
TECHNISCHEUNIVERSIT�ATM �UNCHEN
INSTITUT F�UR INFORMATIKSonderforschungsbereich 342:Methoden und Werkzeuge f�ur die Nutzungparalleler Rechnerarchitekturen

Distributed Virtual Address SpaceManagement in the MoDiS-OSMarkus Pizka

TUM-I9817SFB-Bericht Nr. 342/07/98 AAugust 98

TUM{INFO{08-I9817-100/1.{FIAlle Rechte vorbehaltenNachdruck auch auszugsweise verbotenc
1998 SFB 342 Methoden und Werkzeuge f�urdie Nutzung paralleler ArchitekturenAnforderungen an: Prof. Dr. A. BodeSprecher SFB 342Institut f�ur InformatikTechnische Universit�at M�unchenD-80290 M�unchen, GermanyDruck: Fakult�at f�ur Informatik derTechnischen Universit�at M�unchen

Distributed Virtual Address SpaceManagement in the MoDiS-OSMarkus PizkaTechnische Universit�at M�unchenDepartment of Computer Science80290 Munich (Germany)pizka@in.tum.deKeywords: operating systems, distributed systems, parallel systems,memory management

AbstractThis reports motivates and explains concepts developed in the project MoDiS toorganize large virtual address spaces comprising �ne-grain concurrent computationsin parallel and distributed environments. The single distributed address space isadaptively partitioned by a dynamic set of cooperating managers. The partitioningscheme is decentralized and scales with growing system con�gurations. De�cienciesas known from centralized or static organizations are prevented. In contrast tocommon operating systems, thoughts have also been given to possible thread stackand heap over
ows and collisions. Both stacks and heaps associated with a threadare realized non-contiguously with linear stack and heap segments to enable thedesired exploitation of the possibly large virtual address space. Distribution ofdata is coupled with garbage collection and based on objects instead of pages whilestill making use of the hardware faulting mechanism. Implementation is based on\o� the shelf" hardware components. Crucial for the e�ciency of this approach is athorough top-down oriented construction of all operating system entities comprisingthe compiler and libraries as well as the kernel.

Contents1 Observations 31.1 Unsatisfying Operating System Technology 31.2 New Features and New Flaws . 41.3 Related Work . 62 Address Space Structuring 92.1 Basics of the Project MoDiS . 92.2 Memory Management Subsystem . 102.3 Memory Regions . 123 Segmented Stacks and Heaps 163.1 Unlimited Stacks . 173.2 Heaps . 204 Object-Distribution and Garbage Collection 235 Conclusion 24

2

Observations1.1 Unsatisfying Operating System TechnologyThe acceptance of distributed and parallel1 processing techniques in practice lacksfar behind the expectations associated with the tremendous computing power pro-vided by ubiquitous high-speed interconnected workstations. This is mostly due toa comparable rate of complexity coming along with it. Such platforms tend to eitherburden the programmer with additional concepts and their e�ects, or demand loadand memory management tasks from the resource management system that arehard to ful�ll. Hence, to correct this situation, development of distributed systemshas to be simpli�ed with amongst others adequate programming concepts. Addi-tionally, new methods for automated yet e�cient application transparent resourcemanagement have to be emerged.De�nition: 1 (Purpose of an Operating System)The purpose of an OS is to release the application level from di�cult, repetitive, or{ due to rights { impossible tasks which can be performed without signi�cant lossestransparently by the system.History of operating systems (OS) shows that management tasks are handled atthe application level only as long, as powerful OS solutions are missing. For ex-ample, early overlay techniques [Flo89] for computers with small main memorieshave been replaced with OS and hardware support for large virtual address spaces(VA) combined with paging. Similar OS shortcomings can nowadays be observedin distributed and parallel environments re
ected in application-integrated resourcemanagement decisions. In fact, on parallel or even distributed platforms OS tech-nology drastically fails to comply with its objective target as stated in de�nition 1.In such environments, applications still have to handle many resources by them-selves e.g. perform load balancing or special handling of sharable memory regionsin case of distributed shared memory (DSM).Undoubted, memory management as a fundamental task of an OS should beperformed completely transparent to the application level. This obvious statementis often violated because of the cost to integrate functionality supporting parallelismand distribution into all management instances including the compiler, runtime sys-tem, and the kernel. Overcoming this de�cit is a milestone of major importance forthe transition form centralized and sequential to distributed and parallel processing.Outline Section 1.2 sketches the impact of several hot topics in OS technologyon memory management. In 1.3 the de�ciencies revealed are brie
y compared withmethods used in existing systems followed by a description of the system modelunderlying the work presented in this paper in 2.1. Fundamentals of the adaptivedistributed OS architecture and considerations concerning its implementation arefound in 2.1.2 & 2.1.3. Sections 2.3 and 3 detail the techniques developed fore�cient single address space management while focusing on distributed partitioningand changes in stack and heap organization. Information about the approach takento incorporate DSM and garbage collection functionality is given in 4. This paperconcludes with information on the current state of the project and summarizingresults in section 5.1Throughout this paper concurrency and parallelism are used as synonyms3

1. Observations1.2 New Features and New FlawsMulti-tasking OS usually provide separate address spaces for processes. In order toshare data amongst processes, IPC interfaces such as shared mappings, signals, orsockets along with error prone techniques like pointer swizzling have to be used. Ofcourse, tight coupling of processes needed for cooperative parallel algorithms cannot be achieved this way without considerable overhead.By employing one large address space for all processes as supported by modern64bit architectures this and other problems can be evaded. Each memory object isidenti�ed with its unique memory address instead of separately maintained objectidenti�ers. Therefore, object accesses are uniform and can be performed e�ciently.Using virtual addresses as globally unique identi�ers seems to be extremelyhelpful especially in distributed environments because it simpli�es naming, sharing,and migration, as well as it eases the enforcement of persistence for distributedobjects.1.2.1 Multi-Threading and Over
ows

�������������
�������������
�������������
�������������

������������
������������
������������
������������

������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������

������������
������������
������������
������������

stack thread 2

heap

stack

heap

stack thread 1

code code

A) Process B) Multi-Threading

Figure 1.1: Single and multi-threaded VA partitioningUsually the VA is divided into partitions as sketched on the left hand side in �g-ure 1.1. Besides static code segments, one stack and one heap grow and shrink inopposite directions. A collision of stack and heap implies that no more free virtualaddresses are available and an irreparable error state has been reached. In reality,exhausted physical memory or shared libraries mapped somewhere in between stackand heap will cause faults in advance. This situation is usually accepted althoughit decreases reliability, because only one computation is directly a�ected.In parallel systems with multiple threads executing in one VA, each thread re-ceives a dedicated stack. Unfortunately, multi-threading is a typical example for abottom-up constructed and weakly integrated concept. It is provided to the appli-cation level with hardly any further support by the memory management system.The right hand side of �gure 1.1 illustrates a new severe problem. Thread stackseventually collide, although the VA is not close to be exhausted. In single addressspace systems, malfunctions of this kind might a�ect many independent applica-tions making such approaches insu�cient reliable. As a matter of fact, this problem4

1.2. New Features and New Flawsstays unsolved in all thread implementations known by the author. Some librariesallow the de�nition of custom stack sizes if the default size (varying from 16k to 1Mdepending on the implementation) does not seem to be su�cient. Of course, thisshifts the problem to the programmer contradicting the goal of simplicity and evenworse, is no solution in case of recursion or incremental extensibility. In general,neither stack size demands nor the number of threads is statically predictable.1.2.2 Extensible SystemsCurrently, a broad spectrum of research activities e.g. [vDHT95] investigates meth-ods to dynamically construct complex systems aiming at enhanced adaptability withhigher quality, less e�ort and better performance. Architectural changes in this di-rection decrease the possibilities of static analyzes and therefore impose furtherrestrictions | also on memory management techniques. For example, as discussedin newsgroups, static prediction of stack sizes becomes nearly impossible.> Date: 4 Mar 1997 19:25:43 GMT> Nice idea ... but ...>> What about using function pointers where you don't> know where your function is (in this case I guess the> max stack requirement for any function will do) or> run-time linking where you can't know the stack> requirements for the code because it might not have> even been written yet ...Executable code must also be placed in dynamically growing and shrinking par-titions preferably without programmer intervention, creating further sources forover
ows and collisions.1.2.3 Distributing the Virtual Address SpaceDistributed systems developer tend to statically bind node information to virtualaddress ranges, by using some high or low order bits as workstation identi�ers. Be-sides the simpli�cation for locating objects this approach has several disadvantages.For example, object migration requires costly pointer swizzling and the maximumsize for allocatable objects becomes unnecessarily restricted. Hence, binding loca-tion information on this level of abstraction opposes the intentions of the singleaddress space concept.1.2.4 Mapping Virtual Memory to NodesMapping to nodes refers to the question how virtual addresses are assigned to work-stations in the cluster if not already determined by hardware-related static parti-tioning. Providing the abstraction of a distributed shared memory (DSM) [Li86]seems to be a promising approach to exploit distributed storage facilities with ex-isting programming paradigms. In reality, DSM systems su�er from two drawbacks.First, most DSM implementations do not provide the desired level of trans-parency. Programmers have to cope with new concepts such as allocating andfreeing sharable segments. In addition to this, handling dynamic data structureswithin shared segments is most times up to the programmer due to a lack of combi-nation with dynamic storage allocation techniques. As a consequence, transparencyof access is missing and applicability is limited.Second, DSM systems often only provide poor performance. Bottom-up con-structed DSM systems are oriented on hardware properties usually employing a5

1. Observationsnumber of hardware as management unit. Pages are huge compared to the gran-ularity of application-level objects, such as integers. This inadequacy leads to thee�ect of false sharing , resulting in a strong performance degradation for a widerange of applications. In contrast to this, object-based DSM systems allow individ-ual handling of application objects but are often realized \all in software" producinghigh constant costs for runtime management. As DSM is still a hot topic in dis-tributed processing several important issues have not yet been investigated such asadvanced replication control [PT98] in DSM environments, or selective creation andelimination of replicates to support long term running systems.1.2.5 Requirements and GoalsThe di�culties revealed and additional experiences such as with dangling pointersare summarized in following incomplete2 list of requirements:1. Simple and safe application programming interface:(a) Automatic collection of unused objects (garbage).(b) Support for concurrent light-weight activities within one VA.(c) Uniform and location transparent creation and access to objects.(d) No distinct limitations on the amount and size of allocatable objectsbesides the size of the VA and existing physical resources.2. Time and space e�cient automatic management:(a) No distinct constant performance deterioration.(b) Scalability with growing con�gurations.(c) Adaptive management of heap, stack and code.(d) Exploitation of existing hardware features.(e) Fast remote accesses to objects of any granularity.Each item of this list has numerous consequences. For example, 2a drives opti-mization of local processing to avoid overhead relative to sequential systems. Be-cause of 2b, defacto improvements should be noticed if additional resources areconsumed. Furthermore, 2b necessitates decentralization of shared data structuresand elimination of synchronization as far as possible which in turn requires sophis-ticated protocols, partitioning algorithms, et cetera. Item 2c addresses transparentsolutions for over
ows and collisions, support for extensibility as well as allowingfor thread migration including data and code. This explosion of limitations andrequirements points out, that respecting all of these items is probably only possiblein a top-down oriented approach.The goal of the work presented in this paper, is to develop memory managementmethods as part of a distributed OS guided by de�nition 1 and the requirementslisted above. This distinguishes it from equally important work where details suchas di�erent coherence protocols [TF95] are investigated.1.3 Related WorkIn fact, hardware supported paged segments as used in former OS like MULTICSon Honeywell 6000 machines [Tan92] would nowadays be helpful to e�ciently solvesome of the problems mentioned. Thread stacks, heaps and extensible code frag-ments could be placed in separate segments without the danger of collisions. After2Of course, items such as protection would have to be added.6

1.3. Related Workyears of predominant sequential processes with private VA these features are miss-ing.Stacks Concurrent Oberon [ARD97] for example substitutes segments with com-piler inlined stack checking code and a prede�ned limit of 128k for the stack ofeach \Active Object". Over
ows below the limit are detected and corrected withadditional allocations. Linearity is preserved and consumption of physical memoryis adaptive. Unweakened linearity of stack spaces on the other hand, disables theexploitation of the whole VA for larger stacks. In other words, OS supported stackadaption is limited and demands may only vary within narrow boundaries.Using restricted pages at the end of the stack for the detection of over
ows com-bined with deferred mapping as for example in Solaris [Sun95] is fast, compatible,and mostly independent from the compiler. While detection is cheap, correctionmay be extremely di�cult. Over
ows stay undetected as long as objects located onthe restricted page are untouched, although other objects of the same frame or eventheir addresses are used. At the time of detection, registers and objects may have tobe examined globally along with pointer swizzling in order to correct the over
ow.Hence, avoidance or early detection should be preferred instead of late correction.Compiler-based approaches as for example dynamic stack probing implemented ingcc [Sta95], also su�er from late detection.In [HL93] problems of maintaining multiple stacks are described. The proposedsolution is to implement the conceptual cactus stack as a per processormeshed stack.Although this technique is an improvement it also requires expensive garbage collec-tion of activation records within the meshed stack and obstacles hardware enforcedprotection.The technique presented in this paper is based on dynamically extending and split-ting stacks which provides similar space but superior time e�ciency.Memory Allocators W.Gloger's ptmalloc [Glo97] implements a parallel mem-ory allocator based on POSIX threads [IEE95]. Lock contention is reduced by em-ploying multiple heaps with separate locks. Performance improvements of nearlyfactor 3 on Solaris/Sparc are the bene�t. Unfortunately, application-speci�c prop-erties are ignored. Objects are placed on the �rst currently unlocked heap. Hence,consecutively allocated objects become scattered through the VA which has negativee�ects on locality of reference and fragmentation.The memory allocator Mmalloc [Hae] supports multiple dedicated heaps withinone VA. Each heap grows and shrinks separately using the system call mmap buthas to be linear. Similar to stacks, linearity restricts dynamic adaption and fullexploitation of the VA as only over
ows can be solved. Collisions are only detected.Garbage Collection Extensive work has been performed in the context ofmemory allocation strategies and garbage collection (GC) in uniprocessor envi-ronments [Wil94, ea95]. Furthermore, a comprehensive comparison of distributedGC methods based on extensions of centralized algorithms such as weighted refer-ences [Cor91] as well as new distributed shared stores allowing for fault tolerance andreplication is given in [PS95]. It leads to the conclusion, that integrated solutionsare superior to layering, hierarchical methods providing locality are mandatory, andmost of all, distributed GC is still unsatisfactory. For example the language-basedsoftware DSM LEMMA [ML95] for ML [HMT89] uses global and local two-spaceGC. Although it provides \useful speed-ups" it is also recognized, that \there isconsiderable work to be done in a number of areas". With a tight coupling of pro-gramming model, GC, and object distribution, we expect the ability to reduce thecumulative overhead for distributed memory management.7

1. ObservationsDSM Li's Ivy system [Li86] was the �rst implementation of a page-based DSM.Since then, variations of this idea with weakened forms of consistency andother improvements were developed in projects such as Quarks [SSC98] or Tread-Marks [ea96b]. Although most of these projects provided technological progress,they all su�er from being based on page sizes and using one uniform coherenceprotocol at once for all managed objects. The consequences are false sharing andine�cient protocols for a large number of objects. These problems are partially cir-cumvented in software-based DSM systems such as Midway [BZS93], CRL [JKW95]and Munin [Car95]. But especially the latter fails to provide simplicity and trans-parency. In [Car98] the situation of DSM systems after almost 15 years of researchis characterized as \very little real world impact". It is stated, that the reasonsare either \pretty lousy" performance or inapplicability because of signi�cant userinput. Future DSM research will focus on support for distributed services and widearea applications in less speci�c contexts. We argue, that this in turn prerequisitesseamless integration of DSM features into distributed OS architectures.Single Address Spaces and Protection The question of how to de�ne and en-force protection in a single address space has been investigated in numerous projectssuch as Mungi and Opal [Elp93, CLBHL93]. An overview and comparison of theseapproaches amongst others can be found in [ea96a]. Commercial processor designsslowly start to incorporate support for advanced protection in a large address space.For example, SUN provides TLB3 supported clustering of pages to page contextswith its V9 architecture. Unfortunately, there are no means to hierarchically struc-ture page contexts, yet.

3Table Lookaside Bu�er 8

Address Space Structuring
2.1 Basics of the Project MoDiSIn MoDiS (Model oriented Distributed Systems) [EW95b, EW95a] a top-downdriven and language-based approach is followed to systematically develop e�cientyet simple to use concepts. Homogeneous and distribution transparent languageconcepts allow the development of parallel algorithms with varying degrees of par-allelism, granularity, and cooperation. Objects representing new functionality (es-pecially applications) dynamically extend the running system, forming a globallystructured system encompassing applications and OS functionality.2.1.1 Programming ModelINSEL [Win96] provides the grammar to the more formal MoDiS concepts. It isa high-level, type-safe, imperative and object-based programming language withexplicit tasking parallelism. Encapsulated objects are dynamically created as in-stances of class describing objects, called generators1. Generators can be nestedwithin other generators or instances and vice versa. Objects may either be active(actors) or passive determined by the generator. Each actor de�nes a separate
owof control and performs its computation concurrently to its creator. Actors mayinteract directly in a synchronous rendezvous (message passing) or mediately viashared passive objects (shared memory).Named objects are identi�ed by exactly one reference within a function or blockwhile anonymous objects are identi�ed by references which can be passed, dupli-cated and deleted. No further pointer arithmetics are supported. All objects areautomatically deleted according to their conceptually de�ned lifetime [PE97]. Thelifetime of an anonymous object depends on the lifetime of the generator for ref-erences to this object, whereas named objects depend on the enclosing object ormethod.2.1.2 Scalable Operating System ArchitectureTo enforce transparent, scalable and adaptable distributed resource management,we developed a re
ective management architecture [Gro96, GP97]. Though orig-inating in MoDiS, this architecture is also highly applicable in other parallel ordistributed systems. The key idea is to associate a manager with each
ow ofcontrol on the conceptual level. In the context of INSEL, one actor and all itstermination dependent [PE97] passive objects are clustered to actor-contexts (AC).Each AC is guided by exactly one manager, which has to satisfy all demands forresources of its AC. Besides standard tasks such as allocating memory for the stack,heap and code, a manager might also have to enforce coherence of replicates, initi-ate migration, or enforce access restrictions. Con
icts, such as over
ows, concurrentheap allocations, or processor allocation are solved by inter manager cooperation.This management scheme is top-down oriented as it is constructed independentlyfrom the physical hardware con�guration. Furthermore, it is scalable, because itdoes not have a potential bottleneck and the number of managers corresponds to1similar to type or class in common languages9

2. Address Space Structuringthe number of actors. Adaption is assisted due to the close relation of managementwith dynamically changing requirements of application-level objects.2.1.3 Implementation PhilosophyCrucial for the e�ciency of this approach is a systematical realization of the concep-tual managers. Prototypes on top of Mach [Win96] and HP-UX [Rad95] have shown,that limiting the implementation to an adaption layer in an otherwise adopted en-vironment does cause unacceptable disadvantages for the long term goal.
interchange
information

coupled

local to nodes

privileged

location transparent

manager implementation

non-privileged

decoupled

dedicatedlinkercompiler

non-local

node-specific

(inlined)

(kernel)

(dist. libs)

(node libraries)

shared

Figure 2.1: Instances used to implement managersBased on these experiences, any software instance involved in resource manage-ment is now regarded as implementing parts of managers. Figure 2.1 illustrates typ-ical di�erent possibilities. E�cient and
exible managers are constructed by tightlyintegrating the capabilities of this framework by means of bidirectional informationinterchange and coordination of actions. The distributed manager architecture withthis implementation concept leads to following rede�nition of the term \operatingsystem" in the context of MoDiS:De�nition: 2 (Distributed Operating System)The OS is the complete management of the distributed computing system. It consistsof cooperating process managers implemented by an integrated tool set.The assignment of functionality to a certain instance e.g. dedicated (inlined) orprivileged (kernel) must be based on sound criteria. For example, realizing man-ager functionality in the shared (functionality or data implementing more then onemanager) portion constructs
exible interpreting services while the utilization of de-coupled techniques leads to more static production characteristics. Transition frominterpretation to compilation is soft without a strict separation between statics anddynamics and management is regarded as continuous regulation.2.2 Memory Management Subsystem2.2.1 ArchitectureFigure 2.2 provides an overview of the memory management subsystem. Note,that the abstractions shown, represent conceptual levels in contrast to layers which10

2.2. Memory Management Subsystem

di
st

rib
ut

ed
 s

to
re

INSEL passive objects

anonymous objects

regions

object
DSM

registers, main, and secondary memory

segments

stacks heaps

no
de

 s
to

re
region distribution

network communication

frames chunks

named objects

virtual memory partitionsFigure 2.2: Memory management levelswould already imply a certain style of implementation. A horizontal marker sepa-rates the distributed { location transparent { portion from the storage subsystemon each workstation. The former splits up vertically into stack and heap down tothe level of segments. As sketched in this �gure, two orthogonal levels of distribu-tion. First is the distribution coarse grain memory regions while the second is anobject-based DSM, migrating and replicating individual heap objects. This separa-tion of distribution functionality instead of a uniform low level page transportationlayer is a prerequisite to develop mostly independent and in turn powerful strategiesfor object sharing and VA partitioning. Each object placed on heap is a sharableobject per de�nition. If named objects are to be shared among distributed entitiesthey are transparently transformed into anonymous objects by the compiler. Whileanonymous objects are mapped onto chunks and the object DSM, named objectsare mapped onto activation frames or registers. Similarly, memory regions are eitherbound to node virtual memory or become dynamically distributed. These shortcutsrepresent
exibility which is exploited by the OS to improve performance.2.2.2 Node and Shared PartitionsAlthough the goal is to provide a single distributed address space it proofs to behelpful to preserve some addresses for node-speci�c purposes. Objects only locallyreferenced or low level data structures re
ecting the local state of a node, suchas kernel code, communication bu�ers, etc. are placed in the node partition. In-terpretation of addresses in this range is node dependent. Among the advantagesare:+ No need for coordination, migration, or replication+ Fast address translation and object location+ Simpli�ed enforcement of protection+ Exploitation of hardware features (TLB lock, etc.)The major part of the address space is shared amongst all nodes with addressesuniquely identifying objects. Figure 2.3 indicates that the internal organization of11

2. Address Space Structuring
������������
������������
������������
������������

������������
������������
������������
������������

������������
������������
������������
������������
������������

������������
������������
������������
������������
������������

������������
������������
������������

������������
������������
������������

stack thread x/2

heap thread x

stack thread y

heap thread y/1

heap thread y/2

stack thread x/1

high

low

invalid

UNIX process data

UNIX process code

UNIX process stack

UNIX process sh. libs

code

code

system-wide shared

node partition

partition

Figure 2.3: Memory layoutthe system-wide shared and the local partition is identical. Both consist of rangesused as stack or heap segments for actors performing concurrent computations.Collisions or over
ows are transparently solved. In fact, each actor may allocatememory in both partitions. The manager attribute node allocation, inheritedfrom the creator, determines the kind of allocation and can be changed with aprivileged system call. Usually, this feature is only used to satisfy managementrequirements and is transparent to the application level.Current state of the project still requires a UNIX host system. The dynamicloader of the chosen host system Sparc/Solaris does not support initialization be-fore shared library initialization. Therefore, some partitions of the address spaceare preserved for the UNIX process environment. Start addresses and sizes of allpartitions are �x.Based on this partitioning, the memory subsystem bootstraps as follows: First,runtime data structures of boot AC managers are created and initialized within theUNIX data section on all nodes. Afterwards, the boot ACs themselves and othernode-speci�c actors such as network communication handlers are created within thenode partition. Finally one boot AC becomes elected as the boot master, switchesto global allocation, and starts with the creation of distributed ACs.2.3 Memory RegionsVirtual addresses are dynamically spread to ACs. Fur this purpose, both, the nodeand the shared partition are internally structured into disjunct memory regions.De�nition: 3 (virtual memory region)A virtual memory region is a complete interval of virtualaddresses starting and ending on page boundaries.Because the region concept mainly aims at overcoming the physical distributionof workstations, this section will concentrate on the shared partition. Most ofthe explanations also hold for the node partition, with the di�erence that networkcommunication has no impact. 12

2.3. Memory Regionsregion_t region_get (pref_addr,min_size,direction)void region_put (addr ,size)bool region_split(addr ,size)bool region_merge(addr1 ,addr2)Figure 2.4: Region interfaceThe dedicated runtime portion of an AC manager calls get and put of its sharedportion to dynamically allocate and free regions. The arguments of get specifya preferred starting address, the minimum required size, and positive or negativeorientation to pass information about the intended usage of regions as heap or stackspace for a certain AC. Split and coalescence (merge) of regions are prerequisitesto keep fragmentation under control. Internal versus external fragmentation isdynamically tunable. First, the preferred address and the minimum size are onlyguidelines instead of accurate values. And second, preferred continuous allocationsas a consequence of stack and heap growth are anticipated.2.3.1 Distribution ConceptDistribution of the VA has to be scalable to support growing hardware con�gura-tions as well as dynamic software systems consisting of parallel computations withvarying quantity and granularity. Scalability in general, is based on decentralizationto circumvent bottlenecks and the reduction of synchronization. An eligible methodshould also meet diverging requirements of applications by exploiting application-level knowledge as far as possible. Furthermore, ancillary conditions resulting fromthe requirements listed in 1.2.5 must be respected. For example, addresses of sharedobjects should not be used to code e.g. workstation identi�ers.
C D

B

ε

εεε

ε

E

F

a

b

c d f

e

AFigure 2.5: Distribution StrategyAccording to the general top-down orientation, the management model intro-duced in section 2.1.2 with its structure of termination dependent actors is used tosplit the task of VA distribution among the AC managers as shown in �gure 2.5. At�rst, the complete range of addresses is assigned to manager a of the root AC A. Inthe path of computation, new ACs are created. Each AC is provided with regionsfor autonomous use by its creator. If this initial provision proofs to be insu�cientat a certain point of execution, additional regions are dynamically requested byeither asking the father within the termination dependency (�) i.e the creator, orreclaiming regions formerly delegated to children. At the time of termination, eachAC returns its regions back to its creator.Obviously, this high-level strategy provides scalability and adaptability. It alsoallows to exploit the complete VA with little external fragmentation because the13

2. Address Space Structuringrecursive style of cooperation allows to retrieve available regions globally. For ex-ample, requests of c are satis�ed with regions retrieved from f if necessary.2.3.2 Implementation Based on Resource PoolsThe main characteristics of this high-level scheme are intense and cascading coop-eration among managers whereas their number is large compared to workstations.Straight-forward implementations with chains of signals or even network messageswould deliver unacceptable performance. The strategy to forward regions to sonshas to cope with large numbers of small regions, if many light-weight actors areforked, as well as just a few but extremely large regions in case of recursion. But ingeneral, neither source analyzes nor runtime monitoring could provide the informa-tion needed to steer a suitable policy with little tolerance considering limited localresources. Though, the resource competed for { unallocated virtual address inter-vals, is available in abundance (considering 64 bits) | somewhere in the system.Analogical to strategy and mechanism, these problems are solved by thoroughlyseparating levels of abstraction and connecting methods on di�erent levels via soundmappings.The characteristics depicted indicate, that region distribution belongs to a typ-ical management task class where reducing low-level communication by means ofgroup communication is crucial. Because dynamic grouping based on the node ofexecution provides a natural way to reduce network messages, manager tasks ofthis class are mapped onto node resource pools . Notice, cooperation is in no waylimited to exchanging messages. E.g. shared data is a technique to implement highbandwidth cooperation.

21 3

C D

B

ε

εεε

ε

E

F

A

Figure 2.6: Regions implemented with node poolsAs shown in �gure 2.6, each node maintains an own dynamic pool of regionsencapsulated in the region allocator . Each pool is provided at system startup bythe boot master. The region allocator is tailored to the speci�c properties of regionssuch as page aligned, just a few di�erent sizes, and double-ended stack alike han-dling. Each AC gets/returns regions directly from/to the region allocator where it isexecuting. To further avoid communication, regions may be allocated and returnedon di�erent nodes in case of migration (e.g. A allocated on node 2 and returns on3). These may lead to a certain degree of additional external fragmentation. Idlecycles or region shortages trigger a region pool reorganization which is hierarchically14

2.3. Memory Regionscoordinated by cluster masters and a designated system master node. This lazy oroptimistic strategy is eligible, because it can be supposed that region shortagesoccur infrequently.2 This subsection also demonstrated the importance of the ability to systematicallymap abstract concepts to generalized management methods. Unfortunately, it seemsas if there was hardly any support for systematic top-down derivations of this kindin the context of operating systems. The reasons are mainly missing abstractionand categorization of existing successful techniques.

15

Segmented Stacks and HeapsEach manager has to provide heap and stack space for its AC. Obviously, due tomultiple ACs within one address space, heap and stack growth either has to belimited or classical management has to be rethought. We decided for the latter.De�nition: 4 (virtual memory segment)A virtual memory segment is a complete interval of virtual addresses consisting ofat least one virtual memory region.De�nition: 5 (segment stack)A segment stack contains individual segments which are dynamically pushed andpopped. Additionally, the top most segment may dynamically grow and shrink.Notice, virtual addresses within a segment stack are in general neither monotonousnor linear.With its regions each manager autonomously maintains two segment stacks (seedef. 4,5) to implement stack and heap of its AC. Every segment has a header speci-fying its size and a link. For performance reasons, segments of a segment stack arechained in a circular list through the link �eld. The header itself is placed at thehighest address in case of stack, respectively the lowest address in case of heap toenable linear segment extensions for downward growing stacks and upward growingheaps.In case of an over
ow of the top segment, it is �rst tried to extend the topsegment by requesting a connecting region from the region allocator. If the regionreturned complies to this preference it is simply added to the top segment as a linearextension. Otherwise, a non-linear extension is performed by pushing the region re-ceived as the new top segment onto the corresponding segment stack. An under
owoccurs, if the stack pointer or the heap limit drop below the start address of thestack respectively heap top segment. Analogously to extensions, reductions trig-gered by under
ows can as well be linear (shrinking the top segment) or non-linear(top segment is popped). In either case, regions formerly contained in segments arereturned to the node region pool.Figure 3.1 illustrates stack and heap space based on segment stacks. Eachthread, implementing the
ow of control of an AC, is guided by a thread controlblock (TCB) representing the dedicated data portion of the manager. Fields withinthe TCB provide access to the bottom elements of both segment stacks. Unlikeall other segments, the link �eld of bottom elements references the top segment.Management objects usually kept in a static data part, e.g. global heap libraryvariables, are placed in the information part of the bottom heap or stack segment.The �gure also shows an overall non-monotonous stack space for this AC. Thecurrent (top) stack segment starts and ends above its preceding segment.Notice, that all kind of memory in this system is mmap'ed. Abandoning sbrkand kernel stack handling has several consequences which are elaborated in thefollowing paragraphs. It is also evident, that fast access to the TCB is crucial. Forthis purpose, we modi�ed GNU gcc to amongst others use a �x hardware registerto reference the TCB of the current AC [Piz97]. For example, on Sparc V9 %g3 isused as the TCB designator. 16

3.1. Unlimited Stacks

LOW ADDRESS

HIGH ADDRESS

previous
size

heap info
size

previous
size

size

previous
size

last seg

last seg bottom
stack
segment

bottom heap
segment

TCB

1st heap seg

1st stack seg

2nd stack seg

top stack seg

top heap seg

stack info

stack link

stack link

heap link

Figure 3.1: Per thread segment stacks for stack and heap space3.1 Unlimited StacksSegment stacks allow to lazily adapt memory consumption without a rigid limit.Each thread is started with a single stack segment whose size is determined atcompile time. At runtime, segment crossings are monitored and the usually linearstack space becomes eventually split to �t on separate segments.Knowing the code generator, only three possibilities of segment crossings must beconsidered. First, when a call level is entered the stack pointer (SP) is decremented1to allocate the new activation frame. Second, dynamic stack objects, such as �eldswith statically unknown range, are allocated by decrementing SP. While these twooperations may cause over
ows, leaving a call level is the source for under
ows.Stack objects are bundled within activation frames for faster (de-)allocation. Asound possibility to split the stack is between activation frames. Dynamic stackobjects could as well be separated with the e�ect of an awkward heap alike man-agement within stack, causing strong internal fragmentation. As placing dynamicstack objects on stack is not essential, we decided to transparently place such ob-jects in heap space. This, in turn has the advantageous e�ect that at most each calllevel entry and exit must be monitored.1Assuming downward growing stacks. 17

3. Segmented Stacks and Heaps3.1.1 Decoupled | Compiler Modi�cation

��������������
��������������
��������������

��������������
��������������
��������������

��������������
��������������
��������������

��������������
��������������
��������������

extd. frame (part 1)

extd. frame (part 2)

%sp overflow

%l0-24

-16

-8

-4

top - 0

-24 (64bit aligned)

next frame

%fp
reg save area

%fp+92

%fp+64

arguments on stack

addr of allocated segment

old stack limit

old stack pointer

reserved

reserved

-12

on frame of caller
addressable fields

%l0

%sp

end of new segment.

size = 120 bytes

8k-120 < size < 8k

%fp-8

addr of previous seg hdr

size of this segment

float move area

display, local variables

reg save, call args, etc.
SP

FP

AP

contd. callee fram
e

Figure 3.2: Non-linear stack extensionA hardware integrated compare logic checking SP against segment limits would bedesirable but is not available. Hence, monitoring must be prepared by the compilerby generating inlined code. This code could be placed around calls or integratedinto prologue and epilogue of subprograms. Latter was chosen because it reducescode size and most of all, is eligible to support extensible systems where a callermight have no knowledge about the callee.Stack addressing had to be changed. Usually, a single frame pointer (FP) pointsin between two frames. Negative o�sets reference local objects, while argumentsare found via positive o�sets. Now, frames are eventually separated as shown in�gure 3.2. The size of the possible gap between arguments and locals is staticallyunknown. Besides the FP addressing locals, this also requires an explicit argumentpointer (AP). On Sparc V9, we utilize register %l0 as FP and changed the semanticsof %fp to AP instead of solely using a new register for the AP. This approach providescompatibility (debugger, libraries, etc.) and better performance.The activation frame layout was extended with a
ag determining whether theframe has caused a non-linear extension. While over
ows are checked against thecurrent stack limit recorded in the TCB, under
ows are detected with help of thisextension
ag. Due to alignment more than one bit must be allocated. This propertyis exploited for faster segment deallocation by storing the address of the allocatedsegment instead of just a boolean value with the extension
ag.All of these modi�cations were made to the low-level back-end of the GNU gcc18

3.1. Unlimited Stackscompiler. Among the bene�ts are support for many languages (C, C++, INSEL,etc.) at once and compatibility with all compiler optimizations such as functioninlining or leaf functions.3.1.2 Coupled | Runtime ManagementIn addition to the linkage of segment stacks, stack segments are also doubly linkedthrough the AP (backward) and extension
ag (forward) of frames causing non-linear extensions (see �gure 3.2). This eliminates searching within lists in order tocorrect under
ows and speeds-up stack evolution across segment boundaries. Twomore values must be remembered and reset in case of under
ows: the SP and thestack limit at the time of over
ow. Instead of wasting two words in every frame,inlined code writes these values directly underneath the header of stack segments.save %sp,-384,%sp1) clr [%fp-8]2) mov %fp,%l03) ld [%g3+12],%l14) cmp %sp,%l15) bgeu .prolog_endnop6) clr [%g3+12]7) mov 384,%o08) mov %sp,%l29) call OVERFLOW10) add %fp,-120,%sp11) cmp %o0,%g012) bne .non_linearnop13) b .prolog_end14) mov %l2,%sp.non_linear:15) st %l1,[%o0-12]16) st %sp,[%o0-16]17) st %o0,[%fp-8]18) add %o0,-8,%l019) add %l0,-384,%sp

1) ld [%fp-8],%o02) cmp %g0,%o03) be .epilog_endnop4) ld [%o0-12],%l15) clr [%g3+12]6) call UNDERFLOW7) ld [%o0-16],%sp8) st %l1,[%g3+12]

Figure 3.3: Sparc stack check prologue and epilogueCorrecting an over
ow requires calls of subprograms consuming further stackspace. This is accomplished by maintaining a reserved area at the end of thecurrent stack segment. The technique implemented ensures, that at least the size ofthe reserved portion (currently 8k) minus the minimal frame (currently 120 bytes)is available for the over
ow handler. It can easily be proofed, that over
ows arealways handled within this space. In case of non-linear extensions, the reserved areais temporarily lost. Linear extensions simply move the reserved area to the new endof the segment without losses.2 Figure 3.3 lists the stack checking code used on Sparc V9 for the interestedreader. In this example, the frame size is 384 bytes. Line (1) of the prologue clearsthe extension
ag, FP is assigned the value of AP (2), and the e�ectual limit isfetched from the TCB (3). If the SP is below the limit, nothing is left to do (4,5).Otherwise, the stack limit is cleared (� maximum) to avoid recursion (6) and theover
ow handler is called (9) after shrinking to the minimal frame (10). The handlerreturns zero in case of linear extensions which is checked in (11). If linear, then only19

3. Segmented Stacks and Heapsthe SP is reset to the value before the handler was called (14,8). If non-linear, thestack limit and SP are written to the new segment (15,16) and the segment addressis written to the extension
ag (18), before the frame space is moved to the newsegment by setting FP and SP (18,19). Lines 1{3 of the epilogue check whether thecurrent frame caused a non-linear extension by comparing the extension
ag withzero. If yes, then the current limit is set ine�ective (5), and SP is reset (7), beforethe under
ow handler is called (6), and the stack limit becomes reset (8).3.1.3 Distributed Display HandlingIn turn of modifying stack addressing within the compiler, we also modi�ed dis-play [ASU86] handling to better support nested functions. The usually used staticchain technique is unacceptable in a distributed environment, because tracing eachlink of the chain could cause network communication. Displays, on the other hand,are often implemented by copying data from the static predecessor. As this maystill cause network communication although a local function is called, it is alsounacceptable. The new technique integrated into the compiler copies the displayeither form the dynamic predecessor on the same node or prefetches it, if a potentialremote function call is to be performed.3.1.4 Performance ConsiderationsThe computational costs for dynamic stack checking are comparably small. In theaverage case of no extension, 5 + 3 additional instructions incur. The e�ect onreal programs is debatable. Tests with a simple parallel prime generator indicatean insigni�cant overhead (40.3 versus 40.5 seconds). Widening the scope of checkscould further reduce this overhead. E.g. checks are actually only needed at pointsof recursion. Other checks can be combined according to the statically predictabledeepest call level.Internal fragmentation only occurs in case of non-linear extensions. Let f bethe average frame size, r the size of the reserved area, and s the average segmentsize. Following formula is an approximation of the internal stack fragmentation, ifevery extension was non-linear:Favg = r + ((s� r) mod f)s ; 8k � 120 < r < 8kIf f = 256; r = 8192, and s = 32k internal fragmentation would be 25%. Non-linear extensions are problematical in two ways. First, they may cause noticeablefragmentation, which can be optimized by choosing adequate segment sizes. Second,in contrast to linear extensions, non-linearly extended segments become freed assoon as the call-level causing the extension is left and might already be reallocatedwith the next call leading to unfavorable thrashing . This situation is avoided byexploiting the region allocator to provide regions at preferred addresses.3.2 HeapsThroughout this paper, the term \heap" refers to a pool of memory available forallocation and deallocation in arbitrary order. To eliminate synchronization andcommunication as far as possible, each AC (de-)allocates objects on its own dedi-cated heap.We investigated existing libraries concerning their eligibility to serve as a startingpoint for the implementation of the heap segment stack. Because of its excellentperformance [DDZ94] and its both, short and understandable source code, D. Lea's20

3.2. Heaps

discontinous
top extension

addr of previous seg hdr

size of this segment

addr of previous seg hdr

size of this segment

segtop - 8

contd. heap arena

+8

+8

segtop

(user data + management info)

used and unused chunks

+16

info about last chunk in segment (size, etc)

heap (arena) information

causing the overflow
chunk of the object

+ ~1k

hole chunk (hole flag, addrress of old top)

new top chunk

Figure 3.4: Heap extensionfreely available memory allocator G++ malloc [Lea96] was selected. It structuresheap space into free and allocated chunks. A special free chunk, called top chunk(TC), is used to grow and shrink the heap. It is split and coalesced as chunks are(de-)allocated at the top end of the heap while being increased and decreased atthe upper end with the system call sbrk.In contrast to stacks, the separate management of each application-level objectin a chunk allows to easily spread a heap across segments, because splitting can beperformed between arbitrary chunks. Obviously, linear extensions and reductionssimply increase and decrease TC's upper limit, identically to sbrk without requiringchanges to the library.Several modi�cations were made to support positive or negative holes caused bynon-linear extensions (see �gure 3.4). If TC is non-linearly extended, the e�ectualTC is converted into an ordinary free chunk, which can be used to satisfy subsequentallocations. Its chunk information (size, etc.) is placed at the highest address of theold top segment. Above the segment header of the new segment, a special hole chunkis installed and the allocation causing the over
ow is performed. The remainder ofthe segment is used as the new TC. The hole chunk serves two purposes. First, itstores the information about the old TC. Second, it has a
ag set, that preventsthis chunk from being coalesced with other chunks than the TC. Heap trimmingoperations, succeeding deallocations with coalescences, decrease TC's upper limitif its size exceeds a certain limit. Each time TC is trimmed, it is also checked,whether TC could be coalesced with the hole chunk, which would mean that nochunks are allocated within this segment. If this is the case, a non-linear reduction21

3. Segmented Stacks and Heapsis performed instead of just linearly reducing the segment size. Before returningregions to the node region pool, the old TC is re-established based on informationstored in the hole chunk and at the end of the previous segment.The computational overhead introduced with the segmented heap organizationis neglectable. Similarly to stack space, fragmentation increases with the amount ofnon-linear extensions which can be controlled with the region allocator. In contrastto stack space, there is no reserved area in heap space being wasted. Furthermore,lazy reduction can be employed by deferring heap trimming which nearly eliminatesthe thrashing e�ect explained in 3.1.4.

22

Object-Distribution and GarbageCollectionCurrent work is focusing on the transparent incorporation of garbage collection(GC) and DSM capabilities into heap management. In a long term running dis-tributed single address space system, GC and DSM have strong interactions. A jointapproach will be superior to individually optimized solutions. For example, indi-rections needed for hardware-supported distribution of individual objects [GPR97]can at the same time be exploited by the collector to move objects. The approachtaken, is to widen the scope of GC to include management objects as well as appli-cation level objects in a collection hierarchy. References to objects and replicatesof remote objects are locally monitored. Locally unreachable replicates becomedeleted. Proxy pages only mapped to hold replicates and migrated objects becomefurther unmapped by the local collector if they do not contain any reachable repre-sentants of remote objects. \Original objects" are deleted if neither replicates norlocal references exist.A �rst prototype of the MoDiS DSM, providing distributed shared stack objects,is explained in detail in [GPR97]. The techniques developed, are currently adaptedto provide e�cient remote access to heap objects. The basic idea is to access ob-jects mediately via indirection pointers in order to move shared objects betweendi�erent memory regions. These regions represent per node read-write, read-onlyand no rights, which are checked in hardware because regions are page aligned.Accesses with insu�cient rights trigger faults. Software handlers retrieve the re-quested object, enforce per object consistency with a dynamically chosen coherenceprotocol, and adjust the indirection. Pointer swizzling at fault time between dif-ferent memory regions delivers the ability to exploit the page fault mechanism of\o� the shelf hardware". Thus, the DSM management only has to handle accessesto locally unavailable objects. Performance penalties as known from all-in softwareimplementations are avoided while individual objects are still e�ciently handledwithout false-sharing.

23

ConclusionThe reader might have noticed, that although this approach is introduced as beingtop-down oriented, concepts are explained rather in the opposite direction startingfrom coarse partitions and regions. In fact, concepts were elaborated top-down withthe bottom in mind1 Pure top-down construction seems to be at least as unsatisfac-tory as bottom-up driven methods. Where the latter fails to match application-levelrequirements, the former tends to miss real world possibilities.The memory management techniques presented, aim to support parallelism anddistribution as an integral part of a new distributed OS architecture. The moti-vation is to free the application level from repetitive and error prone managementtasks. Although the context of this work is a language-based approach, most of theconcepts elaborated are also applicable in other parallel or distributed environments.Besides distinguishing stack and heap, memory management is invisible at theapplication level. The programmer is not burdened with object locations, net-work messages, special sharable regions, or stack size requirements. Instead, theOS performs adaptive segmentation to fully exploit the address space for concur-rent computations dynamically varying in size and number. Memory consumptionapproximates application-level requirements. Furthermore, any application levelobject is shared across nodes with automatic migration or replication as necessary.It is also stated clearly, that these features do not induce signi�cant constant over-head. This is a prerequisite to not solely provide speed-ups with the consumptionof additional resources but also the possibility of defacto advantages compared toconventional systems.Implementation is based on a tight coupling of tools and kernel into an inte-grated OS. Instead of constructing layers, all instances involved in managementare considered as possibilities to implement management functionality. To reducethe e�ort needed to construct these instances from scratch and at the same timeavoid reinventions of the wheel, existing software is modi�ed to meet changed re-quirements. In turn, compatibility is limited. Existing binaries can be integratedinto the system but to fully pro�t from these new features, applications at leasthave to be recompiled. Another important step is the introduction of new lan-guages as brie
y presented in this paper, supporting e.g. high level speci�cation ofconcurrency.The platform used for the implementation of these concepts consists of 14 SUNUltra 1 workstations running Solaris 2.5.1 interconnected with a 100Mbit/s FastEthernet. Implementation and evaluation of segmented stacks as well as modi�ca-tions of the malloc library is �nished.Partitioning into shared and node partitions, region distribution and the regionallocator are realized to a great extend. Besides the object-based DSM for heapspace, current implementation work concentrates on dynamic region redistributionand visualization tools. Conceptual work is focusing on the interaction betweenDSM and distributed garbage collection.
1Using this line of thought in this paper would probably not lead to a better understanding forthe techniques. 24

Bibliography[ARD97] Patrik Reali Andreas R. Disteli. Combining Oberon with active objects.In Proc. of Joint Modular Languages Conf. (JMLC). LNCS 1024, Linz,Austria, March 1997. Springer Verlag.[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, tech-niques, tools. Addison-Wesley, 1986.[BZS93] Brian N. Bershad, Matthew J. Zekauskas, and Wayne A. Sawdon. TheMidway Distributed Shared Memory System. In Proc. of the IEEECompCon Conf., 1993.[Car95] J. B. Carter. Design of the Munin Distributed Shared Memory Sys-tem. Journal of Parallel and Distributed Computing, 29(2):219{227,September 1995.[Car98] John B. Carter. Distributed shared memory: Past, present, and future.slides of tutorial; 3rd Int'l Workshop on High-Level Parallel Program-ming Models and Supportive Environments, March 1998.[CLBHL93] Je� Chase, Hank Levy, Miche Baker-Harvey, and Ed Lazowska. Opal:A single address space system for 64-bit architectures. In Proc. ofthe Fourth Workshop on Workstation Operating Systems, pages 80{85,1993.[Cor91] H. Corporall. Distributed heapmanagement using reference weights.In Arndt Bode, editor, Distributed Memory Computing, number 487in LNCS, pages 325{336. 2nd European Conf., EDMCC2, Springer-Verlag, April 1991.[DDZ94] David Detlefs, Al Dosser, and Benjamin G. Zorn. Memory allocationcosts in large C and C++ programs. Software Practice and Experience,24(6):527{542, June 1994.[ea95] Paul R. Wilson et al. Dynamic storage allocation: A survey and criticalreview. In Henry Baker, editor, Proc. of Int'l Workshop on MemoryManagement, volume 986 of LNCS, Kinross, Scotland, September 1995.Springer-Verlag.[ea96a] A. D. Skousen et al. The Sombrero operating system for a distributedsingle very large address space. Technical Report TR-96-005, ArizonaState University, April 1996.[ea96b] Cristiana Amza et al. TreadMarks: shared memory computing onnetworks of workstations. Computer, 29(2):18{28, February 1996.[Elp93] Kevin Elphinstone. Address space management issues in the Mungioperating system. Technical Report SCS&E Report 9312, Universityof New South Wales, Australia, November 1993.[EW95a] C. Eckert and H.-M. Windisch. A new approach to match operatingsystems to application needs. In Proc. of the 7th Int'l Conf. on Paralleland Distributed Computing and Systems (ISMM), Washington, DC,October 1995. 25

BIBLIOGRAPHY[EW95b] C. Eckert and H.-M. Windisch. A top-down driven, object-basedapproach to application-speci�c operating system design. In Proc.of the Int'l Workshop on Object-orientation in Operating Systems(IWOOOS), pages 153{156, Lund, Sweden, August 1995.[Flo89] Michael A. Floyd. Turbo Pascal with objects. Dr. Dobb's Journal ofSoftware Tools, 14(7):56{63, 95{97, July 1989.[Glo97] Wolfram Gloger. ptmalloc - a multi-threaded malloc im-plementation. FTP, April 1997. ftp://ftp.dent.med.uni-muenchen.de/pub/wmglo/ptmalloc.tar.gz.[GP97] Sascha Groh and Markus Pizka. A di�erent approach to resource man-agement for distributed systems. In Proc. of Int'l Conf. on Paral-lel and Distributed Processing Techniques and Applications (PDPTA),July 1997.[GPR97] S. Groh, M. Pizka, and J. Rudolph. Shadow stacks | a hardware-supported DSM for objects of any granularity. In Proc. of the 3rdInt'l Conf. on Algorithms and Architectures for Parallel Processing(ICA3PP), December 1997.[Gro96] Sascha Groh. Designing an e�cient resource management for paralleldistributed systems by the use of a graph replacement system. In Proc.of the Int'l Conf. on Parallel and Distributed Processing Techniquesand Applications (PDPTA), pages 215{225, August 1996.[Hae] Mike Haertel. Mmalloc. WWW.http://www.sdsu.edu/doc/texi/mmalloc toc.html.[HL93] Guido Hogen and Rita Loogen. A new stack technique for the man-agement of runtime structures in distributed environments. TechnicalReport 93-03, RWTH Aachen, 1993.[HMT89] Robert Harper, Robin Milner, and Mads Tofte. The De�nition of Stan-dard ML: Version 3. Technical Report ECS-LFCS-89-81, Laboratoryfor the Foundations of Computer Science, University of Edinburgh,May 1989.[IEE95] IEEE. IEEE 1003.1c-1995: Information Technology | Portable Op-erating System Interface (POSIX) - System Application Program In-terface (API) Amendment 2: Threads Extension (C Language). IEEEComputer Society Press, 1109 Spring Street, Suite 300, Silver Spring,MD 20910, USA, 1995.[JKW95] Kirk L. Johnson, M. Frans Kaashoek, and Deborah A. Wallach. CRL:high-performance all-software distributed shared memory. In Proc. ofthe 15th ACM Symposium on Operating Systems Principles (SOSP),volume 29/5, 1995.[Lea96] Doug Lea. A memory allocator. WWW, December 1996.http://g.oswego.edu/dl/html/malloc.html.[Li86] Kai Li. Shared Virtual Memory on Loosely Coupled Multiprocessors.PhD thesis, Department of Computer Science, Yale University, NewHaven, CT, October 1986. 26

[ML95] D. C. J. Matthews and T. Le Sergent. LEMMA: A distributed sharedmemory with global and local garbage collection. In Proc. of the Int'lWorkshop on Memory Management (IWMM), pages 297{311, Septem-ber 1995.[PE97] M. Pizka and C. Eckert. A language-based approach to construct struc-tured and e�cient object-based distributed systems. In Proc. of the30th Hawaii Int. Conf. on System Sciences, volume 1, pages 130{139,Maui, Hawai, January 1997. IEEE CS Press.[Piz97] Markus Pizka. Design and implementation of the GNU INSEL-compilergic. Technical Report TUM-I9713, Technische Universit�at M�unchen,Dept. of CS, 1997.[PS95] David Plainfoss�e and Marc Shapiro. A survey of distributed garbagecollection techniques. In Henry Baker, editor, Proc. of Int'l Work-shop on Memory Management, volume 986 of LNCS, ILOG, Gentilly,France, and INRIA, Le Chesnay, France, September 1995. Springer-Verlag.[PT98] H. Pagnia and O. Theel. Sacri�cing true distribution for gaining accesse�ciency of replicated shared objects. In Proc. of the 31st Hawaii Int'lConf. on System Sciences (HICSS), volume VII, January 1998.[Rad95] Ralph Radermacher. EVA: A Runtime Environment with IntegratedLoad Balancing for Distributed and Parallel Systems. PhD thesis, TUM�unchen, 1995. german only.[SSC98] M. Swanson, L. Stroller, and J. B. Carter. Making distributed sharedmemory simple, yet e�cient. In Proc. of the 3rd Int'l Workshopon High-Level Parallel Programming Models and Supportive Environ-ments, pages 2{13, March 1998.[Sta95] Richard M. Stallman. Using and Porting GNU CC. Free SoftwareFoundation, November 1995.[Sun95] SunSoft, Mountain View, CA. Solaris Multithreaded ProgrammingGuide, 1995.[Tan92] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall,New Jersey, 1992.[TF95] O. E. Theel and B. D. Fleisch. Design and analysis of highly availableand scalable coherence protocols for distributed shared memory sys-tems using stochastic modeling. In Int'l Conf. on Parallel Processing,Vol.1: Architecture, pages 126{130, Boca Raton, USA, August 1995.CRC Press.[vDHT95] L. van Doorn, P. Homburg, and A. S. Tanenbaum. Paramecium: Anextensible object-based kernel. In Proc. of the 5th Workshop on HotTopics on Operating Systems (HotOS), Orcas Island, WA, May 1995.[Wil94] Paul R. Wilson. Uniprocessor garbage collection techniques. Technicalreport, University of Texas, January 1994. Expanded version of theIWMM92 paper.[Win96] H.-M. Windisch. The Distributed Programming Language INSEL -Concepts and Implementation. In High-Level Programming Models andSupportive Environments HIPS'96, 1996.27

SFB 342: Methoden und Werkzeuge f�ur die Nutzung parallelerRechnerarchitekturenbisher erschienen :Reihe A Liste aller erschienenen Berichte von 1990-1994auf besondere Anforderung342/01/95 A Hans-Joachim Bungartz: Higher Order Finite Elements on Sparse Grids342/02/95 A Tao Zhang, Seonglim Kang, Lester R. Lipsky: The Performance of ParallelComputers: Order Statistics and Amdahl's Law342/03/95 A Lester R. Lipsky, Appie van de Liefvoort: Transformation of the KroneckerProduct of Identical Servers to a Reduced Product Space342/04/95 A Pierre Fiorini, Lester R. Lipsky, Wen-Jung Hsin, Appie van de Liefvoort: Auto-Correlation of Lag-k For Customers Departing From Semi-Markov Processes342/05/95 A Sascha Hilgenfeldt, Robert Balder, Christoph Zenger: Sparse Grids: Applica-tions to Multi-dimensional Schr�odinger Problems342/06/95 A Maximilian Fuchs: Formal Design of a Model-N Counter342/07/95 A Hans-Joachim Bungartz, Stefan Schulte: Coupled Problems in MicrosystemTechnology342/08/95 A Alexander Pfa�nger: Parallel Communication on Workstation Networks withComplex Topologies342/09/95 A Ketil St�len: Assumption/Commitment Rules for Data-
ow Networks - withan Emphasis on Completeness342/10/95 A Ketil St�len, Max Fuchs: A Formal Method for Hardware/Software Co-Design342/11/95 A Thomas Schnekenburger: The ALDY Load Distribution System342/12/95 A Javier Esparza, Stefan R�omer, Walter Vogler: An Improvement of McMillan'sUnfolding Algorithm342/13/95 A Stephan Melzer, Javier Esparza: Checking System Properties via IntegerProgramming342/14/95 A Radu Grosu, Ketil St�len: A Denotational Model for Mobile Point-to-PointData
ow Networks342/15/95 A Andrei Kovalyov, Javier Esparza: A Polynomial Algorithm to Compute theConcurrency Relation of Free-Choice Signal Transition Graphs342/16/95 A Bernhard Sch�atz, Katharina Spies: Formale Syntax zur logischen Kernspracheder Focus-Entwicklungsmethodik342/17/95 A Georg Stellner: Using CoCheck on a Network of Workstations342/18/95 A Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wism�uller: Workshopon PVM, MPI, Tools and Applications342/19/95 A Thomas Schnekenburger: Integration of Load Distribution into ParMod-C342/20/95 A Ketil St�len: Re�nement Principles Supporting the Transition from Asyn-chronous to Synchronous Communication342/21/95 A Andreas Listl, Giannis Bozas: Performance Gains Using Subpages for CacheCoherency Control342/22/95 A Volker Heun, Ernst W. Mayr: Embedding Graphs with Bounded Treewidthinto Optimal Hypercubes
28

Reihe A342/23/95 A Petr Jan�car, Javier Esparza: Deciding Finiteness of Petri Nets up toBisimulation342/24/95 A M. Jung, U. R�ude: Implicit Extrapolation Methods for Variable Coe�cientProblems342/01/96 A Michael Griebel, Tilman Neunhoe�er, Hans Regler: Algebraic Multigrid Meth-ods for the Solution of the Navier-Stokes Equations in Complicated Geometries342/02/96 A Thomas Grauschopf, Michael Griebel, Hans Regler: Additive Multilevel-Preconditioners based on Bilinear Interpolation, Matrix Dependent Geomet-ric Coarsening and Algebraic-Multigrid Coarsening for Second Order EllipticPDEs342/03/96 A Volker Heun, Ernst W. Mayr: Optimal Dynamic Edge-Disjoint Embeddings ofComplete Binary Trees into Hypercubes342/04/96 A Thomas Huckle: E�cient Computation of Sparse Approximate Inverses342/05/96 A Thomas Ludwig, Roland Wism�uller, Vaidy Sunderam, Arndt Bode: OMIS |On-line Monitoring Interface Speci�cation342/06/96 A Ekkart Kindler: A Compositional Partial Order Semantics for Petri NetComponents342/07/96 A Richard Mayr: Some Results on Basic Parallel Processes342/08/96 A Ralph Radermacher, Frank Weimer: INSEL Syntax-Bericht342/09/96 A P.P. Spies, C. Eckert, M. Lange, D. Marek, R. Radermacher, F. Weimer, H.-M.Windisch: Sprachkonzepte zur Konstruktion verteilter Systeme342/10/96 A Stefan Lamberts, Thomas Ludwig, Christian R�oder, Arndt Bode: PFSLib { AFile System for Parallel Programming Environments342/11/96 A Manfred Broy, Gheorghe S�tef�anescu: The Algebra of Stream ProcessingFunctions342/12/96 A Javier Esparza: Reachability in Live and Safe Free-Choice Petri Nets is NP-complete342/13/96 A Radu Grosu, Ketil St�len: A Denotational Model for Mobile Many-to-ManyData-
ow Networks342/14/96 A Giannis Bozas, Michael Jaedicke, Andreas Listl, Bernhard Mitschang, AngelikaReiser, Stephan Zimmermann: On Transforming a Sequential SQL-DBMS intoa Parallel One: First Results and Experiences of the MIDAS Project342/15/96 A Richard Mayr: A Tableau System for Model Checking Petri Nets with a Frag-ment of the Linear Time � -Calculus342/16/96 A Ursula Hinkel, Katharina Spies: Anleitung zur Spezi�kation von mobilen, dy-namischen Focus-Netzen342/17/96 A Richard Mayr: Model Checking PA-Processes342/18/96 A Michaela Huhn, Peter Niebert, Frank Wallner: Put your Model Checker onDiet: Veri�cation on Local States342/01/97 A Tobias M�uller, Stefan Lamberts, Ursula Maier, Georg Stellner: Evaluierung derLeistungsf"ahigkeit eines ATM-Netzes mit parallelen Programmierbibliotheken342/02/97 A Hans-Joachim Bungartz and Thomas Dornseifer: Sparse Grids: Recent Devel-opments for Elliptic Partial Di�erential Equations342/03/97 A Bernhard Mitschang: Technologie f"ur Parallele Datenbanken - Bericht zumWorkshop342/04/97 A nicht erschienen342/05/97 A Hans-Joachim Bungartz, Ralf Ebner, Stefan Schulte: Hierarchische Basen zure�zienten Kopplung substrukturierter Probleme der Strukturmechanik
29

Reihe A342/06/97 A Hans-Joachim Bungartz, Anton Frank, Florian Meier, Tilman Neunhoe�er,Stefan Schulte: Fluid Structure Interaction: 3D Numerical Simulation andVisualization of a Micropump342/07/97 A Javier Esparza, Stephan Melzer: Model Checking LTL using ConstraintProgramming342/08/97 A Niels Reimer: Untersuchung von Strategien f�ur verteiltes Last- undRessourcenmanagement342/09/97 A Markus Pizka: Design and Implementation of the GNU INSEL-Compiler gic342/10/97 A Manfred Broy, Franz Regensburger, Bernhard Sch�atz, Katharina Spies: TheSteamboiler Speci�cation - A Case Study in Focus342/11/97 A Christine R�ockl: How to Make Substitution Preserve Strong Bisimilarity342/12/97 A Christian B. Czech: Architektur und Konzept des Dycos-Kerns342/13/97 A Jan Philipps, Alexander Schmidt: Tra�c Flow by Data Flow342/14/97 A Norbert Fr�ohlich, Rolf Schlagenhaft, Josef Fleischmann: Partitioning VLSI-Circuits for Parallel Simulation on Transistor Level342/15/97 A Frank Weimer: DaViT: Ein System zur interaktiven Ausf�uhrung und zur Vi-sualisierung von INSEL-Programmen342/16/97 A Niels Reimer, J�urgen Rudolph, Katharina Spies: Von FOCUS nach INSEL -Eine Aufzugssteuerung342/17/97 A Radu Grosu, Ketil St�len, Manfred Broy: A Denotational Model for MobilePoint-to-Point Data-
ow Networks with Channel Sharing342/18/97 A Christian R�oder, Georg Stellner: Design of Load Management for Parallel Ap-plications in Networks of Heterogenous Workstations342/19/97 A Frank Wallner: Model Checking LTL Using Net Unfoldings342/20/97 A Andreas Wolf, Andreas Kmoch: Einsatz eines automatischen Theorembeweis-ers in einer taktikgesteuerten Beweisumgebung zur L�osung eines Beispiels ausder Hardware-Veri�kation { Fallstudie {342/21/97 A Andreas Wolf, Marc Fuchs: Cooperative Parallel Automated Theorem Proving342/22/97 A T. Ludwig, R. Wism�uller, V. Sunderam, A. Bode: OMIS - On-line MonitoringInterface Speci�cation (Version 2.0)342/23/97 A Stephan Merkel: Veri�cation of Fault Tolerant Algorithms Using PEP342/24/97 A Manfred Broy, Max Breitling, Bernhard Sch�atz, Katharina Spies: Summary ofCase Studies in Focus - Part II342/25/97 A Michael Jaedicke, Bernhard Mitschang: A Framework for Parallel Processingof Aggregat and Scalar Functions in Object-Relational DBMS342/26/97 A Marc Fuchs: Similarity-Based Lemma Generation with Lemma-DelayingTableau Enumeration342/27/97 A Max Breitling: Formalizing and Verifying TimeWarp with FOCUS342/28/97 A Peter Jakobi, Andreas Wolf: DBFW: A Simple DataBase FrameWork forthe Evaluation and Maintenance of Automated Theorem Prover Data (incl.Documentation)342/29/97 A Radu Grosu, Ketil St�len: Compositional Speci�cation of Mobile Systems342/01/98 A A. Bode, A. Ganz, C. Gold, S. Petri, N. Reimer, B. Schiemann, T. Schneken-burger (Herausgeber): "`Anwendungsbezogene Lastverteilung"', ALV'98342/02/98 A Ursula Hinkel: Home Shopping - Die Spezi�kation einer Kommunikationsan-wendung in Focus342/03/98 A Katharina Spies: Eine Methode zur formalen Modellierung vonBetriebssystemkonzepten
30

Reihe A342/04/98 A Stefan Bischof, Ernst-W. Mayr: On-Line Scheduling of Parallel Jobs with Run-time Restrictions342/05/98 A St. Bischof, R. Ebner, Th. Erlebach: Load Balancing for Problems with GoodBisectors and Applications in Finite Element Simulations: Worst-case Analysisand Practical Results342/06/98 A Giannis Bozas, Susanne Kober: Logging and Crash Recovery in Shared-DiskDatabase Systems342/07/98 A Markus Pizka: Distributed Virtual Address Space Management in the MoDiS-OS

31

SFB 342 : Methoden und Werkzeuge f�ur die Nutzung parallelerRechnerarchitekturenReihe B342/1/90 B Wolfgang Reisig: Petri Nets and Algebraic Speci�cations342/2/90 B J�org Desel: On Abstraction of Nets342/3/90 B J�org Desel: Reduction and Design of Well-behaved Free-choice Systems342/4/90 B Franz Abstreiter, Michael Friedrich, Hans-J�urgen Plewan: Das Werkzeug run-time zur Beobachtung verteilter und paralleler Programme342/1/91 B Barbara Paech1: Concurrency as a Modality342/2/91 B Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier- Toolbox -Anwenderbeschreibung342/3/91 B Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop �uber Paral-lelisierung von Datenbanksystemen342/4/91 B Werner Pohlmann: A Limitation of Distributed Simulation Methods342/5/91 B Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually Shared Mem-ory Scheme: Formal Speci�cation and Analysis342/6/91 B Dominik Gomm, Ekkart Kindler: Causality Based Speci�cation and Correct-ness Proof of a Virtually Shared Memory Scheme342/7/91 B W. Reisig: Concurrent Temporal Logic342/1/92 B Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-of-SupportChristian B. Suttner: Parallel Computation of Multiple Sets-of-Support342/2/92 B Arndt Bode, Hartmut Wedekind: Parallelrechner: Theorie, Hardware, Soft-ware, Anwendungen342/1/93 B Max Fuchs: Funktionale Spezi�kation einer Geschwindigkeitsregelung342/2/93 B Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: Ein Liter-atur�uberblick342/1/94 B Andreas Listl; Thomas Schnekenburger; Michael Friedrich: Zum Entwurf einesPrototypen f�ur MIDAS

32

