
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Efficiently Testing for Unboundedness and
m-handed Assembly

Fabian Schwarzer, Florian Bieberbach, Leo Joskowicz,
Achim Schweikard

ABCDEFGHIJKLMNO
TUM-I9750

Dezember 97

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N



TUM-INFO-12-I9750-50/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c
1997

Druck: Institut f ür Informatik der
Technischen Universit ät M ünchen



E�ciently Testing for Unboundednessand m-handed AssemblyFabian Schwarzer1, Florian Bieberbach2Leo Joskowicz3, Achim Schweikard11Institut f�ur Informatik2Lehrstuhl f�ur Allgemeine und Industrielle BetriebswirtschaftslehreTechnische Universit�at M�unchen80290 M�unchen, Germany3 Institute of Computer ScienceThe Hebrew University of Jerusalem91904 Jerusalem, IsraelDecember 15, 1997AbstractWe address the problem of e�ciently determining whether the in-tersection of a given set of d-dimensional halfspaces is unbounded. It isshown that detecting unboundedness can be reduced to a single linearrange computation followed by a single linear feasibility test. In con-trast, detecting unboundedness is at least as hard as linear feasibilitytesting and maximization. Our analysis suggests that algorithms forestablishing linear unboundedness can be used as a basis of simple andpractical algorithms in motion planning, insertability analysis and as-sembly planning. We show that m-handed assembly planning can bereduced to testing for unboundedness. A valid motion sequence can be1



computed in polynomial time, if the parts are not already separatedin their initital placement. No polynomial algorithms were previouslyknown for this problem. We present experimental results obtainedwith an implementation of our algorithms.Keywords: Assembly Planning, Linear Programming, Unbound-edness.1 IntroductionWe address the problem of determining whether a given d-dimensional pointset, described as an intersection of n halfspaces in d dimensions is unbounded.Practical methods for performing this test have applications in geometricreasoning [3], insertability analysis [4] and assembly sequence planning [6,7]. We discuss the role of testing for unboundedness in assembly planning,and describe experimental results obtained with an implementation of ourmethods. It is shown that detecting unboundedness can be reduced to asingle linear range computation followed by a single linear feasibility test.In contrast, detecting unboundedness is at least as hard as linear feasibilitytesting and maximization. We will show that m-handed assembly planningcan be reduced to testing for unboundedness. A valid motion sequence canbe computed in polynomial time, if the parts are not already separated intheir initital placement.1.1 Problem statementWe consider a set of hyperplanes in d dimensions, de�ned by the equationsa11x1 + a12x2 + � � �+ a1dxd = b1a21x1 + a22x2 + � � �+ a2dxd = b2: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :an1x1 + an2x2 + � � �+ andxd = bn:These hyperplanes de�ne an arrangement in d dimensions, i.e. they par-tition d�space into convex regions, called cells. Let p = (p1; : : : ; pd) be a2



point which is not on any of the hyperplanes. Then p determines a cell c inthis arrangement, i.e., c is the cell containing p. c can be represented as anintersection of halfspaces containing p.Each such halfspace is given as an inequality of the form aix � bi or of theform aix � bi, where ai is the normal vector of one of the above hyperplanes,i.e., ai = (ai1; : : : ; aid).A cell is called unbounded, if it contains a ray in its interior. The problemof testing for linear unboundedness is stated as follows:Given hyperplanes in d dimensions and a point p = (p1; : : : ; pd), decidewhether there is a ray r = fp + tu j t � 0g starting at p, such that r doesnot cross any of the hyperplanes.Notice that we do not require the coordinates ui of the direction vector ube positive.1.2 Unboundedness in linear programmingUnboundedness is usually regarded as an error condition in linear program-ming. However, unboundedness in linear programming is directional. I.e.,a linear maximization in a given direction will fail, if the feasible region isunbounded in this given direction.Based on simplex linear programming, we can obtain a direct solution tothe above problem. Consider an arbitrary linear base s1; : : : ; sd of d�space.Perform a maximization for each of +si and �si, subject to the halfspaceinequalities de�ning the given cell. This cell is unbounded, if one of thesemaximizations reports unboundedness.It is easy to see that this test is complete for the undirected case, i.e., theresult 'unbounded' will be returned, if the given cell is indeed unbounded inany direction. This simple test requires 2d linear maximization steps. Canwe detect unboundedness with a faster method?We will show that testing for unboundedness is at least as hard as lin-ear feasibility testing and maximization. It will then be shown that testingfor unboundedness can be performed by a single linear range computationfollowed by a single feasibility test. 3



1.3 Assembly SequencesOur test is applied to the problem of computing assembly sequences: Givena set of objects in the plane or in space, decide whether these objects canbe assembled (or, disassembled) without collision. This problem has beenstudied in a variety of contributions [1, 2, 6, 8]. Fig. 1 shows an example.

Figure 1: Geometric representation of The Towers of Hanoi [2]The problem of �nding a sequence of translational motions for partition-ing a given assembly has exponential lower bounds [2]. This is illustratedin �g. 1: For a su�ciently large number k of u-shaped parts the rules ofthe Towers of Hanoi problem must be obeyed, in order to remove one ofthe parts. The number of distinct translational motions (i.e. motions withdistinct directions or distinct parts sets) for removing a part is exponentialin k.By further restricting the class of allowed motions, polynomial time algo-rithms can be devised. Speci�cally, the problem of single�handed assemblyis to decide whether there is a translational direction which partitions a givenassembly into two (arbitrary) subsets. Interestingly, despite the fact that wemust compute a removable subset, this decision can be made in polynomialtime [6]. 4



Figure 2: An assembly requiring m hands to disassembleIn between single-handed assembly and general translational assembly isthe problem of m � handed assembly: Decide whether given parts can beseparated by a simultaneous translational motion, where each part may as-sume a di�erent direction and velocity of motion, but may be moved at mostonce (�g. 2).We will show that m-handed assembly motions can be computed in poly-nomial time, as long as no pair of parts is already separated in the initialplacement. Indeed, after (polynomial-time) preprocessing, a single test forunboundedness is su�cient.2 Algorithm for Determining Unbounded-nessWe consider the following algorithm:Input: Hyperplanes H1; : : : ; Hn with equations Hi : aix = bi and a pointp. Output: Decision whether the cell containing p is bounded or unbounded.1. Determine, whether the homogeneous system of equations aix = 0(1 � i � n) has a non-trivial solution u 6= 0. If so, return unbounded5



and exit.2. Select the orientations of the normal vectors ai forHi such that aip � bifor each i.3. Set a� := Pni=1 ai. If a� = 0 return bounded and exit. De�ne aconstraint set C by setting C =ai � x � 0; 1 � i � na� � x = 1:4. Test whether the constraint set C is feasible. If so, return unbounded,otherwise return bounded and exit.Notice that the coordinates xi of x in the feasibility test (steps 3, 4) arenot restricted to be positive.The following observations show that the above algorithm is complete.We will assume that the orientation of each hyperplane is chosen such thataip � bi for 1 � i � n. Let S denote the intersection of the correspondinghalfspaces, in this orientation. Thus S is the cell containing p. By S0 wedenote the intersection of the corresponding homogeneous halfspaces, i.e. S0is the intersection of the halfspaces aix � 0.Lemma 1 S0 contains a point u 6= 0 if and only if S is unbounded.Lemma 2 If dimha1; : : : ; ani 6= d then S0 is unbounded.The proofs of lemma 1 and lemma 2 directly follow from elementary prop-erties of linear vector spaces, see e.g. [9]. To state lemma 3, we recall thede�nition of the constraint set C in step 3 of the above algorithm.Lemma 3 Let dimha1; : : : ; ani = d. Then S0 contains a point u 6= 0 if andonly if C is feasible. 6



Proof: Let u 6= 0 be a point in S0. We must show that C is feasible.Assume a�u = 0. Since u is in S0 (aiu � 0), we have aiu = 0 for each i � n,so u is orthogonal to each ai. But this would imply that dimha1; : : : ; an;uiis strictly greater than d. Thus a�u 6= 0. The same argument shows a� 6= 0if the space spanned by a1; : : : ; an has full dimension and S0 contains a pointu 6= 0.For each scalar t � 0, the point tu is in S0. Thus after appropriate scaling,we can assume a�u = 1, so that u satis�es C.Conversely, a point satisfying C is clearly a non-zero point in S0. 2Computing an unbounded direction. The next section describes theapplication of the above algorithm in assembly planning. It is useful to returna ray r pointing into an unbounded direction, if there is such a ray. This isdone by modifying steps 1 and 4 as follows:Step 10: Determine, whether the homogeneous system of equations aix = 0(1 � i � n) has a non-trivial solution u 6= 0. If so, return unbounded, thevector u, and exit.Step 40: Test whether the constraint set C is feasible. If so, returnunbounded and a point u satisfying C, otherwise return bounded and exit.3 m-handed Assembly SequencesGiven a set of polygonal (or polyhedral) objects, decide whether one or moreof these objects can be removed without collision.Two parts P;Q will be called separated, if P is entirely contained in ahalfspace not intersected by Q.Let P1; : : : ; Pk be an assembly of polygonal parts. We assume that in thegiven initial placement, no pair of parts is separated in the above sense. I.e.,for i; j � k, there is no halfplane containing all of Pi but none of Pj.When determining whether parts are removable, we can �x the placementof one (arbitrary) part, I.e., we can assume that the part Pk will never bemoved. This is possible for the following reason: if the given parts can be7



separated at all, then there is also a separating motion which will leave oneof the parts �xed. Note that the choice of the �xed part is arbitrary.Since we only consider translational motion, the placement of each mov-able part Pi is given by a vector p(i) = (p(i)x ; p(i)y ). Thus p(i) describes thelocation of part Pi after a translational displacement. A simultaneous place-ment of all parts is then represented by a vector u = (p(1)x ; p(1)y ; : : : ; p(k)x ; p(k)y ).u is a vector in E2k. The origin in this space describes the initial placementof all parts. Similarly, the vector (1; 0; : : : ; 0) is the placement obtained bytranslating the �rst part along the positive x�axis by one length unit. Noticethat this placement may not be free of overlap between parts.For each pair of parts Pi; Pj, where i; j < k, we consider the set of direc-tions separating Pi from Pj. This set of directions is represented by a set ofrays starting at the origin (in the plane). Since we assume that parts are notseparated in the initial placement, the directions separating Pi from Pj forma convex sector (or half-cone) in the plane. This sector is an intersection oftwo halfplanes.Now both parts Pi and Pj are movable. Therefore we must not only rep-resent directions for separating Pi from Pj but also the directions separatingPj from Pi. Let a � x � 0a0 � x � 0be the directions separating Pi from Pj. Thus ax � 0 and a0x � 0 aretwo halfplanes. Any point u with au � 0 and a0u � 0 is a valid direction forseparating Pi from Pj. I.e., Pi can be translated along u to in�nity withoutintersecting Pj.It is easy to see that the rays in the opposite sector, i.e., the sectora � x � 0a0 � x � 0represent translations separating Pj from Pi.8



To simultaneously represent both sectors, we consider the 4-dimensionalset de�ned by the constraintsa(p(i) � p(j)) � 0a0(p(i) � p(j)) � 0:Each ray in this sector is a direction of simultaneous translation for bothPi and Pj, during which Pi and Pj will not collide.Finally, the set of directions separating one of the movable parts Pi (wherei < k) from the �xed part (here part Pk) is represented in the same way. Butthe since Pk is �xed, we have (p(k)x ; p(k)y ) = (0; 0), so that this set of directionsis given by a(p(i)) � 0a0(p(i)) � 0:Taking all constraints together (for all pairs of parts), we obtain a convexcell in d = 2k � 2 dimensions, which contains the origin. The given partscan be separated by an m�handed translation if and only if this cell isunbounded.For two-dimensional assemblies we have imposed the restriction that nopair of parts is separated in the initial con�guration. A requirement whichis su�cient in both the two-dimensional and the three-dimensional case isthe following: The set of directions separating parts must be convex for eachpair of parts.4 General Translational Assembly PlanningThe assembly in �g 1 cannot be partitioned by a single translation. In thiscase, a valid motion for removing parts consists of a series of translationalmotions in di�erent directions, each of which may involve more than onepart. However, it can be shown that general translational assembly planningcan be performed with the same basic methods as above. Indeed, we can9



compute a D�dimenisonal (static) arrangement of hyperplanes representingsimultaneous placements of all objects. Valid and forbidden placements cor-respond to cells in this D�arrangement [7]. A simple scheme for decidingwhether or not the assembly can be parititioned by arbitrary translationalmotions proceeds as follows: We traverse the non-forbidden cells of the ar-rangement, starting with the cell containing origin. If all reachable cells arebounded, then no translational assembly sequence exists. Otherwise, a pathconnecting the origin to an unbounded cell represents a valid assembly se-quence. In this case, the test for unboundedness is called in each cell. A fasttest is useful, if the number of cells thus traversed is large.5 Computing TimeThe test for unboundedness in section 2 relies on linear feasibility testing.In contrast, the direct method mentioned in the introduction uses linearmaximization. To allow for comparison, note that the test in section 2 canbe modi�ed in such a way that maximization is used rather than feasibilitytesting. In step 4, we must simply maximize in direction a�, subject to theconstraints ai � x � 0. Step 1 of the test for unboundedness is a linear rangecomputation. This test can be performed in O(d2n) steps (for n constraintsand d variables, [9]). Known time bounds for linear maximization dominatethe latter time bound. Thus the above test allows for a reduction of timebounds by a factor of d when compared to the direct method in the introduc-tion. Speci�cally, based on Karmarkar's method, linear maximization takesat most O(Ld3:5) steps, where L is the accumulated length of the input coef-�cients [10]. If the length of each individual coe�cient is �xed and constant,(i.e., each coe�cient has length less than a �xed value l), then L = O(nd),so that the described test for unboundedness takes at most O(nd4:5) steps,versus O(nd5:5) for the direct method in the introduction.Is this test the fastest possible test? Our test relies on linear feasibilitytesting in step 4. Is there a test which does not require feasibility testing? Thefollowing construction shows that the problem of testing for unboundednessis at least as hard as linear feasibility testing.Consider the linear feasibility problem (LF):10



(LF) a11x1 + a12x2 + � � �+ a1dxd � b1: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :an1x1 + an2x2 + � � �+ andxd � bn:We can transform this problem to a (homogeneous) test for unbounded-ness, by setting(U) a11x1 + a12x2 + � � �+ a1dxd � b1z � 0: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :an1x1 + an2x2 + � � �+ andxd � bnz � 0z � 0:Indeed the cell de�ned by the system (U) is unbounded if and only if theoriginal problem (LF) is feasible.Notice that the transformation from (LF) to (U) has increased the di-mension d of the problem by one, since a new variable z has been added.Furthermore, the transformation increases the number of constraints by one.When solving (U), we increase the number n of constraints by one in step4. Assuming the number of steps required for a linear feasibility test (withn constraints in d dimensions) is polynomial in n and in d, this increasedoes not a�ect the asymptotic computing time. This suggests that there isno faster test, provided an optimal feasibility test is available, and the timerequired for step 4 dominates the time for the remaining steps.Example: A simple example shows that the linear range computation instep 1 of the above test for unboundedness is not redundant: Let a1 = (�1; 0),a2 = (2; 0), b1 = 1, b2 = 2 and p = (0; 0). The cell de�ned by a1 � x � b1 anda2 � x � b2 is unbounded, but a� = (1; 0), so that C is infeasible.Let P and Q be two polygons or polyhedra. The computation of the setof directions for separating P from Q is straightforward, and can be carriedout based on a computation of the Minkowski-di�erence of P and Q. Specif-ically, in the three-dimensional case (P and Q are polyhedra), an algorithm11



number of parts, k 4 8 16running time, t 0.08 0.30 1.12Table 1: Running times for the assembly in �g. 2for computing all directions for separating objects is given in [6]. This al-gorithm is optimal, and requires at most O(n4) steps, where n is the totalnumber of vertices of P and Q. Notice that the latter algorithm is optimalfor the general case of two arbitrary polyhedra. Clearly, faster methods forcomputing the directions separating two polyhedra can be constructed, ifthis set of directions is convex.6 ImplementationThe algorithm for m-handed assembly in section 3 was implemented in Cin an assembly planning system. Our implementation is based on routinesin the LEDA-library [5], and uses the above algorithm for determining un-boundedness. The program was run under UNIX on an HP 700 computer.Integer arithmetic was used for step 1 of the test for unboundedness, andsimplex linear programming was used for feasibility testing. Table 6 showscomputing times (in seconds) for the assembly in �g. 2. In the table, k rep-resents the total number of parts for assemblies as in �g. 2. To increasek, assemblies with growing number of L�shaped parts were used as input.Thus, as we move from left to right in the table, k doubles at each step. Inthe experiments we observe a four-fold increase of computing time at eachstep.Fig. 3 shows a second example. Our program establishes that the assem-bly shown allows for m-handed assembly. The computed motions are shownin �g. 4. Here m = 4, i.e. four of the �ve parts must be translated simulta-neously, with distinct velocities and directions. The computing time was 0.1seconds in the above environment. The velocites are indicated by the lengthsof the arrows shown. By considering a series of appropriate subassemblies, theprogram also determined that no m-handed assembly sequence with m < 4exists. 12



1.55

1.221.00

1.19

Figure 3: Parts can be separated by the motion indicated by arrows. Lenghtsof arrows (values shown with arrows) represent relative velocities.7 ConclusionAfter (polynomial-time) preprocessing, m-handed assembly can be reducedto a single test for unboundedness, under the restriction that no pair ofparts be separated in the initial assembly. Thus the assembly must be su�-ciently tight. A fairly simple example establishes the exponential lower boundon the problem of computing general translational assembly sequences. Itis not known whether the exponential lower bounds can be specialized tom�handed assembly without this restriction.References[1] P. K. Agarwal, M. de Berg, D. Halperin, M. Sharir. E�cient Generationof k-Directional Assembly Sequences. Proc. 7th ACM-SIAM Symp. Discr.Algorithms (SODA), 122-131, 1996.[2] B. Chazelle, T. A. Ottmann, E. Soisalon-Soininen, D. Wood. The com-plexity and decidability of SEPARATION. Proc. 11th Int. Coll. Autom.Lang. Prog., LNCS 172, 119{127, 1984.[3] T. Huyn, L. Joskowicz, C. Lassez, J.L. Lassez. Practical tools for reason-ing about linear constraints. Fundamenta Informaticae, 15:3-4, 1991.13



Figure 4: Motions computed for the assembly in �g. 3.[4] L. Joskowicz, R. H. Taylor. Interference-free insertion of a solid body intoa cavity: an algorithm and a medical application. International Journal ofRobotics Research, Vol. 15 No. 3, 1996.[5] K. Mehlhorn, S. Naeher. LEDA: A Platform for Combinatorial and Ge-ometric Computing. Max-Planck-Institut fuer Informatik, Saarbruecken,1995.[6] A. Schweikard and R. H. Wilson. Assembly Sequences for Polyhedra.Algorithmica, 13(6): 539{552, June 1995.[7] A. Schweikard and F. Schwarzer. General Translational Assembly Plan-ning. Proc. IEEE Conference on Robotics and Automation, 162 - 169,1997.[8] J. Snoeyink, J. Stol�. Objects that Cannot be Taken Apart with TwoHands. Discrete and Computational Geometry, 12: 367-384, 1994.[9] J. Stoer, C. Witzgall. Convexity and Optimization in Finite Dimensions,I, Berlin, New York: Springer Verlag, 1970.[10] Wright, M. H. Interior Methods for Constrained Optimization. in: ActaNumerica, Iserles, A. (ed.), New York: Cambridge University Press, 1992.14


