TUM

INSTITUT FUR INFORMATIK

Efficiently Testing for Unboundedness and
m-handed Assembly

Fabian Schwarzer, Florian Bieberbach, Leo Joskowicz,
Achim Schweikard

TUM-19750
Dezember 97

TECHNISCHE UNIVERSITAT MUNCHEN

TUM-INFO-12-19750-50/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©1997

Druck: Institut f ur Informatik der
Technischen Universit at Munchen

Efficiently Testing for Unboundedness
and m-handed Assembly

Fabian Schwarzer!, Florian Bieberbach?
Leo Joskowicz®, Achim Schweikard!

Mnstitut fiir Informatik
2Lehrstuhl fiir Allgemeine und Industrielle Betriebswirtschaftslehre
Technische Universitat Munchen

80290 Miinchen, Germany

3 Institute of Computer Science
The Hebrew University of Jerusalem
91904 Jerusalem, Israel

December 15, 1997

Abstract

We address the problem of efficiently determining whether the in-
tersection of a given set of d-dimensional halfspaces is unbounded. It is
shown that detecting unboundedness can be reduced to a single linear
range computation followed by a single linear feasibility test. In con-
trast, detecting unboundedness is at least as hard as linear feasibility
testing and maximization. Our analysis suggests that algorithms for
establishing linear unboundedness can be used as a basis of simple and
practical algorithms in motion planning, insertability analysis and as-
sembly planning. We show that m-handed assembly planning can be
reduced to testing for unboundedness. A valid motion sequence can be

computed in polynomial time, if the parts are not already separated
in their initital placement. No polynomial algorithms were previously
known for this problem. We present experimental results obtained
with an implementation of our algorithms.

Keywords: Assembly Planning, Linear Programming, Unbound-
edness.

1 Introduction

We address the problem of determining whether a given d-dimensional point
set, described as an intersection of n halfspaces in d dimensions is unbounded.
Practical methods for performing this test have applications in geometric
reasoning [3], insertability analysis [4] and assembly sequence planning [6,
7]. We discuss the role of testing for unboundedness in assembly planning,
and describe experimental results obtained with an implementation of our
methods. It is shown that detecting unboundedness can be reduced to a
single linear range computation followed by a single linear feasibility test.
In contrast, detecting unboundedness is at least as hard as linear feasibility
testing and maximization. We will show that m-handed assembly planning
can be reduced to testing for unboundedness. A valid motion sequence can
be computed in polynomial time, if the parts are not already separated in
their initital placement.

1.1 Problem statement

We consider a set of hyperplanes in d dimensions, defined by the equations

a1 + 129 + -t A1qlq — b1
a1 + 999 + -t a2qlq — b2

Ap1T1 + Ap2aXo + « - + Gpgly = by,.

These hyperplanes define an arrangement in d dimensions, i.e. they par-
tition d—space into convex regions, called cells. Let p = (p1,...,pq) be a

point which is not on any of the hyperplanes. Then p determines a cell ¢ in
this arrangement, i.e., ¢ is the cell containing p. ¢ can be represented as an
intersection of halfspaces containing p.

Each such halfspace is given as an inequality of the form a;x < b; or of the
form a;x > b;, where a; is the normal vector of one of the above hyperplanes,
i.e., a; = (ail, Cey aid).

A cell is called unbounded, if it contains a ray in its interior. The problem
of testing for linear unboundedness is stated as follows:

Given hyperplanes in d dimensions and a point p = (p1,...,pq), decide
whether there is a ray r = {p + tu | t > 0} starting at p, such that r does
not cross any of the hyperplanes.

Notice that we do not require the coordinates u; of the direction vector u
be positive.

1.2 Unboundedness in linear programming

Unboundedness is usually regarded as an error condition in linear program-
ming. However, unboundedness in linear programming is directional. l.e.,
a linear maximization in a given direction will fail, if the feasible region is
unbounded in this given direction.

Based on simplex linear programming, we can obtain a direct solution to
the above problem. Consider an arbitrary linear base sy, ..., s, of d—space.
Perform a maximization for each of +s; and —s;, subject to the halfspace
inequalities defining the given cell. This cell is unbounded, if one of these
maximizations reports unboundedness.

It is easy to see that this test is complete for the undirected case, i.e., the
result 'unbounded’ will be returned, if the given cell is indeed unbounded in
any direction. This simple test requires 2d linear maximization steps. Can
we detect unboundedness with a faster method?

We will show that testing for unboundedness is at least as hard as lin-
ear feasibility testing and maximization. It will then be shown that testing
for unboundedness can be performed by a single linear range computation
followed by a single feasibility test.

1.3 Assembly Sequences

Our test is applied to the problem of computing assembly sequences: Given
a set of objects in the plane or in space, decide whether these objects can
be assembled (or, disassembled) without collision. This problem has been
studied in a variety of contributions [1, 2, 6, 8. Fig. 1 shows an example.

Figure 1: Geometric representation of The Towers of Hanoi [2]

The problem of finding a sequence of translational motions for partition-
ing a given assembly has exponential lower bounds [2]. This is illustrated
in fig. 1: For a sufficiently large number &k of u-shaped parts the rules of
the Towers of Hanot problem must be obeyed, in order to remove one of
the parts. The number of distinct translational motions (i.e. motions with
distinct directions or distinct parts sets) for removing a part is exponential
in k.

By further restricting the class of allowed motions, polynomial time algo-
rithms can be devised. Specifically, the problem of single — handed assembly
is to decide whether there is a translational direction which partitions a given
assembly into two (arbitrary) subsets. Interestingly, despite the fact that we
must compute a removable subset, this decision can be made in polynomial
time [6].

Figure 2: An assembly requiring m hands to disassemble

In between single-handed assembly and general translational assembly is
the problem of m — handed assembly: Decide whether given parts can be
separated by a simultaneous translational motion, where each part may as-
sume a different direction and velocity of motion, but may be moved at most
once (fig. 2).

We will show that m-handed assembly motions can be computed in poly-
nomial time, as long as no pair of parts is already separated in the initial
placement. Indeed, after (polynomial-time) preprocessing, a single test for
unboundedness is sufficient.

2 Algorithm for Determining Unbounded-
ness

We consider the following algorithm:

Input: Hyperplanes Hy, ..., H, with equations H; : a;x = b; and a point
p.

Output: Decision whether the cell containing p is bounded or unbounded.

1. Determine, whether the homogeneous system of equations a;x = 0
(1 < i < n) has a non-trivial solution u # 0. If so, return unbounded

5

and exit.

2. Select the orientations of the normal vectors a; for H; such that a;p > b;
for each 1.

3. Set ay = Y. a;. If ay = 0 return bounded and exit. Define a
constraint set C' by setting C' =

a;'x > 0, 1<:i:<n

ay - X = 1.

4. Test whether the constraint set C' is feasible. If so, return unbounded,
otherwise return bounded and exit.

Notice that the coordinates z; of x in the feasibility test (steps 3, 4) are
not restricted to be positive.

The following observations show that the above algorithm is complete.
We will assume that the orientation of each hyperplane is chosen such that
a;,p > b; for 1 < i < n. Let S denote the intersection of the corresponding
halfspaces, in this orientation. Thus S is the cell containing p. By Sy we
denote the intersection of the corresponding homogeneous halfspaces, i.e. Sy
is the intersection of the halfspaces a;x > 0.

Lemma 1 S; contains a point u # 0 if and only if S is unbounded.
Lemma 2 If dim(ay,...,a,) # d then Sy is unbounded.

The proofs of lemma 1 and lemma 2 directly follow from elementary prop-
erties of linear vector spaces, see e.g. [9]. To state lemma 3, we recall the
definition of the constraint set C' in step 3 of the above algorithm.

Lemma 3 Let dim(ay,...,a,) =d. Then Sy contains a point u # 0 if and
only if C s feasible.

Proof: Let u # 0 be a point in Sy. We must show that C' is feasible.
Assume ayu = 0. Since u is in Sy (a;u > 0), we have a;u = 0 for each i < n,
so u is orthogonal to each a;. But this would imply that dim(a,,...,a,,u)
is strictly greater than d. Thus agu # 0. The same argument shows ay # 0
if the space spanned by ay, ..., a, has full dimension and S contains a point

u # 0.
For each scalar ¢ > 0, the point tu is in Sy. Thus after appropriate scaling,
we can assume axu = 1, so that u satisfies C'.

Conversely, a point satisfying C' is clearly a non-zero point in Sy. O

Computing an unbounded direction. The next section describes the
application of the above algorithm in assembly planning. It is useful to return
a ray r pointing into an unbounded direction, if there is such a ray. This is
done by modifying steps 1 and 4 as follows:

Step 1": Determine, whether the homogeneous system of equations a;x = 0
(1 <4 < n) has a non-trivial solution u # 0. If so, return unbounded, the
vector u, and exit.

Step 4": Test whether the constraint set C is feasible. If so, return
unbounded and a point u satisfying C', otherwise return bounded and exit.

3 m-handed Assembly Sequences

Given a set of polygonal (or polyhedral) objects, decide whether one or more
of these objects can be removed without collision.

Two parts P,) will be called separated, if P is entirely contained in a
halfspace not intersected by Q.

Let P, ..., P, be an assembly of polygonal parts. We assume that in the
given initial placement, no pair of parts is separated in the above sense. L.e.,
for 7,7 <k, there is no halfplane containing all of F; but none of P;.

When determining whether parts are removable, we can fix the placement
of one (arbitrary) part, L.e., we can assume that the part Py will never be
moved. This is possible for the following reason: if the given parts can be

separated at all, then there is also a separating motion which will leave one
of the parts fixed. Note that the choice of the fixed part is arbitrary.

Since we only consider translational motion, the placement of each mov-
able part P; is given by a vector p® = (p{!), p{?)). Thus p' describes the
location of part P; after a translational displacement. A simultaneous place-
ment of all parts is then represented by a vector u = (pg),pg(jl), e ,p(mk),pg(jk)).
u is a vector in £?*. The origin in this space describes the initial placement
of all parts. Similarly, the vector (1,0,...,0) is the placement obtained by
translating the first part along the positive x—axis by one length unit. Notice

that this placement may not be free of overlap between parts.

For each pair of parts F;, P;, where 7,j < k, we consider the set of direc-
tions separating P; from P;. This set of directions is represented by a set of
rays starting at the origin (in the plane). Since we assume that parts are not
separated in the initial placement, the directions separating P; from P; form
a convex sector (or half-cone) in the plane. This sector is an intersection of
two halfplanes.

Now both parts P; and P; are movable. Therefore we must not only rep-
resent directions for separating P; from P; but also the directions separating
P; from P;. Let

a-x>0

be the directions separating P; from P;. Thus ax > 0 and a'x > 0 are
two halfplanes. Any point u with au > 0 and a’u > 0 is a valid direction for
separating P; from P;. Le., P; can be translated along u to infinity without
intersecting P;.

It is easy to see that the rays in the opposite sector, i.e., the sector

represent translations separating P; from P;.

To simultaneously represent both sectors, we consider the 4-dimensional
set defined by the constraints

a(p(i) — p(j)) >0
a’(p(i) — p(j)) > 0.

Each ray in this sector is a direction of simultaneous translation for both
P; and Pj, during which P; and P; will not collide.

Finally, the set of directions separating one of the movable parts P; (where
i < k) from the fized part (here part Py) is represented in the same way. But
the since P is fixed, we have (pg;k),pg(lk)) = (0,0), so that this set of directions
is given by

a(p?) >0
a'(p”) > 0.

Taking all constraints together (for all pairs of parts), we obtain a convex
cell in d = 2k — 2 dimensions, which contains the origin. The given parts
can be separated by an m—handed translation if and only if this cell is
unbounded.

For two-dimensional assemblies we have imposed the restriction that no
pair of parts is separated in the initial configuration. A requirement which
is sufficient in both the two-dimensional and the three-dimensional case is
the following: The set of directions separating parts must be convex for each
pair of parts.

4 General Translational Assembly Planning

The assembly in fig 1 cannot be partitioned by a single translation. In this
case, a valid motion for removing parts consists of a series of translational
motions in different directions, each of which may involve more than one
part. However, it can be shown that general translational assembly planning
can be performed with the same basic methods as above. Indeed, we can

compute a D—dimenisonal (static) arrangement of hyperplanes representing
simultaneous placements of all objects. Valid and forbidden placements cor-
respond to cells in this D—arrangement [7]. A simple scheme for deciding
whether or not the assembly can be parititioned by arbitrary translational
motions proceeds as follows: We traverse the non-forbidden cells of the ar-
rangement, starting with the cell containing origin. If all reachable cells are
bounded, then no translational assembly sequence exists. Otherwise, a path
connecting the origin to an unbounded cell represents a valid assembly se-
quence. In this case, the test for unboundedness is called in each cell. A fast
test is useful, if the number of cells thus traversed is large.

5 Computing Time

The test for unboundedness in section 2 relies on linear feasibility testing.
In contrast, the direct method mentioned in the introduction uses linear
maximization. To allow for comparison, note that the test in section 2 can
be modified in such a way that maximization is used rather than feasibility
testing. In step 4, we must simply maximize in direction ayg, subject to the
constraints a; - x > 0. Step 1 of the test for unboundedness is a linear range
computation. This test can be performed in O(d?n) steps (for n constraints
and d variables, [9]). Known time bounds for linear maximization dominate
the latter time bound. Thus the above test allows for a reduction of time
bounds by a factor of d when compared to the direct method in the introduc-
tion. Specifically, based on Karmarkar’s method, linear maximization takes
at most O(Ld>®) steps, where L is the accumulated length of the input coef-
ficients [10]. If the length of each individual coefficient is fixed and constant,
(i.e., each coefficient has length less than a fixed value 1), then L = O(nd),
so that the described test for unboundedness takes at most O(nd*%) steps,
versus O(nd>) for the direct method in the introduction.

Is this test the fastest possible test? Our test relies on linear feasibility
testing in step 4. Is there a test which does not require feasibility testing? The
following construction shows that the problem of testing for unboundedness
is at least as hard as linear feasibility testing.

Consider the linear feasibility problem (LF):

10

(LF)

a1171 + a19Ty + -+ -+ a1qTq > by

p1T1 + Qpala + -+ - + Apgly > by.

We can transform this problem to a (homogeneous) test for unbounded-
ness, by setting

(U)

1121 + Q129 + -+ - + A14gTq — blz Z 0

z>0.

Indeed the cell defined by the system (U) is unbounded if and only if the
original problem (LF) is feasible.

Notice that the transformation from (LF) to (U) has increased the di-
mension d of the problem by one, since a new variable z has been added.
Furthermore, the transformation increases the number of constraints by one.
When solving (U), we increase the number n of constraints by one in step
4. Assuming the number of steps required for a linear feasibility test (with
n constraints in d dimensions) is polynomial in n and in d, this increase
does not affect the asymptotic computing time. This suggests that there is
no faster test, provided an optimal feasibility test is available, and the time
required for step 4 dominates the time for the remaining steps.

Example: A simple example shows that the linear range computation in
step 1 of the above test for unboundedness is not redundant: Let a; = (—1,0),
a; =(2,0),b; =1, by =2 and p = (0,0). The cell defined by a; -x > b; and
a, - x < by is unbounded, but ay = (1,0), so that C' is infeasible.

Let P and () be two polygons or polyhedra. The computation of the set
of directions for separating P from () is straightforward, and can be carried

out based on a computation of the Minkowski-difference of P and). Specif-
ically, in the three-dimensional case (P and @) are polyhedra), an algorithm

11

number of parts, k 4 8 16
running time, ¢ 0.08 | 0.30 | 1.12

Table 1: Running times for the assembly in fig. 2

for computing all directions for separating objects is given in [6]. This al-
gorithm is optimal, and requires at most O(n*) steps, where n is the total
number of vertices of P and (). Notice that the latter algorithm is optimal
for the general case of two arbitrary polyhedra. Clearly, faster methods for
computing the directions separating two polyhedra can be constructed, if
this set of directions is convex.

6 Implementation

The algorithm for m-handed assembly in section 3 was implemented in C
in an assembly planning system. Our implementation is based on routines
in the LEDA-library [5], and uses the above algorithm for determining un-
boundedness. The program was run under UNIX on an HP 700 computer.
Integer arithmetic was used for step 1 of the test for unboundedness, and
simplex linear programming was used for feasibility testing. Table 6 shows
computing times (in seconds) for the assembly in fig. 2. In the table, k rep-
resents the total number of parts for assemblies as in fig. 2. To increase
k, assemblies with growing number of L—shaped parts were used as input.
Thus, as we move from left to right in the table, £ doubles at each step. In
the experiments we observe a four-fold increase of computing time at each
step.

Fig. 3 shows a second example. Our program establishes that the assem-
bly shown allows for m-handed assembly. The computed motions are shown
in fig. 4. Here m = 4, i.e. four of the five parts must be translated simulta-
neously, with distinct velocities and directions. The computing time was 0.1
seconds in the above environment. The velocites are indicated by the lengths
of the arrows shown. By considering a series of appropriate subassemblies, the
program also determined that no m-handed assembly sequence with m < 4
exists.

12

Figure 3: Parts can be separated by the motion indicated by arrows. Lenghts
of arrows (values shown with arrows) represent relative velocities.

7 Conclusion

After (polynomial-time) preprocessing, m-handed assembly can be reduced
to a single test for unboundedness, under the restriction that no pair of
parts be separated in the initial assembly. Thus the assembly must be suffi-
ciently tight. A fairly simple example establishes the exponential lower bound
on the problem of computing general translational assembly sequences. It
is not known whether the exponential lower bounds can be specialized to
m—handed assembly without this restriction.

References

[1] P. K. Agarwal, M. de Berg, D. Halperin, M. Sharir. Efficient Generation
of k-Directional Assembly Sequences. Proc. 7th ACM-SIAM Symp. Discr.
Algorithms (SODA), 122-131, 1996.

[2] B. Chazelle, T. A. Ottmann, E. Soisalon-Soininen, D. Wood. The com-
plexity and decidability of SEPARATION. Proc. 11th Int. Coll. Autom.
Lang. Prog., LNCS 172, 119-127, 1984.

[3] T. Huyn, L. Joskowicz, C. Lassez, J.L. Lassez. Practical tools for reason-
ing about linear constraints. Fundamenta Informaticae, 15:3-4, 1991.

13

e

ﬁ;

L]

Figure 4: Motions computed for the assembly in fig. 3.

[4] L. Joskowicz, R. H. Taylor. Interference-free insertion of a solid body into

a cavity: an algorithm and a medical application. International Journal of
Robotics Research, Vol. 15 No. 3, 1996.

[5] K. Mehlhorn, S. Naeher. LEDA: A Platform for Combinatorial and Ge-

ometric Computing. Mazx-Planck-Institut fuer Informatik, Saarbruecken,
1995.

[6] A. Schweikard and R. H. Wilson. Assembly Sequences for Polyhedra.
Algorithmica, 13(6): 539-552, June 1995.

[7] A. Schweikard and F. Schwarzer. General Translational Assembly Plan-

ning. Proc. IEEE Conference on Robotics and Automation, 162 - 169,
1997.

[8] J. Snoeyink, J. Stolfi. Objects that Cannot be Taken Apart with Two
Hands. Discrete and Computational Geometry, 12: 367-384, 1994.

[9] J. Stoer, C. Witzgall. Convezity and Optimization in Finite Dimensions,
I, Berlin, New York: Springer Verlag, 1970.

[10] Wright, M. H. Interior Methods for Constrained Optimization. in: Acta
Numerica, Iserles, A. (ed.), New York: Cambridge University Press, 1992.

14

