
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Component Interface Diagrams: Putting
Components to Work

Franz Huber, Andreas Rausch, Bernhard Rumpe

ABCDEFGHIJKLMNO
TUM-I9831

Dezember 98

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-12-I9831-100/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c1998

Druck: Institut f ür Informatik der
Technischen Universit ät M ünchen

Component Interface Diagrams:Putting Components to Work�Franz Huber, Andreas Rausch, Bernhard Rumpeemail: fhuberf,rausch,rumpeg@informatik.tu-muenchen.deTechnische Universit�at M�unchenArcisstr. 21, D-80290 M�unchen, GermanyContact: Andreas RauschTel: 49-89-289-28362, Fax: -28183In this paper, we present Component Interface Diagrams as a notationto describe service access points (interfaces) of components, their structure,and their navigability. We give guidelines that allow to map the componentmodel presented here to di�erent technologies, like ActiveX, CORBA, andJava Beans. The framework Frisco OEF, implemented in Java, illustratesthe proposed component concept and proves its usefulness.Keywords: Component Interface Diagrams, ActiveX, CORBA, Java Beans.1 IntroductionThe goals of ComponentWare are very similar to those of object-orientation. Softwareshould be reusable in a convenient way, leading to various customization and con�gu-ration mechanisms. Also, implementation details should be hidden from the client asmuch as possible.ComponentWare takes an even larger leap toward reusability, as components aim ata granularity much larger than single objects do. However, today the question whatcomponent concepts are, is still under investigation. This paper aims at clarifying theconcept of components and demonstrates these ideas applied in the well structuredframework Frisco that was built using our component concept. The quality of thatframework is considerably improved by the notion of components that we introduced.To reuse as much as possible from already existing abstraction and encapsulationconcepts, we build the component concept as an extension to object-orientation in Sec-tion 2. The notation of Component Interface Diagrams is introduced and applied to the� This paper is joint work of the the project SysLab (supported by the DFG under the LeibnizProgram, and by Siemens-Nixdorf), and the project \A1 Methods for Component-Based Software En-gineering", supported by Siemens ZT, a part of \Bayerischer Forschungsverbund Software-Engineering(FORSOFT)". 1

Frisco framework in Section 3. Finally, in Section 4 we discuss a mapping of our com-ponent concept to di�erent object technologies, like ActiveX [Cha96], CORBA [OHE96]and Java Beans [Mic97].1.1 A Brief Introduction into Frisco OEFFrisco is a document-oriented software engineering tool prototype. It is based ona subset of UML notations [Gro97] but incorporates precisely de�ned re�nement andtransformation rules. Frisco provides a variety of editors combining graphical andtextual parts as well as tables within a single document. An example of a Frisco editoris given in Figure 1.To achieve exibility we developed the OEF (Open Editor Framework) as an openapproach of nesting document parts into one compound document. The developed frame-work provides a standardized set of protocols for embedding documents. To structurethese protocols, our notion of component interfaces is used.For each document element, a speci�c kind of editor, called PartHandler, exists. EachPartHandler component consists of a possibly large set of internal objects implementingits functionality. A subset of these objects provides the protocol interface necessary forembedding it into the enclosing document frame. The interface objects hide the internalobject structure of a PartHandler. They are the only way of communication with theenvironment. This framework, which has deliberate similarities to OpenDoc [App96],is implemented in Java, and the PartHandlers are realized as Java Beans.2 A Model for Object-Oriented and Component-BasedSystemsIn this section we de�ne an abstract model for object-oriented systems and extend thismodel to a component-based one, introducing the concepts of components and theirstructure. The model is used to clarify our notion of components and to give the notationproposed in Section 3 a semantics.As a basic assumption, we regard an object to be an instance of a class. In a similarway we use the terms component instances and component types to refer to instancesand to property descriptions that makes up components, respectively.2.1 Properties of a Component-Based ModelThe concept of components is built on top of object-oriented concepts, thus allowing toreuse them for components.We do not enforce every entity of the system to be a component, but allow indepen-dent objects to live between components, just like global variables live between objects.Thus developers are free to choose what they want to be a component. Componentsmay interact directly, but may also be glued together using independent objects.Furthermore, the component concept must �t into the type system of the underlyinglanguage, such as in Java [GJS96]. As components are intended to be reused across2

Figure 1: A Sample Screenshot of a Compound Document Editor in Friscolanguage boundaries, there should be a mapping of the component infrastructure intoseveral type systems as, e.g., found in CORBA.Components exhibit a characteristics similar to objects.3

� Their instances can be dynamically created,� they have a clearly de�ned interface, and� they have a well structured state.Beyond objects, they exhibit some additional features. A component has� hierarchically structured interfaces,� hierarchically structured states, and� state and interface structure may change dynamically.2.2 A Model for Object-Oriented SystemsIn this section we present in an idealized and simpli�ed form a model for an object-oriented system. Introducing it in a top-down way, we start with the de�nition foran object-oriented system and end with attributes, methods, and basic types, leavingout irrelevant details. Please note that this model for object-oriented systems is notcomplete, but su�cient for our purposes. It is de�ned in a way such that it �ts di�erentobject-oriented languages.De�nition 1 Object StructureAn Object Structure (Obj;) is given by� a set of objects Obj � OB J, and� a relation : Obj ! Obj, which denotes existing links between these objects.In general obj1 obj2 describes the existence of an unidirectional link from object obj1to object obj2.An object structure contains a set of objects Obj and links between them. Theselinks are an abstraction and do not represent which attribute, parameter, or local vari-able is responsible, neither are multiple links represented. As links are unidirectionalthey describe accessibility. Since object-oriented systems change over time, an objectstructure describes a snapshot of a system.The object structure need not be closed or complete. An object structure may containa subset of existing objects and a subset of links. Therefore several object structurescan describe di�erent abstractions from an object-oriented system.De�nition 2 ObjectAn Object (id; cl; V al) 2 OB J can be represented by� a unique identi�er id for the object,� the object's class cl 2 C LA SS, and 4

� the valuation V al 2 VA L for the attributes, local variables, parameters etc.An object system contains a set of objects that may change over time, as objectsare created or deleted. The valuations can be used to determine the linkage of theobject structure. This de�nition of objects imposes several requirements, e.g., an objectstructure may not contain more than one object with the same identi�er.De�nition 3 ClassA Class (name;Meth;Attr) 2 C LA SS is characterized by� a unique name for the class,� a set Meth of public accessible methods, and� a set Attr of private accessible attributes.In addition �: C LA SS� C LA SS is the inheritance relation for classes.A class has a unique name, a set of public methods, and a set of private attributes.Public attributes can be simulated by methods. Private methods are used in program-ming languages to avoid re-writing code in several public methods. Hence there is noneed for private methods or public attributes in our model.With VA L the set of valuations for attributes and parameters are denoted. They arein essence mappings of variable names (attributes etc.) to values of appropriate type,characterizing the state of objects.We do not elaborate on the underlying type system here, but assume an appropriateone to be given. In addition, to add a precise characterization of behavioral concepts, amapping of the above given de�nitions into a system model as given in [KRB96] usingstate machines as behavioral entities [PR97, GKRB96] could be de�ned.2.3 A Model for Component-Based SystemsOur model for a component-based system is introduced on top of the model for object-oriented systems.De�nition 4 ComponentA Component (name; os; pr; If; Int) is given by� a unique name for the component,� an underlying object structure os = (Obj;),� the principal object pr 2 If of the component,� a set of interface objects If � Obj, and� a set of internal objects Int = ObjnIf .5

A component denotes a snapshot of an object structure os, characterizing the internalstructure, linkage etc. os contains a set of internal objects Int and a set of interfaceobjects If that are referenced from the environment.The lifecycle of the component instance is exactly the lifecycle of the the principal ob-ject pr. Other components and objects can access a component via the principal object.From the principal object they can receive links to other interfaces of the component.This way, a complex interface structure to the component can be obtained.Once a reference of an internal object given to the environment, this object is nolonger internal, but belongs to the interface of the component. Thus, the interface of thecomponent is dynamically changing. The set of interface objects If denotes an snapshotof the component interface.A Component-Based System is now characterized by a set of components, and anunderlying object structure. Each component's internal object structure is a subsetfrom that global object structure and objects internal to a component are not referencedfrom outside.De�nition 5 Component-Based SystemA Component-Based System (Cp; os) is characterized by� a set of components Cp � C O M P, and� an underlying object structure os 2 OS.We impose several requirements for meaningful component-based systems:� Each component c 2 Cp has an internal object structure osc that is an abstractionfrom the underlying object structure: osc � os.� Objects internal to a component are not referenced from outside.Our experiences show that, in many cases, it is not necessary to use concepts of objectmigration between components. Since component-based systems usually have a ratherstatic structure, it is su�cient to allow objects that have been internal to a componentto \emerge" to the interface, thus allowing their access from outside. In general, it isnot necessary for components to be tightly connected.Objects that are created within a component belong to this component during theirlifetime. We assume that objects are not explicitly destroyed but garbage collected whichallows us to disregard dangling references and related problems.3 Describing ComponentsSo far, we have focused on providing a model for components. Now we introduce no-tations for describing them. As the UML [Gro97] provides a rich set of techniques fordescribing di�erent views, we use and adapt these techniques for our purposes. Espe-cially useful for describing components are the following notations:6

Interaction Diagrams describe interactions either between objects in a component, orbetween components.State Machines and hierarchical StateCharts [Har88] characterize the behavior of singleobjects within a component, but also of an abstraction of the entire component'sbehavior.Interface and Class Declarations describe the methods and attributes, together withtheir types and access rights.Class Diagrams are used to describe the possible structure of a system or a component.Object (Structure) Diagrams de�ne the static part of the internal structure of a com-ponent.Our experiences show that a larger subset of the objects within a component has thesame lifecycle as the principal object and does not change its linkage. Thus, the internalstructure of a component is rather static and can be described by an Object Diagram.Beyond the given UML notations, we propose an adapted version of Class Diagrams{ the Component Interface Diagrams { that allows us to cope with the extended capa-bilities of component interfaces.3.1 Frisco OEF InterfacesIn Frisco OEF several kinds of components are used. We now introduce and brieydescribe a subset of the interfaces that PartHandler components provides, as Figure 2illustrates.BasicPartHandler is the principal interface that every PartHandler must provide. Itcovers rudimentary content and embedding functionality and allows to access ad-ditional interfaces of a PartHandler. To allow the enclosing document frame accessto part information relevant for embedding, a number of methods are available toobtain information about content and size. Please note that this interface does notprovide services for editing documents, since it is desirable that certain documentparts should be displayed read-only.Edit interfaces can be obtained invoking the getEdit method. This interface is providedonly if the part is editable. It basically provides the services to externalize (save)its content and to activate and deactivate editing capabilities.Toolbar interfaces allow access to the PartHandler 's toolbar. Two toolbars are allowed(one attached to the part, the other to the frame).Undo allows a PartHandler to participate in the OEF Undo/Redo mechanism. Afteran ActionListener registers at the component, it receives a UndoableAction eachtime a change occurs.
7

Connection allows to access the interconnections between PartHandlers in the com-pound document, e.g., to propagate changes in order to ensure consistency betweenparts.3.2 Motivation of Component Interface DiagramsAt the beginning of the lifetime of a component, the principal object (in Frisco aninstance of BasicPartHandler) is the only object that is accessible from the environment.Thus the interface of the component is initially given by the principal object. Over time,this may change. More objects may be created inside the component, and a reference tothem may be given to the environment, leading to a dynamic extension of the componentinterface (see Section 2.3). This provides an important component property: being ableto provide additional interfaces during runtime if required. The purpose of a ComponentInterface Diagram (CID) is to give clients a concise knowledge of the possible set ofinterfaces they may use.Due to the requirement of strong typing, these interfaces may be created duringruntime, but their type must be known initially. A CID gives information about theexternally visible interfaces, their inheritance relations, and navigation paths betweenthese interfaces. Furthermore, methods and multiplicities of these interfaces are shown.CIDs are adapted from UML Class Diagrams. Figure 2 shows an extended CID forthe PartHandler component. Let us forget about the arrows' labels for the moment andtalk about the simple variant �rst.
PartHandler

Menu

«principal»
BasicPartHandler

+setDocumentServices()
+...()
+getMenus()
+getConnection()
+getEdit(GUIFrame g)

Connection

Edit

+getUndo()

Undo

+undo(UndoableAction a)
+redo(UndoableAction a)
+addActionListener(a)

UndoableAction

+getUndo()

1 1..2

1

1..n1

0..1

$1->caller

$2->caller

$0..1->g

$1->caller

*1->a
$1->callerFigure 2: A Frisco Component Interface DiagramDisregarding labels, a CID contains externally visible classes, their inheritance rela-tions, visible methods, and, in addition, multiplicities of possible instances. The multi-8

plicity determines the maximum allowed set of interfaces during runtime. In addition,navigation paths are introduced as a concept to indicate the possible paths where tonavigate from one interface to another. Such navigation is usually done by calling anappropriate method, which results in a reference to a new interface (see Section 3.4).Please note that these navigation paths are not associations, although an associationmight be the component's internal way to implement navigation.The PartHandler in Figure 2 o�ers six externally visible interfaces, among themthe principal interface marked with the appropriate stereotype. It also shows, whatnavigation paths between interfaces are possible, but not how navigation is done. Ittells us, e.g., that from the Edit interface, the Undo interface can be obtained, and eachcomponent provides one or two menus (one is context-dependent, the other is optional).The most important capability of components is the possibility to provide an entireset of individual and standard interfaces. Therefore, a classi�cation of interfaces is apoint of interest following two main goals:� Separation of concerns for the component developer ending up with a more modularimplementation than one monolithic interface could provide.� Clearly separate individual and standard interfaces to give component users a morenatural way of understanding the di�erent purposes of the entire component.The designer of a CID should structure the interfaces with respect to some method-ical guidelines. This could be expressed in UML stereotypes for standard interfaces.For example, special interfaces for storage, printing, the undo/redo-mechanism, secu-rity, con�guration, online help, testing and debugging are often useful. These standardinterfaces are especially needed for component-based systems supporting plug-in of com-ponents, like, for instance, editors with exchangeable spell checkers.The proposed CIDs give a �rst avor of the interfaces of a component, but theirexpressiveness is limited. Therefore, we have enhanced CIDs to allow, e.g., to describewhich methods are used to obtain new interfaces. However, this makes CIDs morecomplex, and it is therefore useful to work with both variants.We introduce a transition labeling to describe how new interfaces can be obtained,whether we iteratively receive the same interface, or a new one for each request.For example, calling getMenus on the principal interface returns one or two menuinterfaces to the caller ($1..2->caller). Iterative calls result in the same interface forall callers (indicated by \$"). To indicate the creation of a new interface \$" is replacedby *" (see method addActionListener).A call of getEdit does not return an interface to the caller but to the method'sparameter ($1->g) via another call. Please note, that such a \call back" need not takeplace immediately, but can be delayed (e.g. done by another thread). Furthermore,repeated \call backs" are allowed, as it is in the Undo interface, that allows to registerUndoActionListeners (method addActionListener) that will receive a reference to anUndoableAction each time an undoable change occurs.
9

3.3 Precise De�nition of Component Interface DiagramsWe now give a precise characterization of CIDs (the set of labels hLabi used here isde�ned below):De�nition 6 Component Interface Diagram (CID)A Component Interface Diagram (Ifc;v; �;�; �) consists of a� a set of interfaces Ifc 2 C LA SS,� an inheritance relation v: Ifc� Ifc� a multiplicity mapping, � : Ifc! hMultiplicityi, and� a labeled navigation relation �� Ifc� hLabi � Ifc.By if1 l�if2 we denote that there is a label l 2 hLabi in interface type if1 2 Ifc thatallows clients to obtain an instance of interface if2 2 Ifc from this component, and thelabel tells how.De�nition 7 Labeling of a CIDThe labels hLabi of a CID are given by the following grammar:hLabi ::= M ETH (f hParami k , g�) hDetailsihDetailsi ::= [hModifieri] [hMultiplicityi] [-> hReceiveri]hModifieri ::= * j $hMultiplicityi ::= [N . .] fN j n ghReceiveri ::= VA R j callerWhenever a modi�er, multiplicity or receiver is missing, no constraint is assumed.Please note, that in the diagram the M E TH -part of the label is attached to the sourcenode, as this denotes the interface, where the method belongs to. Some straightforwardcontext conditions apply and some combinations are useless, e.g., the multiplicity of theinterface itself must at least equal the multiplicity of the labels of incomming arrows.CIDs specify, which references to its objects a component can give to the environment.A careful ow analysis, as done for other purposes already in Java compilers, could proofcorrectness of the component implementation.There are basic objects, such as Java Strings, that are publicly available (see Section2.1). It is useful to exclude such basic classes from the component concept, but to letthem oat through component borders freely, regardless, where they have been created.However, such exclusion has to be done carefully, being aware of implicit communica-tion via shared objects which could lead to a behavior that is not derivable throughobservation of component interfaces.Given the technique of Component Interface Diagrams and the already mentionednotations of UML, we can de�ne di�erent views of components. With CIDs, we can10

de�ne the Black-Box View of components. Class Diagrams are useful to specify theinternal structure of a component, the so called Glass-Box View. With object diagramswe can specify run-time behavior of components as a object structure snapshot. Theconnection between these views is shown in Figure 3. Note that an interface in the CIDcan be implemented through several classes in the class diagram as well as an class canimplement several interfaces.
PartHandler - Object Diagram

PartAndConnection

Undo

Edit

Menu
Menu

ComplexUndoableAction

ComplexUndoableAction

PartHandler - Class Diagram

PartAndConnection

Menu

AbstractHandler

UndoableAction

Undo

AbstractAction

Edit
ComplexUndoableAction

PartHandler - Black Box View

Menu

«principal»BasicPartHandler+setDocumentServices()
+...()
+getMenus()+getConnection()+getEdit(GUIFrame g)

Connection

Edit

+getUndo()

Undo
+undo(UndoableAction a)
+redo(UndoableAction a)
+addActionListener(a)

UndoableAction
+getUndo()

1

1..2

1

1..n

1

0..1

$1->caller

$2->caller

$0..1->g

$1->caller

*1->a

$1->caller Figure 3: A Mapping between the Glass-Box and Black-Box ViewAs Figure 3 indicates, the semantics of a CID can be given as a mapping of the CIDinto an embedding Class Diagram, where all component interfaces map to classes, theinheritance relation and the multiplicities are preserved, and the navigation relation ismapped to method calls accordingly.3.4 Guidelines to Map Components to ObjectsBased on our experiences, we suggest the following guidelines for a mapping. In generalthere are three kinds of possibilities to implement navigation between interfaces.We have focused on the preferable method call. But it is also possible to use publicreadable attributes for interface access if they are available, or a dynamic cast of a giveninterface into another interface. The latter is, e.g., possible in Java, where failed castscan be caught by an exception.Component interface types are mapped either into Java classes or Java interfaces.The former has the disadvantage that classes are not abstract and thus can be instanti-11

ated from the environment, the latter cannot be used if attributes are publicly availablein the interface. As we prefer methods for navigation, we suggest to use Java interfacesto implement CID interfaces.When the desired multiplicity of an interface is 1 or a link has modi�er $, thenthe interface needs to be stored after creation to be repeatedly exported. Its creationcan either be done when the component is created, or in a lazy manner, upon the �rstrequest. Anyhow, these interfaces should be implemented following the singleton pattern[GHJV94].If multiplicity is restricted, at least the number of already created interfaces needs tobe stored. A proper reaction for too many requests is necessary: either returning nil orthrowing an exception. The standard for too many requests is the latter one, the formerone should be used to cope with optional interfaces.The creation of a component goes along with the creation of its principal object. Forthat purpose, the creator must know the actual class of the principal. It is a good designprinciple to use equal names for the component and the pricipal class. Furthermore,there should be a global name service or an object factory (see [GHJV94] for clients toinstantiate components).Similar to aggregation of objects, we conceptually allow the hierarchical compositionof components. However, our experiences show, that in practice, components will notbe deeply nested. The composition of components is done by creating and using acomponent within another one.4 Mapping the Component Model to ComponentInfrastracturesToday, three main component infrastructures are in practical use: Microsoft's ActiveX,based on OLE and DCOM [Cha96], several CORBA implementations [OHE96], andSUN's Java Beans [Mic97]. Since it is di�cult to estimate at this time which technologywill dominate in the future we subsequently characterize a mapping of CIDs in all threetechnologies.For each technology, we discuss possible implementations of the component-basedsystem shown in Figure 4. This system presents an abstraction of two Frisco com-ponents: The PartHandler (see Section 3.3, Figure 2) and a new component, the Doc-Manager. The purpose of the DocManager is to observe its PartHandlers and propagatechanges to related PartHandlers. If the method registerAtPartHandler is called the Doc-Manager receives a pointer to the Connection interface (getConnection) and registersitself (registerDocManager). Afterwards, if a user edits any diagram, the correspondingeditor component (PartHandler) noti�es the DocManager, which then ensures that allother a�ected PartHandlers are informed of the change, eventually disallowing it, if itleads to inconsistent documents.As all three technologies support a composition concept and provide an interfacede�nition language { MS-IDL, IDL, and Java Interfaces { , a CASE tool supporting CIDsor similar description techniques could generate interface de�nitions for each technology.12

PartHandler

«principal»
BasicPartHandler

Connection

+registerDocManager()

1..1

$1->caller

getConnection()

DocManager

«principal»
DocManager

+registerAtEditor()
+notifyChanges()

Figure 4: Interacting OEF ComponentsHence, a mapping from our component based model to these technologies is basicallypossible.4.1 ActiveX, OLE and DCOMActiveX controls, formerly known as OLE or OCX controls, are DCOM objects support-ing a couple of standard interfaces. Minimally, OLE controls support two interfaces: Oneto search for additional interfaces, called IUnknown, the second to create new OLE con-trols, called IClassFactory. An ActiveX control supports several additional interfacesincluding initialization security, scripting security, run-time licensing, and digital certi-�cation [Cha96]. Moreover, DCOM o�ers additional standard interfaces, which can beimplemented by DCOM objects, e.g., persistence interfaces, transaction interfaces, ordrag & drop interfaces.DCOM speci�es a way of accessing objects via interfaces. Each DCOM object mustprovide at least the IUnknown interface, which allows clients to query and get access toother interfaces of the DCOM object. CID components are directly mapped to DCOMobjects, whereas the DCOM object provides a DCOM interface for each CID interface.We also suggest to implement the CID navigation methods within the correspondingDCOM interfaces. Otherwise, DCOM's query interface mechanism must be used, thussacri�cing static type checking.DCOM interfaces do not o�er a concept for subtyping. Therefore, the subtypingmechanism for interfaces should not be used in CIDs if the target is DCOM.In DCOM interface (types) have a unique identi�er, but objects do not. To closethis gap, DCOM introduces Monikers which allow to map DCOM objects to names.However, Monikers are insu�cient for our purpose, as they are a crude way to establishconnections between components (cf. [OH97]). Hence, we suggest to implement an ownname service on top of DCOM or use standardized implementations, as, e.g., providedin CORBA. 13

To implement the example given in Figure 4 using DCOM each component is mappedinto a DCOM object. Besides the standard DCOM interfaces IUnknown and IClassFac-tory each DCOM object has to provide its speci�c DCOM interfaces (BasicPartHandler,Connection, and DocManager). Clients can create the components by creating the prin-cipal DCOM interface via the class factory supported by DCOM.4.2 CORBAAn ORB is a software bus: It allows objects to transparently request other objects,even if the target objects reside on ORBs of di�erent vendors. Besides the distributedand language-independent, transparent access to objects, ORBs may o�er a rich set ofenhanced services. For instance, standard interfaces are speci�ed for object and interfacebrowsing, dynamic method invocation, object persistence, transaction management, orGUI services, which makes CORBA especially suited for our component concept.CORBA interfaces are described using CORBA's Interface Description Language(IDL). A CORBA interface allows multiple inheritance, but a CORBA object cannotimplement more than one interface. Instead, CORBA o�ers a module concept whereinterfaces can be grouped together into a specifc namespace, given by the surroundingmodule. CID components can have several interfaces. Hence a CID component has tobe mapped to a CORBA module including all CID interfaces and navigation methods.In CORBA, CID components are thus reduced to simple name spaces.Since CORBA provides a global name service, links between components and objectscan be implemented in a straightforward fashion.Mapping the example in Figure 4 to CORBA means to write two IDL modules{onefor each component{including the corresponding IDL interfaces BasicPartHandler, Con-nection, and DocManager. After implementing the interfaces the two principal CORBAobjects have to be registered at the CORBA name service, thus clients can access thecomponents.4.3 Java BeansAccording to its creators from JavaSoft "A Java Bean is a reusable software componentthat can be manipulated visually in a builder tool" [Mic97, JT98]. This covers a widerange of di�erent possiblities. The scope of functionality reaches from simple GUI parts,like buttons, up to full-featured database access adaptors.In technical terms, a bean is a Java object. The speci�c characteristics of beans are:A Public Interface o�ers Properties, Methods, and Events for clients to access the bean.Introspection allows a builder tool to explore the bean's interfaces and present it toprogrammers. For that purpose, the Java Reection Technique is used.Customization allows developers to change the properties of beans during design-time.Persistence is used to store the bean's state permanently and restore it later.14

Beans can support additional features, such as, e.g., security, drag & drop, or remoteinvocation. To support several of these features, beans have to obey some conventions.As beans are just Java objects, beans can implement several Java interfaces. This�ts directly into our component concept, as we also allow several interfaces for eachcomponent and inheritance between interfaces. Beans also support single inheritance,which is not yet used for components in our model.Beans are packaged in so-called JAR �les that include, among code and other re-sources, optionally serialized bean instances. As the standard Java name service is acrude circumvention to establish links between bean instances in di�erent JAR �les, itis again necessary to de�ne an own name service, or to use the new Java Naming andDirectory Interface [Jav98], or even to use a bean-conformant infrastructure supportinga global name service, like, e.g., IBM's ComponentBroker [IBM98].In our example, each CID interface is mapped into a Java interface. Two Java Beans{one for each component{must be realized. They should be registered at the global nameservice to allow clients access to them, particularly to enable other components to obtainlinks to them.5 ConclusionThe proposed concept of components was de�ned as a result of designing and implement-ing the Frisco framework for document editing. The high quality of Frisco shows thesuitability of the component concept. Although several extensions are imaginable, e.g.,allowing object migration or de�ning a notion of inheritance on components (not onlyits interfaces), we expect the given notion of components to be su�cient for a large classof applications.We feel that it is more important that language and tool support allow to conve-niently de�ne component types and automatically translate them into object-orientedimplementations. This would considerably boost component technology.6 BiographiesFranz Huber has been working in the area of software engineering tools since 1995. Heis heading a project developing a tool for component-based development of distributedand embedded systems which combines the usage of informal and formal techniques.Additional research areas include object-oriented system modeling and development aswell as methodical aspects of software and systems engineering.Andreas Rausch is working on a research project aiming to develop methods forcomponent-based software engineering. He has been heading in several industrial projectsdeveloping distributed information systems. Additional research areas include softwarearchitecture, distributed and component based systems, object-oriented modeling anddevelopment, and methodical aspects of software engineering.Dr. Bernhard Rumpe is heading a research project aiming to narrow the gap betweenformal methods and practical modeling techniques. He has developed an approach in-15

cluding precise guidelines for re�nement and composition of diagrams on a graphicalbasis, contributed to several papers about bene�ts and ways to formalize UML, andco-organizes workshops about similar themes e.g. at ICSE, ECOOP and OOPSLA.References[App96] Apple Computer Inc. OpenDoc Programmer's Guide for the MacOS.Addison-Wesley, 1996.[Cha96] D. Chappell. Understanding ActiveX and OLE. Microsoft Press, 1996.[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley, 1994.[GJS96] J. Gosling, B. Joy, and G. Steele. The Java Language Speci�cation. Addison-Wesley, 1996.[GKRB96] R. Grosu, C. Klein, B. Rumpe, and M. Broy. State Transition Diagarams.Technical Report TUM-I9630, Technische Universit�at M�unchen, 1996.[Gro97] UML Group. Uni�ed Modeling Language. Version 1.1, Rational SoftwareCorporation, Santa Clara, CA-95051, USA, July 1997.[Har88] D. Harel. On Visual Formalisms. Communications of the ACM, 31(5):514{531, May 1988.[IBM98] IBM. Component Broker Technical Overview. IBM report, 1998.[Jav98] JavaSoft. JNDI: Java Naming and Directory Interface. Version 1.1, SunMicrosystems, January 1998.[JT98] H. Jubin and Jalapeno Team. Cooking Beans in the Enterprise. IBM report,1998.[KRB96] C. Klein, B. Rumpe, and M. Broy. A stream-based mathematical model fordistributed information processing systems - SysLab system model - . In J.-B. Stefani E. Naijm, editor, FMOODS'96 Formal Methods for Open Object-based Distributed Systems, pages 323{338. ENST France Telecom, 1996.[Mic97] Sun Microsystems. Java Beans. Version 1.01, Sun Microsystems, July 1997.[OH97] R. Orfali and D. Harkey. Client/Server Programming with JAVA andCORBA. John Wiley and Sons, 1997.[OHE96] R. Orfali, D. Harkey, and J. Edwards. The Essential Distributed ObjectsSurvival Guide. John Wiley and Sons, 1996.[PR97] B. Paech and B. Rumpe. State based service description. In J. Derrick, editor,Formal Methods for Open Object-based Distributed Systems. Chapman-Hall,1997. 16

