
Dissertation
Network Architectures
and Services
NET 2012-07-2

Maintaining Reference Graphs
in

Fully Decentralized Systems

Björn Saballus

Network Architectures and Services

Department of Computer Science

Technische Universität München

TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Netzwerkarchitekturen

Maintaining Reference Graphs
in

Fully Decentralized Systems

Björn Saballus

Vollständiger Abdruck der von der Fakultät für Informatik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. H. M. Gerndt

Prüfer der Dissertation: 1. Univ.-Prof. Dr. G. Carle

2. Univ.-Prof. Dr. A. Polze, Universität Potsdam

3. TUM Junior Fellow Dr. Th. Fuhrmann

Die Dissertation wurde am 20.12.2011 bei der Technischen Universität München eingereicht und durch
die Fakultät für Informatik am 03.06.2012 angenommen.

Cataloging-in-Publication Data

Björn Saballus

Maintaining Reference Graphs in Fully Decentralized Systems

Dissertation, July 2012

Network Architectures and Services, Department of Computer Science

Technische Universität München

ISBN: 3-937201-31-9

ISSN: 1868-2634 (print)

ISSN: 1868-2642 (electronic)

DOI: 10.2313/NET-2012-07-2

Network Architectures und Services NET 2012-07-2

Series Editor: Georg Carle, Technische Universität München, Germany

© 2012, Technische Universität München, Germany

Abstract

The recent shift in processor development leads to massive parallelism in multi- and many-core
processors. So, together with the wide-spreading use of cluster technologies, this development
leads to huge networks of cores and processors. The development of applications that exploit this
increasing parallelism is a hard task, for which only a small fraction of programmers is prepared.

One approach to support the implementation of parallel applications for distributed systems,
besides others described in this thesis as well, is to offer a single system image (SSI). An SSI
completely hides the underlying hardware complexity and distribution of data and threads. Thus,
it can be programmed as if it is a symmetric multi-processor (SMP) system, while the SSI
afterwards handles load balancing and the placement of data and threads dynamically at runtime.
Hence, it allows the maintainer to seamlessly add and remove processing elements at runtime,
without disturbing the execution of the running application.

This approach seems to have faded from prominence in the recent years, as the low publication
rate indicates. In this thesis, I argue that the SSI approach should be examined again, in the new
context of the increased on-die parallelism as well as the spreading use of cluster technologies.

As a starting point, this thesis describes one of the main requirements of a distributed system,
and thus an SSI: the possibility to migrate objects between nodes, e. g. to place data and threads
closer to each other, or use added resources and evade nodes, which are scheduled for shutdown.
Together with such an object migration, the system must offer referencing entities a mechanism to
locate and retrieve migrated objects. To allow the SSI to scale with very large systems, it requires
a fully-decentralized mechanism to avoid bottlenecks and single point of failures.

The development, analysis, and evaluation of such a decentralized location and retrieval
mechanism are the main topics of this thesis. It describes various possible approaches, of which
the two main mechanisms are the reactive and the proactive location update approach. The
reactive location update approach updates outdated references upon access. To be able to do this,
the approach uses proxy objects, which remain on the object’s previous location and forward
all subsequent access messages to the object’s current location. The proactive location update
approach updates all referencing locations immediately upon object migration.

This thesis describes the design and analysis of these protocols and their prototypical imple-
mentation. Moreover, it evaluates different simulation runs with implicit and explicit object
migrations. The chief insight of this evaluation is that the proactive location update approach de-
creases the object access latencies significantly, if a huge number of object migrations take place.
Nevertheless, this fast object access comes with a significant management message overhead.
The conclusion is that this overhead is only worthwhile as an optional add-on, for example, for
objects where a fast access is crucial for the application performance.

Beyond that, this thesis implements and evaluates an access path optimization mechanism for
the reactive location update approach. This access path optimization propagates location update

i

information down the proxy chain to decrease the access latency. Yet, how deep this information
is propagated depends on the access characteristics of the object. Therefore, this thesis presents
an analytic formula that allows the computation of the optimal update propagation depth, which
minimizes the total message costs for the proxy chain update and the read access.

Besides the presented results, I describe the two BmBF projects in which I worked while
conducting this research. One is the AmbiComp project, which developed embedded hardware
and software for ambient intelligence systems. The other one is the J-Cell project, which has
the goal to map the developed mechanisms from the AmbiComp project onto the field of high
performance computing. The work in these projects continuously inspired the work described in
this thesis.

ii

Zusammenfassung

Seit einigen Jahren vollzieht sich ein fundamentaler Wandel beim Prozessorbau, der zu einer
wachsenden Parallelität in Form von Multi- und Many-Core Prozessoren führt. Zusammen
mit der zunehmenden Verbreitung von Computer-Clustern führt diese Entwicklung zu großen
Netzwerken aus Prozessoren und Prozessorkernen. Die Programmierung von Anwendungen für
diese massiv parallelen Recheneinheiten ist eine schwierige Herausforderung, auf die nur wenige
Programmierer vorbereitet sind.

Ein Ansatz, der die Anwendungsentwicklung von parallelen Anwendungen für verteilte Sy-
steme unterstützt, ist, neben anderen, die Bereitstellung eines Single System Image (SSI), einer
einzelnen, einheitlichen Systemabbildung. Ein SSI verbirgt die gesamte Komplexität der ver-
wendeten Hardware, die Verteilung der Daten und Threads auf einzelne Rechenknoten sowie
deren Kommunikation untereinander. Dieses einheitliche Systemabbild kann wie ein einzelnes,
symmetrisches Mehrprozessorsystem programmiert werden, während sich das SSI anschließend
dynamisch zur Laufzeit um die Lastverteilung und die Platzierung von Daten und Threads küm-
mert. Hierdurch kann der Systemadministrator Komponenten entfernen oder hinzufügen ohne
die laufenden Anwendungen zu stören.

Die nachlassende Zahl an Neuveröffentlichungen zeigt, dass das Interesse an diesem Ansatz
offenbar in den letzten Jahren nachgelassen hat. Ich hingegen argumentiere in der vorliegenden
Dissertation, dass der SSI Ansatz erneut im Kontext der zunehmenden Parallelität und der
Verbreitung von Computer-Clustern betrachtet werden sollte.

Der Ausgangspunkt meiner Arbeit ist die Betrachtung einer der wichtigsten Anforderungen
an ein SSI: die Möglichkeit, Objekte zwischen Knoten zu migrieren, um beispielsweise Daten
und Threads näher beieinander zu platzieren oder neu hinzugefügte Ressourcen zu nutzen,
beziehungsweise Knoten, die für den Shutdown vorbereitet werden, zu entfernen. Um diese
Objektmigration zu ermöglichen ist es erforderlich, dass das System die Lokalisierung von –
und den Zugriff auf migrierte Objekte sicherstellt. Damit das System auch mit sehr großen
und wachsenden Systemen skalierbar bleibt, muss für diese Aufgabe ein vollständig dezentraler
Lokalisierungs- und Zugriffsmechanismus gefunden werden.

Der Kern dieser Dissertation ist die Entwicklung, Analyse und Bewertung eines solchen
vollständig dezentralen Lokalisierungs- und Zugriffsmechanismus. Hierzu stelle ich verschiedene
Lösungen vor, von denen die zwei wichtigsten Mechanismen das reaktive und das proaktive
Aktualisieren des Objektaufenthaltsortes sind. Der reaktive Ansatz aktualisiert den Aufenthaltsort
beim Zugriff auf das Objekt. Hierzu lässt jede Objektmigration ein Proxy Objekt zurück, welches
nachfolgende Anfragen zum derzeitigen Aufenthaltsort des Objektes weiterleitet. Der proaktive
Ansatz verwendet Aktualisierungsnachrichten, welche die Information über den Aufenthaltsort
des Objektes auf anderen Knoten sofort nach der Migration aktualisieren.

iii

In dieser Dissertation beschreibe ich das Design dieser Protokolle und deren prototypische
Implementierung. Ich evaluiere die verschiedenen Simulationsdurchläufen mit impliziter und
expliziter Objektmigration. Die Haupterkenntnis dieser Auswertung ist, dass der proaktive
Ansatz die Zugriffszeit bei einer großen Anzahl von Objektmigrationen signifikant verringert.
Dieser schnellere Zugriff wird allerdings durch hohe Zusatzkosten durch die große Anzahl von
Aktualisierungsnachrichten erkauft. Das Fazit ist, dass sich diese Zusatzkosten nur als zusätzliche
Option lohnen, wenn der schnelle Zugriff auf ein Objekt wichtig für die Leistungssteigerung der
Anwendung ist.

Darüber hinaus habe ich ein Zugriffspfad-Optimierungsverfahren für den reaktiven Ansatz
entwickelt. Dieses Verfahren propagiert Aktualisierungsnachrichten die Proxykette hinab, um die
Zugriffszeit zu verkürzen. Wie tief diese Information entlang der Kette propagiert wird, hängt von
der Zugriffscharakteristik des Objektes ab. Hierfür habe ich eine analytische Formel entwickelt,
welche es erlaubt die optimale Aktualisierungstiefe zu berechnen und damit die Gesamtkosten
für die Aktualisierungsnachrichten und den Objektzugriff zu minimieren.

Neben den präsentierten Ergebnissen beschreibe ich zusätzlich die zwei BMBF-Projekte, an
welchen ich während meiner Dissertation gearbeitet habe. Das eine ist das AmbiComp Projekt,
welches eingebettete Hardware und Software für “umgebungsintelligente” (Ambient Intelligence)
Systeme entwickelt hat. Das andere ist das J-Cell Projekt, welches die Ergebnisse aus dem
AmbiComp Projekt auf das High Performance Computing überträgt.

iv

Contents

Abstract i

Zusammenfassung iii

Contents v

1 Introduction 1
Research Methodology . 4
Overview . 5
Published Work . 6

2 Background 7
2.1 Terminology . 7
2.2 Parallel Programming . 10

2.2.1 Message Passing . 11
2.2.2 Shared Memory and Multithreading 12
2.2.3 Distributed Shared Memory . 12
2.2.4 Partitioned Global Address Space . 13
2.2.5 Comparison of Message-Passing and (Distributed) Shared Memory . . 14
2.2.6 Single System Image . 15
2.2.7 Transactional Memory . 16

2.3 Object and Memory Model . 18
2.3.1 Object Model . 18
2.3.2 Memory Model . 20

3 Related Work 23
3.1 Distributed Systems . 23
3.2 Mobile Objects . 24

3.2.1 Mobile Data . 25
3.2.2 Mobile Code/Mobile Agents . 28

3.3 Programming Languages and Middleware . 30
3.4 Distributed Shared Memory . 32
3.5 Distributed Operating Systems . 36
3.6 Distributed Java Virtual Machines . 38

v

Contents

4 Environment 43
4.1 The AmbiComp System . 43

4.1.1 Hardware . 44
4.1.2 AmbiComp BIOS . 45
4.1.3 AmbiComp Transcoder and Tool Chain 47
4.1.4 AmbiComp Virtual Machine . 48

4.2 Object Distribution Model . 49
4.3 Multi-Core and Many-Core Systems . 50

4.3.1 IBM’s Cell Processor . 51
4.3.2 Intel’s Single-chip Cloud Computer 52

5 System Specification 57
5.1 Virtual Machine . 58
5.2 DecentSTM . 60
5.3 Object Retrieval Manager . 61
5.4 Memory Manager and Garbage Collector . 63
5.5 Migration Manager . 63

6 Locating Objects 65
6.1 Locating Static Objects . 65
6.2 Locating Dynamic Objects . 67

6.2.1 Broadcast . 67
6.2.2 Central Registry . 69
6.2.3 Distributed Hash Tables . 71
6.2.4 Static Home Nodes . 73
6.2.5 Forwarding Proxies . 74

7 Reactive Location Updates with Migration Proxies Protocol 79
7.1 Object Access . 80

7.1.1 Proxy Deletion . 81
7.1.2 Reactive Location Update . 81
7.1.3 Cyclic Routing . 83

7.2 Object State Diagram . 84
7.2.1 Regular State . 86
7.2.2 Pending State . 87
7.2.3 Forwarding State . 88

7.3 Access Path Optimization . 89

8 Proactive Location Update with Incoming References Protocol 93
8.1 Object Access and Proactive Location Update 94

8.1.1 Triangular Object Access . 95
8.1.2 Enhanced Triangular Object Access 98

8.2 Differences to Reactive Location Update Approach 99
8.3 Object State Diagram . 104

vi

Contents

8.4 State Diagram: Runtime Operations . 104
8.4.1 Regular State . 105
8.4.2 Pending State . 105
8.4.3 Forwarding State . 107

8.5 State Diagram: Migration . 107
8.5.1 Regular State . 107
8.5.2 Pending State . 109
8.5.3 Forwarding State . 110

8.6 State Diagram: Incoming Reference Management 110
8.6.1 Regular State . 110
8.6.2 Pending State . 112
8.6.3 Forwarding State . 112

9 Evaluation 113
9.1 OMNeT++ Simulation . 113

9.1.1 Simulation Runs . 114
9.1.2 Evaluation of Implicit Object Migrations 115
9.1.3 Evaluation of Implicit versus Explicit Migration 119
9.1.4 Protocol Comparison for all Migration Rates 124

9.2 Software Simulation for Access Path Optimization and Caching 126
9.2.1 Cache Characteristics . 127
9.2.2 Access Optimizations . 130
9.2.3 Bad Cache Hits . 133
9.2.4 Cache Misses . 136

10 Conclusion 139

List of Tables 141

List of Figures 145

Bibliograpy 146

Index 167

vii

1 Introduction

In recent years, distributed systems in general, and distributed and parallel computing in particular,
became more and more important. General purpose, as well as high performance computing
systems grow in parallelism and no longer in single core processing speed. See, for example,
Figure 1 and Figure 2 in Fuller and Millett [FM11, p.33]. Among others, these figures show
the historical growth of clock speed, the number of cores per chip, and the single-processor
performance. Since the year 2004, the single processor performance and the clock speed have
stalled, while the number of cores per chip is growing.

For example, mainstream general purpose processors are already equipped with 4 cores,
while 8 core processors are available, and processors with up to 16 cores, such as the AMD
Interlagos [Adv10] processor, have been announced. Another example is Intel’s Single-Chip
Cloud computer (SCC), an experimental 48-core processor [Int11], which Intel Labs have created
as a “concept vehicle” for many-core software research. Furthermore, the currently fastest
computer in the Top500 list [TOP11] – in November 2011 – is the K Computer at the RIKEN
Advanced Institute for Computational Science (AICS) in Kobe, Japan. This computer consists of
a network of 88 128 8-core processors, which sum up to a total of 705 024 cores [TOP11].

Today, nearly all computer systems for high-performance computing consist of homogeneous
compute nodes. But the current trends in processor design lead to heterogeneous architectures,
e. g. the IBM Cell processor [Pha+05].

Moreover, the compute power of embedded systems increases with every generation, which
leads to the development of distributed embedded systems, for example for home entertainment,
automotive systems, environmental monitoring applications etc.

Furthermore, Leen and Heffernan [LH02] stated that about 80% of all innovations in the
automotive sector come from electronics, and Broy [Bro06] has seen an exponential software
usage growth in this field. According to Broy, the software in a premium car has more than 10
million lines of code and runs on up to 70 small, specialized embedded devices that are connected
by various bus systems. Together, these control units form a heterogeneous network, which
executes one or more distributed applications, e. g. the active suspension control system, motor
control, multimedia systems or the passenger compartment temperature and humidity control.

The main challenge in these systems is their programmability. This challenge is accompanied
by the challenges of scalability and fault-tolerance, because these two directly influence the
programming of such systems. In this context, scalability means vertical scalability, where the scalability

number of compute cores is increased, in contrast to horizontal scalability, where the system is
replaced with a more powerful one.

Ideally, the application performance should increase linearly with the available compute power.
In practice, this goal is hard to achieve. Still, an increase of compute power should at least
not decrease the application performance, as it was observed by Singh, Hennessy, and Gupta

1

1 Introduction

[SHG93]. The authors stated that for a fixed size problem, at some point the addition of more
processors even increases the execution time. They presented a figure that shows this effect for a
Barnes-Hut application, where the performance increases for up to 32 processors, but starts to
decrease, if more than 32 processors are used.

The observed reasons are the limited parallelism of the fixed problem size and the increased
management overhead that is needed for the parallel execution. This overhead is influenced
by the growing number of potentially heterogeneous compute cores because they increase the
management overhead for the hardware and have influence on the system design. During the
system design, the developer has to decide which interconnect should be used and how the nodes
should be placed in the network in relation to each other. This decision influences the access
latency between any two cores in the network significantly. But this decision is influenced by the
application too, for example, if each thread, which is executed, requires a fast access to some
global memory, or in case that the application frequently ships data to a cluster of floating point
units or GPGPUs (general purpose graphics processing unit).

Moreover, the growing number of compute cores comes with the risk of more frequent node
failures. Schroeder, Pinheiro, and Weber [SPW09], for example, analyzed DRAM failures in
Google’s data center infrastructure. They observed 25 to 70 errors per million device hours
per Mbit and detected that more than than 8% of all DIMMs (Dual Inline Memory Module)
are affected every year. Schroeder and Gibson [SG10] examined systems for high performance
computing at the Los Alamos National Laboratory. The authors noticed that the failure rates in a
system are nearly proportional to the number of processors. Furthermore, they found a correlation
between the type and intensity of the workload and the failure rate of a machine.

Altogether, frequent node failures, hardware upgrades and maintenance tasks as well as the
consolidation of an application onto fewer nodes to save energy, lead to a highly dynamic network
of processors and cores. Because of this frequent churn, centralized software components, such as
central servers, introduce a single point of failure and do not scale with an increasing number of
nodes. Thus, I advocate for the design of such networks of compute nodes as fully decentralized
distributed systems.

To successfully develop parallel applications for such systems, the application programmer
has to be aware of the dynamic nature of the underlying hardware architecture. This starts, for
example, with the question: Which programming model must be applied to develop the parallel
application for the given hardware architecture? Two common parallel programming models,
for example, are message passing for distributed systems, and shared memory programming for
shared memory systems, cf. Chapter 2. Moreover, the developer has to consider the demands of
the parallel application, e. g. to handle the memory access latencies or the placement of data and
threads right.

An alternative to handling the underlying architecture in the application is the use of an
intermediate layer that provides a single system image (SSI) [Pfi98; BCJ01]. Such an SSI offers
transparent access to the underlying resources, while hiding the underlying dynamic features of the
system, such as node churn or frequent object and thread migrations. Thus, it allows applications
to run transparently on large clusters of heterogeneous multi-core and many-core machines as
well as distributed, embedded systems, cf. Section 2.2.6. Both these application domains are

2

large-scale distributed systems that consist of a dynamic network of potentially heterogeneous
compute nodes, where nodes may join or leave at any time and the use of centralized components
is not feasible.

It is the goal of the group I am part of to develop a runtime environment that provides an SSI
on top of such networks of potentially heterogeneous compute nodes. This runtime system is
either a distributed Java virtual machine (DJVM) that executes the code of the application, or
it could be an application that uses the C library that we are developing in our group. There is
no difference in the functionality between DJVM and C library with respect to the distributed
execution of an application. Thus, I will assume that the envisioned system uses the DJVM for
the rest of this thesis.

The target software consists of irregular, multi-threaded (see Chapter 2) applications. Such
irregular application are characterized by the use of pointer-based data structures such as graphs,
trees or unstructured grids, the use of irregular control structures such as conditional statements,
or the exhibition of irregular and non-deterministic communication patterns, cf. [Kul+09]. Our
runtime environment transparently distributes code, objects and threads of such irregular applica-
tions onto the compute resources, which may be added or removed at run-time. The threads of
the application might share objects and hold references to objects that might be located on remote
nodes.

Due to the dynamic features of these distributed systems, object migration is an important
functionality. It allows and facilitates:

• Maintenance: Migrate the running threads and locally stored objects from node A to node
B to shutdown node A for upgrade, maintenance or exchange during runtime.

• Latency Optimization: Migrate objects that access each other to nodes close to each other
or onto the same node to decrease the access latency.

• Replication: Migrate object replicas to nodes that are spread throughout the network to
increase the reliability in case of node failures. This also improves the access latency of
accessing nodes in the close neighborhood of a replica.

• Resources: Migrate all threads and objects to nodes with free resources to improve resource
utilization or to nodes with specialized resources such as floating-point units.

• Energy Efficiency: Migrate all threads and objects from node A to node B to shutdown
node A to save energy e. g. during night time, when not the full compute power is needed.

In such a network, a scalable and fully decentralized object location and retrieval algorithm is
needed. This algorithm has to ensure that any node in the system can always access all local and
remote objects to which it holds a reference. Thus, the algorithm must be able to access remote
objects regardless of their location.

The thesis’ topic is the development and evaluation of such a decentralized object location and
retrieval algorithm.

3

1 Introduction

Research Methodology

The main research question of this thesis is

“How can I ensure that an object is reachable in a fully decentralized system that
allows object migration?”

To answer this question, I have chosen the design research approach to conduct my research.
In this context, the term design means a process in which something new is created. In the design
research, the researcher creates an artifact to gain new knowledge, cf. [Hev+04; BZ07]. Therefore,
the aim is not to develop the artifact, but to analyze and understand the artifact’s behavior. The
goal is to gain a deeper knowledge about the research area, which might lead to the artifact’s
refinement.

Starting with the given research question, my first task was the analysis of the problem space,
which led to a first specification of a distributed reference maintenance and location update
protocol.

Afterwards, I conducted the design research in various subsequent, evolutionary research
cycles. Based on the specification, I developed, tested and evaluated the protocol implementations
in a network emulator as well as in a software simulation. The work on the prototype and the
analysis of the results revealed new insights into the topic and allowed enhancements of the initial
specification. This modified specification was the starting point of the next iteration. First, I
tested the enhanced protocol implementation. Afterwards, I evaluated its results and compared
them against the initial specification, which again led to new knowledge to start a new research
cycle.

4

Overview

The remainder of this thesis is structured as follows:

Chapter 2 gives an introduction into the field of parallel programming in general. Additionally,
it outlines the underlying concepts that are necessary for this thesis, e. g. the object and memory
model.

Chapter 3 gives an overview over the related work of this thesis. Moreover, it summarizes
different systems for distributed computing, such as distributed shared memory, distributed
operating systems, and distributed Java virtual machine approaches.

Chapter 4 describes the two target environments from which the main target scenarios are
derived. Namely, the ambient intelligence scenario from the AmbiComp project and the high-
performance computing scenario from the J-Cell project.

Chapter 5 gives an overview over the runtime components, which are necessary for the
decentralized object location and retrieval mechanism. It does not only describe the different
modules of the runtime environment, but also their interactions in more detail.

Chapter 6 first gives an overview how a decentralized system can locate static objects. After-
wards, this chapter introduces and compares various approaches to locate dynamic objects.

Chapter 7 analyzes the reactive location update protocol that uses forwarding proxies to redirect
messages after an object migrated to another node. Additionally, this chapter describes the access
path optimization approach, which shortens the access latency in case of long chains of proxies,
and depends on the access characteristics of the accessed object.

Chapter 8 analyzes the proactive location update protocol that uses proxies together with
backward references. This protocol uses these backward references to immediately update the
location information for the migrated object at all nodes that hold a references to the migrated
object.

Chapter 9 evaluates the reactive and proactive location update protocols in an OMNeT++
network emulator. Furthermore, it evaluates the reactive location update protocol – together with
the access path optimization approach – in an additional software simulation.

Chapter 10 summarizes the work of this thesis and draws a conclusion. Additionally, this
chapter gives an outlook for open research questions.

5

1 Introduction

Published Work

Parts of this thesis have been published:

Chapter 2, Chapter 4, Chapter 7
Björn Saballus, Stephan-A. Posselt, Thomas Fuhrmann: A Scalable and Robust Runtime
Environment for SCC Clusters, Proceedings of the 3rd MARC Symposium, Ettlingen,
Germany, 2011.

Chapter 4
Björn Saballus, Johannes Eickhold, Thomas Fuhrmann: Global Accessible Objects (GAOs)
in the AmbiComp Distributed Java Virtual Machine, Proceedings of the 2nd Int’l Con-
ference on Sensor Technologies and Applications (SENSORCOMM’08), Cap Esterel,
France, 2008

Chapter 4
Johannes Eickhold, Thomas Fuhrmann, Björn Saballus, Sven Schlender, Thomas Suchy:
AmbiComp: A Platform for Distributed Execution of Java Programs on Embedded Systems
by Offering a Single System Image, Proceedings of the AmI-Blocks Workshop at the Euro-
pean Conference on Ambient Intelligence (AmI-Blocks’08), Nuremberg, Germany, 2008

Chapter 3, Chapter 5, Chapter 7, Chapter 8, Chapter 9
Björn Saballus, Thomas Fuhrmann: A Decentralized Object Location and Retrieval Algo-
rithm for Distributed Runtime Environments, Technical Report TUM-I1025, Technische
Universität München, Munich, Germany, 2010

Chapter 7
Björn Saballus, Stephan-A. Posselt, Thomas Fuhrmann: Brief Announcement: Fault-
Tolerant Object Location in Large Compute Clusters, Proceedings of the 13th Int’l Sym-
posium on Stabilization, Safety, and Security of Distributed Systems (SSS’11), Grenoble,
France, 2011

Chapter 7, Chapter 9
Björn Saballus, Stephan-A. Posselt, Thomas Fuhrmann: Caching Strategies and Access
Path Optimizations for a Distributed Runtime System in SCC Clusters, Proceedings of the
4th MARC Symposium, Potsdam, Germany, 2011.

6

2 Background

This chapter gives an overview over the background of this thesis. It starts with an introduction of
the most important terminology. Afterwards, it describes different parallel programming models
such as message passing and (distributed) shared memory. Finally, the chapter closes with an
outline of the object and memory model.

2.1 Terminology

The following definitions introduce the most important terminology used in this thesis.

Core Following the von Neumann architecture [Neu45], a core is the smallest sequential execu-
tion unit of a computer, and is traditionally called central processing unit (CPU).

The CPU consists of an arithmetic logic unit (ALU) and a control unit. The ALU performs
all arithmetic operations and comparisons, while the control unit fetches instructions
from memory, decodes the instructions, fetches the operands from memory, and executes
the operation, e. g. by sending the appropriate commands to the ALU or loading further
data from memory. Finally, it stores the potential result, e. g. from an addition, into the
destination memory.

Additionally, each core has a small, temporary storage; its registers and often a small cache.

Processor A processor contains a single core or multiple cores. Thus, processors are distin-
guished into single-core or multi- and many-core processors. The latter ones are described
in more details in Section 4.3.

Besides the cores, a processor contains additional local cache memory. This cache is often
split into multiple levels as a cache hierarchy, where the level 1 cache (L1) is local to a
single core, while the on-die level 2 cache (L2) might be local to a single core or, if no
level 3 cache is present, can be shared among all cores. If the level 2 cache is shared or a
level 3 cache is present, the cores and the shared cache are attached to each other via an
on-die memory bus.

Additionally, an external system bus connects the processor to the off-die main memory.

Node A node is a single, stand-alone entity that consists of one or more processors. All processors
are attached to the main memory of the node. This memory is commonly shared among all
processors and allows for symmetric multiprocessing (SMP), whereby the system is said to
be an SMP system.

I assume that all processors and hardware components within a node share the same fate,
i. e., all processors fail together or not at all.

7

2 Background

Various nodes can be interconnected to form a network of nodes, also called cluster, Grid,
Cloud or supercomputer.

Distributed Shared Memory Distributed shared memory (DSM) is a memory architecture where
all cores can transparently access the entire memory in a network of nodes. An underlying
protocol handles the necessary communication and memory management among the nodes
and thus, offers a common address space.

A DSM combines the advantages of shared memory, where all cores have direct access
to the same memory, e. g. the main memory of the processor in a node, and distributed
memory, where the physical memory is scattered across multiple nodes. In the latter case,
a single node has direct access only to its local memory, and some form of communication
is necessary to access the memory on another node, e. g. via message passing.

Thread/Task A task is a logically discrete sequence of computational work, while a thread is
the execution of a sequence of program instructions that can be logically executed in a
sequential order by a processor. The programmer has the choice to spawn a separate thread
for each new task, or one thread executes a number of different tasks, one after the other.

A parallel program consists of multiple threads that can be executed at the same time on
multiple cores. Multithreading executes multiple threads in a shared memory environment,
either time-sliced on a single core, or concurrently on multiple cores, while operating
systems usually do both. Synchronization points are used to synchronize the execution of
threads. A barrier, for example, does not allow a thread in a group of threads to continue
its work unless all other threads have reached this barrier as well.

Object An object is a chunk of memory of a given size. Our system does not make any
assumptions about the internal layout of the data; this is entirely up to the using entity,
e. g. our distributed Java virtual machine. Thus, an object might be an object in the sense
of an object-oriented programming language, but also a C struct, an array or the execution
context of a thread. It might even be the executed code itself.

Home Node An object always resides in the local memory of some node, which is called the
home node of the object. This home node is either a static home node, which does not
change during the lifetime of the object, or a dynamic home node that might change over
time.

With a static home node, it depends on the chosen approach if object migrations are
allowed or if the object remains, for example as a master object, on the static home node,
cf. Chapter 3 and Section 6.2.4. If no object migrations are allowed, the static home node
is responsible for the synchronization of the object access. If the system allows migration,
the static home node is only responsible for the object location, not for e. g. serializing the
write access to the object.

With a dynamic home node, the object is free to migrate among the nodes in the network.
Hence, the location information for the object that is stored on other nodes than the home
node of the object has to be managed to guarantee the accessibility of the object.

8

2.1 Terminology

If not stated otherwise, the occurrence of the phrase home node means in the rest of this
thesis a dynamic home node.

Reference A reference is an identifier that is used to access a particular object. References to
objects are either node local identifiers, e. g. pointers (local memory addresses) into the
local memory, or globally unique identifiers, e. g. tuples that address a chunk of memory
on a remote node, i. e. < Node Id, Local Memory Address>, or any other addressing
scheme that allows the globally unique identification of a particular object.

Critical Section A critical section is a piece of code where multiple threads access the same
shared object. Thus, this critical section must be protected from the simultaneous access
of multiple threads to prevent memory corruption. For example, in a race condition, two
or more threads update the same object at the same time, and the result depends on the
scheduling of the threads. Namely, the result contains only parts of the written data of
each thread, because the other parts have been overwritten by the other threads. Thus, it
is necessary to synchronize the access to shared objects, so that only one thread at a time
is allowed to enter the critical section in which the shared object is manipulated. Various
concepts, such as locks, semaphores or monitors, exist to achieve mutual exclusion.

With locking, only one thread is allowed to hold the lock, while all other threads have to
wait until the lock-holder leaves the critical section and releases the lock. In this way, the
access to the critical section happens in a strictly sequential order, and can thus lead to
an increase of the execution time of the application. Additionally, locking might lead to
priority inversion or deadlocks, for example if two threads try to gain two locks to the same
two critical sections at the same time but in reverse order, so that neither of them can get
the lock that is held by the other. Furthermore, a node failure in a distributed system might
also result in a deadlock if threads on that node possessed some locks which will never be
released again and which cannot be broken in a sane way.

Transactional Memory A recent model to avoid the pitfalls of the lock-based sequential access
to shared objects is to handle the concurrent access with software or hardware transactional
memory (TM). With TM, all threads operate on local copies of the shared objects in
so-called transactions.

A transaction is the smallest entity of execution in a transactional memory system. In
our STM system, all operations within a transaction are executed strictly locally, without
interactions with the surrounding environment.

At the end of a transaction the thread tries to commit (publish) all local changes of the
shared objects. If the commit protocol does not detect any conflicts with other threads the
commit succeeds and the thread continues its execution. If the commit fails, the thread has
to roll back and restart the computation with the latest version of the object.

Note that I do not explicitly define the terminology from related scientific fields.
For example, one of the main topics of this thesis is distributed shared memory programming.

For this reason, I did describe tasks and threads, but did not explicitly explain processes, even
though I use the term later on. Similarly, this thesis assumes that there is an underlying network

9

2 Background

with a given topology, and that nodes are interconnected by communication links having a
given speed and bandwidth. Additionally, a routing protocol is present that supports end-to-end
communication via multi-hop or point-to-point connections. However, I will not detail the topic
of network topologies and routing protocols any further, even though these phrases are used
throughout the thesis. Furthermore, I am not concerned with I/O (input/output) interfaces that
allow the communication between the distributed system and the outside world, or checkpointing
and fault tolerance. These are topics that are ongoing work in the group I am part of.

2.2 Parallel Programming

In the past, main-stream processors contained only a single core which was able to execute
exactly one instruction at a time. Thus, traditionally, software is written as a sequential stream of
instructions.

As described in the introduction, the current trends in processor design lead from increasing
clock rates of single-core processors towards increasing numbers of cores in multi- and many-
core processors with lower clock rates, where not each core must necessarily support the full
instruction set architecture of current processors. This development requires a paradigm shift in
software engineering from sequential to parallel and concurrent programming, where the different
cores of the processor independently execute the instructions of multiple parallel threads.

This trend challenges software developers who have to work with legacy code that was
originally targeted at single-core processors. Furthermore, most developers seem to be well
accustomed to sequential algorithms, but have a hard time programming with concurrency in
mind, cf. [SL05; Lee06; Luf09; SS10]. Especially, when the algorithms need to scale to a vast
number of cores. According to Sutter and Larus [SL05], one of the main reasons is the human
himself, who is not used to think about parallelism and concurrency.

However, the development of parallel applications is not only necessary to cope with the
increasing hardware parallelism, but has also the advantage to speed up the execution time of a
given computational task. I. e., the parallel execution of a multi-threaded application on multiple
cores can execute a larger number of computational tasks than the sequential execution in the
same execution time.

Here, the achievable speedup of a parallel application is commonly defined as the ratio of the
sequential execution time Tseq and the parallel execution time Tpar:

speedup =
Tseq

Tpar
(2.1)

Nevertheless, Amdahl’s Law [Amd67] states that the maximal speedup that a parallel programAmdahl’s Law

can achieve is bound by the sequential parts of the program. To see this, let P be the parallel parts
of the program and (1−P) the sequential parts. The parallel parts are executed by a number of
available processors N, leading to P

N . With Tpar = Tseq · ((1−P)+ P
N) and N→ ∞, the maximal

speedup is:

speedup =
Tseq

Tseq · ((1−P)+ P
N)
≤ 1

(1−P)
(2.2)

10

2.2 Parallel Programming

To achieve this speedup, programmers must be well aware of the underlying hardware, the
network architecture, and the chosen programming model. Here, the two major programming
models for parallel programming are message passing, which is the predominant model for the
programming of large distributed memory systems, and shared memory programming, also called
multithreading, which is the predominant model for the programming of small shared-memory
systems [FGK03].

2.2.1 Message Passing

Message passing environments have been around since the 1980s [OB87; Sun90; Gei+90] and
the development of a common standard was started in 1992 [Wal92].

Message passing is commonly used for large systems where the memory is distributed among
all nodes and where each node has direct access only to its local memory. Thus, the message
passing model has to follow a ’share nothing’ paradigm, where the different program entities do
not share a common memory, but have to exchange messages to communicate with each other.
Thus, the individual program tasks are similar to processes in an operating system.

The message passing interface (MPI) [Sni+98] is the industry standard for message passing
and the dominant model for programming high-performance applications [Bas+08]. Two open
source implementations of MPI are e. g. LAM/MPI [SL03] and MPICH [Arg11].

To communicate among two processes via MPI, the programmer has to specify explicitly the
two-sided communication with send and receive method pairs. The MPI standard offers these two
point-to-point methods as either blocking or non-blocking. In the non-blocking case, a process
can call an additional method to get information about the process of the send operation.

Additionally to these two methods, the MPI-1 standard specifies some additional aspects such
as MPI specific data types and collective communication, e. g. broadcast, which distributes the
work to all nodes in the network, or reduce operations, which collect the results from the nodes
that took part in the parallel computation.

The MPI-2 standard adds one-sided communication via PUT and GET messages, which does
not involve the remote process anymore. Here, the process on one node can read data from or
write data to the memory of any other node, without interrupting the execution of the processes
on that node. With this feature, MPI-2 does not follow the message passing model anymore but is
closer to the remote direct memory access (RDMA) [Rec+07].

Altogether, the message passing programming model is well suited for large-scale systems
without a physically shared memory, i. e. a distributed memory architecture. This was shown by
Balaji et al. [Bal+09], who examined the communication performance of MPI in the IBM Blue
Gene/P system with 32 768 nodes, where each node consists of a 4 core processor (= 131 072
cores).

However, the major drawback of message passing is that the programmer is required to deal
with the placement of and the communication among the different tasks, which makes MPI
difficult to program. Furthermore, it is especially unsuited for applications with fine-grained
irregular access to remote memory because of the software overhead that is required for the
communication [Sha+01; Ber+04].

11

2 Background

2.2.2 Shared Memory and Multithreading

In the shared memory programming model, all threads share a single common memory. Therefore,
all threads can communicate via shared data and the programmer is not required to think about
explicit communication. Thus, shared memory programming is for most programmers easier than
message-passing [PGL94].

Because multiple threads communicate via a shared memory, this programming model is
also called multithreading, which is either done with native threads or with green threads. Themultithreading

difference is that native threads are managed and scheduled by the operating system in the kernel
space, whereas green threads are managed and scheduled by a virtual machine in the user space.
A common API (application programming interface) for native threads is e. g. the Pthreads
library, specified by the IEEE POSIX 1003.1c standard [IEE04]. The Java virtual machine (JVM),
for example, uses green threads that are separated from the operating system. Thus, even though
the JVM can map green threads to native threads, it is still possible to execute multi-threaded
application in a JVM that runs on an operating system that does not support multithreading, such
as small, embedded devices. Furthermore, Java directly supports multithreading via the Java API
[Lea99; Goe+06].

A shared memory programming API for C/C++ and Fortran is the industry standard OpenMP
[Ope11]. With OpenMP, the programmer instruments the source code with OpenMP statements,
e. g. to indicate a loop that should be executed in parallel by multiple threads. An OpenMP
compiler translates the instrumented parts of the source code into parallel code, while a sequential
compiler is not affected by these statements. I. e., the sequential compiler does not have to
be extended to support the additional instrumentation. Thus, it is possible to use OpenMP to
parallelize existing sequential code that is still executable on a single-core processor.

For the envisioned system, the main drawback of multithreading is that it is limited to machines
that have a shared memory architecture. Moreover, the concurrent access to shared data must be
synchronized to prevent memory corruptions. Here, the common approach is to use locks, which,
in practice, proved to be hard to get right [RHW10].

2.2.3 Distributed Shared Memory

To keep the advantages of shared memory programming in distributed systems without a common
shared memory, distributed shared memory (DSM) has been developed.DSM

A DSM provides the abstraction of shared memory in a distributed memory environment by
hiding the distributed nature of the memory from the user. Thereby, the DSM offers the user the
transparent access to local and remote memory by hiding the underlying communication between
the different nodes.

Depending on the level on that this abstraction is implemented, DSM systems can be distin-
guished into hardware DSMs, which support the shared memory abstraction on the hardware
level, and software DSMs, which provide this abstraction within the runtime environment.

For this thesis only software DSMs are of interest because the developed system is a software
and not a hardware solution. Section 3.4 gives a detailed description of various software DSM
systems.

12

2.2 Parallel Programming

2.2.4 Partitioned Global Address Space

The PGAS (partitioned global address space) programming model is an important subclass of PGAS

DSMs for this thesis because it aims at the same application domain as the envisioned system.
PGAS received attention recently, especially for multi-core programming [KB09]. Unlike the
envisioned system, PGAS’ main objective is to allow the programmer to explicitly control and
predefine the placement of data and threads. Thus, the developer can place the code and the
data that the code manipulates close to each other, e. g. on the same node. Additionally, the
programmer can place subsequently executed code blocks on the same node as well.

Similar to our memory model (see below), the local memory of a PGAS node is partitioned
into a private local part and a globally shared part. All scattered globally shared parts of all nodes
belong to the shared memory. This shared memory might be a physically shared memory or a
simulated shared memory that is realized with a distributed shared memory and message passing.
Thus, this shared memory offers a global address space with a potentially non-uniform access
time.

Typical PGAS languages are X10 [Sar+11; Cha+05], Unified Parallel C (UPC) [The05;
CDC99], Titanium [Bon+06; Yel+98] and Chapal [Cra11; CCZ04].

X10 is an object-oriented programming language proposed by IBM. X10 follows the multiple
instruction multiple data programming model that allows each node to execute different threads
which operate on different data. X10 was derived from the Java programming language and aims
at the programming of heterogeneous, non-uniform clusters. According to Charles et al. [Cha+05],
it was designed to circumvent Java’s drawback in multi-core systems: the tight coupling to a
single, uniform heap. Furthermore, similar to other PGAS languages such as UPC, X10 makes
the location of data directly visible in the code.

Charles et al. [Cha+05] argued that the transparent location of objects introduce a performance
bottleneck because the programmer does not know if a data access will generate remote commu-
nication. This assumption is supported by Barton, Cascaval, and Amaral [BCA07] who analyzed
the data access characteristics in UPC. They found that the performance is significantly improved
if the programmer is able to decide how the shared data is distributed among the executing threads
because the compiler can optimize the data access at compile time.

Unified Parallel C (UPC) is a parallel extension of the C programming language, while
Titanium is a Java dialect. Both, UPC and Titanium, follow the single process multiple data
programming model where all nodes execute the same thread, but each thread operates on
different data. The threads are placed on the individual nodes at startup and do not migrate during
the runtime of the program. The main goal of this placement is to minimize the communication
overhead between two cooperating threads, and it is the responsibility of the programmer to
choose a good placement.

UPC uses global pointers to access remote data, and the UPC compiler translates remote
accesses into inter-processor communication. Thus, the programmer does not need to deal
directly with message passing or the underlying network topology. Nevertheless, Berlin et al.
[Ber+04] observed a high memory access overhead because of the translation of shared to local
pointers, which results in a performance degradation of a factor of 500 compared to a direct
memory access in their test setup.

13

2 Background

The PGAS model is well suited for irregular applications because it supports fine-grain remote
access, but requires a low-latency interconnect between the nodes. For this reason, PGAS is not
optimal for clusters of commodity hardware that are interconnected via slow network interfaces.
Another disadvantage is the predefined placement of shared data that pins an object to a particular
node during run time, and thus does not allow object migration.

2.2.5 Comparison of Message-Passing and (Distributed) Shared Memory

Shan et al. [Sha+01] compared shared-memory and MPI programming for regular applications
(e. g. fast Fourier transformation) and irregular applications (e. g. radix sort). All these applications
have either a high communication overhead or use complex communication patterns.

The authors used a cluster of eight nodes and the shared memory and the MPI programming
model were implemented in software on top of this cluster to allow their comparison. The
performance analysis showed that most MPI programs outperform the shared memory programs
by a factor of two, while only one had about the same performance. Nevertheless, Shan et al.
concluded that the ease of shared memory programming might make up for the performance loss.

Multiple authors [CE00; SB01; RHJ09] developed and evaluated hybrid systems for clusters of
SMP nodes, which combined message passing with MPI for the inter-node communication and
shared memory programming with OpenMP for the intra-node communication.

Cappello and Etiemble [CE00] and Smith and Bull [SB01] observed that the pure MPI code
scales better than the hybrid approach of MPI plus OpenMP. Both conclude that a hybrid approach
is suitable only for some limited situations such as fine-grained, irregular memory access or load
imbalances.

Conversely, Rabenseifner, Hager, and Jost [RHJ09] showed that a hybrid approach can be
superior because it can reduce communication costs on clusters of today’s multi-core SMP
processors. They also observed that the network topology has a significant impact on the
performance. Thus, they take the position that the application itself should be aware of the
underlying topology and apply the adequate actions depending on the underlying hardware.
Furthermore, their conclusion is that none of the three programming models (MPI, OpenMP or a
hybrid approach) optimally fits for the current HPC hardware architectures. Instead, the user has
to decide individually which model should be applied to a particular problem.

Berlin et al. [Ber+04] and Mallón et al. [Mal+09] both compared MPI, OpenMP and UPC with
each other, whereas Berlin et al. additionally compared Pthreads. They found that programming
language features can ease parallel programming, but that they cannot hide the underlying
communication costs. They concluded that fine-grain shared memory programming is not
suitable for current clusters of SMP nodes. Instead, course-grain shared memory accesses are
a better fit for the examined system because of the high bandwidth and high latency of the
interconnects between the nodes.

Patel and Gilbert [PG08] compared MPI and UPC with each other. They reported that the MPI
code outperforms the UPC code and observe that the performance of UPC code depends largely
on the chosen underlying memory access solutions.

Altogether, these studies showed that it is not easily decidable which of the so far discussed
models fits best for a given architecture and a given task without thorough benchmarking.

14

2.2 Parallel Programming

2.2.6 Single System Image

An alternative to the afore mentioned approaches is the use of a single system image (SSI) [Pfi98; SSI

BCJ01]. An SSI hides the distributed and potentially heterogeneous nature of (the processors in)
a compute network and the communication among the different nodes. Thus, it provides an easy
means to program and handle distributed and potentially heterogeneous systems: it enables the
programmer to write applications for the distributed system as if it was a single SMP system.
Namely, the user can write multi-threaded applications where the threads communicate via shared
memory, without the need to worry whether this memory is local or remote.

This illusion allows the system to dynamically distribute processes and data among the available
cores regardless of their heterogeneous architecture. Additionally, it allows the system that creates
the SSI to adapt to changes in the network without the necessity for changes in the application
code.

Hence, the SSI frees the programmer from the burden of having to handle the following issues
explicitly:

• Which resources are available in the network?

• On which nodes are these resources located?

• Which are the different components of the distributed application?

• How do these components communicate? E. g.by remote procedure calls (RPC), remote
method invocation (RMI), the method passing interface (MPI), a proprietary protocol, . . . ?

• How can components be discovered? E. g.with JINI [Arn+99] lookup service, CORBA
[Obj04], OSGi Service Registry [All10], Distributed Hash Table (DHT)?

The developer of an SSI can choose to implement the SSI on different levels:

• At the hardware level as in the FLASH multiprocessor [Kus+94], which offers a hardware
distributed shared memory (DSM). A hardware SSI offers the highest level of transparency,
but it is inflexible if the system needs to be extended or enhanced. Furthermore, it can only
be combined with other hardware that supports the same SSI.

• At the operating system level as in MagnetOS [Liu+05], which is an operating system that
offers an SSI on top of ad-hoc networks, or GLUnix [Gho+98], the global layer UNIX for
clusters.

At this level, the SSI is more flexible than an SSI on the hardware level, but it must be
modified for each new hardware architecture, which makes it more expensive to develop
and maintain.

• At the application level as e. g. in PARMON [Buy00], where a single application offers the
user of the application transparent access to all system resources or services of a distributed
system.

Here, the SSI is limited to a single application and the developer of the SSI is not supported
by the hardware or the OS.

15

2 Background

• As a runtime environment such as a distributed Java virtual machine.

An SSI on this level is a compromise between the other SSI levels. Only the developer
of the runtime environment has to deal with the implementation of the SSI on top of the
available hardware or OS. A programmer who develops for this runtime environment has
full, transparent access to the resources of the underlying system.

The envisioned runtime environment, which is the basis for this thesis, provides an SSI in
form of a distributed Java virtual machine (DJVM). Each core in the distributed system runs an
individual instance of the DJVM in its own thread. Each of these DJVM threads, again, executes
one or more Java threads. Together, all the DJVM instances collaborate to create an SSI that
allows one or more concurrent applications to run transparently on heterogeneous clusters of
multi-core machines. The VM instances distribute code, objects, and threads onto the compute
resources, which may be added or removed at run-time.

While this SSI hides the complexity of the underlying hardware, it still leaves some of the
difficulties of programming parallel applications, e. g. the synchronization of the concurrent
access to shared resources. Therefore, this thesis also considers appropriate synchronization
mechanisms.

2.2.7 Transactional Memory

As mentioned before, the common approach to synchronize the concurrent access to shared
objects is locking. One example of lock based synchronization is the use of a binary semaphore
that guards the access to a critical section and allows only one thread to enter the critical section
at a time. The thread that gains access is said to “hold the lock” to the critical section. All other
threads have to wait until the thread that is currently in the critical section releases the lock. Thus,
the access to the shared objects (as accessed from within the critical section) is strictly sequential,
which increases the access latency and slows down the execution.

Another problem in distributed systems are node failures: if the failing node held some locks,
these locks are never released and all other threads that want to gain access to the critical section
starve. Conversely, if the lock was released upon a (presumed) node failure, a returning node
might cause inconsistencies.

To prevent these problems, a promising alternative to lock-based synchronization is transac-
tional memory (TM) [HM93; ST95]. Instead of acquiring and releasing locks when accessing
shared data, these accesses to shared objects are placed in atomic blocks. Such a block is a range
of code that runs as a so-called transaction. The observable effects of this transaction, namely the
reading and writing of shared data, appear to other nodes only at the end of the transaction. Thus,
modifications become only visible as if they were executed as a single, atomic instruction. This
enables the TM system to follow an optimistic approach that allows multiple transactions, and
thus threads to access and modify the same shared objects at the same time. Only at the end of
the transaction, upon the commit of the modified objects, the TM system has to check for and
resolve potential conflicts, e. g. by rolling back and restarting the transaction.

The atomicity that a TM system guarantees is distinguished between strong atomicity, where
objects are only created and modified from within transactions, and weak atomicity, which
allows the creation and modification of objects outside of transactions [MBL06]. Hence, weak

16

2.2 Parallel Programming

atomicity can only guarantee atomicity between transactions, but not between transactions and
non-transactional code, while strong atomicity either does not allow non-transactional code, or
handles such code implicitly as if it was executed in a transaction as well.

Another distinction of TM systems is between hardware transactional memory (HTM) and
software transactional memory (STM). The main advantage of STM over HTM is that no
hardware support or hardware modifications are required. Thus, an STM is applicable for any
legacy processor or microcontroller.

The study of Rossbach, Hofmann, and Witchel [RHW10] revealed that programming with
STM is actually easier to get right than programming with locks, even though the participants of
the study claimed that programming with STM is harder than programming with coarse-grain
locks, and slightly easier than programming with fine-grained locks.

Pankratius, Adl-Tabatabai, and Otto [PAO09] made a similar observation. In their study,
different groups of students had to solve the same computational problem, but some groups
programmed with STM while the other groups used locking. The study showed that the STM
groups spent less time to develop and debug their solution than the locking groups. Furthermore,
the STM implementations performed better than the locking ones. Nevertheless, the authors
stated that programming with STM was still difficult and understanding the behavior of the STM
application was hard for the students.

The envisioned system of this thesis offers strong atomicity and uses a multi-version software
transactional memory system, DecentSTM, that handles the parallel access to all shared objects
with the help of a fully decentralized consensus protocol [BF10].

A distributed parallel application that uses DecentSTM will be commonly programmed as a
multi-threaded application, where all threads have access to the same distributed globally shared
memory, cf. Section 2.3.2 for more detail. Thus, all threads can work concurrently on the globally
accessible objects (GAOs), which reside in the globally shared memory. GAO

Logically, the application operates on mutable shared objects, while the DecentSTM represents
each shared object by a list of immutable object versions, called the version history of the object.
Whenever a transaction accesses a shared object, it first has to create a private local object copy
(LOC) of the latest object version. These private LOCs – together with other local variables – LOC

reside in the transaction’s private memory and thus, the access to these LOCs is restricted to this
very transaction.

At the end of the transaction, the fully decentralized consensus protocol checks and resolves
all potential conflicts that might occur because of the parallel access to the same shared objects
from within multiple concurrent transactions. If the consensus protocol detects a conflict that
would lead to an inconsistent memory state, the commit fails and the transaction is aborted, has
to roll back and re-execute its computation. If there are no such conflicts, the commit succeeds
and all modified LOCs become the so-called new head versions of the corresponding objects,
and are appended to the corresponding version history. Thus, each object consists of a current
head version and a chain of multiple, outdated versions. Suppose the latest head version Y2 of an
object Y is located on node A, and the new head version Y3 happens to be committed on node B.
Then, the object Y has seemingly migrated from node A to node B. See Figure 2.1 for an example
where two nodes execute multiple transactions that create new versions of an object Y .

17

2 Background

Figure 2.1: Version history of object Y with two
implicit migrations from version Y2 on
node A to Y3 on node B and back to
node A with version Y4.

Note that DecentSTM does not immediately
delete older versions in the version history. In-
stead, some older versions must be kept because
they are needed in case a transaction that depends
on one of these older versions has to roll back.

Besides the DecentSTM algorithm, our envi-
sioned system contains a decentralized recovery
mechanism that works on well-chosen, outdated
versions of data to avoid explicit checkpointing.
This recovery mechanism assumes that node fail-
ures comply with the fail stop model, i. e. nodes
either work correctly or do not respond at all. To
be able to commit or roll back a transaction, the
STM system stores the read and write sets of
the transaction, which contain all object versions
that the transaction has read, written, or newly
created, in a so-called transaction record (TR).
The recovery algorithm extends this TR to addi-
tionally store the meta data of each transaction.
With this meta data and the knowledge where
the read objects are located, the runtime system on another node is able to fully reconstruct the
transaction in case it is lost because of a node failure. Thus, it is necessary to guarantee a certain
degree of redundancy to ensure that another node can get hold of the lost TR. More details can
be found in Posselt [Pos10], where a first study of this decentralized recovery mechanism and
replication management was done.

2.3 Object and Memory Model

The object and memory model used in this thesis are tightly coupled. They are also influenced by
the DecentSTM algorithm, which requires that a transaction can only operate on private copies of
object versions, i. e. copies that are solely owned by this transaction.

2.3.1 Object Model

As stated above, the object model of this thesis uses the general term object to name all kinds of
data such as object-oriented programming language data; objects and arrays, but also C structs, the
program code or the execution context of a thread. In accordance to object-oriented programming
languages, objects are distinguished between dynamic and static objects. Figure 2.2 shows
dynamic objects, which are Java objects (instances of a class), Java arrays, or execution contexts
(threads), and static objects, which are e. g. Java class variables and code objects.

To be able to access an object, the accessing entity has to hold a reference to the object. Such
a reference is an identifier that uniquely identifies a particular object. Within a single core or a

18

2.3 Object and Memory Model

SMP system with multiple cores, the reference to an object can be represented as a local memory
address.

To access a dynamic object, it is necessary to possess a reference to the object. This reference
may be acquired by reading a reference field of another object. However, the only way to create
a new reference is by instantiating an object. Other possibilities, for example, the reception of
a reference as method parameter during method invocation, are only special issues of the two
basic cases. There should be no way for faulty or malicious client code to make up a valid or
invalid reference - at least not easily or by chance. In particular, it should be impossible to forge
an object reference, e. g. by using an integer value as an object reference.

Figure 2.2: In the object model, the term object
names all kinds of data such as object-
oriented programming language data;
objects and arrays, but also the pro-
gram code or the execution context of
a thread.

On the one hand, this is important for open
distributed systems such as the AmbiComp sce-
nario, cf. Section 4.1. In this scenario, the dis-
tributed network might expand across a single
home, for example, for home entertainment, or
a complete neighborhood for an automatic sun
shade management. Here, a malicious node
might try to gain access to private applications
if it could forge references. On the other hand, it
is also important for closed distributed systems
such as the J-Cell scenario, cf. Section 4.3. In
the J-Cell scenario, the distributed system ex-
pands, for example, throughout a data center or
compute cluster. Here, a faulty node should not
accidentally make up a reference to a valid ob-
ject in another application and then unintendedly
damage an ongoing computation.

To prevent this, the DecentVM [BEF10] for example, separates numeric values from reference
values within the runtime system and stores them on separate stacks.

The objects that belong to the same application may reference each other in one way or another:
a member variable of an object may hold a reference to another object; ditto for arrays. An
execution context holds a reference to the code it executes, and to the objects that belong to the
parameters or the local variables of the executed methods.

Altogether, these objects form the reference graph of the application. It is rooted in the appli- reference graph

cation’s primordial execution context (PEC) and evolves during the execution of the application.
Upon application start, the reference graph consists only of an empty execution context – the
PEC – and the associated code.

So far, the object model was limited to systems that contain a common shared memory where
a reference might be represented as a local memory address. However, in a distributed system the
objects are scattered across all nodes and reside in the local memories of the independent nodes.
Thus, the object model introduces the distinction between local objects, which reside in the local
memory, and remote objects, which reside in the memory of a remote node.

19

2 Background

Because the memory is distributed among all nodes, remote objects cannot be referenced with
a plain memory address, because local memory addresses are only valid within the address space
of the respective node. Thus, a globally valid reference is necessary that indisputable identifies a
remote object.

Such a global reference can be either location dependent or location independent. A location
dependent global reference might be a tuple of the node identifier of the node where the remote ob-
ject resides plus the local memory address on this node: <Node Id, Local Memory Address>.

A location independent global reference representation is, for example, the use of a globally
unique identifier (GUID) that suffices to uniquely identify an object within the whole system. To
locate the referenced object, additional location information is needed to be able to find the node
on which the object resides. This information can be provided by an underlying routing protocol,
such as the ad-hoc routing protocol scalable source routing (SSR) [Fuh05] that can be used to
route access requests to the current location of the remote object.

The disadvantage of a GUID is the necessary guarantee that a GUID is only assigned once for
a unique object. This requires either a consensus among all nodes, or a collision-free addressing
scheme that requires a large address space.

2.3.2 Memory Model

The memory model is derived from a non-uniform memory access (NUMA) architecture and
distinguishes between logical (private or global) and physical (private, local, or remote) memory,
cf. Figure 2.3. I describe the following memory model with respect to DecentSTM, because the
envisioned system will use DecentSTM to manage the concurrent access to shared data. For this,
DecentSTM manages the logically private and logically global memory. Namely, it mediates
between the logically private memory, which stores the data of a single transaction, i. e. the
local variables and local object copies, and the logically global memory, which stores the shared
globally accessible objects.

Logically private memory typically maps to the physically private memory. This physically
private memory is usually tightly coupled with a single core of the processor, for example the
cache or registers. Thus, it has a very low latency. In Figure 2.3 the physically private memory is
shown right above the individual processor cores. It is only accessible from a single core and
thus, only from the transaction that this core executes.

If the physically private memory overflows, logically private objects may be offloaded to local
memory, but must be logically separated from the locally stored globally accessible objects.

The logically private memory is used to store all transaction’s local variables, together with
all local object copies that the transaction works on. Additionally, the logically private memory
stores all objects that a transaction created. Because local object copies and local variables
reside in the same address space as the transaction, they are directly accessible via local memory
addresses, cf. Table 2.1.

The physically local memory of a processor core, for example, the local RAM, and the
processor core itself reside on the same node. From the perspective of a single node, this memory
is shared by multiple runtime instances that reside in the same address space, e. g. on the cores of
the same processor. Thus, it is possible to access this memory with local memory addresses. In

20

2.3 Object and Memory Model

Figure 2.3: The memory model, which is derived from a NUMA architecture. The physically private
memory is shown right above the individual processor cores. The physically local memory
reside on the same node as the processor cores and the logically global memory consists of all
the physically local memories that are available on all nodes in the network.

Figure 2.3, this memory is depicted at the top of the individual nodes and usually has a constant
medium access latency.

From the perspective of a single node, the physically local memories of all other nodes are
combined into the physically remote memory. It is the task of the runtime system that creates the
SSI to make all these local memories appear as the logically global memory.

Physical
private local remote

Logical
(private) LOC Mem. Addr. – –
(global) GAO – Mem. Addr. GUID, etc.

Table 2.1: Reference Representation of GAOs and LOCs depending on their physical and logical location
in memory, similar to [SPF11].

The logically global memory is shared among all nodes in the network. It does not have a
physical representation of its own, but consists of all the physically local memories that are
available on all nodes in the network. In Figure 2.3, this logically global memory is pictured
as the dashed box that is drawn around the individual local memories of all nodes. It stores the
globally accessible objects, i. e. the shared objects, namely the immutable object versions of these
shared objects. If such an object version happens to reside on a remote node, it is accessed via a
global reference. If the object version happens to reside in the local portion of the global memory,
it can be accessed with a local reference, for example, a local memory address.

21

2 Background

In contrast to the own, physically local memory, the physically remote memory has a high and
variable access latency. This latency depends on the distance between the accessing node and the
accessed node in the network: i. e. an access to a direct neighbor is typically faster than an access
to a node that is multiple hops away.

Table 2.1 gives an overview where local object copies and globally accessible objects might
be located in the different physical memory locations, together with the type of reference that
might be used to access them. One can see that LOCs only reside in the logically and physically
private memory, where they are accessible with a local memory address. GAOs can reside either
in the physically local memory, where they are accessible via local memory addresses, or in the
physically remote memory, where they must be accessed with a global reference.

22

3 Related Work

This chapter outlines the related work of this thesis. It starts with a description of distributed
systems in general and gives an overview over mobile computing, especially over different types
of mobile objects and mobile code, e. g. mobile agents.

Afterwards, it describes various distributed shared memory systems in more detail. This
description is followed by a section about distributed operating systems, which gives only a brief
overview over this topic, before a section on distributed Java virtual machines closes this chapter.

The general concepts to locate mobile objects that are presented throughout this chapter,
e. g. centralized server, broadcasts or proxy forwards, are discussed in detail in Section 6.2. Thus,
the following sections do not go into a thorough comparison of these concepts.

As defined in Chapter 2, the following sections use the phrase home node in different meanings.
Some approaches use a static home node that is assigned once, e. g. when the object is created,
and that does not change during the lifetime of the object. Whenever an approach in the following
sections uses the phrase home node in this sense, the home node is called a static home node.

Other approaches use the phrase home node for a dynamic home node. Here, the object can
migrate between nodes and each migration also migrates the responsibility for the object to the
new node. If not stated otherwise, the following sections use the phrase home node in the sense
of a dynamic home node.

3.1 Distributed Systems

A distributed system is a set of separate and independent compute nodes that are connected to
form a network of nodes. The main goals of a distributed system are scalability, which allows
to add additional resources, as well as easy maintenance, which allows to remove resources at
runtime for repair or exchange.

In such a system, nodes communicate and interact with each other to achieve a common goal.
For this, the application is split into parts that are executed on the different nodes. Thus, each
node processes its assigned tasks and exchanges data and workload with others.

Today, different computing paradigms fall into the broad definition of distributed systems.
Some keywords are e. g. cluster, Grid, Cloud or high performance computing (HPC).

A cluster is a system that consists of two or more individual compute nodes that are connected cluster

via a high-speed network [Pfi98; Buy99]. Depending on the application area, different types of
clusters exist. For example:

• high performance clusters, which are used for HPC, e. g. heavy numerical computations
such as weather forecast or particle dynamics.

23

3 Related Work

• high availability clusters, which ensure that the user has constant access to e. g. a service
application.

• load balancing clusters, which distribute the workload evenly on all compute resources to
optimize the performance of e. g. a small cluster of only some ten nodes.

A Grid is according to Foster [Fos02] a system that has no centralized management. It usesGrid

open and standard general-purpose protocols and interfaces to provide the user with a nontrivial
quality of service. In contrast to cluster computing, a Grid tends to be more loosely coupled and
often connects commodity hardware via a conventional network such as Ethernet. While a cluster
often performs a single task, a Grid offers a number of Grid services to meet the needs of the
users [Fos+03].

Grids and clusters are often the foundation for HPC [DS98], where the main goal is to reduce
the time a computation requires to finish. Thus, HPC enables the user to execute a larger number
of computational tasks in the same execution time it takes to execute a single task on a single
compute node.

In contrast to Grids, clusters and HPC, Cloud computing has its main focus on scalability, andCloud

not on performance. Cloud computing ensures that the available resources grow together with the
increasing demands of the user. Thus, the main focus of Cloud computing is on-demand software
as a service [Arm+09].

According to Hayes [Hay08], the unique characteristic of Cloud computing is the shift from
the local PC to a datacenter in the Internet. I. e., the user does not install a program on the local
PC but has access to the software via a web frontend.

Furthermore, the cloud stores all documents that belong to the user. This has the advantage
that the user can access the documents from every computer that has an Internet connection. The
drawback is that the user has no direct control over the data anymore.

3.2 Mobile Objects

To increase the usability of a distributed system and support a broad range of applications it is
advantageous to support the migration of objects and tasks among different compute nodes. This
object migration results in mobile objects, where the definition of a mobile object depends on the
application domain. Hence, a mobile object can be:

• a piece of mobile code and data, called software or mobile agent, that performs its task
on different, remote nodes in a network. The code and data travels actively through the
network to execute its operations on the different nodes, e. g. to collect data in a sensor
network.

• a piece of memory, or object, as defined in object oriented programming languages. The
object is passively moved through the network towards the code that requires the object’s
data for its execution.

24

3.2 Mobile Objects

• a physical resource, such as a device in a wireless network. People, robots or tools on
a factory floor can also be considered as mobile objects. These resources are tracked or
located e. g. to optimize the workflow or to bring workers and tools together. Pitoura and
Samaras [PS01] give an overview and summary of location approaches for this kind of
mobile units.

As seen in this bullet list, the movement of mobile objects can be either active or passive.
Active movement is governed by the object itself; for example, by a worker who decides to go to
another location, or a mobile software agent that has finished its task and moves on to the next
node. Passive movement is managed by a separate entity that is different from the moving object.
This entity can be for example the programmer, who explicitly embeds the object migration in the
program, or a distributed runtime environment that implicitly migrates objects between nodes.

It depends on the application if the mobile object is only a data object, only a code object,
or both. This thesis does not make a clear distinction between mobile objects and mobile code,
cf. Figure 2.2, because the envisioned system can handle both, equally.

Nevertheless, the following sections describe the two terms mobile object and mobile code in
more detail, but many of the presented approaches that have been developed for mobile data also
work for mobile code, and vice versa. Often, the only difference is the target scenario.

3.2.1 Mobile Data

Mobile Data is a chunk of memory that is transferred between different nodes in the network.
A common target scenario for mobile data are sensor networks [Aky+02; YMG08]. Here, the

mobile data can be the data that the individual sensors read, and that has to be sent to a central
sink for further processing. The transfer of the data is achieved by a network protocol that handles
the communication.

Message passing, cf. Section 2.2.1, and the remote procedure call (RPC) mechanism [Sri95]
are other examples to transfer mobile data. Both allow a process on one node to directly transfer
the control and the data to another node.

The main difference between message passing and RPC is the level on which the commu-
nicating entities are involved. With message passing, two equal processes communicate with
each other via send and receive functions, while one RPC process calls a function that is offered
by another remote process. Thus, the two processes in the RPC model are in a client-server
relationship: The client process sends the parameters, i. e. the data, for the function call across
the network, and the remote server process executes the called function on behalf of the client.
In case that the called method returns a result, the client process suspends its execution until it
receives the result from the server.

Some middleware systems that are based on RPC mechanisms are CORBA (Common Object
Request Broker Architecture) [Obj08a], developed by the Object Management Group (OMG),
DCOM (Distributed Component Object Model) [EE98; Mic11] developed by Microsoft, or Java
RMI from Sun.

25

3 Related Work

CORBA CORBA [Obj08a] is a programming language independent, object-oriented middleware
specification. Its goal is to simplify the development of distributed applications in heterogeneous
networks and to enable the interoperability of different software components.

The central component of CORBA that handles the interaction between CORBA objects is the
so-called Object Request Broker (ORB). The ORB is responsible for the location of objects and
the handling of all communication between objects.

CORBAs communication model is client-server based, where client objects access services
that are offered by server objects. The ORB is responsible for transferring the method call and its
parameters from the client to the server side. The interaction between client and server objects
takes place via so-called stubs or proxies. A proxy on the client side offers the same interface as
the remote server, but no functionality. This is necessary because the client and the server object
are located in different memory address spaces, i. e. a memory address on the client side is invalid
on the server side.

How a particular CORBA implementation realizes the ORB is not specified and up to the
particular implementation. Nevertheless, the specification offers some possible implementation
scenarios for ORBs, e. g. a server-based ORB implementation, where the ORB is a central
component, or a system-based ORB, where the ORB is implemented in the operating system and
each ORB has global knowledge about the location of all objects in the system.

To make a service available to other nodes, a server object must register its service at the
ORBs on another node. Therefore, each ORB manages a repository where it stores the reference
and location of remote server objects. Alternatively, an ORB might act as a location service as
well and answers requests for a given reference with a location-forward reply that contains the
location of the requested object [Obj08b].

To locate remote services, the CORBA specification proposes a naming service in a separate
specification [Obj04], which is similar to the domain name service (DNS) [Moc87]. This specifi-
cation notes that the location of the naming server must be explicitly given to an ORB, e. g. via
a configuration parameter. However, the CORBA specification itself does not require such a
service.

Furthermore, CORBA supports object migrations via the optional ORB life cycle service
[Obj02]. The life cycle service defines the creation, copy or migration, and deletion of local
and remote objects. The specification requires that a reference to a migrated object stays valid
after a migration, but does not make any statements how this reference mechanism should work.
Therefore, according to Henning [Hen98], the different commercial and non-commercial ORB
implementations that exist all handle the object migration differently.

Despite all the effort that was put into the CORBA specification, it was not widely accepted
[Hen08].

DCOM Similar to CORBA, DCOM [EE98; Mic11] is an object-oriented middleware for dis-
tributed application. It defines a component model that describes the interaction of objects
together with a corresponding infrastructure, e. g. for persistent storage of data or a unified
communication model.

26

3.2 Mobile Objects

Chung et al. [Chu+97] showed that the architecture of DCOM and CORBA are similar,
but in contrast to CORBA, DCOM is mostly limited to Windows. Even though there is a
Unix implementation made by the Software AG, this implementation never gained a broader
acceptance.

Java RMI Java RMI (remote method invocation) [Dow98] is an example for the equivalent
of RPC in object-oriented programming languages. Similar to CORBA and DCOM, Java RMI
allows the access to and invocation of methods on remote objects. Furthermore, it allows objects
to migrate across node boundaries.

The central component of Java RMI is a centralized RMI registry that is used to locate remote
objects. A node that offers a service has to register this service with the RMI registry. Conversely,
a client node that wants to use a service has to look up the location of the server node at the RMI
registry.

Some authors argue [PHN00; Maa+01] that Java RMI is insufficient, because it is based on
slow object serialization. Therefore, Philippsen, Haumacher, and Nester [PHN00] designed
a more efficient object serialization, called UKA-serialization, and made a re-design and re-
implementation of Java RMI, called KaRMI. Their goal was to enable Java RMI for high-speed
communication, e. g. for clusters of workstations that are interconnected via a non-TCP/IP
network interface. As a result, the authors report that their optimizations saved on average 45 %
of the runtime in an Ethernet network, and on average 85 % in a high-speed Myrinet network.

Maassen et al. [Maa+01] implemented a more efficient Java RMI in the Manta system. Manta
is a compiler based Java system that uses a native static compiler. This compiler generates
specific serializers for their Java RMI at compile-time. Furthermore, the authors designed a more
efficient RMI protocol implementation. With this approach, Manta is able to push almost all
RMI overhead to the compile-time and the authors report for a 32 node Myrinet cluster that they
achieved a 35 times lower latency for a null-RMI (no parameter and no return value) than the
SUN Java RMI.

Various authors, e. g. [Chu+97; PS98; MZ01], compared CORBA, DCOM and Java RMI with
each other. Chung et al. [Chu+97] compared a DCOM and a CORBA implementation on various
layers; namely on the communication protocol, the remoting and the programming layer. The
authors goal was to give users who know one of the two architectures a quick understanding of
the other architecture. As a result of their comparison, the authors came to the conclusion that
DCOM and CORBA are on all three layers basically the same.

Munoz and Zalewski [MZ01] made a similar, but more thorough comparison of two CORBA
implementations and Java RMI, which included performance measurements of different bench-
mark applications. They identified various sources for latency overhead, such as object location
and parameter transformation. The authors stated that CORBA and Java RMI introduce an
overhead that is about twice as high as POSIX socket calls, but that they are about three times
faster than HTTP/CGI. Thus, they concluded that both, CORBA and Java RMI, are suitable
architectures for the development of distributed applications, because the increased latency is still
small enough to offer good results in an Ethernet network.

27

3 Related Work

Plasil and Stal [PS98] compared the architectures of CORBA, DCOM and Java RMI with each
other. Their focus was on the general architecture and they did not consider the topics of security
or object mobility. Altogether, the authors came to the same conclusion as Chung et al.: all three
architectures are basically similar and address the same problems, but their descriptions do not
use the same languages.

3.2.2 Mobile Code/Mobile Agents

An alternative approach to migrate the objects to the code, e. g. via RPC, is to move the code to
the data, which can significantly reduce the amount of communication. In the sensor network
scenario for example, instead of shipping all data from the individual sensor nodes to a central
sink for processing, the code that processes the data can travel to all sensor nodes, collect the data
and perform the processing on the fly.

The terms mobile code and mobile agent have different meanings in the literature. Adl-
Tabatabai et al. describe mobile code as “any program representation that can be shipped un-mobile code

changed to a heterogeneous collection of processors and executed with identical semantics on
each processor ” [Adl+96, p. 1]. Knabe understand mobile agents as “code-containing objectsmobile agents

that may be transmitted between communicating participants in a distributed system” [Kna97, p.
1], while Pham and Karmouch see them as “self-contained and identifiable computer programs
that can move within the network and act on behalf of the user or another entity” [PK98, p. 26].

For Lange and Oshima [LO99] mobile agents have a long list of advantages: They reduce the
network load, overcome the network latency, can execute asynchronously and autonomously,
adapt dynamically to system changes, run on heterogeneous systems and offer robustness and
fault-tolerance.

An example for a programming language that was explicitly designed with mobility in mind
is Java [Gos95]. Java allows the shipment of a single class file, but also of a whole application,
to another node. As long as a Java virtual machine is present on that node, the code of the
application can be loaded and executed, independent of the actual hardware architecture.

The next section gives an overview of some mobile agent systems that deal with the location
of cooperating mobile agents. Even though this thesis does not deal directly with mobile agents,
thread or process migration, the question of locating mobile agents is closely related to this thesis.
Good surveys on thread and process migration can be found e. g. by Pham and Karmouch [PK98],
Milojicic et al. [Mil+00] or Milanés, Rodriguez, and Schulze [MRS08].

Chen, Gonzalez, and Leung [CGL07] described the communication of cooperative agents
via state variables. In this scenario, one agent leaves a state variable on the visited nodes to
communicate some information to the next visiting mobile agent. Thus, state variables are not
only distributed in space, but also in time, because the next agent might visit the node at an
arbitrary time. This approach is very simple, but only suitable for data exchange scenarios that
are not time critical.

Cao et al. [Cao+02] proposed a mailbox approach for mobile agents in the Internet. This
approach introduces for each mobile agent an additional mailbox. This mailbox is an intermediate
proxy that receives all message for the mobile agent. To receive this message, the mobile agent
either has to pull them from the mailbox, or the mailbox pushes them to the mobile agent.

28

3.2 Mobile Objects

It depends on the user configuration whether the mailbox migrates at the same or at a lower
frequency as the mobile agent, or stays put on a particular node. The latter case is similar to a
home-based approach where each mobile agent has a static home node that is responsible for the
mobile agent (cf. Section 6.2.4 for details). If the mailbox migrates, its migration path is bound
to the migration path of the mobile agent. I. e., a mailbox can only reside on a node where the
mobile agent was located at some point in history as well.

If the mailbox migrates together with the mobile agent, the agent leaves a forwarding pointer
behind. This approach is similar to proxy forwarding, which is described in more detail in
Section 6.2.5. If the mailbox migrates at a slower rate than the mobile agent, each mailbox
migration shortens the proxy forward path. The authors stated that this forwarding pointer
approach does not have an update message overhead, but they do not explain how the mailbox
receives the latest location of the mobile agent.

Cao et al. [Cao+03] examined this approach in more detail and added a time-to-live (TTL)
to each mailbox that indicates how long the mailbox was not used. When the predefined TTL
expires, the mailbox is considered to be unnecessary and is removed. The main difference
between the proxy approach discussed in this thesis and the message forwarding/mailbox update
approach lays in the assumed communication pattern. Cao et al. assumed that a sender simply
sends a message to a remote mobile agent but does not wait for a timely reply. Thus, a timely
location update is not important for the sender.

Moreau and Ribbens [MR02] developed Mobile objects in Java, a middleware library to
support the development of mobile agent systems. The communication among agents is based on
a client-server model, where both, the server and the client are allowed to migrate.

Migrating agents leave a trail of forwarding pointers behind. Thus, an agent access might have
to traverse a chain of proxies, for which Moreau and Ribbens investigate two routing strategies
to forward an agent access request: Call forwarding, which is similar to the recursive proxy
forwarding, where a message is redirected to the next proxy in the chain, and so-called referrals,
which are similar to the iterative proxy approach, where a message with the new location of
the agent is sent back to the requesting node, cf. Section 7.1.2. However, unlike the approach
presented in this thesis, the response message travels back along the chain of proxies as well.

Furthermore, Moreau and Ribbens described two proxy update mechanisms: Eager Acknowl-
edgments, which send the new agent location to all proxies in the proxy chain, and One Acknowl-
edgments, which only updates the latest proxy. This thesis present a similar, but more advanced
approach in Section 7.3. There, the depth to which updates are sent is computed depending on
the number or read and write accesses and the length of the established proxy chain.

The benchmark results of Moreau and Ribbens showed that Eager Acknowledgments decrease
the agent access latency and they stated that the call forwarding approach is slower than the
referral approach. According to the authors, the reason is that the call forwarding approach has to
traverse the chain of proxies two times, one time on the way towards the agent, and a second time
when the answer is sent back. In my opinion, this second traversal is unnecessary because the
answer could be sent back directly, without the indirection via the chain of proxies. Furthermore,
unlike this thesis, the paper does not make any measurements of the messages overhead or the
number of proxy forwards.

29

3 Related Work

Bisignano, Modica, and Tomarchio [BMT03] described a two-level location approach for
mobile agents. This approach uses a centralized server within a small region of the network, and
peer-to-peer mechanisms within the global network. Hence, their approach splits the network into
small regions, where each contains a centralized server where all agents within this region have
to register. Before an agent can migrate to another region, it first has to de-register at the current
region server. Then the agent migrates to another region and has there to re-register with the
region server of its new location. To locate mobile agents across region boundaries, all regional
location servers communicate among each other via the JXTA peer-to-peer mechanism [OTG02].

Even though this approach distributes a single centralized location server among smaller
regions, these centralized region servers remain a bottleneck and single point of failure within
each region.

3.3 Programming Languages and Middleware

The following section describes approaches that introduce either a new programming language or
a middleware for distributed systems. These programming languages come with an additional
runtime system that handles the communication among the different nodes.

Emerald Emerald [Jul+88; SJ95] is a programming language for distributed systems that offers
a distributed runtime system and specialized compiler. It aims as homogeneous [Jul+88] or
heterogeneous [SJ95] processor clusters of up to 100 nodes.

Emerald allows threads and objects to migrate among nodes, where the threads follow the
objects when the objects are moved. Thereby, Emerald keeps threads and data co-located with
each other.

To reference an object regardless of its location, Emerald uses globally unique and location
independent object identifiers together with a hash table that maintains the object identifiers.
Each global object that is referenced by a thread on a given node has an entry in this table. If the
global object resides in the local memory, the object descriptor contains the local memory pointer
to the object. Otherwise, it contains information about the objects’ location. Thus, this table is
similar to the tables described in Section 5.3.

If the location of a remote object is outdated, Emerald uses forwarding proxies. If this
forwarding approach fails due to a node failure, the protocol falls back to a broadcast protocol.
However, no further information are given on this approach. Thus, it is unclear if proxies are
removed or remain in the system indefinitely.

As the Emerald system compiles a program to machine code, and not an intermediate language,
the program must be re-compiled for each platform in a heterogeneous network. To be able to
execute an application on a heterogeneous platform, Emerald proposes a centralized program
database that stores the different code objects for the different hardware architectures. Steensgaard
and Jul [SJ95] described this mechanism in more detail.

However, the main drawbacks of Emerald are that the programmer has to learn a completely
new programming language, and that Emerald only aims at small to medium cluster sizes with
only up to 100 nodes.

30

3.3 Programming Languages and Middleware

ProActive Baduel et al. [Bad+06] described ProActive, a Java Grid middleware that is designed
as a Java library. It was developed for Grid programming with mobile agents, which are called
active objects. Each agent runs in its own thread, which only executes methods from the agent.
Additionally, each agent is associated with one or more passive objects, which the agent is
allowed to access as well.

To communicate, ProActive agents have to pass messages among each other. They are not
allowed to share the same passive objects. Thus, to pass a passive object from one agent to
another, it has to be passed as a deep-copy.

Agents and their associated passive objects can migrate among nodes. To keep a migrated agent
accessible, Baude et al. [Bau+00] described two approaches: The first approach uses forwarding
proxies while the second approach is based on a centralized server. Baduel et al. mentioned a
third, hybrid approach, which is not described in more detail.

Alouf, Huet, and Nain [AHN02] compared the forwarding approach and the centralized
server with each other and evaluated both approaches with simulations and in an experimental
environment. In contrast to this thesis, they examined only the communication between one
source and one agent and assumed that an agent does not return to a previously visited node.
Furthermore, they did not allow communication between a node and an agent while the agent
migrates and made no statements about the removal of proxies or the location update process.

Linda Gelernter [Gel85] introduced tuple spaces as a shared memory abstraction. In this
abstraction, the shared data is represented as a tuple of a given name and one or more additional
formal or actual parameters. With this tuple, shared memory is not accessed via a known memory
location, but via pattern matching queries for e. g. the name or one or more of the parameters of
the tuple.

As an example, suppose a process A wants to send data to process B. For this, process A first
creates a tuple and then inserts it into the tuple space, from where process B has to withdraw it.
Thus, tuples are distributed in space as well as in time, because a tuple might be withdrawn at an
arbitrary time from any number of arbitrary processes on arbitrary nodes. Even though the sender
does not need to know which process will receive the tuple, it is possible that the sender specifies
the receiving process, e. g. via a parameter that identifies this process.

Linda [ACG86] is a programming tool to develop parallel programs that are based on tuple
spaces. A program in Linda is different to the common approach to develop a parallel program.
The common approach is to partition the program into n tasks that depend on each other and that
are executed by n processes. Instead, a program in Linda executes a number of spatially and
temporally independent tasks that are inserted into the tuple space. To execute these tasks, Linda
applies a so-called replicated worker model that replicates the program r times, where r is the
number of available processors. These r independent workers search for tasks to execute in the
program’s tuple space.

Compared to common read and write memory access operations, the tuple space is accessed
by read, add and remove operations. The read operation tries to read a tuple in the tuple space by
issuing a query for its logical name. If such a tuple exists, its values are read into a local tuple and
the original tuple stays in the tuple space. If more than one tuple exist, one is chosen arbitrarily.

31

3 Related Work

If no such tuple exists, the reading process suspends until a matching tuple is present in the tuple
space. The remove operation is similar to the read operation but removes the tuple from the tuple
space. To write the values of a tuple, the tuple has to be removed from the tuple space, changed
and reinserted.

The implementation of Linda’s tuple space and the tuple location mechanisms are up to the
developer. One implementation of Linda, for example (for the S/Net multicomputer), broadcasts
all tuple space access messages to all nodes in the network, so that each node in the network
stores a copy of the complete tuple space. Another implementation (for the Intel iPSC hypercube)
uses a distributed hash table to store and locate tuples.

Orca Orca [Bal+98] is another programming language for the development of parallel programs
for distributed systems. Additionally, it is an object-base distributed shared memory system. It
supports mobile code as a fundamental programming construct, e. g. by forking a process that is
started on a remote node. Additionally, it allows the migration of objects between nodes.

A reliable broadcast protocol handles the communication between nodes and each node caches
all shared objects. To keep shared objects consistent, the node that modified a shared object
broadcasts its changes so that all other nodes can update their data.

3.4 Distributed Shared Memory

As described in Chapter 2, the alternative to the ’share-nothing’ paradigm of message passing is
shared memory, where the whole memory is directly accessible from all nodes and processes in
the network. Thus, a process on one node has direct access to all memory addresses of all nodes
within a globally shared address space. However, such globally shared memory systems require
hardware support as e. g. offered by the FLASH multiprocessor [Kus+94].

The alternative to hardware-supported globally shared memory is distributed shared memory
(DSM), which is a combination of message passing and a globally shared address space. A DSMDSM

provides the abstraction of a shared memory in a distributed memory environment and hides the
underlying communication between the different nodes.

DSM systems can be distinguished into hardware DSMs, where a dedicated hardware is re-
sponsible for the shared memory abstraction, and software DSMs, where the runtime environment
provides this abstraction. Another dimension to classify DSMs is object-based vs. page-based
memory.

In the following section, this thesis only describes object-based and page-based software DSMs,
because these DSMs are closest to the envisioned system. All of these DSM systems use either
centralized managers, distributed directories, static home nodes or forwarding proxies to locate
and manage the access to memory pages or objects. Because these different approaches are
discussed in more details in Section 6.2, the following section only lists the different DSMs,
without evaluating or comparing them. As stated above, only notable concepts are described in
more detail.

32

3.4 Distributed Shared Memory

IVY Li and Hudak [LH89] described the first page-based DSM called IVY. IVY allows the
migration of memory pages, but it only allows a single writer at a time to keep the memory
consistent.

To locate a memory page in the distributed system, Li and Hudak examined various page
location approaches: In the centralized approach a central manager maintains a table of all
available shared memory pages. Pages do not have a static home node and only the central
manager knows who the current owner of a page is. Moreover, the manager serializes the access
to the page by locking the page for all other processors but the one to whom the central manager
granted the access.

An improved centralized manager approach moves the page access synchronization from the
central manager to the current owner of the page. However, the central manager is still the only
entity that knows who the current page owner is and forwards all access requests to that node.
To remove the central manager component, the authors proposed a distributed protocol that uses
broadcasts to find memory pages.

A fixed distributed manager approach partitions the shared address space into predetermined,
fixed chunks, which are distributed among all nodes. Thus, each node is the static home node of
a subset of pages. To locate pages in this scenario, the authors propose a hash function that maps
page addresses to nodes, similar to the DHT approach described in Section 6.2.3.

Yet another approach describes the use of forwarding proxies. These forwarding proxies are
updated whenever an invalidation message is broadcasted because this message propagates the
true owner of the page.

The authors evaluated these concepts in a network with eight nodes. They argued that the
distributed approaches that use broadcast or proxies perform better than the centralized manager
approaches, if only a small number of processors share the same page for a short period of time.

TreadMarks TreadMarks [Kel95; Amz+96] is a page-based DSM that uses a centralized man-
ager to initialize the system. In TreadMarks, each page is assigned to a static home node that
manages the page access. Other nodes that want to access the shared page first have to retrieve
a copy of that page, while the master object remains on the static home node. To keep the
different copies consistent, TreadMarks implements the lazy release consistency (LRC) [Kel95].
The idea of LRC is to propagate updated pages not immediately, but on request. Before a node
modifies the page, it creates an additional copy, the so-called twin. When the node finishes its
modifications on one of the copies, it computes the differences between the modified copy and
the twin. Afterwards, the diff is propagated to the manager and can also be retrieved by other
nodes that also modified the page, so that they can apply the diff as well.

TreadMarks’ programming model allows the usage of locks and barriers to synchronize the
access to shared pages. The management of a page lock is done by the static home node of the
page. It is the responsibility of the static home node to track the current lock owner, i. e. , the last
node that required the lock. On the contrary, the management of barriers is in the responsibility
of the centralized manager.

JavaParty JavaParty [PZ97] is a Java runtime environment for the development of distributed
applications. It uses a central runtime manager that is responsible for the management of the

33

3 Related Work

distributed environment. This central manager is also the central component where all JavaParty
virtual machines must register to participate in a JavaParty computation.

JavaParty defines remote objects for Java and is built on top of an optimized Java RMI,
described in [PHN00]. It modifies the Java language by introducing a new class modifier remote.
Thus, Java programs that are written for a JavaParty environment must be pre-processed to
transform the JavaParty code into regular Java code with RMI hooks. Afterwards, this generated
code is compiled with the RMI compiler to produce the executable for the JavaParty virtual
machine.

The JavaParty runtime system is built around the central runtime manager, which knows all
JavaParty instances and the location of all class objects, i. e. the host that initialized the static parts
of a class. To reduce the management overhead, this information is replicated at all JavaParty
instances.

JavaParty allows object migration and uses forwarding proxies that are left behind to guarantee
the reachability of the migrated object. These proxies handle method calls by sending the new
location of the object back to the caller.

JavaSymphony JavaSymphony [Fah00; FJ05; APF10] is built on top of Java RMI as well.
Furthermore, it is implemented as a Java API and, in contrast to JavaParty, does not make
language modifications and does not need a pre-processing step. Thus, JavaSymphony runs on a
common Java virtual machine.

The main feature of JavaSymphony is the ability of the programmer to explicitly control object
and thread locality for e. g. load balancing, on a high level. All the underlying mechanisms for
socket communication or Java RMI calls are hidden within the Java library.

The user can select the nodes and resources that should be used to execute a JavaSymphony
application. These resources form the virtual distributed architecture (VDA) that executes the
JavaSymphony runtime system (JRS). The VDA is organized in a tree-based layered hierarchy
in which the lowest layer represents the individual compute nodes. Furthermore, because
JavaSymphony uses Java RMI, a central registry at the top-most layer handles the remote
object access and object migrations. The intermediate layers define management nodes that are
responsible for sub-regions of the VDA.

Even though JavaSymphony supports automatic mapping, load balancing and object migration,
Fahringer [Fah00] advocated that the user handles these tasks in the application.

Aleem, Prodan, and Fahringer [APF10] described an extension of JavaSymphony for shared
memory systems such as multi-core and many-core architectures. For this, the author introduce
an additional shared memory object type that is handled by a local object agent. This object agent
is responsible for all locally shared memory objects, while remote objects are handled by the
corresponding remote object agent. Among each others, these agents communicate via Java RMI.

Aleph The Aleph toolkit [Her99] offers a collection of Java packages that use remote threads
to extend thread parallelism and to help with the construction of distributed shared objects. The
toolkit supports push and pull communication, as well as object migration and remote method
invocations.

34

3.4 Distributed Shared Memory

Herlihy and Warres [HW99] described three different distributed directory services for the
Aleph toolkit. A system that uses the Aleph toolkit can use one of them to keep track of moving
objects and their cached copies. The first directory implementation uses a home-based protocol,
the second uses the arrow directory protocol [DH98], and the third is a hybrid approach of the
previous two, which uses forwarding proxies.

In the home-based protocol, each object is associated with a static home node that is responsible
for this object. The static home node keeps track of the object location and of the location of all
cached copies of the object. It also manages all accesses to the object, and it is not possible to
reach the object other than by invoking its static home node. This scheme allows either only one
object copy that is accessible by a single writer, or multiple object copies, which are accessible
by multiple readers, but read-only.

The arrow protocol creates for each object a binary tree of all nodes. The protocol uses one-hop
pointers, the arrows, that point to the direct neighbor in the tree in whose direction the object
currently resides. Thus, all nodes must have one such arrow for every object that exists in the
system. This is necessary even if the node never accesses this object during its lifetime and thus,
makes the approach unsuitable for the envisioned system.

In this protocol, each remote object access follows the arrows through the network and the
protocol implicitly assumes that the object migrates with each access. Thus, each node that
forwards the request changes the direction of the arrow into the direction of the requesting node,
i. e. towards the node from where the request came. This protocol assumes that the access always
succeeds, and that the accessed object always migrates to the requesting node.

The hybrid protocol uses a dynamic home node for each object. When the object migrates to
another node, the old home node stores a forwarding proxy to the new home node, which is used
to forward all subsequent request messages. Because each access implicitly migrates the object,
the forwarding proxy changes with each access and points after the access to the requesting node
as new home node. This, again, assumes that an object access always migrates the object.

Thor Liskov, Day, and Shrira [LDS93] described Thor, a distributed object-oriented database
system. Thor is based on a client-server model, where the servers store objects that are accessed
by client application. The application scenario of Thor are large, long running systems where
objects might be persistent for years.

Day et al. [Day+93] discussed references to remote mobile objects in the Thor system. Thor’s
distributed database stores objects on highly available servers, the so-called object repositories
(OR). Each object is stored in one OR and object accesses take place in atomic transactions to
keep the data consistent. Furthermore, each object can migrate from one OR to another. To
exploit data locality, Thor tries to avoid references that cross OR boundaries and thus, tries to
place objects which reference each other in the same OR. For high-availability, each OR, together
with copies of all its objects, is replicated onto different servers.

Day et al. described two types of object references: first, location independent references that
do not change when the object migrates, and secondly location dependent references that do
change when the object migrates.

In the location independent approach, each object is assigned with two references: A location
independent reference that does not change during the lifetime of the object, and a local reference

35

3 Related Work

that is only valid on the current home node (OR) of the object. The OR that created the object
assigns the location independent reference, and is also the static home node that is responsible for
the objects location. Upon an object migration, the new, dynamic home node of the object assigns
a local reference that points to the object in the local memory, while the location independent
reference is unchanged. Afterwards, the dynamic home node informs the static home node about
the location change. Thus, the static home node is the central entity where all other nodes have to
retrieve the object location before an access.

The location dependent approach does not use static home nodes and location dependent
references only, which are tuples of <OR ID, local memory address>. Instead to inform a
static home node, each migration leaves a forwarding proxy behind. Furthermore, each OR
holds a so-called inlist that stores for each local object which other remote ORs reference this
object. This inlist is used for garbage collection, but also during the object migration: Upon
an object migration, the migrating object leaves a forwarding proxy at the old OR A. When
the object arrives on its new OR B, it gets a new, local reference that points into the local
memory of OR B, i. e. the local memory address. Afterwards, the OR B sends the reference
<B, local memory address at B> back to A. OR A stores this tuple in the forwarding
proxy, which is also a map that translates between the old and the new location dependent refer-
ence, i. e. from <A, local memory address at A> to <B, local memory address at B>.
Additionally, OR A uses its inlist of the migrated object to send update messages, which con-
tain these two references, to all referencing ORs. The referencing ORs store these two refer-
ences until the next garbage collection run takes place. The next time the garbage collector
runs, it takes this mapping and checks all objects for outdated location dependent references,
i. e. <A, local memory address at A>. Whenever the GC finds this reference in an object, it
replaces the old reference with <B, local memory address at B>. Thus, the location update
depends on the frequency of the garbage collector.

This approach is similar to the incoming reference approach discussed in Chapter 8. However,
the incoming reference approach in this thesis does not need to wait for the garbage collector
but updates all referencing objects immediately. Furthermore, Thor does not decouple the object
reference from the object location. Thus, the garbage collector has to check all references in all
objects if they contain an outdated location dependent reference that must be updated.

Additionally, Day et al. did not discuss the need to update outgoing references as well to
keep the incoming references consistent, cf. Chapter 8. Moreover, their discussion of these
two approaches is limited to theoretical considerations about memory requirements and number
of query messages. The authors neither consider the increased access latencies, the message
overhead needed to update all referencing nodes, or the complexity of the protocol.

3.5 Distributed Operating Systems

Distributed shared memory systems offer the user the illusion of a shared memory system, on top
of a distributed memory architecture. Distributed operating systems take this approach a step
further and have the goal to provide the illusion of a single system image on top of a distributed
system. Thus, a distributed OS does not only offer a shared memory abstraction, but also offers

36

3.5 Distributed Operating Systems

the user a global and uniform view on all available resources such as programs and peripheral
hardware. Furthermore, they offer transparent process migration throughout the system.

Plurix OS The Plurix OS [Göc+04] is a distributed operating system that aims at PC clusters.
Plurix is written in Java and its main component is a page-based DSM system that creates a
global address space among all nodes. A software transactional memory system deals with data
consistency among nodes.

The communication between different cluster nodes is done with shared objects that reside in
the DSM, and which include data and code. To locate shared objects, the DSM uses broadcast
messages and is supported by the memory management unit (MMU) hardware: Whenever an
object (and thus the page in that the object is stored) does not reside on the local node, the MMU
detects a page fault that causes the DSM to broadcast the address of the missing page to all other
nodes.

DEMOS/MP DEMOS/MP [MPP87] is a distributed operating system that uses message passing
to communicate between different processors. IN DEMOS/MP, the distributed processes and
kernel modules communicate with each other via links, which are the only way to access the
services and resources of a process. Therefore, a link is the global address of a process, similar to
an object references, that provides access to the process and to the resources of the process, such
as its memory area.

Similar to object references, links can be created, duplicated, deleted and passed to other
processes. The link address consists of three parts: the ID of the processor that created the
process, the local process ID on that processor, and the last known location of the process.

Powell and Miller [PM83] described different approaches to support process migration in
DEMOS/MP and present different mechanisms how to deal with outdated links. Their approaches
are a centralized manager, a system wide name service such as a distributed hash table, or proxy
forwarding. With proxy forwarding, the proxies not only forward the access message but addi-
tionally return a location update message back to the sender. This approach is necessary because
DEMOS/MP also supports systems and processes that only support one-sided communication
(no response or acknowledgment message).

Amoeba Amoeba OS [Tan+91] is a distributed operating system that is based on a microkernel
design that hides the underlying, heterogeneous PC cluster.

The microkernel runs on each node in the network and is responsible for the management and
scheduling of the different processes. Each process can execute multiple threads in the user space,
but Amoeba also supports multithreading in the kernel space, but no thread or process migration.

Amoeba uses remote procedure calls (RPCs) for the communication between distributed
threads. Therefore, threads are addressed by random 48 bit addresses, called ports. To locate or
access a remote thread the first time, the sender node sends a broadcast message that contains the
port of the accessed thread. The remote port responds to this broadcast and the sender caches the
static home node address (e. g. the IP address) of the remote port for subsequent calls.

37

3 Related Work

Tanenbaum et al. stated that the Amoeba system is suitable for clusters of a few hundred or
maybe thousand nodes. But due to the usage of broadcast messages, it is not scalable for systems
with much more nodes, e. g. a couple of hundreds or thousands of nodes, or even more.

3.6 Distributed Java Virtual Machines

In contrast to an operating system, which allows the execution of multiple programs and processes,
a Java virtual machine (JVM), in general, only executes a single multi-threaded application.
However, an advantage of Java and the JVM approach is the implicit support of heterogeneous
hardware architectures: a Java application can be executed on any hardware, as long as a JVM
for this architecture exists.

Similar to a distributed OS, the main feature of a distributed Java virtual machine (DJVM)DJVM

is to provide an SSI that offers the user a unified view of the system. Thereby, the user has a
transparent view onto the resources in the system, without the need to know where the different
resources are physically located.

The following section describes multiple distributed Java virtual machines, which are closely
related to the distributed runtime environment that we develop in our group.

cJVM cJVM [AFT99] is a distributed Java virtual machine for homogeneous clusters that
implements a distributed heap.

cJVM does neither support thread nor object migration, but uses remote method invocations
to access remote objects. Furthermore, because objects are referenced locally by regular Java
references, cJVM implements a master-proxy approach to access remote objects. The master
object resides on the node where the object was created (the static home node); while the proxies
resides on other remote nodes. This is necessary because local references are only valid in
the local address space. Thus, the local access invokes the proxy, which is responsible for the
communication with the master.

The first time, a reference to a local object is passed to another node, for example, as an
argument of a remote operation, it is assigned with a unique global identifier, the global address
of the object (GAO). Additionally, the reference contains the global address of the class (GAC).
Thus, the remote node can use the tuple (GAO, GAC) to create the local proxy, which is used to
access the object on its static home node.

Aridor et al. [Ari+00] proposed two optimizations for the object placement in a cJVM environ-
ment. The first optimization implements a factory method that allows the creation of an object on
the node where it will be used. The second optimization allows the migration of an object, but
only if this object is used by a single thread. For example, an object Y can be migrated from node
A to node B if the only user of Y is a thread on node B.

JESSICA The JESSICA system [MWL00b; MWL00a] is an ongoing research project at the
University of Hong Kong. Its DJVM runs on top of a standard UNIX operating system and offers
an SSI over a heterogeneous computing cluster.

38

3.6 Distributed Java Virtual Machines

JESSICA spans a logical global thread space across all nodes in the cluster, which allows
threads to freely move from one node to another. Unlike cJVM, JESSICA focuses on thread
migration for dynamic load balancing.

The global object space (GOS), which is a sub space of the global thread space, contains the
globally accessible objects. To cache remote objects and to keep these cached copies in a coherent
state, JESSICA relies on the cache coherence protocol of the underlying DSM system.

Initially, the GOS was implemented on top of the TreadMarks page-based DSM, which was
later replaced by JUMP [CWH99]. JUMP is another page-based DSM, which allows dynamic
home nodes of a memory page. In JUMP, the home node migration takes place whenever a
remote node modifies a cached copy of a memory page. At this moment, the modifying node
becomes the new home node of the memory page.

To prevent a node from reading an outdated page from a previous home node, JUMP broadcasts
migration notice messages at synchronization points, and if the new home node modifies several
pages, all migration notices are consolidated into one message.

Fang et al. [FWL02; FWL03] developed a fine-grain, object-based global object space for
JESSICA that includes a simple object migration. Therefore, the GOS distinguishes between
node-local objects and distributed-shared objects (DSO). To detect a DSO, each node examines
the communication between itself and other nodes to detect object references that cross the node
boundary.

The simple object migration only allows objects to migrate if there is one single writer thread
at a time. In this case, the object migrates to the home node of the writer thread and leaves a
forwarding proxy at its old location. If a third thread tries to access the migrated object on its
previous home node, the proxy sends a location update message back to the requesting thread.
Afterwards the requesting thread updates its location information about the object and sends its
request to the correct new home node. However, it remains unclear if or how proxies are deleted
from the system.

JESSICA2 [ZWL02; Zhu+04; Zhu05] adds a transparent Java thread migration to JESSICA.
To achieve this, JESSICA2 employs Just-in-Time (JIT) recompilation that preserves the native
thread execution mode and eliminates code instrumentation.

JESSICA3 [JES11] focuses on the applications that the VM executes. The main objectives are
to overcome memory space limitations and to solve the problem of global thread scheduling.

JESSICA4 [JES11] aims at new parallel programming paradigms, e. g. the partitioned global
address space (PGAS) programming model and transaction-based synchronization with two-way
elastic atomic blocks, called TWEAK.

I did not find further information about JESSICA3 and JESSICA4 other than the project
websites.

Kaffemik Kaffemik [And+01] is a DJVM that is based on the Kaffe VM [Kaf11] and aims at PC
clusters. Kaffemik offers an SSI on top of a hardware supported, page-based DSM that exploits a
memory mapped network interface that is based on the IEEE Scalable Coherent Interface (SCI)
standard [IEE93].

39

3 Related Work

Kaffemik dynamically distributes and manages threads at runtime, but the programmer can
overwrite this automatic distribution with user defined policies. However, Kaffemik does not
support object migration between nodes, only their remote creation. Instead, it relies on the fast
remote memory access, and with this, on the underlying DSM and the fast interconnect between
the nodes.

Hyperion Hyperion [MMH98; Ant+01] is a DJVM that is built on top of an object-base DSM.
Hyperion uses a JIT approach that first compiles Java to C code. During this step, a customized
Java-to-C compiler performs optimizations such as creating a local copy whenever a reference
to a remote object is de-referenced in a loop. Thus, the whole placement of threads and objects
must be predetermined at compile time. Afterwards, just before the execution, the generated C
code is compiled to machine code.

Each node holds a centralized object address table that allows the access to the whole DSM. In
this DSM address table, each node owns only a statically assigned portion of the address space,
which is used to create local objects.

Hyperion does not allow object migrations. Instead, the node that created an object holds the
master object at all times. If a remote node accesses the master object, the static home node
creates a copy of the object and sends it to the remote node. If the remote node modifies the
object copy, it must write these changes at Java synchronization points back to the static home
node.

JavaSplit JavaSplit [FSS03; FSS04] is a DJVM that uses Java sockets to enable IP-based
communication. It administers a pool of worker nodes that can be connected by a standard IP
network.

JavaSplit uses an object-based DSM for shared objects that is similar to Hyperion. If the
system detects that an object is used by more than one thread, it assigns a globally unique ID and
registers it in the DSM.

Similar to Hyperion, JavaSplit does not allow object migrations and assigns each object a static
home node that is responsible to manage the object access.

MagnetOS MagnetOS [Liu+05] provides a DJVM for distributed ad-hoc sensor networks that
offers an SSI.

A MagnetOS application is composed of software modules, called event handlers, that are
encapsulated as separate Java objects. These objects communicate with each other via messages,
the so-called events. MagnetOS groups the different objects and migrates them onto the nodes to
achieve an energy-efficient placement.

A static partitioning service is responsible for this partition. It also rewrites the communication
among the components at the bytecode level. For example, a method invocation is replaced with
a remote procedure call.

An object migration leaves a proxy at the former home node, and each object access updates the
cached object location. Thus, MagnetOS avoids the traversal of the proxy chain for subsequent
accesses. However, it is unclear if proxies are deleted at some point.

40

3.6 Distributed Java Virtual Machines

MagnetOS uses AODV [PR99] for routing in the ad hoc network. If a link to an object is
broken or lost, the system falls back to a broadcast message to search for the object.

CellVM The CellVM [NGF08] is a DJVM that was specially designed to run on the IBM
Cell processor (see Section 4.3.1). It allows the distributed execution of multi-threaded Java
applications on the various cores of the Cell processor.

The VM comes in two flavors: the ShellVM, which is executed on the Power PC core (power
processing element (PPE)), and the CoreVM, which runs on the synergistic processing elements
(SPEs).

The ShellVM maintains the global system resources, while the CoreVM operates on its own
local storage. Moreover, each thread that is executed on the CoreVM is pinned to a single SPE
and cannot migrate at runtime.

The Java heap, which is shared by all VMs, is located in the main memory. Thus, the CellVM
does not have to deal with migrating objects. To access this heap, the CoreVMs need to perform
a DMA transfer because this is the only way to move data into the local memory of the SPEs.
Furthermore, the CoreVMs do not execute the whole set of Java bytecode because not all of the
operations can be implemented and executed efficiently on the SPEs. For example, for complex
memory operations, the execution is transferred from the SPE to the PPE. The creation of new
objects and the execution of native methods is handled by the ShellVM on the PPE as well.

Hera-JVM Another JVM for the IBM Cell processor is the Hera-JVM [MS10]. It is a JVM for
heterogeneous multi-core processors that hides the heterogeneous nature of the Cell processor
and offers an SSI. The Hera-JVM is based on the JikesRVM [Alp+05] and thus, similar to the
JikesRVM, does not interpret the Java bytecode but all methods are Just-In-Time (JIT) compiled.

The Hera-JVM allows the execution of an unmodified Java application and supports thread
migration among the PPE and SPEs that is transparent to the application. This thread migration
might be performed whenever another method is invoked. Hence, Hera-JVM is able to decide
for each method on which core (PPE or SPE) the method should or must be executed. When
a thread migrates, the bytecode of the method can be JIT compiled to one of the two different
instruction sets, either the one of the PPE or the one of the SPE. This feature is mandatory to
migrate a thread if the invoked method contains operations that are not executable on the current
core (namely the SPE).

Similar to the CellVM, the shared heap of the Hera-JVM resides in the main memory and thus,
the Hera-JVM does not need to deal with object migrations, as well.

Commercial Solutions The Terracotta system [Ter11a; Ter11b] is a commercial solution that
allows a Java application to run on multiple DJVM instances. The goal is to scale Java enterprise
applications in large business systems.

The DJVM instances run on multiple machines that are connected via a network-attached
global heap. This Java heap consists of an underlying server array, to which all DJVM instances
connect. Hot standby servers provide fault tolerance and take over when an active server fails.

With Terracotta, the user needs to identify and tag all Java objects in the source code that
should be reachable while they reside in the network-attached heap. The bytecode of the tagged

41

3 Related Work

classes is instrumented by Terracotta to allow object maintenance on the global heap [BK07].
However, Terracotta does not allow objects and threads to migrate between the machines in the
cluster.

Azul Systems developed the Zing platform and the corresponding Zing Java virtual machine.
Similar to Terracotta, the Zing platform is a commercial product that aims at better scaling Java
business applications in large business systems.

The Zing JVM on the host server is only a virtualization proxy that pushes the Java stack and
thus the application to the Zing Virtual Appliance (ZVA). Azul states that the ZVA is a better
execution stack to execute the Java application because the Zing resource controller (ZRC), a
centralized management component, dynamically growths or shrinks the memory footprint of a
Java application on demand.

As the Zing VM is a commercial product, little is known about the VM internals. Azul did
not publish any scientific papers, but some information about the Zing VM can be found on their
website [Azu11].

42

4 Environment

The envisioned environments of this thesis range from clusters of heterogeneous many-core
machines to distributed, embedded systems. Therefore, the group I am part of develops a
distributed runtime system that shall allow applications to run on both these hardware platforms
and offer the user a single system image. The goal is to implement a system that provides an
easy means for software engineers to implement and deploy software in such highly complex and
dynamic systems, where nodes may be added or removed at run-time.

The following chapter describes the projects in which I worked during my PhD thesis, and in
which I conducted my research. This chapter outlines the main properties of the projects’ envi-
sioned environments, where the two target scenarios of these projects are: A runtime environment
for Ambient Intelligence (AI) applications in the AmbiComp project, and a runtime environment
for High Performance Computing (HPC) in the J-Cell project.

4.1 The AmbiComp System

Ambient Intelligence (AI) pursues the vision that small networked computers will jointly perform
tasks that create the illusion of an intelligent environment. Today, these small computers are
part of everyday’s life. They are contained in devices such as toasters and refrigerators, which
are equipped with an increasing amount of computational power. As most of the usual tasks
of these devices hardly exhaust this computational power, there is room to implement new,
more sophisticated applications. This idea becomes even more interesting if all these devices
are equipped with some kind of communication interface which allows to exchange data and
trigger actions on remote nodes. The result is a distributed network of small, embedded devices
that communicate with each other. Such networks belong to the field of ubiquitous computing
and ambient intelligence, which received new attention recently, this time under the name of
cyber-physical systems [Sha+08; Raj+10].

The research project AmbiComp [Eic+08] was a joint project between Universität Karlsruhe,
Technische Universität München, Beecon GmbH, Hochschule der Medien (HdM), IESE Fraun-
hofer Institut, and Alcatel-Lucent Deutschland. It was funded from 2006 to 2009 by the German
Ministry for Education and Research (BMBF). The project aimed at interconnecting everyday
devices in an ad-hoc manner. Although the idea originated in the field of “digital” or “intelligent”
homes, it extends to a much broader view of distributed computing in which the devices will
share data and distribute their workload among each other.

The AmbiComp project was especially concerned with simplifying the software development
process for a network of smart products. It aimed at providing an easy means for software
engineers to develop and deploy Ambient Intelligence software in such networks. During the

43

4 Environment

runtime of the project the partners developed an AmbiComp eco-system that covered all aspects
of this development process. Namely, these are:

• Hardware: The ambient intelligence control unit (AICU) can serve as a basic building
block for smart products. An AICU consists of one or more so-called sandwich mod-
ules (SMs). SMs equip an AICU with compute power, communication interfaces, and
input/output (IO) lines for analog and digital signals. At least one of the SMs in an AICU
has to execute the AmbiComp Virtual Machine (ACVM).

• Hardware Abstraction Layer: The so-called AmbiComp BIOS is a small, low-level
hardware abstraction layer (HAL) that offers the AmbiComp runtime environment access
to the hardware resources.

• Runtime Environment: The AmbiComp virtual machine (ACVM) was specially designed
for the resource-limited microcontrollers of the SMs. The ACVM is able to execute several
single- or multi-threaded Java applications in parallel. Together, all ACVM instances in the
AmbiComp system are able to create a single system image across the physically separated
AICUs.

• Application Programming Interface: The AmbiComp API (application programming
interface) is a small system library that offers a set of native Java methods. These methods
offer direct access to the underlying hardware. Additionally, the AmbiComp project
supports different flavors of Java APIs that offer a minimal sub-set of Java classes.

• Integrated Development Environment: The AmbiComp Eclipse Plug-in provides the
developer with an easy-to-use development environment. It is realized as a plug-in for the
open source framework Eclipse [The11].

The following sections give a brief overview over the hardware and describe the BIOS, the tool
chain, and the ACVM in more detail. A detailed description of the hardware, as well as some
information about the other components are given in Eickhold et al. [Eic+08] or on the project
website. 1

4.1.1 Hardware

The ambient intelligence control unit (AICU) is the basic building block of an AmbiComp system.AICU

A developer can use an AICU to control smart products in an ambient intelligence environment.
Such environments may have vastly differing properties, and smart products may be used for
a wide range of applications. The AmbiComp project takes this into account with a modular
approach: AICUs consist of stackable heterogeneous sandwich modules (SMs).SM

An inter-SM communication channel enables and supports the distributed nature of the ACVM.
It allows all ACVMs in an AICU to directly access the memory on other SMs. In this manner, the
whole memory of an AICU forms one uniform heap that is available to all ACVMs. This heap is

1www.ambicomp.org

44

www.ambicomp.org

4.1 The AmbiComp System

Figure 4.1: An exemplary AICU stack that consists of multiple SMs. Each SM offers a different function-
ality and at least one of the SMs must be equipped with a microcontroller.

used to exchange shared objects, or to allow the execution of applications that have a need for
memory bigger than a single SM can offer.

Figure 4.1 shows an exemplary AICU stack, and Figure 4.2 shows all SMs of the AmbiComp
project.

4.1.2 AmbiComp BIOS

The AmbiComp BIOS is a small, low-level hardware abstraction layer. It provides generic
interfaces to the hardware of the different SMs. This generic interface allows the ACVM to be
independent of the underlying hardware. As a consequence, each SM must have its specially
tailored BIOS that maps the functionality of the respective SM to this generic interface.

The BIOS has to meet a number of requirements to fully allow this generic hardware abstrac-
tion:

• Initialize the hardware, e. g. set IO lines into a defined state.

• Handle interrupts.

• Implement the hardware dependent parts of drivers.

• Offer a special maintenance interface, e. g. to update the firmware.

Additionally, the BIOS provides remote access to all hardware resources that are available in
an AICU. This access is provided by the fast memory access (FMA) interface. FMA started as a FMA

45

4 Environment

(a) Backplane Primary Supply SM. (b) Accu SM.

(c) Ethernet SM. (d) Power-over-Ethernet SM.

(e) Bluetooth SM, HCI and SPP. (f) Input-Output SM.

(g) Peri SM. (h) E-Puck.

Figure 4.2: The AmbiComp SMs that have been developed in the AmbiComp project.

46

4.1 The AmbiComp System

method for the remote inter-SM memory access and was later enhanced to access all hardware
resources of an SM. The FMA operations access the memory on the local or on remote nodes,
without interrupting the ACVM and without the need for an asynchronous request response
protocol.

FMA is the foundation of the object distribution model (ODM), which is described in more
detail in Section 4.2.

4.1.3 AmbiComp Transcoder and Tool Chain

To develop a program for an AmbiComp device, the programmer writes a common Java program
and uses the AmbiComp specific user and system libraries (AmbiComp API). Afterwards, the
tool chain for the AmbiComp project starts with a regular javac compiler that compiles the Java
program into one or more .class files. Afterwards, the off-line AmbiComp transcoder takes the
bytecode from the user provided .class files (user code and used libraries), transcodes it for the
ACVMs instruction set (see below), and links it statically to the AmbiComp API. The result of
this transcoding process is a so-called Binary Large Object (BLOB) file that contains the entire
code that is needed to run the application on the target platform’s AmbiComp Virtual Machine,
cf. Figure 4.3. This is similar to Sun’s Squawk VM [SSB03], which uses so-called suite files, or
the DalvikVM [Dal08] for Android platforms, which uses so-called DEX files.

javac

Java Source Files

AmbiComp API

Transcoder

Java Class Files BLOB.hex

ACVM.hex
AICU

Memory

(BLOB)

Binary Large Object

Figure 4.3: The AmbiComp tool chain. The tool chain starts with a common Java program which is
compiled with a regular javac compiler. Afterwards, the AmbiComp transcoder takes the
bytecode and transcodes it into a Binary Large Object (BLOB), which is needed to run the
application on the ACVM.

Because only a small part of the linked libraries will be actually used, the transcoder can
eliminate a large portion of the library code. In some cases, such as e. g. getter/setter or wrapper
methods, the transcoder can save code by inlining (parts of) the respective method. Furthermore,
because the transcoder links the code statically, it can eliminate clear text references to class
names, field names, and method names. These plaintext identifiers, e. g. java.lang.Object, are

47

4 Environment

contained in common Java .class files in the so-called constant pool that allows dynamic binding
(“class loading”). The transcoder replaces all these names with numerical identifiers that are
unique only within a BLOB.

The advantage of a reduced code size pays off in many AmbiComp scenarios. However, the
execution of multiple concurrent applications benefits from dynamic binding. For this reason, the
AmbiComp tool chain supports dynamic BLOB binding, too. It allows the transcoder to transcode
one or more individual classes into a BLOB to create a shared library. This shared library reduces
the code size, because common functionality can be collected in individual libraries, similar to
shared libraries in the UNIX system [Arn86]. Afterwards, the library BLOB is loaded only once
into an AICU and is usable by all applications.

To transcode a BLOB (library or application) that is bound against one or more library BLOBs,
these library BLOBs must be given to the transcoder during transcode time to generate a list of
all required BLOB files, which is stored at the head of the new BLOB. The ACVM needs this
information to check if it possesses the needed BLOBs or knows how to retrieve them.

Within the AmbiComp project, this tool chain is fully integrated into the Eclipse software
development environment, so that a programmer can develop and then directly deploy the code
onto the target platform. When the BLOB is deployed and fully loaded, the ACVM starts its
execution.

4.1.4 AmbiComp Virtual Machine

From its beginning, the Java programming language has been associated with the idea of cross-
platform programming of embedded devices [Gos95]. Especially, the Java Platform, Micro
Edition (Java ME) [Mic11] sets the focus on VMs that shall run on mobile devices like cell
phones, PDAs etc. With the same idea in mind, the starting point of the AmbiComp project was
a Java runtime environment with a small footprint, a customized Java virtual machine, called
AmbiComp virtual machine (ACVM).ACVM

This ACVM was specially designed for the resource-limited microcontrollers of the intelligent
SMs, such as the AVR 8 bit microcontroller family. It does not require an operating system but
runs on bare metal. Thus, all needed operating system functions such as scheduling or memory
management are entirely up to the ACVM. Therefore, the ACVM interacts with the underlying
hardware via the BIOS interface. This allows an easy ACVM development that does not have to
be concerned with any specific implementation details and requirements of the various SMs.

The instruction set architecture (ISA) of the ACVM is particularly designed to less interpreta-
tion overhead and to enable a very small footprint of the ACVM binary itself, while supporting
almost all SUN Java opcodes and a substantial part of the Java ME API. Thus, the ACVM can
only execute BLOBs that are generated by the transcoder.

The ACVM does not allow external users to provide native code directly, but the AmbiComp
API offers several low level functions such as direct access to input and output pins of the
microcontroller. These low level functions are native ACVM methods that wrap the specific
BIOS interface methods. Thereby, the ACVM – together with the system libraries – provides
much of the functionality that is normally provided by the operating system.

48

4.2 Object Distribution Model

4.2 Object Distribution Model

The object distribution model (ODM) describes a model for the interaction of distributed compo- ODM

nents such as different AmbiComp compliant devices from various hardware vendors. Its main
goal is the description of the mechanisms for synchronous and asynchronous distributed memory
management. In particular, it describes the memory hierarchy, the sharing of memory, and the
remote access to distributed memory.

For historical reasons, I use the abbreviation ODM for both, the AmbiComp object distribution
model and the AmbiComp object distribution management. The object distribution model is
the specification, while the object distribution management is a concrete implementation of the
model. There exist two such prototypical implementations. One implementation was added to the
AmbiComp BIOS and the ACVM. Its main goal is to provide methods for the distributed object
access among remote instances of the ACVM in the same AICU. The other implementation
is a middleware layer [Pep10] that allows remote data access among heterogeneous platforms
and between different programming language domains. The main goal of the middleware is to
support the interoperability of the ACVM with other, native non-ACVM applications, which are
e. g. implemented in C. The ODM management layer allows, for example, a native C application
to access remote Java objects that have been created by an ACVM. Such a mixed-language
approach is especially advantageous for time-critical operations, for which the processing in Java
would be too slow.

In accordance to the memory model, cf. Chapter 2, the object distribution model distinguishes
between logically (private and global) memory, and physically (private, local or remote) memory.

A local ODM instance allocates memory from the local physical memory, or, if the node cannot
provide enough memory, it requests the memory allocation from the physically remote memory
on another node. The object distribution model itself does not make further assumptions about
the layout of memory chunks. It is completely up to the system implementer how the memory
is structured, e. g. how the ACVM organizes the field layout of a Java object within a memory
chunk.

Furthermore, it is up to the system how to implement the object distribution model. For
example, each node could offer a specific ODM interface through which all object accesses
must pass, similar to the ODM middleware [Pep10], which uses a so-called ODMdriver. This
ODMdriver is responsible for all remote access requests from remote nodes to the locally stored
shared data. Thus, all remote entities send their requests to the ODMdriver, which has complete
knowledge about the locally stored objects and can answer the requests with the correct result.
On the contrary, the ACVM itself implements the object distribution model and thus, hides the
local and remote memory access from the user.

ODM has its foundation in the fast memory access (FMA) offered by the AmbiComp BIOS,
which allows a fast, direct access to the complete memory of all AmbiComp SMs within the same
AICU.

The main goal of FMA is the atomic, synchronous read and write access to 32 bit chunks of
memory. In this way, FMA is the means to access data within an AICU only.

The main reason that FMA transfers 32 bit per FMA access is the 32 bit granularity of Java
fields, because the Java specification requests that the access to 32 bit object fields is atomic.

49

4 Environment

Thus, the FMA access to 32 bit chunks of memory must be atomic as well. Therefore, the ODM
model introduces an additional Test-and-Set operation that prevents one FMA access from being
interrupted by other cores that might access the same memory location.

If FMA transferred larger blocks, it might block other SMs that want to perform remote FMA
accesses. Moreover, it would also block the accessing application, because, unlike a direct
memory access (DMA), the FMA transfer is synchronous.

Next to the atomic transfer of 32 bits of memory, ODM defines an asynchronous memory
access that is used for bulk transfers of chunks with a size that is a multiple of 32 bit, e. g. to
transfer a whole object from one node to another. In the AmbiComp context, this bulk transfer
should only be used if a copy operation cannot be avoided, in all other cases, the 32 bit FMA
access should be sufficient.

4.3 Multi-Core and Many-Core Systems

In this part of the thesis, I will give an overview over the J-Cell project. J-Cell is a joint project of
Technische Universität München, Universität Freiburg, and the BioSolve IT GmbH. It is funded
from 2009 to 2012 by the German Ministry for Education and Research (BMBF). As such, J-Cell
is the follow-up project of AmbiComp and, similar to AmbiComp, has the goal to offer an SSI
that allows applications to run transparently on heterogeneous hardware. But unlike AmbiComp,
J-Cell targets heterogeneous multi-core machines.

This section starts with the description of the environment and motivates the usage of a
single system image on top of today’s and future machines for high-performance computing.
Furthermore, it outlines the hardware architecture of the two multi-core processors that the project
aimed at with its prototypical runtime environment. This section shows exemplarily where the
difficulties are for a software developer when facing the challenge to develop an application
that should not be limited to a single processor or machine architecture. Namely, the described
Cell processor from IBM and the SCC processor from Intel have a completely different memory
architecture, which the software developer has to take into account during the software design.

Since the advent of electronic computing, the processors’ clock speed has risen tremendously.
Now that energy efficiency requirements have stopped that trend, the number of processing cores
per machine started to rise. This development has led to multi-core systems, which have 2, 4, 8 ormulti-core

more cores, and many-core systems, which have 128, 256, 512 or more cores, where Asanovicmany-core

et al. [Asa+06] even expect about 1000 cores on a single die.
The individual cores become more specialized, and their inter-connections form complex

networks, both on-chip and beyond. Thus, these systems do not follow a symmetric multipro-
cessing (SMP) architecture anymore, where multiple, identical cores execute multiple threads or
processes, and share the same resources of the system, such as the same main memory. Instead,
they form asymmetric multiprocessing (ASMP) systems, where each core or processor might offer
a completely different set of functionality.

A cluster that is enhanced with GPUs (graphics processing unit) is one example of such an
asymmetric architecture. Such heterogeneous clusters consist of general purpose CPUs, which
are enhanced with a GPU co-processor. In contrast to general purpose CPUs, which are optimized

50

4.3 Multi-Core and Many-Core Systems

for low latency, GPUs are optimized for high throughput [LH07]. Owens et al. [Owe+07] gave a
survey on research projects and applications that map general purpose computation onto GPUs,
called GPGPU (general-purpose computation on GPUs).

Göddeke et al. [Göd+07] gave an overview of GPU-enhanced clusters that are used to scale
finite element method (FEM) computations for e. g. weather forecast, frontal crash simulations,
elasticity and structural analysis problems.

The increased compute power of these and other heterogeneous systems allows more detailed
numerical computations and simulations [Owe+07], and falling costs enable even small companies
to invest in multi-core systems and clusters.

However, the growing complexity might impede this growth when, for example, a software
developer who is not used to parallel programming, has to write an application for a cluster of
thousands of interconnected heterogeneous processor cores. Software developers would need a
deep knowledge about the underlying infrastructure as well as of the data and communication
dependencies in their applications to partition them optimally across the available cores. Moreover,
a predetermined partitioning scheme cannot reflect failing processors or additionally provided
resources.

Similar to AmbiComp, the J-Cell project has the goal to support the developer with the
software development for such dynamic and heterogeneous high-performance computing systems.
It facilitates systems that can dynamically include new resources into the computation or handle
the failure of individual nodes. Thereby, it hides the heterogeneous and distributed nature of
clusters of many-core processors from the software developer and has the goal to completely
eliminating all centralized components.

4.3.1 IBM’s Cell Processor

The starting point of the J-Cell project was the IBM Cell processor, also known as the Cell
Broadband Engine Architecture [Kah+05; Pha+05]. The Cell processor is a heterogeneous, multi-
core system-on-chip (SoC) that was developed by a consortium of Sony, Toshiba and IBM. The
goal of the Cell processor development was to deliver massive floating-point processing for rich
broadband multimedia applications and computation-intensive workloads.

The Cell processor consists of a general purpose, dual-threaded 64 bit PowerPC core, called
power processing element (PPE), and eight co-processor cores, called synergistic processing PPE

elements (SPEs) [Fla+05], cf. Figure 4.4. SPE

The PPE has a general-purpose Power architecture design and can thus execute a conventional
operating system. It is the central processing unit and has complete control over the SPEs. It can,
for example, start, stop and interrupt a whole SPE and the individual processes that are running
on the SPEs. Additionally, the PPE has standard load and store operations that can directly access
the local memory of the SPEs and the main memory. However, this access is not as efficient as a
direct memory access (DMA).

The SPEs contain 256 KB embedded local SRAM memory for instruction and data. This
SRAM memory does not work as a conventional cache, as it is not transparent to the software.
Additionally, each SPE contains a register file with 128 entries, each 128 bit wide.

51

4 Environment

Figure 4.4: The high-level diagram of the Cell processor. It shows the power processing element (PPE)
and the synergistic processing elements (SPEs) that are connected by the element interconnect
bus (EIB). The PPE is the central processing unit and has complete control over the SPEs.

The load and store operations of the SPEs can only access the own, local SRAM memory. All
remote memory access (e. g. on other SPEs, the PPE or the main memory) requires the use of
explicit, asynchronous DMA commands. These commands are handled by the DMA engine,
which transfers the data to and from remote memory anywhere in the system.

All cores are equipped with a DMA engine that allows fully cache coherent DMA access
via the element interconnect bus (EIB) (see description below). With this design, DMA is the
central means for intra-chip data transfer, and the memory architecture is a non-uniform memory
access (NUMA) architecture, in which the different access latencies depend on the type and
location of memory. For more details about the communication network on the Cell processor
see e. g. Kistler, Perrone, and Petrini [KPP06].

Additionally to the cores, a high-speed memory interface controller (MIC) offers access to the
main memory. The bus interface controller (BIC) offers access to the configurable I/O interface.
This on-chip I/O interface allows a dual processor configuration of two cell processors, which
does not need an additional switch to connect the two chips [KPP06].

A specialized high-bandwidth circular data bus, the element interconnect bus, connects the
PPE, SPEs, main memory and the I/O interface. The EIB consists of four rings, where two of the
rings run clockwise while the other two run counterclockwise. Each of these rings can handle up
to three concurrent data transfers, if their paths do not overlap.

4.3.2 Intel’s Single-chip Cloud Computer

The single-chip cloud computer (SCC) is an experimental 48-core processor [Bar10; Int11a]SCC

that Intel Labs have created as a “concept vehicle” for many-core software research. The chip
is organized in dual-core tiles, where each tile contains two X86 cores that are based on the
P54C-Pentium-1 processor. Each tile contains a router that interconnects the tile to its neighbor
tiles. Thus, all tiles form a 2D mesh network that is organized in an 6x4 array of tiles, see

52

4.3 Multi-Core and Many-Core Systems

Figure 4.5: The high-level diagram of the SCC processor that shows the 6x4 array of tiles, where each tile
contains two X86 cores. Additionally, the memory interface controllers (MICs) are shown,
which connect the network to the external off-chip, but on-board, memory.

Figure 4.5. To allow on-chip message passing communication, each tile holds an additional
message passing buffer (MPB), whose 16 KB SRAM memory is shared among all tiles. To
provide external off-chip memory, four of the border routers are connected to a memory interface
controller (MIC). These MICs connect the network to the external off-chip, but on-board, DDR3
DRAM memory.

Because of this design, all on-chip communication, whether between different tiles or between
a tile and a MIC, is done via message passing, where a simple XY routing delivers the messages
to their destination.

Each MIC can address 16 GB with a 34 bit address and together, the four MICs can offer a
total memory of 64 GB external memory. To address the full 64 GB external memory, the SCC
uses a 46 bit address, the so-called system address. The usage of this memory is configurable
and each core owns some of this memory as its private memory, while the rest of the memory is
shared among all cores. To address this memory, each core uses its 32 bit core address that allows
the addressing of 4 GB memory. Hence, it is necessary to translate between the system addresses
and the core addresses to map parts of the external memory into the local address space of a core.

To perform this translation, each core holds a private lookup table (LUT) that contains 256
entries, each 22 bit wide. These entries allow to address the core’s 4 GB memory space, which is
divided into pages with a size of 16 MB (to match the 256 entries). The LUT is fully configurable
at runtime and defines the partition of the available core-addressable memory into private and
shared memory, i. e. the boundary between private and shared memory can be dynamically
programmed. Thus, each LUT entry addresses either a page of private or shared memory, whereas
the private memory is mapped in the memory of the closest MIC. Additionally, all message
passing buffers and all configuration registers (one per tile) are addressable via the LUT as well.

The address translation from a core address into a system address is shown in Figure 4.6. The

53

4 Environment

Figure 4.6: SCC core to system address translation, according to [Int11a]. The upper 8 bit of the input
core address index one of the 256 entries in the lookup table, while the lower 24 bit are directly
used as the lower bits of the system address.

upper 8 bit of the input core address index one of the 256 entries in the LUT, while the lower
24 bit are directly used as the lower bits of the system address. The upper 12 bit of the output
system address provide the location information of the addressed memory, namely, the routing
information where the mapped memory can be found, for example the XY coordinates of the
corresponding MIC. The remaining 34 bit of the system address identify the actual memory
address, e. g. a page in the external DRAM.

As with the Cell processor, this memory design is a NUMA memory architecture with varying
memory access latencies, which depend on the type of memory and the hop distance between the
accessing core and the remote memory location, see [Int11b, Table 1].

If the LUT entry targets a page of the private memory, this page is cached via the L2 and L1
caches of the accessing core. For shared memory, there is no built-in mechanism to guarantee
cache coherency, but the SCC allows two types of shared memory: cacheable and non-cacheable
memory.

The cacheable shared memory has a granularity of a 32 Byte cache line and cache coherency
has to be implemented in software by the user. One advantage of this approach is that no hardware
is needed to keep the shared memory consistent. Another advantage is that software coherency
among multiple caches is dynamically reconfigurable. The disadvantage is that users have to
know when to flush the cached memory and insert these flushes explicitly in their code. However,
this design allows each application to define its own memory domain, in which the application
can guarantee memory coherency.

The non-cacheable memory has a granularity of 1, 2, 4 or 8 Byte. A read operation to this
memory bypasses both caches, and the read value is stored directly in the registers of the core.

54

4.3 Multi-Core and Many-Core Systems

Intel offers the RCCE (pronounced “rocky”) API to simplify the programming of the SCC.
RCCE is a small, low-level API for message passing [MW11]. It offers a basic and a gory
interface for memory management and an additional interface for power management.

The basic RCCE interface offers send and receive methods to pass messages between the cores.
It is based on one-sided communication and the use of shared memory. When a programmer uses
this API, RCCE handles all underlying details of the communication, e. g. the MPB management.

The gory RCCE interface allows a low-level access to the MPB, e. g. for memory allocation
and flag management so that the developer has the complete control over all details of the MPB.

55

5 System Specification

This chapter describes the components of the envisioned distributed runtime system that are
relevant for this thesis. It starts with a high level overview, and afterwards describes the individual
parts in more detail.

Figure 5.1 shows the main modules of a single instance of the envisioned runtime environment.
Each of these modules fulfills a specific task in the execution of a distributed application and
especially in the local and remote access to migrating objects.

Figure 5.1: High-level view of the envisioned runtime environment and the interactions between the
individual modules. The central module for this thesis is the object retrieval manager (ORM).
The ORM handles the translation between local and global references and is responsible for
the communication with all locally referenced remote objects.

The top layer consists of (an instance of) the virtual machine (VM) that executes the trans-
actional code of the application, which uses the DecentSTM. Alternatively, this could be an
application using the C STM library that we are developing in our group. There is no difference
in the functionality between VM and C STM library with respect to the distributed execution of
an application.

The VM communicates with the underlying modules solely via the DecentSTM interface,
e. g. via transaction control and object access operations. The DecentSTM module manages the
execution of the individual transactions. It requests the creation or retrieval of local object copies,
executes the distributed consensus protocol, and mediates between logically private and logically
global memory. To access local object copies in the logically private memory, the DecentSTM
module interfaces with the memory manager module, which is responsible for all physically local
memory of the node. The memory manager allocates physically local memory for both, local
object copies and globally accessible objects that reside on the local node. Furthermore, it creates
local object copies from locally stored globally accessible objects on request.

57

5 System Specification

Whenever the DecentSTM module encounters an access to an object that does not yet reside
in the transaction’s private memory, the DecentSTM module sends an object retrieval request to
the object retrieval manager (ORM). The ORM handles the translation between local and global
references and is responsible for the communication with all locally referenced remote objects.
When the DecentSTM module requests a local object copy, the ORM is responsible for locating
the globally accessible object and retrieving a copy of this object.

The garbage collector and the migration manager are not directly involved in the object access,
but fulfill some additional management and maintenance tasks. The garbage collector interfaces
with the VM, the DecentSTM, and the memory manager. It is responsible for the deletion of
high-level objects such as Java objects and arrays, and the collection of outdated object versions
and transaction records, which are not needed by the DecentSTM or the recovery algorithm
anymore. The migration manager is an additional component that can explicitly migrate threads
and objects between nodes, e. g. for load balancing or system maintenance operations.

5.1 Virtual Machine

Typically, the runtime environment in the envisioned scenario will be a virtual machine (VM),
e. g. a Java VM. Since the work of this thesis was inspired by a Java VM, I will use in the
following the corresponding terminology.

The task of the runtime environment is the execution of one or more applications. Typically,
each application consists of multiple threads that are concurrently executed. Internally, each
of these threads consists of chunks of local memory. These chunks hold the execution context
(program counter, stack frame, etc.) and the corresponding program code. The system handles
both, execution context and code, as regular objects in the sense of the memory model. Thus, the
DecentSTM module and the ORM have to create local object copies of these objects before the
VM can start the execution. Furthermore, other application data may be stored on separate nodes
as well. Before the VM can operate on this data, it has to initiate the creation of local object
copies of this data via the DecentSTM module and the ORM.

The following bullet list describes both, a system with and a system without DecentSTM
module. The reason for this separation is that the protocol descriptions that follow in Chapter 7
and Chapter 8 handle the general case of decentralized remote object access and retrieval, the
DecentSTM scenario is a special case of. The DecentSTM algorithm implicitly migrates objects
whenever a new head version comes into existence on another node than the one where the
previous head version resides.

With respect to the decentralized object access, the only VM operations that are of interest for
this thesis are the instructions that deal with the creation of or access to objects, namely:

• NEW: Initiates the creation of a new mutable high-level object Y , for example a Java object
or array. The result of this operation is a reference to object Y .

In the DecentSTM context, this instruction creates the object’s initial object version.
Until the creating transaction successfully commits, this object version only exists in
the transaction’s logically private memory. If the user declared the object as a shared

58

5.1 Virtual Machine

object, it becomes a globally accessible object when the commit succeeds. At this moment,
the DecentSTM module has to copy the object from the logically private memory to the
logically global memory, i. e. from the physically private memory into the physically local
memory. Furthermore, in case of a dynamic object, this new object (version) is only
accessible from other nodes or transactions if they have been passed a reference to the
object.

• GET <ref Z>: Reads a reference field of an object Y to get hold of a reference to object Z.
The operation returns the read reference.

Without DecentSTM, the read object might be either local or remote. If the read object Y is
located on a remote node, a read request message is sent to the home node of object Y . The
remote node that holds object Y reads the requested reference field and answers the request
with an access response message. This message contains the read reference to object Z,
and the location information, where object Z can be found.

In the DecentSTM context, this instruction requires by construction that the read object
Y is a local object copy. To actually access object Z after the reference was read, the
transaction has to hold a local object copy of object Z as well. If no such copy exists, yet,
the DecentSTM module has to initiate the retrieval of such a copy at the ORM. The ORM
resolves the given reference to the location information of the latest head version of object
Z. If object Z’s head version is located in the local portion of the logically global memory,
the ORM initiates a copy operation of the data from the nodes’ physically local memory to
the logically private memory of the transaction at the memory manager. If object Z’s head
version resides on a remote node, the ORM fetches a copy of this head version from the
remote node.

• PUT <ref Z>: Writes a reference to an object Z into a reference field of object Y .

Without DecentSTM, neither the written object Y nor the referenced object Z need to be
local. If object Y is local, the reference to Z is simply written to object Y . In the case
that object Y is remote, the writing node sends a write request message that contains the
reference and the location information of object Z to object Y ’s home node. The receiving
node writes the reference to object Y and returns an acknowledgment message.

With DecentSTM, the write operation requires that at least object Y is a local object copy in
the private memory of the executed transaction. Upon the successful commit of the writing
transaction, object Y ’s modified local object copy becomes the new head version of object
Y . Thus, the DecentSTM module initiates the copy operation of object Y ’s modified local
object copy from the private memory to the node’s portion of the globally shared memory.

Scheduler The VM runs an application by executing its bytecode in one or more threads. A
scheduler considers all runnable threads of the corresponding VM instance and assigns each
thread a fixed unit of execution time at the local processor. After the assigned execution time, the
scheduler puts the executed thread on hold and continues with the execution of another one.

59

5 System Specification

Figure 5.2 shows the state diagram with the different states and transitions of a thread, which
are concerned with object access operations. One sees that a thread alternates between the running
and wait state.

Figure 5.2: Thread state diagram with the different states and transitions that are concerned with object
access operations.

While the thread is in the running state, it executes GET and PUT operations that access local
and remote objects, which cause the transition into the wait state. If such an operation accesses a
local object copy, the thread immediately returns from the VM wait state. If the accessed object is
remote, the runtime system sends an access request message and the thread stalls, until either a
response message is received, or a timeout occurs. Upon the reception of a response message the
local thread resumes, while a timeout initiates the re-sending of the request message.

5.2 DecentSTM

The DecentSTM module is responsible for the management of all transactions, and especially
for all shared object accesses. Because the envisioned runtime system offers strong atomicity,
cf. Chapter 2, object manipulations are only allowed within transactions.

When a new transaction starts, the DecentSTM module sets up the required meta data structure
for the transaction, the so-called transaction record (TR). This TR contains all meta data that is
required for the execution of the transaction. This includes the read set, write set and check set
(see Bieniusa and Fuhrmann [BF10]), as well as a reference to the executed bytecode. This meta
data suffices to restore a lost transaction solely from the transaction record.

Whenever the executing transaction accesses a shared object, the DecentSTM module checks
if the used reference identifies a private local object copy (LOC) or a globally accessible object
(GAO). If the reference identifies a GAO, the DecentSTM module has to initiate an object retrieval
request at the ORM. As stated above, for a physically local GAO, the ORM initiates the copy
operation of the GAO at the memory manager, and the memory manager copies the GAO from
the node’s local parts of the logically global memory to the logically private memory of the
transaction. If the GAO resides on a remote note, the ORM initiates the retrieval of an object copy
from the GAO’s remote home node. When the copy arrives, the ORM passes it to the memory
manager, who places the copy as a LOC in the logically private memory of the transaction.

60

5.3 Object Retrieval Manager

At the end of the transaction, the DecentSTM protocol tries to publish all modified LOCs to the
outside world during the commit phase. At this time, the distributed consensus protocol checks if
publishing the modified objects would lead to memory inconsistencies. For this, the consensus
protocol negotiates with all other transactions that read or modified the same GAOs, i. e. created
and potentially manipulated local object copies of the GAO. Thereby, the involved transactions
determine which of them should be allowed to successfully commit, and thus add a new head
version to the objects version history. All other transactions have to roll back and restart their
execution. Because transactions are represented by TRs, which are objects as well, the consensus
protocol communicates with all remote transactions via the ORM, too.

5.3 Object Retrieval Manager

The Object Retrieval Manager (ORM) is responsible for locating, retrieving, and accessing
remote objects. Therefore, it mediates between local references, which are used by the VM and
DecentSTM module and global references, which point to GAOs which may be located on the
local or on remote nodes.

Accessing a dynamic object requires that the accessing transaction possesses a reference to the
accessed object. Such a reference can

• be read from a static object,

• be read from a remote dynamic object to which the reference is known,

• result from the migration of a local object to a remote node,

• be brought along with an object that migrates to the local node or

• result from a NEW operation that could not be fulfilled locally.

This thesis separates the identification of an object (via references) conceptually from the
addressing of the object (its location in memory). This separation is comparable to a file handle,
which is used to identify a file, and the file name on the hard disk, or a socket that identifies the
connection, and the URL (Uniform Resource Locator), which is used to locate the resource in the
network. Both, the file handle and the socket, are abstract identifiers that identify entries in some
kernel data structures, which contain all the details needed to access the corresponding entity.

So, the ORM separates object references from object addresses. To reflect this separation, the
ORM uses a multi staged de-referencing system shown in Figure 5.3. It uses a ReferenceMap and
a GaoMap, and an optional per-object Incoming Reference Map (InRefMap). While the first two
maps are necessary to access and retrieve local and remote GAOs, the latter map is only used for
the proactive location update approach described in Chapter 8.

This de-referencing via reference maps has similarities to the virtual memory management
(VMM) in common processors. Here, the VMM separates the virtual address space from the
physical memory location and uses a memory map to map the virtual address to the physical
address. Thus, the VMM hides the underlying memory organization and offers the user transparent
access to a virtual memory, which has a larger address space than the actual physical memory.

61

5 System Specification

Figure 5.3: Detailed view of references, InRef and GaoMap, similar to [BEF10]. The internal translation
that is performed by the DecentSTM module is not part of this thesis.

Internally, the VM uses VM-local references to identify Java objects and arrays. Upon access,
the VM passes this local reference to the DecentSTM module, which translates the VM local
reference either to a local memory pointer, e. g. a C pointer, that points into the private memory
of the transaction, or to a localID that points into the ReferenceMap. The internal translation that
is performed by the DecentSTM module is not part of this thesis.

The usage of VM-local references and localIDs shields the VM and the DecentSTM module
from the knowledge about the actual object location and allows an easier implementation of both
modules. For example, the VM and the DecentSTM module can use internal 16-bit for localIDs
and local references, while the globalID of an object might be 160-bit or more.

Each ReferenceMap entry stores the mapping of a localID to either a local memory pointer,
e. g. a C pointer that points to a GAO in the local portion of the global memory, or to a globalID,
which points to an entry in the GaoMap. Moreover, each ReferenceMap entry contains a local
reference counter that indicates how many local objects reference the corresponding GAO, and
stores an external reference counter and a garbage collection epoch index for the garbage collector.

The GaoMap translates the globalID into the GAO’s location information that is needed for
the remote GAO access. To signal an authenticated access, the GaoMap contains an additional
cryptographic nonce that is sent together with the GAO access message.

Figure 5.4 shows a simplified example of two objects on node A, which reference another
object on node B. In this example, the reference counter of the ReferenceMap entry on node A
indicates that two local objects reference a remote object. The GaoMap entry on node A stores the
referenced object’s ID and indicates that the object is located on node B. On node B, an external
reference points to the InRefMap and local ReferenceMap entry, which indicates that one remote
node references the local object.

The labels in Figure 5.3 and Figure 5.4 indicate that the GaoMap stores tuples of
<node ID, local ID> to identify and locate remote objects. This representation simplifies the
access to the remote object at its current location, because no additional ID translation step is
required on the remote node. However, this representation is only exemplary, and the system is
free to choose the reference representation and object location information. The most generic

62

5.4 Memory Manager and Garbage Collector

Figure 5.4: Two objects on node A reference a remote object on node B. The GaoMap entry on node A
stores the referenced object’s ID and indicates that the object is located on node B. On node B,
an external reference points to the InRefMap and local ReferenceMap entry, which indicates
that one remote node references the local object.

representation of a globalID is a globally unique identifier (GUID). With this GUID it is, for
example, always possible to broadcast a request into the network, cf. Section 6.2.1.

Other location information can be, for example, any other form of routing information, such
as a hop-by-hop source route or a virtual circuit. Which routing information is used depends on
the underlying routing algorithm, which is responsible for the delivery of messages to a given
location.

5.4 Memory Manager and Garbage Collector

The Memory Manager is responsible for the node’s local memory. It allocates memory chunks
for LOCs and local GAOs, and copies GAOs from the local parts of the logically global memory
into the logically private memory of a transaction and vice versa.

Furthermore, the memory manager allocates and manages the memory for the internal data
structures of the runtime environment, such as the ReferenceMap and the GaoMap.

Finally, the memory manager interfaces with the garbage collector and frees the memory of
those objects that are marked for deletion, or whose reference count has dropped to zero.

The Garbage Collector (GC) is responsible for cleaning up those local objects and data
structures that are not needed anymore. This includes objects on all layers in the system: in the
runtime environment, where e. g. Java objects and arrays become garbage, and in the DecentSTM
module, where a long version history of an object can be collected, if the older versions are not
needed anymore.

The development of the garbage collector module is ongoing work in our group. A survey on
(distributed) garbage collection techniques can be found, for example, in [PS95] or [JL96].

5.5 Migration Manager

The Migration Manager handles the explicit object migration from one node to another. Dis-
cussing details and the reason for an explicit migration is beyond the scope of this thesis, but some

63

5 System Specification

potential scenarios are e. g. the need to bring two objects closer together to prevent unnecessary
message traffic, load balancing, system maintenance or the need to free local memory.

The migration manager is an optional module in the envisioned system, where all object
migrations take place implicitly because of the DecentSTM protocol. Namely, whenever a new
head version comes into existence on another node than the node where the current head version
resides. Nevertheless, the evaluation in Section 9.1 uses a simple migration manager that triggers
explicit object migrations to compare the two location update protocols from Chapter 7 and
Chapter 8.

In the general case, the migration manager is invoked whenever a node requests an explicit
object migration. This explicit migration is performed either as push, pull or transfer operation,
and all these operations can be aborted due to insufficient memory on the node where the object
is migrated to.

In a push migration, the old home node initiates the migration. It takes a local object and
pushes it to a remote node. The OMNeT++ network emulator described in Chapter 9 uses push
migrations to simulate explicit object migrations.

A pull migration is initiated by the new home node of the object. The new home node pulls
the object from the old home node and stores the object in its local memory. In the DecentSTM
scenario, this pull migration is comparable to the creation of a new head version of an object on
another node than the previous head version. For this reason, the OMNeT++ network emulator
uses pull migrations to simulate implicit object migrations.

A transfer migration is initiated by a third party. It transfers an object from its old home node
to its new home node without the further involvement of the initiating node.

64

6 Locating Objects

As mentioned in the introduction, the main research question of this thesis is

“How can I ensure that an object is reachable in a fully decentralized system that
allows object migration?”

This question can also be phrased as

“How does a node locate an object in such a system after it moved from one node to
another?”

Since in a fully decentralized system an object might be located on any arbitrary node in the
network, an object access does not only require a valid reference that identifies the object, but
also a mechanism to locate the object in the system.

This part of my thesis gives an overview over different approaches that locate objects in a fully
decentralized system. Even though the research question explicitly excludes the centralized ap-
proach, I describe it to be able to compare the centralized approach against the fully decentralized
ones.

The next section starts with the description of approaches that allow the location of static
objects, e. g. via lookup mechanisms such as a distributed hash table or a central server. These
lookup mechanisms are necessary, even if the system does not allow object migration, because a
static object must exist only once per application. Hence, a node that accesses the static object
the first time has to check whether the object already exists. Therefore, the node must be able to
locate this static objects, even if the node has no further knowledge about the object’s location. If
the static object does not yet exist, the node has to create the static object, which must afterwards
be accessible by all other nodes in the network. However, the section about static objects is kept
short because the main focus of this thesis is on locating dynamic objects.

The section about static objects is followed by the description of location mechanisms for
dynamic objects. To access a dynamic object, a node has to possess a valid reference to the object,
which it might receive by a remote method invocation or by reading a reference field of another
object. Even though such a reference can be accompanied by some kind of information about the
location of the object, this information could be outdated because the object might have migrated
to another node in the meantime. Therefore, the main part of this chapter gives an overview over
multiple approaches that guarantee the reachability of migrating dynamic objects.

6.1 Locating Static Objects

In Java, for example, the static fields of an object are class variables, i. e. they exist only once per
class. A common Java virtual machine (JVM) initializes the static fields during class loading.

65

6 Locating Objects

According to the Java specification [Gos+00], this happens upon the first access to the class,
i. e. upon invoking a method of that class, creating an instance of that class, or accessing a static
field of that class. Afterwards, each thread of the corresponding application that accesses the
class must be able to access the initialized static fields, as well. This access does not require an
explicit reference; the identifier of the class suffices.

Since all the static fields of a class are initialized by the same thread, the envisioned runtime
system combines them all into a so-called static object. I. e., the system does not support separate
locations for the static field of the same class.

In a C programming environment that uses the DecentSTM C library, static objects correspond
to global variables. Therefore, similar to static objects in Java, the C library combines all global
variables in one C struct.

Note that a runtime system, such as a JVM that executes multiple applications in parallel has
to shield the static objects of the applications from each other. For this separation, Liang and
Bracha [LB98] described an approach to isolate user classes in the same JVM by using a separate,
user defined class loader per application, which places all classes – and all static fields – of its
application in a separate namespace.

The JSR-121 (Java specification request) [SUN06] introduced the concept of isolates and
specified an API to isolate applications from each other.

Czajkowski [Cza00] argued that the use of a separate OS process for multiple single-application
JVMs, or one class loader per application in a multi-application JVM, results in too much code
duplication. His main idea is to have only one copy of the code of all user and system classes for
all applications, but give each application a private set of the corresponding static fields and some
private monitors.

In a distributed environment, each instance of a distributed JVM has to know if the static fields
have already been initialized when a thread, which is executed by this JVM instance, first accesses
a class. If it happens to be the first thread to access a class, the corresponding JVM instance
initializes the class variables for that class and runs the initialization code. It must also timely
publish this fact so that no other JVM instance runs the initialization again. Hence, the distributed
runtime environment requires a mechanism, e. g. a resolver protocol, to store and retrieve the
location of the static fields for each class.

One possible solution to ensure the uniqueness of each static object and to allow all nodes to
retrieve a reference to that object is the use of a singleton mechanism together with a distributed
hash table (DHT) that stores key-value pairs, and that is discussed in more detail in Section 6.2.3.

In case of a static object, the key k is, for example, the hash value of the class identifier such as
the string java.lang.Object, or the hash value of the bytecode of the class. The stored value v is
either the static object itself or the location information for the static object’s current home node.

Upon class loading, each JVM instance has to perform a lookup in the DHT. If the class’
static object has not yet been created, the lookup request results in a negative answer, and the
requesting node creates and initializes the static object. Afterwards, it publishes (the location of)
that object in the DHT. If the lookup returns a reference or location information, the node uses
this information to access the static object as it does with dynamic objects. If the static object
migrates to another node, this change of location must be published in the DHT.

66

6.2 Locating Dynamic Objects

Another approach to manage static objects is the use of a central registry, discussed in more
detail in Section 6.2.2.

However, a first practical approach is to initialize all static objects of an application at startup.
I. e. the JVM (or C runtime) instance that is the first to start the application, initializes all static
objects and passes the reference to these objects to all local and remote threads that the application
spawns afterwards. Thus, the static object can be handled in the same way as dynamic objects.

6.2 Locating Dynamic Objects

Whenever an object migrates from one node to another, the cached object location information
on all other nodes, but the two that are involved in the migration, becomes invalid. Without some
kind of object location and retrieval protocol, the object location is now lost and no other nodes
are able to access the object anymore.

Thus, such an object location and retrieval protocol is required and either has to

• guarantee that an access message always reaches the corresponding object, even if the
message is sent to an outdated location, for example, by using forwarding proxies. These
proxies can be left behind by a migrating object and forward all requests to the new dynamic
home node of the object.

• ensure that an object location can always be retrieved, for example, through the static home
node of an object or the lookup at a centralized or decentralized lookup service.

• keep the location information of the migrated object updated on all other nodes, for
example, by a proactive location update scheme that keeps all references of a migrating
object updated.

As an alternative to these approaches, an accessing node can always send an access request as
a broadcast message to all nodes in the network.

In the following sections, this thesis describes different object retrieval and location information
maintenance approaches. These approaches ensure that a node that holds a valid reference to an
object can access this object, even if the object migrates among the nodes in the network.

However, if any of these protocols (besides broadcast itself) fails for some reason, the fallback
to broadcast is always possible, even though costly.

6.2.1 Broadcast

The easiest approach to locate a migrating object is to send a broadcast message, especially in
small networks of only a couple of tenth of nodes. The use of broadcast messages is a common
approach to locate objects or to inform other nodes about an object migration [LH89; Tan+91;
SJ95; Bal+98; CWH99; Göc+04], see Chapter 3.

The advantage of broadcasting is that there is no need to send any update messages or to keep
or maintain any additional state such as registries or proxies. The drawback is the potentially high

67

6 Locating Objects

communication cost in large networks. However, it is a last resort in case that the other protocols
fail.

For a network of n nodes that supports unicast communication, a broadcast message can be
sent using (n−1) unicast messages. This approach is inefficient because the same message is
sent multiple times, and in case of multi-hop paths, the same information traverses some nodes
more than once, especially in the direct neighborhood of the sending node.

As a result, various other broadcast approaches exist, which are additionally applicable for
networks that do not support unicast, or that cannot easily keep a list of all participating nodes.
One type of networks that lacks these properties are (mobile) ad-hoc networks, where nodes
might join and leave the network at any time.

The underlying network of the AmbiComp scenario can be seen as a sub-class of ad-hoc
networks where some nodes, such as laptops or hand held devices, frequently join and leave the
network. Similarly, a network of compute nodes in the J-Cell scenario can be seen as an ad-hoc
network as well. Here, the user has to expect that components might fail and have to be replaced
by the network administrator, cf. for example two studies from Google data centers that examine
frequent hard disk failures [PWB07] and DRAM errors [SPW09].

Williams and Camp [WC02] discussed twelve broadcast protocols for such (mobile) ad-hoc
networks and classified these protocols in four categories: simple flooding, probability based,
area based, and neighbor knowledge methods.

The easiest broadcast method is flooding, where each node transmits a given broadcast message
exactly one time to all its direct neighbors. With probability based broadcast, a node only
retransmits a message with a given probability. This saves resources in dense networks where
the transmission range of multiple nodes covers a similar area. This is similar to the area based
approaches, where a node does not retransmit a message if it is geographically close to the
sending node. In neighbor knowledge methods, the nodes collect information about their one- or
two-hop neighborhood. This knowledge is sent with each message, so that the receiving node can
compare the neighborhoods and decide if a retransmission reaches additional nodes.

Dalal and Metcalfe [DM78] introduced the reverse path forwarding protocol (RFP) for broad-
cast packets, which is the basis for various other broadcast protocols, e. g. DVMRP [WPD88],
RRB [SA83] or TBRPF [BO99]. This routing scheme forwards a broadcast message only if the
interface on which the message arrived is also the interface that connects the receiving node to
the source node of the message via the shortest possible path.

With respect to the task of locating, retrieving and accessing objects in a distributed network, a
system can use broadcast in two different ways: either, each object migration proactively triggers
the broadcast of the new location of the object, or, each node reactively broadcasts its object
access request throughout the network.

Both these approaches guarantee the lowest access latency. With the reactive access broadcast,
one of the O(n) broadcast messages reaches the home node of the remote object on the shortest
path. With the proactive update broadcast, each accessing node can send a unicast access message
directly to the current home node of the object because the location information is up-to-date (at
least as long as the access does not overlap with a location update broadcast, see below).

68

6.2 Locating Dynamic Objects

The proactive approach actively broadcasts the location update information of a migrated
object to all nodes in the network. Each node that is interested in the location of a migrated object
Y either caches the location information the first time or updates an already cached location
information. Afterwards, each node that cached the location information is able to directly access
object Y at its new home node. All nodes that are not interested in the location of Y are free to
drop the information.

Broadcasting the new location of a migrated object guarantees the lowest object access
latency that requires O(1) access messages, i. e. a single request message and a single re-
sponse/acknowledge message. Nevertheless, in a network with n nodes, a single object migration
requires O(n) messages to update the object location on all other nodes. This is especially
expensive for all objects that are only accessed by a small subset of nodes, and for all objects that
are seldom accessed but frequently migrated.

The reactive approach shifts the broadcast operation from the object migration to the object
access. Here, each node that accesses a remote object broadcasts its access request into the
network, which is answered by the current home node of the accessed object. Thus, each object
access in a network with n nodes requires O(n) messages, while an object migration requires O(1)
messages: one message that transports the migrating object, and one message that acknowledges
the migration and indicates its success.

To reduce this access overhead each node can cache the location information that it receives
after the broadcast together with the response message. Afterwards the node sends all access
message directly to the cached home node of object Y . This continues until Y migrates to another
node with the result that the next access request fails and the accessing node has to broadcast the
access request again.

This is advantageous for all objects that never or seldom change their home node, but increases
the access latency for all objects that frequently migrate.

Both these approaches are straight forward but have to handle object accesses that overlap
with an object migration. If an access overlaps with a migration, the previous home node of the
migrating object might either drop the received access message or optimistically forward the
access message to the assumable new home node. In any case, the previous home node must not
response with a location update message because the previous home node must not make any
authoritative statements about the success of the ongoing migration.

In case that the migration succeeds, the forwarding of the access message can shorten the
access latency. Thus, this approach should be taken for the reactive broadcast, because it might
prevent the sending of an additional number of O(n) messages for a re-send access request.

Besides the individual drawbacks of the discussed broadcast approaches the general scalability
problem of broadcast remains because either the access or the migration requires O(n) messages.
Nevertheless, broadcast is the fallback solution for the case that the location of a remote object
cannot be obtained otherwise.

6.2.2 Central Registry

A Central Registry stores the location information for all objects present in the system and is a
common approach to locate or track mobile objects [Ste+98; BMT03; Bha+07], cf. Chapter 3.

69

6 Locating Objects

A similar approach is taken by the domain name system (DNS) [Moc87a; Moc87b]. DNS is a
distributed, hierarchical lookup service for the Internet that uses centralized DNS name server.
The local DNS resolver at the client side is responsible for the resolution of a given name to the
corresponding IP address. Therefore, the resolver sends a query to its pre-configured name server,
where the DNS query is either recursively or iteratively handled.

In the iterative approach, the name server either responses with the requested resource record
or returns the address of another name server. In the latter case, the client’s resolver re-transmits
the query to this new name server. This process is repeated until a name server answers the
request with a valid resource record.

A recursive query is always answered by the queried name server. In case that this server
cannot answer the request directly, it queries other name servers until it gets an answer that is
sent back to the client.

The concept of centralized registries is used in other application domains as well. For tiered
sensor networks, Bhattacharya et al. [Bha+07] describe a flexible, hierarchical location directory
service, called Multi-resolution Location Directory Service (MLDS). The goal of MLDS it to
locate and track physical objects, such as tools or employees. MLDS has a tiered hierarchy with
a central registry at the top most layer and central servers for each sub-region.

Similarly to MLDS, Steen et al. [Ste+98] and Bisignano, Modica, and Tomarchio [BMT03]
use a hierarchy of central location servers for mobile agents with a central server at the top-most
layer and for each sub-region a central servers, as well. All agents within one sub-region have
to register their location with the sub-region’s central server. If an agent migrates to another
sub-region, it first has to de-register itself in the current sub-region and re-register in the new
sub-region.

RPC middleware systems such as CORBA or DCOM also use a centralized server as a
central object and service location registry that allows nodes the lookup of remote services, see
Section 3.2.1.

If a central registry is used to maintain the location of migrating objects each successful object
migration must propagate the new object location to the central registry. For the first object access,
the accessing node has to obtain the object location from the central registry before the actual
access can take place. Thus, this object access requires four messages: two messages (request
and response) for the lookup of the object location and two messages for the actual access. As an
alternative, the central registry could forward the access request to the current object location.
This decreases the number of messages from four to three.

When the accessing node receives the response, it can cache the obtained object location and
use it for all subsequent accesses. Thus, the node reduces the message overhead until the first
access fails and requires a new registry lookup.

The main problem of the central registry approach is its lack of scalability and fault tolerance.
If the registry is stored on a single node, this node is a single point of failure, for example, if
the node physically fails, its storage capacity is exceeded, or the node cannot handle the load of
frequent lookup and location update messages. Furthermore, the latency to access a single central
server increases with the size of the network, i. e. with the maximal possible distance between a
node and the central server.

70

6.2 Locating Dynamic Objects

To avoid the single point of failure, the central registry can be fully replicated on different
nodes. This has the additional advantage that the lookup requests can be distributed among
different nodes as well. Thus, the access latency in a large network is decreased because a
node can contact that registry node that is latency-wise closest to itself. However, an additional
consistency protocol must ensure that all replicated registries have consistent object location
information.

Even if the introduction of intermediate layers reduces these problems, they still introduce
additional management and message overhead, e. g. to keep replicated registries consistent or to
locate and access objects that are only reachable by traversing multiple layers in the hierarchy.

Another drawback is that a centralized server must manage all objects in the system to make
them available to all nodes in the network. As stated before, this is unnecessary for the envisioned
system were objects are commonly accessed from a small subset of nodes.

6.2.3 Distributed Hash Tables

An alternative to a centralized registry is a decentralized and distributed registry. A common
implementation of such a registry is a distributed hash table (DHT). Some DHT implementations,
which were mainly developed for peer-to-peer systems, are the Content Addressable Networks
(CAN) [Rat+01], Chord [Sto+01], Kademlia [MM02] or Pastry [RD01].

A DHT is a distributed data structure that maps identifiers, called keys, to associated values.
The number of distinct values that a DHT can store is determined by the DHT’s keyspace, which is
defined by the hash function used for the DHT. To distribute the database, the virtual keyspace is
split into non-overlapping parts, according to a given metric. The management of these keyspace
chunks is distributed among all nodes in the network. I. e. each node in the network is responsible
for a given chunk of the keyspace and thus for the values that are associated with the keys.
Thereby, a DHT implicitly provides load balancing.

To allow the access to the DHT, all participating nodes form a structured, virtual overlay
network on top of the physical network topology. Kademlia, for example, forms a binary tree,
while Chord forms a virtual ring, where each node stores a link to those nodes that are responsible
for the successor and predecessor keyspace chunk. At both ends of the keyspace interval these
links are wrapped around. To allow a faster access to the DHT, namely, to a value that is stored in
the DHT, each node in a Chord network stores additional shortcut links within the ring. These
shortcuts are chosen with increasing virtual distance in the ring, so that each node in the network
with n nodes can reach any other node in O(log(n)) hops in the virtual overlay [Sto+01].

These properties support Key-Based Routing (KBR) within the DHT, which allows a node to KBR

access each key without the need to know the exact location of this key. Instead, it is sufficient
to know a node that is, with respect to a given distance metric, virtually closer to the key. With
this knowledge, the accessing node routes a message “towards” the key, i. e. it sends the access
message to that known node that is virtually closest to the accessed key. There, the node is either
responsible for the key and answers the request, or the node knows yet another node that is again
virtually closer to the key and thus, forwards the message. This process continues until the node
that is responsible for the key is reached.

71

6 Locating Objects

To use a DHT to locate and access migrating objects in a distributed system, the system must
assign each object (value) a globally unique identifier (key) from the DHT’s keyspace. This key
determines which node in the system is responsible for the object, and thereby for the object’s
location information.

To access an object via the DHT, the accessing node uses KBR to route the access request
message towards the globally unique identifier of the accessed object. When the message finally
reaches the responsible DHT node, this node either forwards the message to the current home
node of the accessed object, or it returns a message that contains the current location of the object.
(This thesis assumes that the message is always forwarded to the current home node of the object.)
When the accessing node receives the response message, it caches the location information that is
contained in the response message and uses this location information for all subsequent accesses.
When the object afterwards migrates, the next access will fail and requires a new lookup of the
object location in the DHT. Therefore, it is necessary that an object that migrated to another node
announces its new location to the responsible node in the DHT overlay via a KBR message.

Because of the shortcut links, each object access and each location update after a migration
requires O(log(n)) messages. Besides these access and location update messages, the DHT
requires a certain amount of management messages to keep its structure consistent in case that
nodes join or leave the network. The Chord ring for example requires that each node frequently
checks its successor, predecessor and all its shortcut links.

If only one node is responsible for a given chunk of the keyspace and this node fails, the
location information of the corresponding objects is lost. Since its neighbors in the DHT divide
the lost keyspace among themselves, the next object migration routes a location update message
via KBR through the DHT, and the lost information is built up again. However, the next object
access via the DHT to one of these objects will fail, if the corresponding object has not yet
updated the DHT. To resolve this situation, the DHT node responsible for a key broadcasts a
request for the object’s location when the first access request arrives. Here, the probability that an
access request requires that the DHT node sends a broadcast message depends on the migration
and access rates of an object. It depends on this probability if the DHT node should drop a
given number of access requests and wait for a location update to arrive, before it broadcasts the
location update request. This approach is advantageous for example, if the migration rate of the
object is high because it avoids the costs of the broadcast.

Similar to the centralized registry approach, an alternative solution is the use of multiple nodes
that are responsible for the same keyspace chunk, which again requires an additional consistency
protocol.

Altogether, the DHT approach has the advantage that it alleviates the problem of a single
point of failure, but it comes with the overhead to maintain the overlay structure of the DHT.
Compared to the centralized registry, one of the main advantages of a DHT is that it distributes
the knowledge about the location of objects among all nodes in the network. However, this is
also its main drawback. As stated before, we expect large networks of compute nodes in which
objects are only accessed by a small subset of nodes. But even if objects are only accessed by
a few nodes, the DHT spreads the resulting traffic across the entire network. Here, the proxy

72

6.2 Locating Dynamic Objects

approach is advantageous because the proxies confine this traffic to only some nodes in the
network, cf. Section 6.2.5.

6.2.4 Static Home Nodes

Another common approach to track migrating objects is to assign each object a static home node
[ZIL96; CWH99; Her99; AFT99; HST01; Mor01; ZWL02; FWL03; FSS06], cf. Chapter 3. This
static home node is responsible for the object during the object’s whole lifetime.

Some home node protocols do not allow objects to migrate. Here, the static home node holds
the master object and manages all accesses to this master [AFT99; HST01; FSS06]. Thus, a
remote node that wants to read or write the object has to retrieve a copy of the object from its
static home node. The static home node keeps track of all copies and is responsible to keep the
master and all its copies consistent. Therefore, all modifications of a copy must be propagate
back to the static home node at a given time, e. g. at a predefined synchronization point. Besides
synchronizing the object access, some home node approaches, such as cJVM [AFT99], use
method shipping to execute a method of the object at the object’s static home node.

However, the envisioned system requires object migrations. Furthermore, it does not require
the management of object accesses at a single home node to keep the object and its copies in
a consistent state. Instead, the consistency of concurrent object accesses is guaranteed by the
DecentSTM protocol.

Other static home node approaches allow object migrations and the static home node only
keeps track of the object location. This approach is comparable to a decentralized and distributed
registry because the location information of all objects, together with the management of this
location information, is spread throughout the system.

Nevertheless, a static home node is also the central registry node for the corresponding object.
Thus, the object access and object migration is handled similar to a central registry: Each object
migration has to propagate the new location of the object to the static home node. Nodes might
cache the current location of an object, but after the accessed object migrated, the next access
fails and the new location information must be retrieved from the static home node.

The drawbacks of a static home node are similar to those of the previous approaches: The single
home node of an object is also a single point of failure. If a node leaves the system ungracefully, a
redundant home node scheme is necessary, which introduces an additional management overhead.
Such a scheme would be mandatory in the envisioned system that allows nodes to leave and join
at any time.

Unlike with the DHT approach and without a redundant home node scheme, there is no
alternative node that could take over the part of the failed static home node. Therefore, each
subsequent object migration invalidates all existing references to the object. The only chance
to repair these references after each such migration it to repeatedly use broadcast to regain the
object location.

73

6 Locating Objects

6.2.5 Forwarding Proxies

Forwarding proxies are another common approach to ensure the reachability of migrating objects
[LH89; SJ95; PZ97; FWL03; Liu+05], cf. Chapter 3. To my best knowledge, Fowler [Fow86]
was the first who introduced forwarding proxies to locate mobile objects in distributed systems.
In his approach objects reside on dynamic home nodes and can migrate among the nodes in the
network. With each migration the migrated object leaves a forwarding proxy on the old home
node that stores the location information of the new home node. Each proxy knows only this next
node, and the only purpose of the proxy is to recursively forward all incoming requests for the
object to this next location. An alternative approach is to iteratively reply with a message that
contains the next location of the object, but the following sections assume that proxies recursively
forward all messages.

(a) Object Reference Graph. (b) Object Location in Distributed Network.

Figure 6.1: Proxy chain of object Y , which migrated from node C to D and afterwards further to node B.
Because of this migration, the location information on node A is outdated and an access from
object X on node A to object Y has to traverse the proxy chain. Node A updates the outdated
location information as soon as the response (read access) or acknowledgment (write access)
message from node B arrives.

Leaving a proxy after each migration leads to a chain of proxies that the migrating object
creates while moving through the system. The length of the proxy chain is potentially unbound
because each migration adds a proxy, and the following chapters describe approaches to remove
proxies eventually. As with the previous approaches, all nodes cache the location information
for all remote objects that are referenced from local objects. This location information is created
when the corresponding reference is established. If the location information is outdated due to
an object migration, the next access message has to traverse the chain of proxies to reach the
actual object. Afterwards, the response message transports the current location of the object
and the accessing node uses this location information to update the cached location information.
Thus, the number of proxy forwards, and with this, the average length of the proxy chain ` that
an access message must traverse, depends on the average migration rate m of the object and
the average access rate a of the accessing thread and can be computed as ` = m

a . To see this
consider an interval that contains m migrations and a accesses. Assuming a uniform distribution,
the expected value of migrations between two consecutive accesses is m

a .
Here, each migration increases the proxy chain for the next access by 1-hop, while the object

access updates the outdated location information and thus, shortcuts the proxy chain.

74

6.2 Locating Dynamic Objects

As an example of a chain of proxies see Figure 6.1 were object Y migrated from node C to D
and afterwards further to node B.

The main advantage of the proxy approach above all others is that it confines the message
and maintenance overhead to only a few nodes that are actually linked with the migrating object,
i. e. the previous home nodes of the object. The disadvantage is the increased access latency that
depends on the length of the proxy chain `.

Chapter 7 gives a detailed description of the proxy approach and the challenges and design
decisions of a reactive location update protocol that uses forwarding proxies. Section 7.3 describes
an access path optimization that shorten the length of a proxy chain and thus decrease the access
latency.

Table 6.1 compares the presented approaches with respect to the costs for an object access,
an object migration, and the average load on a single node. Furthermore, the approaches are
rated with respect to the maintenance overhead, fault tolerance, and the object locality, i. e. how
good a single access or migration is confined to only a small number of nodes. Thus, the table
summarizes the different advantages and disadvantages of the different approaches, which have
been described in more detail in the previous sections.

The parameters of the table are the network size n, the total number of object accesses a, the
total number of object migrations m, and the average length of a proxy chain `. All complexity
assumptions in the table assumes a uniform distribution of all objects o among all nodes, leading
to o

n objects per node, and a uniform access and migration characteristic for each object that leads
to the average length of a proxy chain `= m

a .

Approach Msg. Costs
Access

Msg. Costs
Migration

Max. Load on
single node

Mgmt.
Overhead

Fault Tol-
erance

Locality

Mig. Broadcast O(1) O(n) O(m) ⊕ ⊕ 	
Acc. Broadcast O(n) O(1) O(a) ⊕ ⊕ 	
Central Registry O(1) O(1) O(a+m) # 	 #

Static Home Node O(1) O(1) O(a+m
n) # 	 #

DHT O(log(n)) O(log(n)) O(a+m
n) 	 # 	

Proxy O(`) O(1) O(a·`
n) ⊕ ⊕ ⊕

Network Size: n, # of Accesses: a, # of Migrations: m, Average Proxy Chain Length: `

Table 6.1: Comparison of the different object location approaches. Altogether, the comparison of these
approaches shows that for the envisioned scenario only the proxy approach is applicable.

The second column shows the message costs of a remote object access. This number is constant
for the migration broadcast approach, the central registry and the static home node approach.
The reason is that at least two messages are necessary for an access in the migration broadcast
approach, and at most four messages for an access in the other two approaches. Here, an access
requires two messages to retrieve the latest object location from the static home node or central
registry, and two messages to access the object afterwards. The key-based routing access of
the DHT approach requires O(log(n)) messages, while the access broadcast approach requires
O(n) messages, because the object location is unknown and a broadcast message must be sent.
The access latency of the proxy approach depends on the average length of the proxy chain `,

75

6 Locating Objects

which itself depends on the access-to-migration ratio. The worst case access latency of the proxy
approach requires O(n) messages; in the case that the object migrated to all other n−1 nodes
between two accesses.

The third column lists the message costs for an object migration. Here, only the migration
broadcast approach has a major overhead due to the location update broadcast that requires O(n)
messages. The DHT approach requires again O(log(n)) messages because of the key-based
routing characteristics. For all other approaches, an object migration only requires O(1) messages,
because the central registry, the static home node, and the proxy approach all require only two
messages. The central registry and the static home node approach both need one message that
informs the responsible node about the new location, and one message that acknowledges the
location update. The proxy approach needs one message that migrates the object, and one message
that informs the previous home node about the success of the migration.

The fourth column shows the load on each node. This load depends on the total number of
access and migration operations. It is seen that the highest load occurs in the central registry
approach because a single node has to bear the complete location information management for all
objects. In the worst-case, each access and each migration operation has to contact the central
registry node to either retrieve or update the location information of an object. In the static home
node and DHT approach this load is the same, but the approaches distribute the load evenly
among all nodes in the network. This uniform load distribution is artificial for the static home
node approach, because I assumed a uniform distribution of objects and access and migration
operations. In the DHT approach, the load distribution depends on the chosen hash function,
the chosen metric that divides the keyspace and the assignment of the globally unique object
identifier that are used as the keys in the DHT.

The load in the broadcast approaches depends on the reason why the broadcast message is sent:
If each migration sends a broadcast, all nodes have to handle this message and the load is for a
single node O(m), while a broadcast upon each access causes a load of O(a) on every node.

The lowest load on each node is in the proxy approach. Here, each node has to handle O(a·`
n)

messages. The reason is that I assume that each node has to handle a
n object accesses and that a

single access has to traverse ` proxies.

The fifth column rates the management overhead of the different approaches. It is seen that
the DHT approach comes with the worst management overhead, because not only the location
information must be managed, but also the overlay structure of the DHT itself. This overhead
is absent in the central registry and static home node approach, whereas these two have only
an average management overhead that requires the management of the location information on
the central registry node or on the static home node. The two broadcast approaches have no
management overhead at all, while the proxy approach only has to store the additional proxies
and potentially forward access messages.

The picture is similar for the sixth column where the fault tolerance is rated. Here, fault
tolerance does not mean the fault tolerance due to an arbitrary node failure that can occur in any
system. Instead, my model assumes an adversary that picks a node that is necessary for a given
approach to work.

76

6.2 Locating Dynamic Objects

Under this condition, the two broadcast approaches have the best fault tolerance characteristics,
because there is no component that has a special responsibility in the network. The object access
is only affected if the adversary picks the node on which the accessed object currently resides.
This case breaks all approaches because the object is lost. In all approaches described below, the
only way to prevent the application to fail if an object is lost, is to create multiple object replicas
on different nodes, or to use checkpoints, from where the application can restart. Both, object
replication and implicit checkpointing are ongoing work in the group I work with and I will not
go into more detail in this thesis. Note that each node that fails in the following descriptions
might hold objects, as well.

A similarly good fault tolerance characteristics as the broadcast approaches has the proxy
approach, where the worst case is that the adversary picks a node that holds a proxy object.
However, the failure of one of the nodes that holds a proxy does not affect all objects that
reference the corresponding object, because the entry point in the proxy chain will likely be
different for all referencing objects. Thus, only a small subset of nodes is affected by the loss
of a proxy, and only these nodes have to use broadcast to retrieve the latest object location.
The DHT approach has an average fault tolerance, because the keyspace of a lost DHT node is
divided among its neighboring nodes in the overlay. Furthermore, the lost location information
is re-built with each subsequent object migration, or if the DHT node is required to send a
broadcast because of an access request message. The central registry has the worst fault tolerance
because the failure of the registry node causes the loss of all object location information, while
the failure of a single static home node only looses the location information that was stored on the
corresponding node. Even though the objects are accessible with the cached location information
at the individual nodes, the next object migration invalidates all this cached location information.
Without a failover node it is impossible to re-build this information and after each subsequent
object migration all nodes that want to access the object have to send a broadcast message to
retrieve its new location.

Finally, the seventh column rates the locality of the different approaches. In this context, locality
means the number of nodes that are involved in an access or migration operation. Furthermore, it
rates how far the location information is spread throughout the network. Here, the proxy approach
has the best locality because all access messages are confined to those nodes that take part in the
access and the proxy chain. The central registry and static home node approach have an average
locality because access and location update messages are only sent among the corresponding
nodes and the static home node or central registry node. The worst locality comes with the
broadcast approaches and the DHT, because these approaches spread the access and/or migration
messages among all nodes in the network.

Altogether, the comparison of the different object location approaches shows that for the
envisioned scenario only the proxy approach is applicable. It has of all approaches the best ratings
in the last three columns and altogether the lowest message costs and load burden on a single
node. Therefore, the following chapters only deal with the proxy approach and its optimizations,
such as the decrease of the access latency if long proxy chains are established, or the task to
delete unnecessary proxies.

77

7 Reactive Location Updates with Migration
Proxies Protocol

This chapter describes the reactive location update protocol for outdated object location infor-
mation, which uses forwarding proxies to keep objects reachable after their migration, cf. Sec-
tion 6.2.5.

At the beginning, it discusses the general access to migrating objects that left a proxy behind,
and examines some basic prerequisites, which must be fulfilled for the protocol to work. After-
wards, this chapter introduces the state diagram for a migrating object and discusses the different
state transactions in more detail.

Whenever an object migrates to another node, it leaves a proxy behind that forwards all
messages to the new location of the object. Hence, I define a proxy as follows:

Definition 1 A proxy is a data structure that contains a forwarding pointer that redirects mes-
sages for a migrated object to another node in the network. This node may be the current home
node of the object, cf. Definition 2, or another proxy node, cf. Definition 3.

Whether the proxy is implemented as an actual object or only represented by an entry in a local
data structure depends on the implementation. In the system described in Chapter 5, a proxy is
represented as a forwarding pointer entry in the GaoMap, together with a migration sequence
number (see description below).

Furthermore, the following chapter uses the terms home node and proxy node.

Definition 2 The home node of an object is defined as the node that currently stores the object
(or head version of the object) in its local memory. The home node of an object is the authorized
node, which is allowed to perform actions on this object, such as reading or writing fields.

An object changes its home node with each migration.

Definition 3 The proxy node is the node that stores a proxy for a given object in its local memory.
Hence, a proxy node must be a former home node of the corresponding object.

A proxy node is only authorized to forward requests for the actual object to the node, the
forwarding pointer points to.

Unlike objects, proxies cannot change their proxy node. They remain on the proxy node until
they are deleted.

In the following, objects are indicated by plain letters, e. g. Y , proxies are indicated by a dash,
e. g. Y ′, and pending objects (described later) are indicated by a star, e. g. Y ∗. Moreover, the home
node of object Y is indicated by NY , the proxy node of proxy Y ′ is indicated by NY ′ , and the node
that stores the pending object Y ∗ is indicated by NY ∗ .

79

7 Reactive Location Updates with Migration Proxies Protocol

7.1 Object Access

The reactive location update protocol leaves a proxy on the former home node after each successful
object migration. Whenever the proxy node afterwards receives an access request for the migrated
object, it forwards the request to the node, the forwarding pointer points to. Thus, an object is
still reachable, even if the cached location information for the object is outdated.

Figure 7.1 shows the simple object access along (a chain of) proxies. Figure 7.1(a) shows the
state, where the object Y is migrated to another node and left behind the proxy Y ′.

(a) Access Request and For-
warding.

(b) Access Response. (c) Subsequent Accesses.

Figure 7.1: Simple object access from object X on node NX to object Y along one intermediate proxy Y ′

that forwards the object access message to NY .

At the access process’ beginning, NX holds an outdated reference to Y . To access Y , NX sends
an access request À to the outdated location NY ′ , which forwards the access request Á to NY .
Figure 7.1(b) shows that NY answers the request by sending the response message Â back to
NX . When NX receives this response, it updates its location information for Y . Afterwards,
Figure 7.1(c) shows that NX uses this location information for all subsequent communication
with NY , Ã and Ä, without the indirection via NY ′ .

(a) Access Request and For-
warding.

(b) Access Response. (c) Subsequent Accesses.

Figure 7.2: Simple object access from object X on node NX to object Y . This time, not only Y migrated to
another node, but X migrates as well after NX sent the access message.

80

7.1 Object Access

Figure 7.2 shows the same process, this time with the additional migration of object X . Again,
in Figure 7.2(a), the access to Y is initiated on NX À, and the request is forwarded from NY ′ to NY

Á. Afterwards, X migrates and leaves X ′ on its former home node, cf. Figure 7.2(b). As a next
step, NY answers the request and sends the response Â to NX ′ , which forwards the response Ã to
NX , where the node processes the information and updates the location information of Y . Now,
all location information are up-to-date and the subsequent access to Y involves NX and NY only,
Ä and Å in Figure 7.2(c).

7.1.1 Proxy Deletion

With the so far described proxy forward protocol, the proxies remain in the system indefinitely,
because the proxy node cannot determine if there are remote references that still point to the
proxy. Because of this, the protocol requires the deletion of all un-referenced proxies during
a (distributed) garbage collection run of e. g. a common distributed mark-and-sweep garbage
collector (GC). Such a garbage collector starts at a root object, for example, the primordial
execution context, and follows all references to all reachable objects. During this run, all visited
objects are marked with the timestamp of the current GC period, until an object with no further
references is reached, cf. [PS95]. Afterwards, all objects that are marked with an older timestamp
than the one of the current GC period will be deleted in the next GC run.

While the GC follows all references to all reachable objects, it also visits all proxies that are
encountered during this travel. When the GC reaches the object and traversed (a chain of) proxies,
it sends an location update message back to the referencing node, so that the referencing node
can update its location information for the referenced object. Because of this update, none of the
proxies is used anymore. Thus, the garbage collector removes them in the next GC run.

7.1.2 Reactive Location Update

Forwarding proxies can handle object access messages in two different ways: either, they forward
the request message to the new object location, or they respond with a location update message
that contains the new object location. Thus, the location update process is either recursive or
iterative, similar to the two modes of operations in the DNS protocol [Moc87a; Moc87b].

In both cases, the costs for an access message depend on the length of the proxy chain `, which
is defined as the number of proxies that are part of the corresponding proxy chain.

For the following sections, suppose an object X on NX wants to access an object Y on NY .
Therefore, NX sends the request message to its cached location information for Y , e. g. NY ′1,
which is the first proxy node in the proxy chain of Y .

Recursive Approach In the recursive location update approach, each NY ′ recursively forwards
the request message according to its forwarding pointer information to the next node. This process
continues, until the message reaches NY . NY answers the request with a response message that
is sent back to NX , without traversing the chain of proxies. This response message implicitly
transports the new location information for the accessed object. Thus, NX updates its outdated
location information reactively on the fly and sends all subsequent requests directly to NY .

81

7 Reactive Location Updates with Migration Proxies Protocol

Figure 7.3: Reactive and recursive update of proxy
chain. Each NY ′ recursively for-
wards the request message and NY an-
swers with a response message with-
out traversing the chain of proxies.

After receiving the response, NX might send
an optional update message along the chain of
proxies, similar to the approach of Moreau and
Ribbens [MR02]. On one hand, this shortens the
access for all other objects that use one of these
proxies, on the other hand, this update message
increases the traffic overhead.

Furthermore, Moreau and Ribbens used this
update mechanism only upon access, not upon
the creation of a new proxy. As a result, a long
chain of proxies might have been established
in the meantime. For this reason, this thesis
describes an access path optimization in Sec-
tion 7.3, which reduces the length of the tra-
versed proxy chains upon object migration.

Without the optional update messages, the
message costs cacc are computed as the length of

the proxy chain `, counted in intermediate proxies, plus the two messages for the access, i. e. the
initial request message from NX to NY ′1, and the response message from NY back to NX . Hence,
the message costs cacc are computed as:

caccrecursive = `+ 2 (7.1)

For an example, see Figure 7.3, which shows a proxy chain before and after an access request
from NX to NY . The labeled arrows indicate the travel of the request message and the response
message. The labels not only indicate the message type, but also count the number of messages
as well. The unlabeled, dashed arrows indicate the outdated location information before the
access, and the forwarding pointers, respectively. The unlabeled solid arrow indicates the updated
location information after the access.

In this example, the proxy chain has a length of `= 2 proxies and thus the costs are caccrecursive = 4
messages.

Iterative Approach In the iterative location update approach, each NY ′ answers a request
message with an update message that is sent back to NX . This update message contains the
information of the proxy’s forwarding pointer, i. e. the next node where the request should be
sent. In the example, NY ′1 returns the location information for NY ′2. Thus, NX iteratively re-sends
the request to each proxy in the proxy chain, until the request reaches NY .

Figure 7.4 shows this process with the chosen example. Like before, the labeled arrows indicate
the request, update, and response messages and additionally count the messages. It is seen that
NX exchanges two messages with each NY ′ in the proxy chain of length ` plus two additional

82

7.1 Object Access

Figure 7.4: Reactive and iterative update of proxy chain. Each NY ′ answers a request message with an
update message that is sent back to NX , which iteratively re-sends the request to each proxy in
the proxy chain, until the request reaches NY .

messages with NY . Hence, the message costs cacc for the iterative location update approach can
be computed as

cacciterative = 2 · (`+ 1) (7.2)

In the example, these costs are cacciterative = 6 messages.

As seen in Equation (7.1) and Equation (7.2), the message costs of the iterative location update
approach are about twice as high as the costs for the recursive approach. Therefore, I decided
for my hereafter presented reactive location update protocol to use only the recursive message
forwarding approach.

7.1.3 Cyclic Routing

In the protocol described so far, object migrations and different object access patterns can lead to
inconsistent object location information in the network. Even though newer information would
be available, these inconsistencies result from the usage of outdated location information. For
example, suppose a node A has the information that an object X is located on node B. If node
A now receives a message that contains the information that object X is located on node C, it
is impossible for node A to distinguish without further actions, which information is correct. If
node A chooses the wrong information, the result could be an infinite loop (see [SF10] for an
example), which is similar to the “count to infinity” problem in distance vector routing protocols,
cf. [Tan02].

To prevent this problem, my proposed protocol assigns each object with a per-object migration
sequence number. This migration sequence number is incremented with each migration of
the object. Additionally, this migration sequence number is stored together with each remote
reference. In the envisioned system, this corresponds to an entry in the GaoMap that indicates for
which migration step of the referenced object the entry was created. Thus, node A in the example
can compare the migration sequence numbers of the location information for object X and choose
the most recent one.

83

7 Reactive Location Updates with Migration Proxies Protocol

A global timestamp, which would require time synchronization among the nodes, is unneces-
sary because the migration information of a single object is unique to this object.

7.2 Object State Diagram

Figure 7.5 shows the state diagram and the possible state transitions for my developed reactive
location update protocol. The following sections describe these transitions in more detail, while
the complete description is given in [SF10].

The arrows in the state diagram depict the transitions. The labels above the arrows indicate the
cause for the transition. The labels below the arrows illustrate the effect that the transition has on
the node or on the corresponding object.

In the following, I describe the general object access process without considering the prereq-
uisites of the DecentSTM protocol. Therefore, the description does not distinguish between
local object copies and globally accessible objects, but handles all objects as globally accessible.
However, the description contains some remarks where the DecentSTM protocol influences the
state transitions.

An object on a given node, for which the access is managed by the reactive location update
protocol, can assume five different states during its lifetime:

• initial state: The initial state describes the absence of an object. The system leaves the
initial state when the object comes into existence, because it is newly created or migrated
to that node.

• regular state: The object is a regular object and can be used in the regular way. The node
can give authoritative answers or perform authoritative actions such as reading and writing
fields.

• pending state: The object is currently migrating to another node, but the migration is not
finished yet. A node that holds an object in the pending state is not its home node anymore,
and thus, is not authorized to perform any actions on the object. Furthermore, the node
must not make any assumptions about the current state of the object.

• forwarding state: When the migration has completed successfully, the object changes from
the pending to the forwarding state. Thereby, a proxy comes into existence and the node
becomes a proxy node that forwards request messages to the new home node of the object.
However, the proxy node must not perform further actions on the object.

• finished state: The finished state indicates that the lifetime of an object or a proxy on this
node ends. An object enters this state e. g. if its reference count drops to zero and the
garbage collector deletes the object. A proxy enters this state after a garbage collection run
where all outdated location information were updated. Afterwards, the proxy is not used
anymore and the next GC run will remove it.

84

7.2 Object State Diagram

Figure 7.5: State diagram for the reactive location update protocol with migration proxies. The start is at
the initial state where an object becomes a local object either, because it has been created on
this node or because it has been migrated to this node.

85

7 Reactive Location Updates with Migration Proxies Protocol

In the following, I describe the regular, pending, and forwarding states in more detail. Because
the initial and finished state are only the start state and the final state, they are discussed together
with the other three states. Before I describe these states and their transitions, I make some
prerequisite considerations on the underlying network.

First, I only consider proxy forwards. Hence, I am not concerned with a particular underlying
routing algorithm or a particular network topology. Secondly, I suppose that neither the underly-
ing network nor the routing protocol is reliable, and that for this reason messages might get lost.
Therefore, the system uses a timeout period in which a node expects a response or acknowledg-
ment message. If a message is not acknowledged within this time period, the message will be
re-send. However, the locally stored object location information and thereby the destination for
re-sending the message, might have changed during the given time period. Thus, the node that
re-sends the message has to check the currently stored object location and potentially adapt the
message’s destination. Thirdly, checkpointing and redundancy are the topic of the PhD thesis
of one of my colleagues. Thus, I will not consider fault tolerance in my protocol description.
Fourthly, I assume that the system that executes the reactive location update protocol is compliant
with the system specification from Chapter 5. Thus, I assume that nodes in the system use a
ReferenceMap and a GaoMap to store local and remote references. However, the system is not
required to use the DecentSTM protocol and thus, I describe both cases: a system with and a
system without DecentSTM.

7.2.1 Regular State

The regular state indicates that the object Y is located in the local memory of the node and thus,
the node is the home node NY . An object is local either, because it has been created on this node
or because it has been migrated to this node.

In the first case, the invocation of a NEW operation triggers a NEW object event, which
invokes the local ORM and memory manager to create the new object. In the second case, the
node receives an object migration message and if the node accepts the migration, the migrated
object is added to the local memory. If the migrated object holds additional outgoing references
to other objects, all these references and their corresponding location information are added
or updated in the corresponding ReferenceMap and GaoMap. If an entry is only updated
(rather than being created), the runtime environment checks the migration sequence numbers
to decide which information (the present or the new one) is kept. Afterwards, NY sends a
migration acknowledgment (ACK) message back to the sending node. If the node cannot fulfill the
migration request, for example because of insufficient local memory, the node sends a NAK (not
acknowledged) message (I assume in this thesis that a node always accepts migrating objects).

A node NY that receives a PUT or GET request message for Y answers the request with the
corresponding response message. For a PUT request, the node writes the received reference to
the corresponding reference field of Y and acknowledges the access with an ACK message. For
a GET request, the node reads the corresponding reference field and sends the read reference –
together with the latest known location information of this reference – within a response message
back to the accessing node.

86

7.2 Object State Diagram

An object migration event initiates the transition into the pending state, and the migration of
Y to another node. This migration requires that the current NY collects all information about
all outgoing references of Y from the ReferenceMap and the GaoMap and includes them in the
migration message. If there is a local reference entry for Y in the ReferenceMap, this reference is
changed from local to remote and the location information is set to the new home node of the
object. This is an optimistic approach, which assumes that the migration will succeed. If the
migration fails, the object stays on the local node and the references are changed back to local
ones.

This process differs, if the DecentSTM protocol is used. Here, a remote node first pulls an
object copy from NY , which does not change the local state of the object. Only when the remote
node has modified its copy and successfully committed, an implicit migration takes place. Namely,
the remote node that modified the object and successfully committed a new object version sends
an update message to the local node to inform it about the new head version. Hence, the local
object changes directly from the local state to the proxy state because no explicit migration, and
thus transition via the pending state, is necessary.

The garbage collector triggers the delete object event, if the object is not needed anymore.
When the object is finally deleted, the node decrements the reference counters of each outgoing
reference that the deleted object held. Afterwards, the object changes into the finished state and
ceases to exist.

7.2.2 Pending State

An object that is currently migrating from the local node to a remote node is in the pending state
Y ∗. With the beginning of the migration, the local node ceases to be the home node of Y and
becomes NY ∗ . Thus, it is not authoritative anymore and must not perform any actions on Y .

However, NY ∗ can forward all request messages for Y to its supposed new home node NY .
This is an optimistic approach, which assumes that the migration succeeds. In the best case, the
forwarded message decreases the access latency, because NY accepted the migration and is now
authorized to answer when the forwarded message arrives. In the worst case, the assumed new
home node must drop the forwarded message, because it is not the authoritative home node, yet
and the accessing node must re-send the request message after the timeout period.

Hence, there is no authoritative node during the migration takes place.
The simulations in the OMNeT++ emulator, evaluated in Chapter 9, showed, it can indeed

happen that a migration does not succeed before the forwarded access message reaches the node.
This is e. g. the case if the migration message was sent along a longer path than the forwarded
access message. This happens for example when route changes occur in-between the migration
and the reception of the access request message. However, this case happens very rarely and thus,
does not significantly influence the message costs.

Because there are no authoritative home nodes for the object during its migration, an alternative
pessimistic approach could let a node wait for the success of the migration and drop all messages
for the pending object until then. If this is the case, the access latency is increased by at least the
timeout period plus the time that the re-send message needs to traverse the proxy chain to reach
the object at its new location.

87

7 Reactive Location Updates with Migration Proxies Protocol

Another approach is to leave the old home node in authority for the object until the migration
succeeded. Thus, the home node performs all requested actions on the object, but has to publish
all changes to the new home node after the migration is completed. This requires a consistency
protocol, which needs to send additional messages after each migration.

During the simulations of the protocol it was revealed that it rarely happens that the optimistic
approach does not succeed. Hence, an additional consistency protocol that requires additional
messages is more costly than a timeout period. For this reason, neither the message dropping, nor
the consistency protocol approach seemed to be worthwhile and I decided to use the optimistic
approach for the protocol implementation. Furthermore, in the envisioned system, which uses
DecentSTM and implicit migrations only, this consistency protocol is implicitly integrated into
the commit protocol of the DecentSTM algorithm. Here, the commit protocol decides, which
node is the new home node of the head version of the object. Until then, the old home node
remains the authoritative node for the object.

If the migration is aborted, e. g. due to insufficient memory on the remote node, NY ∗ receives a
migration NAK message. Depending on the migration policy, the node can either choose another
node to migrate the object to, invoke the garbage collector on the defeating node to try to free
memory for the migrating object, or cancel the migration completely and become NY again.

However, the OMNeT++ simulation environment assumes that there is always enough memory
for a migrating object. Thus, no migration NAK messages occur in the simulation. I do not
consider this a drawback because a migration NAK message has no influence on the reactive
location update protocol.

The reception of the migration ACK message triggers the transition into the forwarding state.
At this time, the proxy Y ′ is created and the reference counter of the object’s outgoing references
is decremented. This decrement must not happen before the migration succeeded, to prevent
the premature deletion of the entries in the location maintenance maps, which are needed if the
migration aborts.

If NY ∗ does not receive the migration ACK message during the timeout period, it re-sends the
migration message.

7.2.3 Forwarding State

The forwarding state indicates that the object Y successfully migrated to another node and a
proxy Y ′ comes into existence on the local node. Hence, the local node becomes the proxy node
NY ′ and is authorized to forward all messages for the object to NY .

If the object re-migrates back to this node, the proxy Y ′ is deleted and a potentially remote
reference to Y in the GaoMap is changed to a local reference. Object Y is stored in the local
memory and all outgoing references and their corresponding location information are added to the
corresponding maps. This is the identical behavior as described for the reception of a migration
message that results in the transition from the initial to the regular state.

With this process, the proxy forwarding algorithm inherently cuts out loops in a proxy chain,
whenever an object returns to a previously visited node, because the next migration creates a new
forwarding pointer.

88

7.3 Access Path Optimization

Finally, Y ′ is deleted after the distributed garbage collection traversed all proxy chains and
marked all proxies for deletion. Then, the sweep phase will delete all remaining proxies, which
triggers the transition from the forwarding state into the finished state and Y ′ ceases to exist.

7.3 Access Path Optimization

The protocol described so far leaves chains of proxies, which lead to potentially high access
latencies if an object frequently migrates but is seldom accessed. This observation was supported
by the OMNeT++ emulator and the software simulation from Chapter 9.

Therefore, I developed an access path optimization approach that shortens the access latency to
a frequently migrating object that left a long chain of proxies behind. This optimization approach
is especially suited for a system that uses the DecentSTM protocol, where each write operation
potentially results in an implicit migration of an object from one node to another.

The so far described reactive location update protocol establishes a chain of proxies for each
migrating object. So, each proxy Y ′i in a chain of proxies holds a forwarding pointer to the next
proxy Y ′i+1 in the proxy chain. Additionally, for each migration, DecentSTM implicitly creates
a backward reference between the object’s head version and its previous version, i. e. from an
object to its previous proxy. Thus, each proxy Y ′i+1 also knows its predecessor, the node that
stores proxy Y ′i . The reactive location update protocol does not need these backward pointers, but
the DecentSTM protocol has to be able to walk the history of an object.

The access path optimization approach uses these backward pointers to propagate updated
object location information backwards along the proxy chain, from the target to the source.

To describe this update mechanism, suppose that an object Y comes into existence with a
migration sequence number of m = 0 and migrates m times (with DecentSTM, m is equivalent
to the number of implicit migrations, i. e. the number of write operations that create a new
head version on another node than the previous home node). If the system wants to update the
forwarding information of all previous proxies, it needs to send the update message along m hops,
one hop for each step along the chain.

Suppose two additional objects, X and Z, which received a reference to Y at the migration
steps m = 3 and m = 5, respectively. After m = 7 migrations, the established proxy chain looks
like the one presented in Figure 7.6(a). This figure shows that the length ` of the proxy chain
changes with the viewpoint and depends on the time when the reference to the migrated object
was created, i. e. how deeply in the proxy chain the accessing object begins its way up to NY . In
the example, the length ` is for object X , `= 4, and for object Z, `= 2.

Now, suppose the system sends the location update messages for Y instead of m hops, only k
hops down the proxy chain. As a result, the update overwrites the location information of object
Y at the k previous proxies. 2

2Note that DecentSTM requires that each proxy at least keeps the location information of its successive proxy to be
able to walk the complete version history of an object. Furthermore, a proxy can keep the location information of
all its k successor proxies. This adds additional paths, along which the referenced object can be accessed, and thus,
hardens the proxy chain against node failures. However, reliability and fault tolerance is not in the scope of this
thesis.

89

7 Reactive Location Updates with Migration Proxies Protocol

(a) Depth k = 1. (b) Depth k = 2.

Figure 7.6: Update propagation example with a propagation depth of k = 1 and k = 2.

The result is that the number of hops needed to access an object along a proxy chain of length
` decreases from `+ 1 to d `ke+ 1 hops. See, for example, Figure 7.6(b), which shows the result
of a propagation depth of k = 2. In this example, object Z reaches Y after 2 hops (instead of 3
hops with k = 1), and object X reaches object Y after 3 hops (instead of 5 hops with k = 1).

The optimal propagation depth k depends on the access characteristics of the corresponding
object. Namely, on the ratio of the number of read accesses R, the number of migrations M, and
the established proxy chain’s length `, that a read message has to traverse to reach the home node
of the object. This length depends on both, the read-to-write ratio and the garbage collection
rate, because a garbage collection run removes all proxy chains present in the system. Hence, to
optimize the costs of an object access, the number of update message hops per migration plus the
number of access message hops per read, or kM+ `

k R, must be minimal, i. e. M−R`/k2 = 0 or

k =

√
R · `
M

(7.3)

Moreau and Ribbens [MR02] developed a middleware for mobile agents that uses chains of
proxies as well. The authors describe an Eager Acknowledgments mechanism that propagates the
new location of a mobile agent down the proxy chain to all previous proxies. Thus, their approach
can be seen as a special case of my approach with k = M. However, Moreau and Ribbens do not
consider the access characteristics of a mobile agent at all.

90

7.3 Access Path Optimization

Fowler [Fow86] describes another access path optimization algorithm that updates a chain of
proxies after a successful object access. Here, a node that learns a new location of an object Y
because of the object access, propagates this knowledge upwards in the chain of proxies. Thus,
all proxies in the chain learn the new location, and all subsequent accesses from all objects that
reference object Y profit from this update, cf. Figure 7.7.

(a) Updates After Access from Obj. X.

(b) Proxies After Update Messages.

Figure 7.7: Path optimization after Fowler [Fow86]: A node that learns a new location of an object Y
because of the object access, propagates this knowledge upwards in the chain of proxies.

Unlike my approach, Fowler always updates all proxies in the proxy chain after each object
access that traversed a chain of proxies. Furthermore, Fowler updates the proxies upon object
access, while I update the proxies upon object migration. Thereby, my approach avoids that the
first access after a number of migrations must traverse the whole chain of proxies, and additionally,
avoids the case where multiple nodes traverse and try to update the chain of proxies at the same
time, as it might happen in Fowlers approach.

91

8 Proactive Location Update with Incoming
References Protocol

The reactive location update approach from Chapter 7 has two potential drawbacks.
First, the length of proxy chains is potentially unbound because each migration adds a proxy.

Even with garbage collection it might happen that an object access has to traverse a long chain of
proxies, e. g. if the object is seldom accessed, but frequently migrates, and even though the length
of a proxy chain is decreased by the access path optimization from Section 7.3, the basic problem
remains unresolved.

Secondly, the system cannot delete proxies immediately when they are not needed anymore,
but has to wait for the garbage collector: If objects are accessed frequently and the location
information is almost always up to date, the un-referenced proxies still remain in the system and
occupy memory until the next garbage collection run.

The hereafter presented proactive location update protocol solves these problems. It is based
on the basic reactive location update protocol, but adds enhancements that update invalid location
information directly after an object migration.

In practice, it is impossible to ensure the timely update of location information in a distributed
system. Thus, one wants to use a combination of both: proxies to forward requests and update
messages to eliminate the proxies eventually.

Similar to the access path optimization, this approach requires additional backward references,
the so-called incoming references (InRefs) of an object. In contrast to the backward references
that the DecentSTM protocol uses to reach the previous object version (or previous proxy),
these incoming references are the backward references that belong to regular object references.
Thus, unlike with the access path optimization, the number of backward references is potentially
unbound.

An incoming reference (InRef) is the backward reference of an outgoing reference (OutRef):
If object X contains a reference to object Y , the backward reference points from the referenced
object Y back to the referencing object X .

Suppose an object Y on node B = NY is referenced by multiple objects that reside on node A,
for example, A = NX ,Z . Thus, object Y would contain two incoming references, one per object,
cf. Figure 8.1(a).

Because node A consolidates all outgoing references to the same object in one GaoMap entry,
it is sufficient when the proxy node B = NY ′ informs the node A in case Y migrates, and not the
objects X and Z, cf. Figure 8.1(b). This is sufficient because node A only has to adapt its GaoMap
entry for Y , without the need to touch X or Z. Therefore, incoming references are the counterparts
of GaoMap entries. Furthermore, each object stores its incoming references on a per-node basis,
and not on a per-object basis, in its so-called incoming reference list, cf. Section 5.3. Thus,

93

8 Proactive Location Update with Incoming References Protocol

(a) One incoming reference per Object. (b) One incoming reference per Node.

Figure 8.1: Incoming references per object or per node. In Figure 8.1(a) object Y contains two incoming
references, one per referencing object, while in Figure 8.1(b), object Y contains only one
incoming references per referencing node.

whenever an incoming reference is in the following added to an object Y , it is stored in this
incoming reference list.

The main idea of the proactive location update approach is that the proxy node sends update
messages along all incoming and outgoing references of the migrated object immediately after the
migration is successfully completed. This approach has some advantages: all location information
are (almost) always up to date and access messages are sent directly to the migrated object with
no (or only a few) proxies in between. Moreover, when the proxy node knows that the proxy
is not referenced anymore, the proxy node can delete it. The disadvantage of this approach is
the increased management and message overhead that is needed to update the remote location
information.

Day et al. [Day+93] proposed a similar update mechanism for their object-oriented database
system Thor, cf. Section 3.4. Thor does not separate the reference to an object from the location of
the object as my approach does. Hence, Thor does not introduce a mapping such as the GaoMap
presented in this thesis, and all objects hold location dependent references.

Upon an object migration, a Thor proxy node sends the new location dependent reference as
update messages to all nodes that hold objects that reference the migrated object. These updates
are collected until the next garbage collection run, during which the garbage collector updates
all outdated references. This has two disadvantages I avoid in my approach: first, the garbage
collector has to examine all objects to identify the outdated references, and secondly, the location
update depends on the frequency of the garbage collector runs.

Day et al. concluded that this update scheme is applicable whenever it is important to reach an
object quickly, even though this depends on the GC frequency. However, they did not measure
the maintenance message overhead of this scheme, as done in this thesis.

8.1 Object Access and Proactive Location Update

The proactive location update protocol tries to delete proxies as soon as possible, which can lead
to inconsistent location information if the update process overlaps with ongoing PUT and GET
operations. In this case it can happen that a newly created incoming reference is not established
in time, and the corresponding proxy is deleted too early. Figure 8.2 shows an example of this
process. (The used InRef Establish and InOut Notify messages are described in more detail later
on.)

94

8.1 Object Access and Proactive Location Update

(a) Node B/A: GET Reference op-
eration.

(b) Node C: InRef notification
message.

(c) Node B: InRef establishment
message.

Figure 8.2: Reason for a failed InRef establishment. Because the location update process overlaps with an
ongoing GET operations, the newly created incoming reference from node A is not established
in time, and the corresponding proxy Y ′ is deleted too early.

In this example, object X on node B, represented as tuple (X ,B), holds a reference to an object
Y on node C, represented as tuple (Y ,C). In the first step, shown in Figure 8.2(a), node A reads the
reference to Y from X with a GET Request message À. Node B = NX responds with the reference
Á and the current location information (Y ,C). Before node A sends the required InRef Establish
message Ä to node C = NY , node C migrates Y to node D and becomes C = NY ′ , see Figure 8.2(b).
Moreover, C sends an InOut Notify message Â to node B. When the acknowledgment message Ã

from B arrives at node C, C deletes Y ′. When the InRef Establish message Ä from node A finally
arrives at node C, this establishment fails and node A has lost the location information of Y .

To prevent this failure, I introduce the triangular access approach. To clarify the usage of the
different messages that are used in the following sections, I describe the layout of the different
message fields. The common invariant of these messages are the first three fields:

Msg{Source Node,
Destination Node,
Message Type,
....
}

These are followed by the individual fields of the corresponding message class.

8.1.1 Triangular Object Access

The regular triangular access approach uses Triangular-GET and Triangular-PUT messages.
In contrast to regular GET operations, which follow a simple request-response protocol,

Triangular-GET operations follow a three step protocol that introduces an additional message
forwarding. For this, the GET Request message is split into two parts, a GET1 Request and a
GET2 Request: First, node A sends a GET1 Request message to node B, cf. Figure 8.2(a):

Msg{Src = A,
Dst = B,
Type = GET1 Request,
Operation = Read reference field from object X
}

95

8 Proactive Location Update with Incoming References Protocol

In the example, node B does not answer the GET1 Request message À (Figure 8.2(a)) directly,
but forwards the message as a GET2 Request message to node C:

Msg{Src = B,
Dst = C,
Type = GET2 Request,
Operation = Add incoming reference for node A to object Y

send reference Y as GET Response back to node A
}

This message notifies node C to add a new incoming reference to object Y and to send the
response message that contains the reference to Y back to node A.

Thus, node C = NY can timely add the new incoming reference for node A to Y . In the next step,
Y migrates to node D and node C becomes the proxy node C = NY ′ and sends the InOut Notify
message Â (Figure 8.2(b)) to B. Now, suppose the acknowledgment message Ã (Figure 8.2(b))
from node B arrives at node C. Hence, node C deletes the incoming references for node B from Y ′

but does not delete Y ′ because there is the additional, not yet updated, incoming reference from
node B.

Furthermore, this has the advantage that node A receives an updated location information not
only for object Y , but also for the read object X , which resides on node B.

(a) Send GET1 Request. (b) Send GET2 Request to Refer-
enced Object.

(c) Referenced Object sends GET
Response to Reader.

Figure 8.3: Triangular-GET Operation, which follows a three step protocol that introduces an additional
message forwarding. The GET Request message is split into two parts, a GET1 Request and
a GET2 Request. Node B, where the reference is read from an object, forwards the GET1
Request as a GET2 Request message to the node where the referenced object resides.

Figure 8.3 shows the timing sequence and message flow of this Triangular-GET access. The
advantage of this process is that the requesting node not only receives the read reference but also
the latest location information of the corresponding object. The disadvantage is that the access
latency is increased.

96

8.1 Object Access and Proactive Location Update

(a) Writer send PUT1 Request to
References Object Y .

(b) NY sends PUT2 Request to
Home of Written Object NZ .

(c) NZ sends ACK Message back
to Writer.

Figure 8.4: Triangular-PUT operation where the PUT1 Request is not send to node B where the reference
is written, but to node C where the referenced object resides.

The Triangular-PUT is similar: Suppose an object Y is located on node C = NY , and node A
holds a reference to Y , that it writes into an object Z on node B = NZ . Instead of node A sending
the PUT1 Request message to node B, the writing node A sends the PUT1 Request message to
node C, cf. Figure 8.4(a):

Msg{Src = A,
Dst = C,
Type = PUT1 Request,
Operation = Add incoming reference for node B to object Y

send PUT2 Request to node B to write reference
to object Y into object Z

}

Node C adds the new incoming reference from node B to Y and sends the PUT2 Request
message to B:

Msg{Src = C,
Dst = B,
Type = PUT2 Request,
Operation = Write reference to object Y into object Z

Send ACK to node A
}

Upon the reception of this forwarded PUT request message, node B writes the reference to
Y into Z, cf. Figure 8.4(b), and stores the latest location information of Y . Afterwards, node B
sends the ACK message back to the writing node A, see Figure 8.4(c).

Even though this Triangular access ensures the timely creation of incoming references, the
main disadvantage is the increase access latency which is due to the indirection of the request
messages. Therefore, I developed the enhanced triangular access approach.

97

8 Proactive Location Update with Incoming References Protocol

8.1.2 Enhanced Triangular Object Access

The enhanced triangular access approach circumvents the increased access latency of the regular
triangular access approach.

Suppose a node B holds an object X , B = NX , that references an object Y on node C = NY ,
cf. Figure 8.5. In the enhanced Triangular-GET approach, the accessing node A sends the GET
Request message to node B to read a reference field of X , cf. Figure 8.5(a):

Msg{Src = A,
Dst = B,
Type = GET Request,
Operation = Read reference field from object X

}

As a response, node B sends two messages: A regular GET Response message back to node A,
which contains the read reference to Y together with Y ’s location information, and an additional
InRef Establish message to node C (described in more details in 4), cf. Figure 8.5(b).

Node C receives the InRef Establish message and adds the new incoming reference to Y .
Afterwards, node C acknowledges the reception, but sends the ACK message to node A, see
Figure 8.5(c). Thus, a potential proxy Y ′ on C = NY ′ cannot be deleted too early, because there
exists at least the newly established incoming reference from node A that must be updated before
the deletion.

The ACK message informs node A about the successful GET Request message. If node A
does not receive this ACK message within a given timeout period, it has to re-send the request
message to ensure that the new incoming reference is correctly established, but the execution of
the application on node A may proceed immediately when the GET Response message is received.

(a) Send GET Request. (b) Send GET Response and In-
Ref Establish.

(c) Send InRef Establish ACK.

Figure 8.5: Enhanced Triangular-GET operation. Node B, where the object is read, not only sends a
regular GET Response message back to node A, but also an additional InRef Establish message
to node C to timely establish the new incoming reference.

The enhanced Triangular-PUT approach is similar. Suppose again, that node A holds a reference
to Y on node C = NY that is written to an object X on node B = NX . This time, node A not

98

8.2 Differences to Reactive Location Update Approach

only sends the PUT Request message to node B, but also the InRef Establish message to node C,
cf. Figure 8.6(a):

Msg{Src = A,
Dst = B,
Type = PUT Request,
Operation = Write reference to object Y into object X
}

When node B receives the PUT Request message, it writes the reference to Y into X , but does
not acknowledge the write operation. When node C receives the InRef Establish message, it
adds the new incoming reference to Y and sends the InRef Establish ACK message to node B,
cf. Figure 8.6(b). Upon the reception of this InRef Establish ACK message, node B acknowledges
the success of the PUT Request message by sending the acknowledgment message to node A,
cf. Figure 8.6(c). If node A does not receive this ACK message, it must restart the PUT operation.

Compared to the regular triangular approach, the advantage of this enhancement is the decreased
access latency, because the GET Response message is sent back immediately and the PUT Request
message reaches the accessed object immediately. The disadvantage is the increased cost for the
additional InRef Establish messages.

(a) Send PUT Request and InRef
Establish.

(b) Send InRef Establish ACK. (c) Send PUT ACK back to
Writer.

Figure 8.6: Enhanced Triangular-PUT operation. The writing node A not only sends the PUT Request
message to node B, but also the InRef Establish message to node C to timely establish the new
incoming reference.

8.2 Differences to Reactive Location Update Approach

Similar to the reactive location update protocol, the proactive location update protocol uses
proxies to forward all messages to the new home node of an object. However, the proxy node
not only forwards messages to the home node, but additionally updates all outdated location
information in the system that still point to the proxy. When all these references are updated, the
proxy is not used anymore and the proxy node can delete it. Therefore, the definition of a proxy
node is different for the proactive location update protocol:

99

8 Proactive Location Update with Incoming References Protocol

(a) Object Y migrates to node D and leaves proxy Y ′.

(b) Proxy Y ′ sends Notify Msg’s.

Figure 8.7: After object Y migrated from node B to node D, the remaining proxy Y ′ sends the InOut and
OutIn Notify messages along the corresponding incoming and outgoing references.

Definition 4 The proxy node is authorized to forward all messages to the node to which the
proxy’s forwarding pointer points. Furthermore, the proxy node is authorized to propagate the
new location information of the object when the migration has succeeded, and also upon the
subsequent reception of access or maintenance messages.

Therefore, the proxy node updates all incoming and outgoing references that the migrated
object contained at the time of the migration, and all references that are established in-between
the moment when the proxy came into existence and the moment the proxy is deleted. For this
update, the proxy node has to hold additional state information about all incoming and outgoing
references of the migrated object. This state is necessary to keep track of the update status of the
corresponding references, i. e. if the sent notification message was already acknowledged or is
still pending.

100

8.2 Differences to Reactive Location Update Approach

According to this definition, NY ′ handles the reference maintenance, and not NY , even though
NY could perform the reference maintenance tasks as well, and afterwards signals NY ′ that Y ′ is
not needed anymore.

However, NY is not authorized to make assumptions about N′Y . Furthermore, NY ′ is the node
where other nodes with outdated location information for object Y send their messages to. Thus,
NY ′ knows first about such outdated location information, and can immediately respond with an
update message. Moreover, the goal is to delete Y ′ as soon as possible, which is best done when
NY ′ keeps track of all outdated references that still lead to NY ′ .

To bring a proxy node into the position to update incoming and outgoing references, the
proactive location update protocol defines two additional classes of reference maintenance
messages.

Reference Maintenance Message Classes

This section describes the additional classes of reference maintenance messages that are needed
for the proactive location update protocol. It starts with the description of the messages that
are needed for the incoming reference establishment and removal. Afterwards, I describe the
messages that a proxy node NY ′ has to send to inform all incoming and outgoing references about
the migration of an object.

I will use the example from Figure 8.7 to explain first, the incoming reference establishment
and removal, and secondly, the different messages that a proxy node sends when an object Y
migrates from node B = NY to node D.

InRef Establishment and Removal The first message class contains the InRef Establish
message, which announces the establishment of a new incoming reference, and the InRef Remove
message, which announces the removal of an incoming reference. Both messages address a
particular object V on node C = NV to either add or remove an incoming reference to/from V .

An InRef Establish message is sent from node D to node C for two reasons: first, in the enhanced
triangular GET approach described above, when node D receives a Get Request message that
reads a reference field from a local object, for example, from object Y .

Suppose than in Figure 8.7(b) the node A reads the reference field of object Y on D = NY ,
which contains a reference to V that is located on node C = NV . In this example, node D would
send the following InRef Establish message to inform V on node C about the new incoming
reference from node A:

Msg{Src. = D,
Dst. = C,
Type = InRef Establish,
Operation = Add incoming reference for node A to object V
Send ACK to node A
}

101

8 Proactive Location Update with Incoming References Protocol

Secondly, when node D in the example of Figure 8.7(a) receives the migrating object Y and
becomes D = NY . Suppose Y contains a new outgoing reference to object V on node C = NV .
Then, D sends the following InRef Establish message to node C:

Msg{Src. = D,
Dst. = C,
Type = InRef Establish,
Operation = Add incoming reference for node D to object V

}

Here, the InRef Establish message is optional, because the proxy node B = NY ′ has sent an
OutInNotify message (see description below), which already informed node C about the new
incoming reference. However, node D might send this message to ensure a faster update of its
location information for V , in case V migrates to another node. In this case, C = NV ′ would send
the location update message directly to node D, which otherwise would first have to traverse node
B (see InOut Notify messages below).

When one of these InRef Establish messages reaches node C, and the incoming reference
contained in this message is new to object V , node C adds the incoming reference to V and sends
an acknowledgment. If the incoming reference has been established already, node C only sends
the acknowledgment.

An InRef Remove message is sent, for example, from node B to node C to inform node C that
the corresponding incoming reference from node B can be deleted from e. g. object V . Node B
sends this message because the reference counter for the outgoing reference to object V dropped
to zero. This happens, for example, if the reference field in an object Y , which contained the last
outgoing reference to V , is overwritten with a new reference, or if object Y is deleted on node B.

In both cases, node B creates the following InRef Remove message and sends it to node C:

Msg{Src. = B,
Dst. = C,
Type = InRef Remove,
Operation = Remove incoming reference for node B from obj. V

}

If object Y migrates and takes the last outgoing reference to another node, node B = NY ′

handles the incoming reference removal with an OutIn Notify message (see description below).

InRef and OutRef Update Notification The second message class is used to maintain the
outdated incoming and outgoing references when the proxy Y ′ comes into existence on e. g. node
B. These reference maintenance messages transport the same information as the InRef Establish
and InRef Remove messages. However, they are an individual class because the reason why they
are sent differs. Furthermore, a node has to handle the reception of these reference maintenance
messages differently, as well, which will be seen in the description of the state diagrams below.

When the migration of Y to node D in the example of Figure 8.7(b) is completed, node B
becomes the proxy node B = NY ′ . Afterwards, node B is authorized to forward all messages for Y

102

8.2 Differences to Reactive Location Update Approach

to node D and to update all incoming and outgoing references that object Y held at the time of the
migration. Furthermore, node B is authorized to update all new references that are announced to
node B due to outdated location information.

For this update, node B sends InOut Notify and OutIn Notify messages, where the prefix defines
the direction in which the update message is sent: either from an incoming reference entry to the
corresponding outgoing reference (InOut Notify) or vice versa.

An InOut Notify message informs a node A about the new location of an object that is referenced
from node A by one or more objects.

In the example from Figure 8.7(b), node B sends the InOut Notify message along the incoming
reference to node A to notify A that Y has migrated to node D. Node A takes this information and
adapts the location information of the corresponding outgoing reference entry in its GaoMap,
cf. Figure 8.7(b). For this update notification, node B sends the following InOut Notify message:

Msg{Src. = B,
Dst. = A,
Type = InOut Notify,
Operation = Object Y now located on node D

update location information
}

The OutIn Notify message exists in two versions, which both inform an object V on node
C = NV about a new incoming reference from a node D. The regular OutIn Notify message only
announces the new incoming reference and looks like this:

Msg{Src. = B,
Dst. = C,
Type = OutIn Notify,
Operation = Add incoming reference for node D to object V
}

The enhanced OutIn Notify Remove message additionally announced the deletion of an in-
coming reference. This removed incoming reference indicates that the migrating object took the
last outgoing reference to the corresponding object to the new home node during the migration.
Therefore, a node sends the following OutIn Notify Remove message:

Msg{Src. = B,
Dst. = C,
Type = OutIn Notify Remove,
Operation = Add incoming reference for node D to object V

Remove incoming reference for node B from obj. V
}

In the example from Figure 8.7(b), node B = NY ′ sends an OutIn Notify Remove message
to node C = NV , so that C adds the new incoming reference from node D to V . Furthermore,

103

8 Proactive Location Update with Incoming References Protocol

node C deletes the incoming reference from node B, because B does not hold further objects that
reference V .

In pseudo code the process on node B looks like this:

success = migrate(Y -> D)
if (success) {
send Msg{B, A, InOut Notify, Obj. Y on node D, update}
send Msg{B, C, OutIn Notify Remove,

Add InRef D to V
Remove InRef B from V}

wait for ACKs
}

Both, the InOut Notify and the OutIn Notify Remove messages are acknowledged from node A
and node C, respectively. When the proxy node B = NY ′ receives the last of these acknowledg-
ments, it can delete Y ′ because it is not needed anymore.

As mentioned above, Figure 8.7(b) shows the optional InRef Establish message that node
D sends to node C. As stated above, this InRef Establish message transports nearly the same
information as the OutIn Notify Remove message sent by node B, but ensures the faster update of
the GaoMap entry on node D in case that V migrates to another node.

8.3 Object State Diagram

The following section describes the state diagrams for the proactive location update protocol.
Because this protocol is based on the reactive location update protocol, the state diagram from
Figure 7.5 stays valid. The following sections only present the additional state diagrams and
transitions that are new for the proactive location update protocol.

Again, the arrows in the state diagram depict the transitions, while the labels above the arrows
indicate the cause for the transition, and the labels below the arrows indicate the effect that the
transition has on the node or the corresponding object.

The state diagrams are divided into three parts: Figure 8.8 shows the transitions for runtime
operations, Figure 8.9 shows the transitions for the object migration, and Figure 8.10 shows the
transitions for the reference management.

Note that I combined the two triangular access approaches in the state diagrams. The regular
triangular access is mainly handled in the state diagram for the runtime operations (Figure 8.8).
Conversely, the reference management state diagram (Figure 8.10) shows the InRef Establish
messages, which are mainly sent during the enhanced triangular access.

8.4 State Diagram: Runtime Operations

The state diagram for the runtime operations describes the handling of remote GET and PUT
messages, while some of the transitions influence the reference management. For example, does a
PUT operation that overwrites a reference field result in the sending of an InRef Remove message.

104

8.4 State Diagram: Runtime Operations

Furthermore, a GET2 or PUT1 message causes a proxy to send an InOut Notify message (see
description below).

8.4.1 Regular State

This section describes the different state transitions of an object in the regular state.

The creation of a new object with a NEW Object Event causes the home node to add an initial
incoming reference from the local node to the object. This incoming reference indicates that the
local execution context holds a reference to the object on its stack.

A node NY that receives a GET1 Request from node A reads a reference field from the accessed
object Y , which I suppose, contains a reference to object V . If NY is equal to NV , NY sends the
GET Response message back to node A. If NY and NV are not equal, NY forwards the request as
a GET2 Request to node NV . When NV receives this GET2 Request message, it inserts the new
incoming reference from the accessing node A to object V and sends the GET Response message
back to node A.

Node A either adds the received outgoing reference to its maintenance maps or, if the outgoing
reference is already present, increments the reference counter. If the received location information
of object V is newer than the one in the GaoMap, node A updates its GaoMap entry. Afterwards,
the execution of the currently blocked thread on node A, which read the reference, is resumed.

A node NY that receives a PUT1 Request adds the new incoming reference for the announced
node NV to the incoming reference list of Y . If NY is not equal to NV , NY forwards the PUT1
Request as a PUT2 Request message to NV .

When node NV receives this PUT2 Request message, it writes the new reference to Y into the
corresponding reference field of the accessed object V and sends the PUT ACK message back
to node A, which is the node that initiated the PUT operation. If a PUT operation overwrites
a reference field, it might happen that the reference counter of the overwritten reference to
e. g. object Z, drops to zero. When NV is not equal to NZ , NV sends an additional InRef Remove
message to NZ .

Upon the reception of the PUT ACK message, node A checks if the message contains newer
location information for the objects Y or V and potentially updates its GaoMap. Afterwards, the
PUT operation is finished.

The transition of an object Y from the regular state into the finished state has the result that the
reference counter of all of Y ’s outgoing references are decremented. If one of the corresponding
reference counters for a reference to e. g. object X drops to zero, NY sends an InRef Remove
message to NX and waits for the acknowledgment (handled in Figure 8.10).

8.4.2 Pending State

Similar to the reactive location update approach, an object in the pending state Y ∗ causes the
optimistic forwarding of all access messages to NY .

Furthermore, each PUT1 Request and GET2 Request message causes NY ∗ to add a new
incoming reference to Y ∗. This incoming reference is necessary because the access message

105

8 Proactive Location Update with Incoming References Protocol

Figure 8.8: State diagram for the runtime operations that describes the handling of remote GET and PUT
messages, while some of the transitions influence the reference management.

106

8.5 State Diagram: Migration

indicates that there will be an additional object that holds a new outgoing reference to Y ∗, and
which must be informed when the migration succeeded. However, NY ∗ is not allowed to send an
update message, because the migration is not yet completed.

The envisioned system is currently supposed to not support thread migration. Hence, PUT
ACK and GET Response messages are not forwarded because only an execution context can
initiate PUT and GET operations and wait for the result. Thus, response and acknowledgment
messages always terminate on the same node that initiated the request. They do not need to be
forwarded because such a situation cannot occur.

If thread migration was supported, a migrating thread would also leave a pending object behind,
which forwards these messages to the new location of the thread.

8.4.3 Forwarding State

The node NY ′ always forwards all access messages to NY . Similar to the pending state, it is
not sufficient to only forward PUT1 Request or GET2 Request messages, but NY ′ has to add a
new incoming reference from the sending node A to Y ′. This additional incoming reference is
necessary to prevent the heady deletion of Y ′, because the received message indicates that there is
a node A in the system that currently holds outdated location information for object Y . However,
in contrast to the pending state, NY ′ is authorized to immediately send an InOut Notify message
back to the requesting node A to announce the new location of Y , similar to the process shown in
Figure 8.7(b). When node A acknowledges this message, NY ′ marks the corresponding incoming
reference as updated.

This procedure results in the sending of more than one location update message if the access
message traverses multiple proxies on its way to NY , because each NY ′ that is encountered on the
way sends an InOut Notify message. This process increases the message overhead of the protocol,
but is necessary to keep the location information consistent, to prevent the premature deletion
of proxies, and to update the outdated location information that was used to send the request
message. However, the number of InOut Notify messages is limited because proxy chains in this
protocol are short, as we will see in Chapter 9.

Similar to the pending state, PUT ACK and GET Response messages are not forwarded as long
as no thread migration is supported. See above: This cannot occur.

8.5 State Diagram: Migration

The state diagram for the migration process, see Figure 8.9, describes the different transitions
that an object can encounter while a migration process takes place. It is the only state diagram in
which transitions between the three states regular, pending and forwarding occur.

8.5.1 Regular State

The migration process starts when an object Y is scheduled for an explicit object migration, or
if an implicit object migration occurs because the DecentSTM protocol created a new object
version on a remote node.

107

8 Proactive Location Update with Incoming References Protocol

Figure 8.9: State diagram for the migration process, which is the only state diagram in which transitions
between the three states regular, pending and forwarding occur.

108

8.5 State Diagram: Migration

With both, implicit and explicit migration, a new object Y comes into existence on some node
A. If node A accepts this migration, it becomes the new home node A = NY . Hence, node A
adds the object Y to its local memory and inserts all outgoing references that Y contains, e. g. to
another object V on node C, to the management maps, or updates the already existing entries.
As described above, node A might send an optional InRef Establish message to C = NV if the
corresponding outgoing reference is new.

If there is currently a proxy Y ′ on node A = NY ′ , this proxy is replaced by object Y before node
A becomes A = NY .

If a node A receives an InOut Notify message from a proxy node B = NY ′ , A updates the
corresponding outgoing reference entry for Y in its GaoMap. If all objects on A, which hold an
outgoing reference to object Y , are in the regular state, a plain InOut Notify ACK message is sent
back.

If there is at least one Z∗ that holds an outgoing reference to Y , node A must drop the InOut
Notify message, because the state of the migrating object Z is unclear and node A = NZ∗ must not
make any authoritative statements about the success of this migration.

If there are one or more objects, e. g. X ′ and Z′, on node A that hold an outgoing reference to
object Y , A = NX ′,Z′ forwards the InOut Notify message to C = NX and D = NZ . Afterwards, the
InOut Notify ACK message is sent back to node B, which contains the nodes C and D to announce
the additional incoming references to Y ′:

Msg{Src = A,
Dst = B,
Type = InOut Notify ACK,
Operation = Add incoming references

for node C and node D to proxy Y’
}

When node B = NY ′ receives this InOut Notify ACK message with these new incoming refer-
ences, it takes these references and adds them to proxy Y ′. Because the InOut Notify message
was already forwarded to the nodes C and D, node B only forwards the message to NY so that NY

can add the additional incoming references to Y , too. However, if these forwarded InOut Notify
messages are not acknowledged from NX and NZ within the given timeout period, node B has to
send an InOut Notify message to these nodes.

If a node NV receives an OutIn Notify message from a node B = NY ′ , this message contains
an additional incoming reference to another node D = NY (see Figure 8.7). Thus, NV adds the
incoming reference for node D to V . If the message was an OutIn Notify Remove message, NV

additionally deletes the incoming reference of node B from V .

8.5.2 Pending State

As long as an object is in the pending state Y ∗, the node NY ∗ only handles OutIn Notify messages
for Y ∗. The node optimistically forwards this message to the assumed new home node NY and
adds a new incoming reference to Y ∗. However, it does not respond with an acknowledgment

109

8 Proactive Location Update with Incoming References Protocol

message. This additional incoming reference, again, prevents the heady deletion of the proxy Y ′

after the transition from the pending to the forwarding state.
If the message was an OutIn Notify Remove message, Y ∗ does not delete the contained incoming

reference from Y ∗ to prevent an inconsistent object state.

8.5.3 Forwarding State

During the transition from the pending into the forwarding state, the proxy Y ′ comes into existence
and NY ′ sends the InOut Notify and OutIn Notify messages along the incoming and outgoing
references of Y ′.

An InOut Notify message that announces the new location of an object V is handled as described
in the regular state. Namely, if Y ′ references the announced object V , NY ′ forwards the message
to NY .

If NY ′ receives an OutIn Notify message for the object Y , it adds the transported new incoming
reference for node C to Y ′ and forwards the message to NY . To mark this incoming reference as
updated, NY ′ sends an additional InOut Notify message to node C. If the message was an OutIn
Notify Remove message, NY ′ additionally deletes the incoming reference for the sending node
from Y ′.

If NY ′ receives an OutIn Notify ACK message for Y ′, the corresponding outgoing reference in
Y ′ is marked as updated. The reception of an InOut Notify ACK message causes NY ′ to mark the
corresponding incoming reference in Y ′ as updated.

When all incoming and outgoing references of Y ′ are updated, NY ′ can delete Y ′.

8.6 State Diagram: Incoming Reference Management

The incoming reference management is tightly coupled to both, the regular operations and the
migration process, so that some effects in the other state diagrams cause transitions in this state
diagram.

8.6.1 Regular State

The handling of incoming reference management messages is straight forward for an object Y : an
InRef Establish message adds a new incoming reference to Y , whereas an InRef Remove message
deletes an incoming reference from Y . Both messages are acknowledged with the corresponding
ACK message.

If NY deletes Y , it has to decrement the reference counter of all of Y ’s outgoing references. If
the reference counter for one of these outgoing references, e. g. to object Z, drops to zero, NY

sends an InRef Remove message to NZ . When the acknowledgments for all sent InRef Remove
messages have arrived, Y is deleted.

110

8.6 State Diagram: Incoming Reference Management

Figure 8.10: State diagram for the incoming reference management. The incoming reference management
is tightly coupled to both, the regular operations and the migration process, so that some
effects in the other state diagrams cause transitions in this state diagram.

111

8 Proactive Location Update with Incoming References Protocol

8.6.2 Pending State

A node that holds a pending object Y ∗ drops all InRef Remove messages and forwards all InRef
Establish messages to the assumed new home node NY to prevent an inconsistent object state.
Furthermore, the reception of an InRef Establish message causes NY ∗ to add the new incoming
reference to Y ∗, without acknowledging the message or sending an InOut Notify message. This
additional incoming reference is necessary to ensure the sending of an InOut Notify message
when the migration has completed and the proxy Y ′ comes into existence.

8.6.3 Forwarding State

A node that holds a proxy Y ′ forwards all InRef Establish/Remove messages to NY . For an InRef
Establish message, NY ′ adds the new incoming reference to Y ′ and sends an InOut Notify message
back to the sending node. For an InRef Remove message, NY ′ marks the announced incoming
reference in Y ′ as updated and forwards the message to NY . If this was the last not updated
incoming reference in Y ′, and all outgoing references have been successfully updated as well, Y ′

is deleted.

112

9 Evaluation

This chapter describes the evaluation of the presented protocols and their optimizations.
The first part describes the evaluation and comparison of the three location update protocols

from Chapter 7 and Chapter 8 in the OMNeT++ discrete event simulator framework. For
this evaluation, I implemented the reactive location update protocol (RU) without access path
optimization, and the proactive location update protocol with the regular triangular access (PU)
and with the enhanced triangular access, i. e. the enhanced proactive update (EPU).

The second part describes the software simulation environment that does not use the OMNeT++
framework, but directly instruments the source code of two simple benchmark applications.
This simulation environment is used to evaluate the access path optimization as described in
Section 7.3. Furthermore, it examines the influence of object caching on the optimistic execution
of transactions. This second approach was chosen to be able to examine larger simulation
scenarios without the message and networking overhead introduced by OMNeT++.

9.1 OMNeT++ Simulation

This section evaluates and compares the performance of the RU, PU and EPU approaches in a
distributed simulation environment that executes a micro benchmark application in the OMNeT++
[Var01; VH08] discrete event simulator framework, version 3.3.

The foundation of the micro benchmark is a Java implementation of a Red-Black tree (RB tree)
data structure [Bay72]. This data structure is a fundamental building block, which is e. g. used
by Ferri et al. [Fer+10] as an example benchmark for the memory management in embedded
applications.

The chosen network environment of the simulator consists of a 10x10 grid network of toroidally
connected nodes. To communicate within the network, nodes exchange messages that trigger
appropriate actions. Thus, the implemented OMNeT++ simulator emulates a network of nodes,
where nodes are connected via links, and where messages are sent via these links, with the
possibility to assign, among others, a link delay or a message loss probability to each connection.

In this environment, each of these nodes executes one thread that uniform randomly accesses
an RB tree with x elements y times, where x and y are the chosen simulation parameters. The
entry point into the RB tree is a Java class object. This static object holds the reference to the root
object of the tree and must be known by all threads that access the tree. Therefore, each thread
receives a reference to this static object during the initialization phase of the simulation.

During a single access, each thread draws two uniform random numbers in an interval that
contains x elements. These numbers are used as keys r1 and r2 to identify objects that are stored
in the RB tree. Each thread first inserts a new object with key r1 if the tree does not yet contain

113

9 Evaluation

this element, and re-balances the tree, if necessary. Then, the thread searches for an object with
key r2, deletes it if it was present, and again re-balances the tree, if necessary.

As a result, the elements of the RB tree data structure are distributed throughout the network;
Firstly, because a newly created object initially resides on the creating node, and secondly, because
the simulator was designed to be compliant with the DecentSTM protocol, so that a thread must
perform all write operations on local objects. Thus, a write operation on a remote object requires
the implicit migration of the object to the local node, which leaves a proxy on the previous home
node. As a result, it depends on the uniform random order of threads and their performed tree
operations if an object is local or remote.

Because the implementation of a Java VM inside the OMNeT++ simulator introduces an
unnecessary overhead, I separated the execution of the micro benchmark from the network
simulation. In a first step, the source code of an RB tree implementation is instrumented to write
out all object operations, namely, the creation and deletion of objects, as well as each access to a
reference field. In a second step, this benchmark application is executed in a single-threaded Java
VM. As a result, the tree access is strictly sequential and simulates for each thread the atomic
access to the tree in a single transaction, as required by the DecentSTM protocol. When one
thread finishes its tree access cycle described above, a uniform random generator chooses the
next thread to continue with the next cycle. This process is repeated until each thread executed
the tree access cycle y times.

The output of this simulation run is the control file for the OMNeT++ simulator. It contains
the tree access operations of the 100 threads in the network. A customized OMNeT++ simulation
scheduler reads this file and subsequently executes the given operations on the different nodes,
such as the object creation and deletion and the read and write operations to local or remote
objects. Here, each remote operation requires the interaction with remote nodes, namely, the
sending and receiving of access request and response messages.

Note that the OMNeT++ simulator does not implement an explicit object cache per node. Thus,
a node does not cache object copies or outdated object versions, and does not keep a copy of an
object when this object migrates to another node. This approach was taken to evaluate the remote
object access and the network protocols only.

The caching behavior, as well as the access path optimization, are part of the software simula-
tion described in Section 9.2.

9.1.1 Simulation Runs

The simulation environment described in the previous section is used to measure the access
latency to remote objects in number of hops (in the sense of the underlying routing protocol) that
are needed to reach the remote objects. Additionally, the simulator counts the number of proxy
forwards that are encountered on the way to the referenced object, and, with PU and EPU, the
number of additional maintenance messages.

To measure the influence of explicit object migrations, an additional simulation parameter
defines an explicit migration rate. This migration rate gives the probability that an object migrates
after every 10 simulation events to another, uniform randomly chosen node and leaves a proxy on
the previous home node (in one simulation event a message travels for example one hop).

114

9.1 OMNeT++ Simulation

50 objects 100 objects
Operation/Approach RU/PU/EPU RU/PU/EPU
NEW 4 950 9 992
DELETE 4 898 9 890
Total GET 984 766 3 993 158
Local GET 63 341 144 037
Remote GET 921 425 3 849 121
Total PUT 51 279 101 719
Local PUT 12 979 25 441
Remote PULL 38 300 76 278

Table 9.1: Total number of NEW, GET and PUT operations split into local and remote operations.

The OMNeT++ simulations were executed ten times with x = y = 50 and migration rates from
0 % to 50 % in 10 % steps. Afterwards the average over all simulation runs was computed. The
simulation was repeated with x = y = 100 objects and the migration rates of 0 %, 10 % and 20 %.

The lower rates for the simulations with 100 objects have been chosen for a qualitative
evaluation of the protocols and a comparison against the results of the runs with 50 object. I did
not simulate multiple runs or higher migration rates because the OMNeT++ simulation was too
CPU intensive.

However, these small network and tree sizes are sufficient to evaluate the network protocols
for the remote object access. Furthermore, larger scenarios with up to 1 000 nodes and 10 000
objects are evaluated in Section 9.2.

9.1.2 Evaluation of Implicit Object Migrations

Table 9.1 shows the number of different operations (NEW, DEL, GET, PUT) for the simulation
runs without explicit migrations. However, these simulations implicitly migrate objects when a
remote PUT operation requires the migration of the remote object to the local node. In Table 9.1,
the number of operations is the same for all three scenarios because the same application is
executed. Furthermore, one remote GET or PUT operation requires the sending of two messages:
one request and one response message.

The table shows that from 984 766 GET operations for the tree with 50 objects only 63 341
operations, or 6.43 %, were answered locally, while 93.57 % had to access an object on a remote
node. Due to a higher depth of the tree with 100 objects, together with the increased re-balancing
overhead, the number of GET operations increases by about four times to 3 993 158 in the
simulations with 100 objects, of which 3.61 % were executed locally.

For both tree sizes, about 25 % of the 51 279, respectively 101 719, PUT operations were
directly executed locally, while all other local PUT operations required a previous fetch (remote
PULL migration) of the remote object, which corresponds to an implicit object migration.

115

9 Evaluation

50 objects 100 objects
Operation/Approach RU PU EPU RU PU EPU
Remote GET Proxy Frwds 298 332 0 0 1 036 525 0 0
Implicit PULL Proxy Frwds 286 0 0 525 0 0
Proxy Deletes 0 19 150 19 150 0 38 139 38 139
Proxy Remaining 345 0 0 535 0 0

Table 9.2: Number of proxy forwards and deletions for simulation runs with implicit migration only. One
sees that only in the RU approach messages are forwarded along chains of proxies, and that
only in the RU approach some proxies remain in the system after the simulation terminated.

In addition to Table 9.1, Table 9.2 shows the total number of proxy forwards for remote GET
Request and implicit PULL migration request messages. It is seen that only the object access
messages in the RU approach were forwarded along (chains of) proxies. These proxy forwards
are counted in number of forwarding operations, and not in number of hops of the underlying
routing protocol. In this table, a message that is forwarded multiple times adds also multiple
counts to the total number of proxy forwards, i. e. a message that was forwarded twice adds two
proxy forwards to the total sum. For this reason, the histogram in Figure 9.1(a) on page 120
shows the distribution of GET Request messages depending on the number of encountered proxy
forwards. In numbers, 795 737 GET messages reached their destination directly, i. e. after 0
proxy forwards, 114 764 GET messages encountered one proxy, and 51 320 GET messages were
forwarded along a chain of two proxies. Not seen in the figure are the 47 GET messages that
traversed the longest encountered proxy chain with eight proxies.

This evaluation does neither plot nor break down the number of proxy forwards for the PULL
migrations, because these are only a couple of hundred messages that traversed a chain of proxies,
which is insignificant compared to the GET Requests.

This substantially smaller number results from the fact that a remote PULL migration requires
in most cases a previous remote GET operation, which reads the needed reference and implicitly
updates the locally cached location information of the accessed object. The only case that a
remote PULL operation is forwarded is when the reference for the PUT operation was read from
an object on a node where the corresponding locally cached object location was outdated.

Besides the proxy forwards, Table 9.2 also shows the number of deleted proxies and the number
of proxies that stayed in the system after the application finished. Here, one sees that the PU and
EPU approaches were able to delete all unnecessary proxies, which was not possible in the RU
approach, where a couple of hundred proxies remained in the system. This number is reasonably
smaller than the deleted proxies in the PU and EPU approach. The reason for this is the fact that
a proxy is implicitly deleted if the object re-migrates back to the node where the proxy resides.
These implicit proxy deletions were not counted in the simulator.

Another observation from Table 9.2 is that with the PU and EPU approach, the access messages
reach the corresponding object directly, without proxy indirections. Nevertheless, this direct
access comes with a high penalty: Table 9.3 shows for each approach the total number of object

116

9.1 OMNeT++ Simulation

50 objects 100 objects
Msg./Approach RU PU EPU RU PU EPU
Send Msg � 1 919 450 3 705 582 4 957 482 7 850 798 15 381 362 20 978 260

Obj Acc � 1 919 450 1 919 450 1 919 450 7 850 798 7 850 798 7 850 798
Maintain � 0 1 824 432 3 076 332 0 7 530 564 13 127 462

InRef Est � 0 24 852 1 276 750 0 50 344 5 647 242
InRef Rem � 0 1 629 482 1 629 482 0 7 168 616 7 168 616
InOut Notify � 0 118 458 118 458 0 208 500 208 500
OutIn Notify � 0 51 642 51 642 0 103 104 103 104

Table 9.3: Access and reference maintenance messages of the different approaches for simulation runs
with implicit migration only. The message numbers count the request and response messages
(�).

access messages in contrast to the reference maintenance messages. Additionally, the table breaks
the total number of reference maintenance messages down into the different types of reference
maintenance messages.

The first row shows the number of total message that each approach sent. Here, it is seen
that the total number of messages is far higher for the PU and the EPU approach than for the
RU approach. Namely, the PU approach sends about two times more messages, while the EPU
sends about three times more messages. With the separated numbers of reference maintenance
messages, it is seen that the main portion of the message overhead comes from the InRef Remove
messages, which are sent whenever a reference field that contains a reference (and not a NULL
reference) is overwritten. Furthermore, the higher overhead of the EPU protocol is solely caused
by the additional InRef Establish messages that are necessary for the enhanced triangular access.

A thorough look at the object access and InRef Establish messages in the EPU approach shows
that there is a gap between these two numbers. This deviation is caused by the fact that no InRef
Establish message is sent if the accessed object is co-located with the referenced object on the
same node.

Compared to the EPU approach, the PU approach has a significantly smaller number of InRef
Establish messages. These smaller number of messages result from a node that receives a new
OutRef during an object migration, and thus has to inform the referenced object about the new
incoming reference.

Another penalty that comes with the PU approach is the increased access latency that results
from the regular triangular access. This penalty is seen in the histograms of the GET Request
and GET Response messages of all three approaches, found in Figure 9.2(a), Figure 9.2(c) and
Figure 9.2(e). The x-axis in these figures shows the number of hops (counted in hops of the
underlying routing protocol, not proxy forward hops) that a message travels before it reaches the
home node of the accessed object, while the y-axis shows the number of messages that traveled

117

9 Evaluation

the given number of hops. The comparison shows that the latency for a GET Request message for
the PU approach is about twice as high as for the RU and EPU approach.

In numbers, the peak for the PU approach is around 9 hops with 82 253 messages. To the left,
89 319 messages traveled 8 hops and to the right, 87 805 messages traveled 10 hops.

For the EPU approach, the peak of the distribution is at 5 hops, with 166 446 messages, which
is also the peak for the RU approach with 136 227 messages. Furthermore, Figure 9.2(a) shows
that the GET Request message distribution for the RU approach is heavy-tailed. This tail is a
result of the proxy forwards and is still visible in the figure with 691 messages that traveled
30 hops. The tail ends at 54 hops with 3 messages. These very high hop counts are a result of
inefficient routes at the beginning of the simulation, cf. [Fuh05]. At this stage, the underlying
routing protocol holds only few, potentially sub-optimal routes to only some nodes in the network.
During the run time of the simulation, each node ’learns’ more routes, until eventually it knows
an optimal route to all other nodes in the network.

Mean Value and Variance For the further evaluation, I am interested in the mean value and the
variance of these results. For this reason, I fitted the Gaussian normal distribution function to all
GET Request distributions:

f (x) = a · e
(x−b)2

2·c2 (9.1)

The results of this fit operation, for all simulation runs, are shown in Table 9.8 on page 124.
For a migration rate of 0 % (i. e. implicit migrations only), the GET Requests of the RU approach
have a mean value of 5.12 hops and a variance of 2.94 hops. The mean value for the PU approach
is 8.10 hops with a variance of 4.48, while the EPU approach has a mean value of 4.92 hops and
a variance of 2.50 hops.

These values show that the EPU approach has of all three approaches the best access latency,
followed by the RU approach, where the latency is with 0.2 hops only slightly higher, but
heavy-tailed, because not all request messages reached the accessed object on the shortest path.

The intermediate conclusion of the evaluation of implicit object migrations is that the RU
approach is best suited for the envisioned system. The main reason is that the proxy indirections
in this setting only slightly increase the access latency by 0.2 hops, but the approach comes with
no reference maintenance message overhead.

A small drawback are the remaining proxies, which require some additional memory. However,
the RU approach represents proxies by a single entry in the GaoMap, which will be deleted
eventually by the garbage collector.

Altogether, it depends on the network and the application if it is preferable to send fewer
messages and tolerate a longer access latency (RU), or if an object must be accessed as fast as
possible, while a higher number of sent messages is tolerable (EPU). In any case, the PU approach
with its triangular access messages is not applicable, because the access latency is about twice
as high compared to the other two approaches. Furthermore, the PU and EPU approaches both
come with a high reference maintenance management overhead to keep the location information
of migrating objects up to date.

118

9.1 OMNeT++ Simulation

50 objects
Events/Operations RU PU EPU
Migration Rate 0 % 50 % 0 % 50 % 0 % 50 %
Total GET 984 766 984 766 984 766 984 766 984 766 984 766
Local GET 63 341 25 422 63 341 25 406 63 341 25 435
Remote GET 921 425 959 344 921 425 959 360 921 425 959 331
Total PUT 51 279 51 279 51 279 51 279 51 279 51 279
Remote PULL 38 300 61 686 38 300 61 602 38 300 61 550
PUSH Migration 0 13 623 574 0 13 124 891 0 12 673 024

Table 9.4: Number of local and remote operations/events for simulation runs with implicit migrations only,
compared to simulations with an explicit migration rate of 50 %.

9.1.3 Evaluation of Implicit versus Explicit Migration

The following section investigates the influence of explicit object migrations on the remote
object access. Some reasons for such explicit object migration are e. g. load balancing or system
maintenance, but because this topic is not in the main scope of this thesis, I will not go into more
detail here, and just assume that there is an entity in the system that triggers explicit migrations
for its own reasons.

To analyze the influence of explicit object migrations, the migration rates are set to values
ranging from 10 % to 50 %, in 10 % steps. However, to simplify the comparison, the following
section only discusses the migration rate of 50 % and compares it to the case with a migration
rate of 0 % (i. e. implicit migration only). The other simulation runs scale linearly between these
two points, see Figure 9.3(a) on page 125.

In accordance to Table 9.2, Table 9.4 compares the influence of a migration rate of 50 % to the
0 % migration rate results.

A migration rate of 50 % means that half of all objects migrate every 10 simulation steps, with
the result that over the complete simulation run, about 13 million explicit PUSH migrations take
place. I do not expect to find systems with such a high migration rate. Nevertheless, I ran these
simulations for two reasons: First, to see if the maintenance protocols can cope with that many
object migrations and secondly, to further investigate and evaluate the overhead that is necessary
for the reference maintenance. Moreover, the higher migration rates revealed some protocol flaws
that had to be solved. The resulting protocol subtleties are described in more detail in [SF10].

As expected, with explicit migrations the number of local GET operations drops for all
protocols from 6.5 % to 2.6 %. Furthermore, the number of necessary PULL migrations increased
significantly and even exceeds the actual number of total PUT operations.

The reason for this deviation is specific for the simulation environment that does not cache
object copies: The migration policy of the simulator migrates an arbitrary local object, regardless
of whether it was recently pulled to the local memory to perform a local PUT operation. For
this reason, it happens that a node implicitly migrated (pull) an object to the local memory, and

119

9 Evaluation

 0

 100

 200

 300

 400

 500

 600

 700

 800

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
u
m

b
e

r
o

f
T

h
o

u
s
a

n
d
 M

e
s
s
a
g

e
s

Number of Proxy Forwards

(a) Migration rate 0 %.

 0

 50

 100

 150

 200

 250

 300

 350

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
u
m

b
e

r
o

f
T

h
o

u
s
a

n
d
 M

e
s
s
a
g

e
s

Number of Proxy Forwards

(b) Migration rate 50 %.

Figure 9.1: RU: Histogram of the number of proxy forwards, i. e. the proxy chain length, that a GET
Request message had to traverse before the accessed object was reached for a tree size of 50
objects.

immediately afterwards explicitly migrated (push) it to another node, without executing the local
PUT operation. When the node now tries to perform the local PUT operation it fails and has
to pull (re-pull) the object a second time. Because this evaluation is not concerned with a high
execution performance, but interested in the comparison of the performance of the different
location update protocols, this behavior is not considered harmful.

Table 9.5 compares the number of proxy forwards for remote GET and PUT operations. While
in the 0 % case the PU and EPU approach do note make active use of proxies, this changes if more
objects migrate. However, compared to the proxy forwards in the RU approach, these numbers are
still two orders of magnitude lower and indicate that the use of the EPU approach is advantageous
over the PU approach due to the faster arrival of GET Response messages. Thus, fewer objects
are able to migrate between two GET request messages. As a result, 10 071 messages in the EPU
approach with a migration rate of 50 % have been forwarded only once, while 14 306 messages
in the PU approach have been forwarded once and 2 584 messages have been forwarded twice.

In contrast to the PU and EPU approaches, the majority of the 307 588 GET messages in the
RU approach is forwarded at least by one proxy, see Figure 9.1(b). This number is even higher
than the 299 026 messages that reach their destination directly (0 proxy forwards). As a result, the
GET Request message distribution for the 50 % migration RU case in Figure 9.2(b) is widened
and significantly more heavy-tailed, compared to the 0 % case in Figure 9.2(a). The tail passes
the 20 hops with 14 842 messages, has 2 239 messages that traveled 50 hops, and 11 messages
that traveled 125 hops. For the PU approach, the worst case is 12 messages that traveled 31 hops,
and for the EPU approach 14 messages that traveled 19 hops.

Again, I fitted the Gaussian normal distribution to the results of the GET Request message
distribution, cf. Table 9.8 on page 124. For the 50 % migration rate, the RU approach has a mean
value of 8.57 hops and a variance of 6.48 hops, compared to the 0 % case, that has only a mean
value of 5.12 hops and a variance of 2.94 hops. Thus, the length of the average number of hops
per object access has increased by 3.45 hops.

120

9.1 OMNeT++ Simulation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

-5 0 5 10 15 20 25 30 35

N
u
m

b
e

r
o

f
T

h
o

u
s
a

n
d
 M

e
s
s
a
g

e
s

Number of Hops

Request Msg.
Response Msg.

(a) RU: Migration rate 0 %.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

-5 0 5 10 15 20 25 30 35

N
u
m

b
e

r
o

f
T

h
o

u
s
a

n
d
 M

e
s
s
a
g

e
s

Number of Hops

Request Msg.
Response Msg.

(b) RU: 50 Objects, Migration rate 50 %.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

-5 0 5 10 15 20 25 30 35

N
u
m

b
e

r
o

f
T

h
o

u
s
a

n
d

 M
e
s
s
a
g

e
s

Number of Hops

Request Msg.
Response Msg.

(c) PU: Migration rate 0 %.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

-5 0 5 10 15 20 25 30 35

N
u
m

b
e

r
o

f
T

h
o

u
s
a

n
d

 M
e
s
s
a
g

e
s

Number of Hops

Request Msg.
Response Msg.

(d) PU: Migration rate 50 %.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

-5 0 5 10 15 20 25 30 35

N
u
m

b
e

r
o

f
T

h
o

u
s
a

n
d

 M
e

s
s
a

g
e

s

Number of Hops

Request Msg.
Response Msg.

(e) EPU: Migration rate 0 %.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

-5 0 5 10 15 20 25 30 35

N
u
m

b
e

r
o

f
T

h
o

u
s
a

n
d

 M
e

s
s
a

g
e

s

Number of Hops

Request Msg.
Response Msg.

(f) EPU: Migration rate 50 %.

Figure 9.2: Histogram of GET Request and GET Response messages for the different approaches for
simulation runs with implicit migrations only, compared to simulation runs with a migration
rate of 50 % and a tree size of 50 objects.

121

9 Evaluation

50 objects
Events/Operations RU PU EPU
Migration Rate 0 % 50 % 0 % 50 % 0 % 50 %
Remote GET Proxy Frwds 298 332 1 941 086 0 19 474 0 10 071
Remote PUT Proxy Frwds 286 21 192 0 434 0 453
Proxy Deletes 0 0 19 150 6 323 436 19 150 6 110 454
Proxy Remaining 345 6 335 0 481 0 535

Table 9.5: Number of proxy forwards and deletions for a simulation with implicit migration only, compared
to the simulation with an explicit migration rate of 50 %. Here, it is seen that this time not
only the RU approach encountered proxy chains, but that in the PU and EPU approach GET
Requests and PUT Requests were forwarded as well.

The comparison of the GET Request message distributions for the PU and EPU approaches,
shown in Figure 9.2, do not show such significant differences. For the PU approach, the result is
a mean value of 9.94 hops and a variance of 3.22 hops. Compared to the 0 % case, the access
latency has increased by 1.84 hops.

For the EPU approach, the message distribution indicates that the GET Request messages
traveled the same number of hops as the corresponding GET Response messages traveled back.
Furthermore, the fitting results in a mean value of 4.98 hops and a variance of 2.34. Compared
to the 0 % migration case with a mean value of 4.92 hops and a variance of 2.50 hops, this
result shows that the performance of the EPU approach is not influenced by 50 % explicit object
migrations at all.

Table 9.6 compares the various maintenance messages that are needed for the PU and EPU
approach. Compared to the 0 % case, the PU and EPU approaches need about 82 times more
maintenance messages than object access messages. Here, a comparison with a lower explicit
migration rate of 10 % – which is not further investigated here – shows that the PU and EPU
protocols already send about 15 times more maintenance messages than object access messages.

The two main differences compared to the 0 % case are: first, the difference between the
number of InRef Establish and InRef Remove messages in the PU approach, and secondly, the
difference between the numbers of InRef Establish messages in the PU and EPU approach.

These differences are smoothed in the 50 % case, as a result of the high migration rate: With
about 13 times more migrations than GET Request messages, the additional InRef Establish
messages for the enhanced triangular access vanish in the total number of all sent InRef Establish
messages.

Table 9.6 additionally splits the number of InOut Notify and OutIn Notify messages into request
and ACK messages each, to see the difference between them. The different numbers indicate
that more request messages have been sent than ACKs have been received, which is an allowed
protocol feature. It indicates that a message was dropped at the destination node and had to be
resent. This happens for a migration rate of 50 % for 16.22 million InOut Notify messages in
the PU approach, and for about 15.68 million InOut Notify messages in the EPU approach. The

122

9.1 OMNeT++ Simulation

50 objects
Msg./Approach PU EPU
Migration Rate 0 % 50 % 0 % 50 %
Send Msg. � 3 705 582 154 669 949 4 957 482 153 440 913

Object Acc � 1 919 450 2 041 924 1 919 450 2 041 762
Maintain � 1 824 432 152 839 570 3 076 332 151 389 327

InRef Establish � 24 852 21 820 794 1 276 750 23 208 792
InRef Remove � 1 629 482 23 523 286 1 629 482 23 072 856
InOut Notify 59 229 42 777 731 59 229 41 808 974
InOut Notify ACK 59 229 42 490 969 59 229 41 531 149
InOut Notify Resend 0 16 222 153 0 15 679 044
OutIn Notify 25 821 11 113 400 25 821 10 883 783
OutIn Notify ACK 25 821 11 113 390 25 821 10 883 772
OutIn Notify Resend 0 0 0 0

Table 9.6: Reference maintenance messages for implicit migrations only and a migration rate of 50 %.

reason for this high number is that a node that receives an InOut Notify message and that holds
local objects in the pending state, has to drop the InOut Notify message to prevent an inconsistent
objects location state.

In contrast to the 0 % migration case, in the 50 % migration case maintenance messages are
forwarded along proxies. Thus, Table 9.7 breaks down the number of proxy forwards for the
different maintenance messages for the PU and the EPU approach. It can be seen that about half
of all InRef Establish and OutIn Notify messages and about 10 % of all InRef Remove and InOut
Notify messages have been forwarded along at least one proxy.

50 objects
Events/Operations PU EPU
Migration Rate 0 % 50 % 0 % 50 %
InRef Establish Proxy Frwds 0 5 378 263 0 5 275 699
InRef Remove Proxy Frwds 0 1 274 845 0 1 248 225
InOut Ref Notify Frwds 0 4 260 777 0 4 172 379
OutIn Ref Notify Frwds 0 5 481 425 0 5 367 398

Table 9.7: Number of proxy forwards for the different reference maintenance messages for simulations
runs with implicit migration only, compared to simulations with a migration rate of 50 %.

123

9 Evaluation

50 objects
Mig. Rate RU PU EPU

Mean Value Variance Mean Value Variance Mean Value Variance
0 % 5.12976 2.94188 8.10285 4.47905 4.92078 2.50190
10 % 5.35024 2.95474 9.92066 3.21197 4.95215 2.36388
20 % 5.91910 3.77410 9.93012 3.21403 4.96162 2.35139
30 % 6.72076 4.90280 9.93568 3.21779 4.96956 2.34800
40 % 7.62386 5.81309 9.94078 3.22346 4.97480 2.34221
50 % 8.57008 6.47863 9.94252 3.22666 4.97979 2.34148

Table 9.8: Mean value and variance of the GET Request msg. distributions, migration rate 0 % to 50 %

9.1.4 Protocol Comparison for all Migration Rates

After the examination of the differences between implicit and explicit object migrations at the
example of the 50 % explicit object migration case, the following section compares the message
distributions for GET and PUT operations when applying various migration rates.

Comparison with 50 Objects

Table 9.8 lists the mean values and variances of all migration runs, while Figure 9.3(a) plots the
results for the remote GET Request message distributions and Figure 9.3(b) plots the results for
the PULL Migration Request messages, which are equal to implicit object migrations.

Figure 9.3(a) shows, that the mean values of the RU approach have a steady, linear slope. The
PU approach shows a 1-hop step at the transition from implicit object migrations only to 10 %
explicit object migrations, but then stays constant over all migration rates. This indicates that
explicit object migrations, together with the increased latency of the Triangular-GET messages,
result in objects that are further apart from each other. This step is not seen in the EPU approach,
where the mean value and variance stay constant for all migration rates.

With a migration rate of 50 %, the RU approach reaches a mean value of 8.57 hops, where
the PU approach is with a mean value of 9.94 still higher. The result of the EPU approach was
not influenced by explicit object migration at all, and still has a mean value of 4.98 hops and a
variance of 2.34.

Due to the fact that PUT operations are preceded by GET Requests, which updated the object
location information, there is almost no difference between the three approaches for the remote
PULL Migration operations (implicit object migration), see Figure 9.3(b).

Comparison with 100 Objects

Besides the simulation runs with 50 objects, I ran a simulation with 100 objects. For this
simulation, I only applied the migration rates from 0 %, 10 % and 20 %. I did not run higher
migration rates because implicit migrations with a migration rate of 0 % are most interesting for

124

9.1 OMNeT++ Simulation

 0

 5

 10

 15

 20

 0 10 20 30 40 50

G
E

T
 R

e
q
u
e
s
t
M

s
g
.
H

o
p
s

Percent of Migrations/10 Events

Reactive Update
Proactive Update

Enhanced Proactive Update

(a) GET Requests.

 0

 5

 10

 15

 20

 0 10 20 30 40 50

G
E

T
 R

e
q
u
e
s
t
M

s
g
.
H

o
p
s

Percent of Migrations/10 Events

Reactive Update
Proactive Update

Enhanced Proactive Update

(b) Implicit PULL Migration Requests.

Figure 9.3: Comparison of average hop counts for the RU, PU, EPU approach for a tree size of 50 objects.

125

9 Evaluation

100 objects
Mig. Rate RU PU EPU

Mean Value Variance Mean Value Variance Mean Value Variance
0 % 5.28056 2.49902 8.67647 3.87287 5.03789 2.26971
10 % 5.56372 2.83152 9.98676 3.13437 5.00473 2.25944
20 % 6.35526 3.80372 9.99157 3.13956 5.01113 2.26670

Table 9.9: Mean value and variance of GET Request msg. distributions, migration rate 0 % to 20 %.

the envisioned scenario. Furthermore, I assume that the expected migration rate in a realistic
scenario will not be much higher than 20 %.

The mean values and variances of these simulations are listed in Table 9.9. The results are
similar to the simulations with 50 objects, with slightly higher values for the RU approach. Thus,
I did not add a figure, because it looks similar to Figure 9.3.

9.2 Software Simulation for Access Path Optimization and Caching

Because the OMNeT++ event simulator framework emulates a complete network with nodes,
separate memory address spaces per node, messages, connections and connection delays etc., it
adds a significant management overhead that decreases the simulation performance. With this
overhead, the time to run simulations with much more than 100 nodes and more than 100 objects
was not feasible. However, the further evaluation of the developed protocols does neither require
the accurate message delivery delay in milliseconds nor the distinction between the various
message and event types.

For this reason, I implemented a second simulator to evaluate the access path optimization that
is described in Section 7.3. Because the evaluation in the previous section has shown that the
proactive location update approach is sub-optimal for the envisioned scenario, neither the PU nor
the EPU approach were further investigated. Thus, the simulator only implements the reactive
location update approach and evaluates it, together with the access path optimization and object
caching, in larger networks and larger application scenarios.

This second simulator is also closer to the envisioned scenario: First, explicit object migrations
are not considered anymore, and objects migrate only if a new head version comes into existence
on a node other than the home node of the previous object version (implicit migration only).
Secondly, each node is equipped with a cache of a given size. Each node uses this cache to store
all objects on which the local threads currently work. Furthermore, each node in the simulator
keeps a copy of an object that migrates to another node as outdated object version in its cache,
until this copy is either updated, evicted by the least-recently-used policy, or deleted by the
garbage collector. In this way, multiple copies of different object versions might be scattered
across multiple nodes in the network. Thus, the DecentSTM algorithm on one of these nodes
can continue its optimistic execution of transactions, potentially on outdated object versions. In
this way, a thread does not need to stall until the head version of the accessed object is fetched

126

9.2 Software Simulation for Access Path Optimization and Caching

from a remote node. However, it is always possible, yet not implemented, to fetch the object in
the background, e. g. by piggy-backing the object on some other necessary system or application
messages to be prepared for a potential rollback.

Besides a C-implementation of an RB tree, the simulator additionally works on an AVL tree
implementation, which is also written in C. The AVL tree [AL62], named after its inventors
Adelson-Velsky and Landis, is a balanced binary search tree with the invariant that the height of
any two branches in the tree differ by at most 1. To guarantee this invariant, each insert or delete
operation may have to re-balance the whole tree, starting from the root.

In contrast to the AVL tree, an RB tree has weaker balancing constraints. Thus, the re-balancing
operations start at that node in the tree where the element was inserted or deleted, and continue
towards the root until the tree invariants are restored. As a result, the balancing operations of an
RB tree modify less objects than those of the AVL tree.

The simulation environment simulates a given number of nodes, where each node executes one
thread that operates on the given data structure. Each simulated thread uniform randomly inserts
and deletes elements into/from the tree.

The simulator only simulates – rather than emulates – the distributed shared access to the data
structures. It is not concerned with a particular network topology or protocol, but only considers
proxy forwards. Hence, it can tackle larger data structures with more operations than the emulator
in the previous section.

A single simulation run executes one million transactions that manipulate the given tree.
Similar to the scenario from Section 9.1, each transaction draws two uniform random numbers,
this time from an interval that contains 10 000 elements. Again, these numbers are used as keys
r1 and r2 to identify the objects in the tree. Each transaction first inserts the object with key r1 if
the tree does not yet contain this element, and re-balances the tree if necessary. Then, it searches
for the object with key r2 in the tree, deletes it if it was present, and again re-balances the tree.

Each write operation on an object in the tree creates a new head version of the object. The
previous head version of the object automatically becomes the latest proxy in the objects version
history, i. e. in the proxy chain. Additionally, an update message is sent to the k previous versions
to shorten the proxy chain.

9.2.1 Cache Characteristics

I ran simulations with 500 and 1 000 nodes and various cache sizes, ranging from 50 to 450
objects. The numbers shown are averages over 100 runs each. Each simulation run made in
total 25 114 763 initial cache accesses for the AVL tree and 23 998 597 initial cache accesses
for the RB tree. Note that the total number of initial cache accesses is equal for all cache sizes.
Here, “initial access” denotes the first access to an object within a transaction. To prevent the
transactions’ memory snapshot from becoming inconsistent, the DecentSTM system requires that
subsequent accesses use the same cached object version. The total number of object accesses is
103 404 806 for the AVL tree and 37 242 620 for the RB tree.

Table 9.10 shows the basic parameters of the different simulation scenarios and the number of
rotations needed to balance the tree. The rotation rate is the same for all AVL tree simulation runs,

127

9 Evaluation

Nodes Objects Transactions Rotations

AVL Tree
500 10 000 1 000 000 331 416

1 000 10 000 1 000 000 331 416

RB Tree
500 10 000 1 000 000 395 962

1 000 10 000 1 000 000 396 128

Table 9.10: Simulation parameters for the AVL and RB tree software simulation runs.

while they slightly differ for the RB tree runs. The reason are the different invariants of the tree
algorithms: while the AVL tree is guaranteed to be balanced at all times, the RB tree structure is
more flexible and allows for a slightly different structure, depending on the access characteristics.

For the rest of this section, I define the following three cache, and thus object, access cases:

• cache miss: The accessed object is not cached, and the thread has to stall until the object’s
head version has been retrieved.

• good cache hit: The accessed object has been cached and the cached version is the current
head version of the object. The thread continues its execution immediately (without
knowing that it works with the head version). It has a good chance to succeed when
committing.

• bad cache hit: The accessed object is cached, but the cached version is outdated. The
thread continues its execution immediately (because it cannot know that the version is
outdated). It is likely to fail when committing.

Figure 9.4 shows the percentage of cache misses, good cache hits, and bad cache hits for the
different cache sizes for 500 and 1 000 threads.

As expected, the good cache hit rate compared to the total hit rate, is higher for the RB tree
than for the AVL tree. For 1 000 threads (Figure 9.4(c) and Figure 9.4(d)), it is 12.8 % for the
AVL tree and 20.0 % for the RB tree with a cache size of 50 objects (Table 9.11, column Æ), and
17.6 % and 31.3 % for a cache with 450 objects. Furthermore, the bad cache hit rate, compared to
the total accesses, is lower. It is 8.23 % for the AVL tree and 0.26 % for the RB tree with a cache
size of 50 objects, and 17.23 % and 2.36 % for a cache with 450 objects (Table 9.11, column Ç).

One can see that for the AVL tree the good cache hit rates set in at a cache size of 100 objects,
whereas for the RB tree the cache size should be 150 objects. Larger caches do not (significantly)
increase the system’s performance.

Table 9.11 shows the corresponding numbers for 500 and 1000 threads in detail. Next to the
total number of cache accesses, cache misses, good cache hits, and bad cache hits, the table
shows the ratio and percentage for good cache hits to bad cache hits. Here, the ratio is for all
AVL cache sizes around 1 and at most just above 2 for 500 threads and a cache with 50 objects
(column Ä). The percentage of good cache hits to total cache hits ranges from 50.49 % with a
cache size of 450 objects to up to 60.84 % for a cache with 50 objects, for the tree with 1 000

128

9.2 Software Simulation for Access Path Optimization and Caching

0%

20%

40%

60%

80%

100%

50 100 150 200 250 300 350 400 450

Cache Size

Cache Misses
Good Cache Hits

Bad Cache Hits

(a) AVL Tree, 500 Nodes.

0%

20%

40%

60%

80%

100%

50 100 150 200 250 300 350 400 450

Cache Size

Cache Misses
Good Cache Hits

Bad Cache Hits

(b) RB Tree, 500 Nodes.

0%

20%

40%

60%

80%

100%

50 100 150 200 250 300 350 400 450

Cache Size

Cache Misses
Good Cache Hits

Bad Cache Hits

(c) AVL Tree, 1 000 Nodes.

0%

20%

40%

60%

80%

100%

50 100 150 200 250 300 350 400 450

Cache Size

Cache Misses
Good Cache Hits

Bad Cache Hits

(d) RB Tree, 1 000 Nodes.

Figure 9.4: RB and AVL tree cache accesses.

objects (column Å). In other words, the possibility to optimistically continue the execution with
the latest head version of an object is between 50 % and 60 %.

For the RB tree with 1 000 threads, the ratio of good cache hits to bad cache hits is always
above 13.25 for the cache sizes of 300 to 450 objects, and rises to 77.19 with a cache size of 50
objects. In accordance to these figures, the percentage of good cache hits compared to total cache
hits ranges for 1 000 threads between 92.98 % for a cache size between 300 and 450 objects, and
98.72 % for a cache with 50 objects (column Å). In other words, the possibility to optimistically
continue the execution with the latest head version of an object is between 92.98 % and 98.72 %.

Another figure is the percentage of good cache hits compared to the total cache accesses
(column Æ). For the AVL tree with 1 000 threads, this number ranges between 12.78 % for a
cache with 50 objects and 17.57 % for cache sizes bigger than 200 objects. For the RB tree with
1 000 threads, this percentage ranges between 19.99 % for a cache size of 50 objects and 31.25 %
for caches with more than 250 objects. For a cache with 150 object, this means, that in 30 % of all
object accesses, the node finds the head version of the object in its own cache, and the optimistic
execution is likely to succeed.

129

9 Evaluation

For the runs with 500 threads, all these results are slightly better and support the overall trend.

Another significant observation that supports the previous finding that larger cache sizes do
not increase the performance, is that cache sizes above a certain number of stored objects do not
increase these figures. For example for the AVL tree, all cache sizes with 250 objects or more
have the same average good cache hits to bad cache hits ratio, and the same average percentage
of good cache hits to bad cache hits and good cache hits to total cache accesses. Similar for the
RB tree, where caches with 300 objects or more have the same figures. Hence, the conclusion is
that cache sizes above 250 objects (for the AVL tree), and 300 objects (for the RB tree), do not
increase the application performance for the given scenario. However, a cache that is too small
increases the number of object versions that must be fetched from a remote node, see the cache
miss column Á in Table 9.11.

Figure 9.5 shows the probability that a cache hit is good as a function of the number of
intermediate transactions, i. e. the number of transactions that the accessing node has processed
since the cache entry has been used previously. The smaller the cache the more quickly the good
cache hit rate drops. Just before the probability reaches zero, the number of total hits is so small
that the probability becomes erratic. Therefore, I removed those data points from the plots for
which the number of total hits is less than 0.3 hits on average.

Figure 9.5 confirms the findings from Figure 9.4 and Table 9.11, namely, that large caches are
not worthwhile. Even though a large cache can increase the overall number of cache hits (column
Â), it also decreases the percentage of good cache hits over time. (Since the number of total hits
decreases with the number of intermediate transactions, this effect is neither seen in Figure 9.4
nor in Table 9.11).

Comparing the AVL tree with the RB tree, it is again seen that the RB tree has a much better
performance. In an AVL tree scenario, the probability of a good cache hit, and thus the probability
that an object was not modified after two intermediate transactions, is only about 60 %. In an RB
tree scenario, the probability of a good cache hit is 97.7 % after two intermediate transactions
with a cache size of 50 objects. Overall, the conclusion is that 100 objects is the optimal cache
size for the AVL tree, whereas it is 150 objects for the RB tree scenario.

9.2.2 Access Optimizations

Upon a cache miss or bad cache hit, the thread must stall until it has retrieved the object’s
head version. However, the proxy chain that leads to the head version is the longer the more
transactions have created new object versions of the object, and thus proxies. The longer the
proxy chain that must be traversed, the longer a thread has to stall before the request completes.

The following two sections examine the proxy chains that are encountered after a bad cache
hit and after a cache miss.

The examination starts with the bad cache hit evaluation, where the thread first optimistically
executes the transaction on outdated data. During the commit phase, the DecentSTM consensus
protocol has to traverse a chain of proxies to contact the head version. Thus, this is the time
when the node that executed the transaction, finds out that the transaction operated on an outdated
object version.

130

9.2 Software Simulation for Access Path Optimization and Caching

Nodes Cache
Size

Access Miss Good Hit Bad Hit
Good/
Bad
Hit

Good/
Total
Hit

Good/
Total
Acc.

Bad/
Total
Acc.

À Á Â Ã Ä Å Æ Ç

AV
L

Tr
ee

500

50 25114763 19633194 3716032 1765536 2.10 67.79 % 14.80 % 7.03 %
100 25114763 17269595 5142555 2702612 1.90 65.55 % 20.48 % 10.76 %
150 25114763 15992858 5632982 3488922 1.61 61.75 % 22.43 % 13.89 %
200 25114763 15190120 5810493 4114149 1.41 58.55 % 23.14 % 16.38 %
250 25114763 14677158 5866093 4571511 1.28 56.20 % 23.36 % 18.20 %
300 25114763 14384369 5878643 4851749 1.21 54.78 % 23.41 % 19.32 %
350 25114763 14269260 5880248 4965254 1.18 54.22 % 23.41 % 19.77 %
400 25114763 14249188 5880340 4985234 1.18 54.12 % 23.41 % 19.85 %
450 25114763 14248111 5880343 4986309 1.18 54.11 % 23.41 % 19.85 %

1 000

50 25114763 19837063 3210783 2066916 1.55 60.84 % 12.78 % 8.23 %
100 25114763 17744360 4176348 3194054 1.31 56.66 % 16.63 % 12.72 %
150 25114763 16818469 4379877 3916416 1.12 52.79 % 17.44 % 15.59 %
200 25114763 16453673 4410562 4250528 1.04 50.92 % 17.56 % 16.92 %
250 25114763 16379680 4412625 4322457 1.02 50.52 % 17.57 % 17.21 %
300 25114763 16375557 4412667 4326538 1.02 50.49 % 17.57 % 17.23 %
350 25114763 16375510 4412667 4326585 1.02 50.49 % 17.57 % 17.23 %
400 25114763 16375510 4412667 4326585 1.02 50.49 % 17.57 % 17.23 %
450 25114763 16375510 4412667 4326585 1.02 50.49 % 17.57 % 17.23 %

R
B

Tr
ee

500

50 23993641 18958495 4996398 38747 128.95 99.23 % 20.82 % 0.16 %
100 23993641 16730906 7133862 128872 55.36 98.23 % 29.73 % 0.54 %
150 23993641 15543203 8182926 267511 30.59 96.83 % 34.10 % 1.11 %
200 23993641 14794025 8754118 445497 19.65 95.16 % 36.49 % 1.86 %
250 23993641 14313782 9040058 639801 14.13 93.39 % 37.68 % 2.67 %
300 23993641 14043194 9148805 801641 11.41 91.94 % 38.13 % 3.34 %
350 23993641 13943905 9172264 877472 10.45 91.27 % 38.23 % 3.66 %
400 23993641 13928991 9174306 890343 10.30 91.15 % 38.24 % 3.71 %
450 23993641 13928326 9174365 890949 10.30 91.15 % 38.24 % 3.71 %

1 000

50 23998597 19138733 4797712 62151 77.19 98.72 % 19.99 % 0.26 %
100 23998597 17176035 6620965 201595 32.84 97.05 % 27.59 % 0.84 %
150 23998597 16321650 7292023 384923 18.94 94.99 % 30.39 % 1.60 %
200 23998597 15994873 7477777 525945 14.22 93.43 % 31.16 % 2.19 %
250 23998597 15935044 7499519 564032 13.30 93.01 % 31.25 % 2.35 %
300 23998597 15932246 7500189 566161 13.25 92.98 % 31.25 % 2.36 %
350 23998597 15932218 7500194 566184 13.25 92.98 % 31.25 % 2.36 %
400 23998597 15932218 7500194 566184 13.25 92.98 % 31.25 % 2.36 %
450 23998597 15932218 7500194 566184 13.25 92.98 % 31.25 % 2.36 %

Table 9.11: Cache access characteristics for AVL and RB tree.

131

9 Evaluation

0%

20%

40%

60%

80%

100%

 0 5 10 15 20 25 30 35 40 45 50 55 60

Number of Intermediate Transactions

CacheSize 50
CacheSize 100
CacheSize 150
CacheSize 200
CacheSize 400

(a) AVL Tree: Good Hit/Total Hit Probability.

0%

20%

40%

60%

80%

100%

 0 5 10 15 20 25 30 35 40 45 50 55 60

Number of Intermediate Transactions

CacheSize 50
CacheSize 100
CacheSize 150
CacheSize 200
CacheSize 400

(b) RB Tree: Good Hit/Total Hit Probability.

Figure 9.5: Probability of good hit/total hit after x intermediate transactions, simulation with 1 000 nodes.

If the DecentSTM protocol cannot successfully commit because the object version was outdated,
the transaction has to rollback and restart the transaction with the current head versions of the
objects. Thus, the costs for a bad cache hit are not only the latency due to the object retrieval, but
also the execution costs of the failed transaction.

The proxy chains that are encountered because of a bad cache hit are shorter than for a cache
miss. The reason is that a cached object version means that the node read a former head version
in the past. Here, it depends on the cache size and the object access characteristics how long the
object stays in the cache before it is evicted by the LRU policy. On the contrary, an object access
that results in a cache miss is an indication that the object was either evicted from the cache by
the LRU policy, or that the reference to the object was never before resolved on the accessing
node.

Figure 9.6: Object version history and cached ob-
ject versions.

See, for example, Figure 9.6, which shows the
version history of object Y and three nodes, A, B
and C, that cached some object versions. Node
C holds an object in version X4 that references
object Y in the version Y3.

Because the reference to Y3 was not yet re-
solved, or a previous copy of Y3 was evicted
from the cache, there resides no local copy of Y3

in the cache of node C. Thus, the next access to
Y3 results in a cache miss. The caches on node
A and node B both hold a copy of an object ver-
sion of object Y . Cache A holds a copy of Y7,
which is the head version of object Y . Hence,
an object access to the cached object is a good
cache hit. On node B, the cached object version
is outdated. Thus, the next access to the cached
object version Y5 is a bad cache hit.

132

9.2 Software Simulation for Access Path Optimization and Caching

Section 7.3 described the access path optimization approach where each object migration not
only updates the latest proxy in the version history of an object, but also propagates this update
further down the proxy chain. How deep this update should be propagated depends on the objects’
access characteristics and a formula for the optimal propagation depth kopt was given.

The next sections evaluate different experimental propagation depths k to support the analytic
results, which are presented in the following sections as well.

9.2.3 Bad Cache Hits

Figure 9.7 shows the probability for the number of proxy forwards that are needed to retrieve
the head version of an object after a bad cache hit. (Note that the figures are plotted with a
double-logarithmic scale. They show the two cache sizes of 50 and 450 objects.)

Cache Size k 0-hop 1-hop 2-hop 3-hop 5-hop

AV
L

50
1 0 0.49 28.38 16.28 3.22
3 0 0.96 45.99 8.73 0.85
6 0 1.24 49.64 6.47 1.31

450
1 0 0.53 26.22 19.76 7.42
3 0 1.29 46.13 18.90 3.47
6 0 2.00 54.86 16.91 1.79

R
B

50
1 0 6.43 71.13 14.08 1.92
3 0 10.83 84.56 3.95 0.09
6 0 11.99 86.01 1.87 0.01

450
1 0 2.74 49.18 17.40 5.88
3 0 6.98 69.70 13.25 2.47
6 0 10.79 77.15 9.31 0.50

Table 9.12: Probability for number of proxy forwards for AVL and RB tree after bad cache hits, simulation
with 1 000 nodes.

To create the figure, the simulation ran with various update propagation depths k. (The figures
only show k = 1,3,6 because the plots for k > 6 are not significantly different). In addition,
Table 9.12 shows the length distribution of the traversed proxy chains, i.e. the probability that the
object’s head version was reached directly or after the first, second, third, and fifth proxy forward.

In contrast to the cache miss case (described later), one can see from the table that there are no
access messages that reached the head version of the object directly. Furthermore, both, AVL tree
and RB tree, have their maximum at a proxy chain length of 2 hops, but for the AVL tree, this
maximum does not peak as highly as for the RB tree. That means that at least two, in most cases
three new head versions came into existence between two subsequent accesses.

Figure 9.7 shows that especially the AVL tree has a non-negligible probability to produce
very long proxy chains. For the RB tree, the maximal proxy chain length that was found, varies
between 5 (k = 6) and 23 (k = 1) for a cache with 50 objects, and between 14 and 56 for a cache

133

9 Evaluation

(a) AVL and RB Tree, Cache Size: 50. (b) AVL and RB Tree, Cache Size: 450.

Figure 9.7: Probability for number of proxy forwards for AVL and RB tree after bad cache hits, simulation
with 1 000 nodes.

size of 450 objects. The increase in the proxy chain length is a result of the increased number of
outdated objects in the cache: The larger the cache, the longer an object can remain in the cache
before it becomes evicted by the LRU policy. Thus, the longer an object stays in the cache, the
more new object versions are created on other nodes and the longer the proxy chain grows.

For the AVL tree, the proxy chains in the simulations grow to 78 hops (cache size 50) and
177 hops (cache size 450). The reason for these high values are the frequent tree rotations that
are necessary to balance the tree. Each such rotation creates new object versions and thereby
increases the proxy chain length. These frequent rotations also explain the quickly decreasing
good cache hit probability for the AVL tree in Figure 9.5, and the plateau at about 1 % in the
AVL plot in Figure 9.7. Only the finite number of nodes in the simulated system keeps the proxy
chains from growing even larger, because a finite number of nodes results in the probability that
adding a proxy introduces a loop. These loops are automatically cut out by the algorithm, which
overwrites the old forwarding pointer with the new one.

As described in Section 7.3, the optimal propagation depth kopt for the bad cache hits, is
determined by the average number of newly created head versions M and the number of reads
Rbad that result in a bad cache hit. Both values can be determined at run time. Additionally, the
simulations allow the measurement of the average proxy chain length `k that was traversed after a
bad cache hit. Together with the simulation parameter ksim, the average message cost cbad can be
computed as

cbad = M · ksim +R · `k (9.2)

Figure 9.8 shows the average message costs cbad for the RB and the AVL tree as a function of
k in millions of messages: The two linear curves at the bottom show the results obtained from the
RB tree; the three U-shaped curves are from the AVL tree. With a cache size of 300 objects, the
message costs are already close to the maximal message costs of both data structures. A larger
cache does not increase the message costs anymore, because a larger cache only contains objects

134

9.2 Software Simulation for Access Path Optimization and Caching

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
o

s
ts

 i
n

 M
ill

io
n

 M
e

s
s
a

g
e

s

Update Propagation Depth k

Cache Size AVL: 50
Cache Size AVL: 150
Cache Size AVL: 300

Cache Size RB: 50
Cache Size RB: 300

Figure 9.8: Message costs cbad for AVL and RB tree, depending on ksim, simulation with 1 000 nodes.

that will never be used again. For the AVL tree, a smaller cache slightly reduces the message
cost, because it leads to shorter proxy chains. The reason for these shorter proxy chains is the
need to fetch the latest head version after a cache miss. One sees that the minima of the message
costs are at k = 3 for the AVL tree, and at k = 1 for the RB tree.

Cache Size M Rbad lk=1 kopt

AVL
50 3 955 611 2 066 916 18.40 3.10

450 3 955 611 4 326 585 11.21 3.50

RB
50 3 004 185 62 151 2.31 0.22

450 3 004 185 566 184 3.59 0.82

Table 9.13: Theoretical optimal propagation depth kopt after bad cache hits, simulation with 1 000 nodes.

These experimental results shown in the graphs support the analytical findings from Table 9.13.
This table shows the optimal propagation depth kopt , which was computed with Equation (7.3) on
page 90. Here, the numbers of total writes (implicit object migrations) M, total reads of outdated
cached versions Rbad (cf. Table 9.11, column Ã), together with the average proxy chain length
lk=1 have been taken from the simulation output.

One can see that it is sufficient for the RB tree to update only the latest proxy, and not to send
additional update messages further down the proxy chain. For the AVL tree, the message costs
are optimal if updates are sent to the three latest proxies in the proxy chain. However, the AVL

135

9 Evaluation

tree still needs about 25 million more messages than the RB tree. Thus, the AVL tree is not a well
suited data structure for the envisioned scenario and the next section does not consider the AVL
tree anymore.

9.2.4 Cache Misses

As stated above, the following section evaluates the access path optimization for cache misses,
but only for the RB tree. Furthermore, it considers only the simulation runs with 1 000 threads,
because the simulation runs with 500 threads do not deliver further insights.

0.0001%

0.001%

0.01%

0.1%

1%

10%

100%

 1 10 100

Number of Proxy Forwards

RB K=1
RB K=3
RB K=6

(a) RB Tree, Cache Size: 50 Obj.’s.

0.0001%

0.001%

0.01%

0.1%

1%

10%

100%

 1 10 100

Number of Proxy Forwards

RB K=1
RB K=3
RB K=6

(b) RB Tree, Cache Size: 450 Obj.’s.

Figure 9.9: Probability for number of proxy forwards after cache misses.

Figure 9.9 shows the probability of numbers of proxy forwards that are needed to retrieve
the head version of an object after a cache miss. (Again, the figures are plotted with a double
logarithmic scale and show the two cache sizes of 50 and 450 objects.) The absolute values are
shown as histograms in Figure 9.10.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
u
m

b
e
r

o
f
T

h
o
u
s
a
n
d
 M

e
s
s
a
g
e
s

Number of Proxy Forwards

(a) RB Tree, Cache Size: 50 Obj.’s.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
u
m

b
e
r

o
f
T

h
o
u
s
a
n
d
 M

e
s
s
a
g
e
s

Number of Proxy Forwards

(b) RB Tree, Cache Size: 450 Obj.’s.

Figure 9.10: Histogram of proxy forwards after cache misses.

136

9.2 Software Simulation for Access Path Optimization and Caching

The conditions are the same as for the bad cache hit case: the simulation ran with various
update propagation depths k but the figures only show k = 1,3,6. Table 9.14 shows the length
distribution of the traversed proxy chain, i. e. the probability that the object’s head version was
reached directly or after the first, second, third, and fifth proxy forward.

Cache Size k 0-hop 1-hop 2-hop 3-hop 5-hop

50
1 37.03 55.46 6.80 0.66 0.00
3 37.03 39.99 14.97 5.13 0.67
6 37.03 53.03 8.74 0.76 0.01

450
1 41.79 54.06 3.83 0.30 0.00
3 41.79 38.24 12.77 4.54 0.62
6 41.79 51.48 5.95 0.69 0.01

Table 9.14: Probability for number of proxy forwards after cache misses.

In contrast to the bad cache hit case, this time about 37.03 % of all messages for a cache size of
50 objects, and 41.79 % of all messages for a cache size of 450 objects, reached the head version
directly. Figure 9.10 shows the histograms of the proxy forwards for k = 1, which correspond to
the histogram of the RU approach in Figure 9.1(a) on page 120. It starts with 6 909 110 messages
that reached the head version of the accessed object directly (without any proxy forwards), to 1
message that was forwarded 27 times.

Cache Size M Rmiss lk=1 kopt

50 3 004 185 19 138 733 1.44 3.02
450 3 004 185 15 932 218 1.35 2.68

Table 9.15: Theoretical optimal propagation depth kopt after cache misses.

Again, the optimal propagation depth kopt is determined by the average number of newly
created head versions M, the number of reads Rmiss that resulted in a cache miss, and the average
proxy chain length lk=1.

The result is shown in Table 9.15. Unlike for the bad cache hit case, the optimal propagation
depth kopt is not negligible. The reason is the larger number of read accesses Rmiss that profit
from shorter proxy chains. As seen in Table 9.15 the number of Rmiss is 5.30 times higher than M
for a cache size of 50 objects, and 6.37 times higher for a cache size of 450 objects. Thus, the
analytic results for kopt give an optimal propagation depth of 3.02 hops for a cache size of 50
objects, and 2.68 hops for a cache size with 450 objects.

To compare these findings to the simulation result, the average message cost cmiss is computed
as:

cmiss = M · ksim +Rmiss · `k (9.3)

137

9 Evaluation

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
o

s
ts

 i
n

 M
ill

io
n

 M
e

s
s
a

g
e

s

Update Propagation Depth k

Cache Size RB: 50
Cache Size RB: 150
Cache Size RB: 250
Cache Size RB: 350
Cache Size RB: 450

Figure 9.11: Message costs cmiss for RB tree, depending on ksim after cache misses.

The result is shown in Figure 9.11. In contrast to Figure 9.8, where the message cost were the
lowest for a cache size of 50 objects, they are the highest in this figure. The reason is the number
of reads Rbad , which increases with the cache size for bad cache hits, cf. Table 9.11 on page 131,
column Ã, and Rmiss, which decreases with the cache size for the cache misses, cf. Table 9.11,
column Á, and thus influences the computation of cmiss in the same way. Furthermore, one can
see again that the simulation results support the analytically predicted optimal propagation depth
kopt .

138

10 Conclusion

I conducted the research of this thesis in the context of two projects I worked in. The first is the
AmbiComp project, which aimed at distributed, embedded systems. The second is the J-Cell
project, which aims at high-performance compute systems. Both projects envision scenarios in
which a distributed runtime environment offers applications a single system image, which allows
the transparent access to all resources of the distributed system in which nodes might join and
leave at any time.

The creation of this single system image requires a scalable and fully decentralized object
location and retrieval algorithm. The development and evaluation of such an object location and
retrieval algorithm is the main topic of my thesis.

In this thesis, I described and evaluated different object location approaches that are commonly
used in the literature, for example, broadcast, central or distributed registries, static home nodes,
or the proxy forwarding approach. All but the proxy forwarding approach either use centralized
components, which contradict the desired scalability and decentralization of the envisioned
system, or spread the management overhead throughout the system, even if only a small subset of
nodes has an actual interest in the corresponding object. Thus, the conclusion is that only the
proxy forwarding approach is applicable for the envisioned scenario. In this approach, proxies
can form chains, which is especially helpful in the DecentSTM context, where a mutable object
is represented by a chain of immutable object versions, with the head version in this chain being
the most recently written object version. In the context of proxy forwarding, this head version
can be seen as the actual object, while the outdated object versions are the proxies that forward
all access requests to the head version.

I developed different location update protocols that use proxies to forward all object access
requests to the current location of the object. The main application of this work is the use of one
of these protocols together with DecentSTM. However, these protocols do not especially aim at
systems that make use of the DecentSTM algorithm. Instead, they are applicable for systems that
generally support object migration, for example for load balancing or the consolidation of an
application onto fewer nodes to save energy.

The first protocol I developed is the reactive location update protocol, which updates outdated
location information upon object access. I discussed the design decisions and obstacles, together
with their solutions.

I evaluated this reactive location update protocol using an OMNeT++ network emulator. As
expected, the results show that the protocol leaves long chains of proxies, which increase the
object’s access latency. Moreover, there is no way to delete the remaining proxies other than by a
distributed garbage collection run.

One straight forward approach to reduce the access latency was to inform all referencing
objects about the migration of the referenced object. Therefore, I proposed two versions of a

139

10 Conclusion

proactive location update protocol, which use additional incoming references to proactively send
location update information upon object migration. These incoming references are backward
pointers that lead to all referencing objects. They allow the propagation of the new object location
of a migrated object to all nodes that hold referencing objects. This ensures that the location
information at the home nodes of all referencing objects is almost always up-to-date. Additionally,
it allows a proxy to detect when it is not referenced anymore, and can thus be deleted.

I described the protocol design with multiple state diagrams. Together with the protocol
description, they give a first indication that the proactive location update protocol design is
far more complex than the simple reactive location update. One of the main reasons for this
complexity is the overhead that is required to keep the location information consistent across
multiple nodes. Especially, it is not sufficient to keep all referencing objects up-to-date, but it is
additionally necessary to keep all referenced objects updated as well. Moreover, one has to keep
in mind that all objects in the system potentially migrate and also send location update messages.

This observation that the proactive location update protocol design is complex is supported by
the results from the evaluation of this protocol in the OMNeT++ network emulator. These results
showed a severe reference maintenance message overhead, which is more than twice as high
as the actual object access traffic. Thus, the first main result of this thesis is that the proactive
location update approach, even though it looked promising, is not worthwhile for the use in the
envisioned system. It might be useful, however, for objects that require the lowest possible object
access latency.

Hence, I developed an access path optimization for the reactive location update approach,
which prevents long chains of proxies. Instead of updating all objects that reference a migrated
object, this approach only propagates update messages down the proxy chain. To enable this
propagation, the optimization approach uses 1-hop backward pointers, which are not necessary
for the generic reactive location update approach, but which are required by the DecentSTM
protocol to ensure a consistent object version history.

I developed an analytic formula to answer the question how deep these updates should be
propagated down the proxy chain. This formula shows that the optimal propagation depth depends
on the access characteristics for the object, namely, on the read-to-write ratio, and the length of
the established proxy chain, which is caused by a number of implicit object migrations. Provided
these numbers are given, the formula allows the computation of an optimal propagation depth
that optimizes the total message costs for update propagation and object access. In conclusion, it
is worthwhile to send location updates further down the proxy chain, if the object is more often
read than it is written on remote nodes (implicitly migrated). Conversely, it is not worthwhile to
propagate the location update deep down the proxy chain if the object is often written but seldom
read.

I tested these analytic results with a software simulation that allowed larger networks and
more objects than the OMNeT++ emulator. I used this software simulation for two purposes:
First, I confirmed the results from the OMNeT++ emulation for the reactive location update
protocol. Secondly, I observed the message costs for different location update propagation depths.
The experimental results that measured these message costs matched the analytic results for
an optimal update propagation depth and supported the correctness of the formula. Hence, the
second main result of this thesis is a formula that allows the computation of the optimal update

140

propagation depth. This optimal update propagation depth minimizes the total message costs for
object accesses and object migrations, if the object access characteristic is known.

In addition to the optimal propagation depth, the software simulation examined the caching
characteristics of the two benchmark applications. Namely, it examined the likelihood that an
optimistically executed transaction succeeds when it operates on cached, and thus potentially
outdated, object versions. Here, the results from the software simulation have shown that it
depends largely on the used data structure and its access pattern how long a cached object version
is valid. With these results, I was able to classify the used benchmark applications and data
structures with respect to their applicability for the envisioned scenario.

In conclusion, this work provides recommendations for the design of the remote object access
for upcoming distributed compute clusters or embedded distributed systems.

141

List of Tables

2.1 Reference Representation of GAOs and LOCs. 21

6.1 Comparison of the different object location approaches. 75

9.1 Total number of NEW, GET and PUT operations. 115
9.2 Number of proxy forwards and deletions. 116
9.3 Access and reference maintenance messages, implicit migration only. 117
9.4 Number of operations/events with explicit migration Rate 0 % and 50 % 119
9.5 Comparison of number of proxy forwards and deletions. 122
9.6 Reference maintenance messages, migration rate 0 % and 50 %. 123
9.7 Proactive location update proxy forwards, migration Rate 0 % and 50 %. 123
9.8 Mean value and variance of GET Request msg. distributions 124
9.9 Mean value and variance of GET Request msg. distributions, migration rate 0 %

to 20 %. 126
9.10 Simulation parameters for the AVL and RB tree. 128
9.11 Cache access characteristics for AVL and RB tree. 131
9.12 Probability for number of proxy forwards for AVL and RB tree after bad cache hits.133
9.13 Theoretical optimal propagation depth kopt after bad cache hits. 135
9.14 Probability for number of proxy forwards after cache misses. 137
9.15 Theoretical optimal propagation depth kopt after cache misses. 137

143

List of Figures

2.1 Version history of object Y. 18
2.2 Object types using the example of Java. 19
2.3 Memory model . 21

4.1 AICU Stack. 45
4.2 AmbiComp SMs. 46
4.3 AmbiComp tool chain. 47
4.4 High-Level Diagram of the Cell Processor. 52
4.5 High-Level Diagram of SCC Processor. 53
4.6 Core to System Address Translation . 54

5.1 Conceptional system design. 57
5.2 Thread state diagram. 60
5.3 Detailed view of reference, InRef and GaoMap. 62
5.4 Remote references in the different Maps. 63

6.1 Proxy chain of object Y. 74

7.1 Simple object access with one migrating object. 80
7.2 Simple object access with two migrating object. 80
7.3 Reactive and recursive update of proxy chain. 82
7.4 Reactive and iterative update of proxy chain. 83
7.5 State diagram: Reactive location update protocol. 85
7.6 Update propagation with depth k = 1 and k = 2. 90
7.7 Path optimization after Fowler [Fow86]. 91

8.1 Incoming references per object or per node. 94
8.2 Reason for a failed InRef establishment. 95
8.3 Triangular-GET operation . 96
8.4 Triangular-PUT operation . 97
8.5 Enhanced Triangular-GET operation. 98
8.6 Enhanced Triangular-PUT operation. 99
8.7 Proxy sending InOut and OutIn Notify msg’s after migration. 100
8.8 State diagram: Runtime operations. 106
8.9 State diagram: Migration process. 108
8.10 State diagram: Incoming reference management. 111

145

List of Figures

9.1 RU: Histogram of proxy forwards for GET Request messages. 120
9.2 Histogram of GET Request and GET Response messages. 121
9.3 Comparison of average hop counts for RU, PU, EPU approach. 125
9.4 RB and AVL tree cache accesses. 129
9.5 Probability of good hit/total hit after x intermediate transactions. 132
9.6 Object version history and cached object versions. 132
9.7 Probability for number of proxy forwards for AVL and RB tree after bad cache hits.134
9.8 Message costs cbad for AVL and RB tree, depending on ksim, simulation with

1 000 nodes. 135
9.9 Probability for number of proxy forwards after cache misses. 136
9.10 Histogram of proxy forwards after cache misses. 136
9.11 Message costs cmiss for RB tree, depending on ksim after cache misses. 138

146

Bibliography

References for Chapter 1, Introduction

[Adv10] Advanced Micro Devices, Inc. Press Release: AMD’s 16-Core "Interlagos" Server
Processor Named a "Top New Product to Watch" for High Performance Computing.
http://www.amd.com/us/press-releases/Pages/16-core-interlagos-2
010nov16.aspx. Nov. 16, 2010.

[BCJ01] Rajkumar Buyya, Toni Cortes, and Hai Jin. “Single System Image”. In: Interna-
tional Journal of High Performance Computing Applications 15.2 (2001), pp. 124–
135.

[Bro06] Manfred Broy. “Challenges in Automotive Software Engineering”. In: Proc. of the
28th Int’l Conf. on Software Engineering (ICSE’06). Shanghai, China, May 20–28,
2006.

[BZ07] Victor R. Basili and Marvin V. Zelkowitz. “Empirical Studies to Build a Science of
Computer Science”. In: Communications of the ACM 50 (11 Nov. 2007), pp. 33–37.

[FM11] Samuel H. Fuller and Lynette I. Millett. “Computing Performance: Game Over or
Next Level?” In: Computer 44.1 (Jan. 2011), pp. 31–38.

[Hev+04] Alan R. Hevner et al. “Design Science in Information Systems Research”. In: MIS
Quarterly 28.1 (2004), pp. 74–105.

[Int11] Intel Corporation. The SCC Platform Overview, Revision 0.7. Version 0.7. 2011.

[Kul+09] Milind Kulkarni et al. “How Much Parallelism is There in Irregular Applications?”
In: ACM SIGPLAN Notices - PPoPP’09 44 (4 Feb. 2009), pp. 3–14.

[LH02] Gabriel Leen and Donal Heffernan. “Expanding Automotive Electronic Systems”.
In: IEEE Computer (Jan. 2002), pp. 88–93.

[Pfi98] Gregory F. Pfister. In Search of Clusters: The Ongoing Battle in Lowly Parallel
Computing (2nd ed.) Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1998. ISBN:
0-13-899709-8.

[Pha+05] Diep Pham et al. “The Design and Implementation of a First-Generation Cell
Processor”. In: Proc. of the IEEE Int’l Solid-State Circuits Conf. (ISSCC’05) Digest
of Technical Paper. San Francisco, California, USA, Feb. 10, 2005, pp. 184–592.

[SG10] Bianca Schroeder and Garth A. Gibson. “A Large-Scale Study of Failures in High-
Performance Computing Systems”. In: IEEE Transactions on Dependable and
Secure Computing 7.4 (Oct.–Dec. 2010), pp. 337–351.

147

http://www.amd.com/us/press-releases/Pages/16-core-interlagos-2010nov16.aspx
http://www.amd.com/us/press-releases/Pages/16-core-interlagos-2010nov16.aspx

Bibliography

[SHG93] Jaswinder Pal Singh, John L. Hennessy, and Anoop Gupta. “Scaling Parallel
Programs for Multiprocessors: Methodology and Examples”. In: Computer 26 (7
July 1993), pp. 42–50.

[SPW09] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. “DRAM Errors
in the Wild: A Large-Scale Field Study”. In: Proc. of the 11th Int’l Joint Conf. on
Measurement and Modeling of Computer Systems (SIGMETRICS’09). Seattle, WA,
USA, June 15–19, 2009.

[TOP11] TOP500.org. TOP 500 Supercomputer Sites. http://top500.org. 2011.

References for Chapter 2, Background

[All10] OSGi Alliance. OSGi Service Platform, Core Specification - Release 4, Version 4.3
- Early Draft 2. OSGi Alliance, Aug. 31, 2010.

[Amd67] Gene M. Amdahl. “Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities”. In: Proceedings of the Spring Joint Computer Conf.
(AFIPS’67). Atlantic City, New Jersey, USA, Apr. 18–20, 1967, pp. 483–485.

[Arg11] Argonne National Laboratory. MPICH2 Website. http://www.mcs.anl.gov/res
earch/projects/mpich2/. 2011.

[Arn+99] Ken Arnold et al. Jini Specification. 1st. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1999. ISBN: 0201616343.

[Bal+09] Pavan Balaji et al. “Toward Message Passing for a Million Processes: Characterizing
MPI, on a Massive Scale Blue Gene/P”. In: Computer Science - Research and
Development 24 (1 2009), pp. 11–19.

[Bas+08] Victor R. Basili et al. “Understanding the High-Performance-Computing Com-
munity: A Software Engineer’s Perspective”. In: IEEE Software 25.4 (July–Aug.
2008), pp. 29–36.

[BCA07] Christopher Barton, Călin Cascaval, and Nelson Amaral José. “A Characterization
of Shared Data Access Patterns in UPC Programs”. In: Proc. of the 19th Int’l Conf.
on Languages and Compilers for Parallel Computing (LCPC’06). New Orleans,
Louisiana, USA, 2007, pp. 111–125.

[BCJ01] Rajkumar Buyya, Toni Cortes, and Hai Jin. “Single System Image”. In: Interna-
tional Journal of High Performance Computing Applications 15.2 (2001), pp. 124–
135.

[BEF10] Annette Bieniusa, Johannes Eickhold, and Thomas Fuhrmann. “The Architecture
of the DecentVM – Towards a Decentralized Virtual Machine for Many-Core
Computing”. In: Proc. of the 4th Workshop on Virtual Machines and Intermediate
Languages (VMIL’10). Reno, Nevada, USA, Oct. 17, 2010.

148

http://top500.org
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.mcs.anl.gov/research/projects/mpich2/

Bibliography

[Ber+04] Konstantin Berlin et al. “Evaluating the Impact of Programming Language Features
on the Performance of Parallel Applications on Cluster Architectures”. In: Springer
Berlin / Heidelberg, 2004. Chap. Languages and Compilers for Parallel Computing,
pp. 194–208.

[BF10] Annette Bieniusa and Thomas Fuhrmann. “Consistency in Hindsight, A Fully
Decentralized STM Algorithm”. In: Proc. of the IEEE Int’l Symp. on Parallel
Distributed Processing (IPDPS’10). Atlanta, Georgia, USA, Apr. 2010, pp. 1–12.

[Bon+06] Dan Bonachea et al. Titanium Language Reference Manual. Tech. rep. UCB/EECS-
2005-15.1. University of California, Berkeley, Aug. 2006.

[Buy00] Rajkumar Buyya. “PARMON: A Portable and Scalable Monitoring System for
Clusters”. In: Software: Practice and Experience 30.7 (2000), pp. 723–739.

[CCZ04] David Callahan, Bradford L. Chamberlain, and Hans P. Zima. “The Cascade High
Productivity Language”. In: Proc. of the 9th Int’l Workshop on High-Level Parallel
Programming Models and Supportive Environments (HIPS’04). Santa Fe, New
Mexico, USA, Apr. 26, 2004, pp. 52–60.

[CDC99] William W. Carlson, Jesse M. Draper, and David E. Culler. Introduction to UPC
and Language Specification. Tech. rep. CCS-TR-99-157. George Washington Uni-
versity, 1999.

[CE00] Franck Cappello and Daniel Etiemble. “MPI versus MPI+OpenMP on IBM SP
for the NAS Benchmarks”. In: Proc. of the ACM/IEEE Conf. on Supercomputing
(SC’00). Dallas, Texas, USA, Nov. 4–10, 2000.

[Cha+05] Philippe Charles et al. “X10: An Object-Oriented Approach to Non-Uniform
Cluster Computing”. In: Proc. of the 20th Annual ACM SIGPLAN Conf. on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA’05). San
Diego, California, USA, Oct. 16–20, 2005, pp. 519–538.

[Cra11] Cray Inc. Chapel Language Specification, Version 0.8. http://chapel.cray.co
m/spec/spec-0.8.pdf. Apr. 11, 2011.

[FGK03] Ian Foster, William Gropp, and Carl Kesselman. “Sourcebook of Parallel Com-
puting”. In: San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003.
Chap. Message Passing and Threads, pp. 313–329.

[Fuh05] Thomas Fuhrmann. “Scalable Routing for Networked Sensors and Actuators”. In:
Proc. of the 2nd Annual IEEE Communications Society Conf. on Sensor and Ad
Hoc Communications and Networks (SECON’05). Santa Clara, California, USA,
Sept. 26–29, 2005, pp. 240–251.

[Gei+90] George Al Geist et al. A User’s Guide to PICL a Portable Instrumented Com-
munication Library. Tech. rep. ORNL/TM-11616. Oak Ridge National Lab, Oct.
1990.

[Gho+98] Douglas P. Ghormley et al. “GLUnix: A Global Layer Unix for a Network of
Workstations”. In: Software: Practice and Experience 28.9 (1998), pp. 929–961.

149

http://chapel.cray.com/spec/spec-0.8.pdf
http://chapel.cray.com/spec/spec-0.8.pdf

Bibliography

[Goe+06] Brian Goetz et al. Java Concurrency in Practice. 1. Addison-Wesley Professional,
2006.

[HM93] Maurice Herlihy and J. Eliot B. Moss. “Transactional Memory: Architectural Sup-
port for Lock-Free Data Structures”. In: Proc. of the 20th Annual Int’l Symposium
on Computer Architecture (ISCA’93). San Diego, California, USA, May 16–19,
1993, pp. 289–300.

[IEE04] IEEE Standard Organization. IEEE Std 1003.1,2004 Edition. http://www.unix.o
rg/version3/ieee_std.html. 2004.

[KB09] Hahn Kim and Robert Bond. “Multicore Software Technologies”. In: IEEE Signal
Processing Magazine 26.6 (Nov. 2009), pp. 80–89.

[Kus+94] Jeffrey Kuskin et al. “The Stanford FLASH Multiprocessor”. In: ACM SIGARCH
Computer Architecture News 22 (2 Apr. 1994), pp. 302–313.

[Lea99] Doug Lea. Concurrent Programming in Java: Design Principles and Patterns. 2.
Addison-Wesley Longman, 1999.

[Lee06] Edward A. Lee. “The Problem with Threads”. In: Computer 39.5 (2006), pp. 33–42.

[Liu+05] Hongzhou Liu et al. “Design and Implementation of a Single System Image Op-
erating System for Ad Hoc Networks”. In: Proc. of the 3rd Int’l Conf. on Mobile
Systems, Applications, and Services (MobiSys’05). Seattle, Washington, USA, 2005,
pp. 149–162.

[Luf09] Meredydd Luff. “Empirically Investigating Parallel Programming Paradigms: A
Null Result”. In: Proc. of the Evaluation and Usability of Programming Languages
and Tools (PLATEAU’09). Orlando, Florida, USA, Oct. 25–29, 2009.

[Mal+09] Damián A. Mallón et al. “Performance Evaluation of MPI, UPC and OpenMP on
Multicore Architectures”. In: Proc. of the 16th European PVM/MPI Users’ Group
Meeting on Recent Advances in Parallel Virtual Machine and Message Passing
Interface. Espoo, Finland, Sept. 7–10, 2009, pp. 174–184.

[MBL06] Milo Martin, Colin Blundell, and E. Lewis. “Subtleties of Transactional Memory
Atomicity Semantics”. In: IEEE Computer Architecture Letters 5 (2 July 2006).

[Neu45] John von Neumann. First Draft of a Report on the EDVAC. Tech. rep. Philadel-
phia, Pennsylvania, USA: University of Pennsylvania, Moore School of Electrical
Engineering, June 30, 1945.

[OB87] Ross A. Overbeek and James Boyle. Portable Programs for Parallel Processors.
Philadelphia, PA, USA: Saunders College Publishing, 1987. ISBN: 0030144043.

[Obj04] Object Management Group, Inc. Common Object Request Broker: Core Specifica-
tion, OMA: formal/04-03-12. http://www.omg.org/cgi-bin/doc?formal/04-
03-12.pdf. Version 3.0.3. 2004.

[Ope11] OpenMP Architecture Review Board. OpenMP Application Program Interface,
Version 3.1. http://openmp.org/wp/openmp-specifications/. July 2011.

150

http://www.unix.org/version3/ieee_std.html
http://www.unix.org/version3/ieee_std.html
http://www.omg.org/cgi-bin/doc?formal/04-03-12.pdf
http://www.omg.org/cgi-bin/doc?formal/04-03-12.pdf
http://openmp.org/wp/openmp-specifications/

Bibliography

[PAO09] Victor Pankratius, Ali-Reza Adl-Tabatabai, and Frank Otto. Does Transactional
Memory Keep Its Promises? Results from an Empirical Study. Tech. rep. TR 2009-
12. University of Karlsruhe, Germany: Institute for Program Structures and Data
Organization (IPD), University of Karlsruhe, Sept. 2, 2009.

[Pfi98] Gregory F. Pfister. In Search of Clusters: The Ongoing Battle in Lowly Parallel
Computing (2nd ed.) Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1998. ISBN:
0-13-899709-8.

[PG08] Imran Patel and John R. Gilbert. “An Empirical Study of the Performance and
Productivity of Two Parallel Programming Models”. In: Proc. of the IEEE Int’l
Symp. on Parallel and Distributed Processing (IPDPS’08). Miami, Florida, USA,
Apr. 14–18, 2008, pp. 1–7.

[PGL94] Jaswinder Pal Singh, Anoop Gupta, and Marc Levoy. “Parallel Visualization Al-
gorithms: Performance and Architectural Implications”. In: Computer 27.7 (July
1994), pp. 45–55.

[Pos10] Stephan-Alexander Posselt. “Design of a Reliable, Fully Decentralized Software
Transactional Memory Protocol”. Diploma thesis. Munich, Germany: Technische
Universität München, Aug. 2010.

[Rec+07] Renato J. Recio et al. A Remote Direct Memory Access Protocol Specification. RFC
5040 (Proposed Standard). Internet Engineering Task Force, Oct. 2007.

[RHJ09] Rolf Rabenseifner, Georg Hager, and Gabriele Jost. “Hybrid MPI/OpenMP Parallel
Programming on Clusters of Multi-Core SMP Nodes”. In: Proc. of the 17th Euromi-
cro Int’l Conf. on Parallel, Distributed and Network-based Processing (PDP’09).
Weimar, Germany, Feb. 18–20, 2009, pp. 427–436.

[RHW10] Christopher J. Rossbach, Owen S. Hofmann, and Emmett Witchel. “Is Transactional
Programming Actually Easier?” In: ACM SIGPLAN Notices - PPoPP ’10 45 (5 Jan.
2010), pp. 47–56.

[Sar+11] Vijay Saraswat et al. X10 Language Specification, Version 2.2. www.x10-lang.org.
May 31, 2011.

[SB01] Lorna A. Smith and J. Mark Bull. “Development of Mixed Mode MPI/OpenMP
Applications”. In: Scientific Programming 9.2,3 (Aug. 2001), pp. 83–98. ISSN:
1058-9244.

[Sha+01] Hongzhang Shan et al. “Message Passing Vs. Shared Address Space on a Clusters
of SMPs”. In: Proc. of the 15th Int’l Parallel & Distributed Processing Symp.
(IPDPS ’01). 2001, p. 63.

[SL03] Jeffrey M. Squyres and Andrew Lumsdaine. “A Component Architecture for
LAM/MPI”. In: Proc. of the 10th European PVM/MPI Users’ Group Meeting
(Euro PVM/MPI’03). Venice, Italy, Sept. 29–Oct. 2, 2003, pp. 379–387.

[SL05] Herb Sutter and James Larus. “Software and the Concurrency Revolution”. In:
ACM Queue 3.7 (Sept. 2005), pp. 54–62.

151

www.x10-lang.org

Bibliography

[Sni+98] Marc Snir et al. MPI - The Complete Reference: The MPI Core. 2nd. Vol. 1. The
MIT Press, 1998.

[SPF11] Björn Saballus, Stephan-Alexander Posselt, and Thomas Fuhrmann. “A Scalable
and Robust Runtime Environment for SCC Clusters”. In: Proc. of the 3rd MARC
Symposium. Ettlingen, Germany, July 5–6, 2011.

[SS10] Caitlin Sadowski and Andrew Shewmaker. “The Last Mile: Parallel Programming
and Usability”. In: Proc. of the FSE/SDP Workshop on Future of Software En-
gineering Research (FoSER’10). Santa Fe, New Mexico, USA, Nov. 7–8, 2010,
pp. 309–314.

[ST95] Nir Shavit and Dan Touitou. “Software Transactional Memory”. In: Proc. of the
14th Annual ACM Symposium on Principles of Distributed Computing (PODC’95).
Ottowa, Ontario, Canada, Aug. 20–23, 1995, pp. 204–213.

[Sun90] Vaidy S. Sunderam. “PVM: A Framework for Parallel Distributed Computing”. In:
Concurrency: Practice and Experience 2.4 (1990), pp. 315–339.

[The05] The UPC Consortium. UPC Language Specification, Version 1.2. url-
http://upc.gwu.edu/documentation.html. May 31, 2005.

[Wal92] David W. Walker. Standards for Message-Passing in a Distributed Memory En-
vironment. Tech. rep. ORNL/TM-12147. Oak Ridge National Laboratory, Aug.
1992.

[Yel+98] Kathy Yelick et al. “Titanium: A High-Performance Java Dialect”. In: Concurrency:
Practice and Experience 10.11-13 (1998), pp. 825–836.

References for Chapter 3, Related Work

[ACG86] Sudhir Ahuja, Nicholas Carriero, and David Gelernter. “Linda and Friends”. In:
Computer 19.8 (1986), pp. 26–34.

[Adl+96] Ali-Reza Adl-Tabatabai et al. “Efficient and Language-Independent Mobile Pro-
grams”. In: SIGPLAN Notices 31 (5 May 1996), pp. 127–136.

[AFT99] Yariv Aridor, Michael Factor, and Avi Teperman. “cJVM: A Single System Image
of a JVM on a Cluster”. In: Proc. of the Int’l Conf. on Parallel Processing (ICPP’99).
Wakamatsu, Japan, Sept. 21–24, 1999, pp. 4–11.

[AHN02] Sara Alouf, Fabrice Huet, and Philippe Nain. “Forwarders vs. Centralized Server:
An Evaluation of Two Approaches for Locating Mobile Agents”. In: Performance
Evaluation 49.1-4 (2002), pp. 299–319.

[Aky+02] Ian F. Akyildiz et al. “Wireless Sensor Networks: A Survey”. In: Computer Net-
works 38.4 (2002), pp. 393–422.

[Alp+05] Bowen Alpern et al. “The Jikes Research Virtual Machine Project: Building
an Open-Source Research Community”. In: IBM Systems Journal 44.2 (2005),
pp. 399–417.

152

Bibliography

[Amz+96] Cristiana Amza et al. “TreadMarks: Shared Memory Computing on Networks of
Workstations”. In: Computer 29 (1996), pp. 18–28.

[And+01] Johan Andersson et al. “Kaffemik –A distributed JVM on a Single Address Space
Architecture”. In: Proc. of the 4th Int’l Conf. on SCI-based Technology and Re-
search (SCI-Europe’01). Dublin, Ireland, Oct. 1–3, 2001.

[Ant+01] Gabriel Antoniu et al. “The Hyperion System: Compiling Multithreaded Java Byte-
code for Distributed Execution”. In: Parallel Computing 27.10 (2001), pp. 1279–
1297.

[APF10] Muhammad Aleem, Radu Prodan, and Thomas Fahringer. “JavaSymphony: A
Programming and Execution Environment for Parallel and Distributed Many-Core
Architectures”. In: Proc. of the European on Parallel Processing (Euro-Par’10).
Naples, Italy, Aug. 31–Sept. 3, 2010.

[Ari+00] Yariv Aridor et al. “A High Performance Cluster JVM Presenting a Pure Single
System Image”. In: Proc. of the ACM Conf. on Java Grande (JAVA’00). San
Francisco, California, USA, 2000, pp. 168–177.

[Arm+09] Michael Armbrust et al. Above the Clouds: A Berkeley View of Cloud Computing.
Tech. rep. UCB/EECS-2009-28. Electrical Engineering and Computer Sciences,
University of California at Berkeley, Feb. 9, 2009.

[Azu11] Azul Systems, Inc. Zing Java Virtual Machine. http://www.azulsystems.com/.
2011.

[Bad+06] Laurent Baduel et al. “Programming, Composing, Deploying for the Grid”. In: Grid
Computing: Software Environments and Tools. Springer London, 2006, pp. 205–
229.

[Bal+98] Henri E. Bal et al. “Performance Evaluation of the Orca Shared-Object System”.
In: ACM Transactions on Computer Systems (TOCS) 16 (1 Feb. 1998), pp. 1–40.

[Bau+00] Françoise Baude et al. “Communicating Mobile Active Objects in Java”. In: Proc.
of the 8th Int’l Conf. on High-Performance Computing and Networking (HPCN-
Europe’00). 2000, pp. 633–643.

[BK07] Jonas Bonér and Eugene Kuleshov. “Clustering the Java Virtual Machine Using
Aspect-Oriented Programming”. In: Proc. of the 6th Int’l Conf. on Aspect-Oriented
Software Development (AOSD’07). Vancouver, British Columbia, Canada, Mar. 12–
16, 2007.

[BMT03] Mario Bisignano, Giuseppe Di Modica, and Orazio Tomarchio. “Mobile Agent
Location Management: A Comparison Between CORBA and P2P Based Systems”.
In: IEEE Symp. on Computers and Communications (2003), p. 1029.

[Buy99] Rajkumar Buyya. High Performance Cluster Computing: Architectures and Sys-
tems, Vol. 1. Prentice Hall, 1999. ISBN: 978-0130137845.

[Cao+02] Jiannong Cao et al. “Mailbox-Based Scheme for Mobile Agent Communications”.
In: Computer 35.9 (Sept. 2002), pp. 54–60.

153

http://www.azulsystems.com/

Bibliography

[Cao+03] Jiannong Cao et al. “Path Compression in Forwarding-Based Reliable Mobile
Agent Communications”. In: Proc. of the 32nd Int’l Conf. on Parallel Processing
(ICPP’03). Kaohsiung, Taiwan, Oct. 6–9, 2003, pp. 313–320.

[CGL07] Min Chen, Sergio Gonzalez, and Victor C. M. Leung. “Applications and Design
Issues for Mobile Agents in Wireless Sensor Networks”. In: IEEE Wireless Com-
munications 14.6 (Dec. 2007), pp. 20–26.

[Chu+97] P. Emerald Chung et al. DCOM and CORBA Side by Side, Step by Step, and Layer
by Layer. http://research.microsoft.com/en-us/um/people/ymwang/pape
rs/html/dcomncorba/s.html. Sept. 3, 1997.

[CWH99] Benny Wang-Leung Cheung, Cho-Li Wang, and Kai Hwang. “A Migrating-Home
Protocol for Implementing Scope Consistency Model on a Cluster of Workstations”.
In: Proc. of the Int’l Conf. on Parallel and Distributed Processing Techniques and
Applications (PDPTA’99). Las Vegas, Nevada, USA, 1999.

[Day+93] Mark Day et al. “References to Remote Mobile Objects in Thor”. In: ACM Letters
on Programming Languages and Systems (LOPLAS) 2.1-4 (1993), pp. 115–126.

[DH98] Michael J. Demmer and Maurice Herlihy. “The Arrow Distributed Directory Pro-
tocol”. In: Proc. of the 12th Int’l Symp. on Distributed Computing (DISC ’98).
London, UK: Springer-Verlag, 1998, pp. 119–133. ISBN: 3-540-65066-0.

[Dow98] Troy Bryan Downing. Java RMI: Remote Method Invocation. 1st. Foster City,
California, USA: IDG Books Worldwide, Inc., 1998.

[DS98] Kevin Dowd and Charles Severance. High Performance Computing. Sebastopol,
CA, USA: O’Reilly & Associates, Inc., 1998. ISBN: 1-56592-032-5.

[EE98] Guy Eddon and Henry Eddon. Inside Distributed COM. Microsoft Press, 1998.

[Fah00] Thomas Fahringer. “JavaSymphony: A System for Development of Locality-
Oriented Distributed and Parallel Java Applications”. In: Proc. of the IEEE Int’l
Conf. on Cluster Computing (CLUSTER’00). Chemnitz, Germany, Nov. 28–Dec. 1,
2000, pp. 145–152.

[FJ05] Thomas Fahringer and Alexandru Jugravu. “JavaSymphony: A New Programming
Paradigm to Control and Synchronize Locality, Parallelism and Load Balancing for
Parallel and Distributed Computing”. In: Concurrency and Computation: Practice
and Experience 17.7-8 (2005), pp. 1005–1025.

[Fos02] Ian Foster. “What is the Grid? A Three Point Checklist”. In: GRIDtoday 6 (July
2002).

[Fos+03] Ian Foster et al. “The Physiology of the Grid”. In: Grid Computing. John Wiley &
Sons, Ltd, 2003. Chap. 8, pp. 217–249. ISBN: 9780470867167.

[FSS03] Michael Factor, Assaf Schuster, and Konstantin Shagin. “JavaSplit: A Runtime
for Execution of Monolithic Java Programs on Heterogenous Collections of Com-
modity Workstations”. In: Proc. of the 5th IEEE Int’l Conf. on Cluster Computing
(CLUSTER’03). Hong Kong, China, Dec. 1–4, 2003, pp. 110–117.

154

http://research.microsoft.com/en-us/um/people/ymwang/papers/html/dcomncorba/s.html
http://research.microsoft.com/en-us/um/people/ymwang/papers/html/dcomncorba/s.html

Bibliography

[FSS04] Michael Factor, Assaf Schuster, and Konstantin Shagin. “A Distributed Runtime
for Java: Yesterday and Today”. In: Proc. of the 18th Int’l Parallel and Distributed
Processing Symp. (IPDPS’04). Santa Fe, New Mexico, USA, Apr. 26–30, 2004.

[FWL02] Weijian Fang, Cho-Li Wang, and Francis C. M. Lau. “Efficient Global Object
Space Support for Distributed JVM on Cluster”. In: Proc. of the Int’l Conf. on
Parallel Processing (ICPP ’02). Washington, DC, USA: IEEE Computer Society,
2002, pp. 371–378. ISBN: 0-7695-1677-7.

[FWL03] Weijian Fang, Cho-Li Wang, and Francis C. M. Lau. “On the Design of Global
Object Space for Efficient Multi-Threading Java Computing on Clusters”. In:
Parallel Computing 29.11-12 (2003), pp. 1563–1587.

[Gel85] David Hillel Gelernter. “Generative Communication in Linda”. In: ACM Transac-
tions on Programming Languages and Systems (TOPLAS) 7 (1 Jan. 1985), pp. 80–
112.

[Göc+04] Ralph Göckelmann et al. “Plurix, A Distributed Operating System Extending the
Single System Image Concept”. In: Proc. of the Canadian Conf. on Electrical
and Computer Engineering (CCECE’04). Vol. 4. Niagara Falls, Ontario, Canada,
May 2–5, 2004, 1985 –1988 Vol.4.

[Gos95] James Gosling. “Java Intermediate Bytecodes”. In: Proc. of the 22nd ACM Symp.
on Principles of Programming Languages Papers (POPL’95). San Francisco, Cali-
fornia, USA, Jan. 23–25, 1995, pp. 111–118.

[Hay08] Brian Hayes. “Cloud Computing”. In: Communications of the ACM 51 (7 July
2008), pp. 9–11.

[Hen08] Michi Henning. “The Rise and Fall of CORBA”. In: Communications of the ACM
51.8 (Aug. 2008), pp. 52–57.

[Hen98] Michi Henning. “Binding, Migration, and Scalability in CORBA”. In: Communica-
tions of the ACM 41.10 (1998), pp. 62–71.

[Her99] Maurice Herlihy. “The Aleph Toolkit: Support for Scalable Distributed Shared
Objects”. In: Network-Based Parallel Computing: Communication, Architecture,
and Applications. 1999, pp. 137–149.

[HW99] Maurice Herlihy and Michael P. Warres. “A Tale of Two Directories: Implementing
Distributed Shared Objects in Java”. In: Proc. of the ACM Conf. on Java Grande
(JAVA’99). 1999, pp. 99–108.

[IEE93] IEEE Standard Organization. IEEE Std 1596-1992: IEEE Standard for Scalable
Coherent Interface. Aug. 1993.

[JES11] JESSICA3 Project. An Advanced Distributed Java Virtual Machine on Commodity
Clusters for High-Performance Memory-Intensive Computing. http://i.cs.hku.
hk/~clwang/projects/JESSICA2/jessica3.htm. 2011.

[JES11] JESSICA4 Project. JESSICA4 Project. http://i.cs.hku.hk/~clwang/project
s/JESSICA4.htm. 2011.

155

http://i.cs.hku.hk/~clwang/projects/JESSICA2/jessica3.htm
http://i.cs.hku.hk/~clwang/projects/JESSICA2/jessica3.htm
http://i.cs.hku.hk/~clwang/projects/JESSICA4.htm
http://i.cs.hku.hk/~clwang/projects/JESSICA4.htm

Bibliography

[Jul+88] Eric Jul et al. “Fine-Grained Mobility in the Emerald System”. In: ACM Transac-
tions on Computer Systems (TOCS) 6.1 (1988), pp. 109–133.

[Kaf11] Kaffe.org Website. Kaffe VM. http://www.kaffe.org/. 2011.

[Kel95] Peter Keleher. “Lazy Release Consistency for Distributed Shared Memory”. PhD
thesis. Rice University, Houston, Texas, 1995.

[Kna97] Frederick Knabe. “An Overview of Mobile Agent Programming”. In: Analysis and
Verification of Multiple-Agent Languages. Vol. 1192. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 1997, pp. 100–115.

[Kus+94] Jeffrey Kuskin et al. “The Stanford FLASH Multiprocessor”. In: ACM SIGARCH
Computer Architecture News 22 (2 Apr. 1994), pp. 302–313.

[LDS93] Barbara Liskov, Mark Day, and Liuba Shrira. “Distributed Object Management in
Thor”. In: Distributed Object Management (1993), pp. 79–91.

[LH89] Kai Li and Paul Hudak. “Memory Coherence in Shared Virtual Memory Systems”.
In: ACM Transactions on Computer Systems (TOCS) 7.4 (1989), pp. 321–359.

[Liu+05] Hongzhou Liu et al. “Design and Implementation of a Single System Image Op-
erating System for Ad Hoc Networks”. In: Proc. of the 3rd Int’l Conf. on Mobile
Systems, Applications, and Services (MobiSys’05). Seattle, Washington, USA, 2005,
pp. 149–162.

[LO99] Danny B. Lange and Mitsuru Oshima. “Seven Good Reasons for Mobile Agents”.
In: Communications of the ACM 42 (3 Mar. 1999), pp. 88–89.

[Maa+01] Jason Maassen et al. “Efficient Java RMI for Parallel Programming”. In: ACM
Transactions on Programming Languages and Systems (TOPLAS) 23 (6 Nov. 2001),
pp. 747–775.

[Mic11] Microsoft Corporation. Distributed Component Object Model (DCOM) Remote
Protocol Specification. http://download.microsoft.com/download/a/e/
6/ae6e4142-aa58-45c6-8dcf-a657e5900cd3/%5BMS-DCOM%5D.pdf. June 17,
2011.

[Mil+00] Dejan S. Milojicic et al. “Process Migration”. In: ACM Computing Surveys (CSUR)
32 (3 Sept. 2000), pp. 241–299.

[MMH98] Mark W. MacBeth, Keith A. McGuigan, and Philip J. Hatcher. “Executing Java
Threads in Parallel in a Distributed-Memory Environment”. In: Proc. of the Conf.
of the Centre for Advanced Studies on Collaborative Research (CASCON’98).
Toronto, Ontario, Canada: IBM Press, 1998, pp. 40–54.

[Moc87] Paul V. Mockapetris. Domain Names - Implementation and Specification. RFC
1035 (Standard). Internet Engineering Task Force, Nov. 1987.

[MPP87] Barton P. Miller, David L. Presotto, and Michael L. Powell. “DEMOS/MP: The
Development of a Distributed Operating System”. In: Software - Practice & Expe-
rience 17 (4 Apr. 1987), pp. 277–290.

156

http://www.kaffe.org/
http://download.microsoft.com/download/a/e/6/ae6e4142-aa58-45c6-8dcf-a657e5900cd3/%5BMS-DCOM%5D.pdf
http://download.microsoft.com/download/a/e/6/ae6e4142-aa58-45c6-8dcf-a657e5900cd3/%5BMS-DCOM%5D.pdf

Bibliography

[MR02] Luc Moreau and Daniel Ribbens. “Mobile Objects in Java”. In: Scientific Program-
ming 10.1 (2002), pp. 91–100. ISSN: 1058-9244.

[MRS08] Anolan Milanés, Noemi de La Rocque Rodriguez, and Bruno Schulze. “State of
the Art in Heterogeneous Strong Migration of Computations”. In: Concurrency
and Computation: Practice and Experience 20.13 (2008), pp. 1485–1508.

[MS10] Ross McIlroy and Joe Sventek. “Hera-JVM: A Runtime System for Heterogeneous
Multi-Core Architectures”. In: Proc. of the 25th ACM Int’l Conf. on Object Oriented
Programming Systems Languages, and Applications (OOPSLA ’10). 2010, pp. 205–
222.

[MWL00a] Matchy J. M. Ma, Cho-Li Wang, and Francis C. M. Lau. “JESSICA: Java-Enabled
Single-System-Image Computing Architecture”. In: Journal of Parallel and Dis-
tributed Computing 60.10 (2000), pp. 1194–1222.

[MWL00b] Matchy Ma, Cho-Li Wang, and Francis Lau. “Delta Execution: A Preemptive Java
Thread Migration Mechanism”. In: Cluster Computing 3.2 (2000), pp. 83–94.

[MZ01] Cesar Munoz and Janusz Zalewski. “Architecture and Performance of Java-Based
Distributed Object Models: CORBA vs RMI”. In: Real-Time Systems 21.1/2 (2001),
pp. 43–75.

[NGF08] Albert Noll, Andreas Gal, and Michael Franz. “CellVM: A Homogeneous Virtual
Machine Runtime System for a Heterogeneous Single-Chip Multiprocessor”. In:
Proc. of the Workshop on Cell Systems and Applications. Beijing, China, June
2008.

[Obj02] Object Management Group, Inc. Life Cycle Service Specification, Version 1.2.
http://www.omg.org/spec/LFCYC/1.2/PDF. Version 1.2. Sept. 2002.

[Obj04] Object Management Group, Inc. Naming Service Specification, Version 1.3. http:
//www.omg.org/spec/NAM/1.3/PDF. Version 1.3. 2004.

[Obj08a] Object Management Group, Inc. Common Object Request Broker Architecture
(CORBA) Specification, Version 3.1, Part 1. http://www.omg.org/spec/CORBA/
3.1/Interfaces/PDF/. Version 3.1. 2008.

[Obj08b] Object Management Group, Inc. Common Object Request Broker Architecture
(CORBA) Specification, Version 3.1, Part 2. http://www.omg.org/spec/CORBA/
3.1/Interoperability/PDF. Version 3.1. 2008.

[OTG02] Scott Oaks, Bernard Traversat, and Li Gong. JXTA in a Nutshell. O’Reilly Media,
2002.

[Pfi98] Gregory F. Pfister. In Search of Clusters: The Ongoing Battle in Lowly Parallel
Computing (2nd ed.) Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1998. ISBN:
0-13-899709-8.

[PHN00] Michael Philippsen, Bernhard Haumacher, and Christian Nester. “More Efficient
Serialization and RMI for Java”. In: Concurrency: Practice and Experience 12.7
(2000), pp. 495–518.

157

http://www.omg.org/spec/LFCYC/1.2/PDF
http://www.omg.org/spec/NAM/1.3/PDF
http://www.omg.org/spec/NAM/1.3/PDF
http://www.omg.org/spec/CORBA/3.1/Interfaces/PDF/
http://www.omg.org/spec/CORBA/3.1/Interfaces/PDF/
http://www.omg.org/spec/CORBA/3.1/Interoperability/PDF
http://www.omg.org/spec/CORBA/3.1/Interoperability/PDF

Bibliography

[PK98] Vu Anh Pham and Ahmed Karmouch. “Mobile Software Agents: An Overview”.
In: Communications Magazine, IEEE 36.7 (July 1998), pp. 26–37.

[PM83] Michael L. Powell and Barton P. Miller. “Process Migration in DEMOS/MP”. In:
Proc. of the 9th ACM Symp. on Operating Systems Principles (SOSP’83). Bretton
Woods, New Hampshire, United States, Oct. 10–13, 1983, pp. 110–119.

[PR99] Charles E. Perkins and Elisabeth M. Royer. “Ad hoc On-Demand Distance Vec-
tor Routing”. In: Proc. 2nd IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA’99). New Orleans, LA, USA, Feb. 25–26, 1999, pp. 90–100.

[PS01] Evaggelia Pitoura and George Samaras. “Locating Objects in Mobile Computing”.
In: IEEE Transactions on Knowledge and Data Engineering 13.4 (2001), pp. 571–
592.

[PS98] Frantisek Plasil and Michael Stal. “An Architectural View of Distributed Objects
and Components in CORBA, Java RMI and COM/DCOM”. In: Software - Concepts
& Tools 19 (1 1998), pp. 14–28.

[PZ97] Michael Philippsen and Matthias Zenger. “JavaParty – Transparent Remote Objects
in Java”. In: Concurrency: Practice and Experience 9.11 (Nov. 1997), pp. 1225–
1242.

[SJ95] Brjarne Steensgaard and Eric Jul. “Object and Native Code Thread Mobility Among
Heterogeneous Computers”. In: Proc. of the 15th ACM Symp. on Operating Systems
Principles (SOSP’95). Copper Mountain, Colorado, USA, Dec. 3–6, 1995, pp. 68–
77.

[Sri95] Raj Srinivasan. RPC: Remote Procedure Call Protocol Specification Version 2.
RFC 1831 (Proposed Standard). Obsoleted by RFC 5531. Internet Engineering
Task Force, Aug. 1995. URL: http://www.ietf.org/rfc/rfc1831.txt.

[Tan+91] Andrew S. Tanenbaum et al. “The Amoeba Distributed Operating System – A
Status Report”. In: Computer Communications 14.6 (1991), pp. 324–335.

[Ter11a] Terracotta Inc. A Technical Introduction to Terracotta. www.uwyn.com/download/
intro_terracotta.pdf. 2011.

[Ter11b] Terracotta Inc. The Definitive Guide to Terracotta. New York, USA: Apress Media
LLC, Mar. 2011.

[YMG08] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. “Wireless Sensor Network
Survey”. In: Computer Networks 52.12 (2008), pp. 2292–2330.

[Zhu+04] Wenzhang Zhu et al. “A New Transparent Java Thread Migration System Using
Just-In-Time Recompilation”. In: Proc. of the 16th IASTED Int’l Conf. on Parallel
and Distributed Computing and Systems (PDCS’04). MIT Cambridge, USA. Nov.
2004, pp. 766 –771.

[Zhu05] Wenzhang Zhu. “Distributed Java Virtual Machine with Thread Migration”. PhD
thesis. Mar. 31, 2005.

158

http://www.ietf.org/rfc/rfc1831.txt
www.uwyn.com/download/intro_terracotta.pdf
www.uwyn.com/download/intro_terracotta.pdf

Bibliography

[ZWL02] Wenzhang Zhu, Cho-Li Wang, and Francis Chi-Moon Lau. “JESSICA2: A Dis-
tributed Java Virtual Machine with Transparent Thread Migration Support”. In:
Proc. of the IEEE Int’l Conf. on Cluster Computing (CLUSTER’02). Chicago,
Illinois, USA, Sept. 23–26, 2002, pp. 381–388.

References for Chapter 4, Environment

[Arn86] James Q. Arnold. “Shared Libraries on UNIX System V”. In: Proc. of the USENIX
Summer Conf. Altanta, Georgia, USA, June 9–13, 1986, pp. 395–404.

[Asa+06] Krste Asanovic et al. The Landscape of Parallel Computing Research: A View
from Berkeley. Tech. rep. UCB/EECS-2006-183. EECS Department, University of
California, Berkeley, Dec. 18, 2006.

[Bar10] Max Baron. “The Single-chip Cloud Computer – Intel Networks 48 Pentiums on a
Chip”. In: Microprocessor Report (2010).

[Dal08] DalvikVM.com. Dalvik Virtual Machine. http://www.dalvikvm.com/. 2008.

[Eic+08] Johannes Eickhold et al. “AmbiComp: A Platform for Distributed Execution of
Java Programs on Embedded Systems by Offering a Single System Image”. In:
Proc. of the AmI-Blocks Workshop at the European Conf. on Ambient Intelligence
(AmI-Blocks’08). Nuremberg, Germany, Nov. 19, 2008.

[Fla+05] Brian Flachs et al. “A Streaming Processing Unit for a Cell Processor”. In: Proc. of
the IEEE Int’l Solid-State Circuits Conf. (ISSCC’05). San Francisco, California,
USA, Feb. 10, 2005, pp. 134–135.

[Göd+07] Dominik Göddeke et al. “Exploring Weak Scalability for FEM Calculations on a
GPU-Enhanced Cluster”. In: Parallel Computing 33.10-11 (2007), pp. 685 –699.

[Gos95] James Gosling. “Java Intermediate Bytecodes”. In: Proc. of the 22nd ACM Symp.
on Principles of Programming Languages Papers (POPL’95). San Francisco, Cali-
fornia, USA, Jan. 23–25, 1995, pp. 111–118.

[Int11a] Intel Corporation. The SCC Platform Overview, Revision 0.7. Version 0.7. 2011.

[Int11b] Intel Corporation. The SCC Programmer’s Guide, Revision 0.61. Version 0.61.
2011.

[Kah+05] James A. Kahle et al. “Introduction to the Cell Multiprocessor”. In: IBM Journal of
Research and Development 49.4.5 (July 2005), pp. 589–604.

[KPP06] Michael Kistler, Michael Perrone, and Fabrizio Petrini. “Cell Multiprocessor Com-
munication Network: Built for Speed”. In: IEEE Micro 26.3 (May–June 2006),
pp. 10–23.

[LH07] David Luebke and Greg Humphreys. “How GPUs Work”. In: Computer 40.2 (Feb.
2007), pp. 96–100.

[Mic11] SUN Microsystems. Java ME Technical Documentation. http://download.orac
le.com/javame/. 2011.

159

http://www.dalvikvm.com/
http://download.oracle.com/javame/
http://download.oracle.com/javame/

Bibliography

[MW11] Tim Mattson and Rob F. van der Wijngaart. RCCE: A Small Library for Many-Core
Communication, Version 0.7. Version 0.7. 2011.

[Owe+07] John D. Owens et al. “A Survey of General-Purpose Computation on Graphics
Hardware”. In: Computer Graphics Forum 26.1 (2007), pp. 80–113.

[Pep10] Christian Peper. Towards an Object Distribution Management for Heterogeneous
Ad-hoc Systems. Tech. rep. IESE-Report No. 088.10/E. Fraunhofer-Platz 1, 67663
Kaiserslautern, Germany: Fraunhofer IESE, Dec. 10, 2010.

[Pha+05] Diep Pham et al. “The Design and Implementation of a First-Generation Cell
Processor”. In: Proc. of the IEEE Int’l Solid-State Circuits Conf. (ISSCC’05) Digest
of Technical Paper. San Francisco, California, USA, Feb. 10, 2005, pp. 184–592.

[Raj+10] Ragunathan Rajkumar et al. “Cyber-Physical Systems: The Next Computing Rev-
olution”. In: Proc. of the 47th ACM/IEEE Design Automation Conf. (DAC’10).
Anaheim, California, USA, June 13–18, 2010, pp. 731–736.

[Sha+08] Lui Sha et al. “Cyber-Physical Systems: A New Frontier”. In: Proc. of the IEEE Int’l
Conf. on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’08).
Taichung, Taiwan, June 11–13, 2008, pp. 1–9.

[SSB03] Nik Shaylor, Douglas N. Simon, and William R. Bush. “A Java Virtual Machine
Architecture for Very Small Devices”. In: Proc. of the ACM SIGPLAN Conf. on
Language, Compiler, and Tool for Embedded Systems (LCTES’03). San Diego,
California, USA, 2003, pp. 34–41.

[The11] The Eclipse Foundation. Eclipse Platform. http://www.eclipse.org. 2011.

References for Chapter 5, System Specification

[BEF10] Annette Bieniusa, Johannes Eickhold, and Thomas Fuhrmann. “The Architecture
of the DecentVM – Towards a Decentralized Virtual Machine for Many-Core
Computing”. In: Proc. of the 4th Workshop on Virtual Machines and Intermediate
Languages (VMIL’10). Reno, Nevada, USA, Oct. 17, 2010.

[BF10] Annette Bieniusa and Thomas Fuhrmann. “Consistency in Hindsight, A Fully
Decentralized STM Algorithm”. In: Proc. of the IEEE Int’l Symp. on Parallel
Distributed Processing (IPDPS’10). Atlanta, Georgia, USA, Apr. 2010, pp. 1–12.

[JL96] Richard Jones and Rafael Lins. Garbage collection: algorithms for automatic
dynamic memory management. New York, NY, USA: John Wiley & Sons, Inc.,
1996. ISBN: 0-471-94148-4.

[PS95] David Plainfossé and Marc Shapiro. “A Survey of Distributed Garbage Collection
Techniques”. In: Proc. of the Int’l Workshop on Memory Management (IWMM’95).
Kinross, Scotland, UK, Sept. 27–29, 1995, pp. 211–249.

160

http://www.eclipse.org

Bibliography

References for Chapter 6, Locating Objects

[AFT99] Yariv Aridor, Michael Factor, and Avi Teperman. “cJVM: A Single System Image
of a JVM on a Cluster”. In: Proc. of the Int’l Conf. on Parallel Processing (ICPP’99).
Wakamatsu, Japan, Sept. 21–24, 1999, pp. 4–11.

[Bal+98] Henri E. Bal et al. “Performance Evaluation of the Orca Shared-Object System”.
In: ACM Transactions on Computer Systems (TOCS) 16 (1 Feb. 1998), pp. 1–40.

[Bha+07] Sangeeta Bhattacharya et al. “Design and Implementation of a Flexible Location
Directory Service for Tiered Sensor Networks”. In: Proc. of the 3rd IEEE Int’l
Conf. on Distributed Computing in Sensor Systems (DCOSS’07). Santa Fe, New
Mexico, USA, 2007, pp. 158–173.

[BMT03] Mario Bisignano, Giuseppe Di Modica, and Orazio Tomarchio. “Mobile Agent
Location Management: A Comparison Between CORBA and P2P Based Systems”.
In: IEEE Symp. on Computers and Communications (2003), p. 1029.

[BO99] Bhargav Bellur and Richard G. Ogier. “A Reliable, Efficient Topology Broadcast
Protocol for Dynamic Networks”. In: Proc. of the 18th IEEE Annual Joint Conf. of
the IEEE Computer and Communications Societies (INFOCOM’99). Vol. 1. Mar.
1999, pp. 178–186.

[CWH99] Benny Wang-Leung Cheung, Cho-Li Wang, and Kai Hwang. “A Migrating-Home
Protocol for Implementing Scope Consistency Model on a Cluster of Workstations”.
In: Proc. of the Int’l Conf. on Parallel and Distributed Processing Techniques and
Applications (PDPTA’99). Las Vegas, Nevada, USA, 1999.

[Cza00] Grzegorz Czajkowski. “Application Isolation in the Java Virtual Machine”. In:
Proc. of the 15th ACM SIGPLAN Conf. on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA’00). Minneapolis, Minnesota, USA,
Oct. 15–19, 2000, pp. 354–366.

[DM78] Yogen K. Dalal and Robert M. Metcalfe. “Reverse Path Forwarding of Broadcast
Packets”. In: Communications of the ACM 21.12 (1978), pp. 1040–1048.

[Fow86] Robert Joseph Fowler. “The Complexity of Using Forwarding Addresses for Decen-
tralized Object Finding”. In: Proc. of the 5th Annual ACM Symp. on Principles of
Distributed Computing (PODC’86). Calgary, Alberta, Canada, Aug. 11–13, 1986,
pp. 108–120.

[FSS06] Michael Factor, Assaf Schuster, and Konstantin Shagin. “A Platform-Independent
Distributed Runtime for Standard Multithreaded Java”. In: International Journal of
Parallel Programming 34 (2 Apr. 2006), pp. 113–142.

[FWL03] Weijian Fang, Cho-Li Wang, and Francis C. M. Lau. “On the Design of Global
Object Space for Efficient Multi-Threading Java Computing on Clusters”. In:
Parallel Computing 29.11-12 (2003), pp. 1563–1587.

161

Bibliography

[Göc+04] Ralph Göckelmann et al. “Plurix, A Distributed Operating System Extending the
Single System Image Concept”. In: Proc. of the Canadian Conf. on Electrical
and Computer Engineering (CCECE’04). Vol. 4. Niagara Falls, Ontario, Canada,
May 2–5, 2004, 1985 –1988 Vol.4.

[Gos+00] James Gosling et al. Java Language Specification, Second Edition: The Java Series.
2nd. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2000.
ISBN: 0201310082.

[Her99] Maurice Herlihy. “The Aleph Toolkit: Support for Scalable Distributed Shared
Objects”. In: Network-Based Parallel Computing: Communication, Architecture,
and Applications. 1999, pp. 137–149.

[HST01] Weiwu Hu, Weisong Shi, and Zhimin Tang. “Optimizing Home-Based Software
DSM Protocols”. In: Cluster Computing 4 (3 July 2001), pp. 235–242. ISSN:
1386-7857.

[LB98] Sheng Liang and Gilad Bracha. “Dynamic Class Loading in the Java Virtual
Machine”. In: Proc. of the 13th ACM SIGPLAN Conf. on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA’98). Vancouver, British
Columbia, Canada, Oct. 18–22, 1998, pp. 36–44.

[LH89] Kai Li and Paul Hudak. “Memory Coherence in Shared Virtual Memory Systems”.
In: ACM Transactions on Computer Systems (TOCS) 7.4 (1989), pp. 321–359.

[Liu+05] Hongzhou Liu et al. “Design and Implementation of a Single System Image Op-
erating System for Ad Hoc Networks”. In: Proc. of the 3rd Int’l Conf. on Mobile
Systems, Applications, and Services (MobiSys’05). Seattle, Washington, USA, 2005,
pp. 149–162.

[MM02] Petar Maymounkov and David Maziéres. “Kademlia: A Peer-to-Peer Information
System Based on the XOR Metric”. In: Peer-to-Peer Systems. Vol. 2429. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2002, pp. 53–65.

[Moc87a] Paul V. Mockapetris. Domain Names - Concepts and Facilities. RFC 1034 (Stan-
dard). Internet Engineering Task Force, Nov. 1987.

[Moc87b] Paul V. Mockapetris. Domain Names - Implementation and Specification. RFC
1035 (Standard). Internet Engineering Task Force, Nov. 1987.

[Mor01] Luc Moreau. “Distributed Directory Service and Message Routing for Mobile
Agents”. In: Science of Computer Programming 39.2-3 (2001), pp. 249 –272.

[PWB07] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso. “Failure Trends
in a Large Disk Drive Population”. In: Proc. of the 5th USENIX Conf. on File and
Storage Technologies (FAST’07). San Jose, CA, USA, Feb. 13–16, 2007.

[PZ97] Michael Philippsen and Matthias Zenger. “JavaParty – Transparent Remote Objects
in Java”. In: Concurrency: Practice and Experience 9.11 (Nov. 1997), pp. 1225–
1242.

162

Bibliography

[Rat+01] Sylvia Ratnasamy et al. “A Scalable Content-Addressable Network”. In: Proc. of
the SIGCOMM Conf. on Applications, Technologies, Architectures, and Protocols
for Computer Communications (SIGCOMM’01). San Diego, California, USA,
2001, pp. 161–172.

[RD01] Antony I. T. Rowstron and Peter Druschel. “Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems”. In: Proceedings of
the IFIP/ACM International Conf. on Distributed Systems Platforms Heidelberg.
Middleware ’01. London, UK: Springer-Verlag, 2001, pp. 329–350. ISBN: 3-540-
42800-3.

[SA83] Adrian Segall and Baruch Awerbuch. “A Reliable Broadcast Protocol”. In: IEEE
Transactions on Communications 31.7 (July 1983), pp. 896–901.

[SJ95] Brjarne Steensgaard and Eric Jul. “Object and Native Code Thread Mobility Among
Heterogeneous Computers”. In: Proc. of the 15th ACM Symp. on Operating Systems
Principles (SOSP’95). Copper Mountain, Colorado, USA, Dec. 3–6, 1995, pp. 68–
77.

[SPW09] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. “DRAM Errors
in the Wild: A Large-Scale Field Study”. In: Proc. of the 11th Int’l Joint Conf. on
Measurement and Modeling of Computer Systems (SIGMETRICS’09). Seattle, WA,
USA, June 15–19, 2009.

[Ste+98] Maarten van Steen et al. “Locating Objects in Wide-Area Systems”. In: IEEE
Communications Magazine 36.1 (Jan. 1998), pp. 104–109.

[Sto+01] Ion Stoica et al. “Chord: A Scalable Peer-to-Peer Lookup Service for Internet Ap-
plications”. In: Proc. of the ACM SIGCOMM Conf. on Applications, Technologies,
Architectures, and Protocols for Computer Communications (SIGCOMM’01). San
Diego, California, USA, Aug. 27–30, 2001, pp. 149–160.

[SUN06] SUN Microsystems. JSR-121 - Application Isolation API Specification. http:
//www.jcp.org/en/jsr/detail?id=121. Java Specification Requests. June
2006.

[Tan+91] Andrew S. Tanenbaum et al. “The Amoeba Distributed Operating System – A
Status Report”. In: Computer Communications 14.6 (1991), pp. 324–335.

[WC02] Brad Williams and Tracy Camp. “Comparison of Broadcasting Techniques for
Mobile Ad Hoc Networks”. In: Proc. of the 3rd ACM Int’l Symp. on Mobile Ad Hoc
Networking & Computing (MobiHoc’02). Lausanne, Switzerland, 2002, pp. 194–
205.

[WPD88] David Waitzman, Craig Partridge, and Stephen Edward Deering. Distance Vector
Multicast Routing Protocol. RFC 1075 (Experimental). Internet Engineering Task
Force, Nov. 1988. URL: http://www.ietf.org/rfc/rfc1075.txt.

[ZIL96] Yuanyuan Zhou, Liviu Iftode, and Kai Li. “Performance Evaluation of Two Home-
Based Lazy Release Consistency Protocols for Shared Virtual Memory Systems”.
In: SIGOPS Operating Systems Review 30 (Oct. 1996), pp. 75–88.

163

http://www.jcp.org/en/jsr/detail?id=121
http://www.jcp.org/en/jsr/detail?id=121
http://www.ietf.org/rfc/rfc1075.txt

Bibliography

[ZWL02] Wenzhang Zhu, Cho-Li Wang, and Francis Chi-Moon Lau. “JESSICA2: A Dis-
tributed Java Virtual Machine with Transparent Thread Migration Support”. In:
Proc. of the IEEE Int’l Conf. on Cluster Computing (CLUSTER’02). Chicago,
Illinois, USA, Sept. 23–26, 2002, pp. 381–388.

References for Chapter 7, Reactive Location Updates with Migration
Proxies Protocol

[Fow86] Robert Joseph Fowler. “The Complexity of Using Forwarding Addresses for Decen-
tralized Object Finding”. In: Proc. of the 5th Annual ACM Symp. on Principles of
Distributed Computing (PODC’86). Calgary, Alberta, Canada, Aug. 11–13, 1986,
pp. 108–120.

[Moc87a] Paul V. Mockapetris. Domain Names - Concepts and Facilities. RFC 1034 (Stan-
dard). Internet Engineering Task Force, Nov. 1987.

[Moc87b] Paul V. Mockapetris. Domain Names - Implementation and Specification. RFC
1035 (Standard). Internet Engineering Task Force, Nov. 1987.

[MR02] Luc Moreau and Daniel Ribbens. “Mobile Objects in Java”. In: Scientific Program-
ming 10.1 (2002), pp. 91–100. ISSN: 1058-9244.

[PS95] David Plainfossé and Marc Shapiro. “A Survey of Distributed Garbage Collection
Techniques”. In: Proc. of the Int’l Workshop on Memory Management (IWMM’95).
Kinross, Scotland, UK, Sept. 27–29, 1995, pp. 211–249.

[SF10] Björn Saballus and Thomas Fuhrmann. A Decentralized Object Location and
Retrieval Algorithm for Distributed Runtime Environments. Tech. rep. TUM-I1025.
Munich, Germany: Technische Universität München, Dec. 2010.

[Tan02] Andrew S. Tanenbaum. Computer Networks. 4th. Prentice Hall Professional Tech-
nical Reference, 2002.

References for Chapter 8, Proactive Location Update with Incoming
References Protocol

[Day+93] Mark Day et al. “References to Remote Mobile Objects in Thor”. In: ACM Letters
on Programming Languages and Systems (LOPLAS) 2.1-4 (1993), pp. 115–126.

References for Chapter 9, Evaluation

[AL62] Georgy Adelson-Velsky and Evgenii M. Landis. “An Algorithm for the Organi-
zation of Information”. In: Proc. of the USSR Academy of Sciences 146:263–266
(Russian) English translation by Myron J. Ricci in Soviet Math. Doklady, 3:1259–
1263. 1962, pp. 263–266.

164

Bibliography

[Bay72] Rudolf Bayer. “Symmetric Binary B-Trees: Data Structure and Maintenance Algo-
rithms”. In: Acta Informatica 1 (4 1972), pp. 290–306.

[Fer+10] Cesare Ferri et al. “Embedded-TM: Energy and Complexity-Effective Hardware
Transactional Memory for Embedded Multicore Systems”. In: Journal of Parallel
and Distributed Computing 70.10 (2010), pp. 1042–1052.

[Fuh05] Thomas Fuhrmann. “Scalable Routing for Networked Sensors and Actuators”. In:
Proc. of the 2nd Annual IEEE Communications Society Conf. on Sensor and Ad
Hoc Communications and Networks (SECON’05). Santa Clara, California, USA,
Sept. 26–29, 2005, pp. 240–251.

[SF10] Björn Saballus and Thomas Fuhrmann. A Decentralized Object Location and
Retrieval Algorithm for Distributed Runtime Environments. Tech. rep. TUM-I1025.
Munich, Germany: Technische Universität München, Dec. 2010.

[Var01] András Varga. “The OMNeT++ Discrete Event Simulation System”. In: Proc. of
the European Simulation Multi Conf. (ESM’2001). 2001, pp. 319–324.

[VH08] András Varga and Rudolf Hornig. “An Overview of the OMNeT++ Simulation
Environment”. In: Proc. of the 1st Int’l Conf. on Simulation Tools and Techniques
for Communications, Networks and Systems & Workshops. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering).
2008, pp. 1–10.

165

Index

ACVM, 44, 48
AI, 43
AICU, 44, 44, 49
Aleph, 34
AmbiComp, 43
AmbiComp transcoder, see transcoder
AmbiComp virtual machine, see ACVM
Ambient Intelligence, see AI
ambient intelligence control unit, see AICU
Amdahl’s Law, 10
Amoeba, 37
API, 12, 44
application programming interface, see API
ASMP, 50
asymmetric multiprocessing, see ASMP
Azul Systems, 42

BIC, 52
BIOS, 44, 45, 49
broadcast, 67
bus interface controller, see BIC

Cell processor, 51
CellVM, 41
central processing unit, see CPU
Central Registry, 69
Cloud, 8, 23, 24
cluster, 8, 23, 23
Common Object Request Broker Architec-

ture, see CORBA
CORBA, 25, 26
core, 7
CPU, 7

DCOM, 25, 26

DecentSTM, 17
DEMOS/MP, 37
DHT, 15, 66, 71
Distributed Component Object Model, see

DCOM
distributed hash table, see DHT
distributed Java virtual machine, see DJVM
distributed memory, 8
Distributed shared memory, 8
distributed shared memory, see DSM, see

DSM
distributed system, 23
DJVM, 38
DMA, 50, 51
DNS, 70, 81
domain, 54
DSM, 8, 12, 32
dynamic, 18

EIB, 52
element interconnect bus, see EIB
Emerald, 30

fast memory access, see FMA
FEM, 51
finite element method, see FEM
FMA, 45, 49
Forwarding proxies, see proxy

GAO, 17
GaoMap, 79
Garbage Collector, see GC
garbage collector, see GC
GC, 63, 81
general purpose graphics processing unit, see

GPGPU

167

Index

general-purpose computation on GPUs, see
GPGPU

globally accessible object, see GAO
globally unique identifier, see GUID
GPGPU, 51
graphics processing unit, see GPU
Grid, 8, 23, 24
GUID, 20, 63

HAL, 44
hardware abstraction layer, see HAL
hardware transactional memory, see HTM
Hera-JVM, 41
high performance computing, see HPC
HPC, 23, 43
HTM, 17
Hyperion, 40

isolates, 66
IVY, 33

Java ME, 48
Java RMI, 25, 27
Java specification request, see JSR
Java virtual machine, see JVM
JavaParty, 33
JavaSplit, 40
JavaSymphony, 34
JESSICA, 38
JikesRVM, 41
JIT, 41
JSR-121, 66
JUMP, 39

Kaffemik, 39
KBR, 71
Key-Based Routing, see KBR

LAM/MPI, 11
lazy release consistency, see LRC
Linda, 31
LOC, 17
local object copy, see LOC
locking, 16
lookup table, see LUT

LRC, 33
LUT, 53

MagnetOS, 40
many-core, 50
memory interface controller, see MIC
memory model, 20
Message passing, 11
message passing, 11, 32, 53, 55
message passing buffer, see MPB
message passing interface, see MPI
MIC, 52
microkernel, 37
mobile agent, 24
mobile agents, 28
mobile code, 28
Mobile Data, 25
mobile object, 24
MPB, 53
MPI, 11, 15
MPICH, 11
multi-core, 50
multithreading, 11, 12

namespace, 66
node, 7
NUMA, 52, 54

object, 8
object distribution management, see ODM
object distribution model, see ODM
object model, 18
Object Request Broker, see ORB
ODM, 47, 49
ORB, 26
Orca, 32

partitioned global address space, see PGAS
PEC, 19
PGAS, 13
Plurix OS, 37
power processing element, see PPE
PPE, 41, 51
primordial execution context, see PEC

168

Index

ProActive, 31
proactive location update, 93
process migration, 37
processor, 7
proxy, 80

RB tree, 113
RCCE, 55
RDMA, 11
reactive location update, 79
Red-Black tree, see RB tree
reference, 9, 18
reference graph, 19
remote direct memory access, 11
remote method invocation, see RMI
remote procedure call, see RPC
RMI, 15
RPC, 15, 25, 37

sandwich module, see SM
scalability, 1
Scalable Coherent Interface, see SCI
scalable source routing, see SSR
SCC, 52
SCI, 39
shared memory, 8, 11, 12, 32
single system image, see SSI
single-chip cloud computer, see SCC
SM, 44, 44, 49
SMP, 15, 50
SoC, 51
software transactional memory, see STM
SPE, 41, 51
SRAM, 53
SSI, 2, 15, 38, 50
SSR, 20
static, 18
static home node, 73
STM, 17
synergistic processing element, see SPE
system-on-chip, see SOC

task, 8
Terracotta, 41

Thor, 35
thread, 8
tile, 52
TM, 9, 16
TR, 18
transaction, 16
transaction record, see TR
transactional memory, see TM, 16
TreadMarks, 33, 39
tuple spaces, 31

X10, 13

Zing, 42

169

ISBN 3-937201-31-9
ISSN 1868-2634 (print)
ISSN 1868-2642 (electronic)
DOI: 10.2313/NET-2012-07-2

	Abstract
	Zusammenfassung
	Contents
	Introduction
	Research Methodology
	Overview
	Published Work

	Background
	Terminology
	Parallel Programming
	Message Passing
	Shared Memory and Multithreading
	Distributed Shared Memory
	Partitioned Global Address Space
	Comparison of Message-Passing and (Distributed) Shared Memory
	Single System Image
	Transactional Memory

	Object and Memory Model
	Object Model
	Memory Model

	Related Work
	Distributed Systems
	Mobile Objects
	Mobile Data
	Mobile Code/Mobile Agents

	Programming Languages and Middleware
	Distributed Shared Memory
	Distributed Operating Systems
	Distributed Java Virtual Machines

	Environment
	The AmbiComp System
	Hardware
	AmbiComp BIOS
	AmbiComp Transcoder and Tool Chain
	AmbiComp Virtual Machine

	Object Distribution Model
	Multi-Core and Many-Core Systems
	IBM's Cell Processor
	Intel's Single-chip Cloud Computer

	System Specification
	Virtual Machine
	DecentSTM
	Object Retrieval Manager
	Memory Manager and Garbage Collector
	Migration Manager

	Locating Objects
	Locating Static Objects
	Locating Dynamic Objects
	Broadcast
	Central Registry
	Distributed Hash Tables
	Static Home Nodes
	Forwarding Proxies

	Reactive Location Updates with Migration Proxies Protocol
	Object Access
	Proxy Deletion
	Reactive Location Update
	Cyclic Routing

	Object State Diagram
	Regular State
	Pending State
	Forwarding State

	Access Path Optimization

	Proactive Location Update with Incoming References Protocol
	Object Access and Proactive Location Update
	Triangular Object Access
	Enhanced Triangular Object Access

	Differences to Reactive Location Update Approach
	Object State Diagram
	State Diagram: Runtime Operations
	Regular State
	Pending State
	Forwarding State

	State Diagram: Migration
	Regular State
	Pending State
	Forwarding State

	State Diagram: Incoming Reference Management
	Regular State
	Pending State
	Forwarding State

	Evaluation
	OMNeT++ Simulation
	Simulation Runs
	Evaluation of Implicit Object Migrations
	Evaluation of Implicit versus Explicit Migration
	Protocol Comparison for all Migration Rates

	Software Simulation for Access Path Optimization and Caching
	Cache Characteristics
	Access Optimizations
	Bad Cache Hits
	Cache Misses

	Conclusion
	List of Tables
	List of Figures
	Bibliograpy
	Index
	Vorne.pdf
	diss-cover.vsd
	Vorne

	Hinten.pdf
	diss-cover.vsd
	Hinten

