
T U M
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AbstractWe present a formalization of the central parts of the Java Virtual Machine(JVM) with the theorem prover Isabelle/HOL. We formalize the class �leformat and give an operational semantics for a nontrivial subset of JVMinstructions, covering the central parts of object oriented programming.
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1 IntroductionThe Java Virtual Machine (JVM) is an abstract machine consisting of amemory architecture and an instruction set. It is part of the Java languagedesign developed by Sun Microsystems and serves as a basis for Java imple-mentations. However, it also can be used as intermediate platform for otherprogramming languages, since the JVM works independently from Java.The corresponding compiler then generates architecture-independent JVMcode instead of machine code for a speci�c host platform. This approachallows automatic execution of compiled JVM code on any host platformthat implements the JVM. However, this advantage does not come with-out risks. One can download any Java program from the World Wide Weband in general it is impossible to check the origin of the code and trust inits correctness. This is the reason why Java comes with several securitymechanisms to protect the user from malicious code.The Java Virtual Machine Speci�cation [LY96] describes the operationalsemantics of JVM instructions as well as several static and structural con-straints that have to be checked before the code may be executed. However,it is not a formal speci�cation and it is in the nature of informal descriptionsto contain ambiguities or even inconsistencies.Our goal is to give a formal speci�cation of the JVM that is not burdenedwith this problem. We think that this work can be useful in several aspects:on the one hand it allows the formal investigation of central concepts of theJVM, such as the correctness of the bytecode veri�er and compiler veri�ca-tion; on the other hand it may serve as reference speci�cation that is moreprecise than the informal description.Formalizing a real life programming language is a very complex task andit is likely that an approach done with paper and pencil also will be suscep-tible to more or less grave errors. Therefore, tool assistance is required toreach a maximum amount of reliability: a theorem prover like Isabelle/HOLo�ers valuable support in developing consistent speci�cations and correctproofs.Another important point is readability. If our speci�cation is intendedto serve as implementation guide, we have to keep it at a rather low level ofabstraction. However, it is known that a high degree of abstraction simpli�esthe veri�cation task. We therefore strive to �nd a satisfactory compromisein between.1.1 JVM SubsetThis paper presents a formalization of the JVM with Isabelle/HOL. We re-strict our formalization to the central parts of object oriented programming.These include classes, interfaces, objects, methods, object �elds and inheri-tance. We also model arrays and primitive values of type integer, but we do1



not treat the large amount of arithmetic instructions available in the JVM,since they are of minor interest to us. One signi�cant feature of Java isexception handling. So far, we have included several prede�ned exceptions,but do not yet consider exception handling and user de�ned exceptions. Wealso do not yet treat multi-threading and synchronization.Our runtime model of the JVM describes the operational semantics ofthe JVM instructions. Here, we abstract from several details, as for examplethe resolution of symbolic references. These aspects will be added in furtherre�nement steps of our formalization. We also do not yet consider dynamicclass loading, which revealed to introduce a problem of type safety [Sar97].1.2 Related WorkCohen [Coh97] has implemented in ACL2 a so called defensive JVM, whereruntime checks are performed to guarantee a type-safe execution of the code.In contrast, our approach does not do type checking at runtime. To assurea type-safe execution, we need to check the code before execution using abytecode veri�er.Hartel et al. [HBL98] describe the operational semantics of a Java Se-cure Processor (JSP), that is a derivate of the JVM designed to �t on smartcards. Their speci�cation tool latos automatically generates executablecode, allowing the validation of JVM programs. They do not consider byte-code veri�cation and assume that JVM code is veri�ed when translated toJVM code.Qian [Qia98] gives a formal speci�cation of the JVM instructions anddescribes a static type inference system. Then he proves that if a JVMprogram is statically well-typed, then the runtime data will be type-correct.He considers a large subset of the JVM including subroutine calls. Thetreatment of these instructions reveals to be the most complex during thebytecode veri�cation process. In contrast to our work, the speci�cation isdone with paper and pencil and remains semi-formal in some parts.Stata and Abadi [SA98] also present a type system and operational se-mantics for JVM instructions. They have concentrated on the formalizationof subroutine calls and do not treat object orientation.There are several e�orts to formalize the Java source language. Thework of Oheimb and Nipkow [NO98, ON98] is closely related to our work.They have formalized a large subset of Java (= Bali) together with its typesystem and operational semantics in Isabelle/HOL. The type-safety of Balihas been proved formally.Drossopoulou and Eisenbach [DE97] have elaborated a proof on paperfor the type soundness of Java, and Syme [Sym97] has formalized this workusing the theorem prover DECLARE. The language subset treated in theseapproaches is similar to that of Bali, but the formalization di�ers in severalaspects. 2



1.3 OverviewThe rest of this paper is structured as follows. Section 2 gives a shortoverview of the theorem prover Isabelle and introduces some basic functionsand types. In section 3 we introduce several datatypes for the description ofthe JVM class �le format and the runtime environment. Section 4.2 presentsthe JVM instructions and de�nes an operational semantics for them, andsection 5 summarizes the results and outlines future work.2 IsabelleIsabelle is a generic theorem prover that can be instantiated to di�erentobject-logics [Pau94, Isa]. The formalization described in this paper is basedon the instantiation of Isabelle for higher-order logic, called Isabelle/HOL.We have chosen higher-order logic because of its expressiveness and the goodproof support Isabelle o�ers for it.A proof has to be conducted in the context of a theory containing thesignature of all declared constants as well as a collection of de�nitions andaxioms. Theories can be combined and extended with further signaturespeci�cations and additional de�nitions and axioms. Isabelle/HOL o�erskeywords to introduce new types, type synonyms and type classes. Non-recursive, primitive recursive and well-founded recursive function de�nitionscan be given in special sections, assuring a conservative extension of thetheory.The basic types bool, nat and int are prede�ned, where the latter two arestrictly distinguished. When n is a natural number, then $# n representsthe corresponding integer value. The function int2nat converts a positiveinteger into a natural number and returns an unknown value arbitrary else.Natural numbers are constructed via 0 and the successor function Suc.Isabelle/HOL also o�ers the polymorphic datatypes � set (with the usualset operators) and � list. The list constructors are [] (for the empty list)and x#xs (as 'cons' operator). We have xs@ys for concatenation, map f xs toapply a function to all elements of a list, and the functions hd xs (for head),tl xs (for tail) and last xs. The function xs ! i returns the i-th list element,take n xs returns the �rst n list elements, drop n xs returns the rest of alist after removing n elements, and length xs computes the length of a list.rev xs reverts a list, and set xs converts a list into a set.We have added a new function on lists to update the value of an indexedlist element:[ := ] :: [� list,nat,�] ) � list[][k:=v] = [](x#xs)[k:=v] = (case k of 0 ) v # xs j Suc i ) x # (xs[i:=v]))3



Function types are denoted by � ) � ', where �1 ) �2 ) : : : ) �n may bewritten as [�1,�2,: : :] ) �n.Optional values can be modeled using the prede�ned datatype� option = None j Some �It comes with an unpacking functionthe :: � option ) �the def= �y. case y of None ) arbitrary j Some x ) xFunction application is preferably written in curried style, although producttypes (�� �) are also available. Several de�nitions in our formalization arewritten in an uncurried style; this is due to restrictions of the TFL-packagefor well-founded recursive functions [Sli96, Sli97].3 Java Virtual Machine DatatypesThis section describes the formalization of the components of a JVM class�le and the JVM runtime environment.The Java Virtual Machine Speci�cation [LY96] describes the class �leformat using structured pseudocode. Several datatypes are used to representdata of di�erent size. Array-like tables are used to store items of variablesize.In Isabelle/HOL, we model structures as product types or abstract da-tatypes, where we abstract from concrete data size.3.1 An Abstract StoreThe Java Virtual Machine Speci�cation [LY96] does not require any speci�cimplementation of the object heap. An abstract representation of a heapconsists in a partial function mapping object references to object data. TheIsabelle/HOL library o�ers a "map" type, which is de�ned as follows:� ; � = � ) � optionThe following functions represent the unde�ned function, function applica-tion, pointwise update, function merge, function composition and transla-tion from lists into partial functions:empty :: � ; �empty def= �x. None!! :: [� ; �,�] ) �t !! x def= the (t x) 4



[ 7! ] :: [� ; �,�,�] ) (� ; �)m[a 7! b] def= �x. if x=a then Some b else m x� :: [� ; �,� ; �] ) (� ; �)m � n def= �x. case n x of None ) m x j Some y ) Some ymap compose :: [� ) ,� ; �] ) (� ; )map compose f m def= option map f (m k)map of :: (� � �)list ) � ; �map of [] = emptymap of ((a,b)#ls) = (map of ls)[a 7! b]For the representation of the object heap, we have added the function newrefthat returns an unused map key:newref :: (� ; �) ) �newref s def= "v. s v = NoneIn our formalization, we also use the type � ; � to store the informationof the �eld and method tables of a class �le (see x3.7.3).3.2 Identi�ersWe assume a type ident, containing the (prede�ned or user-de�ned) class,interface, method and �eld names, but abstain from specifying it further; wejust assume the existence of an identi�er Object to refer to the prede�nedclass of the same name. In certain contexts we also use the type synonymscname, mname and fname, to make clear what kind of identi�er is expected.3.3 Field and Method DescriptorsThe types of �elds or methods are represented by so called descriptors. A�eld descriptor of type �eld desc describes the type of a class or instancevariable:�eld desc = I (** integer **)j L cname (** object type **)j A �eld desc (** array type **)The identi�er cname of an object type can be the name of a class or aninterface. This means that the type descriptor does not distinguish betweenclass types and interface types. To get the exact type, the interface ag ofthe corresponding class �le (see x3.7.3) has to be examined.The parameter and return types of a method are described by a methoddescriptor of type method desc: 5



return desc = FT �eld descj V (** void type **)param desc = �eld desc listmethod desc = param desc� return desc3.4 Field and Method ReferencesThe Java Virtual Machine Speci�cation [LY96] does not require any par-ticular structure for objects. In x3.8.2 we de�ne object data as a partialmapping from �eld references to values. A class inherits all �elds from itssuperclasses, where a new �eld declaration hides inherited �elds with thesame name. In certain cases, access to the hidden �elds is allowed, thereforea �eld reference consists of the name of the de�ning class together with the�eld name:�eld loc = cname� fnameA method is referenced by its signature, that is method name and parameterdescriptor. This reects the fact that there can be several de�nitions for thesame method name with distinct signatures. Note that the result type isnot included:method loc = mname � param desc3.5 StringsA constant pool entry (see x3.6) contains either references to other entries orstring values. We are not interested in formalizing the concrete encoding ofstrings; however, we must be able to distinguish whether a string representsan identi�er (for a class, �eld or method name) or a type descriptor for a�eld or method. Therefore we introduce the following datatype:string = Id identj Fd �eld descj Md method descFor each type constructor we de�ne an appropriate destructor function, suchthat the following properties hold:get Id :: string ) identget Id (Id id) = idget Fd :: string ) �eld descget Fd (Fd fd) = fdget Md :: string ) method descget Md (Md md) = md 6



If a destructor function is applied to an inappropriate constructor, it returnsthe value arbitrary.Constant pool entries may contain strings representing the name of aclass, array or interface name. The function type of str translates a stringto the appropriate type descriptor:type of str :: string ) �eld desctype of str (Id idt) = L idttype of str (Fd fd) = A fdtype of str (Md md) = arbitrary3.6 The Constant PoolThe constant pool is part of a JVM class �le (see x3.7.3). It is a kindof symbol table, containing class, �eld, and method references, as well astype information about �elds and methods. Every entry of type cp info istagged with a keyword indicating the kind of information it stores. Constantpool entries are referenced by a numerical index. Thus we can model theconstant pool as a list of cp info values. For better readability we de�neseveral synonyms for a constant pool index to give an idea of what kind ofentry is expected:cl idx = nat (** idx to Class entry **)fr idx = nat (** idx to Fieldref entry **)mr idx = nat (** idx to Methodref entry **)im idx = nat (** idx to InterMethref entry **)nm idx = nat (** idx to Utf8 string entry **)cl idx = nat (** idx to Class entry **)nt idx = nat (** idx to NameAndType entry **)cp info = Class nm idxj Fieldref cl idx nt idxj Methodref cl idx nt idxj InterMethref cl idx nt idxj NameAndType nm idx nm idxj Utf8 stringcpool = cp info listAs can be seen, a cpool entry may contain further references to the con-stant pool. For example, a Methodref entry describing a method containsone reference to the class information and another to the name and typeinformation of the method. The constant pool entry describing the classmust be a Class entry, containing again a reference to a Utf8 entry with thename of the class. The entry for the name and type information must be a7



NameAndType entry, containing one reference to a Utf8 entry with the nameof the method, and one to a Utf8 entry with the method descriptor. (Thekeyword Utf8 indicates the string encoding format used in the JVM). Wede�ne destructor functions, for which the following properties hold:get Class :: cp info ) nm idxget Class (Class i) = iget Fieldref :: cp info ) cl idx � nt idxget Fieldref (Fieldref i j) = (i,j)get Methodref :: cp info ) cl idx � nt idxget Methodref (Methodref i i) = (i,j)get InterMethref :: cp info ) cl idx � nt idxget InterMethref (InterMethref i j) = (i,j)get NameAndType :: cp info ) nm idx � nm idxget NameAndType (NameAndType i j) = (i,j)get Utf8 :: cp info ) stringget Utf8 (Utf8 s) = sFor a well-formed constant pool, the following functions extract data fromnested constant pool references:extract Class :: [cpool,cl idx] ) stringextract Class cp idx def=(let n idx = get Class (cp ! idx);cstr = get Utf8 (cp ! nm idx)incstr)extract Fieldref :: [cpool,fr idx] ) (cname � fname � �eld desc)extract Fieldref cp idx def=(let (c idx,nt idx) = get Fieldref (cp ! idx);cid = get Id (extract Class cp c idx);(n idx,d idx) = get NameAndType (cp ! nt idx);�d = get Id (get Utf8 (cp ! n idx));fd = get Fd (get Utf8 (cp ! d idx))in(cid,�d,fd))
8



extract Methodref :: [cpool,mr idx] ) (cname�mname �method desc)extract Methodref cp idx def=(let (c idx,nt idx) = get Methodref (cp ! idx);cid = get Id (extract Class cp c idx);(n idx,d idx) = get NameAndType (cp ! nt idx);mid = get Id (get Utf8 (cp ! n idx));md = get Md (get Utf8 (cp ! d idx))in(cid,mid,md))extract InterMethref :: [cpool,im idx] ) (cname �mname �method desc)extract InterMethref cp idx def=(let (c idx,nt idx) = get InterMethref (cp ! idx);cid = get Id (extract Class cp c idx);(n idx,d idx) = get NameAndType (cp ! nt idx);mid = get Id (get Utf8 (cp ! n idx));md = get Md (get Utf8 (cp ! d idx))in(cid,mid,md))3.7 The Class File FormatThe binary code generated by a Java compiler comes in a special format,called class �le. This format is de�ned precisely in the Java Virtual MachineSpeci�cation [LY96], being the basis for class �le and bytecode veri�cationto detect ill-formed JVM programs.To keep our �rst formalization small, we have omitted several compo-nents that do not concern the execution of the code directly (but would beimportant when considering class �le veri�cation). These are for examplemagic number or version number. Some sections like attributes or excep-tions handling do not occur, because we do not yet consider these parts ofthe language.3.7.1 FieldsEach �eld is described by a �eld info entry, containing two pointers to theconstant pool. The �rst one references the �eld name, the second one the�eld descriptor. Fields are modeled as a list of �eld data:�eld info = nm idx � (** idx to Utf8 h�eld namei **)nm idx (** idx to Utf8 h�eld desc.i **)�elds = �eld info list 9



3.7.2 MethodsEach method is described by a method info entry, containing two pointersto the constant pool and the method code. The �rst pointer references themethod name, the second one the method descriptor. Methods are modeledas a list of method data:'instr method info = nm idx � (** idx to Utf8 hmeth.namei **)nm idx � (** idx to Utf8 hmeth.desc.i **)'instr list'instr methods = ('instr method info) listThe given types are parameterized over a type variable 'instr that will beinstantiated later. This allows us to formalize the JVM instruction set andits operational semantics in a modular way (see x4.2).3.7.3 The Class FileA class �le consists of a constant pool, a ag indicating whether the class �ledescribes an interface or a class, pointers to constant pool entries returningthe names of the current class, its superclass and direct superinterfaces, andthe �eld and method descriptions:'instr class�le = cpool � (** constant pool **)bool � (** is it an interface ? **)cl idx � (** idx to current class **)cl idx � (** idx to direct superclass **)cl idx list � (** idxs to direct superints **)�elds � (** �eld table **)'instr methods (** method table **)We de�ne selector functions to access the individual parts of a class �le. Thuswe can easily extend our formalization with further components withouthaving to change much code:get cpool :: 'instr class�le ) cpoolget cpool def= �(cp,a,t,s,is,fs,ms). cpis interface :: 'instr class�le ) boolis interface def= �(cp,a,t,s,is,fs,ms). aget thisclass :: 'instr class�le ) cnameget thisclass def= �(cp,a,t,s,is,fs,ms). get Id (extract Class cp t)get superclass :: 'instr class�le ) cnameget superclass def= �(cp,a,t,s,is,fs,ms). get Id (extract Class cp s)10



If the class �le describes a class, the list of direct superinterfaces containsthe superinterfaces that are directly implemented by that class. If the class�le contains an interface description, that interface extends the given su-perinterfaces. The function get superinterfaces returns the set of referencedinterface names:get superinterfaces :: 'instr class�le ) cname setget superinterfaces def= �(cp,a,t,s,is,fs,ms).set (map (get Id � (extract Class cp)) is)The selector functions for methods and �elds convert the lists of methodand �eld data to mappings. This makes method and �eld access more com-fortable:get methods :: 'instr class�le ) (method loc ; return desc � 'instr list)get methods def= �(cp,a,t,s,is,fs,ms).map of (map (�(mn,md,ins).let (pd,rd) = get Md (get Utf8 (cp ! md))in((get Id (get Utf8 (cp ! mn)), pd) , (rd,ins)))ms)get �elds :: 'instr class�le ) (�eld loc ; �eld desc)get �elds def= �(cp,a,t,s,is,fs,ms).map of (map (�(fn,fd).((get Id (extract Class cp t), get Id (get Utf8 (cp ! fn))),get Fd (get Utf8 (cp ! fd))))fs)To extract the code area of a method, we use the following function:get code :: ['instr class�le,method loc] ) 'instr listget code cf mid def= let (rd,ins) = (get methods cf) !! mid in insThe current class does not have a superclass, if the constant pool referencefor the superclass is zero. This is checked by the following predicate:no super :: 'instr class�le ) boolno super def= �(cp,a,t,s,is,fs,ms). s=0The JVM works on a set of class �les. In our formalisation, we representthis by a mapping from class names to class �les:'instr class�les = cname ; 'instr class�le11



3.7.4 Class RelationsThe Java concept de�nes several relations between classes and interfacesthat are formalized in this subsection.First of all, it must be checked, whether an identi�er represents a classor an interface. In both cases, there must exist a corresponding class �le,with the interface ag set appropriately:is class :: ['instr class�les,cname] ) boolis class CFS cn def= CFS cn 6= None ^ :is interface (CFS !! cn)is inter :: ['instr class�les,cname,cname] ) boolis inter CFS cn def= CFS cn 6= None ^ is interface (CFS !! cn)The direct superclass relation is then de�ned as follows:d superclass rel :: 'instr class�les ) (cname � cname) setd superclass rel CFS def=f(sc,cn). is class CFS sc ^ is class CFS cn ^ cn 6=Object ^get superclass (CFS !! cn) = scgWe do not formalize an extra subclass relation, since it is just the transitiveclosure of the inverted direct superclass relation. Hence, a class cn is a sub-class of class sc, if (sc,cn) 2 (d superclass rel CFS)+ holds. In some cases,we also use the reexive transitive closure (d superclass rel CFS)�.The de�nition of the direct superinterface relation between two interfacesis analogous:d superinterface rel :: 'instr class�les ) (cname� cname) setd superinterface rel CFS def=f(si,i). is inter CFS si ^ is inter CFS i ^si 2 (get superinterfaces (CFS !! i))gThe general (non-direct) superinterface relation is obtained by the transitiveclosure (d superinterface rel CFS)+.The implementation relation between a class and an interface is morecomplex: a class cn implements an interface si if cn directly implements sc,or if cn directly implements an interface si' that has si as superinterface,or if the direct superclass sc implements si. This recursive de�nition is onlywell-de�ned, if there are no cyclic superclass relations. This is checked bythe predicate WF class�les described below. Technically, we have de�nedthe function implements using well-founded recursion and proved that thefollowing function equation holds under the given condition:
12



d implements :: ['instr class�les,cname,cname] ) boold implements CFS cn si def=is class CFS cn ^ is inter CFS si ^ si 2 get superinterfaces (CFS !! cn)implements :: 'instr class�les � cname � cname ) boolWF class�les CFS �!implements (CFS, cn, i) =(d implements CFS cn i) _(9si. d implements CFS cn si ^ (i,si) 2 (d superinterface rel CFS)+) _(9sc. (sc,cn) 2 d superclass rel CFS ^ implements (CFS, sc, i))3.7.5 Well-formedness of Class FilesCorrect machine programs (i.e. sets of class �les) have to conform to severalsyntactic and structural constraints that are checked by the JVM beforeexecution. Well-formed class �les will satisfy the following properties: thenumber of considered class �les is �nite; the class Object is de�ned and it doeshave neither superclass nor �elds; for all de�ned class �les, the constant poolentry for the current class contains the correct class name; further propertiesdepend on whether the interface ag is set or not, i.e. whether the class �lerepresents a class or an interface:WF class�les :: 'instr class�les ) boolWF class�les CFS def=(�nite fcn. CFS cn 6= Noneg) ^(is class CFS Object ^ no super (CFS !! Object)) ^(get �elds (CFS !! Object) = empty) ^(8cn. CFS cn 6= None�! (get thisclass (CFS !! cn) = cn) ^(is inter CFS cn �! WF inter CFS cn) ^(is class CFS cn �! WF class CFS cn))The class �le of a well-formed class ful�lls the following conditions: if thecurrent class does not have a superclass, its name is Object. In that case,the class does not have any superinterfaces. Otherwise, superclass and su-perinterfaces are also de�ned, and there are no cyclic dependencies. Cor-rect method overriding and implementation is checked by the predicatesmethod over ok and method impl ok that are described below:
13



WF class :: ['instr class�les,cname] ) boolWF class CFS cn def=if no super (CFS !! cn)then cn=Object ^get superinterfaces (CFS !! cn)=fgelse let sc = get superclass (CFS !! cn)inis class CFS sc ^(cn,sc) =2 (d superclass rel CFS)� ^(8sc'. (sc',cn) 2 (d superclass rel CFS)+�! method over ok CFS cn sc') ^(8si 2 get superinterfaces (CFS !! cn).is inter CFS si ^(8si'. (si',si) 2 (d superinterface rel CFS)��! method impl ok CFS cn si'))The class �le of a proper interface refers to the class Object as superclass.All superinterfaces have to be de�ned, where there must not be cyclic de-pendencies:WF inter :: ['instr class�les,cname] ) boolWF inter CFS i def=(get superclass (CFS !! i) = Object) ^(8si 2 get superinterfaces (CFS !! i).is inter CFS si ^(i,si) =2 (d superinterface rel CFS)�)We do not require explicitely correct method overriding for interfaces, sincethis can be derived from correct interface implementation1.If a method de�ned in some superclass sc is overridden in the currentclass cn, the return descriptor must remain the same:method over ok :: ['instr class�les,cname,cname] ) boolmethod over ok CFS cn sc def=8ml rd ins rd' ins'.get methods (CFS !! cn) ml = Some (rd ,ins ) ^get methods (CFS !! sc) ml = Some (rd',ins')�! rd=rd'If a method is declared in some superinterface si, the implementing classcn must contain a method of the appropriate type. This means, that there1The Java Virtual Machine Speci�cation [LY96] does not talk about correct methodoverriding for interfaces. At a later point, we found that the Java Language Speci�cation[GJS96] explicitly requires this. However, we have kept our formalization, since the givenpredicates su�ce to derive correct method overriding.14



must be a method de�nition in the class or some superclass2:method impl ok :: ['instr class�les,cname,cname] ) boolmethod impl ok CFS cn si def=8ml rd ins.get methods (CFS !! si) ml = Some (rd,ins)�! (9cn' ins'. (cn',cn) 2 (d superclass rel CFS)� ^get methods (CFS !! cn') ml = Some (rd,ins'))3.8 The JVM Runtime Environment3.8.1 JVM Runtime DataLike the Java language, the JVM operates on two di�erent types of values,primitive values and reference values. Among the primitive values, we con-sider only those of type integer. The reference values are pointers to objects,to denote a null pointer there exists a special null reference.The realization of object references is kept abstract: we model them byan opaque type loc that is not further speci�ed. We formalize JVM valuesas follows:val = Intg intj Addr locj NullThe destructor functions have the following properties:get Intg :: val ) intget Intg (Intg i) = iget Addr :: val ) locget Addr (Addr l) = lAdditionally, we de�ne:get Nat :: val ) natget Nat x def= int2nat (get Intg x)The Java Virtual Machine Speci�cation [LY96] does not require values tobe tagged with their runtime types, whereas in our formalization, the con-structors Addr and Intg contains additional type information (Null is indeeda distinct value). We need this information to state and prove the correct-ness of the bytecode veri�er, where the runtime types are checked against the2Again, the description in the Java Virtual Machine Speci�cation [LY96] might lead tounintentional interpretations: it is not made clear that the method implementation alsomay be inherited from a superclass 15



static type information. However, our approach does not impose restrictionson possible implementations, because the values are only accessed via thedestructor functions. Thus, the type tags do not inuence the operationalsemantics of a statically well-typed JVM program. The type informationsimply may be thrown away in a concrete implementation.3.8.2 The JVM HeapThe heap contains the runtime data of all objects and arrays. The Java Vir-tual Machine Speci�cation [LY96] does not require any speci�c representa-tion of objects. In our formalization, an object consists of the correspondingclass name and a data area. Object data is represented by a mapping from�eld references to values. An array consists of the type descriptor for itscomponents and a data area. Array data is represented as a list that canbe accessed by a numerical index. The heap is then modeled by a mappingfrom object references to objects.odata = �eld loc ; valadata = val listobj = Obj cname odataj Arr �eld desc adataheap = loc ; objThe characteristic properties of the destructor functions areget Obj :: obj ) (cname � odata)get Obj (Obj cn od) = (cn,od)get Arr :: obj ) (�eld desc � adata)get Arr (Arr fd ad) = (fd,ad)A class instance contains the name of its class, and an array contains thetype of its components. To get the type of the whole object, we de�ne thefollowing function:get obj type :: obj ) �eld descget obj type (Obj cn od) = L cnget obj type (Arr fd ad) = A fdIn the course of instance method invocation (see x4.11), the called methoddepends on the runtime type of the current object. In the case of a classinstance, the search for the method starts in the class �le of that class, inthe case of an array the class Object is inspected. The function get obj classreturns the name of the class, where search starts:get obj class :: obj ) cnameget obj class (Obj cn od) = cnget obj class (Arr fd ad) = Object 16



3.8.3 Object InitializationIf a new class instance is created (see x4.5), it will contain data for all �elds,those that have been declared in the corresponding class �le, and those ofall superclasses. The function get all �elds successively merges the �elds ofall superclasses with the �elds of the current class �le. Again, the functionis de�ned by well-founded recursion. It has the following property that hasbeen proved as a theorem from its de�nition:get all �elds :: 'instr class�les � cname ) �eld loc ; �eld descWF class�les CFS ^ is class CFS cn �!get all �elds (CFS,cn) =(let fs = get �elds (CFS !! cn)inif cn=Object then fselse (let sc = get superclass (CFS !! cn)in(get all �elds (CFS, sc)) � fs))The object and array �elds are initialized to their default values:default val :: �eld desc ) valdefault val I = Intg ($#0)default val (L i) = Nulldefault val (A f) = Nullinit obj :: ['instr class�les,cname] ) odatainit obj CFS cn def=(let fs = get all �elds CFS cn in map compose default val fs)init arr :: [val,int] ) adatainit arr val n def= replicate (int2nat n) valThe function replicate n v creates a list [v, . . . ,v] of length n.3.8.4 The JVM Frame StackEach time a method is invoked, a new frame is created on the frame stackcontaining the following components: the operand stack opstack is used tostore partial results and arguments of further instructions, the local vari-ables locvars contain the arguments the method has been called with, anda reference to the object the method has been called on. The class namecname indicates the de�ning class of the method, and meth loc gives a (sym-bolic) reference to the method code within this class. The program counterp count points to the instruction in the method code to be executed next. Inour formalization, the program counter is local to the code area of a method,that means, it just determines the o�set in the method code.17



opstack = val listlocvars = val listp count = natframe = opstack � (** operand stack **)locvars � (** local variables **)cname � (** de�ning class **)meth loc � (** ref. to code **)p count (** program counter **)3.8.5 The Exception FlagDuring the execution of the JVM, several exceptions can occur. We considera set of prede�ned exceptions, but do not allow user de�ned exceptions.xcpt = NullPointerj NegArrSizej IndOutBoundj ArrStorej ClassCastj InstantiationErrorj OutOfMemorySince we do not yet treat exception handling, execution stops immediatelyonce an exception is thrown.3.8.6 The JVM Runtime StateThe runtime state of the JVM is formed by the following components:jvm state = xcpt option � (** exception ag **)heap � (** object heap **)frame list (** frame stack **)3.8.7 Type CompatibilityCasting the type of a value to a another type requires valid type conversions.Sometimes a cast can be checked at compile time, but in general exhaustivetype checking cannot be done before runtime. The compiler will then intro-duce a cast checking instruction (see x4.8) that throws a runtime exceptionif the type does not �t. The predicate compatible s t checks, if type s canbe cast to t:
18



compatible :: ['instr class�les,�eld desc,�eld desc] ) boolcompatible CFS I t = (t=I)compatible CFS (L cn) t =(case t of I ) Falsej (L cn')) if is interface (CFS !! cn')then implements (CFS,cn,cn')else (cn',cn) 2 (d superclass rel CFS)�j (A fd) ) False)compatible CFS (A fd) t =(case t of I ) Falsej (L cn) ) cn=Objectj (A fd')) compatible CFS fd fd')3.8.8 Dynamic Method LookupIf a method is invoked, the constant pool returns the name of the class,where the method has been declared statically (see x4.11). But this is notnecessarily the dynamically invoked method. To �nd that method, we haveto search beginning from the current class in all superclasses. The func-tion dyn class is de�ned by well-founded recursion and we have proved thefollowing property for it:dyn class :: 'instr class�les �method loc � cname ) cnameWF class�les CFS ^ is class CFS cn �!dyn class (CFS, ml, cn) =(let ms = get methods (CFS !! cn)inif ms ml 6= None then cnelse if cn = Object then arbitraryelse (let sc = get superclass (CFS !! cn)indyn class (CFS, ml, sc)))4 Java Virtual Machine InstructionsThis section describes the instruction set of the JVM we have considered sofar, and gives an operational semantics for them.4.1 Description of JVM instructionsThe Java Virtual Machine Speci�cation [LY96] describes the operationalsemantics for each instruction in the context of a JVM state, where severalconstraints hold, e.g. there must be an appropriate number of arguments19



on the operand stack, or the operands must be of a certain type. If theconstraints are not satis�ed, the behaviour of the JVM is unde�ned.One way of de�ning this partiality is to give a set of conditional executionrules, where the premises only hold for correct states. However, this methoddoes not make clear by construction, whether the de�nition is complete, i.e.whether execution of a (correct) program will not get stuck before a �nalstate is reached. Besides that, it has to be proved, that the behaviour isdeterministic.In our approach, we formalize the behaviour of a JVM instruction in afunctional style, thus guaranteeing by de�nition the complete execution of aprogram. If a state is not correct with respect to the current instruction, e.g.the operand stack is empty in case of a pop instruction, the result of poppingan element from the empty stack will be an arbitrary value. Remember,that this is not a special error value, but means that we do not know anyproperties of the returned value. The bytecode veri�er has to check beforeexecution of the code, that all constraints will be satis�ed.4.2 JVM ExecutionWe have structured the instructions in several groups of related instructions,describing each by a its own execution function. This makes the operationalsemantics easier to understand, since every function only takes the parame-ters that are needed for the corresponding group of instructions. The singleinstructions are described below. We need an additional datatype to con-struct the entire instruction set:instr = LAS load and storej CO create objectj MO manipulate objectj MA manipulate arrayj CH check objectj MI meth invj MR meth retj OS op stackj CB cond branchj UB uncond branchWithin the context of a JVM program, (i.e. set of class �les), JVM executionconsists in iterated transformation of the machine state according to thecurrent instruction. If the frame stack is empty or an exception is raised,execution terminates. If the machine has not yet reached a �nal state,the function exec performs a single execution step: it calls an appropriateexecution function and incorporates the result in the new machine state. Ifexecution has reached a �nal state, exec does not return a new state. Thisis modeled by embedding the result state in an option type:20



exec :: instr class�les � jvm state ) jvm state optionexec (CFS, None, hp, []) = Noneexec (CFS, None, hp, (stk,loc,cls,ml,pc)#frs) = Some(case ((get code (CFS !! cls) ml)) ! pc ofLAS ins ) (let (stk',loc',pc') = exec las ins stk loc pcin(None,hp,(stk',loc',cls,ml,pc')#frs))j CO ins ) (let (xp',hp',stk',pc') = exec co ins CFS cls hp stk pcin(xp',hp',(stk',loc,cls,ml,pc')#frs))j MO ins ) (let (xp',hp',stk',pc') = exec mo ins CFS cls hp stk pcin(xp',hp',(stk',loc,cls,ml,pc')#frs))j MA ins ) (let (xp',hp',stk',pc') = exec ma ins CFS cls hp stk pcin(xp',hp',(stk',loc,cls,ml,pc')#frs))j CH ins ) (let (xp',pc') = exec ch ins CFS cls hp stk pcin(xp',hp,(stk,loc,cls,ml,pc')#frs))j MI ins ) (let (xp',frs') = exec mi ins CFS cls hp (stk,loc,cls,ml,pc)in(xp',hp,frs'@frs))j MR ins ) (let frs' = exec mr ins stk frsin(None,hp,frs'))j OS ins ) (let (stk',pc') = exec os ins stk pcin(None,hp,(stk',loc,cls,ml,pc')#frs))j CB ins ) (let (stk',pc') = exec cb ins stk pcin(None,hp,(stk',loc,cls,ml,pc')#frs))j UB ins ) (let pc' = exec ub ins pcin(None,hp,(stk,loc,cls,ml,pc')#frs)))exec (CFS, Some xp, hp, frs) = NoneExecution of an entire JVM program consists in repeated application of exec,as long as the result is not None. The relation CFS ` � �!� �' maps agiven set of class �les CFS and a JVM state � to a new state �', where thepair (�,�') is in the reexive transitive closure of successful execution steps:` �!� :: instr class�les ) jvm state ) jvm state ) boolCFS ` � �!� �' def= (�,�') 2 f(s,t). exec (CFS,s) = Some tg�21



4.3 Instruction TypesMost of the JVM instructions carry type information about their operators.For example, there are di�erent instructions to load an integer value (iload)or a reference value (aload) from the local variables. Often, the operationalbehaviour of these instructions is identical or just di�ers in certain details.To avoid redundant de�nitions (and thus redundant proofs), we compact-ify the representation of those instructions in the following way: insteadof de�ning two di�erent instructions, we represent them by one instructionthat has an additional argument carrying the type of the instruction. Thus,the operational semantics for both cases can be expressed all in one. Thisdescription style not only reveals to be advantageous for further proof tasks;putting similar things together also improves readability and eases under-standing.4.4 Load and StoreLoad and store instructions transfer a value between a local variable and theoperand stack. We de�ne a new datatype ins type indicating the expectedtype of the transferred value:ins type = I j AWe consider then the following set of load and store instructions:load and store = IAload ins type natj IAstore ins type natj Bipush intj Aconst nullThe operational semantics of these instructions is given by the functionexec las :: [load and store,opstack,locvars,p count]) (opstack � locvars � p count)IAload I loads an integer, IAload A loads a reference value from a localvariable onto the operand stack:exec las (IAload X idx) stk vars pc = ((vars ! idx) # stk,vars,pc+1))IAstore X stores an integer or reference value into a local variable:exec las (IAstore X idx) stk vars pc = (tl stk , vars[idx:=hd stk] , pc+1)You will note that in these two cases the operation succeeds, even if thetype of the local variable does not correspond to the type of the instruction.This does not cause any problems, since bytecode veri�cation assures, thatthere will be a value of legitimate type.22



Bipush loads an integer value onto the operand stack:exec las (Bipush ival) stk vars pc = (Intg ival # stk,vars,pc+1)Aconst null loads the null reference onto the operand stack:exec las Aconst null stk vars pc = (Null # stk,vars,pc+1)4.5 Object and Array CreationThe Java Virtual Machine Speci�cation [LY96] de�nes distinct instructionsfor the creation of a new array of primitive or of reference type. Both worknearly identical, they just di�er in the way the type of the array componentsis determined: for primitive types, newarray has as argument a special typeindicator atype. For arrays of reference type, anewarray carries an indexcl idx into the constant pool, pointing to the type information. We subsumethe representation of these two instructions in one single case. Therefore,we de�ne the following datatypes, where we actually consider only integersas primitive array type:atype = T INTarr type = PA atype j AA cl idxThe following functions convert these values to type descriptors:type of atype :: atype ) �eld desctype of atype at def= Itype of arr type :: ['instr class�les,cpool,arr type] ) �eld desctype of arr type CFS cpool aty def=case aty of(PA at) ) type of atype atj (AA idx) ) type of str (extract Class cpool idx)Now, we de�ne the following set of instructions for object creation:create object =New cl idx (** Create new object **)j IAnewarray arr type (** Create new array of prim/ref type **)The operational semantics of these instructions is given by the functionexec co :: [create object,'instr class�les,cname,heap,opstack]) (xcpt option � heap � opstack � p count)
23



New creates a new class instance3, whose type cn is extracted from theconstant pool. The value a is a new reference to the heap, where the instancevariables of the new object are initialized to their default values. If cn is aninterface or if there is no more memory available on the heap, an exceptionis thrown. The new reference is stored on the operand stack:exec co (New idx) CFS cls hp stk pc =(let cpool = get cpool (CFS !! cls);cn = get Id (extract Class cpool idx);a = newref hp;hp' = hp[a 7! Obj cn (init obj CFS cn)];xp' = if is interface (CFS !! cn) then Some InstantiationErrorelse if 8x. hp x 6= None then Some OutOfMemoryelse Nonein (xp',hp',(Addr a)#stk,pc+1))You will note that components of the state change, even if an exception hasbeen thrown. This does not matter, since in our formalization executionstops if an exception is thrown. When extending it to exception handling,we have to return the unchanged state in case of an exception. In fact, theJava Virtual Machine Speci�cation [LY96] does not make clear that point.IAnewarray creates a new array, whose components are of primitive orreference type, depending on the value of X. It works similarly to the cre-ation of a new class instance. On top of the operand stack there must bean integer value count, indicating the length of the array. If that value isnegative or there is no more memory available on the heap, an exception isthrown. The components are initialized to the default value correspondingto the component type fd:exec co (IAnewarray X) CFS cls hp stk pc =(let cpool = get cpool (CFS !! cls);fd = type of arr type CFS cpool X;count = get Intg (hd stk);xp' = if count < $#0 then Some NegArrSizeelse if 8x. hp x 6= None then Some OutOfMemoryelse None;aref = newref hp;hp' = hp[aref 7! Arr fd (init arr (default val fd) count)]in(xp',hp',(Addr aref)#(tl stk),pc+1))3In the real JVM, the New instruction does not completely create a new instance, aspecial instance initialization method has to be invoked. We do not yet consider theseinitialization methods. 24



4.6 Object ManipulationObject data is accessed via the following instructions:manipulate object = Get�eld fr idxj Put�eld fr idxThe operational semantics of these instructions is given by the functionexec mo :: [manipulate object,'instr class�les,cname,heap,opstack]) (xcpt option � heap � opstack � p count)Get�eld fetches a �eld from an object. The object is determined by thereference a on top of the operand stack, the �eld descriptor is extractedfrom the constant pool, containing de�ning class fc and �eld name fn. Thesecomponents form an index into the �eld table. If the reference is Null, anexception is thrown:exec mo (Get�eld idx) CFS cls hp stk pc =(let a = hd stk;(cl,fs) = get Obj (hp !! (get Addr a));cpool = get cpool (CFS !! cls);(fc,fn,fd) = extract Fieldref cpool idx;xp' = if a=Null then Some NullPointer else Nonein(xp',hp,(fs !! (fc,fn))#(tl stk),pc+1))Put�eld stores the top operand stack element v in the �eld of an object. Itworks analogous to Get�eld:exec mo (Put�eld idx) CFS cls hp stk pc =(let (v,a) = (hd stk,hd (tl stk));(cl,fs) = get Obj (hp !! (get Addr a));cpool = get cpool (CFS !! cls);(fc,fn,fd) = extract Fieldref cpool idx;hp' = hp[get Addr a 7! Obj cl (fs[(fc,fn) 7! v])];xp' = if a=Null then Some NullPointer else Nonein(xp',hp',tl (tl stk),pc+1))4.7 Array ManipulationInstructions for array manipulation load an array component onto the operandstack, or store a value from the operand stack as an array component. Weuse again an additional argument of type inst type to give a compact rep-resentation of the instructions: 25



manipulate array = IAaload ins typej IAastore ins typeThe operational semantics of these instructions is given by the functionexec ma :: manipulate array ) 'instr class�les ) cname )heap ) opstack ) (xcpt option � heap � opstack � p count)IAaload loads an integer resp. reference from an array, where the array refer-ence a and the index i into the array are popped from the operand stack. Ifthe reference is Null or the index is not within the bounds of the referencedarray, an exception is thrown:exec ma (IAaload X) CFS cls hp stk pc =(let (i,a) = (hd stk,hd (tl stk));(fd,ad) = get Arr (hp !! (get Addr a));xp = if a=Null then Some NullPointerelse if length ad � get Nat i then Some IndOutBoundelse Nonein(xp,hp,(ad ! (get Nat i) #(tl (tl stk)),pc+1))If a value of reference type is stored in an array, runtime type checkingalways has to be performed. Therefore, we de�ne a predicate fd compatiblethat checks whether the type of a value val is assignment compatible witha given type fd. According to our representation of instruction types, anadditional argument X indicates the expected type of val. For integer types(I ) no runtime type checking is necessary, therefore the result is triviallyTrue. A Null value may be assigned to any reference type4, for referencevalues, the type fd' of the referenced object must be compatible with fd':fd compatible :: ['instr class�les,heap,ins type,val,�eld desc] ) boolfd compatible CFS hp X val fd def=case X of I ) Truej A ) if val=Null then fd 6=Ielse let fd' = get obj type (hp !! (get Addr val))incompatible CFS fd' fdIAastore stores an integer resp. reference value v into an array. It worksanalogous to IAaload. Additionally an exception is thrown, if the dynamictype of the value is not compatible with the component type fd of the ref-erenced array:4In the Java Virtual Machine Speci�cation [LY96], the description of the aastore in-struction does not mention this case, whereas in x2.6.6 the de�nition is complete26



exec ma (IAastore X) CFS cls hp stk pc =(let (v,i,a) = (hd stk,hd (tl stk),hd (tl (tl stk)));(fd,ad) = get Arr (hp !! (get Addr a));hp' = hp[get Addr a 7! Arr fd (ad[get Nat i := v])];xp = if a=Null then Some NullPointerelse if length ad � get Nat i then Some IndOutBoundelse if :(fd compatible CFS hp X v fd)then Some ArrStoreelse Nonein(xp,hp',tl (tl (tl stk)),pc+1))4.8 Check ObjectWe consider one instruction to check object properties:check object = Checkcast cl idxThe operational semantics of this instruction is given by the functionexec ch :: [check object,'instr class�les,cname,heap] ) xcpt optionCheckcast checks, if an object is of a given type. If the object reference ais not Null and the object type ot is not compatible with the type ct thatis extracted from the constant pool, an exception is thrown. The operandstack remains unchanged:exec ch (Checkcast idx) CFS cls hp stk pc =(let a = hd stk;cpool = get cpool (CFS !! cls);ct = type of str (extract Class cpool idx);ot = get obj type (hp !! (get Addr a));xp = if a=Null then Noneelse if :(compatible CFS ot ct) then Some ClassCastelse Nonein(xp,pc+1))4.9 Control TransferConditional control transfer causes the JVM to proceed execution at a giveno�set from the current program counter. There are several integer compar-isons of the top stack element against the integer value 0. We subsume themby one instruction If , whose additional argument of type comp0 speci�es thecompare operation. The set of instructions is then formalized as follows:27



comp0 = int ) boolcond branch = If comp0 intj Ifnull intj I�acmpeq ins type intThe execution of these instructions is described as follows:exec cb :: [cond branch,opstack,nat] ) opstack � p countIf causes a jump, if cmp-comparison of the top element of the operand stacksucceeds:exec cb (If cmp i) stk pc =(let val = hd stk;pc' = if cmp (get Intg val) then int2nat($#pc+i) else pc+1in(tl stk,pc'))Ifnull branches, if the top stack element equals Null:exec cb (Ifnull i) stk pc =(let val = hd stk;pc' = if val=Null then int2nat($#pc+i) else pc+1in(tl stk,pc'))I�acmpeq causes a jump, if the two top operand stack elements (that areboth integer resp. reference values, depending on X) are equal.exec cb (I�acmpeq X i) stk pc =(let (val1,val2) = (hd stk, hd (tl stk));pc' = if val1 = val2 then int2nat($#pc+i) else pc+1in(tl (tl stk),pc'))In this case again, bytecode veri�cation will assure that there will be valuesof legitimate type on the operand stack.There is one unconditional branch instruction in our formalization:uncond branch = Goto intIts operational semantics is de�ned as follows:exec ub :: [uncond branch,nat] ) p countexec ub (Goto i) pc = int2nat($#pc+i)
28



4.10 Operand StackThe JVM has several instructions for the direct manipulation of the operandstack. We have modeled the following subset:op stack = Popj Dupj SwapThe de�nition of the execution function is straightforward:exec os :: [op stack,opstack,p count] ) (opstack � p count)Pop removes the top element from the operand stack.exec os Pop stk pc = (tl stk,pc+1)Dup duplicates the top element of the operand stack.exec os Dup stk pc = ((hd stk)#stk,pc+1))Swap interchanges the two top words of the operand stack.exec os Swap stk pc =(let (val1,val2) = (hd stk,hd (tl stk))in(val2#val1#(tl (tl stk)),pc+1))4.11 Method InvocationThe invocation of instance or interface methods works nearly identical. Theonly di�erence is an additional argument to the invokeinterface instruction,indicating the number of arguments. This argument is rather redundant,because it could be derived from the method descriptor just as for the in-vokevirtual instruction. We have modeled this redundancy according tothe Java Virtual Machine Speci�cation [LY96], but have omitted the lastoperand of invokeinterface, because it is unused by the instruction itself andexists only to reserve space for further optimizations in Sun's implementa-tion of the JVM. We do not yet consider special methods like initializationmethods or class methods:meth inv = Invokevirtual mr idxj Invokeinterface im idx natTo avoid redundant de�nitions, we de�ne a function extract inv methref, thatextracts the method information from the constant pool for both cases:29



extract inv methref :: [cpool,inv type]) (cname�method loc � return desc� nat)extract inv methref cp (Invokevirtual idx) =(let (cn,mn,(pd,rd)) = extract Methodref cp idxin(cn,(mn,pd),rd,length pd+1))extract inv methref cp (Invokeinterface idx n) =(let (cn,mn,(pd,rd)) = extract InterMethref cp idxin(cn,(mn,pd),rd,n))The operational semantics is then given by the functionexec mi :: [meth inv,'instr class�les,cname,heap,frame]) (xcpt option � frame list)De�ning class cn, signature ml, return descriptor rd and number of argu-ments n of the invoked method are extracted from the constant pool. Then,dynamic method lookup is performed: starting from the object class of theobject referenced by a, dyn class searches in the class and its superclasses,until a method matching the signature is found. Object reference and argu-ments are popped from the operand stack and a new stack frame is created,where these values are incorporated as local variables.exec mi inv com CFS cls hp (stk,loc,cls,met,pc) def=(let cp = get cpool (CFS !! cls);(cn,ml,rd,n) = extract inv methref cp (get Invoke inv com);xs = take n stk;a = last xs;dyn cn = dyn class (CFS, ml, get obj class (hp !! get Addr a));frs' = [([],rev xs,dyn cn,ml,0),(drop n stk,loc,cls,met,pc+1)];xp' = if a=Null then Some NullPointer else Nonein(xp',frs'))The Java Virtual Machine Speci�cation [LY96] emphasizes the fact thatthere exist no requirements on the representation of objects. However, thedescription for method invocation instructions invokevirutal and invokein-terface refer to method-tables as a part of an object. This is indeed animplementation-dependent optimization that is not part of the abstractspeci�cation. In our formalization we do not use method tables.4.12 Method ReturnThe JVM has di�erent return instructions, depending on the type of thereturned value (if any). We chose again a compressed representation with30



an additional ins type argument:meth ret = IAreturn ins typej ReturnThe operational semantic of these instructions is de�ned by the functionexec mr :: [meth ret,opstack,frame list] ) frame listIAreturn returns an integer or reference, depending on the value of X. Thevalue val on top of the current operand stack stk is pushed onto the operandstack stk' of the frame of the invoker, and the current frame is deleted.exec mr (IAreturn X) stk frs =(let val = hd stk(stk',loc',cls',met',pc') = hd frsin(val#stk',loc',cls',met',pc')#tl frs)Return returns from a method that has return type void. In this case, thereis no value to be returned; the current frame fr is deleted and the remainingframes frs are unchanged:exec mr Return stk frs = frs5 Results and Further WorkWe have given a formalization of the central parts of the JVM in Isa-belle/HOL. The theory �les comprise nearly 1100 lines of code.Isabelle/HOL turned out to be an adequate instrument to model real lifeprogramming languages such as Java (see also [NO98, ON98]). It is obviousthat we had to make certain restrictions in this �rst approach to formalizethe JVM. For example we do not consider the size of instructions and itsoperands and use instead abstract datatypes. These abstractions can be re-�ned in further development steps of our formalization. Besides those "lowlevel" points, our formalization of the operational semantics correspondsclosely to the informal description given in the Java Virtual Machine Spec-i�cation [LY96].We have succeeded in �nding a description style, that is suitable for the-oretical investigations on the one hand and practical implementation guideon the other hand. In contrast to an informal description, we can trust byconstruction in the soundness of our formalization and pro�t from precisede�nitions. The result can be used for machine-checked veri�cation tasks.Our work has revealed several lacks and inconsistencies of the o�cialJVM description: the latter claims to give an abstract speci�cation that31



must be followed by any concrete implementation. However, in many casesit confounds the reader by referring to implementation details: for exampleit uses the notion of method tables for method invocation. In this context,it is curious that the design of the invokeinterface instruction depends onan optimization in Sun's implementation of the JVM.Another point of criticism concerns the relation between Java source leveland JVM: the Java Virtual Machine Speci�cation [LY96] emphasizes thefact, that the JVM knows nothing about the Java programming languageand can be used as platform for any other programming language whosefunctionality can be translated to JVM class �les. It is therefore annoyingthat throughout the whole book, the descriptions refer to the Java sourcelanguage instead of giving independent de�nitions. Even worse, Java Lan-guage Speci�cation [GJS96] and Java Virtual Machine Speci�cation [LY96]di�er in the description of some basic Java concepts (e.g. interface methodoverriding and interface implementation, see x3.7.5). This leads to confusion,since it is not immediately clear whether these di�erences are intentional orjust are resulting from inexact reproduction. Another example is the dupli-cate de�nition of of assignment compatibility (see x4.7), where one versionis again incomplete.Apart from these results, this work serves as basis for further formaltreatment of Java and the JVM:Bytecode Veri�er: A correct Java compiler generates correct code thatcan be executed safely on the JVM. However, the VM cannot know,how the code has been generated and if it has been generated properly,because the platform-independent design of Java makes it possible todownload arbitrary (ill-formed) code from the World Wide Web.Consequently the JVM needs to check any untrusted code before ex-ecuting it. This process is known as bytecode veri�cation. Relyingon the work of Qian [Qia98], we have formalized the bytecode veri-�er in Isabelle/HOL. We then have proved that if a program has beenchecked by the bytecode veri�er, then the runtime data of the programwill be type-correct. The results of this work are described in [Pus98].Compiler correctness: The JVM is often considered as an operationalsemantics for Java. But it is not as easy as that, since Java programshave to be compiled into JVM code. Our main goal is the formalveri�cation of compiler correctness for Java. We will formalize a Javacompiler translating Java source programs in JVM class �les. Thenwe will prove the equivalence between source program and compiledcode.Acknowledgments. I would like to thank Tobias Nipkow, David vonOheimb, and Zhenyu Qian for helpful discussions about this topic. Thanksare also owed to Franz Regensburger who read a draft version of this paper.32
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