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From Peer to Service {Object-Oriented Protocol Re�nement in Kannel �Kari Gran�o, Jukka PaakkiDepartment of Computer ScienceP.O.Box 26, FIN{00014 University of Helsinki, FinlandAbstractThe re�nement of communication in protocol engineering is studied by analyzing the rela-tion between a peer-to-peer communication scheme and its service-level counterpart, a charac-teristic that is well-known in practice but rarely studied in detail. It is shown how an abstractprotocol can be developed towards a concrete implementation by gradually re�ning the ab-stract messages and the involved state machines, moving systematically from layer to layerover the subject application. The characteristics of the re�nement are formalized, and an ex-ample is given showing how the method can be applied in practical protocol development. Theobject-oriented language Kannel is introduced as an advanced tool for protocol engineeringproviding special support for the re�nement technique.1 IntroductionProtocol engineering is a versatile discipline with the emphasis on systematically developing dis-tributed communications software of high quality. Having reached a relatively mature status, theprotocol engineering �eld is supported by several special development environments and descriptionlanguages, the most well-known ones being SDL, Estelle, LOTOS, and ASN.1. The descriptionlanguage employed in this paper is Kannel [GHP94] which is based an on object-oriented, visual,and state-based view on protocol engineering. Kannel provides application-oriented support for anumber of central aspects in protocol engineering, e.g., for the re�nement mechanism which is thetopic of this paper.Protocol engineering is usually founded upon a modularized software architecture. That is, thecommunicating parties are organized as a stack of layers, each having its own special task in theapplication. The most well-known example is the standardized OSI reference model of seven layers,but similar (though usually more economical) architectures are quite common also in networkingand telecommunication applications not strictly following the OSI model.As in software engineering in general, the hierarchical protocol layers are connected to eachothers via their interfaces. An interface captures the services a layer is externally providing to otherlayers, making it thus possible to integrate together components that are logically independent intheir internal behavior. In protocol engineering, there typically appear two kind of interfaces: (1)between the peers of the communicating systems, and (2) between the neighbouring layers withinone system. These two basic interface classes serve di�erent purposes: a peer-to-peer interfaceis needed for specifying the logical communication protocol between the end systems, whereas alayer(n)-to-layer(n� 1) interface makes the services of layer n� 1 available to its upper layer n forimplementing its peer-to-peer protocol.A communication protocol de�nes how messages are exchanged between two entities througha common interface. Notice that there is always a protocol both between two (distributed) peers�Part of this work has been carried out while visiting the Department of Computer Science, University of Munich,Germany. The research is part of the projects Integrated protocol engineering (Academy of Finland), The semanticsof the protocol engineering language Kannel (Academy of Finland), and Object-oriented programming and compilerconstruction (Academy of Finland and Deutscher Akademischer Austauschdienst).1



and between two adjacent (centralized) layers. There is a close conceptual coupling between thesetwo: A layer(n)-to-layer(n� 1) protocol can be regarded as an implementation of the peer(n)-to-peer(n) communication scheme between the end systems. From the protocol-software engineeringpoint of view, this coupling is most valuable when moving from protocol design into protocolimplementation. A peer-to-peer protocol speci�es abstractly how the communication between thesystems shall behave in general, whereas the corresponding service-level protocol de�nes concretelyhow the communication is actually realized. Hence, the step from design into implementation canbe taken in a systematic fashion by concentrating on the mapping from peer-level protocols (andinterfaces) to the corresponding service-level protocols (and interfaces).In this paper we present a constructive technique of systematically moving from peer-to-peercommunication into layer-to-layer communication. Our approach is based on re�ning the abstractpeer(n)-to-peer(n) communication protocol by replacing it with the corresponding more concretelayer(n)-to-layer(n � 1) service protocols and with the (perhaps still abstract) peer(n � 1)-to-peer(n � 1) protocol. A similar scheme of protocol re�nement is gradually repeated at the lowerlayers n � 1, n � 2, ..., until a proper level of precision has been reached. The technique is sup-ported by the protocol engineering language Kannel that provides dedicated facilities for protocolimplementation in terms of object-oriented inheritance and re�nement of communication patterns.We proceed as follows. The characteristics of protocol re�nement are presented in Section 2,followed by a formal study in Section 3. In Section 4 a constructive approach to protocol re�nementis presented, using Kannel as the demonstrational case language. Finally, conclusions are drawnin Section 5.2 The notion of protocol re�nementLet us study a typical abstract communication scheme illustrated in Figure 1. Here A and B are(probably distributed) entities (usually processes) that communicate according to their commonprotocol AB to provide the required services to their clients, User A and User B.
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User_A User_BFigure 1: Abstract communication.In simple applications the communication might be carried out in this straightforward manner,but in realistic cases the functionality of A and B is so complex that some form of modularity isneeded, as illustrated in the re�ned scheme of Figure 2. Now the protocol AB is realized by makinguse of entities C and D residing at a \lower layer" of functionality. That is, the AB protocol isimplemented by using the services of C and D following the protocol CD of their own. From theviewpoint of message-ow, a message from User A to User B does not go directly via A and B asthe abstract scheme in Figure 1 suggests, but indirectly along the path A0 { C { D { B0. Still,from the client's point of view, the external functionality of the system is the same irrespective ofthe system's architecture (Figure 1 or Figure 2).Notice that the scheme in Figure 2 is more detailed than that in Figure 1: (1) The peer-to-peerprotocol AB (at layer n) has been replaced by three new protocols, the service-level protocols A0Cand B0D (between layers n and n � 1) and the peer-to-peer protocol CD (at layer n � 1); (2)the entities C and D have been introduced (at layer n � 1); and (3) the entities A and B (atlayer n) have been replaced by A0 and B0, respectively, since their direct mutual communication2
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CDFigure 2: Communication by re�nement of AB.scheme has been changed into an indirect one. Thus we can regard the scheme in Figure 2 as animplementation or a re�nement of that in Figure 1.The term \re�nement" suggests that the two communication schemes shall be semanticallyrelated: (1) The external behavior with respect to User A and User B shall remain the same;and (2) the abstract peer-to-peer protocol AB shall be retained, that is, the re�nement shallstill follow the communication rules captured in protocol AB. Intuitively, this means that evenunder the re�nement, (1) User A and User B shall be able to exchange the same set of messagesequences as originally; and (2) for each message sequence transmitted between A and B, theremust be a corresponding (re�ned) exchange between A0 and B0. Notice, however, that in additionto the messages covered by the abstract protocol AB, A0 and B0 typically process a number ofimplementation-oriented messages, at least those captured in protocols A0C and B0D as servicesprovided by the entities C and D.Since the scheme in Figure 2 still applies a peer-to-peer protocol, CD, the re�nement processcan be continued. By iteratively following the same principle, an abstract communication schemecan be developed into a suitable layered architecture and a proper level of precision. The re�nementprocess typically continues until a layer providing direct physical communication services has beenencountered (for instance the physical layer in the OSI model).From a conceptual point of view, the division of protocols into \peer-to-peer" and \layer-to-layer" ones (e.g., CD vs. A0C in Figure 2) is rather arbitrary; after all, in both cases the objective isto specify a communication process between two entities.1 Therefore, we may in principle re�ne anyprotocol, not only a \peer-to-peer" one. Moreover, the re�nement may introduce more than twonew lower-layer processes which is the case in Figure 2 (C and D). For instance, the architectureof Figure 2 could be further developed by re�ning the \vertical" protocol A0C into a chain of, say,four new processes.3 Formal properties of protocol re�nementLet us consider the re�ning step from Figure 1 to Figure 2 in more detail. What kind of techniquesare possible to revise the abstract communication scheme of Figure 1 into the more concrete settingof Figure 2 and still retain the behavior externally the same? At least the following solutions arepossible:1Of course, in practice the division may be signi�cant.3



1. The whole system is rewritten by the protocol designer, by informally making sure that there�ned scheme does not introduce any communicationmismatches with respect to the clientsUser A and User B.2. A formal program re�nement strategy is applied, as described e.g. in [Jon80] or in [Bac88]. Inthis case the re�nement step from Figure 1 to Figure 2 is formally proven correct by showingthat the latter scheme preserves the behavior and total correctness of the former one. Sincethe external behavior of a distributed system is usually de�ned as the set of traces, i.e. theset of externally observable message sequences, the special re�nement theory of state-baseddata types [Nip89] can be conveniently applied.3. A protocol conversion methodology can be used. In protocol conversion [Gre86], two di�erentprotocols (usually speci�ed with communicating state machines) are merged together byautomatically producing a special intermediate machine that \translates" the messages sentby the machine of one protocol into messages accepted by the machine of the other protocol;in other words, the converter makes the two protocols able to interoperate. For instance,when moving in our example from Figure 1 to Figure 2, this technique would introducea converter both at the connection A0C and at the connection B0D. For a more detaileddescription of di�erent protocol conversion techniques, refer, e.g., to [CaL89] and [PeL93].4. One can apply the general concept of software / interface adaptors [YeS94] to glue togetherprotocols at di�erent layers of the communication architecture. This strategy is rather closeto protocol conversion, especially if the adaptation is based on communicating state machinesfor the speci�cation of software protocols. The main di�erence between these two is that thesoftware adaptation technique is more general than protocol conversion, due to accepting thedistribution of parameters into several di�erent services, and to being based on advancedsoftware engineering principles such as object-orientation (e.g., [Tha94]).The �rst alternative is hopeless in nontrivial cases since the matching has to be done totally byhuman means without any formal support, which sooner or later inevitably leads to a behavioralcontradiction between the abstract and the concrete communication scheme. The formal stepwisere�nement strategy is rather laborous since then the protocol designer has to (a) formally specifythe abstract scheme, (b) formally specify the concrete scheme, and (c) formally prove that thelatter correctly implements the former. Also the state-of-the-art in formal program derivation andveri�cation is still too immature for being usable in practical applications. Finally, the relatedtechniques of protocol conversion and software adaptation introduce additional components to thecommunication architecture, typically one converter/adaptor for each pair of integrated processes.This would soon lead to an exhaustive number of components when stepwise devising a completelayered implementation for a complex communications protocol. Moreover, these techniques needsome additional information for generating the converter/adaptor, such as a service speci�cationover the client protocols or a description of the synchronized behavior of the integrated components.Due to such shortcomings with the conventional solutions addressed above, our approach toprotocol re�nement is based on object-oriented techniques: incremental modi�cation, subtyping,and inheritance (more precisely: code reuse). The central idea is to avoid the introduction of newsystem components upon protocol re�nement, and instead reuse as much of the existing frameworkas possible. With regard to our example transition from the abstract scheme in Figure 1 to themore concrete one in Figure 2, this means the following:� The process A0 is a modi�cation of the process A. This means that the program codewritten for A is reused when producing the code for A0. This applies most notably to the(communicating) state machine for A that is incrementally modi�ed to cope with the newprotocol scheme. Likewise, the process B0 is a modi�cation of the process B.� The structured layer architecture in Figure 2 and the at layer in Figure 1 (excluding inboth cases the external clients User A and User B) are subtypes of the same virtual layerand hence compatible. 4



� The message ow along the path A0 ! C ! D ! B0 following the protocols A0C, CD, andB0D in Figure 2 is a re�nement of the ow along the path A ! B by the protocol AB inFigure 1. Likewise, the message ow along the path B0 ! D ! C ! A0 in Figure 2 is are�nement of the ow along the path B ! A in Figure 1.The relation of inheritance and re�nement has been analyzed, e.g., in [Cus91]. The notion ofre�nement is more formal than the notion of inheritance: For a component C to be a re�nementof a component D, C must guarantee the same (correct) behavior whenever substituted for D. In[WeZ88] such a property of an incremental modi�cation mechanism is called behavioral compati-bility which is usually not guaranteed by inheritance in object-oriented languages. This is also thecase in Kannel where inheritance satis�es just a weaker property, signature compatibility [WeZ88].Therefore, (protocol) re�nement in Kannel does not mean the same as (protocol) inheritance buthas stricter behavioral properties, as formalized below. However, these two are still related in Kan-nel in the sense that the exible inheritance mechanism is applied for expressing and implementingthe disciplined re�nement mechanism: Entities subject to re�nement are typically in a subtyperelation and/or may share pieces of code. The Kannel approach to re�nement is described in moredetail in Section 4.De�nition 1. We assume conventionally that the communication between processes is speci�edas communicating �nite state automata (machines), one for each process. A communicating �nitestate automaton A is a 5-tuple: A = (S; s0; F;M; �), where S is a �nite set of states, s0(2 S) is theinitial state, F (� S) is the set of �nal states, M is a �nite set of messages, and � is the transitionfunction: � : S � M ! S. The message set M is divided into two subsets: M = M i [M o,where M i denotes the set of input messages (events) and M o denotes the set of output messages.AP denotes the �nite state automaton associated with the process P . MP , M iP , and M oP denoterespectively the message set, the input message set, and the output message set of the automatonassociated with the process P .Since state automata are expressed in Kannel as statecharts [Har87], a transition from a state Sto a state T can be associated with an input message i 2 M i and a sequence of output messageso1; o2; : : : ; on; 8i 2 [1; n] : oi 2 M o, standing for the reception of an incoming event and the im-mediate sending of the outgoing messages: �(S; (io1o2 � � �on)) = T . Such a situation is interpretedas introducing intermediate states Si for splitting the multi-message transition into singletons:�(S; i) = S1; �(S1; o1) = S2; : : : ; �(Sn; on) = T .De�nition 2. Let P and Q be processes associated with a (communicating)�nite state automaton.Then M oPQ denotes the set of messages from P to Q, and M iPQ the set of messages to P fromQ. These de�ne the communicated message set between P and Q, that is, the set of outputmessages of the automaton for P (Q) that are also input messages of the automaton for Q (P ):M oPQ = M iQP = M oP \M iQ. The total communication between P and Q is denoted by M ioPQ =M ioQP = M oPQ [M iPQ. To be able to communicate in both directions, P and Q must have thesets M oPQ and M iPQ (M iQP and M oQP ) nonempty. For notational simplicity, we assume that thecommunicated message set is di�erent for each di�erent pair of target processes: M ioPQ \M ioPR = ;whenever Q 6= R.Consider the example scheme in Figure 1. The communication between the processes A and B isspeci�ed by two �nite state automata (statecharts), AA for A and AB for B. Since the process Ais communicating with its client User A (denoted U) and with its peer B, the set of messages Ais processing is divided into the following subsets: MA = (M iA [M oA) = (M ioAU [M ioAB) = (M oAU [M iAU[M oAB[M iAB). Likewise,MB = (M iB[M oB) = (M ioBV [M ioBA) = (M oBV [M iBV [M oBA[M iBA),where V denotes User B. Furthermore, M oAB = M iBA, and M oBA = M iAB .As usual, we model the behavior of a distributed system as sequences of messages, or traces,between the processes in the system (see e.g. [Jon89]). Since the functionality of communicatingprocesses is de�ned in our approach as �nite state automata, we can apply the standard concepts5



and techniques of automata theory for specifying and analyzing the trace-behavior of protocols.De�nition 3. Let A = (S; s0; F;M; �) be a communicating �nite state automaton. A trace in A,denoted TA, is a sequence of (input or output) messages associated with a path from the initialstate of A to a �nal state of A. That is, a message sequence m1m2 � � �mn (8i 2 [1; n] : mi 2 M )is a trace, if �(s0;m1) = s1; �(s1;m2) = s2; : : : ; �(sn�1;mn) = sn such that sn 2 F . The languageof A, denoted LA, is the set of traces in A.2 If the automaton A is associated with the process P ,we denote by TP a trace in P and by LP the language of P .De�nition 4. Let A = (S; s0; F;M; �) be a communicating �nite state automaton, and let TA= m1m2 � � �mn be a trace in A. Let N � M be a set of messages. The projection of TA withrespect to N , denoted TA=N , is a subsequence of TA consisting of just the messages in N . Thatis, mi(i 2 [1; n]) is in TA=N only if mi 2 N .The re�nement of a protocol between processes P and Q is achieved by re�ning the messagesexchanged between P and Q into more concrete ones, by introducing a new protocol layer toimplement the abstract protocol, and by modifying the communicating automata associated withP and Q to cope with the new architecture.To specify this, we give the necessary de�nitions below. Intuitively, mapping functions areneeded for translation between an abstract message and a more concrete one (usually achieved inpractice by composing a protocol data unit from a service data unit and embedded local controlinformation, and by decomposing it later on), for splitting a concrete message into several abstractones (in practice by segmenting a service data unit into a set of protocol data units), and for joiningseveral messages into a single one (in practice by concatenating several protocol data units into asingle service data unit).De�nition 5. Let P , Q, and R be processes, such that there is a communication protocol between(the state automata for) P and Q and between (the state automata for) R and Q. P and Rare trace-equivalent with respect to Q, if the following conditions hold: (1) M oPQ = M oRQ; (2)M iPQ =M iRQ; (3) fTP=M ioPQ j TP 2 LPg = fTR=M ioRQ j TR 2 LRg.This de�nition stands for the fact that the re�nement of one communication protocol shall nota�ect the system's behavior with respect to the other protocols. When considering the situationin Figures 1 and 2, the processes A and A0 must be trace-equivalent with respect to User A, andthe processes B and B0 must be trace-equivalent with respect to User B.De�nition 6. Let P1; P2; : : : ; Pn; n � 2; be processes such that Pi communicates directly withPi+1 (i = 1; 2; : : : ; n� 1) via state automata. Then (P1P2 � � �Pn) is called a con�guration.For instance, (User A A B User B) and (AB) are con�gurations in Figure 1, and (User A A0 CD B0 User B) and (A0CDB0) are con�gurations in Figure 2.De�nition 7. Let TP = m1m2 � � �mn be a trace, let f :M ! N be a function where M and N aresets of messages, and let S � M . Then the transformation of TP by f and S, denoted t(TP ; f; S),is the trace p1p2 � � �pn where pi = f(mi) if mi 2 S, and pi = mi otherwise; i = 1; 2; : : : ; n.De�nition 8. (See Figures 1 and 2). Let (AB) be a con�guration, and let M be a message set.Let S(M ) denote the set of all the sequences of messages in M . Let Com(P ) denote the set ofprocesses with which process P has a communication protocol. The con�guration (A0CDB0) is are�nement of (AB) if there exist mapping functions f1 (total), f2, f3, f4, g1 (total), g2, g3, andg4:32This corresponds to the concept of language in automata theory. Therefore it is necessary for our automata tohave �nal (accepting) states. Notice that while reactive systems usually do not have a �xed �nal state from whereno progress is possible, even they always have \logical" �nal states closing a main event loop. Typically a reactiveautomaton contains a cycle with the initial state as entry; in that case the initial state must be regarded as a �nalstate as well.3For more extensive con�gurations, the de�nition is similar but involves a larger number of mapping functions.6



f1 : M oAB !M oA0C (= M iCA0)f2 : M iCA0 ! S(M oCD) (= S(M iDC))f3 : S(M iDC)!M oDB0 (=M iB0D)f4 : M iB0D !M iBA (= M oAB)g1 :M oBA !M oB0D (= M iDB0 )g2 :M iDB0 ! S(M oDC) (= S(M iCD))g3 : S(M iCD)!M oCA0 (= M iA0C)g4 :M iA0C !M iAB (= M oBA)such that the following conditions hold:1. 8m 2M oAB : m = f4(f3(f2(f1(m))))2. 8n 2M oBA : n = g4(g3(g2(g1(n))))3. Com(A0) n fCg = Com(A) n fBg, and A0 and A are trace-equivalent with respect to everyprocess P 2 Com(A) n fBg4. Com(B0) n fDg = Com(B) n fAg, and B0 and B are trace-equivalent with respect to everyprocess P 2 Com(B) n fAg5. fTA0=M ioA0Cg = ft(T; g3 � g2 � g1;M iAB) j T = t(TA=M ioAB; f1;M oAB)g6. fTB0=M ioB0Dg = ft(T; f3 � f2 � f1;M iBA) j T = t(TB=M ioBA; g1;M oBA)gThe de�nition of re�nement captures the fact that the abstract communication pattern shall remainthe same, even when the concrete message path changes. Conditions 1 and 2 above guaranteethat each message in the original protocol and process con�guration reaches its destination in thecorresponding format in the re�ned protocol/con�guration even when having di�erent intermediaterepresentations during the transmission. Conditions 3 and 4 state that the re�nement of a protocolshall not a�ect the external client-wise behavior of the end processes. Finally, conditions 5 and6 guarantee that the state automata of the re�ned processes (A0 and B0 in Figure 2) manifestthe same abstract communication protocol with respect to the original processes (A and B inFigure 1) even when introducing concrete representations for the messages as well as additionalcommunication with the new lower-layer processes (C and D in Figure 2). In other words, theextended communication must preserve the original traces by the following mapping of messages:� message m sent from AA to AB is represented as f1(m) in AA0 ;� message n received from AB in AA is represented as g3(g2(g1(n))) in AA0 ;� message o sent from AB to AA is represented as g1(o) in AB0 ;� message p received from AA in AB is represented as f3(f2(f1(p))) in AB0 .Finding the mapping functions fi and gi is, of course, very hard in a general case without anydiscipline on the structure of the re�nement. That is why the re�nement mechanism in Kannelinvolves certain syntactic and semantic restrictions to make it possible to automatically �nd themapping functions and to verify the re�nement conditions, as illustrated in the next section.4 Object-oriented protocol re�nement in KannelThe re�nement concept is realized in Kannel with mechanisms for grouping and subtyping pro-cesses, combined with constructs for layer re�nement and event mapping within state machines.The latter two mechanisms aim at maximal reuse of existing code. Subtyping and code reuse arenormally distinct mechanisms in Kannel but re�nement combines them, yielding a construct thatresembles the traditional concept of inheritance. We illustrate these mechanisms with a Kannelmodel of a generic weather reporting system and its disciplined re�nement over an alternating bittransport service. 7



Overview of the weather reporting system The weather system consists of a set of sensorsconnected to a control terminal, which provides information about mean temperature changes andfault conditions to the user of the system. The control terminal receives temperature reports fromthe sensors and computes their average. Should the average change too radically, the terminal willinform the user of the system about it. Likewise, fault indications from the sensors are reported.In addition, the user may pose explicit report requests which are immediately answered. Eachsensor contains a computing unit and a timer which is used to control the interval at which thesensor sends probes. The control terminal and the sensors are abstracted into a WeatherSysteminterface process (see below) which is used as the basis for subtyping. Full details of the exampleare included in the appendix.Brief introduction to Kannel A Kannel program consists of a set of communicating objects.Kannel divides these objects into two categories|there are local objects that can exploit identityand create other objects, something that distributable objects cannot do. The distributable Kannelobjects are called processes; they are used to model the combined state and behavior of a protocol.The communication and creation capabilities of processes are provided with mechanisms such aschannels, ports, messages, routers, transfer syntaxes, and statecharts.Distributable objects are superior to local objects. They are used to specify the system ona larger level of granularity, whereas the local objects serve to provide traditional computingcapabilities. Recognizing this, Kannel provides a visual syntax for the distributable parts of thelanguage. The visual syntax describes both the structure of processes and the multiplicity of theirinstances; hence it aims at being simultaneously a static and a dynamic model of the system. Thisis in contrast with approaches that use separate models for these aspects.The intention of Kannel is to describe the communicating system as a whole by includingin the speci�cation all the involved components. This deviates from the traditional approach ofdescribing only a single communicating (although maybe layered) entity at a time. Indeed, aKannel compilation can result in the creation of several such entities. The designer controls thisseparation by tagging some associations between processes as separate.
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view Requests is query : event end Requests;view Results isreport : real;faulty : integerend Resultsend CONTROLFor example, message query always travels from the user to the weather system, never vice versa(the ow directions for the views are stated within process type de�nitions). Thus, a channelde�nes one service interface for a process. The combined set of these interfaces combined with aprotocol assertion forms the type of a (branch) process:process interface WeatherSystem isservice : CONTROL(in Requests, out Results);protocol SENSOR separateendLocal classes in Kannel use interfaces (collections of method signatures) as the basis for subtypingand for the dynamic binding of method calls. In a similar fashion, processes use process interfacesto specify their externally visible properties. The interface for WeatherSystem states that it isprepared to process any incoming message within the Requests view and that it may generate anymessage within the Results view4. However, the speci�cation of the legal temporal orderings ofthese messages is left unspeci�ed: rather, they are speci�ed with a statechart within the concrete(leaf) processes that are subtypes of WeatherSystem.Kannel requires that each subtype exhibits the equivalent set of traces on its service interfaces.There are two reasons for dropping the state automata from the interface speci�cation: First, theremay exist several structurally di�ering automata that exhibit equivalent behavior; and second, theautomaton generally has to access internal details of the process in order to handle events andthese details should not belong to the interface. Instead of an automaton, the interface mayspecify a protocol assertion (see below) that abstracts the kind of service it internally provides.The assertions are also crucial for process re�nement, as we shall see: any (protocol) associationto be re�ned must be speci�ed with a protocol assertion.The process structure in Kannel is given statically, and since instance identities and creationare not applicable to them (due to the strong distribution semantics that Kannel imposes onprocesses) the idea of process subtyping with interfaces may seem unnecessary. However, duringsystem initialization and in the restricted context of routers the subtyping may be exploited,opening interesting possibilities such as the dynamic selection of process stacks.Grouping of processes Kannel processes fall into two categories: leaf processes are used toexpress the actual behavior of a protocol element. They contain a statechart that declares thelegal temporal orderings of events together with (private) methods and attributes that are used incomputation. It is worth pointing out that a leaf process in itself does not implement a protocol|aprotocol is a mutual agreement between two or more communicating parties and thus necessarilyinvolves several entities. This leads us to branch processes that are used exactly for this purpose: togroup together entities that form a protocol. Only branch processes may aggregate other processes.Figure 3 shows the branch process Generic_WS as an architectural description of WeatherSystem.The channels for communication are represented in Kannel as associations (depicted as a line; sep-arate associations are depicted as a dotted line), here CONTROL, SENSOR (separate), and ALARM.Generic_WS groups together a Controller process together with several Sensor processes. EachSensor in turn is a branch process containing a Timer and a CPU process. In addition to grouping,the branch processes can perform initialization of their (local) component processes by invokingtheir methods|this is the only context in Kannel where processes may interact with method calls;thus there is quite a strong form of aggregation between a branch process and its components.4Each service interface is assigned a port identi�er (e.g., service) that is used within associations and withinthe statechart. 9



Type relations for leaf processes A process interface for a leaf process enumerates a set ofservice interfaces that the leaf is prepared to serve. Kannel requires that the visible behavior ofthe concrete subtypes be equivalent. For example, when a Controller receives a query message(see Figure 3), it will respond with a report: this behavior is required to remain the same for allits concrete subtypes (in the example just AVG_Controller), as stated in De�nition 8 of Section 3.Of course, this is not full behavioral compatibility, since the actual content of the messages is notrequired to be the same. It appears that full behavioral compatibility is often too restrictive, sinceone usually wants to model a slight semantic change while preserving substitutability (consider,for example, a Log_controller process that records sensor reports within persistent storage).Type relations for branch processes The previous discussion on behavior also applies tobranches|except that in this case the services are not implemented by the branch itself but ratherby some component therein. In addition to service interfaces, a branch process may also have aprotocol assertion that indirectly states the protocol implemented by the component processes.The assertion identi�es an association within a subtype of the interface containing the association;for example, the SENSOR assertion within the interface for WeatherSystem must appear (in oneway or another, see 4.2) within every concrete subtype.Protocol assertions are not just labels; they carry signi�cant semantic weight by imposing therequirement that the endpoints of the association identi�ed by the assertion become part of theservice interface of the branch for the purposes of type checking. Of course, the endpoints are notvisible to the clients of the branch|rather, the behavior exhibited at the endpoints becomes partof the branches' type and must be the same for every subtype. This is a subtle way to integrate thebehavior of the most important component processes into the type de�nition. Protocol assertionsare reminiscent to the concept of structural conformity in [HaG96]; however, they are more exibleby allowing the designer to leave out the components that are \uninteresting" with regard to layerbehavior (e.g., endpoints of the ALARM association within Sensor).The protocol assertion must also state (with the keyword separate) whether the subpartsusing the protocol are located within separate address spaces, e.g., in di�erent machines. This isrequired in order for the subtypes to be meaningfully substitutable|were it not so, the Kannelcompiler would not always be able to partition the processes deterministically in a context whereprocess interface attributes are used.The structure of Generic WS Figure 3 illustrates the Generic_WS process. Since it is a branchprocess, there is no controlling statechart. Three component processes (AVG_Controller, CPU andTimer) are leaf processes and thus have a controlling statechart5. As an example, we describe thestructure of the CPU statechart|see the appendix for full details.The CPU consists of a single hierarchical, concurrent state running (departing from the tra-ditional notation of [Har87], concurrent states are shown with shaded background) that has twosubmachines: a sleeper that communicates with the timer process to obtain periodic alarms anda sender that synchronizes with the state sleeper.fire in order to send a probe to the controller.Kannel statecharts do not support message broadcasting, but have a few useful additional featuressuch as the internal nil message that has an in�nitely low priority and is �red whenever there areno other available messages to process (for example, the sleeper.start state uses a nil transitionto request the initial wakeup message from the timer).process Generic WS < WeatherSystem isc : AVG Controller;sensors : vector (SMAX) Sensor;...assocSENSOR: c.peer and separate sensors.all.peer;c.up and serviceend Generic WS5The Timer process is part of the standard library and its structure is thus omitted.10



The condenced textual de�nition for Generic_WS shown above lists its components and their asso-ciations over process ports (e.g., c.peer). The subtype relation is speci�ed with a < symbol. Notethe required assertion label SENSOR before the association between the sensors and the controller.
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Figure 4: The re�ned AltBit WS process.4.2 The re�nement of Generic WSNow we have our framework ready for the re�nement of the SENSOR association over an alternatingbit transport service layer. The mechanisms we are going to present are based on the observations(see Section 3) that (a) the behavior of the processes to be re�ned does not change at all on serviceinterfaces except for the one being re�ned and that (b) the actual structure of the statecharts withinthe original and re�ned processes does not really matter if the language of the processes (the setof accepted traces) remains the same. The former point is important since we want to capturethe re�nements within the Kannel type system in a exible manner. The latter point arose as theresult of investigating mechanisms for reusing the synchronization behavior of a process (sometimescalled the \inheritance anomaly" problem).Figure 4 illustrates the result of re�ning the Generic_WS process with respect to protocolSENSOR within an alternating bit transfer service (cf. the corresponding abstraction in Figure 2).We omit its description in order to keep the presentation compact; see the appendix for details.However, two things are worth pointing out. First, note the use of history information (depictedwith a capital H in the upper right hand corner of the process) within the statechart for Protocolto capture the fact that the processing of a DATA message always ends up in the same substatewhere it was received. Second, note having idle as a �nal state (depicted in Figure 4 with anadditional circle) to mark the logical endpoint of a message delivery6. We proceed by presenting6In other statecharts the implicit �nal state rule of Kannel is applied. The rule says that every state withoutany (outgoing) transitions is implicitly considered �nal. 11



the textual form of the mechanisms and by discussing their semantics and e�ects on code reuse.4.2.1 Branch process re�nementRe�nement can only be done based on a protocol assertion that identi�es an association withina branch process. Thus, the assertion enables stepwise extension of a process' components. Thestructure of the re�ned AltBit_WS process is shown below:process AltBit WSre�ne Generic WS.SENSORin SocketAltBit.ALTBITis transport : SocketAltBitassoctransport.up1 and c.peer;transport.up2 and sensors.all.peerend AltBit WSThe subtyping section of the re�ned process is replaced with a re�ne clause that names two protocolassertions, the original and its replacement. Note that both assertions are on peer level|we thusestablish a binding between two adjacent layers of which the latter is less abstract than the former.In addition, the (concrete) process to be re�ned is also speci�ed. The e�ects of the mechanism areas follows:� The AltBit_WS process becomes a subtype of the process interface to which the SENSORassertion belongs (and for which Generic_WS must be a subtype).� The associations and other code (private methods and routers) are reused as is within theAltBit WS process except for the association to be re�ned.� The leaf processes residing at the endpoints of the re�ned association become unde�ned andmust be superimposed into AltBit_WS as explained in Section 4.2.2.� Any branch processes between the leaf processes are locally redeclared with a new service in-terface for the re�ned association. In our example, the Sensor process gets locally redeclaredwithin AltBit_WS; its old peer:SENSOR interface changes into peer:SERVICE.Note that the transformed association endpoints remain unassociated and must be explicitly given.In the above code fragment a new process component transport is plugged into the now unasso-ciated ports. This also resolves any potential ambiguity about the re�ning process component (ingeneral, there might be more than a single SocketAltBit component).As mentioned in the very beginning of this section, the re�nement resembles inheritance in thesense that it combines code reuse with subtyping. However, here reuse has semantics that di�erfrom the \simple textual copy" semantics used in the reuse mechanism for local Kannel classes:it results in a set of (compiler-generated) new types for the branch processes that are part of there�ned association.
AltBit_WSGeneric_WS

WeatherSystemFigure 5: Subtypes of WeatherSystem.The resulting type relations are shown in Figure 5. Note that AltBit_WS is not a subtype ofGeneric_WS but rather a subtype of its interface|this is in harmony with the whole Kannel type12



system which is based on the idea that all type relations are abstract and should not be confusedwith code reuse (for which there is a separate mechanism).The leaf processes at the endpoints of the re�ned association remain to be respeci�ed. Here thesituation is more complex, since their statecharts are populated with receptions and transmissionsof messages that are part of the abstract protocol.4.2.2 Leaf process re�nementThe types of the original leaf processes and their re�nements do not remain compatible, since oneservice interface gets changed in the processes. However, there still exists signi�cant similarity thatwe wish to exploit. A further consideration is that both process de�nitions must coexist withinthe source code. Generally, this can be tackled with scoping or renaming. We have chosen theformer approach, since renaming tends to be messy and since coming up with meaningful namesfor the entities is a major burden in itself. The re�ned processes CPU and AVG_Controller areshown below:process CPU in AltBit WS maps1 : peer ! dreq(temp.create(unit, t.read));s2 : peer ! dreq(fail.create(unit))is actionrunningend CPU;process AVG Controller in AltBit WS maptemp,fail in dindis actionAVG ControllerendThe subtyping section of the re�ned process is replaced with a superimposition clause in (a) map(b), where (a) names the re�ned branch process into which the re�ned type is to be superimposedand (b) provides a transformation mapping for all messages travelling in the abstract associationwhich is being re�ned.The transformation mapping The statecharts in Kannel are granularized on the level ofmessage receptions: one reception may result in several transmissions (depending on the transitionaction). This is a convenient notation for specifying the behavior since one does not have to clutterthe state space with states which immediately �re by transmitting a message.In the context of transformation mappings this extra convenience has a price: the designer mustgive explicit labels for all message transmissions into the abstract peer association; these labelsare then used within the mapping to provide the re�ned transmission statement. For example, themessage transmissions into the SENSOR association within the CPU process are wrapped as dreqmessages into the SERVICE association within the re�nement; the original CPU de�nition containsthe labels s1 and s2 (see the appendix) referred to in the mapping.For message receptions the situation is simpler, since they can use the originating state as anatural label. In our example the receptions within AVG_Controller are all wrapped into dindmessages|this is a degenerate case, since there is only a single state. In the general case, however,the receptions of, say, message M may be re�ned into distinct messages N1 and N2 depending on thecurrent state. The mechanism extends to situations like this by using the originating state nameas the mapping label.The reception mapping must specify the exact entity into which the abstract message is trans-formed in order to enable the Kannel compiler to instrument the receptions with the necessarydisambiguations. For example, since both temp and fail messages are received within a dindmessage, the compiler must instrument the re�ned AVG_Controller process with a dynamic typecheck which determines the exact type7.7All Kannel objects carry run-time type information.13



4.2.3 Reuse of leaf processesAs we have seen, the distinction between subtyping and code reuse extends quite naturally inKannel from local classes to processes. With processes, subtyping considers the language inducedby their state automata (see Section 3).Since the language has no forced relation with any given automaton (a given language may beaccepted by several structurally di�erent automata), subprocesses of a given interface may use anymeans whatsoever to implement the language. This is reected in the reuse mechanism which isquite liberal, allowing practically any modi�cations to a reused state machine. This is in contrastwith approaches that use inheritance to reuse a given state automaton and hence have to forcesevere restrictions on the set of allowed modi�cations (e.g., [HaG96, CHB92]). The Kannel leafprocess reuse mechanism comes in two avors which are augmented with special syntax:� The standard liberal code reuse mechanism that can be used for arbitrary leaf processes.� The disciplined superimposition mechanism (Section 4.2.2) that is used solely in the contextof re�nement.4.3 DiscussionEnsuring the preservation of behavior The notion of branch processes allows one to havetype relations between re�nements, which is useful in practice. However, a more fundamental issueconcerns the amount of checking a compiler can do when confronted with the re�nement mecha-nisms. The statechart model augmented with the notion of �nal states allows us to speak aboutthe language of a process, and subsequently we have more freedom in modifying the statecharts.The transformation mapping provides the compiler a rough estimate of the total functions f1 andg3 (and, symmetrically, g1 and f3); see De�nition 8 in Section 3. The remaining two mappings arede�ned implicitly by the constraints set upon re�nement. They do require, however, that the com-piler can perform (some fairly unsophisticated) statechart slicing in order to reveal the mappingsfrom the message ow.Varying-height protocol stacks The re�nement mechanism enables interesting variationswithin the peer branches of a process interface. Since re�nement e�ectively increases the numberof subcomponents contained within parent by one, the peer branches may represent protocol stacksof di�ering \heights" and still be type-compatible. This is illustrated in Figure 5 where the leftsubtype has height 1 and the right subtype has height 2.Further work The presented formalismworks nicely in a context where the leaf processes resid-ing at the endpoints of the abstract association are concrete. If they are replaced with interfaces,the situation gets more complex, since several structurally di�ering statecharts may now existwithin the eventual leaves. Our current solution to this is to require that superimpositions beprovided for all the concrete subtypes of a leaf interface, but alternative solutions, such as selectivepruning of the type tree at the point of re�nement are worth considering. A related problem arisesin a situation where one or more branch processes that are part of the abstract association arerepresented by a process interface. Clearly the requirement that all �nal leaves within subtypesmust then be superimposed is too stringent one.The possibility to re�ne several abstract associations with di�ering protocol assertions needsmore consideration. Currently, only a single association may be re�ned at a time.5 ConclusionsWe have presented a systematic methodology for developing communications software by stepwisere�nement of protocols. The characteristics of the problem of protocol re�nement have beenanalyzed and other potential solutions have been outlined. As a practical approach to protocol14



re�nement, we have shown how the mechanism can be expressed and implemented using the object-oriented protocol engineering language Kannel.With regard to other suggested approaches, the main novelty of ours is being constructiverather than theoretical. Unlike the approaches of program re�nement [Bac88], data type re�ne-ment [Nip89], protocol conversion [PeL93], and top-down protocol speci�cation re�nement [LiM88],whose main objective is to employ formal speci�cations to formally prove the correctness of systemevolution, we have developed a programming language by which a protocol designer can expressthe system evolution on a proper level of preciseness. The task of verifying the central formalproperties of re�nement is laid on the Kannel system, not on the designer. Of course, this kindof \automatic veri�cation" done by the Kannel compiler is less complete than a formal proof butstill powerful enough to capture the most fundamental errors.Another language-based approach to stepwise re�nement of communicating systems is pre-sented in [SLR95]. As Kannel, the RL language makes it possible to gradually evolve distributedsystems by incrementally modifying the system's architecture, its state-behavior, and the types ofcommunicated messages. The re�nements are validated with an analysis over the derived messagetypes and the state space of the underlying state automata. The main di�erence to Kannel isthat RL does not rely on object-oriented features, whereas these are the key factor in Kannel forachieving the mechanism of re�nement.Being object-oriented in general, Kannel shares some features with general-purpose object-oriented programming languages, such as Ei�el [Mey92] and Sather [SOM93]. The key di�erenceto these is that Kannel is a special-purpose language with a number of central facilities tunedespecially towards protocol engineering. For instance, the re�nement mechanism presented in thispaper is not intended for applications of arbitrary kind but just for the development of distributedsystems with a communication protocol in the core. By focusing re�nement on one (\peer") sideof a process interface at a time, our approach shares some ideas with dividing the interface of aclass into two distinct categories, a client interface and a specialization interface [Lam93].From the applications' point of view, Kannel is closely related to the formal language family oftelecommunications, in particular to the object-oriented variant of SDL, SDL-92 (OSDL) [F�O92].With respect to the theme of this paper, these two languages di�er in that Kannel considersincremental re�nement as a semantic mechanism of special kind, whereas a similar e�ect has to besimulated in SDL-92 using conventional inheritance and virtuals without formal support.The basic implementation of Kannel is complete, and the re�nement features described in thispaper are currently under implementation.References[Bac88] R.J.R. Back: A Calculus of Re�nements for Program Derivations. Acta Informatica 25,1988, 593{624.[CaL89] K.L. Calvert, S.S. Lam: Deriving a Protocol Converter: a Top-Down Method. In:Proc. ACM SIGCOMM'89 Symp. on CommunicationsArchitectures & Protocols, Austin,Texas, 1989. ACM Computer Communications Review 19, 4, 1989, 247{258.[CHB92] D. Coleman, F. Hayes, S. Bear: Introducing Objectcharts or How to Use Statecharts inObject-Oriented Design. IEEE Transactions on Software Engineering 18, 1, 1992, 9{18.[Cus91] E. Cusack: Re�nement, Conformance and Inheritance. Formal Aspects of Computing 3,1991, 129{141.[F�O92] O. F�rgemand, A. Olsen: Introduction to SDL-92. Computer Networks and ISDN Sys-tems 26, 1994, 1143{1167.[Gre86] P.E. Green, Jr.: Protocol Conversion. IEEE Transactions on Communications 34, 3,1986, 257{268. 15
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Source code for the weather system speci�cationconst SMAX ::= 5;const TIMEOUT ::= 10;class Temperature isunit, val : integerend Temperature;channel CONTROL isview Requests is query : event end;view Results isreport : real;faulty : integerend Resultsend CONTROL;channel SENSOR istemp : Temperature;fail : integerend SENSOR;process interface Controller ispeer : SENSOR (in);up : CONTROL (in Requests, out Results)end;process AVG controller < Controller isconst THRESHOLD ::= 2;buf : list [Temperature];old : real;average (list [Temperature]) : real issum::= 0;iter : list iter[Temperature];iter.reset(arg);loop iter.done.until;sum:= sum + iter.nextend loop;return sum = buf.lengthend average�nal arcstemp �> fbuf.add(temp);if buf.length = SMAX thenres::= average(buf);if (old�res).abs > THRESHOLD thenup ! report.create(res)end if;old:= res; buf.clearend if gquery �> f up ! report.create(old) gfail �> f up ! fail gend AVG controller;process CPU portspeer : SENSOR (out);clock : ALARM (in Notices, out Settings)is initialize(u,t:integer) is

unit:= u; delta:= d end;unit, delta : integer;t : SensorIOactionand state running isstate sender isstate operate arcswakeup and sleeper.�re �> fif t.ok thens1: peer ! temp(unit, t.read)elses2: peer ! fail(unit)end if;go wait gend;state wait arcs wakeup �> f go operate g end;end sender;state sleeper isstate start arcsnil �> f clock ! set(delta); go wait g end;state wait arcswakeup �> f clock ! set(delta = 2); go �re g end;state �re arcswakeup �> f clock ! set(delta = 2); go wait g endend sleeperendend CPU;process Sensor portspeer : SENSOR (out)is initialize(integer) is cpu.initialize(arg,TIMEOUT) end;t : Timer;cpu : CPUassoccpu.peer and peer;cpu.clock and t.serviceend Sensor;process interface WeatherSystem isservice : CONTROL(in Requests, out Results);protocol SENSOR separateend;process Generic WS < WeatherSystem isc : AVG controller;sensors : vector (SMAX) Sensor;main[sensors] isi::=0;loop (i < SMAX).while;sensors(i).initialize(i); inc(i)endendassocSENSOR: c.peer and separate sensors.all.peer;c.up and serviceend Generic WS;17



interface UserData > Temperature,integeris end;process AltBit WSre�ne Generic WS.SENSOR inSocketAltBit.ALTBITis transport : SocketAltBitassoctransport.up1 and c.peer;transport.up2 and sensors.all.peerend AltBit WS;process CPU in AltBit WS maps1 : peer ! dreq(temp.create(unit, t.read));s2 : peer ! dreq(fail.create(unit))is actionrunningend CPU;process AVG controller in AltBit WS maptemp,fail in dindis actionAVG controllerend;process System isu : User;ws : WeatherSystem;process User portscontrol:CONTROL(out Requests; in Results)is arcsuserinput �> f control ! query.create greport �> fstdout.print("Temperature: %d\n", report) gfaulty �> fstdout.print("Error in unit %d\n", faulty) gend User;main(vector string) isif arg(0) = "test" thenws:= new Generic WSelsews:= new AltBit WSend ifend mainassocu.control and ws.serviceend System;channel SERVICE isview requests is dreq : UserData end;view results is dind : UserData endend SERVICE;

process interface AltBitLayer isup1, up2 : SERVICE (in requests, out results)protocol ALTBIT separateend AltBitLayer;process SocketAltBit < AltBitLayer isa,b : ProtocolassocALTBIT: a.peer and separate(Socket) b.peer;a.up and up1;b.up and up2end SocketAltBit;class Packet iscontents : UserData;seq : booleanend Packet;channel ALTBIT isDATA : Packet;ACK : booleanend ALTBIT;process Protocol portsup : SERVICE (in requests, out results);peer : ALTBIT (in out)is todo : list [DataReq];next::= false; �� next bit to sendreceived::= true �� most recent bit receivedactioninit idle traced; �� history & initial state�nal state idle arcsdreq �> f todo.add(Dreq); peer ! DATA(dreq,next); go busy gend idle;state busy arcsdreq �> f todo.add(Dreq) gACK �> f if ACK = next thentodo.remove �rst;next:= not next;if todo.empty thengo idleelsepeer ! DATA(todo.�rst, next)end ifelse �� retransmitpeer ! DATA(todo.�rst, next)end if gend busyarcsACK �> fg �� ignoredDATA �> f if DATA.seq <> received thenreceived:= DATA.seq;up ! Dind(DATA.contents)end if;peer ! ACK(received) gend Protocol18


