders are not allowed to submit new package bids without embedding
them in a new allocation. Secondly if all bidders follow the straightforward
strategy, we determine a worst case bound of 1/m efficiency.

Since our theoretical analysis promises better efficiency and auctioneer’s re-
venue by the use of more realistic value models, we conducted computational
experiments to verify this prediction. We used an agent-based system to com-
pare different bidding strategies and auction mechanisms and find straightfor-
ward bidding with optimal bid price determination in PAUSE leads to very
high efficiency and auctioneer revenue. Surprisingly, deviating from the opti-
mal bid price determination does not have a significant impact on the auction
outcomes, while the auction runtime is reduced drastically. The comparison
to the CC auction exhibits that PAUSE is a better guide solving the bidders’
coordination problem since it collects different sizes of package bids. A slight
modification of the validity of bids leads to efficient auction results if bidders
follow the straightforward strategy, but this relaxation makes PAUSE even
more unrealistic for real world implementation.

PAUSE shows some desirable properties, however, before taking it to the field
it needs further research concerning bidder behavior and auction rules.
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Chapter 5

Impact of Side Constraints

In real auctions various side constraints exist for different purposes. They are
important in many domains (Bichler et al., 2006; Sandholm and Suri, 2006;
Sandholm, 2003). Those constraints have various impacts on the final alloca-
tion and auctioneer revenue in different auction mechanisms. It is essential for
all participants to know the consequences of deciding whether to use or not to
use certain side constriants.

Spectrum auctions, which have been the driving application for much research
in the area of CAs, regularly face spectrum caps (max # items/bidder). Such
limits are often used to avoid monopoly. For example, the German 3G spec-
trum auction in 2000/01 allowed each bidder to win from two to three licenses
(Seifert and Ehrhart, 2005). Truckload transportation services auctions require
a broad range of allocation constraints, summarized in Caplice (2007). In pro-
curement applications, side constraints are the rule rather than the exception
(Bichler et al., 2006; Sandholm and Suri, 2006). Buyers need to specify lower
or upper bounds on the number of suppliers overall or per group (min/max #
winning bidders): lower bounds in order to hedge the risk that some suppliers
fail to deliver and upper bounds in order to avoid administrative expenses.
Market share constraints are defined on a group of bidders. For example, due
to corporate requirements at least one minority supplier must be included in
the set of winners on a particular set of items. Another example is again
the European 3G spectrum auction in 2000/01, where the number of winners
constraint was used to regulate the market (Seifert and Ehrhart, 2005). In
Germany, the number of winners was set from four to six. A special variation
of this constraint is to limit the number of winners in a specific group of bid-
ders. For example, in the spectrum auction in the UK, one license was set aside
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for new entrants (Seifert and Ehrhart, 2005). Auctioneers also need to impose
lower or upper bounds on the number of items (min/max # items/bidder),
which can be awarded to a particular bidder or a group of bidders, or on
spend.

It has also been shown in experimental analysis that OR bidding languages
are often more efficient than XOR languages due to the reduced number of
package bids that need to be submitted (Brunner et al., 2010). OR bids can
represent only bids that do not have any substitutabilities, i.e., purely additive
and super-additive valuations (Nisan, 2006). If a bidder uses an OR bidding
language, it might also be useful to specify constraints on the number of items
(min/max # items/bidder) or budget awarded, in order to avoid the exposure
problem, which can occur with substitutes valuations (e.g., a bidder is winning
packages AB and CD, but only wants two lots at a maximum) or to express
his capacity constraints in case he is a supplier in a procurement auction.
Disjunctive constraints are relevant to the auctioneer, when a bidder is allowed
to win one set of items or another one, but not both in case of an OR bidding
language. Carriers in a transportation auction use disjunctive constraints to
communicate the message “give me this set of lanes, or this set of lanes, but
not both” (Caplice, 2007).

Table 5.1 provides an overview of side constraints in CAs. We group side
constraints in allocation constraints that specify limits on the allocation of the
available items to the bidders, and price constraints which set price limits on
items, packages, a bidder’s budget or auctioneer revenue. Further we can divide
side constraints into bidder specific ones and such constraints, which concern
more than a single bidder. Bidder specific constraints might be imposed by the
bidder or the auctioneer, especially when the OR bidding language is used. The
XOR language can be seen as a bidder specific allocation constraint. Group
specific constraints are typically important to the auctioneer.

side constraint allocation constraint price constraint

bidder level min/max # items/bidder budget
disjunctive

group level min/max # winning bidders reserve prices
market share budget
disjunctive

Table 5.1: Side constraints.

Having flexibility in the bidding language and the side constraints used by the
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auctioneer and the bidders allows for a much broader applicability of CAs, and
this can be considered a prerequisite for most applications in transportation
and industrial procurement.

Both CC and PAUSE would have severe problems to intigrate and deal with
additional side constraints. Since CC has to run the CAP only at the end of
the auction various side constraints could not be considered during the auction
process leading to prices that do not reflect the market situation. In PAUSE
the situation is different as either the bidders themselves have to consider the
side constraints while creating their composite bids, which would increase the
bid complexity even more or the auctioneer has to consider the side constraints
during the bid validity check. This causes an unnecessary involvement of the
auctioneer which is against the goals of PAUSE and would further alienate the
bidders. It has been shown that incentive-compatible auctions are impossible
in general if there are private budget limits (Dobzinski et al., 2008), and also
reserve prices by the auctioneer increase expected revenue at the expense of
efficiency (Myerson, 1981). From here on we focus on efficient auctions, and
therefore limit ourselves to allocation constraints.

5.1 Impact of Allocation Constraints on Effi-

cient CAs

We want to understand equilibrium strategies in CAs with allocation con-
straints. In order to analyze such CAs with respect to efficiency and incentive
compatibility we first need to understand the impact of allocation constraints
on those CA formats, which are known to be efficient with a strong game-
theoretical solution concept. First, we analyze the VCG auction, which is
known to be the unique CA format that is strategy proof, efficient and indi-
vidually rational (Green and Laffont, 1977). Second, we focus on ascending
CAs as iBundle, the APA, and dVSV in which straightforward bidding is an
ex-post equilibrium for BSM valuations.

5.1.1 The VCG Mechanism

What is the impact of side constraints on the VCG mechanism and its unique
properties of efficiency, individual rationality and strategy proofness? This is
in particular important as the VCG outcome serves as a baseline for all other
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efficient auction formats. For example, under BSM valuations APA, iBundle,
and dVSV terminate with VCG prices which are in the core, eliminating incen-
tives for speculation. Core prices have the property that no coalition of bidders
can renegotiate the outcome with the auctioneer in order to increase everyones
payoff in this coalition. The property of terminating with VCG prices would
become negligible, if VCG with side constraints loses its desirable properties.

The VCG auction is a sealed bid auction allowing for package bids on all combi-
nations of items. Bidders place sealed XOR bids on their desired packages with-
out getting any feedback by the auctioneer or knowing bids of other bidders.
The auctioneer calculates a feasible allocation X that maximizes the sum of
bid prices. Bidders payments are calculated in a second step. Winning bidders
pay their bid prices bi(S) reduced by a discount which is equal to their marginal
contribution to the whole economy. pi(S) = bi(S)− (w(I)−w(I\i))∀S ∈ X∗
and zero otherwise.

While Ausubel and Milgrom (2006b) show that budget constraints can lead
to inefficiency in the VCG mechanism, we show that allocation constraints
do not affect its properties. However, the calculation of the VCG prices and
in particular of the coalitional value from w(C) with C ⊂ I has to consider
the allocation constraints, as otherwise the auctioneer could suffer a negative
payoff and participation would not be individually rational.

Definition 31. (Shoham and Leyton-Brown (2009)) An environment exhibits
the no-single-agent effect if ∀i,∀v−i,∀X there exists an allocation X ′ that is
feasible without i and

∑
j 6=i

vj(X
′) ≥

∑
j 6=i

vj(X).

A mechanism is weakly budget balanced when it will not lose money, this
means if the mechanism is not weakly budget balanced the auctioneer might be
confronted with a negative payoff which would contradict individual rationality
of the mechanism.

Theorem 14. (Shoham and Leyton-Brown (2009)) The VCG mechanism is
weakly budget balanced when the no single agent effect property holds.

This theorem extends to VCG auctions with allocation constraints.

Corollary 4. The VCG mechanism with allocation constraints is not weakly
budget balanced, unless the valuations exhibit the no-single-agent effect.
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Proof. It may happen that w(I\i) in the VCG payment computation is zero
because of allocation constraints. Consider an example where the auctioneer
requires 2 winning bidders and only 2 bidders participate. Bidder B1 bids
10 for item A and bidder B2 bids 10 for item B. The Vickrey payments are
p1(A) = p2(B) = 10− (20− 0) = −10 ≤ 0 such that the auctioneer revenue is
negative.

If the no-single-agent effect does not hold, the auctioneer might want to con-
sider bids by bidders i /∈ C to assure a feasible allocation, while maximizing
w(C).

5.1.2 Efficient Ascending CAs

The recent game-theoretical research has led to a coherent theoretical frame-
work and a family of ascending CAs (iBundle, APA, dVSV) which satisfy an
ex-post equilibrium. These efficient ascending CAs use personalized and non-
linear prices. They calculate a provisional revenue maximizing allocation at
the end of every round and increase the prices for a certain group of bidders.
The different approaches can be interpreted as implementations of primal-
dual algorithms (dVSV) or subgradient algorithms (iBundle, APA) to solve
an underlying linear programming problem (de Vries et al., 2007). This linear
program (CAP3) always yields integral solutions and the dual variables have a
natural interpretation as non-linear and personalized ask prices (Bikhchandani
and Ostroy, 2002).

We want to understand, whether additional allocation constraints have an im-
pact on equilibrium strategies and efficiency in these auction formats. For this
reason, we analyze the impact on allocation constraints on CAP3. The original
CAP3 formulation changes with additional allocation constraints. An arbit-
rary allocation constraint can make certain allocations infeasible. Rather than
modeling specific allocation constraints, we partition the set of all allocations
in two subsets: the feasible allocations Γ and the infeasible ones Γu, which
turn infeasible due to the violation of certain allocation constraints (e.g., the
maximum number of winners). This extends CAP3 by constraint set (LP4):

95



CHAPTER 5. IMPACT OF SIDE CONSTRAINTS

max
xi(S)

∑
S⊆K

∑
i∈I

xi(S)vi(S)

s.t.∑
S⊆K

xi(S) ≤ 1 ∀i (πi) (LP1)

xi(S) ≤
∑

X:Si∈X
y(X) ∀i, S (pi(S)) (LP2)∑

X∈Γ∪Γu

y(X) ≤ 1 ∀X ∈ Γ ∪ Γu (Π) (LP3)

y(X) ≤ 0 ∀X ∈ Γu (z(X)) (LP4)
xi(S), y(X) ≥ 0 ∀i, S,X ∈ Γ ∪ Γu

(5.1)

Theorem 2 in Bikhchandani and Ostroy (2002) shows that a certain allocation
is a competitive equilibrium (CE), if it is an optimal solution to CAP3 and the
corresponding dual linear program. The dual to the extended CAP3 in (5.1)
is:

min
πi,Π

∑
i∈I

πi + Π

s.t.
πi + pi(S) ≥ vi(S) ∀i, S (xi(S)) (DLP1)

Π−
∑
Si∈X

pi(S) ≥ 0 ∀X ∈ Γ (y(X)) (DLP2a)

Π + z(X)−
∑
Si∈X

pi(S) ≥ 0 ∀X ∈ Γu (y(X)) (DLP2b)

πi,Π, pi(S) ≥ 0 ∀i, S

(5.2)

The proof of Theorem 2 by Bikhchandani and Ostroy (2002) is based on the
resulting complementary slackness conditions. We show that additional al-
location constraints causing additional infeasible solutions do not impact the
theorem and the equivalence between competitive equilibrium and to optimal
solution to (5.1) is still given. Infeasible allocations can be readily removed
without impacting the equivalence. Let us first enumerate the complementary
slackness (CS) conditions:
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(∑
S

xi(S)− 1

)
πi = 0 ∀i (CS1)(

xi(S)−
∑
Si∈k

y(X)

)
pi(S) = 0 ∀i, S (CS2)(∑

X

y(X)− 1

)
Π = 0 (CS3)

y(X)z(X) = 0 ∀X ∈ Γu (CS4)
(πi + pi(S)− vi(S))xi(S) = 0 ∀i, S (CS5)(

Π−
∑
Si∈X

pi(S)

)
y(X) = 0 ∀X ∈ Γ (CS6)(

Π + z(X)−
∑
Si∈X

pi(S)

)
y(X) = 0 ∀X ∈ Γu (CS7)

The competitive equilibrium (CE) conditions are:

πi = max
S

(vi(S)− pi(S)) ∀i (CE1)

Π = max
X∈Γ

∑
Si∈X

pi(Si) (CE2)

Lemma 1. The optimal solution of the LP in (5.1) is integral if and only if a
competitive equilibrium exists.

Proof. We follow the proof of Theorem 2 by Bikhchandani and Ostroy (2002),
but show that the additional infeasible allocations due to additional allocation
constraints do not violate the equality of competitive equilibrium and optimal-
ity of the winner determination problem. (CS4) and (CS7) do always hold, as
y(X) = 0 for the infeasible allocations (cf. (LP4) and y(X) ≥ 0).
Sufficiency: Suppose the LP (5.1) has an integral solution (X∗) with xi(S) = 1
iff S = S∗ and y(X) = 1 iff X = X∗. Let (Π∗, π∗i , pi(S)∗, z(X)∗) be
an optimal solution of the DLP (5.2). z(X)∗ ≥

∑
Si∈X pi(S) because it

does not appear anywhere else than in (DLP2b) and the program minimizes
Π. (CS5) and (DLP1) imply the first CE condition (CE1). (DLP2a) and

(DLP2b) imply Π ≥ max

{
max
X∈Γ

∑
Si∈X

pi(S), max
X∈Γu

∑
Si∈X

(pi(S)− z(X))

}
. Due to

z(X)∗ ≥
∑

Si∈X pi(S) the last term is always smaller or equal to zero, while the
first term is always greater or equal to zero. Due to (CS6) the above inequality
implies the second CE condition (CE2). Hence (X∗, pi(S)∗) is a CE.

Necessity: Let (X∗, pi(S)∗) be a CE. Therefore by definition:
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π∗i ≡ vi(S
∗)− pi(S∗) = max

S
(vi(S)− pi(S)) ∀i (CE1)

Π∗ ≡
∑

Si∈X∗
pi(S) = max

X∈Γ

∑
Si∈X

pi(S) (CE2)

Let xi(S) = 1 iff S = S∗ and y(X) = 1 iff X = X∗, else 0. X∗ is a feasible
solution to LP (5.1) since the allocation is supported in a CE equilibrium.
Similarly (Π∗, π∗i , pi(S)∗, z(X)∗) is feasible to DLP (5.2). The dual variable
t(X) does not impact this equivalence.

The remaining proof of integrality of the solution is identical to the proof of
Theorem 2 in Bikhchandani and Ostroy (2002).

Corollary 5. The CAP3 formulation with allocation constraints (5.1) yields
integral solutions and thus the efficient ascending CAs (iBundle, APA, dVSV)
still achieve efficient solutions if allocation constraints are present and CE
prices if bidders follow the straightforward bidding strategy.

This follows directly from Lemma 1 and the original proofs of the efficiency of
iBundle (Parkes and Ungar, 2000) and dVSV (de Vries et al., 2007). Parkes
and Ungar (2000) show that all complementary slackness conditions except
(CS1) are satisfied in each round of the iBundle auction. (CS1) states that
every bidder with a positive utility for some packages at the current prices
must receive a package in the allocation. Only in the last round this condition
is satisfied for all bidders. The new complementary slackness conditions (CS4)
and (CS7) due to allocation constraints are trivially satisfied, because y(X)
is null, and do not impact the proof. While the price updates in dVSV fol-
low a primal-dual algorithm, iBundle and APA can be considered subgradient
algorithms (de Vries et al., 2007).

Ausubel and Milgrom (2006a) show that the APA (and therefore iBundle)
terminates with an efficient solution and straightforward bidding is an ex-post
Nash equilibrium strategy when the BSM condition holds. The proof is defined
on some coalitional value function, which might be implemented by CAP3 but
also a CAP3 with additional allocation constraints, and it is therefore not
affected by allocation constraints. In summary, allocation constraints neither
have an impact on the efficiency of the family of efficient ascending CAs, nor
on the incentive properties. While iBundle, the APA, and dVSV allow for
allocation constraints, they do not explicitly take them into account in their
pricing rule, but implement simple price increments for subsets of bidders.
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Generic Pricing

The design of efficient CAs has drawn considerable attention (Cramton et al.,
2006a), as they raise fundamental questions on pricing and efficiency in multi-
object markets. A number of ascending CA designs achieve full efficiency with
a strong game-theoretical solution concept. iBundle, the APA and dVSV lead
to an efficient allocation, if bidders bid straightforward, which is an ex-post
equilibrium as long as the BSM condition holds for all valuations. This line
of work is heavily based on duality theory in linear programming. All these
auction formats increase the ask price for losing bids by a minimum increment,
which causes a large number of auction rounds (Schneider et al., 2010). The
APA uses proxy bidders in order to cope with the large number of auction
rounds, and to make sure that bidders follow a straightforward strategy, which
turns the mechanism into a sealed bid auction.

The above auction formats can be described as core-selecting auctions. A
problem with all core-selecting auctions is that they do not satisfy a strong
solution concept (Goeree and Lien, 2010) such as a dominant strategy or an
ex-post equilibrium, if the VCG outcome is outside the core. Unfortunately,
this is only the case for substitutes valuations. Nevertheless core-selecting
CAs have been used in recent spectrum auctions in Europe, in which bidder-
optimal, and closest to Vickrey core-selecting payments for the winners are
determined (Cramton, 2009b). Recent work has dealt with the issue, how core
solutions can be calculated fast from a given set of bids (Day and Milgrom,
2007; Hoffman et al., 2006), assuming that bidder valuations have been revealed
truthfully. Othman and Sandholm (2010) suggest envy quotes as ask prices
in iterative core-selecting auctions. Optimal envy quotes are the highest ask
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prices, such that a bid at those prices could not change the current allocation
or prices.

Instead of simple price increments as used in the auctions above, Adomavicius
and Gupta (2005) introduce more general pricing rules. Winning levels (WLs)
describe the lowest possible bid at which a losing bid would become winning if
no other bids are submitted, whereas deadness levels (DLs) are a lower bound
to bids, which still can become winning in the course of the auction. DLs and
WLs describe natural bounds and interesting feedback for a losing bidder.
While there is no rationale to bid below the DL, bidding at the WL could be
rational in some situations, where a bidder is the only one able to outbid a
winning coalition of bidders. WLs are equivalent to the minimal winning bids
described by Rothkopf et al. (1998). These pricing rules are independent of the
allocation rules, and laboratory experiments with respective auction formats
yielded high levels of efficiency (Adomavicius et al., 2007).

The analysis in Adomavicius and Gupta (2005) is focused on a pure OR bid-
ding language and assumes no substitutes valuations. OR bids can represent
only bids that do not have any substitutabilities, i.e., purely additive and
super-additive valuations (Nisan, 2006). Also, this initial work did not ana-
lyze equilibrium strategies in such auctions. It is natural to ask, how these
generic pricing rules can be defined for auctions with XOR bidding languages
and other types of side constraints as well, and which game-theoretical solu-
tion concepts can be satisfied. Auctions with strong game-theoretical solution
concepts are strategically easier for bidders because they set no incentives for
speculation, and respective auction formats are more likely to lead to high
efficiency.

We introduce WLs and DLs for general CAs, which allow for XOR bids and
other allocation constraints. Auctioneers use various types of allocation con-
straints to limit the number of winners or the number of items allocated to one
bidder or to a group of bidders (cf Chapter 5). Such constraints are actually
the rule rather than the exception in application domains such as industrial
procurement (Bichler et al., 2006; Sandholm and Suri, 2006) or transportation
(Caplice, 2007). Therefore, we extend our analysis to CAs, which consider
different types of allocation constraints in the pricing rule (as is the case with
WLs and DLs). This is an important extension of the existing theoretical
literature on CAs, which typically neglects side constraints, and covers a much
broader set of real-world applications.

While generic pricing rules for different CAs with side constraints would also
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have significant practical importance, we show that these pricing rules bare
significant theoretical challenges. The main goal is not to introduce a new
auction format, but to define and analyze game-theoretical properties of WLs
and DLs . In particular, we want to understand which pricing rules satisfy
strong game-theoretical solution concepts such as ex-post equilibria and how
these pricing rules relate to the theoretical framework on efficient and ascend-
ing CAs (de Vries et al., 2007; Parkes and Ungar, 2000).

In summary, our work provides a theoretical foundation for allocation con-
straints in CAs and a theoretical framework for recent contributions in this
field (Adomavicius et al., 2007; Adomavicius and Gupta, 2005), which shows
conditions when auction formats based on winning or deadness levels are ef-
ficient with a strong game-theoretical solution concept. In other words, we
describe when bidders have strong incentives to reveal their preferences truth-
fully in a CA, thus leading to less speculation, more predictable outcomes
and higher efficiency as long as bidders act rational. This is an important
baseline for any practical auction design, which provides reasons for inefficient
outcomes one might observe in the lab.

The following example briefly illustrates a collection of important pricing rules
analyzed. A formal definition will be provided in Section 6.1.

packages AB BC AC B C
bids 22∗1,162 243 204 75 8∗6
PRAD 22 24 14 16 8
PiBundle 221, 172 253 214 85 86

DL 22 24 20 7 8
WL 22 30 30 30 8

Table 6.1: Example with six bids and different ask prices.

The upper part of Table 6.1 describes six bids from different bidders B1 to B6,
submitted on subsets of three items A, B, and C, while the lower part shows
the resulting prices in various auction formats. Subscripts indicate bidders,
i.e. 221 indicates a bid of 22 from bidder B1. Prices have subscripts only if
they are personalized. Asterisks denote the provisional winning bids. PRAD
gives an example of pseudo-dual linear ask prices as they are described in
Kwasnica et al. (2005). Note that these linear prices can be lower than a
losing bid (see the bid on AC of bidder B4) and that multiple price vectors
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can satisfy the linear program that is used to determine the ask prices. Another
problem with pseudo-dual ask prices is the fact that they can also decrease if
the competition shifts, and that they do not take into account side constraints,
and consequently prices are biased. The same is true for linear prices in the
CC auction. Bichler et al. (2009) analyze the problems in defining pseudo-dual
linear prices.

iBundle increases the bids of all losing bidders by a minimum bid increment
(1 in this example). DLs and WLs describe generic pricing rules, i.e., they
are independent of the allocation constraints used by the auctioneer. DLs
describe deadness level ask prices, which are simply the bids of all bidders in
the last round in this example. Losing bidders need to bid higher than this by a
minimum bid increment. With a minimum bid increment of one, the example
would yield PiBundle ask prices. In particular, in the presence of allocation
constraints, DL ask prices can be much higher than the ones of iBundle, as
we will see later.

WLs describe bid prices, above which a single bid would become winning
without the help of another bidder. Bidders B4 and B5 could become winning
at a lower price, if they would form a coalition. In a threshold problem, the
WL for a small bidder might be way too high to outbid a winning bidder
unilaterally, and with only WL ask prices, it will become difficult for bidders
to coordinate. The spread between DLs and WLs can often be quite large in
realistic value models, providing little guidance to bidders.

In this example, there are no allocation constraints. Note that linear-price
auction formats such as the CC auction do not consider such constraints and
pricing can be considerably biased. Let us assume that bidders submit bids on
all blocks in a CC auction, but they can win at most 2 blocks. This will drive
up prices on all blocks, although there is no competition among the bidders.
Bidders will have an incentive to shade their bids. There is a need for pricing
rules, which consider allocation constraints adequately.

6.1 Pricing Rules

Efficient ascending CAs such as iBundle and dVSV typically use unit price
updates. In particular, in the presence of side constraints, unit price updates
on losing package bids do not convey the auction dynamics and might lead to
a large number of unnecessary auction rounds.
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We draw on WLs and DLs as very general pricing rules. The main virtues
of the rules are their generality, applicability to a wide range of settings and
their comprehensibility. The problem WL and DL address is that the bidders
are usually not able to evaluate the potential of their bids to become part of
the winning allocation. As this problem exacerbates when side constraints or
XOR bidding are enforced, the necessity of enhanced bidder support emerges.
WL and DL answer two natural questions of bidders: WL answers “how much
should I bid at least to certainly obtain package S in the next auction iteration
(provided no new bids are submitted)?” and DL “how much would I have to
bid at least, in order my bid to have at least a chance to win (at some next
auction iteration)?”. The first question refers to the next auction iteration and
not to the end of the auction, since it is impossible to know how much to bid
to certainly win at the end due to unknown future bids. The second question
refers to the end of the auction since it is possible to compute a lower bound
on the bid value needed in order the bid to be “competitive”, not “dead”’, i.e.
not to be certainly losing until the end of the auction, no matter which future
bids may be submitted.

We first define WL and DL and introduce the necessary terminology. A sub-
auction on itemset S ⊆ K refers to an auction where only the items k ∈ S
are auctioned. Auction round r ∈ N refers to the auction after the the bids
of the first r rounds are submitted. CAPr(K) denotes the auction revenue
and Xr ∈ Γr the revenue-maximizing allocation at round r1. CAP (S) is the
revenue of subauction S.

6.1.1 Winning Levels

Definition 32. The WL of a package S at auction round r is the minimal
price a bidder i must bid to win that package at auction round r+1 considering
no other bids were submitted. WLr(S, i) = min{bi(S) : bi(S) ∈ Xr+1}.

Adomavicius and Gupta (2005) define the anonymous WL of package S at
auction state r by

WLORr (S) = CAPr(K)− CAPr(K\S) (6.1)

Intuitively a bid on S can only win, if the bid price together with the revenue
from the complementary set of items K\S exceeds the actual revenue of the

1Depending on the context we may omit the index r.
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whole auction. Implicitly, the following assumptions are made: (i) OR bidding
language and (ii) absence of allocation constraints. When these assumptions
are relaxed, the calculation of WLs as in equation (6.1) is inappropriate. A
first reason is that allocation constraints, which are not bidder specific, cannot
be globally validated when solving subauction CAP (K\S). In addition, WLs
must be personalized as the following example demonstrates.

Example 8. Consider an auction with items A,B,C, bidders B1 and B2 and
the constraint that each bidder cannot win more than two items. Bidder B1
bids 5 on AB and B2 2 on C. WL(C) is 7 for B1 whereas 2 for B2.

A B C
B1 5 0
B2 0 2

Table 6.2: Bids of two bidders on items A,B and C.

Thus, the WLs are different for each bidder. We introduce the following for-
mula to calculate personalized WLs that takes XOR bidding and allocation
constraints into account:

Proposition 4.

WLr(S, i) = CAPr(K)− CAPr(K, Si) (6.2)

Proof. We give a self-contained proof that is based on the proof of Theorem 2
of Adomavicius and Gupta (2005). We introduce the symbol ΓEr (S) = {X ′ ∈
X ∪ E|X ∈ Γr, E ∈ ∅ ∪

⋃n
i=1(bi(S) = 0)∀S} to denote the set of feasible

allocations that can also include bids of zero value on S2. We define a binary
relation ≺ on bid combinanations to compare the values of two allocations:
X ′ ≺ X ′′ ⇒ v(X ′) < v(X ′′) where v(X) =

∑
i bi(Xi) is the value of the

allocations X. X
E

r (Si) = max≺{X ∈ ΓEr |bi(S) ∈ X} represents the winning
allocation of the whole auction at state r subject to the condition that bidder
i wins S for free. Let Γ′ = {X ∈ Γr+1|bi(S) ∈ X} and Γ′′ = {X ∈ Γr+1|bi(S) /∈

2We need this extension since otherwise allocations where a bidder wins a package for
free would not be feasible. These allocations are considered in CAPr(K, Si).
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X} be the set of all allocations with and without bi(S) respectively. It holds
Γ′ ∩ Γ′′ = ∅ and Γ′ ∪ Γ′′ = Γr+1. Therefore:

Xr+1 = max
≺
{X ∈ Γr+1} = max

≺
{Γ′ ∪ Γ′′} (6.3)

= max
≺
{max
≺

Γ′,max
≺

Γ′′} (6.4)

and since bi(S) /∈ X ∀X ∈ Γ′′ : Γ′′ = Γr ⇒ max
≺

Γ′′ = max
≺

Γr = Xr (6.5)

Furthermore:

max≺Γ′ = max≺{X ∈ Γr+1|bi(S) ∈ X}
= {bi(S)} ∪max

≺
{X\{bi(S)}|X ∈ Γr+1, bi(S) ∈ X}

= {bi(S)} ∪max
≺
{X|X ∈ Γr|Xi ∈ X ∩ S = ∅}

= {bi(S)} ∪max
≺
{X ∈ ΓEr |bi(S) = 0 ∈ X}

= {bi(S)} ∪XE

r (Si)

This equation together with (6.4) and (6.5) imply:

Xr+1 = max
≺
{Xr, {bi(S)} ∪XE

r (Si)} (6.6)

and bi(S) ∈ Xr+1 ⇐⇒ v(Xr) < bi(S) + v(X
E

r (Si)) (6.7)

Thus, for a new bid bi(S) to win, its value together with the revenue from CAP
which subject to the constraint that the bidder i wins S for free (we denoted
this CAP as CAPr(K, Si)), must exceed the actual revenue CAPr(K). This
completes the proof.

CAPr(K, Si) denotes the revenue of the whole auction provided that bidder i
wins package S for free. Thus the auction revenue CAPr(K, Si) is raised from
the items in K\S, as it is the case in CAP (K\S). If the OR bidding language
is used and no allocation constraints exist, the computation in (6.2) yields the
same WLs as (6.1).
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6.1.2 Deadness Levels

Definition 33. The DL of package S at auction round r is the minimal price
a bidder must bid to have a chance to win that package in any future round
state. DLr(S, i) = min{bi(S) : ∃r′ > r : bi(S) ∈ Xr′}.

DLs constitute lower bounds on bid prices and all future bids below are “dead”,
i.e., they cannot win any more no matter which bids are submitted in a future
auction round r′ > r. This implies that DLr(S, i) is monotonically increasing
through the progress of any iterative auction.3

Adomavicius and Gupta (2005) define the anonymous DL of a package S by

DLORr (S) = CAPr(S) (6.8)

In words, a bid on S cannot be part of the winning allocation if it is below the
revenue of the subauction S (i.e. CAP (S)). For example if S = AB and there
are already bids A = 10 and B = 15, then any bid on AB below 25 is dead.

The DL in equation (6.8) is not valid if there are allocation constraints or any
of the bidders uses an XOR bidding language or other allocation constraints.
In these cases DLs must be personalized. We also need to understand what
influence the additional allocation constraints might have in future auction
rounds. For instance, consider again Example 8. If in the future auction
round r = 3 B1 bids 8 on C, then his previous bid on AB cannot win due to
the allocation constraint. Thus B2 can win AB for free and DL(AB) = 0 for
B2. We say that the bid has been ”blocked” due to the constraint.

A bid on package S loses in an auction with allocation constraints if at least
one of the following conditions is met: (i) There exists a higher bid or bid
combination in subauction S that wins in the whole auction (without violating
allocation constraints). (ii) S is not part of the revenue maximizing allocation.
(iii) The bid in interaction with other bids that win in the whole auction
violates an allocation constraint.

The first two conditions are common for every CA, with or without constraints.
The third one leads us to the definition of blocked bids, which we use later on;
a bid on S is blocked if it does not win due to allocation constraints. In this
case there is another winning bid that prevents the blocked bid to win. Both
bids together cannot win due to constraints.

3Through our analysis, we assume no bid revocability, otherwise DLs would be always
zero.
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Definition 34. A bid is blocked if it does not win due to allocation constraints.

Let X
−b′
r̄ denote the winning bid combination under consideration of all bids

submitted until round r̄ except bid b′. Bid bi(S) is blocked at round r̄ if ∃b′(T )

with T ⊆ K\S, b′ ∈ X r̄ and b ∈ X−b
′

r̄ .

We extend this definition to bid sets. In the simultaneously blocked bid set
none of the bids wins due to the existence of winning bids in the complementary
subauction. If these bids had not been submitted, at least one bid of the
blocked bid set would have won.

Definition 35. A bid set BblockS,r with BblockS,r ∩Xr = ∅ is simultaneously blocked if
all of its bids are blocked at an auction round. Let BS,r = {b(T )|T ⊆ S, r′ ≤ r}.
Bid set BblockS,r ⊆ BS,r is simultaneously blocked if ∃B′ ⊆ BK\S,r : B′ ∩ Xr 6= ∅
and BblockS,r ∩X

−B′
r 6= ∅.

We call a bid set simultaneously blockable (instead of blocked) if it can be
blocked in the future, i.e. if there can be a future auction round at which the
bid set will be simultaneously blocked. These definitions allow us to charac-
terize DLs. Bid sets of other bidders in S that can be blocked in the future
allow bidder i to win S without having to overbid these bids. Only foreign bids
in S that are not dominated from bids of bidder i must be examined whether
they are blockable. We say that a bid on package T is i-dominated if there
is a bid of i on T ′ ⊆ T with same or higher value. Hence, we can compute
the DL of a package S for bidder i by finding the simultaneously blockable,
non-i-dominated bid sets BblockS,r,−i, which are foreign to i, and removing them in
turn from subauction S:

6.1.2.1 General Method to Compute DLs for arbitrary allocation
constraints

DLr(S, i) = min
BblockS,r,−i

{
CAPr(S,BS,r\BblockS,r,−i) : BblockS,r,−i ∈ f(BS,r,−i)

}
(6.9)

Function f takes as argument BS,r,−i the set of all foreign to i, non-i-dominated
bids bj(T ) with T ⊆ S, r′ ≤ r and j 6= i. Function f ’s value defines a set of
bid sets that are simultaneously blockable. Then CAPr(S,BS,r\BblockS,r,−i) is the
revenue of subauction S after the removal of a simultaneously blockable bid set
BblockS,r,−i. With an OR bidding language and without side constraints (6.9) re-
duces to (6.8), since without these constraints, there are no blockable bids and
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thus DLr(S, i) = CAPr(S,BS,r\BblockS,r,−i) = CAPr(S,BS,r\∅) = CAPr(S,BS,r) =
CAPr(S).

Equation 6.9 can be seen as a general two-phase method to compute DL(S, i).
In the first phase all simultaneously blockable, foreign non-i-dominated bid sets
in S are identified. In the second phase each of the identified sets are removed
consecutively and CAP (S) is solved. The lowest of these CAP revenues equals
to DL(S, i). It is not always necessary to compute all these CAPs. If only bids
of bidder i remain, we do not need to continue and the DL(S, i) is reached.

Example 9. Consider an auction with items A, B, C, D, bidders B1 to
B5 and the XOR bidding language. The bids in AB are: bB1(AB) =
19 in round 1, bB2(A) = 5 in round 2, bB2(B) = 8 in round 3,
bB3(A) = 10 in round 4, bB4(AB) = 15 in round 5 and bB5(AB) =
11 in round 6. We compute DL6(AB,B5) using the above formula.
Function f ’s argument BAB,6,−B5 contains all bids except the bid of B5

A B C D
B1 19 0
B2 5 8 0
B3 10 0
B4 15 0
B5 11 0

Table 6.3: Bids of five bidders on items A,B,C and D. What is the DL of the
package AB for bidder B5?

and returns all simultaneously blockable sets BblockAB,6,−B5 and f(BAB,6,−B5) =
{{1, 2, 3}, {1, 4}, {1, 5}, {2, 3, 4}, {2, 3, 5}, {4, 5}} Bids are referred by the round
of submission in this example. Bids {1,2,3} can be blocked due to XOR bid-
ding if B1 and B2 win C and D respectively, bids {1,4} if B1 and B3 win
C and D respectively, bids {1,5} if B1 and B4 win C and D respectively and
so forth. We then remove each simultaneously blockable set from subauction
AB (i.e. from the set of all bids in this subauction) and compute CAP . After
removing the first set CAP = 15, after the second one CAP = 15, after the
third one 18, after the forth one 19, after the fifth one 19 and after the last
one 19. Minimum CAP equals to 15. Thus DL6(AB,B5) = 15. B5 could
win AB for 15 in a future state at which B1 wins C and B2 wins D. A lower
price is impossible at this round. Note that with a simple unit price update as
in iBundle and dVSV, the ask price for B5 on package AB would be 12.
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The computation of f is specific to allocation constraints and the bidding
language, which determine whether a bid set in subauction S can be simulta-
neously blocked in a future round or not. Exploring the space of future auction
rounds implies assuming possible future bids and examining their impact on
B.

6.2 Efficiency and Equilibrium Analysis

We want to understand economical characteristics of CAs and whether pricing
rules such as WL and DL can also achieve 100% efficiency with a strong
solution concept, and how they relate to iBundle and other efficient ascending
CAs. Except from the ask price calculation (i.e., pricing rules) the following
auctions (iBundleWL and iBundleDL) are equivalent to iBundle and the APA.
As in all other efficient ascending CAs such as iBundle, the APA, and dVSV
we assume a straightforward bidding strategy where the bidders only have to
reveal their demand set in each round. We show that while iBundleWL does
not lead to an efficient solution with this bidding strategy, iBundleDL leads to
an efficient outcome and straightforward bidding is an ex-post equilibrium.

Bidders use the XOR bidding language as it allows for full expressiveness. Ask
prices start at zero for each package and are personalized and non-linear. After
every round a revenue maximizing allocation is computed and ask prices are
only increased for previously submitted bids of losing bidders. The auction
terminates if no bidder is losing. To assure that every bidder is winning at
termination, bidders are able to bid a zero bid price on the empty package
which can be allocated to them.

6.2.1 iBundleWL

In the iBundleWL auction losing bidders in a round get an ask price of
WL(S, i) + ε for a package S. In each round WLs for losing bids of losing
bidders have to be calculated, not for each possible package and bidder.

The efficiency of a iBundleWL can be as low as 0% if the bidders bid straight-
forward. We reuse the special case of a demand masking set of valuations as
in Section 4.1.3. We first provide another example with m = 4, V = 2 and
VK = 5, where iBundleWL is inefficient.
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Example 10. There are four bidders, B1 to B4 and four items A to D.
Table 6.4 indicates the auction progress. Prices are initialized to 0. At the
beginning, all bidders bid on the big package. When its price increases to 3,
then the losing bidders bid also on the single items, since their payoff is 2,
i.e. equals the payoff of the big package. Their bids on the single items are
unsuccessful and the prices are updated to 4. These updated prices exceed their
valuations Vs = 2, therefore they never bid again on the single items and the
auction fails to reach the efficient solution.

iBundleWL

packages A B C D ABCD ∅
valuations 21 22 23 24 51, 52, 53, 54

round 1 0∗1, 02, 03, 04

round 2 01, 1∗2, 13, 14

round 3 2∗1, 12, 23, 24

round 4 02 03 04 21, 3∗2, 33, 34

round 5 01 32, 4∗3, 44

round 6 5∗1, 52, 43, 54 01, 0∗2, 0∗4
round 7 5∗1, 52, 53, 54 01, 0∗2, 0∗3, 0∗4

Termination

Table 6.4: iBundleWL process.

Theorem 15. If bidder valuations are demand masking, the efficiency of
iBundleWL with straightforward bidding converges to 1/m in the worst case
with m > 1.

Proof. As WLs are equivalent to the optimal straightforward bid in PAUSE,
this statement is already shown by the proof of Theorem 12.

While there might also be other bidder valuations leading to low efficiency,
it is sufficient for our purposes to show that the efficiency of iBundleWL can
actually be as low.

6.2.2 iBundleDL

Contrary to the negative result on iBundleWL, we show that iBundleDL lead
to full efficiency with straightforward bidding, but it requires less rounds and
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less bids than iBundle and the APA.

Lemma 2. DL ask prices are always higher or equal to iBundle prices given
the same bids.

Proof. Equation (6.9) implies DLr(S, i) ≥ CAPr(S, i) + ε. Let pri (S) be the
iBundle price after round r. iBundle uses an XOR bidding language, and
CAPr(S, i) is equal to the highest bid of i in S: CAPr(S, i) = max{bi(T )|T ⊆
S, r′ ≤ r}. The price update rules in iBundle ensure that in each round
pri (S) = max{bi(T )|T ⊆ S, r′ ≤ r} + ε (Parkes and Ungar, 2000).4 Thus
CAPr(S, i) + ε = pri (S) and DLr(S, i) ≥ pri (S).

Lemma 3. iBundleDL terminates with the efficient solution and with CE
prices if bidders bid straightforward.

Proof. We draw on the proof of optimality by Parkes and Ungar (2000) and
show that optimality is not affected by the requirement to bid DLs instead
of only an ε above max{bi(T )|T ⊆ S, r′ ≤ r}. This is true since a bid bi(S)
below DL would cause xi(S) to become zero and bidder i would remain un-
happy until bidding above DL on a package in his demand set and winning it.
More formally, Parkes and Ungar (2000) prove the efficiency of their auction
by considering a primal and a dual version of CAP 5 and show that when the
auction terminates, all five complementary slackness conditions are satisfied.
The only modification of iBundleDL, i.e. to quote DLs instead of simple price
updates, does not change this proof with respect to their complementary slack-
ness conditions CS-1, CS-3, CS-4 and CS-5. We only need to show that CS-6,
which states that “the allocation must maximize the auctioneer’s revenue at
prices p(S), over all possible allocations and irrespective of bids received by
agents”, is satisfied by iBundleDL too. Replace p(S) by DL(S). From the DL
computation follows that there is always a bidder or group of bidders willing
to pay DL(S) for every package in the revenue-maximizing allocation X∗DL
that is computed based on the prices (DLs) and irrespective of the bids. For
this, observe that the highest possible DL(S), which is the case when no bids

4Due to the free disposal assumption implying that packages are priced at least as high
as the greatest price of any package they contain, i.e. pri (S) ≥ pri (T ) for S ⊇ T .

5This formulation, due to Bikhchandani and Ostroy (2002), is known as CAP2 and is very
similar to CAP3. The main difference is that its prices are anonymous and it corresponds to
iBundle(2). The efficiency of iBundle(3) or simply iBundle follows directly from iBundle(2)
(Parkes and Ungar, 2000). Parkes and Ungar (2000) assumes the safety condition in CAP2,
i.e., no single bidder bids on two non-overlapping packages.
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are blockable, is equal to CAP (S) considering all submitted bids. Hence there
is always a bidder or a group of bidders willing to pay DL(S). Therefore,
allocation X∗DL with auctioneer’s revenue

∑
S∗∈X∗DL

DL(S∗) can be realized by

assigning each S∗ to a subset of bidders C(S∗), C(S∗) ⊆ I with
⋂
C(S∗) = ∅,

i.e. every bidder receives at most one package (since packages S∗ form a feasi-
ble allocation and are obviously non-overlapping and no single bidder bids on
non-overlapping packages) and hence the XOR constraint is not violated. In
summary, we showed that it is always possible for the auctioneer to realize the
revenue-maximizing allocation at prices DL(S) irrespective of bids received,
since there are always bidders willing to take these prices.

Lemma 4. At termination the DL ask price for a winning package by bidder
i is equal to the iBundle price if bidders bid straightforward and the BSM
condition holds.

Proof. Firstly, suppose at termination pi(S) < DL(S, i) and package S is
assigned to bidder i in iBundle. S ∈ X∗, because iBundle and iBundleDL
both terminate with an efficient solution. DL(S, i) cannot be higher than
pi(S) as it would contradict the definition of DL. This statement is true since
iBundleDL collects the same bids as iBundle except dead bids. Secondly, pi(S)
are Vickrey prices when BSM holds, i.e. bidders receive their Vickrey payoff,
which is the highest payoff over all points in the core (Ausubel and Milgrom,
2006b). Hence, if DL(S, i) < pi(S), this implies that the bidders’ payoffs in
the iBundleDL are not in the core. Thus the outcome of iBundleDL is not in
CE. Contradiction to Lemma 3.

Theorem 16. iBundleDL is efficient if bidders follow the straightforward strat-
egy and bidding straightforward is an ex-post Nash equilibrium if the BSM
condition holds.

Theorem 16 follows directly from Lemma 3 and 4. Theorem 16 with Lemma
4 show that both versions of price feedback result in the same bidder payoff
and consequently the same auctioneer revenue.

Corollary 6. DL ask prices are the highest ask prices possible in iBundle that
lead to an ex-post Nash equilibrium if the BSM condition holds.

Proof. Suppose bidder i bids in the last auction round ε above DL(S, i) and
wins Si with S ∈ X∗ having payoff πi. If S /∈ X∗ then the solution is inefficient
and hence not in equilibrium. We know that if BSM holds, every bidder’s payoff
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in iBundle is his VCG payoff, which coincides with the unique bidder optimal
point in the core (Ausubel and Milgrom, 2006b). From Lemma 4 follows that
the VCG payoff of i is vi(S)−DL(S, i) and hence higher than πi.

Theorem 16 with Lemma 2 indicates that the iBundleDL can reduce the number
of auction rounds, which is a considerable problem of iBundle as shown by
Scheffel et al. (2011) and Schneider et al. (2010).

Corollary 7. iBundleDL requires less or an equal number of rounds compared
to iBundle if bidders follow their equilibrium strategy.

Proof. Assuming the same increment ε both mechanisms terminate with an
efficient solution and achieve the same auctioneer revenue (cf. Theorem 16).
Lemma 2 shows that ask prices in iBundleDL are always higher or equal to
iBundle ask prices. Thus iBundleDL cannot require more rounds to terminate
than iBundle.

We provide a simple example that iBundleDL can terminate with strictly less
rounds than iBundle.

Example 11. Consider items A,B,C are auctioned among bidders B1 to B4
in iBundle and iBundleDL using an increment of ε = 1. Bidders bid straightfor-
ward and are single minded which means they value only one package positively
and all others with zero. The exact valuations of each bidder and the auction
rounds are described in Table 6.5. Ties are broken in favor of more winners.

Also the number of bids6 is reduced by the use of DL ask prices. Bidders do
not have to submit bids that are below their respective DLs. So ”dead” bids
that cannot become winning bids do not have to be submitted and taken into
account in the winner determination.

The example illustrated in Table 6.5 shows that iBundleDL reduces the number
of auction rounds, the communication effort and also the computational effort.
In general the reduction of auction rounds and communication effort comes at
the price of higher computational effort as the NP-hard CAP has to be solved
several times to calculate DLs.

6We consider only bids that correspond to new ask prices, i.e. winning bids are automat-
ically resubmitted and not counted.
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iBundle iBundleDL
packages A B C ABC A B C ABC

valuations 51 52 53 84 51 52 53 84

round 1 1∗1 1∗2 1∗3 14 1∗1 1∗2 1∗3 14

round 2 1∗1 1∗2 1∗3 24 11 12 13 4∗4
round 3 1∗1 1∗2 1∗3 34 2∗1 2∗2 2∗3 44

round 4 11 12 13 4∗4 21 22 23 7∗4
round 5 2∗1 2∗2 2∗3 44 3∗1 3∗2 3∗3 74

round 6 2∗1 2∗2 2∗3 54 3∗1 3∗2 3∗3 ∅∗4
round 7 2∗1 2∗2 2∗3 64 Termination

round 8 21 22 23 7∗4
round 9 3∗1 3∗2 3∗3 74

round 10 3∗1 3∗2 3∗3 84, ∅∗4
Termination

Table 6.5: iBundle and iBundleDL process.

6.3 Conclusion on Generic Pricing

Designing efficient combinatorial auctions turned out to be a challenging task.
A few recent papers have described efficient and ascending combinatorial auc-
tions which satisfy strong game-theoretical solution concepts. In many appli-
cations the consideration of additional allocation constraints and flexibility in
the choice of the bidding language are essential. These requirements have not
been covered by the theoretical literature so far. It is important to extend the
theory and address these requirements. This could extend the applicability of
CAs in domains such as transportation or industrial procurement considerably
and bares significant practical potential.

We consider CAs allowing for side constraints and OR as well as XOR bidding
languages. We draw on the work by Adomavicius and Gupta (2005) and
define winning and deadness levels (WLs and DLs) as a general pricing rule
for CAs. This extension leads to a number of theoretical challenges. We show
that straightforward bidding is an ex-post equilibrium in iBundle with DLs,
and how this pricing rule can be integrated in the theoretical framework of
efficient CAs. While both, iBundle and the iBundleDL allow for allocation
constraints, DLs take allocation constraints into account and actually lead to
a lower number of auction rounds and bids that need to be submitted. The
high number of auction rounds turned out to be one of the main obstacles for
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efficient CAs such as iBundle, the Ascending Proxy Auction, and dVSV. DLs
come at a computational cost, however.
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

Combinatorial auctions have led to a substantial amount of research and found
a number of applications in high-stakes auctions for industrial procurement,
logistics, energy trading, and the sale of spectrum licenses. Price feedback in
iterative combinatorial auctions is an important and crucial part of the de-
cision support for bidders. Different pricing rules have been discussed in the
literature. Anonymous linear ask prices are very desirable and sometimes even
essential for many applications (Meeus et al., 2009). Unfortunately, Walrasian
equilibria with linear prices are only possible for restricted valuations. Already
Kelso and Crawford (1982) showed that the ”goods are substitutes” property
is a sufficient and an almost necessary condition for the existence of linear com-
petitive equilibrium prices. Later, Gul and Stacchetti (2000) found that even if
bidders’ valuation functions satisfy the restrictive ”goods are substitutes” con-
dition, no ascending VCG auction exists that uses anonymous linear prices.
Bikhchandani and Ostroy (2002) show that personalized non-linear competi-
tive equilibrium prices always exist. Several auction designs are based on these
fundamental theoretical results and use non-linear personalized prices. While
these NLPPAs achieve efficiency, they only satisfy an ex-post equilibrium if
the valuations meet buyer submodularity conditions, and they lead to a very
large number of auction rounds requiring bidders to follow the straightforward
strategy throughout.

These theoretical results assume ask prices throughout the auction to be equiv-
alent to the final competitive equilibrium prices and the payments of bidders.
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The Combinatorial Clock (CC) auction differentiates, which is also a way
around the negative theoretical results. Still, the CC auction (Porter et al.,
2003) cannot be fully efficient. We provide worst-case bounds on the efficiency
of the CC auction with straightforward bidders, and propose an extension of
the CC auction, the CC+ auction design, which achieves full efficiency with
bidders following a powerset strategy. This design modifies the price update
rule of the CC auction and adds a VCG payment rule. We show that with such
a VCG payment rule, a powerset strategy leads even to an ex-post equilibrium.

Clearly, a powerset strategy is prohibitive for any but small combinatorial
auctions and some other auction rules of the CC+ auction are impractical
for real world applications. Actually, the CC+ auction is almost equivalent
to a VCG auction, except that bidders learn the highest valuations of items
throughout the auction, which they do not in a sealed-bid auction.

Therefore we ran a sensitivity analysis to investigate how robust the CC+
auction is against deviations from the equilibrium strategies. Interestingly,
even if the number of bids submitted in each round is severely restricted or
bidders heuristically select some of their ”best” bids in each round, both the
CC and the CC+ auction achieve very high efficiency levels. The results also
explain some of the high efficiency and robustness results of the CC auctions
in the lab.

We also provide a deeper theoretical insight in the decentralized PAUSE auc-
tion. First we discover following a straightforward strategy leads to a growing
bid determination complexity, as bidders are not allowed to submit new pack-
age bids without embedding them in a new allocation. Secondly if all bidders
follow the straightforward strategy, we determine a worst case bound of 1/m
efficiency.

We conducted computational experiments to verify the sharpness of the worst
case bounds. We compare different bidding strategies and auction mecha-
nisms and find straightforward bidding with optimal bid price determination
in PAUSE leads to very high efficiency and auctioneer revenue. Surprisingly,
deviating from the optimal bid price determination does not have a signifi-
cant impact on the auction outcomes, while the auction runtime is reduced
drastically. The comparison to the CC auction exhibits that PAUSE is a bet-
ter guide solving the bidders’ coordination problem since it collects different
sizes of package bids. A slight modification of the validity of bids leads to
efficient auction results if bidders follow the straightforward strategy, but this
relaxation makes PAUSE even more unrealistic for real world implementation.
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In many applications the consideration of additional allocation constraints and
flexibility in the choice of the bidding language are essential. These require-
ments have not been covered by the theoretical literature so far. It is important
to extend the theory and address these requirements. This could extend the
applicability of CAs in domains such as transportation or industrial procure-
ment considerably and bares significant practical potential.

We consider CAs allowing for side constraints and OR as well as XOR bidding
languages. We draw on the work by Adomavicius and Gupta (2005) and
define winning and deadness levels (WLs and DLs) as a general pricing rule
for CAs. This extension leads to a number of theoretical challenges. We show
that straightforward bidding is an ex-post equilibrium in iBundle with DLs,
and how this pricing rule can be integrated in the theoretical framework of
efficient CAs. While both, iBundle and the iBundleDL allow for allocation
constraints, DLs take allocation constraints into account and actually lead to
a lower number of auction rounds and bids that need to be submitted. The
high number of auction rounds turned out to be one of the main obstacles for
efficient CAs such as iBundle, the Ascending Proxy Auction, and dVSV. DLs
come at a computational cost, however. These results provide a theoretical
foundation for practical auction design. Such designs can leverage different
pricing rules, and even combine DLs and WLs. Such hybrid designs might
well lead to high efficiency in the lab and in the field.

7.2 Future Work

The work and projects of this dissertation are still in progress. Concerning the
CC+ auction we are currently evaluating results of laboratory experiments,
in order to understand human bidder behavior in such auctions and to in-
vestigate the incentive for demand reduction in the CC auction in a specific
value model. The PAUSE auction needs more theoretical analysis and addi-
tional thoughts about specific auction rules (e.g. activity rules) before taking
it to the laboratory or the field. However even if this auction format will not
be applicable for laboratory or field experiments, some key aspects like the
process in certain stages are worth while to be further analysed and eventu-
ally adopted in other combinatorial auction designs. The main work remains
concerning generic pricing rules in cases of side constraints. While we found
that the complexity to determine exact deadness levels lies in the ΠP

2 -complete
class, heuristics might be a good comprise, i.e. approximations to the exact
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computation of deadness levels could potentially be an area of future research.
Both computational and laboratory experiments are required to gain knowl-
edge on bidding behavior and efficiency in complex markets with allocation
constraints and will give more insights into the drawbacks and opportunities
of this new pricing rule.
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Appendix

A.1 Further Computational Experiments

A.1.1 Value Models

We also test a Transportation Large value model with 50 items and 30
bidders. The other characteristics are as described in Section 3.4.

The Airports value model is an implementation of the matching scenario from
CATS. It models the four largest airports in the USA, each having a predefined
number of departure and arrival time slots. For simplicity there is only one slot
for each time unit and airport available. Each bidder is interested in obtaining
one departure and one arrival slot (i.e., item) in two randomly selected airports.
His valuation is proportional to the distance between the airports and reaches
maximum when the arrival time matches a certain randomly selected value.
The valuation is reduced if the arrival time deviates from this ideal value, or
if the time between departure and arrival slots is longer than necessary.

The Pairwise Synergy value model from An et al. (2005) is defined by a
set of valuations of individual items v(k) with k ∈ K and a matrix of pairwise
item synergies {synk,l : k, l ∈ K, synk,l = synl,k, synk,k = 0}. The valuation of
a package S is then calculated as

v(S) =

|S|∑
k=1

v(k) +
1

|S| − 1

|S|∑
k=1

|S|∑
l=k+1

synk,l(v(k) + v(l))
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A synergy value of 0 corresponds to completely independent items, and the
synergy value of 1 means that the package valuation is twice as high as the sum
of the individual item valuations. The model is very generic, as it allows diffe-
rent types of synergistic valuations, but it was also used to model valuations in
transportation auctions (An et al., 2005). We use the Pairwise Synergy value
model with seven items; item valuations are drawn for each auction indepen-
dently from a uniform distribution between 4 and 12. The synergy values are
drawn from a uniform distribution between 1.5 and 2.0. The auctions with the
Pairwise Synergy value model have five bidders each. We use a high synergy
and low synergy setting.

In the Real Estate and Pairwise Synergy value models, bidders are interested
in a maximum package size of 3, because in these value models large packages
are always valued more highly than small ones. This is also motivated by real-
world observations (An et al., 2005), in which bidders typically have an upper
limit on the number of items they are interested in. Without this limitation,
the auction easily degenerates into a scenario with a single winner for the
package containing all items.

A.1.2 Experimental Results

As already discussed, the exponential communication complexity remains a
stumbling block (Nisan and Segal, 2001). While in NLPPAs this leads to a
huge number of auction rounds, the CC+ auctions require bidders to submit a
large number of bids in each round. However, while we show that winners need
to reveal more information in the CC+ auction as in NLPPAs, the number of
actual bids submitted by bidders in CC+ is much lower. This is due to the bid
increments of packages. If the prices for 5 items increase by ε, then the price
for the package of these 5 items increases by 5 ∗ ε. For example, in our Real
Estate (3x3) value model a bidder had 130 valuations. In the CC+ auction
(with last-and-final bids) 4,128 bids were submitted in 32 rounds by powerset
bidders, and only 419 bids were submitted by Powerset10 bidders. In contrast,
in the same setting iBundle(3) (Parkes and Ungar, 2000) elicited 7,741 bids
per bidder in 150 rounds, and in the Credit-Debit auction even 14,895 bids in
266 rounds.
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hhhhhhhhhhhhhhhMeasure

Bidder Type

Straightforward 5of20 Powerset6 Powerset10 Powerset

Mean Efficiency in % CC 98.48 97.94 98.04 97.86 98.07
CC+ (partial) 98.19 99.17 99.25 99.33 99.27
CC+ (full) 98.11 99.14 99.19 99.29 99.26
iBundle 100.00 86.95 94.22 94.74 95.89
Clock-Proxy 99.83 99.56 99.72 99.72 99.64

Min. Efficiency in % CC 90.74 85.00 85.00 85.00 85.00
CC+ (partial) 90.74 95.29 95.29 95.29 95.29
CC+ (full) 90.74 96.10 95.35 96.47 96.13
iBundle 100.00 69.62 76.03 76.40 84.24
Clock-Proxy 97.69 95.18 96.47 96.47 95.18

Mean Rounds CC 17.80 17.08 14.00 13.82 13.62
CC+ (partial) 16.90 14.90 14.86 14.60 14.40
CC+ (full) 21.48 18.14 18.14 18.00 17.88
iBundle 57.18 1222.42 860.08 534.06 58.14
Clock-Proxy∗ 13.68 11.66 11.78 11.78 11.52

Mean # of Bids CC 234.04 376.20 406.68 496.66 1201.30
CC+ (partial) 226.76 375.90 407.26 496.76 1201.30
CC+ (full) 227.40 373.66 404.74 494.50 1199.88
iBundle 34968.16 35673.06 31686.36 30947.04 25136.04

Mean Revenue in % CC 83.80 89.11 89.27 89.21 89.32
CC+ (partial, Day) 67.62 69.97 69.95 70.28 70.39
CC+ (full, Day) 67.81 69.43 69.34 69.76 69.82
CC+ (partial, VCG) 56.30 60.70 60.95 61.54 61.68
CC+ (full, VCG) 54.67 57.78 58.33 58.69 58.72
iBundle 76.92 64.32 64.91 65.43 66.99
Clock-Proxy 75.11 74.73 74.94 74.94 73.94

Table A.1: Transportation Large with 50 items and 30 bidders (VCG bidder gain
37.25%). *Clock-Phase only.

hhhhhhhhhhhhhhhMeasure

Bidder Type

Straightforward 5of20 Powerset6 Powerset10 Powerset

Mean Efficiency in % CC 98.62 97.18 97.23 97.10 97.17
CC+ (partial) 98.60 98.74 98.71 98.71 98.71
CC+ (full) 98.74 98.75 98.62 98.76 98.73
iBundle 100.00 95.50 98.93 98.13 97.87
Clock-Proxy 99.77 99.72 99.66 99.66 99.64

Min. Efficiency in % CC 95.39 92.63 93.42 93.57 93.73
CC+ (partial) 95.04 96.57 96.57 97.06 96.86
CC+ (full) 96.10 97.06 95.74 97.06 96.86
iBundle 100.00 88.50 96.57 93.00 92.55
Clock-Proxy 97.92 98.96 98.60 98.60 98.60

Mean Rounds CC 10.94 8.48 8.28 8.20 8.20
CC+ (partial) 13.58 11.80 11.40 11.28 11.36
CC+ (full) 17.82 11.86 11.48 11.46 11.42
iBundle 27.30 48.98 41.58 33.82 33.68
Clock-Proxy∗ 10.06 8.78 8.18 8.18 8.02

Mean # of Bids CC 472.72 721.44 786.74 957.68 993.40
CC+ (partial) 511.22 758.20 819.98 989.44 1025.66
CC+ (full) 527.80 734.16 798.52 969.44 1004.22
iBundle 6364.38 6262.72 5522.90 6364.66 7095.52

Mean Revenue in % CC 82.75 91.30 91.33 91.67 91.75
CC+ (partial, Core) 41.02 44.45 43.91 44.24 44.09
CC+ (full, Core) 41.43 43.31 42.90 43.36 43.13
CC+ (partial, VCG) 35.17 38.61 38.54 38.91 38.64
CC+ (full, VCG) 36.35 38.04 38.08 38.54 38.38
iBundle 49.02 48.51 47.88 46.74 47.25
Clock-Proxy 46.10 46.98 46.40 46.40 46.34

Table A.2: Airports with 84 items and 40 bidders (VCG bidder gain 57.76%).
*Clock-Phase only.

123



APPENDIX A. APPENDIX

hhhhhhhhhhhhhhhMeasure

Bidder Type

Straightforward 5of20 Powerset6 Powerset10 Powerset

Mean Efficiency in % CC 99.16 99.06 99.15 99.02 99.29
CC+ (partial) 99.09 99.83 99.72 99.74 100.00
CC+ (full) 99.26 99.83 99.72 99.74 100.00
iBundle 100.00 97.93 99.33 99.14 39.52
Clock-Proxy 99.95 99.86 99.77 99.77 100.00

Min. Efficiency in % CC 86.52 94.22 96.32 94.22 94.22
CC+ (partial) 86.52 97.79 97.20 96.22 99.95
CC+ (full) 94.53 97.79 97.20 96.22 100.00
iBundle 100.00 94.19 94.99 93.36 10.90
Clock-Proxy 97.94 97.79 96.66 96.66 99.95

Mean Rounds CC 323.66 321.60 325.50 322.94 321.84
CC+ (partial) 336.72 353.24 356.12 352.24 352.00
CC+ (full) 367.12 355.56 358.74 355.44 354.52
iBundle 1596.30 13220.48 11009.38 6821.48 1.00
Clock-Proxy∗ 311.16 320.60 321.50 321.50 321.16

Mean # of Bids CC 2068.46 6976.56 8337.60 13368.04 63268.94
CC+ (partial) 2106.56 7074.98 8440.68 13468.12 63377.04
CC+ (full) 2165.84 7069.80 8429.24 13463.68 63371.72
iBundle 332557.40 311450.98 287116.04 303880.26 315.00

Mean Revenue in % CC 89.76 97.01 96.84 97.20 97.46
CC+ (partial, Core) 73.42 87.68 83.20 86.81 88.53
CC+ (full, Core) 72.87 87.06 82.54 86.13 87.95
CC+ (partial, VCG) 69.93 86.87 81.42 85.71 87.85
CC+ (full, VCG) 69.33 85.95 80.39 84.71 86.96
iBundle 88.07 86.20 85.90 87.08 0.00
Clock-Proxy 83.91 87.14 86.38 86.38 87.96

Table A.3: Pairwise Synergy High with 7 items and 5 bidders (VCG bidder gain
12.97%). *Clock-Phase only.

hhhhhhhhhhhhhhhMeasure

Bidder Type

Straightforward 5of20 Powerset6 Powerset10 Powerset

Mean Efficiency in % CC 98.22 98.80 98.44 98.98 99.16
CC+ (partial) 97.80 99.76 98.96 99.56 100.00
CC+ (full) 97.76 99.77 98.96 99.56 100.00
iBundle 100.00 97.66 98.78 99.28 52.88
Clock-Proxy 99.80 99.79 99.56 99.56 100.00

Min. Efficiency in % CC 88.28 93.18 91.81 93.18 93.18
CC+ (partial) 88.28 96.61 91.81 96.26 99.95
CC+ (full) 88.28 96.61 91.81 96.26 99.95
iBundle 100.00 93.36 92.76 95.63 22.32
Clock-Proxy 96.31 96.61 96.26 96.26 99.96

Mean Rounds CC 368.54 349.38 351.72 350.40 348.78
CC+ (partial) 395.12 388.88 386.72 386.70 384.04
CC+ (full) 418.10 390.20 390.98 389.58 388.76
iBundle 1694.72 13613.30 11696.20 6971.54 1.00
Clock-Proxy∗ 345.78 347.70 348.52 348.52 347.48

Mean # of Bids CC 2295.56 7401.86 8800.06 14070.80 68422.96
CC+ (partial) 2381.44 7519.58 8919.26 14186.08 68541.52
CC+ (full) 2392.08 7504.12 8903.12 14176.12 68533.64
iBundle 358160.68 325568.06 304894.88 312606.56 315.00

Mean Revenue in % CC 88.38 96.85 95.84 96.89 97.23
CC+ (partial, Core) 73.14 87.11 83.27 86.70 88.26
CC+ (full, Core) 73.29 86.42 82.34 85.81 87.44
CC+ (partial, VCG) 69.57 86.29 81.85 85.65 87.69
CC+ (full, VCG) 68.53 85.16 80.20 84.30 86.55
iBundle 87.54 83.86 85.09 85.04 0.00
Clock-Proxy 83.12 86.37 85.89 85.89 87.44

Table A.4: Pairwise Synergy Low with 7 items and 5 bidders (VCG bidder gain
13.43%). *Clock-Phase only.
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List of Symbols

Item-related

K - set of items

k, l, h ∈ K - item

m - number of items

S, T ⊆ K - subset of items (package, aka bundle)

Bidder-related

I - set of bidders

i, j ∈ I - bidder

n - number of bidders

C ⊆ I - subset of bidders

P(I) - power set of I

Auction-related

vi(S) - private valuation of the bidder i for the package S

bi(S) - bid price of the bidder i for the package S

B - set of bids
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pi(S) - ask price for bidder i for the package S

P - set of pay prices

πi(S,P) - payoff of the bidder i for the package S at prices P

Π(X,P) - auctioneer revenue for the allocation X at prices P

R - set of auction rounds

r - round number

ε - minimum bid increment

Γ - set of all possible allocations

X = (X1, ..., Xn) = {Xi} - allocation where bidder i gets package Xi

X - revenue maximizing allocation given the bids so far

X∗ - efficient allocation

xi(S) ∈ {0; 1} - binary variable which determines, whether the bidder i be-
comes allocated exactly the package S

E(X) ∈ [0, 1] - allocative efficiency of the allocation X

R(X) ∈ [0, E(X)] - auctioneer utility share in the allocation X

PAUSE-related

XCB - composite bid

p(XCB) - price of a composite bid

XCS(S) - allocation on the complement set of S, i.e. allocation on K\S

p(XCS(S)) - sum of bid prices in XCS(S)

k(XCS) - items covered by bids in XCS

Generic Pricing-related

CAP (S) - revenue of subauction S

CAP (K, Si) - revenue of the whole auction providing bidder i receives package
S for free
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X
−b

- winning bid combination considering all bids except bid b

BS - set of all bids on items or packages in S

BblockS - a simultaneously blocked bid set

f(BS,r,−i) - the functions’ value is a set of simultaneously blocked bid sets

Game Theory-related

w(C) - coalitional value function on the coalition C

(Π, π) - payoff vector

Core(I,w) - set of core payoffs

θi - set of types of bidder i

t - bidder type

s - strategy profile

ui(s, t) - utility function of bidder i

E - expected value
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List of Abbreviations

APA Ascending Proxy Auction

BAS Bidders Are Substitutes condition

BDP Bid Determination Problem

BSM Bidder Submodularity condition

CAP Combinatorial Allocation Problem

CA Combinatorial Auction

CATS Combinatorial Auction Test Suite

CC Combinatorial Clock auction

CE Competitive Equilibrium

DL Deadness Level

FCC Federal Communication Commission

GAS Goods Are Substitutes condition

ICA Iterative Combinatorial Auction

NLPPA Non-Linear Personalized Price Auction

NP Non/deterministic Polynomial time
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OR additive-OR (bidding language)

PAUSE Progressive Adaptive User Selection Environment

PEP Preference Elicitation Problem

RAD Resource Allocation Design

SAA Simultaneous Ascending Auction

TUM Technische Universiät München

VCG Vickrey-Clarke Groves mechanism

VM Value Model

WDP Winner Determination Problem

WL Winning Level

XOR exclusive-OR (bidding language)
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