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AbstractThis reports motivates and explains concepts developed in the project MoDiS toorganize large virtual address spaces comprising �ne-grain concurrent computationsin parallel and distributed environments. The single distributed address space isadaptively partitioned by a dynamic set of cooperating managers. The partitioningscheme is decentralized and scales with growing system con�gurations. De�cienciesas known from centralized or static organizations are prevented. In contrast tocommon operating systems, thoughts have also been given to possible thread stackand heap over
ows and collisions. Both stacks and heaps associated with a threadare realized non-contiguously with linear stack and heap segments to enable thedesired exploitation of the possibly large virtual address space. Distribution ofdata is coupled with garbage collection and based on objects instead of pages whilestill making use of the hardware faulting mechanism. Implementation is based on\o� the shelf" hardware components. Crucial for the e�ciency of this approach is athorough top-down oriented construction of all operating system entities comprisingthe compiler and libraries as well as the kernel.
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Observations1.1 Unsatisfying Operating System TechnologyThe acceptance of distributed and parallel1 processing techniques in practice lacksfar behind the expectations associated with the tremendous computing power pro-vided by ubiquitous high-speed interconnected workstations. This is mostly due toa comparable rate of complexity coming along with it. Such platforms tend to eitherburden the programmer with additional concepts and their e�ects, or demand loadand memory management tasks from the resource management system that arehard to ful�ll. Hence, to correct this situation, development of distributed systemshas to be simpli�ed with amongst others adequate programming concepts. Addi-tionally, new methods for automated yet e�cient application transparent resourcemanagement have to be emerged.De�nition: 1 (Purpose of an Operating System)The purpose of an OS is to release the application level from di�cult, repetitive, or{ due to rights { impossible tasks which can be performed without signi�cant lossestransparently by the system.History of operating systems (OS) shows that management tasks are handled atthe application level only as long, as powerful OS solutions are missing. For ex-ample, early overlay techniques [Flo89] for computers with small main memorieshave been replaced with OS and hardware support for large virtual address spaces(VA) combined with paging. Similar OS shortcomings can nowadays be observedin distributed and parallel environments re
ected in application-integrated resourcemanagement decisions. In fact, on parallel or even distributed platforms OS tech-nology drastically fails to comply with its objective target as stated in de�nition 1.In such environments, applications still have to handle many resources by them-selves e.g. perform load balancing or special handling of sharable memory regionsin case of distributed shared memory (DSM).Undoubted, memory management as a fundamental task of an OS should beperformed completely transparent to the application level. This obvious statementis often violated because of the cost to integrate functionality supporting parallelismand distribution into all management instances including the compiler, runtime sys-tem, and the kernel. Overcoming this de�cit is a milestone of major importance forthe transition form centralized and sequential to distributed and parallel processing.Outline Section 1.2 sketches the impact of several hot topics in OS technologyon memory management. In 1.3 the de�ciencies revealed are brie
y compared withmethods used in existing systems followed by a description of the system modelunderlying the work presented in this paper in 2.1. Fundamentals of the adaptivedistributed OS architecture and considerations concerning its implementation arefound in 2.1.2 & 2.1.3. Sections 2.3 and 3 detail the techniques developed fore�cient single address space management while focusing on distributed partitioningand changes in stack and heap organization. Information about the approach takento incorporate DSM and garbage collection functionality is given in 4. This paperconcludes with information on the current state of the project and summarizingresults in section 5.1Throughout this paper concurrency and parallelism are used as synonyms3



1. Observations1.2 New Features and New FlawsMulti-tasking OS usually provide separate address spaces for processes. In order toshare data amongst processes, IPC interfaces such as shared mappings, signals, orsockets along with error prone techniques like pointer swizzling have to be used. Ofcourse, tight coupling of processes needed for cooperative parallel algorithms cannot be achieved this way without considerable overhead.By employing one large address space for all processes as supported by modern64bit architectures this and other problems can be evaded. Each memory object isidenti�ed with its unique memory address instead of separately maintained objectidenti�ers. Therefore, object accesses are uniform and can be performed e�ciently.Using virtual addresses as globally unique identi�ers seems to be extremelyhelpful especially in distributed environments because it simpli�es naming, sharing,and migration, as well as it eases the enforcement of persistence for distributedobjects.1.2.1 Multi-Threading and Over
ows
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Figure 1.1: Single and multi-threaded VA partitioningUsually the VA is divided into partitions as sketched on the left hand side in �g-ure 1.1. Besides static code segments, one stack and one heap grow and shrink inopposite directions. A collision of stack and heap implies that no more free virtualaddresses are available and an irreparable error state has been reached. In reality,exhausted physical memory or shared libraries mapped somewhere in between stackand heap will cause faults in advance. This situation is usually accepted althoughit decreases reliability, because only one computation is directly a�ected.In parallel systems with multiple threads executing in one VA, each thread re-ceives a dedicated stack. Unfortunately, multi-threading is a typical example for abottom-up constructed and weakly integrated concept. It is provided to the appli-cation level with hardly any further support by the memory management system.The right hand side of �gure 1.1 illustrates a new severe problem. Thread stackseventually collide, although the VA is not close to be exhausted. In single addressspace systems, malfunctions of this kind might a�ect many independent applica-tions making such approaches insu�cient reliable. As a matter of fact, this problem4



1.2. New Features and New Flawsstays unsolved in all thread implementations known by the author. Some librariesallow the de�nition of custom stack sizes if the default size (varying from 16k to 1Mdepending on the implementation) does not seem to be su�cient. Of course, thisshifts the problem to the programmer contradicting the goal of simplicity and evenworse, is no solution in case of recursion or incremental extensibility. In general,neither stack size demands nor the number of threads is statically predictable.1.2.2 Extensible SystemsCurrently, a broad spectrum of research activities e.g. [vDHT95] investigates meth-ods to dynamically construct complex systems aiming at enhanced adaptability withhigher quality, less e�ort and better performance. Architectural changes in this di-rection decrease the possibilities of static analyzes and therefore impose furtherrestrictions | also on memory management techniques. For example, as discussedin newsgroups, static prediction of stack sizes becomes nearly impossible.> Date: 4 Mar 1997 19:25:43 GMT> Nice idea ... but ...>> What about using function pointers where you don't> know where your function is (in this case I guess the> max stack requirement for any function will do) or> run-time linking where you can't know the stack> requirements for the code because it might not have> even been written yet ...Executable code must also be placed in dynamically growing and shrinking par-titions preferably without programmer intervention, creating further sources forover
ows and collisions.1.2.3 Distributing the Virtual Address SpaceDistributed systems developer tend to statically bind node information to virtualaddress ranges, by using some high or low order bits as workstation identi�ers. Be-sides the simpli�cation for locating objects this approach has several disadvantages.For example, object migration requires costly pointer swizzling and the maximumsize for allocatable objects becomes unnecessarily restricted. Hence, binding loca-tion information on this level of abstraction opposes the intentions of the singleaddress space concept.1.2.4 Mapping Virtual Memory to NodesMapping to nodes refers to the question how virtual addresses are assigned to work-stations in the cluster if not already determined by hardware-related static parti-tioning. Providing the abstraction of a distributed shared memory (DSM) [Li86]seems to be a promising approach to exploit distributed storage facilities with ex-isting programming paradigms. In reality, DSM systems su�er from two drawbacks.First, most DSM implementations do not provide the desired level of trans-parency. Programmers have to cope with new concepts such as allocating andfreeing sharable segments. In addition to this, handling dynamic data structureswithin shared segments is most times up to the programmer due to a lack of combi-nation with dynamic storage allocation techniques. As a consequence, transparencyof access is missing and applicability is limited.Second, DSM systems often only provide poor performance. Bottom-up con-structed DSM systems are oriented on hardware properties usually employing a5



1. Observationsnumber of hardware as management unit. Pages are huge compared to the gran-ularity of application-level objects, such as integers. This inadequacy leads to thee�ect of false sharing , resulting in a strong performance degradation for a widerange of applications. In contrast to this, object-based DSM systems allow individ-ual handling of application objects but are often realized \all in software" producinghigh constant costs for runtime management. As DSM is still a hot topic in dis-tributed processing several important issues have not yet been investigated such asadvanced replication control [PT98] in DSM environments, or selective creation andelimination of replicates to support long term running systems.1.2.5 Requirements and GoalsThe di�culties revealed and additional experiences such as with dangling pointersare summarized in following incomplete2 list of requirements:1. Simple and safe application programming interface:(a) Automatic collection of unused objects (garbage).(b) Support for concurrent light-weight activities within one VA.(c) Uniform and location transparent creation and access to objects.(d) No distinct limitations on the amount and size of allocatable objectsbesides the size of the VA and existing physical resources.2. Time and space e�cient automatic management:(a) No distinct constant performance deterioration.(b) Scalability with growing con�gurations.(c) Adaptive management of heap, stack and code.(d) Exploitation of existing hardware features.(e) Fast remote accesses to objects of any granularity.Each item of this list has numerous consequences. For example, 2a drives opti-mization of local processing to avoid overhead relative to sequential systems. Be-cause of 2b, defacto improvements should be noticed if additional resources areconsumed. Furthermore, 2b necessitates decentralization of shared data structuresand elimination of synchronization as far as possible which in turn requires sophis-ticated protocols, partitioning algorithms, et cetera. Item 2c addresses transparentsolutions for over
ows and collisions, support for extensibility as well as allowingfor thread migration including data and code. This explosion of limitations andrequirements points out, that respecting all of these items is probably only possiblein a top-down oriented approach.The goal of the work presented in this paper, is to develop memory managementmethods as part of a distributed OS guided by de�nition 1 and the requirementslisted above. This distinguishes it from equally important work where details suchas di�erent coherence protocols [TF95] are investigated.1.3 Related WorkIn fact, hardware supported paged segments as used in former OS like MULTICSon Honeywell 6000 machines [Tan92] would nowadays be helpful to e�ciently solvesome of the problems mentioned. Thread stacks, heaps and extensible code frag-ments could be placed in separate segments without the danger of collisions. After2Of course, items such as protection would have to be added.6



1.3. Related Workyears of predominant sequential processes with private VA these features are miss-ing.Stacks Concurrent Oberon [ARD97] for example substitutes segments with com-piler inlined stack checking code and a prede�ned limit of 128k for the stack ofeach \Active Object". Over
ows below the limit are detected and corrected withadditional allocations. Linearity is preserved and consumption of physical memoryis adaptive. Unweakened linearity of stack spaces on the other hand, disables theexploitation of the whole VA for larger stacks. In other words, OS supported stackadaption is limited and demands may only vary within narrow boundaries.Using restricted pages at the end of the stack for the detection of over
ows com-bined with deferred mapping as for example in Solaris [Sun95] is fast, compatible,and mostly independent from the compiler. While detection is cheap, correctionmay be extremely di�cult. Over
ows stay undetected as long as objects located onthe restricted page are untouched, although other objects of the same frame or eventheir addresses are used. At the time of detection, registers and objects may have tobe examined globally along with pointer swizzling in order to correct the over
ow.Hence, avoidance or early detection should be preferred instead of late correction.Compiler-based approaches as for example dynamic stack probing implemented ingcc [Sta95], also su�er from late detection.In [HL93] problems of maintaining multiple stacks are described. The proposedsolution is to implement the conceptual cactus stack as a per processormeshed stack.Although this technique is an improvement it also requires expensive garbage collec-tion of activation records within the meshed stack and obstacles hardware enforcedprotection.The technique presented in this paper is based on dynamically extending and split-ting stacks which provides similar space but superior time e�ciency.Memory Allocators W.Gloger's ptmalloc [Glo97] implements a parallel mem-ory allocator based on POSIX threads [IEE95]. Lock contention is reduced by em-ploying multiple heaps with separate locks. Performance improvements of nearlyfactor 3 on Solaris/Sparc are the bene�t. Unfortunately, application-speci�c prop-erties are ignored. Objects are placed on the �rst currently unlocked heap. Hence,consecutively allocated objects become scattered through the VA which has negativee�ects on locality of reference and fragmentation.The memory allocator Mmalloc [Hae] supports multiple dedicated heaps withinone VA. Each heap grows and shrinks separately using the system call mmap buthas to be linear. Similar to stacks, linearity restricts dynamic adaption and fullexploitation of the VA as only over
ows can be solved. Collisions are only detected.Garbage Collection Extensive work has been performed in the context ofmemory allocation strategies and garbage collection (GC) in uniprocessor envi-ronments [Wil94, ea95]. Furthermore, a comprehensive comparison of distributedGC methods based on extensions of centralized algorithms such as weighted refer-ences [Cor91] as well as new distributed shared stores allowing for fault tolerance andreplication is given in [PS95]. It leads to the conclusion, that integrated solutionsare superior to layering, hierarchical methods providing locality are mandatory, andmost of all, distributed GC is still unsatisfactory. For example the language-basedsoftware DSM LEMMA [ML95] for ML [HMT89] uses global and local two-spaceGC. Although it provides \useful speed-ups" it is also recognized, that \there isconsiderable work to be done in a number of areas". With a tight coupling of pro-gramming model, GC, and object distribution, we expect the ability to reduce thecumulative overhead for distributed memory management.7



1. ObservationsDSM Li's Ivy system [Li86] was the �rst implementation of a page-based DSM.Since then, variations of this idea with weakened forms of consistency andother improvements were developed in projects such as Quarks [SSC98] or Tread-Marks [ea96b]. Although most of these projects provided technological progress,they all su�er from being based on page sizes and using one uniform coherenceprotocol at once for all managed objects. The consequences are false sharing andine�cient protocols for a large number of objects. These problems are partially cir-cumvented in software-based DSM systems such as Midway [BZS93], CRL [JKW95]and Munin [Car95]. But especially the latter fails to provide simplicity and trans-parency. In [Car98] the situation of DSM systems after almost 15 years of researchis characterized as \very little real world impact". It is stated, that the reasonsare either \pretty lousy" performance or inapplicability because of signi�cant userinput. Future DSM research will focus on support for distributed services and widearea applications in less speci�c contexts. We argue, that this in turn prerequisitesseamless integration of DSM features into distributed OS architectures.Single Address Spaces and Protection The question of how to de�ne and en-force protection in a single address space has been investigated in numerous projectssuch as Mungi and Opal [Elp93, CLBHL93]. An overview and comparison of theseapproaches amongst others can be found in [ea96a]. Commercial processor designsslowly start to incorporate support for advanced protection in a large address space.For example, SUN provides TLB3 supported clustering of pages to page contextswith its V9 architecture. Unfortunately, there are no means to hierarchically struc-ture page contexts, yet.
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Address Space Structuring
2.1 Basics of the Project MoDiSIn MoDiS (Model oriented Distributed Systems) [EW95b, EW95a] a top-downdriven and language-based approach is followed to systematically develop e�cientyet simple to use concepts. Homogeneous and distribution transparent languageconcepts allow the development of parallel algorithms with varying degrees of par-allelism, granularity, and cooperation. Objects representing new functionality (es-pecially applications) dynamically extend the running system, forming a globallystructured system encompassing applications and OS functionality.2.1.1 Programming ModelINSEL [Win96] provides the grammar to the more formal MoDiS concepts. It isa high-level, type-safe, imperative and object-based programming language withexplicit tasking parallelism. Encapsulated objects are dynamically created as in-stances of class describing objects, called generators1. Generators can be nestedwithin other generators or instances and vice versa. Objects may either be active(actors) or passive determined by the generator. Each actor de�nes a separate 
owof control and performs its computation concurrently to its creator. Actors mayinteract directly in a synchronous rendezvous (message passing) or mediately viashared passive objects (shared memory).Named objects are identi�ed by exactly one reference within a function or blockwhile anonymous objects are identi�ed by references which can be passed, dupli-cated and deleted. No further pointer arithmetics are supported. All objects areautomatically deleted according to their conceptually de�ned lifetime [PE97]. Thelifetime of an anonymous object depends on the lifetime of the generator for ref-erences to this object, whereas named objects depend on the enclosing object ormethod.2.1.2 Scalable Operating System ArchitectureTo enforce transparent, scalable and adaptable distributed resource management,we developed a re
ective management architecture [Gro96, GP97]. Though orig-inating in MoDiS, this architecture is also highly applicable in other parallel ordistributed systems. The key idea is to associate a manager with each 
ow ofcontrol on the conceptual level. In the context of INSEL, one actor and all itstermination dependent [PE97] passive objects are clustered to actor-contexts (AC).Each AC is guided by exactly one manager, which has to satisfy all demands forresources of its AC. Besides standard tasks such as allocating memory for the stack,heap and code, a manager might also have to enforce coherence of replicates, initi-ate migration, or enforce access restrictions. Con
icts, such as over
ows, concurrentheap allocations, or processor allocation are solved by inter manager cooperation.This management scheme is top-down oriented as it is constructed independentlyfrom the physical hardware con�guration. Furthermore, it is scalable, because itdoes not have a potential bottleneck and the number of managers corresponds to1similar to type or class in common languages9



2. Address Space Structuringthe number of actors. Adaption is assisted due to the close relation of managementwith dynamically changing requirements of application-level objects.2.1.3 Implementation PhilosophyCrucial for the e�ciency of this approach is a systematical realization of the concep-tual managers. Prototypes on top of Mach [Win96] and HP-UX [Rad95] have shown,that limiting the implementation to an adaption layer in an otherwise adopted en-vironment does cause unacceptable disadvantages for the long term goal.
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exible interpreting services while the utilization of de-coupled techniques leads to more static production characteristics. Transition frominterpretation to compilation is soft without a strict separation between statics anddynamics and management is regarded as continuous regulation.2.2 Memory Management Subsystem2.2.1 ArchitectureFigure 2.2 provides an overview of the memory management subsystem. Note,that the abstractions shown, represent conceptual levels in contrast to layers which10



2.2. Memory Management Subsystem
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2. Address Space Structuring
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Figure 2.3: Memory layoutthe system-wide shared and the local partition is identical. Both consist of rangesused as stack or heap segments for actors performing concurrent computations.Collisions or over
ows are transparently solved. In fact, each actor may allocatememory in both partitions. The manager attribute node allocation, inheritedfrom the creator, determines the kind of allocation and can be changed with aprivileged system call. Usually, this feature is only used to satisfy managementrequirements and is transparent to the application level.Current state of the project still requires a UNIX host system. The dynamicloader of the chosen host system Sparc/Solaris does not support initialization be-fore shared library initialization. Therefore, some partitions of the address spaceare preserved for the UNIX process environment. Start addresses and sizes of allpartitions are �x.Based on this partitioning, the memory subsystem bootstraps as follows: First,runtime data structures of boot AC managers are created and initialized within theUNIX data section on all nodes. Afterwards, the boot ACs themselves and othernode-speci�c actors such as network communication handlers are created within thenode partition. Finally one boot AC becomes elected as the boot master, switchesto global allocation, and starts with the creation of distributed ACs.2.3 Memory RegionsVirtual addresses are dynamically spread to ACs. Fur this purpose, both, the nodeand the shared partition are internally structured into disjunct memory regions.De�nition: 3 (virtual memory region)A virtual memory region is a complete interval of virtualaddresses starting and ending on page boundaries.Because the region concept mainly aims at overcoming the physical distributionof workstations, this section will concentrate on the shared partition. Most ofthe explanations also hold for the node partition, with the di�erence that networkcommunication has no impact. 12



2.3. Memory Regionsregion_t region_get (pref_addr,min_size,direction)void region_put (addr ,size )bool region_split(addr ,size )bool region_merge(addr1 ,addr2)Figure 2.4: Region interfaceThe dedicated runtime portion of an AC manager calls get and put of its sharedportion to dynamically allocate and free regions. The arguments of get specifya preferred starting address, the minimum required size, and positive or negativeorientation to pass information about the intended usage of regions as heap or stackspace for a certain AC. Split and coalescence (merge) of regions are prerequisitesto keep fragmentation under control. Internal versus external fragmentation isdynamically tunable. First, the preferred address and the minimum size are onlyguidelines instead of accurate values. And second, preferred continuous allocationsas a consequence of stack and heap growth are anticipated.2.3.1 Distribution ConceptDistribution of the VA has to be scalable to support growing hardware con�gura-tions as well as dynamic software systems consisting of parallel computations withvarying quantity and granularity. Scalability in general, is based on decentralizationto circumvent bottlenecks and the reduction of synchronization. An eligible methodshould also meet diverging requirements of applications by exploiting application-level knowledge as far as possible. Furthermore, ancillary conditions resulting fromthe requirements listed in 1.2.5 must be respected. For example, addresses of sharedobjects should not be used to code e.g. workstation identi�ers.
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2. Address Space Structuringrecursive style of cooperation allows to retrieve available regions globally. For ex-ample, requests of c are satis�ed with regions retrieved from f if necessary.2.3.2 Implementation Based on Resource PoolsThe main characteristics of this high-level scheme are intense and cascading coop-eration among managers whereas their number is large compared to workstations.Straight-forward implementations with chains of signals or even network messageswould deliver unacceptable performance. The strategy to forward regions to sonshas to cope with large numbers of small regions, if many light-weight actors areforked, as well as just a few but extremely large regions in case of recursion. But ingeneral, neither source analyzes nor runtime monitoring could provide the informa-tion needed to steer a suitable policy with little tolerance considering limited localresources. Though, the resource competed for { unallocated virtual address inter-vals, is available in abundance (considering 64 bits) | somewhere in the system.Analogical to strategy and mechanism, these problems are solved by thoroughlyseparating levels of abstraction and connecting methods on di�erent levels via soundmappings.The characteristics depicted indicate, that region distribution belongs to a typ-ical management task class where reducing low-level communication by means ofgroup communication is crucial. Because dynamic grouping based on the node ofexecution provides a natural way to reduce network messages, manager tasks ofthis class are mapped onto node resource pools . Notice, cooperation is in no waylimited to exchanging messages. E.g. shared data is a technique to implement highbandwidth cooperation.
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Figure 2.6: Regions implemented with node poolsAs shown in �gure 2.6, each node maintains an own dynamic pool of regionsencapsulated in the region allocator . Each pool is provided at system startup bythe boot master. The region allocator is tailored to the speci�c properties of regionssuch as page aligned, just a few di�erent sizes, and double-ended stack alike han-dling. Each AC gets/returns regions directly from/to the region allocator where it isexecuting. To further avoid communication, regions may be allocated and returnedon di�erent nodes in case of migration (e.g. A allocated on node 2 and returns on3). These may lead to a certain degree of additional external fragmentation. Idlecycles or region shortages trigger a region pool reorganization which is hierarchically14



2.3. Memory Regionscoordinated by cluster masters and a designated system master node. This lazy oroptimistic strategy is eligible, because it can be supposed that region shortagesoccur infrequently.2 This subsection also demonstrated the importance of the ability to systematicallymap abstract concepts to generalized management methods. Unfortunately, it seemsas if there was hardly any support for systematic top-down derivations of this kindin the context of operating systems. The reasons are mainly missing abstractionand categorization of existing successful techniques.
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Segmented Stacks and HeapsEach manager has to provide heap and stack space for its AC. Obviously, due tomultiple ACs within one address space, heap and stack growth either has to belimited or classical management has to be rethought. We decided for the latter.De�nition: 4 (virtual memory segment)A virtual memory segment is a complete interval of virtual addresses consisting ofat least one virtual memory region.De�nition: 5 (segment stack)A segment stack contains individual segments which are dynamically pushed andpopped. Additionally, the top most segment may dynamically grow and shrink.Notice, virtual addresses within a segment stack are in general neither monotonousnor linear.With its regions each manager autonomously maintains two segment stacks (seedef. 4,5) to implement stack and heap of its AC. Every segment has a header speci-fying its size and a link. For performance reasons, segments of a segment stack arechained in a circular list through the link �eld. The header itself is placed at thehighest address in case of stack, respectively the lowest address in case of heap toenable linear segment extensions for downward growing stacks and upward growingheaps.In case of an over
ow of the top segment, it is �rst tried to extend the topsegment by requesting a connecting region from the region allocator. If the regionreturned complies to this preference it is simply added to the top segment as a linearextension. Otherwise, a non-linear extension is performed by pushing the region re-ceived as the new top segment onto the corresponding segment stack. An under
owoccurs, if the stack pointer or the heap limit drop below the start address of thestack respectively heap top segment. Analogously to extensions, reductions trig-gered by under
ows can as well be linear (shrinking the top segment) or non-linear(top segment is popped). In either case, regions formerly contained in segments arereturned to the node region pool.Figure 3.1 illustrates stack and heap space based on segment stacks. Eachthread, implementing the 
ow of control of an AC, is guided by a thread controlblock (TCB) representing the dedicated data portion of the manager. Fields withinthe TCB provide access to the bottom elements of both segment stacks. Unlikeall other segments, the link �eld of bottom elements references the top segment.Management objects usually kept in a static data part, e.g. global heap libraryvariables, are placed in the information part of the bottom heap or stack segment.The �gure also shows an overall non-monotonous stack space for this AC. Thecurrent (top) stack segment starts and ends above its preceding segment.Notice, that all kind of memory in this system is mmap'ed. Abandoning sbrkand kernel stack handling has several consequences which are elaborated in thefollowing paragraphs. It is also evident, that fast access to the TCB is crucial. Forthis purpose, we modi�ed GNU gcc to amongst others use a �x hardware registerto reference the TCB of the current AC [Piz97]. For example, on Sparc V9 %g3 isused as the TCB designator. 16



3.1. Unlimited Stacks
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Figure 3.1: Per thread segment stacks for stack and heap space3.1 Unlimited StacksSegment stacks allow to lazily adapt memory consumption without a rigid limit.Each thread is started with a single stack segment whose size is determined atcompile time. At runtime, segment crossings are monitored and the usually linearstack space becomes eventually split to �t on separate segments.Knowing the code generator, only three possibilities of segment crossings must beconsidered. First, when a call level is entered the stack pointer (SP) is decremented1to allocate the new activation frame. Second, dynamic stack objects, such as �eldswith statically unknown range, are allocated by decrementing SP. While these twooperations may cause over
ows, leaving a call level is the source for under
ows.Stack objects are bundled within activation frames for faster (de-)allocation. Asound possibility to split the stack is between activation frames. Dynamic stackobjects could as well be separated with the e�ect of an awkward heap alike man-agement within stack, causing strong internal fragmentation. As placing dynamicstack objects on stack is not essential, we decided to transparently place such ob-jects in heap space. This, in turn has the advantageous e�ect that at most each calllevel entry and exit must be monitored.1Assuming downward growing stacks. 17



3. Segmented Stacks and Heaps3.1.1 Decoupled | Compiler Modi�cation
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Figure 3.2: Non-linear stack extensionA hardware integrated compare logic checking SP against segment limits would bedesirable but is not available. Hence, monitoring must be prepared by the compilerby generating inlined code. This code could be placed around calls or integratedinto prologue and epilogue of subprograms. Latter was chosen because it reducescode size and most of all, is eligible to support extensible systems where a callermight have no knowledge about the callee.Stack addressing had to be changed. Usually, a single frame pointer (FP) pointsin between two frames. Negative o�sets reference local objects, while argumentsare found via positive o�sets. Now, frames are eventually separated as shown in�gure 3.2. The size of the possible gap between arguments and locals is staticallyunknown. Besides the FP addressing locals, this also requires an explicit argumentpointer (AP). On Sparc V9, we utilize register %l0 as FP and changed the semanticsof %fp to AP instead of solely using a new register for the AP. This approach providescompatibility (debugger, libraries, etc.) and better performance.The activation frame layout was extended with a 
ag determining whether theframe has caused a non-linear extension. While over
ows are checked against thecurrent stack limit recorded in the TCB, under
ows are detected with help of thisextension 
ag. Due to alignment more than one bit must be allocated. This propertyis exploited for faster segment deallocation by storing the address of the allocatedsegment instead of just a boolean value with the extension 
ag.All of these modi�cations were made to the low-level back-end of the GNU gcc18



3.1. Unlimited Stackscompiler. Among the bene�ts are support for many languages (C, C++, INSEL,etc.) at once and compatibility with all compiler optimizations such as functioninlining or leaf functions.3.1.2 Coupled | Runtime ManagementIn addition to the linkage of segment stacks, stack segments are also doubly linkedthrough the AP (backward) and extension 
ag (forward) of frames causing non-linear extensions (see �gure 3.2). This eliminates searching within lists in order tocorrect under
ows and speeds-up stack evolution across segment boundaries. Twomore values must be remembered and reset in case of under
ows: the SP and thestack limit at the time of over
ow. Instead of wasting two words in every frame,inlined code writes these values directly underneath the header of stack segments.save %sp,-384,%sp1) clr [%fp-8]2) mov %fp,%l03) ld [%g3+12],%l14) cmp %sp,%l15) bgeu .prolog_endnop6) clr [%g3+12]7) mov 384,%o08) mov %sp,%l29) call OVERFLOW10) add %fp,-120,%sp11) cmp %o0,%g012) bne .non_linearnop13) b .prolog_end14) mov %l2,%sp.non_linear:15) st %l1,[%o0-12]16) st %sp,[%o0-16]17) st %o0,[%fp-8]18) add %o0,-8,%l019) add %l0,-384,%sp

1) ld [%fp-8],%o02) cmp %g0,%o03) be .epilog_endnop4) ld [%o0-12],%l15) clr [%g3+12]6) call UNDERFLOW7) ld [%o0-16],%sp8) st %l1,[%g3+12]

Figure 3.3: Sparc stack check prologue and epilogueCorrecting an over
ow requires calls of subprograms consuming further stackspace. This is accomplished by maintaining a reserved area at the end of thecurrent stack segment. The technique implemented ensures, that at least the size ofthe reserved portion (currently 8k) minus the minimal frame (currently 120 bytes)is available for the over
ow handler. It can easily be proofed, that over
ows arealways handled within this space. In case of non-linear extensions, the reserved areais temporarily lost. Linear extensions simply move the reserved area to the new endof the segment without losses.2 Figure 3.3 lists the stack checking code used on Sparc V9 for the interestedreader. In this example, the frame size is 384 bytes. Line (1) of the prologue clearsthe extension 
ag, FP is assigned the value of AP (2), and the e�ectual limit isfetched from the TCB (3). If the SP is below the limit, nothing is left to do (4,5).Otherwise, the stack limit is cleared (� maximum) to avoid recursion (6) and theover
ow handler is called (9) after shrinking to the minimal frame (10). The handlerreturns zero in case of linear extensions which is checked in (11). If linear, then only19



3. Segmented Stacks and Heapsthe SP is reset to the value before the handler was called (14,8). If non-linear, thestack limit and SP are written to the new segment (15,16) and the segment addressis written to the extension 
ag (18), before the frame space is moved to the newsegment by setting FP and SP (18,19). Lines 1{3 of the epilogue check whether thecurrent frame caused a non-linear extension by comparing the extension 
ag withzero. If yes, then the current limit is set ine�ective (5), and SP is reset (7), beforethe under
ow handler is called (6), and the stack limit becomes reset (8).3.1.3 Distributed Display HandlingIn turn of modifying stack addressing within the compiler, we also modi�ed dis-play [ASU86] handling to better support nested functions. The usually used staticchain technique is unacceptable in a distributed environment, because tracing eachlink of the chain could cause network communication. Displays, on the other hand,are often implemented by copying data from the static predecessor. As this maystill cause network communication although a local function is called, it is alsounacceptable. The new technique integrated into the compiler copies the displayeither form the dynamic predecessor on the same node or prefetches it, if a potentialremote function call is to be performed.3.1.4 Performance ConsiderationsThe computational costs for dynamic stack checking are comparably small. In theaverage case of no extension, 5 + 3 additional instructions incur. The e�ect onreal programs is debatable. Tests with a simple parallel prime generator indicatean insigni�cant overhead (40.3 versus 40.5 seconds). Widening the scope of checkscould further reduce this overhead. E.g. checks are actually only needed at pointsof recursion. Other checks can be combined according to the statically predictabledeepest call level.Internal fragmentation only occurs in case of non-linear extensions. Let f bethe average frame size, r the size of the reserved area, and s the average segmentsize. Following formula is an approximation of the internal stack fragmentation, ifevery extension was non-linear:Favg = r + ((s� r) mod f)s ; 8k � 120 < r < 8kIf f = 256; r = 8192, and s = 32k internal fragmentation would be 25%. Non-linear extensions are problematical in two ways. First, they may cause noticeablefragmentation, which can be optimized by choosing adequate segment sizes. Second,in contrast to linear extensions, non-linearly extended segments become freed assoon as the call-level causing the extension is left and might already be reallocatedwith the next call leading to unfavorable thrashing . This situation is avoided byexploiting the region allocator to provide regions at preferred addresses.3.2 HeapsThroughout this paper, the term \heap" refers to a pool of memory available forallocation and deallocation in arbitrary order. To eliminate synchronization andcommunication as far as possible, each AC (de-)allocates objects on its own dedi-cated heap.We investigated existing libraries concerning their eligibility to serve as a startingpoint for the implementation of the heap segment stack. Because of its excellentperformance [DDZ94] and its both, short and understandable source code, D. Lea's20



3.2. Heaps
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Figure 3.4: Heap extensionfreely available memory allocator G++ malloc [Lea96] was selected. It structuresheap space into free and allocated chunks. A special free chunk, called top chunk(TC), is used to grow and shrink the heap. It is split and coalesced as chunks are(de-)allocated at the top end of the heap while being increased and decreased atthe upper end with the system call sbrk.In contrast to stacks, the separate management of each application-level objectin a chunk allows to easily spread a heap across segments, because splitting can beperformed between arbitrary chunks. Obviously, linear extensions and reductionssimply increase and decrease TC's upper limit, identically to sbrk without requiringchanges to the library.Several modi�cations were made to support positive or negative holes caused bynon-linear extensions (see �gure 3.4). If TC is non-linearly extended, the e�ectualTC is converted into an ordinary free chunk, which can be used to satisfy subsequentallocations. Its chunk information (size, etc.) is placed at the highest address of theold top segment. Above the segment header of the new segment, a special hole chunkis installed and the allocation causing the over
ow is performed. The remainder ofthe segment is used as the new TC. The hole chunk serves two purposes. First, itstores the information about the old TC. Second, it has a 
ag set, that preventsthis chunk from being coalesced with other chunks than the TC. Heap trimmingoperations, succeeding deallocations with coalescences, decrease TC's upper limitif its size exceeds a certain limit. Each time TC is trimmed, it is also checked,whether TC could be coalesced with the hole chunk, which would mean that nochunks are allocated within this segment. If this is the case, a non-linear reduction21



3. Segmented Stacks and Heapsis performed instead of just linearly reducing the segment size. Before returningregions to the node region pool, the old TC is re-established based on informationstored in the hole chunk and at the end of the previous segment.The computational overhead introduced with the segmented heap organizationis neglectable. Similarly to stack space, fragmentation increases with the amount ofnon-linear extensions which can be controlled with the region allocator. In contrastto stack space, there is no reserved area in heap space being wasted. Furthermore,lazy reduction can be employed by deferring heap trimming which nearly eliminatesthe thrashing e�ect explained in 3.1.4.
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Object-Distribution and GarbageCollectionCurrent work is focusing on the transparent incorporation of garbage collection(GC) and DSM capabilities into heap management. In a long term running dis-tributed single address space system, GC and DSM have strong interactions. A jointapproach will be superior to individually optimized solutions. For example, indi-rections needed for hardware-supported distribution of individual objects [GPR97]can at the same time be exploited by the collector to move objects. The approachtaken, is to widen the scope of GC to include management objects as well as appli-cation level objects in a collection hierarchy. References to objects and replicatesof remote objects are locally monitored. Locally unreachable replicates becomedeleted. Proxy pages only mapped to hold replicates and migrated objects becomefurther unmapped by the local collector if they do not contain any reachable repre-sentants of remote objects. \Original objects" are deleted if neither replicates norlocal references exist.A �rst prototype of the MoDiS DSM, providing distributed shared stack objects,is explained in detail in [GPR97]. The techniques developed, are currently adaptedto provide e�cient remote access to heap objects. The basic idea is to access ob-jects mediately via indirection pointers in order to move shared objects betweendi�erent memory regions. These regions represent per node read-write, read-onlyand no rights, which are checked in hardware because regions are page aligned.Accesses with insu�cient rights trigger faults. Software handlers retrieve the re-quested object, enforce per object consistency with a dynamically chosen coherenceprotocol, and adjust the indirection. Pointer swizzling at fault time between dif-ferent memory regions delivers the ability to exploit the page fault mechanism of\o� the shelf hardware". Thus, the DSM management only has to handle accessesto locally unavailable objects. Performance penalties as known from all-in softwareimplementations are avoided while individual objects are still e�ciently handledwithout false-sharing.
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ConclusionThe reader might have noticed, that although this approach is introduced as beingtop-down oriented, concepts are explained rather in the opposite direction startingfrom coarse partitions and regions. In fact, concepts were elaborated top-down withthe bottom in mind1 Pure top-down construction seems to be at least as unsatisfac-tory as bottom-up driven methods. Where the latter fails to match application-levelrequirements, the former tends to miss real world possibilities.The memory management techniques presented, aim to support parallelism anddistribution as an integral part of a new distributed OS architecture. The moti-vation is to free the application level from repetitive and error prone managementtasks. Although the context of this work is a language-based approach, most of theconcepts elaborated are also applicable in other parallel or distributed environments.Besides distinguishing stack and heap, memory management is invisible at theapplication level. The programmer is not burdened with object locations, net-work messages, special sharable regions, or stack size requirements. Instead, theOS performs adaptive segmentation to fully exploit the address space for concur-rent computations dynamically varying in size and number. Memory consumptionapproximates application-level requirements. Furthermore, any application levelobject is shared across nodes with automatic migration or replication as necessary.It is also stated clearly, that these features do not induce signi�cant constant over-head. This is a prerequisite to not solely provide speed-ups with the consumptionof additional resources but also the possibility of defacto advantages compared toconventional systems.Implementation is based on a tight coupling of tools and kernel into an inte-grated OS. Instead of constructing layers, all instances involved in managementare considered as possibilities to implement management functionality. To reducethe e�ort needed to construct these instances from scratch and at the same timeavoid reinventions of the wheel, existing software is modi�ed to meet changed re-quirements. In turn, compatibility is limited. Existing binaries can be integratedinto the system but to fully pro�t from these new features, applications at leasthave to be recompiled. Another important step is the introduction of new lan-guages as brie
y presented in this paper, supporting e.g. high level speci�cation ofconcurrency.The platform used for the implementation of these concepts consists of 14 SUNUltra 1 workstations running Solaris 2.5.1 interconnected with a 100Mbit/s FastEthernet. Implementation and evaluation of segmented stacks as well as modi�ca-tions of the malloc library is �nished.Partitioning into shared and node partitions, region distribution and the regionallocator are realized to a great extend. Besides the object-based DSM for heapspace, current implementation work concentrates on dynamic region redistributionand visualization tools. Conceptual work is focusing on the interaction betweenDSM and distributed garbage collection.
1Using this line of thought in this paper would probably not lead to a better understanding forthe techniques. 24
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