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1 IntroductionLinear-time temporal logic (LTL) [15] is a well-known formalism for specifying properties of concurrentsystems. The problem of deciding if a concurrent system satis�es a LTL formula is called the model-checking problem (of LTL). In [34, 33] Vardi and Wolper introduced an automata-theoretic approach tothis problem.The approach assumes that there exists a semantic mappingwhich associates to a concurrentsystem sys a �nite (labelled) transition system Asys. It asks the veri�er to perform the following threetasks [18, 34]:{ Build a B�uchi automaton A:� for the negation of the formula � to be checked. A:� accepts exactlyall in�nite sequences that violate the formula �.{ Construct a B�uchi automaton Ap, called the product of Asys and A:�. Ap accepts all the in�nitecomputations of Asys that are accepted by A:�, i.e., all in�nite computations of Asys that violate �.{ Check whether the product automaton Ap is empty, i.e., whether it accepts no in�nite sequences.Asys satis�es � iff Ap is empty.The main problem of this approach is the well-known state-explosion phenomenon: the size of thetransition system Asys can grow exponentially in the size of sys. Several suggestions have been made tosolve or at least palliate this problem: the transition system Asys can be replaced by a trace automa-ton [18], and the size of Asys can be reduced by means of di�erent techniques like stubborn sets [31],sleep sets [18], or others.In this paper we introduce still another technique to avoid the state-explosion, which can be appliedwhen the system is modelled as a 1-safe Petri net. The technique is a semidecision test, that is, a procedurewhich may answer `yes', in which case the property to be checked holds, or `don't know'. A semidecisiontest has interest only if for relevant case studies it answers `yes' and performs faster than exact methods.We provide evidence in this direction in the form of a complexity analysis and two case studies.For systems modelled as Petri nets the transition system Asys is just the well-known reachabilitygraph. An straightforward application of the automata-theoretic approach would proceed by (1) buildingthe reachability graph, and by (2) constructing the product automaton; it would obviously su�er fromthe state explosion problem. The �rst (minor) contribution of this paper is to show that step (2) can beperformed before step (1). More speci�cally, we describe several ways of constructing a `product B�uchinet' Np from a Petri net Nsys and a B�uchi automaton A:�. Using this construction it is immediate toreduce the model-checking problem to a certain `net emptiness' problem, very similar to the emptinessproblem of B�uchi automata. We select the construction of the product B�uchi net most suitable for oursemidecision test. The test is based on the notion of T-invariant, and can be seen as a generalization ofthe ad-hoc proof method introduced and applied in [16]. We show that the test can be implemented inthe framework of constraint programming [21] using the constraint programming tool 2lp [25]. Finally,we apply the test to a leader election and to a snapshot algorithm.The paper is organised as follows. Section 2 describes the main components of the automata-theoreticapproach to model-checking, tailored for the case in which the system is modelled by a Petri net. Section3 shows how to construct the product B�uchi nets. Section 4 introduces the test for net emptiness. Section5 contains the implementation in 2lp. Section 6 is devoted to the case studies. In Section 7 we introducea strict subclass of LTL {LTL:{ and a re�ned emptiness check. Finally, Section 8 concludes and gives anoutlook. In Appendix A and B we introduce the concepts of product nets in terms of a class of high levelPetri nets.



2 The automata-theoretic approach to model-checking2.1 Transition systemsA labelled transition system is a fourtuple (Act; Q;�; q0), where Act is an alphabet of actions, Q is a setof states, � � Q� Act �Q is a set of transitions, and q0 2 Q is the initial state.A full run of a labelled transition system is an in�nite sequence q0a0q1a1q2 : : : such that (qi; ai; qi+1) 2� for every i � 0. We also denote a full run by q0 a0�! q1 a1�! q2 : : :.When labelled transition systems are used as semantics of some process algebra only the labels ofthe transitions carry useful information; the intermediate states are usually irrelevant. We speak in thiscase of an action-based semantics. In action-based semantics the following de�nition is useful: An in�nitesequence a0a1a2 : : : of actions of T is an action run if there exists a full run q0 a0�! q1 a1�! q2 a2�! : : :.The action language La(T ) of T is the set of all action runs.When labelled transition systems are used as semantics of languages with variables, the informationabout the actual values of the variables is encoded into the states; the labels of the transitions areusually irrelevant. We speak in this case of a state-based semantics. In state-based semantics the followingde�nition is useful: An in�nite sequence q0q1q2 : : : of states of T is a state run if there exists a full runq0 a0�! q1 a1�! q2 : : :. The state language Ls(T ) of T is the set of all state runs.For state-based semantics it is convenient to use (unlabelled) transition systems instead of carrying auseless action set Act around. An (unlabelled) transition system is a tuple (Q;�; q0), where � � Q�Q.It can be seen as a particular case of labelled transition system in which all transitions carry the samelabel.In the paper we use L(T ) to denote any of La(T ) or Ls(T ).2.2 Linear-time Temporal LogicLet � be a �nite alphabet, and let � be a set of propositions over �, i.e., a set of mappings with � asdomain and the set ftrue; falseg as range. The set of formulae of linear-time propositional temporal logic(LTL) over the set � is inductively de�ned as follows:{ if � 2 � then � is a formula{ if � and  are formulae then so are � ^  , :�, X� and �U .We make use of the abbreviations � _  = :(:� ^ : ), �V = :(:�U: ), �� = trueU� and2� = :�:�. An interpretation of an LTL-formula is an in�nite word � 2 �! . In order to formally de�nethe satisfaction relation j= of LTL, let �(0) denote the �rst element of �, and let �(i)(x) = �(x+ i) denotethe su�x of � starting at position i. We have:{ � j= � for � 2 � if �(�(0)) = true.{ � j= :� if not � j= �.{ � j= � ^ if � j= � and � j=  .{ � j= X� if �(1) j= �.{ � j= �U if 9i 2 IN : �(i) j=  and 8j � i : �(j) j= �.The language L(�) of a formula � over � is the set of all words of �! that satisfy �.



2.3 LTL on transition systemsWe wish to use LTL to describe properties of both the action-based and the state-based semantics of alabelled transition system T = (Act ; Q;�; q0). In the case of action-based semantics, we take � = Act.� is therefore a set of propositions on the set of actions, and the language L(�) of a formula � is a setof action runs. We say that T satis�es � if La(T ) � L(�), i.e., if every action run of T satis�es �. Instate-based semantics, we take � = Q, and so � is a set of propositions on the set of states. Analogously,we say that T satis�es � if Ls(T ) � L(�).2.4 B�uchi AutomataLet � be a formula of LTL over a set of propositions �. A labelled B�uchi automaton over � is a tupleA = (2� ; Q;�; q0; F ), where Q is a �nite set of states, � � Q� 2� �Q is the transition relation, q0 2 Qis the initial state, and F � Q is the set of accepting states. An accepting run of A is an in�nite sequence� = q0�0q1�1q2 : : : such that (qi;�i; qi+1) 2 � for every i � 0, and some state of F appears in�nitelyoften in �. A accepts an in�nite word a0a1a2 : : : 2 �! if there exists an accepting run q0�0q1�1q2 : : :such that ai satis�es every predicate of �i, for every i � 0.We de�ne the language L(A) of a labelled B�uchi automaton A as the set of in�nite words acceptedby A.We have the following important result:Theorem1 [32]. Let � be a formula of LTL. There exists a B�uchi automaton A such that L(�) = L(A)In the sequel we use A� to denote a B�uchi automaton satisfying L(�) = L(A�), which we assume hasbeen constructed using some algorithm, for instance the one described in [17].We also use unlabelled B�uchi automata, which are tuples A = (Q;�; q0; F ), where � � Q� Q. Theycan be seen as a special case of labelled B�uchi automata in which all transitions are labelled by the emptyset of propositions.The nonemptiness problem for a labelled or unlabelled B�uchi automatonA consists of deciding whetherL(A) is nonempty. The problem is NLOGSPACE-complete [32].2.5 Product automataLet Tsys be a �nite labelled transition system, and let � be a formula over the actions or the states ofTsys. The automata-based procedure to check if Tsys satis�es � consists of the following steps:{ Build a labelled B�uchi automaton A:� which accepts L(:�).{ Build an unlabelled B�uchi automaton Ap, called the product of Tsys and A:�, which is empty iffL(Tsys) \ L(:�) = ;.{ Check whether L(Ap) is nonempty.Clearly, L(Ap) is empty iff L(Tsys) \ L(:�) = ; iff L(Tsys) � L(�) iff Tsys satis�es �.The following two subsections show how to construct Ap for action-based and state-based semantics.



Action-based semantics Let Tsys = (Actsys; Qsys;�sys; qosys) be a labelled transition system, and letA:� = (2� ; Q:�;�:�; qo:�; F:�) be the labelled B�uchi automaton corresponding to the negation of �,where � is a set of propositions on Actsys . The product automaton of Tsys and A:� is the unlabelledB�uchi automaton Ap = (Q;�; q0; F ) given by{ Q = Qsys � Q:�,{ � is the smallest set such that if (q1; a; q2) 2 �sys, (r1; f�1; : : : ; �ng; r2) 2 �:�, and a satis�es �i forevery 1 � i � n, then ((q1; r1); (q2; r2)) 2 �.{ q0 = (q0sys; q0:�),{ F = Qsys � F:�.It follows immediately from this de�nition that Ap is empty if and only if the set La(Tsys)\L(A:�) =La(Tsys) \ L(:�) is also empty.State-based semantics Let Tsys = (Qsys;�sys; q0sys) be an unlabelled transition system, and letA:� = (2� ; Q:�;�:�; qo:�; F:�) be the labelled B�uchi automaton corresponding to the negation of�, where � is a set of propositions on Qsys . The product automaton of Tsys and A:� is the unlabelledB�uchi automaton Ap = (Q;�; q0; F ) given by{ Q = Qsys � Q:�,{ � is the smallest set such that if (q1; q2) 2 �sys , (r1; f�1; : : : ; �ng; r2) 2 �:� and q1 satis�es �i forevery 1 � i � n, then ((q1; r1); (q2; r2)) 2 �,{ q0 = (q0sys; q0:�),{ F = Qsys � F:�.The only di�erence with the former de�nition is the fact that the propositions �i are now evaluatedon the state q1, and not on the action a.Again, it follows immediately from this de�nition that Ap is empty if and only if the set Ls(Tsys) \L(A:�) is also empty.3 Lifting the automata-theoretic model-checking method to Petri nets3.1 Multiset NotationWe de�ne multisets in the usual way. Let X be a set. A multiset over X is a mapping � : Z ! IN. Theset theoretical operations are extended to multisets as follows:Union: (�1 [ �2)(a) = max(�1(a); �2(a))Intersection: (�1 \ �2)(a) = min(�1(a); �2(a))Sum: (�1 + �2)(a) = �1(a) + �2(a)Di�erence: (�1 n �2)(a) = (�1(a)� �2(a) if �1(a) � �2(a)0 otherwise.The set of multisets over X is denoted by M(X). Notions like cardinality and multiset inclusion arede�ned in a straightforward way.



3.2 Petri netsWe introduce a de�nition of Petri nets which stresses the similarities between them and labelled transitionsystems.A labelled Petri net is a tuple N = (Act ; P; T;M0) where Act is a set of actions, P is a �nite set ofplaces, T � (M(P )�Act�M(P )) is a set of transitions, and M0 2M(P ) is a marking. For a transitiont = (P;Q) we sometimes call P (resp. Q) the preset (resp. postset) and write �t (resp. t�). Multisets ofplaces are called markings, and M0 is called the initial marking of N .A transition t = (P1; a; P2) is enabled at M iff M (p) > 0 for every p 2 P1. If t is enabled at M ,then t may �re or occur, yielding a new marking M 0 = M � P1 + P2 (where multiset addition anddi�erence are de�ned in the obvious way). We denote this by M t�! M 0. A �nite or in�nite sequenceM0 t1�! M1 t2�! M2 : : : is called an occurrence sequence. M a�! M 0 for a 2 � denotes that there existsa transition t = (P1; a; P2) such that M t�! M 0. A markingM is reachable if there exists an occurrencesequence leading to it. A labelled Petri net is 1-safe if M (p) � 1 holds for every place p and everyreachable markingM .A full run of a Petri net is an in�nite sequence M0a0M1a1M2a2 : : : such that Mi ai�!Mi+1 for everyi � 0. We also denote a full run by M0 a0�!M1 a1�!M2 : : :. Notice that for every full run there exists anunderlying occurrence sequence.An in�nite sequence a0a1a2 : : : of actions is an action run if there exists a full run M0 a0�! M1 a1�!M2 : : :. The action language La(N ) of N is the set of all action runs. An in�nite sequence M0M1M2 : : :of markings is a state run if there exists a full run M0 a0�! M1 a1�! M2 : : :. The state language Ls(N ) ofN is the set of all state runs.As usual, unlabelled Petri nets are obtained from labelled ones by dropping the labelling of transitions.So an unlabelled Petri net is a tuple (P; T;M0) where T �M(P )�M(P ).If we are only interested in the structure of a Petri net, then we omit M0 and call (P; T ) just a net.3.3 LTL on 1-safe Petri netsWe de�ne when a 1-safe Petri net satis�es a formula of LTL. In action-based semantics � is a set ofpropositions on the set of actions of the Petri net. As for transition systems, we say that a net N satis�esa formula � if La(N ) � L(�), i.e., if every action-based run of N satis�es �.The state-based case is more interesting. For transition systems, we let � be a set of propositions onthe set of states. Since the states of a Petri net are its reachable markings, for Petri nets we should take �as an arbitrary set of propositions on the set of markings. However, we restrict ourselves to propositions�p, where p is a place of the net, with the following interpretation: a markingM satis�es �p iff it marksthe place p. We say that a net N satis�es a formula � if Ls(N ) � L(�).It is easy to see that this restriction has no important consequences: the two logics we obtain (onewith arbitrary propositions over markings, the other with the restricted set), have the same expressivepower for 1-safe Petri nets. To see why, suppose that a formula � contains an arbitrary proposition �on markings. We can replace � by a boolean combination of propositions of the form �p. This is at bestillustrated by an example: if � is the proposition that is true of the set of markings fM j (M (p1) =1 and M (p2) = 0) or M (p3) = 1g then it can be replaced by (�p1 ^ �p2) _ �p3 .



3.4 B�uchi NetsThe product of a B�uchi automaton and a 1-safe Petri net is going to be a B�uchi net, the net counterpartof the unlabelled product B�uchi automaton de�ned in Section 2.5.A B�uchi net is a tuple N = (P; T;M0; F ), where (P; T;M0) is an unlabelled Petri net and F is asubset of P . An accepting run of N is a state run M0M1M2 : : : such that some place of F appears inin�nitely many markings Mi. N is nonempty if it has an accepting run.The nonemptiness problem for a B�uchi net N = (P; T;M0; F ) is the problem of deciding if N isnonempty. We have the following result:Theorem2. The nonemptiness problem for 1-safe B�uchi nets is PSPACE-complete.Proof. Let N = (P; T;M0; F ) be a 1-safe B�uchi net. We show that the nonemptiness problem is inNPSPACE, and then apply NPSPACE=PSPACE (Savitch's theorem). The following nondeterministicalgorithm solves the nonemptiness problem using polynomial space: guess a 1-safe marking M1 whichmarks F (i.e.Pp2F 0 M1(p0) > 0). Guess (one step at a time, storing only the currently reached marking)two occurrence sequences, one that leads from M0 to M1 and another one (nonempty) that leads fromM1 back to M1. Clearly, the algorithm only needs to store two markings.To prove hardness, we provide a reduction from the problem of deciding if a linearly bounded Turingmachine M accepts an input w. Given M and w, a standard construction (see for instance [10]) yieldsin polynomial time a 1-safe Petri net N with a distinguished place p such that M accepts w iff somereachable marking of N marks p. Moreover, p does not have any output transitions.Modify the net N by adding a new transition with p as only input and output place, and transformthe result into a B�uchi net by taking p as (the only) �nal place. Clearly, M accepts w iff the B�uchi nethas an occurrence sequence that marks p in�nitely often, i.e., iff N is nonempty. ut3.5 Product nets in action-based semanticsIt is easy to lift the de�nition of the product automaton to the Petri net case.Let Nsys = (Actsys; Psys; Tsys;M0sys) be a 1-safe Petri net, and let A:� = (2� ; Q:�; �:�; qo:�; F:�)be the B�uchi automaton corresponding to the negation of �, where � is a set of propositions on Actsys .De�nition3. The product B�uchi net Np = (P; T;M0; F ) of Nsys and A:� is given by{ P = Psys [Q:�,{ T is the smallest set satisfying: if (P1; a; P2) 2 Tsys and (q1; f�1; : : : ; �ng; q2) 2 �:�, and �i(a) holdsfor every 1 � i � n, then (P1 + fq1g; P2 + fq2g)) 2 T ,{ M0 = M0sys + fq0:�g,{ F = F:�.Notice that the cardinality of the set T is at most jTsysj�j�:�j, and that this upper bound is reachable.The following theorem is easy to prove:Theorem4. Let Nsys be a 1-safe Petri net, and let A:� be the B�uchi automaton corresponding to thenegation of a property �. Let Np be as in De�nition 3. Np is 1-safe and Nsys satis�es � iff Np is empty.



Proof. First we show the 1-safeness of Np. The place-vector S with S(p) = 1 for all p 2 Q:� and S(p) = 0else, is a covering S-invariant for the subnet generated by A:�. Due to the 1-safeness of Nsys and thede�nition of M0 which has weight 1 w.r.t. S, we obtain directly the 1-safeness of Np.Second we show that Nsys does not satisfy � iff Np is nonempty.()) Assume that Nsys does not satisfy �, i.e., La(Nsys) 6� L(�). Then, there exists a full runM0 a0�!M1 a1�! : : : of Nsys such that a0a1 : : : 2 L(:�), i.e., a0a1 : : : is accepted by A:�. Let M0 t0�!M1 t1�! : : :be the underlying occurrence sequence, where ti = (Pi; ai; P 0i ), and let q0�0q1�1 : : : be an accepting runof A:�. It follows easily from the de�nitions that the sequenceM0 + fq0g (P0+fq0g;P 00+fq1g)�����������! M1 + fq1g (P1+fq1g;P 01+fq2g)�����������! : : :is a full run of Np. Since q0�0q1�1 : : : is an accepting run of A:�, the sequence (M0+fq0g)(M1+fq1g) : : :is an accepting run of Np. So Np is nonempty.(() Assume that Np is nonempty, i.e., there exists an accepting run M0M1 : : : of Np such that someplace of F is in�nitely often marked. Let M0 a0�!M1 a1�! : : : be a corresponding full run. It is easy to seethat M0jPsys a0�!M1jPsys a1�! : : : is a full run of Nsys, and that M0jQ:�M1jQ:� : : : is an accepting run ofA:�. So a0a1 : : : 2 La(Nsys) \ L(A:�), which implies that Nsys does not satisfy �. ut3.6 Product nets in state-based semanticsWe �x an unlabelled 1-safe Petri net Nsys = (Psys; Tsys;M0sys). We assume that the set � of propositionson the markings of Nsys used to construct formulae of LTL contains only predicates �p which hold iffthe place p is marked. Clearly, we can (and will) identify the proposition �p and the place p. Withthis identi�cation, the B�uchi automaton A:� for the negation of a formula � has the form A:� =(2Psys ; Q:�;�:�; q0:�; F:�).Our goal is to construct a product B�uchi net satisfying the following property: the product net canmove from a marking (M1; q1) to (M2; q2) iff:(1) Nsys can move from M1 to M2,(2) there exists (q1; R; q2) 2 �:�, and(3) M1 marks every place of R.We show two di�erent constructions. This �rst one is similar to that shown in Section 2.5 for transitionsystems. The key idea is the following: if (P1; P2) is a transition of the Petri net and (q1; R; q2) is atransition of the B�uchi automaton, then we add the following transition to the product:( P1 + (R� P1) + fq1g ; P2 + (R� P1) + fq2g )It is immediate to see that this solution satis�es conditions (1) to (3) above. The product automatoncan then be de�ned in the following way:De�nition5. The product B�uchi net Np = (P; T;M0; F ) of Nsys = (Psys; Tsys;M0sys) and A:� =(2Psys ; Q:�;�:�; q0:�; F:�) is given by{ P = Psys [Q:�,



{ T is the smallest set satisfying: if (P1; P2) 2 Tsys and (q1; R; q2) 2 �:�, then (P1 + (R � P1) +fq1g; P2 + (R� P1) + fq2g) 2 T ,{ M0 = M0sys + fq0:�g,{ F = F:�.
p2p1 q0p p

Fig.1. A Petri net Nsys (lhs.) and a B�uchi automaton A:� (rhs.).Figure 2 illustrates this de�nition. p1p2 p q02Fig.2. The product net Np of Nsys and A:� of Figure 1 w.r.t. de�nition 5.Theorem6. Let Nsys be a 1-safe Petri net, and let A:� be the B�uchi automaton corresponding to thenegation of a property �. Let Np be as in De�nition 5. Np is 1-safe and Nsys satis�es � iff Np is empty.Proof. First we show the 1-safeness of Np. We can divide P into three sets: P = N 0sys[(NsysnN 0sys)[Q:�with N 0sys = fp 2 R j (q;R; p) 2 �:�g. The set of places Nsys nN 0sys is 1-safeness, due to the 1-safenessof Nsys. Analogous Q:�. It remains to show that every place p 2 N 0sys is 1-safe. Due to P1\ (R�P1) = ;we know that every incoming arc of p has weight one. If this also holds for every outgoing arc then p is1-safe. Otherwise the transition t which has a double weight arc to t is dead, because Nsys is 1-safe andevery marking that enables t as transition of Nsys has no token on place p, but this violates that t isenabled as transition of Np. Thus, p is 1-safe.



Second we show that Nsys does not satisfy � iff Np is nonempty.()) Assume that Nsys does not satisfy �, i.e., Ls(Nsys) 6� L(�). Then there exists a state runM0M1 : : : of Nsys which does not satisfy �, and is therefore accepted by A:�. Let q0�0q1�1 : : : be anaccepting run of A:�. Recall that, since we have identi�ed the propositions of LTL in the state-basedcase with the places of the net, a markingM satis�es a set of propositions � iff � � M .Let M0 t0�! M1 t1�! : : : be an occurrence sequence corresponding to the state run M0M1 : : :, whereti = (Pi; Qi). Due to our construction every transition t of Nsys \synchronizes" with every transition� of A:�. In particular each transition ti synchronizes with �i = (qi;�i; qi+1) yielding a transitiont0i = (Pi + (�i � Pi) + fqig; Qi + (�i � Pi) + fqi+1g) of Np. Obviously, Mi + fqig enables t0i only if allplaces of �i are marked, but this is guaranteed by the condition �i � Mi. The occurrence of t0i yieldsthe marking: Mi + fqig � (Pi + (�i � Pi)) � fqig+ Qi + (�i � Pi) + fqi+1g= Mi � Pi + Qi + fqi+1g= Mi+1 + fqi+1g:Accordingly, the state run � = (M0 + fq0g)(M1 + fq1g) : : : is an accepting run of Np, because some �nalstate appears in�nitely often in q0�0q1�1 : : : and thereby also in �. So Np has at least one accepting run,i.e., it is nonempty.(() Analogous to the corresponding proof of Theorem 4. utLoosely speaking, in the second construction the automaton and the Petri net alternate their moves:the automaton tests if the marking M1 marks every place of R. If this is the case, then it moves from q1to q2, and transfers controls to the net, who makes its move, and transfers control back to the automaton.The alternation can be implemented by means of two scheduling places SC 1, SC 2. A token on SC 1 (SC 2)means that the automaton (the net) has to move next.De�nition7. The product B�uchi net Np = (P; T;M0; F ) of the system Nsys = (Psys; Tsys;M0sys) andthe B�uchi automaton A:� = (�:�; Q:�;�:�; qo:�; F:�) is given by{ P = Psys [Q:� [ fSC 1; SC 2g,{ T is the smallest set satisfying: if (P1; P2) 2 Tsys then (P1 + fSC 2g; P2 + fSC 1g) 2 T , and if(q1; R; q2) 2 �:� then (fq1; SC 1g+ R; fq2; SC2g+ R) 2 T ;{ M0 = M0sys + fqo:�; SC1g,{ F = F:�.See Figure 3 for an example.Theorem8. Let Nsys be a 1-safe net system, and let A:� be the B�uchi automaton corresponding to thenegation of a property �. Let Np be as in De�nition 5. Np is 1-safe and Nsys satis�es � iff Np is empty.Proof. The 1-safeness of Np is obvious, because Nsys is 1-safe and the scheduler places SC1; SC2 andA:� can be covered by an S-invariant.()) Assume that Nsys does not satisfy �, i.e., there exists a state run M0M1 : : : of Nsys such that theword M0M1 : : : is element of L(:�). Due to B�uchi's de�nition of A:� the word M0M1 : : : can be acceptedby A:�. W.l.o.g. let q0�0q1�1 : : : be the accepting run of A:�.



p1 SC1p2 SC2p q0Fig.3. The product net Np of Nsys and A:� of �gure 1 w.r.t. de�nition 7.Now, let M0 t0�! M1 t1�! : : : be the corresponding run with ti = (Pi; Qi). Because q0�0q1�1 : : :satis�es M0M1 : : : (i.e.,�i � Mi), a transition �i with preset �i is enabled at markingMi. Therefore, thesequence � = M 00 �0�!M 000 t0�!M 01 �1�!M 001 t1�! : : :withM 0i = Mi+fSC1; qig andM 00i =Mi+fSC2; qi+1gis a full run of Np,because we have(1) M 0i jPsys = Mi and thereby �i = (fSC1; qig+�i; fSC2; qi+1g+�i) is enabled at markingM 0i ,(2) M 0i jPsys = M 00i jPsys and thereby ti = (fSC2g+ Pi; fSC1g+Qi) is enabled at markingM 00i ,(3) M 0i �i�!M 00i , i.e., M 00i = M 0i � fSC1; qig ��i + fSC2; qi+1g+�i= Mi + fSC1; qig � fSC1; qig+ fSC2; qi+1g= Mi + fSC2; qi+1g;(4) M 00i ti�!M 0i+1, i.e., M 0i+1 = M 00i � fSC2g � Pi + fSC1g+Qi= Mi + fSC2g+ fqi+1g � fSC2g � Pi + fSC1g+Qi= Mi+1 + fSC1; qi+1g:Moreover � is an accepting run of Np, because some state of F:� appears in�nitely often in q0�0q1�1 : : :and thereby in �. Thus Np has at least one accepting run, i.e., Np is nonempty.(() Assume that Np is nonempty, i.e., there exists a full run � = M0 t0�! M1 t1�! : : : of Np such thatsome place of F is marked in�nitely. Because fSC1; SC2g is covered by a binary P-invariant which isinitially marked by only one token and every transition of Np exchanges the token on fSC1; SC2g, wecan divide � up into an even subsequence �e of � and an odd subsequence �o of �.On the one hand in �e occur only transitions of the type (fqi; SC1g+�i; fqi+1; SC2g+�i) and there-fore �e induces a run q0�oq1�1 : : : of A:�. Moreover, there exists some place of F that is in�nitely oftenmarked in �e, because M2i�1jF = M2ijF . Thereby q0�oq1�1 : : : is a run accepting the word M0M2 : : :.Due to �:� = 2Psys the word M0jPsysM2jPsys : : : can also be accepted by q0�oq1�1 : : :.On the other hand in �o occur only transitions of the type (Pi+fSC2g; Qi+fSC1g) and therefore �oinduces a full run M1jPsysM3jPsys : : : of Nsys. The words M0jPsysM2jPsys : : : and M1jPsysM3jPsys : : : areequal, because M2i+1jPsys = (M2i � fSC1; qig+ fSC2; qi+1g)jPsys = M2ijPsys:



Finally, we can conclude that there exists a full run of Nsys that induces a state run that can beaccepted by A:�. Thus Nsys violates the formula �. utThis second construction, contrary to the �rst, remains very small: its size is essentially the sum ofthe sizes of Nsys and A:�. Unfortunately, as shown in the next section, this second construction facesother problems. We shall actually combine the two constructions in order to obtain good results.4 Testing emptiness of B�uchi nets using T-invariantsIn Section 3 we have reduced the model-checking problem to the emptiness problem of B�uchi nets. Wenow develop a semidecision test for this latter problem which avoids the construction of the reachabilitygraph. The theory underlying the method is well-known; our contribution is a set of re�nements andtechniques for its application.We have developed this test in order to verify parallel programsmodelled in the language B(PN)2 [7, 5],which are automatically translated into 1-safe Petri nets by the PEP tool [4, 1, 26]. The fact that a variablex has a value v is modelled by putting a token on a place xv. Therefore, assertions like \the variablex takes the value 1 in�nitely often\ are best formalised using state-based semantics. From now on weconcentrate on this semantics, but the technique is also applicable (even more easily) to the action-basedcase.The test is based on the notion of T-invariant. Recall that a T-invariant of a net is a mapping J thatassigns to each transition t a rational number J (t) and satis�es the following property for every place p:Xt2�pJ (t) = Xt2p� J (t)T-invariants have the following fundamental property. Let M and M 0 be markings of a net N , and let� be a sequence of transitions such that M ��! M 0. We have M = M 0 iff the mapping which associatesto each transition t the number of times that it appears in � is a T-invariant of N .A T-invariant J of a B�uchi net N is realisable if there exists a reachable markingM and a nonemptysequence of transitions � such that M ��!M and every transition t occurs exactly J (t) times in �. Thesequence M ��! M is called a realisation of J . Realisable T-invariants are always semi-positive, i.e., itscomponents have to be nonnegative, and at least one of them must be di�erent from 0. A T-invariant Jis �nal if J (t) > 0 for some transition t in the postset of a �nal place of N . The following result is easyto prove:Proposition9. A B�uchi net is nonempty iff it has a �nal realisable T-invariant.Proof. ()) If the B�uchi net is nonempty, then it has an in�nite occurrence sequence M0 t1�! M1 t2�! : : :such that a �nal place p is marked at Mi for in�nitely many i � 0. Since B�uchi nets are 1-safe, theremust be two indices i < j such that Mi =Mj and some marking between Mi and Mj puts a token on p.Let � = ti+1 : : : tj , and let J be the mapping which assigns to a transition the number of times it occursin �. J is a �nal realisable T-invariant.(() Let M ��! M be a realisation of a �nal realisable T-invariant. Since M is reachable and some�nal place is marked along the execution of �, the in�nite sequence M0 : : : (M : : :M )! is an acceptingrun. ut



As an immediate consequence of this proposition, if a B�uchi net has no �nal semi-positive T-invariants,realisable or not, then it is empty. This su�cient condition for emptiness leads to a simple semideci-sion test, since the absence of semipositive T-invariants can be checked by solving a system of linear(in)equations of the form N �X = 0X � 0Pt2F� X(t) > 1where N is the incidence matrix of the B�uchi net, and F is the set of �nal places.The practical interest of a semidecision test is directly proportional to its quality (i.e., how often it issuccessful, or, in our case, how often does it prove emptiness) and inversely proportional to its compu-tational complexity. It is well-known that systems of linear (in)equations can be solved very e�cientlyusing the simplex algorithm, and in guaranteed polynomial time by other techniques. So the test aboveis very e�cient. Unfortunately, its quality is very low. In nearly all examples of interest the test fails toprovide an answer even if the language of the net is empty.A simple analysis of the T-invariants of the product B�uchi nets shows that the poor quality is notsurprising. The following proposition characterizes the T-invariants of the product net. For the charac-terization we observe that a B�uchi automaton (Q;�; q0; F ) can also be seen as a B�uchi net (P; T;M0; F 0)by taking P = Q, T = �, M0 = fq0g and F 0 = F . So it makes sense to speak of the T-invariants of aB�uchi automaton.Proposition10. Let Np be the product net of a net system Nsys and a B�uchi automaton A:�, obtainedusing De�nition 5 or 7. Np has a �nal semipositive T-invariant iff there exists a semipositive T-invariantJsys of Nsys and a �nal semipositive T-invariant JA of A:� such thatXt2Tsys Jsys(t) = Xt2�:� JA(t)Proof. First of all, let us assume arbitrary enumerations of Tsys = ft1sys; t2sys; : : : ; tmsysg and �:� =f�1:�; �2:�; : : : ; �n:�g and analogous Psys and Q:�.(Proof w.r.t. de�nition 7). Let Tp = ft1sys; : : : ; tmsys; �1:�; : : : ; �n:�g and Pp = fp1sys; : : : pm0sys; SC1; SC2; q1:�; : : : ; qn0:�g.The incidence matrix of the B�uchi net Np constructed by application of de�nition 7 has the followingscheme: Np = 0BBBBBBBBBBBBBBB@ 0 : : : 0... . . . ...Nsys 0 : : : 0�1 : : : �1 1 : : : 11 : : : 1 �1 : : : �10 : : : 0... . . . ...0 : : : 0 N:� 1CCCCCCCCCCCCCCCANow let Jp be a �nal T-invariant of Np:Np � Jp = 0 ^ Xt2F�:� Jp(t) > 1



, (Nsysj0) � Jp = 0 ^ (0jN:�) � Jp = 0 ^Xt2Tsys Jp(t)� Xt2�:� Jp(t) = 0 ^ Xt2F�:� Jp(t) > 1If we divide Jp into two subvectors JA and Jsys, i.e. (JsysjJA)t = J tp, then we directly obtain:, Nsys � Jsys = 0 ^ N:� � JA = 0 ^Xt2Tsys Jsys(t) = Xt2�:� JA(t) = 0 ^ Xt2F�:� JA(t) > 1 ut(Proof w.r.t. de�nition 5). Let Tp = ft1sys � �1:�; : : : ; tmsys � �1:�; : : : ; t1sys � �n:�; : : : ; tmsys � �n:�g andPp = fp1sys; : : : ; pm0sys; q1:�; : : : ; qn0:�g. Let N (i) denote the i-th column of matrix N . The incidence matrixof the B�uchi net Np has the following structure:Np = 0@ Nsys j Nsys j : : : j Nsysj j jN (1):� : : :N (1):� j N (2):� : : :N (2):� j : : : j N (n):� : : :N (n):� 1AEach column vector N (i):� appears m-times in each submatrix. Using the above-mentioned enumerationwe identify the elements of Jp: J tp = (Jp(t1sys � �1:�); : : : ; Jp(tnsys � �1:�);Jp(t1sys � �2:�); : : :Jp(tnsys � �2:�);: : : ;Jp(t1sys � �m:�); : : : ; Jp(tnsys � �m:�))tFinal T-invariability of Jp coincide with the following (un)-equations:(Nsysj : : : jNsys) � Jp = 0 ^(N (1):� : : :N (1):�| {z }m-times j : : : jN (n):� : : :N (n):�| {z }m-times ) � Jp = 0 ^Xt2F�:� Jp(t) > 1Now we de�ne JA and Jsys: JA(�:�) = Xt2Tsys J(t� �:�)Jsys(tsys) = X�2�:� J(tsys � �)Using this de�nition we directly obtain: Nsys � Jsys = 0 ^N:� � JA = 0 ^Xt2F�:� JA(t) > 1



Finally, we can conclude: Xt2Tsys Jsys(t) = Xt2Tsys X�2�:� J(t � �)= X�2�:� Xt2Tsys J(t � �)= X�2�:� JA(�) utThe condition on the semi-positive T-invariants is very weak, and so it is not surprising that it isful�lled by most B�uchi nets coming from real examples, even if they do not have realisable T-invariants.We re�ne De�nition 5 in order to improve the quality of the test. In Section 4.1 we observe that someof the transitions of Np can never occur. Since these transitions never appear in any in�nite occurrencesequence of Np, they can be removed without a�ecting Theorem 6. Clearly, after removing this transitionsthe resulting net has exactly the same realisable T-invariants, but less semipositive T-invariants, whichimproves the quality of the test.Unfortunately, with the improved de�nition of product the number of transitions of Np can still beunacceptably large, similarly to what happened in the action-based case. In Section 4.2 we show that thisproblem can be palliated by combining the improved De�nition 5 with De�nition 7.4.1 Removing dead transitionsLet Np be a product net obtained according to De�nition 5, and let t = (P1+(R�P1)+ fq1g; P2+(R�P1) + fq2g) be a transition such that there exists a place p 2 (P2 � P1) \ R. We show that t can neveroccur in Np.Let M be a marking of NP which enables t. Then, the projection Msys of M onto Psys puts a tokenon every place of P1 and on s. Therefore, Msys enables the transition (P1; P2). Since p 2 P2, after theoccurrence of the transition the place p contains two tokens. Since Nsys is 1-safe,Msys cannot be reachablemarking of Nsys. Since the projection on Psys of a reachable marking of NP is a reachable marking ofNsys, the markingM is not reachable in Np.This is how far we can go if we have no other information about Nsys. However, we often know thatNsys has a certain set of P-components which contain exactly one token at the initial marking. Recallthat a P-component is a connected subnet in which every transition has exactly one input and one outputplace, and which is connected to other nodes of the net only through transitions2. The number of tokensof a P-component remains constant under the occurrence of transitions.Information about the P-components of the net is very often available in practice. Systems modelledby 1-safe nets are usually composed by several sequential systems that communicate via message passing,rendezvous, or shared variables. In all cases, the models of these components are P-components of theglobal model.Let Ni = (Pi; Ti) be a P-component carrying exactly one token at the initial marking, and lett = (P1 + (R� P1) + fq1g; P2 + (R� P1) + fq2g)2 Sometimes P-components are also required to be strongly connected subnets, but that is not necessary in ourcase.



be a transition such that j(P1 + (R� P1)) \ Pij > 1. We show that t can never occur in Np.Let M be a marking of Np which enables t. Since Ni is a P-component of Nsys, we have jP1\Pij � 1.Therefore, either P1 \ Pi = ; and jR \ Pij � 2, or p 2 P1 \ Pi and p0 2 R \ Pi such that p 6= p0. Inboth cases the markingMsys marks at least two places of Pi, and so is not reachable in Nsys. Since theprojection on Nsys of a reachable marking of Np is a reachable marking of Nsys, the markingM is notreachable in Np.This e�ect can be noticed in Figure 2. The transition with the double weighted arc can be removeddue to the above mentioned fact.We introduce the following de�nition:De�nition11. (P1; P2) 2 Tsys and (q1; R; q2) 2 �:� are compatible if the two following properties hold:{ (P2 \R) � (P1 \R), and{ for all 1 � i � k: if (P1 \ Pi) 6= ; and (Pi \R) 6= ;, then (P1 \ Pi) = (Pi \R).If (P1; P2) and (q1; R; q2) are compatible, then we also say that (q1; R; q2) is compatible with (P1; P2), orthat (P1; P2) is compatible with (q1; R; q2).Now, in De�nition 5 we can substitute the description of the set T by the following:{ T is the smallest set satisfying: if (P1; P2) 2 Tsys and (q1; R; q2) 2 �:� are compatible, then (P1 +(R� P1) + fq1g; P2 + (R� P1) + fq2g) 2 T .4.2 Combining De�nition 5 and De�nition 7Let (P1; P2) be a transition that is compatible with every transition of A:�. With respect to (P1; P2),the new de�nition of product coincides with the old one: the same set of transitions of the product isgenerated. However, n of these transitions generate n � jT:�j transitions in the product net, which can beunacceptable if n is large.The solution to this problem is to use the product discipline of De�nition 7 for these transitions, andreserve the discipline of De�nition 5 for those which can improve the quality of the test. In order toimplement this idea we need the following de�nition:De�nition12. A transition (P1; P2) of Nsys is compatible with A:� if it is compatible with every tran-sition of �:�.De�nition13. The product B�uchi net Np = (P; T;M0; F ) of the system Nsys = (Psys; Tsys;M0sys) andthe B�uchi automaton A:� = (�:�; Q:�;�:�; qo:�; F:�) is given by{ P = Psys [Q:� [ fSC1; SC2g,{ T is the smallest set satisfying:(1) if (q1; R; q2) 2 �:�, then (R [ fq1; SC1g; R[ fq2; SC2g) 2 T ,(2) if (P1; P2) 2 Tsys is compatible with A:�, then (P1 + fSC2g; P2+ fSC1g) 2 T ,(3) if (P1; P2) 2 Tsys is not compatible with A:�, then (P1 + (R� P1) + fq1; SC1g; P2+ (R� P1) +fq2; SC 1g) 2 T for every (q1; R; q2) 2 �:� compatible with (P1; P2).{ M0 = M0sys + fqo:�; SC1g,{ F = F:�.



Theorem14. Let Nsys be a 1-safe net system, and let A:� be the B�uchi automaton corresponding to thenegation of a property �. Let Np be de�ned as in De�nition 13. Np is 1-safe and Nsys satis�es � iff Npis empty.Proof. Due to the 1-safeness of the product net de�ned in De�nition 5 and De�nition 7, we can directlyconclude that Np is 1-safe.It remains to show that the local behavior of transitions of Tp is equivalent to the combination of thebehavior of two transitions tsys 2 Tsys and �:� 2 �:�, i.e., transitions of type (1) and type (2) combinetheir local semantics asynchronously while transitions of type (3) are synchronizations of Tsys and �:�.Due to the fact that transitions of type (3) have a self loop with SC1 these transitions cannot occurbetween the occurrence of a transition of type (1) and the occurrence of type (2). Thus the argumentationabout full runs of Np is analogous to the proof of Theorem 6 and Theorem 8. ut4.3 An improved TestWe have seen that a B�uchi net is empty iff it has no �nal realisable T-invariants (a well known result).This result leads to a test for the emptiness problem: if a B�uchi net has no semipositive �nal T-invariants,then it is empty. The computational complexity of the test is very good (polynomial in the size of thenet), but its quality is poor.For B�uchi nets coming from the product of a Petri net and a B�uchi automaton we have improvedthe quality by means of a re�ned de�nition of product net; unfortunately, our experiments show that thequality of the improved test is still poor, and further ideas are needed.In this section we trade o� quality for computational complexity. We introduce the notion of T�-invariant, and use it to de�ne a new test. The new test does not have polynomial complexity anymore; itis NP-complete3; however, as shown later, the quality is now good enough for verifying severalinterestingliveness properties of real systems.One of the main reasons why the test of the previous section has a low quality is the fact that theB�uchi nets we wish to analyse usually contain self-loops, i.e., they contain places that are both inputand output places of transitions. The presence of self-loops may lead to the typical situation shown inFigure 4. The vector J = (0; 0; 1; 1)t is a T-invariant, but not a realisable T-invariant. To prove it, observethat the subnet N 0 generated by the places fp1; p2g and the transitions ft1; : : : t4g is a P-component (seeFigure 6), and so M (p1) + M (p2) = 1 holds for every reachable marking M . Now, assume that J isrealisable. Then it has a realisation M ��! M . Since J = (0; 0; 1; 1)t, � only contains occurrences of t3and t4. It is easy to see that the projection M 0 �0�! M 0 of M ��! M onto the places and transitions ofN 0 is an occurrence sequence of N 0. But this leads to a contradiction: since t3 needs a token on p2 tooccur, and t4 needs a token on p1, t3 can never occur immediately after t4; the transition t1 must occurinbetween. Similarly, t4 can never occur immediately after t3; the transition t2 must occur inbetween.More generally, the subnet of N 0 generated by transitions t1 and t2 together with their input and outputplaces (shown in Figure 5) is not strongly connected, and therefore no sequence containing only t3 andt4 can be an occurrence sequence of N 0. This shows that J is not realisable. In this proof we have usedagain information about the P-components of the net, namely the fact that N 0 is a P-component whichcarries initially one single token. This leads to the following de�nition:3 Assuming of course P6=NP.



p1t4 p4p3 t3 t2p2t1 Fig.4. Net with sel
oops.p1t4t3p2Fig.5. The subnet N 0.
p1t4t3 t2p2t1 Fig.6. The P-component withplaces fp1; p2g.De�nition15. Let N = (P; T ) be a net and let Ni = (Pi; Ti), 1 � i � n be a set of P-components of N .We call a T-vector J a T?-invariant with respect to N1; : : : ; Nk if{ J is a semi-positive T-invariant, and{ for every 1 � i � n, the subnet of Ni generated by the transitions of Ti that appear in J , togetherwith their input and output places, is strongly connected.The T-invariant (0; 0; 1; 1)t above is not a T�-invariant with respect to N 0, because the subnet ofFigure 5 is not strongly connected.We show that the notion of T�-invariant leads to a new emptiness test.Lemma16. Realisable T-invariants are T�-invariants with respect to any set of P-components carryingone token.Proof. Let J be a realisable T-invariant of N , and let N 0 be an arbitrary P-component of N carryingone token at the initial marking. We show that the subnet N 00 of N 0 generated by the transitions of N 0that appear in J , together with their input and output places, is strongly connected.Let u and v be two arbitrary transitions of N 00. Since J is realisable, there exists a realisationM ��! M . Since N 0 is a P-component, the projection M 0 �0�! M 0 of M ��! M on N 0 is an occurrence



sequence of N 0. Moreover, M 0 �0�!M 0 is also an occurrence sequence of N 00 because all transitions of �0are contained in N 00.In particular, both u and v appear in �0, and so �0! contains a subsequence of the form u =t0 t1 : : : tn�1 tn = v. Since N 00 is a subnet of a P-component carrying one token at the initial marking,there must be places p0; : : :pn�1 such that up0t1p1 : : : pn�2tn�1pn�1v is a pathof N 00.Since u and v were chosen arbitrarily, any two transitions of N are connected by a path, which showsthat N 00 is strongly connected. utTheorem17. Let N be a B�uchi net and let Ni, 1 � i � n be a set of P-components of N carrying onetoken at the initial marking. If N has no �nal T�-invariants with respect to N1; : : : ; Nk, then it is empty.Proof. By Lemma 16, if N has no �nal T�-invariants with respect to N1; : : : ; Nk, then it has no �nalrealisable T-invariants. By Proposition 9, N is empty.4.4 Computational complexityWe call the problem of deciding the existence of a T?-invariant for a given net and a given set of P-components the T?- invariant problem.Theorem18. The T?-invariant problem is NP-complete.Proof. Let N be a net and let fN1; : : : ; Nkg be a set of P-components ofN . The following nondeterministicalgorithm solves the T�-invariant problem in polynomial time: guess a subset T 0 of transitions; check forevery P-component Ni that the subnet generated by the transitions of T 0 that belong to Ni together withtheir input and output places is strongly connected; check that there exists a semi-positive T-invariantJ of N such that J (t) > 0 iff t 2 T 0. This last part can be solved in polynomial time through reductionto a linear programming problem.We prove NP-hardness by a reduction from the satis�ability problem for propositional formulae inconjunctive normal form (CON-SAT). An instance � of CON-SAT is a conjunction of clauses C1; : : : ; Cmover variables x1; : : :xn. A clause Ci is a disjunction of literals Lij . A literal is either a variable xi or itsnegation xi.Given an instance of CON-SAT, we construct a Petri net N = (P; T ) and a set of P-componentsfN1; : : : ; Nng in polynomial time and show that N has a T?-invariant w.r.t. all Ni, i� � is satis�able.{ The set P contains the following elements:� for each clause Ci, 1 � i � m, a place ci.� for each variable xi, 1 � i � n, two places xi and xi.{ The components Pi are de�ned by Pi = fxi; xig.{ The transitions in T are de�ned as follows:For each literal Lij of clause Ci there exists one single transition lij. Each transition lij is connectedto ci by its preset and to ci�1 by its postset4. Moreover, if Lij denotes the variable xi (negation ofthe variable xi) then the transition lij is connected to place xi (xi) by a sel
oop:lij = (fcig+ �; fci�1g+ �) with� = (xi if Lij = xixi if Lij = xi4 � denotes the addition modulo m.



Note that for each component Ni the places xi and xi are never connected. Thus, a T?-invariant doesnot contain two di�erent transitions which are connected to two di�erent places of one single component.Now we show that � is satis�able i� the constructed Petri net N has a T?-invariant.Assume that N has a T?-invariant J . Due to the connection of T-invariants the tokens have to move overall places ci. Thus, J has at least m positive elements, one for each clause. From the above-mentionedfact we can directly conclude that �kJ k [ kJ k� never contains the two places of one component.Moreover, the assignment � : fx1; : : :xng ! ftrue; falseg withxi 7!8><>: true if xi 2 (�kJ k [ kJ k�) \ S0�j�nPjfalse if xi 2 (�kJ k [ kJ k�) \ S0�j�nPjis a valid model for �, because every clause is true under assignment �.Now we assume that � is satis�able. Then there must exist an assignment � that satis�es all clauses of�. This means that there exists a set of literals L which contains for each clause at least one literal whichis true under the assignment �. Now, it is obvious that the T-vector J with J (lij) = 1 if Lij 2 L andJ (lij) = 0 otherwise is a T?-invariant of N . utWe illustrate this construction on an example. For this purpose we consider the formula � = x1 ^ (x1 _x2). The set of P-components f(fx1; x1g; ;); (fx2; x2g; ;)g results from the set of variables fx1; x2g. Thecorresponding composed Petri net is shown in Figure 7. The relationship between transitions (places) andx1 l21 c2l11c1 x2l22x1 x2Fig.7. The corresponding net of the formula �.literals (clauses) is explained by:� = C1 ^ C2 with C1 = L11 = L21 = x1; C2 = L21 _ L22 and L22 = x2For example, the T?-invariant J de�ned by:J (l11) = J (l21) = 3J (L22) = 1corresponds to the assignment �: �(x1) = true �(x2) = false



So the complexity of the T?-invariant problem lies betwenn the complexity of the emptiness problem,which is PSPACE-complete, and the complexity of the tests based on traditional T-invariants, whichrequire polynomial time [14].5 An Implementation of the T?-Invariant Test Using ConstraintProgrammingA system of linear inequations can be seen as a conjunction of linear constraints, i.e., the feasible regionof the system (its set of solutions) is the set of vectors that satisfy all the constraints.We can thus interpret linear programming as a primitive constraint programming language, in whichthe only available operator to combine constraints is AND. Simplex, or any other algorithm for linearprogramming, can be seen as an inference engine for this programming language.While the emptiness test based on traditional T-invariants can be implemented in linear programming,this is no longer true for the T�-invariant problem: the AND construct is not powerful enough.Fortunately, in the last years there have been a number of e�orts to develop programming environmentsfor linear and integer programming that goes well beyond the AND construct. One of these environmentsis 2lp [25]. Citing from [25]:\2lp is a constraint logic programming language [21, 24] with C-like syntaxwhich can be used to make linear and integer programming part of programming in the contemporarysense of the word".An adequate introduction to 2lp is out of the scope of this paper; we refer the interested reader to [25].For our purposes, it su�ces to know that the semantics of a 2lp program is a (not necessarily linear)constraint on the space of its variables, or, equivalently, a feasible region (the tuples of values of thevariables that satisfy the constraint). 2lp contains di�erent operators to produce complex constraints outof simpler ones. We introduce two of these operators in the following example:3x� 2y = 1;either fx+ y � 3gor f2x� y � 3gThe operator \;" corresponds to the AND of linear programming. That is, the feasible region of theprogram above is the intersection of the feasible regions of 3x� 2y = 1 and the either : : :or constraint.The feasible region of the either : : :or constraint is the union of the feasible regions of the constraintsx+ y � 3 and 2x� y � 3.2lp also provides an operator to test the consistency of sets of constraints:x � y + 3;y � 3x� 5;if not x = y then printf(``Inconsistent'')else printf(``Consistent'')The feasible region associated to this program is the feasible region of its �rst two constraints (i.e,the not operator does not change the feasible region). However, the if not : : :then : : :else instructiondetermines if the constraint x = y is consistent with the �rst two, and answers accordingly.



We use these features to build a 2lp program that decides if a net contains a T�-invariant with respectto a set of P-components. To lighten the notation, we consider only the case in which the set containsonly one component. The general case is similar.We start by \massaging" the condition in the de�nition of T�-invariants concerning strong connect-edness. Fix a net N = (P; T ) and a P-component N 0 = (P 0; T 0) of N , and let U � T 0. Think of U as theintersection of T 0 and the set of transitions of a given T-invariant, of which we would like to determineif it is also a T�-invariant. Let N 0U be the subnet of N 0 generated by U and P 0 \ (�U [ U�). We wish toknow whether N 0U is strongly connected or not.De�ne the relation ;U� T 0 � T 0 as follows: t;U t0 if t; t0 2 U , and there exists a place p 2 P 0 suchthat t 2 �p and t0 2 p�. A set V � U is closed under ;U if t 2 V and t;U t0 implies t0 2 V . Notice thatU is trivially closed under ;U .We have the following lemma:Lemma19. N 0U is strongly connected iff the only nonempty subset of U that is closed under ;U is Uitself.Proof. Let ;�U denote the re
exive and transitive closure of ;U .()) Let V be a nonempty subset of U closed under;U , and let t 2 V . Since N 0U is strongly connected,t;�U t0 for every transition t0 2 U . So U � V .(() If N 0U is not strongly connected, then, since N 0 is an S-net, there exist t; t0 2 U such that t;U t0,but not t0 ;�U t. Let V = ft00 j t0 ;�U t00g. V is nonempty because t0 2 V , and closed under ;U (followsdirectly from the de�nition). However, V 6= U because t 2 U n V . utWe now de�ne several sets of constraints on the following variables:{ A vector J 2 QjT j.{ Two boolean vectors U; V 2 f0; 1gjT jwhere we interpret the values of U and V as subsets of P 0. Each set of constraints is to be understoodconjunctively, i.e., as if its elements were linked by AND, or by the semicolon of 2lp.(1) J is a semipositive T-invariant. For each p 2 P :Xt2�p J[t] = Xt2p� J[t]and for each t 2 T : J[t] � 0(2) J is �nal. Xt2F� J[t] > 0(3) U is the intersection of T 0 and the support of J. For each t =2 T 0:Ui[t] = 0



and for each t 2 T 0: either fJ[t] > 0; U[t] = 1gor fJ[t] = 0; U[t] = 0g(4) V is a subset of U. For each t 2 T : V[t] � U[t]either V[t] = 1or V[t] = 0(5) V is nonempty. Xt2T V[t] > 0(6) V is closed under ;U . For each t; t0 2 T 0 such that there exists p 2 P 0 satisfying t 2 �p and t0 2 p�:V[t] + U[t0] � 1 + V[t0](this constraint is the linear equivalent of (t 2 V ^ t0 2 U )! t0 2 V )(7) V contains less transitions than U. Xt2T V[t] <Xt2T U[t]Now, de�ne the 2lp program LOGN as(1); (2); (3);not f(4); (5); (6); (7)gProposition20. LOGN is infeasible iff N contains no �nal T�-invariants wrt. N 0.Proof. The feasible region of (1) and (3) is the set of triples (J ; U; V ) where J is a �nal semipositiveT-invariant and U is the intersection of T 0 and the support of J . The feasible region of (4) to (7) is theset of triples (J ; U; V ) where V is a proper and nonempty subset of U closed under ;U . According tothe semantics of the not construct, LOGN answers \No T�-invariants wrt. N 0" iff the conjunction of theconstraints (4) to (7) is inconsistent with the conjunction of (3) and (6). Therefore, LOGN answers \NoT�-invariants wrt. N 0" iff for every �nal semipositive T-invariant the only nonempty subset of U closedunder ;U is U itself. This is the case iff N contains no �nal T�-invariants wrt. N 0. utWe illustrate the construction of LOGN by an example. Let us consider the Petri net given in theFigure 8. The disjunctive program LOGN is given in the program notation of the CLP-tool 2lp [25]:#define tr 4continuous J[tr],U[tr],



t0 p1 t2t1 p2 t3Fig.8. A P-component Ni = (P; T ) with F = fp1g.V[tr];J[2] == J[1];J[1] == J[2];and (int i=0; i < tr; i++)either {J[i] == 0.0; U[i] == 0.0;}or {J[i] >= 1.0; U[i] == 1.0;}J[0] + J[1] >= 1.0;not {and (int i = 0; i < tr; i++){V[i] <= U[i];either V[i] == 0.0;or V[i] == 1.0;}V[0] + U[1] <= 1.0 + V[1];V[1] + U[2] <= 1.0 + V[2];V[1] + U[3] <= 1.0 + V[3];V[2] + U[0] <= 1.0 + V[0];V[2] + U[1] <= 1.0 + V[1];V[3] + U[2] <= 1.0 + V[2];sigma (int i = 0; i < tr; i++)V[i] >= 1.0;sigma (int i = 0; i < tr; i++) V[i]<=(sigma (int i = 0; i < tr; i++) U[i]) - 1.0;}



6 ApplicationsIn this section we demonstrate the applicability of our veri�cation method by means of two examples.We �rst consider a (variant of a) ring election algorithm designed by Chang and Roberts [12]. Then,we verify Bouge's snapshot algorithm [9]. The algorithms have been encoded in B(PN)2 (Basic Petri NetProgrammingNotation) [7, 5], an imperative language designed to have a simple Petri net semantics [3, 6].1-safe Petri nets are then automatically generated by the PEP-tool [4, 1, 26].6.1 A ring election algorithmSpeci�cation Suppose a given distributed system which consists of N processes P0; : : : ; PN�1 that canbe de�nitely identi�ed by identi�cation numbers id0; : : : ; idN�1. Moreover, the processes are connectedvia a token ring. The task of the ring election is the determination of an unique process, e.g. with thehighest identi�cation number.Ring election is often needed in distributed systems without monitor in order to enable an unique masterprocess to execute a critical operation [29].Implementation The algorithm of Chang and Roberts [12] operates as following5:Initially every process Pi sends its idi to its right process Pi�1. Then, every process Pj that receives anid0 from its left process Pi	1, transmits this id0 to its right process Pj�1 if and only if this id0 is greaterthan its own (i.e. id0 > idj). The process that �nally receives its own identi�cation number is de�nitelythe master process.In the original paper [12] a terminating algorithm is introduced. We extend it to repeated ring electionsyielding a reactive system. After each ring election the master process distributes a reset signal to allother process restarting at the beginning. The following program presents our extension for N processesencoded in B(PN)2.beginvar c0; : : : cN�1 : chan 1 of f0; : : : ;N � 1; resetg;var success : ftrue; falsegproc process (const id : f0; : : : ;N � 1g,ref in : chan 1 of f0; : : : ;N � 1; resetg,ref out : chan 1 of f0; : : : ;N � 1; resetg)begindoh out ! = id i;doh in? < id i;repeat[]5 In this context �, resp. 	, stands for addition, resp. subtraction, modulo N .



h in? > id ^ out ! = in? ^ in? 6=reset i;repeat[] h in? = id i;h success' = true i;h out ! = reset i;h in? = reset i;h success' = false i;exit[] h in? = reset ^ out! = reset i;exitod;repeatodend;process (id0; c0; c1)| {z }P0 k process (id1; c1; c2)| {z }P1 k : : : k process (idN�1; cN�1; c0)| {z }PN�1endThe token ring is modeled by the �fo queues c0; : : : ; cN�1 such that processes Pj and Pj�1 are connectedvia �fo cj. Queues have capacity one and they are only used unidirectionally. The operation cj ! correspondsto a write operation in queue cj , whereas cj? expresses a read operation from queue cj.We use the boolean variable success to indicate that at least one master process is found during a singlering election. After resetting all processes success is set to false.Veri�cation and results The main liveness property of the speci�cation of the ring election is thata master process is found in�nitely often. The corresponding LTL-formula is 2 � (success = true). Wehave veri�ed this property for N = 1 : : :10 (N is the number of processes and �fo queues). Table 6.1summaries the sizes of the original Petri net Nsys and the product B�uchi net Np for some representativevalues of N , together with the time needed to verify the absence of T�-invariants compared to the timeSPIN [20] needed to verify the property. This example is particularly favourable to our technique due tothe fact that there exist no semipositive T-invariants containing transitions in the pre- or the postset ofthe accepting places of the underlying B�uchi automaton. It must also be said that the table does notinclude the time needed to construct the Petri net from the B(PN)2 program. This time was very large(about half an hour for N = 10), but this is due to the fact that the implementation of the PEP-compilerfrom B(PN)2 into Petri nets has not been optimized yet.6.2 A snapshot algorithmIn a distributed system each process knows only its own local state. However, under certain circumstancesone process must be able to check the local state of all other processes { not absolutely at the same time,6 128 Mbytes main memory are exceeded.



Nsys Np time (sec.)N jP j jT j jP j jT j 2lp SPIN5 93 91 99 96 1.24 2.206 117 115 123 120 2.38 9.507 143 141 149 146 2.44 39.408 171 169 177 174 3.13 (97.30)69 201 199 207 204 3.6810 233 231 239 236 5.01Table 1. Results and comparison with SPIN for Chang and Roberts' algorithm.but each at a future point in time. This global state is called snapshot and makes information about stableproperties available , e.g. termination of single processes or deadlock of the whole system.It is possible to generate this snapshot with or without a monitor process [9]. We implement a simpli�edversion with a monitor process presented in [2].Speci�cation Suppose a given distributed system with N processes and one single monitor process M .Every process can synchronously communicate with its neighbour processes and with the monitor process.The task of the snapshot algorithm is to enable any process at any time to initiate a snapshot that isgenerated in the monitor process M . After the generation of a single snapshot all processes receive it andthey are reinitialized.Implementation In [2] a method is presented to extend a given CSP-program [19] by means of certaincode fragments that enable repeated snapshots. Because of lack of space we omit the explanation of theextension and refer to [9, 2] for a detailed description. However, we applied this extension to a ring ar-chitecture with 4 processes, similar to that of the ring election of the previous section. In contrast to thering election which uses asynchronous communication via �fo queues, the snapshot algorithm of Bougeuses synchronous communication. In B(PN)2 synchronization is modeled by channels with capacity zero.The following program describes the implementation for four processes connected via a ring:beginvar c0; c1; c2; c3 : chan 0 of fdata; signalg;var info; restart : chan 0 of fid0; id1; id2; id3g;proc process (const id : fid0; id1; id2; id3g,ref in : chan 0 of fdata; signalg,ref out : chan 0 of fdata; signalg)beginvar active, sent : ftrue; falseg init false;



doh active = false i;h active' = true i;h info! = id i;repeat[] h in? = signal i;doh active = true i;exit;[] h active = false i;h active' = true i;h info! = id i;exit;od;repeat[] h active = true ^ out ! = signal ^ sent = false i;h sent' = true i;repeat[] h restart? = id i;h active' = false i;h sent' = false i;repeatodend;proc monitor (const id 0 : fid0; id1; id2; id3g,const id 1 : fid0; id1; id2; id3g,const id 2 : fid0; id1; id2; id3g,const id 3 : fid0; id1; id2; id3g)beginvar rec 0, rec 1, rec 2, rec 3, snapshot generated : ftrue; falseg init false;doh info? = id 0 ^ rec 0' = true i;repeat[] h info? = id 1 ^ rec 1' = true i;repeat



[] h info? = id 2 ^ rec 2' = true i;repeat[] h info? = id 3 ^ rec 3' = true i;repeat[] h rec 0 = true ^ rec 1 = true ^ rec 2 = true ^ rec 3 = true i;h snapshot generated' = true i;h restart ! = id 0 ^ rec 0' = false i;h restart ! = id 1 ^ rec 1' = false i;h restart ! = id 2 ^ rec 2' = false i;h restart ! = id 3 ^ rec 3' = false i;h snapshot generated' = false i;repeatodend;process (id0, c0, c1) k process (id1, c1, c2) kprocess (id2, c2, c3) k process (id3, c3, c0) kmonitor (id0, id1, id2, id3)endVeri�cation and results The task of the snapshot algorithm can be speci�ed by the following LTL-formula7: 2  3_i=0 activei = true! ) �snapshot generated = true!The Petri net corresponding to the above-mentioned B(PN)2-program has 175 places and 178 transitions.Moreover, this Petri net has 55 generating T-invariants8. We also tried to calculate the stubborn reducedreachability graph using INA, but there are more than 206000 reduced states (we stopped the processafter 20 hours).The synchronization with the Petri net associated with the B�uchi automaton yields a product net with 179places, 178 transitions, and 254 di�erent9 T-invariants that contain transitions of the pre- or the postsetof the accepting places of the underlying B�uchi automaton. However, if we identify the components of thePetri net corresponding the variables of the program, we see that no T-invariant satis�es the conditions ofa T?-invariant. We can construct the product net in 80.81 seconds and check the absence of T?-invariantsin 63.91 seconds. This example cannot10 be veri�ed using the SPIN-tool.7 Here, activei denotes the local variable of the i-th process.8 We tried to calculate a semipositive base using INA, but INA needs more than 8 hours.9 Di�erent w.r.t. their support.10 128 Mbytes main memory are exceeded.



7 Simple LTLThe semidecision test introduced in the previous sections is designed to capture the full expressivenessof LTL. One question is closely related to its design:How can we restrict LTL in order to obtain a faster semidecision test? One variation on LTL is simpleLTL, which contains only those formulae � satisfying the following property: there exists a B�uchi au-tomaton A� which accepts L(�) such that every circuit of A� is a self-loop [8].We call these automata simple B�uchi automata. Simple LTL coincides with the logic simple PLTL3de�ned in [8] after remove its counting constraints. It is more expressive than Corbett's !-star-less ex-pressions [13], for which Corbett developed a semidecision test, because these expressions describe asubclass of simple B�uchi automata.The following remarks are devoted to introduce LTL: that allows a re�nement of the infeasibility testwhich implies an impact on its performance.First, we give a formal de�nition of simple LTL and the !-regular expressions [30] that correspond tosimple B�uchi automata. We call these expressions simple regular sets. Our de�nition of simple regularsets is inspired by [28] and is a generalization of Corbett's star-less expressions.In Section 2.2 we have de�ned LTL more abstractly in view of action based and state based semantics.Now we come o� this de�nition and de�ne simple LTL in a more usual way, like [28], i.e., a given set ofpropositions � and thereby � = 2� .De�nition21 Syntax of simple LTL. Given a �nite set of propositions �, simple LTL formulae arede�ned inductively as follows:{ every proposition of � is a formula.{ if � and  are formulae, then so are � ^  and � _ .{ if � is a formula and p is a proposition, then pU� and �V p are also formulae.{ if � is a formula, then X� is also a formula.De�nition22 Semantics of simple LTL. The semantics of simple LTL is de�ned in a standard way.An interpretation of a simple LTL-formula is an in�nite word � over the alphabet �, i.e. a mapping fromthe naturals to �.{ � j= �, if p 2 �(0) for � 2 �.{ � j= � ^ , if � j= � and � j=  .{ � j= � _ , if � j= � or � j=  .{ � j= pU�, if 9i � 0 : �(i) j= � ^ 8j � i : p 2 �(j).{ � j= �Vp, if 8i � 0 : p 2 �(i) _ 9j � i : �(j) j= �.{ � j= X�, if �(1) j= �.Note, that the usual duality of U and V is not longer valid in simple LTL in general, because �V p �:(:�U: ) is not de�nable in the scope of simple LTL.For a given simple LTL formula �, we denote the set of models that satisfy � by L(�), i.e.L(�) = f� 2 �! j � j= �g:



De�nition23 Restricted regular sets [28]. Let A be a subset of �. We de�ne the following restrictedregular sets over �:{ A is a restricted regular set.{ A�, the set of all (possibly empty) �nite sequences over A, is a restricted regular set.{ A!, the set of all in�nite sequences over A, is a restricted regular set.{ A1 = A� [A! is a restricted regular set.{ Let E1 and E2 be restricted regular sets. We denote by E1 � E2 the concatenation of the two sets,de�ned by: E1 � E2 = f�;�0 j � 2 E1 \�� and �0 2 E2g [ f� j � 2 E1 \�!g.The set mai=0 Ei def= E0 � E1 � : : : � Emis a restricted regular set.If a set A is a singleton, e.g. A = fag then we omit the brackets and write, for example, a � b instead offag � fbg.De�nition24 Simple regular sets. We call a restricted regular set R a �-set ifR = nai=0 (S�i [ ei) � S!n+1for some Si � � for (1 � i � n + 1) and ei 2 � for (1 � i � n), such that for all 1 � i � n either Si isempty or ei denotes the empty word.A restricted regular set E is called a simple regular set ifE = m[j=0Rjfor some �-sets Ri (1 � i � m).We call a set of sequences simple regular de�nable if there exists an equivalent simple regular set.Theorem25. Given two simple regular sets E1 and E2, then E1 \ E2 is simply regular de�nable.Proof. Given E1 = Sm1i=0�i and E2 = Sm2j=0�0j , we construct E1 \E2 = Sm1i=0Sm2j=0�ij such that �i \�0j =�ij. Let �i and �0j be �-sets given by�i = niak=0 (S�ik [ eik) � S!ni+1�0j = n0jak=0 �S0�jk [ e0jk� � S0!n0j+1:We de�ne �ij inductively over n0j:Base Case (n0j = 0): �j = S0!n0j+1E1 \ �j = niak=0�Sik \ S0nj+1�� [ �eik \ S0nj+1� � (Sni+1 \ S0n0j+1)!



If n0j + 1 > 0 we have to distinguish two cases:If �j = S� � �0j, then �i \ �j =[�1�l�ni+1 lak=0 ((Sik \ S)� [ (eik) \ S) �0BBBBBB@0BBBBBB@8>>>>>><>>>>>>:S�i0 [ ei0 l = �1S�il 8><>: l 6= �1^Sil 6= ;� else 9>>>>>>=>>>>>>; � nial+1(S�il [ eil) � S�ni+11CCCCCCA \ �0j1CCCCCCA :If �j = s � �0j, then we have to consider the �rst occurrence of a non-empty eil in �i. Therefore, let l0be the minimum of fl j l � 0 ^ eil 6= �g.If l0 is de�ned, then �i \ �j =l0[l=0(Sil \ s) � S�il �  niak=l+1(S�ik [ eik) � S!ni+1! \�0j![ (eil0 \ s) �  niak=l0(S�ik [ eik) � S!ni+1! \ �0j! :If l0 is unde�ned, then �i \ �j =ni+1[k=0 (Sik \ s) � S�ik � niak=l+1(S�ik [ eik) � S!ni+1! \ �0j : utTheorem26. Let p 2 � and � be a simple LTL formula. Then the following holds:L(p) = p ��!L(pU�) = p� � L(�)L(X�) = � � L(�)L(�Vp) = p1 � (p ��! \ L(�))Proof. We only proof the last equation. Let � 2 L(�Vp), i.e. � j= �V p., 8i � 0 : �p 2 �(i) _ 9j � i : �(j) j= ��, (8i � 0 : p 2 �(i)) _ �9j � i : �(j) j= � ^ 8k � j : p 2 �(k)�, � = p! _ � 2 p� � (p ��! \ L(�)), � 2 p1 � (p ��! \L(�)) ut



Corollary27. Let p; q 2 � and � be a simple LTL formula. Then the following holds:L �pU (qU�)� = p� � q� � L(�)L �pU (�V q)� = p� � q1 � (q ��! \ L(�))L �(�V p)V q� = q1 � (p \ q) � p1 � (p ��! \ L(�))L �(pU�)V q� = q1 � (q ��! \ p� � L(�))We can summarize the last two results that show which simple LTL coincides with simple regular setsthat correspond to simple B�uchi automata.Lemma28. For every formula � is L(�) simply regular de�nable.Proof. The proof is done by induction over the structure of �.Base case: see theorem 26.Induction Step: see corollary 27 and note that simple regular sets are closed under union and intersection(cp. theorem 25). utLemma29. For every simple regular set E there exists a simple LTL formula � such thatL(�) = EProof. Let E be the union of m simple regular set Ei. Now, we de�ne a simple LTL formula �i recursively,such that Ei = L(�i). Note that we use �Si to denote Ws2Si (VQ2s Q ^VQ2�ns :Q) (analogous �ei).Ei;j = S�j � Ei;j+1�i;j = �Sj U �i;j+1Ei;j = ej � Ei;j+1�i;j = �ej ^X (�i;j+1)Ei;n+1 = S!n+1�i;n+1 = �Sn+1 V falseFinally, we get: L(�1;0 _ �2;0 _ : : :_ �m;0) = E utDe�nition30 Simple LTL:. A formula � belongs to simple LTL: i� the negation of � is a simple LTLformula, i.e. L(:�) is simply regular de�nable.Now we can make use of the previous results yielding the modi�ed strategy for the net-theoretic approach:For a given system Nsys, and a simple LTL: formula � we construct the product net Np and check if wecan �nd a T-invariant of the product net that consists of exactly one transition of A:� corresponding toa sel
oop at an accepting state. In case of simple LTL: a T-invariant includes only one accepting sel
oopand is thereby also a T?-invariant. This fact can be used as a constraint that allows cuts in the searchfor such a T-invariant. Thus, in such a case we can re�ne the constraint (2) of LOGN of Proposition 20yielding:



(2) J is �nal. Xt2F� J[t] > 0 ^ Xt62�F[F� J[t] = 0This re�nement has an impact on the performance of the feasibility test of LOGN . Altough the syntaxof LTL: is rather limited, its expressiveness still contains relevant properties:If we consider the safety-progress classi�cation of Chang, Manna and Pnueli [11], the classes:{ Safety,{ Guarantee,{ Obligation and Responseare included to simple LTL:. Lamport pointed out in [23] that the relevant liveness properties have thesimple structure 2(p ! 3q) which as well can be expressed in simple LTL:. Contrary, the persistenceformula [11] 32:a with L(:32:a) = (�� � a)! cannot be expressed in simple LTL:.8 ConclusionWe have presented a semidecision test for the model-checking problem of 1-safe Petri nets and LTL.We make use of the automata-theoretic approach to model-checking. We have shown how to reduce themodel-checking problem to the emptiness problem of a B�uchi net. The test checks the presence or absenceof a particular class of T-invariants which we have called T�-invariants. If no T�-invariants are present,then the B�uchi net is empty, and the property holds. We were able to implement this check very easilyby making use of the constraint programming tool 2lp. We have shown that there exist real algorithmsfor which our test allows to verify a property which cannot be proved using other exact methods.We �nish the section with some comments:On the automata-theoretic approach to model-checking. We have shown how to lift the approach fromthe level of transition systems to the Petri net level. This allows to apply di�erent methods for emptinesschecking, not only semidecision tests. Wallner is working on the application of net unfoldings to the sameproblem [35].On the restriction to 1-safe Petri nets. In the paper we have restricted our attention to 1-safe Petrinets. A di�erent version of our test, however, can also be applied to arbitrary Petri nets, even unboundedones (which is not true of the automata-theoretic approach). Essentially, instead of T-invariants it isnecessary to work with so called T-surinvariants.On the T�-invariant test. The test we have developed is certainly not the only possible one. We see itmore as an experiment in using structural information to prove liveness properties of real examples. Wehave implemented some such tests in the PEP-tool, which can be applied when exact methods fail.On the complexity of the test. It may be criticized that our test involves solving an NP-completeproblem, namely the absence of T�-invariants, which may require exponential time.Actually, we think thatgood tests are likely to be NP-complete. Complexity results show that almost all interesting veri�cationproblems about 1-safe Petri nets are PSPACE-complete. Polynomial tests for such problems are bound tohave very poor quality, as con�rmed by our experiments. NP-complete test lie between the poor qualitypolynomial test and the PSPACE-complete exact methods.



On the implementation in 2lp. Linear programming plays an important rôle in net theory, but it isoften too restrictive. Constraint programming tools like 2lp open a wide range of new possibilities in theapplication of structural objects like invariants, siphons and traps to veri�cation problems. They alsoallow to implement prototypes very quickly.AcknowledgmentsWe wish to thank Robert Riemann for his critical comments on an earlier version of this paper. We alsobene�ted from numerous discussions with Frank Wallner and Ahmed Bouajjani.A The M-net modelM-nets [6] are a class of traditional high-level Petri nets [22] with a generalized inscription of places,transitions and arcs: inscription = (label, annotation).The annotation drives the vertical unfolding of a M-net into a classical P/T-nets.Moreover, the M-net model is equipped by an algebra which allows to compose smaller M-nets to morecomplex ones. This modular composition is called horizontal and is characterized by the labels of placesand transitions of an M-net. The commutativity of vertical unfolding and horizontal composition is oneof the major results of [6].We now de�ne the basic concepts of the M-net model.A.1 Values, Variables and BindingsLet us assume a �xed set of values VAL containing at least the distinguished element �. Every subset ofVAL describes a type.Let VAR be a set of variables and OP a set of boolean and arithmetic operators, like '+', '-', '�', etc .VT denotes the set of terms (called value terms) built from values VAL, variables VAR and operatorsOP inductively in a standard way. A term without variables is called ground term.A binding � is a mapping � : VAR! VAL[VAR. We canonically extend bindings of variables to bindingsof value terms.A.2 Actions and Action TermsWe assume a given set ACT of action symbols, for short actions. Each action symbol a 2 ACT has acertain arity ar(a), representing the number of parameters. Moreover, we de�ne a conjugation on ACTas a bijection � : ACT ! ACT with the following properties: for all a 2 ACT : a = a, a 6= a, andar(a) = ar(a).Terms a(v1; : : : vn) with ar(a) = n, a 2 ACT and vi 2 VT are called action terms. AT denotes the set ofall action terms. If all vi are ground terms, then we call the action term a ground action.



A.3 M-nets, their Markings and the Firing RuleDe�nition31 M-net. An M-net is a triple N = (P; T; �) with places P , transitions T and an inscriptionfunction � which labels{ each places p 2 P with (�p; �p) where � 2 fe; ;; xg is a place label and �p � VAL is the type of p. Theplace label e (resp. x) indicates p as an entry place (resp. exit place) otherwise we call p an internalplace.{ each transitions t 2 T with (�t; �t) where �t is �nite multiset of action terms and �t is a �nite set ofvalue terms.{ each arc f 2 ((P � T ) [ (T � P )) with a �nite multiset of variables.Moreover, there is no incoming arc to any entry place and their type is f�g, similarly an exit place hasno outgoing arc and its type is also f�g.An M-net is �nite i� the set P of places and the set T of transitions are �nite.We de�ne x� = fy j �((x; y)) 6= ;g and analogous �x = fy j �((y; x)) 6= ;g, where x; y 2 P [ T . An emptyarc inscription, i.e. �((n;m)) = ; signi�es that no tokens may ever 
ow along that arc, i.e. there exists noe�ective connection along it. If we depict M-nets we will only draw arcs with non-empty arc inscriptions.A marking M of an M-net (P; T; �) is a mapping from places to �nite multisets of values, respecting theirtype, i.e. 8v 2 VAL; p 2 P : v 62 �p ) (M (p))(v) = 0:Every M-net has a standard initial marking M0 de�ned byM0(p) = (f�g if �p = e; elsewith p 2 P .De�nition32. The transition relation is a quaternary relation �!�M�T �B�M where M denotesthe set of all markings of N and B denotes the set of all bindings. A quadruple (M1; t; �;M2) is de�nedto be in �! i�:{ � is a binding11 of t.{ for all v 2 �t: v[�] = true.{ There is a markingM 2M such that:� for all p 2 P : M1(p) = �((p; t))[�] +M (p)� for all p 2 P : M2(p) = M (p) + �((t; p))[�].A sequence M0 t0�! M1 t1�! M2 �! : : : �! Mn+1 is called occurrence sequence i� there exists bindings�i such that (Mi; ti; �i;Mi+1) is in �! for each i � n.11 This binding has to ful�ll some more properties that are not relevant in this paper. See [6] for the generalde�nition.



A.4 Some remarks on the M-net algebraThe above-mentioned algebra on M-nets contains the classical operators known from process-algebraslike CCS [27]. We need in this appendix only three of them. Let N1; N2 be two M-nets and � � ACT bea subset of action symbols:{ N1 k N2 denotes the parallel composition,{ N1 sy � synchronizes N1 w.r.t. �,{ N1 rs � restricts N1 w.r.t. �,In order to explain the semantics of sy and rs we need many auxiliary notations, that are out of thescope of our paper. The reader is referred to the original papers [3, 6]. In the next sections we show howto create an appropriate semantics of B�uchi automata by means of M-nets.B M-net Semantics of B�uchi automataSection 3 started with a Petri net Nsys and an LTL formula � with properties over places of Nsys. Sincemarkings of Petri nets put tokens on places and thereby distinguish between a marked and an unmarkedplace, markings of M-nets put values, e.g. natural numbers, on places and we have to di�erentiate betweendi�erent values on one single place. Accordingly for a given M-net Nsys we suppose an LTL formula �with properties over places and values.The set of propositions of LTL has to be rede�ned in the context of M-nets, i.e. � = P �VAL for a givenM-net (P; T; �). Intuitively a proposition (p; �) 2 � expresses that the place p contains the value � in thecurrent state.Now we rede�ne the product net Np for a given system Nsys and an LTL formula �:Np = 
(Nsys; k�k) 

 	 (A:�) sy � rs �:Therefore, we have to{ de�ne a simple transformation 
 { an addition of observer transitions that are interfaces of placesappearing in propositions of �.{ de�ne an M-net semantics 	 (A:�) of a B�uchi automaton A:�.{ specify a special set of actions � and action terms for an appropriate synchronization.Before we give a formal de�nition of 
 and 	 , we want to classify our synchronization method. Godefroidhas already introduced in [18] two di�erent synchronizations of automata:{ Two automata A1, A2 are synchronized on actions i� all common actions of A1 and A2 are synchro-nized, while all other actions are interleaved.{ On the contrary A1 and A2 are synchronized on states i� the transitions of A2 test the values of A1after each step of A1.Our synchronization is a mixed variation on both ones:{ The B�uchi automaton A:� and all transitions of the concurrent system Nsys that are connected toplaces that are appearing in propositions of the formula � are synchronized on actions.{ The B�uchi automaton A:� and all other transitions of Nsys are synchronized on states.In order to guarantee synchronization on states, i.e. each step of the system is followed by a step of theB�uchi automaton, we use the same scheduler as in Section 3.



B.1 PreliminariesGiven an M-net N = (P; T; �) we de�ne ac(p) 2 ACT and ac(p) 2 ACT as two monadic, conjugatedaction symbols for each place p 2 P . Moreover, let var(p) 2 VAR be a distinct variable for each place.We distinguish two sets AS , AP � ACT of action symbols. The set AS consists of four unary actionsymbols fs; s; f ; fg = AS (called scheduler actions) that realize the interleaving of B�uchi automaton andconcurrent system. The synchronization on actions is driven by the aspect AP given byAP = fac(P 0); ac(P 0) j P 0 � P ^ P 0 6= ;gEvery action symbol ac(P 0) 2 AP with P 0 � P has the arity ar(ac(P 0)) = jP 0j. In order to de�newell-formed action terms built on AP we have to suggest an arbitrary total order (P;�) on P .B.2 The InterfacesDe�nition33 Observer interfaces. An observer interface Ob(p) for a place p 2 P consists of a tran-sitions t� and two arcs satisfying:�((p; t�)) = �((t�; p)) = var(p) and �(t�) = (fac(var(p))g; ftrueg) :De�nition34 Scheduler interface. The M-net MS withMS =8>>>>>>>>>><>>>>>>>>>>: jjjt??ZZ~��=ZZ}��3 (e;f�g)(;;f�g)(;;f�g)fcgfcgfcgfcg fcgfcg (fsg; ftrueg)(ffg; ftrueg) 9>>>>>>>>>>=>>>>>>>>>>;is called the scheduler interface MS .B.3 The TransformationsDe�nition35 
-Transformation. Let N = (P; T; �) be an M-net. We de�ne 
0(N;P 0) with P 0 � Pas the M-net N 0kMS where MS is the scheduler interface and N 0 is a slightly modi�cation of N :{ for all p0 2 P 0 we add an observer interface Ob(p0).{ for all t 2 T where its postset and P 0 are disjoint we add the scheduler action s 2 AS to its label, i.e.�(t) = (�t + fsg; �t).{ for all t 2 T that are connected to P 0 we take the variables of the outgoing arcs of t as parameters ofthe action term syn(t). Using the total order (P;�) we de�nesyn(t) = ac(t� \ P 0)(�1; : : : ; �n)where t� \ P 0 = fp1; : : : ; png, f�ig = �((pi; t)) and p1 � : : : � pn. Then we add this action term tothe label of t: �(t) = (�t + syn(t); �t)



De�nition36 	 -Transformation. Let A:� = (�:�; Q:�;�:�; q0:�; F:�) be a labelled B�uchi automa-ton. We de�ne 	 (A�) = (P; T; �) as the M-net semantics of A:� by the following rules:{ for every state q 2 Q:� we create a place q 2 P with inscription �(q) = (;; f�g),{ moreover, we add one distinguished place pstart 2 P with �(pstart) = (e; f�g),{ the place pstart is connected to q0:� by a distinguished transition tstart:�((pstart; tstart)) = �((tstart; q0:�)) = c with c 2 VAR,{ for every transition t = (qi; Ri; qj) 2 �:� we create:� a set of transitions �(t) = 8<:tP 0 j P 0 � [(p;v)2L(t)p9=;with an inscription �(tP 0 ) given by�tP 0 = ac(P 0) (var(p1); : : : ; var(pn)) + ffg+ X(p00;v)2Ri;p00 62P 0 ac(p00)(var(p00))�tP 0 = fvar(p000) = v j (p000; v) 2 Rig ;with fp1; : : : ; png = P 0 and p1 � : : : � pn.� two transitions t0ij ; t00ij 2 T and a place pij 2 P with inscription:� �(t0ij) = (�t0ij ; �t0ij) �t0ij = ffg+ X(p00;v)2L(t)ac(var(p00))�t0ij = fvar(p00) = v j (p00; v) 2 Rig� �(t00ij) = (fsg; ftrueg),� �(pij) = (;; f�g),� and �nally we connect �(t); t0ij; t00ij, and pij in the following way:� for each t0 2 �(t): �((p; t0)) = �(t0; pij)) = �((pij; t00ij)) = �((t00ij; q)) = c 2 VAR,� and �((p; t0ij)) = �((t0ij; q)) = c with c 2 VAR.De�nition37. Let Nsys = (P; T; �) be an M-net and A:� be a labelled B�uchi automaton. Then
 (Nsys; k�k) 

 	 (A:�) sy � rs �with � = [p2k�k fac(p); ac(p)g [AS [ [P 0�k�kfac(P 0); ac(P 0)gis called the product net Np of Nsys and A:�.Now, we give a small example that shows the application of 	 . Speci�ed in LTL the formula� = �2(x = 0)expresses the property that eventually the value of the variable x will always be 0. Due to the duality ofthe modal operators, we can derive its negation, i.e. :� = 2 � :(x = 0) = 2 � (x = 1). By application ofclassical algorithms, we get directly the B�uchi automaton A:� depicted in Figure 9. The correspondingM-net is shown in Figure 10. Hereby, the inscription of the places and transitions is de�ned by:
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