Model Checking LTL using Constraint Programming*

Javier Esparza and Stephan Melzer

Institut fir Informatik
Arcisstrafie 21
Technische Universitat Minchen
D-80333 Minchen, Germany

e-mail: {esparza,melzers}@informatik.tu-muenchen.de

Abstract. The model-checking problem for 1-safe Petri nets and linear-time temporal logic (LTL)
consists of deciding, given a 1-safe Petri net and a formula of LTL, whether the Petri net satisfies
the property encoded by the formula. This paper introduces a semidecision test for this problem.
By a semidecision test we understand a procedure which may answer ‘yes’, in which case the
Petri net satisfies the property, or ‘don’t know’. The test is based on a variant of the so called
automata-theoretic approach to model-checking and on the notion of T-invariant. We analyse the
computational complexity of the test, implement it using 2lp — a constraint programming tool, and

apply 1t to two case studies.

Table of Contents

o

1 Introduction,

2 The automata-theoretic approach to model-checking
2.1 Transition SyStems e e e
2.2 Linear-time Temporal Logic
2.3 LTL on transition systems
2.4 Buchi Automata
2.5 Product automata

Action-based semantics e e

S O CT OT O s s

State-based semantics L L

3 Lifting the automata-theoretic model-checking method to Petrinets
3.1 Multiset Notation
3.2 Petrimets
3.3 LTL on 1-safe Petrimets
3.4 Buchi Nets

3.5 Product nets in action-based semantics oL

O o 0 =] =1 O O

3.6 Product nets in state-based semanticso o L0

4 Testing emptiness of Biuichi nets using T-invariants. 13

4.1 Removing dead transitions L Lo 16

* This work is supported by the Sonderforschungsbereich SFB-342 A3. A (very) abbreviated version appears in
the proceedings of Application and Theory of Petri Nets ’97.

4.2 Combining Definition 5 and Definition 7 oL o000 17
4.3 An improved Test L 18
4.4 Computational complexity 20

5 An Implementation of the T*-Invariant Test Using Constraint Programming 22

6 Applications 26
6.1 A ring election algorithmo 26
Specification 26
Implementation 26
Verification and results 27

6.2 A snapshot algorithm L 27
Specification 28
Implementation 28
Verification and results 30

7 Simple LTL 31
8 Conclusion 35
A The M-net model 36
A.1 Values, Variables and Bindings L o 36
A.2 Actions and Action Terms L 36
A.3 M-nets, their Markings and the Firing Rule 0 0. 37
A4 Some remarks on the M-net algebra oo oL o 38

B M-net Semantics of Biichi automata 0L 38
B.1 Preliminaries L 39
B.2 The Interfaces 39

B.3 The Transformations. 39

1 Introduction

Linear-time temporal logic (LTL) [15] is a well-known formalism for specifying properties of concurrent
systems. The problem of deciding if a concurrent system satisfies a LTL formula is called the model-
checking problem (of LTL). In [34, 33] Vardi and Wolper introduced an automata-theoretic approach to
this problem. The approach assumes that there exists a semantic mapping which associates to a concurrent
system sys a finite (labelled) transition system A,,,. It asks the verifier to perform the following three
tasks [18, 34]:

— Build a Biichi automaton A4 for the negation of the formula ¢ to be checked. A-4 accepts exactly
all infinite sequences that violate the formula ¢.

— Construct a Biichi automaton A,, called the product of Ay, and A-4. A, accepts all the infinite
computations of Ay, that are accepted by A-4, i.e., all infinite computations of Ay, that violate ¢.

— Check whether the product automaton A, is empty, i.e., whether it accepts no infinite sequences.

Asys satisfies ¢ iff A, is empty.

The main problem of this approach is the well-known state-explosion phenomenon: the size of the
transition system Ay, can grow exponentially in the size of sys. Several suggestions have been made to
solve or at least palliate this problem: the transition system A,,; can be replaced by a trace automa-
ton [18], and the size of A,y can be reduced by means of different techniques like stubborn sets [31],
sleep sets [18], or others.

In this paper we introduce still another technique to avoid the state-explosion, which can be applied
when the system 1s modelled as a 1-safe Petri net. The technique is a semidecision test, that 1s, a procedure
which may answer ‘yes’, in which case the property to be checked holds, or ‘don’t know’. A semidecision
test has interest only if for relevant case studies it answers ‘yes’ and performs faster than exact methods.
We provide evidence in this direction in the form of a complexity analysis and two case studies.

For systems modelled as Petri nets the transition system A,y is just the well-known reachability
graph. An straightforward application of the automata-theoretic approach would proceed by (1) building
the reachability graph, and by (2) constructing the product automaton; it would obviously suffer from
the state explosion problem. The first (minor) contribution of this paper is to show that step (2) can be
performed before step (1). More specifically, we describe several ways of constructing a ‘product Biichi
net’ N, from a Petri net N,,, and a Biichi automaton A-4. Using this construction it is immediate to
reduce the model-checking problem to a certain ‘net emptiness’ problem, very similar to the emptiness
problem of Buchi automata. We select the construction of the product Buchi net most suitable for our
semidecision test. The test is based on the notion of T-invariant, and can be seen as a generalization of
the ad-hoc proof method introduced and applied in [16]. We show that the test can be implemented in
the framework of constraint programming [21] using the constraint programming tool 2lp [25]. Finally,
we apply the test to a leader election and to a snapshot algorithm.

The paper is organised as follows. Section 2 describes the main components of the automata-theoretic
approach to model-checking, tailored for the case in which the system is modelled by a Petri net. Section
3 shows how to construct the product Buchi nets. Section 4 introduces the test for net emptiness. Section
5 contains the implementation in 2lp. Section 6 is devoted to the case studies. In Section 7 we introduce
a strict subclass of LTL ~LTL_— and a refined emptiness check. Finally, Section 8 concludes and gives an
outlook. In Appendix A and B we introduce the concepts of product nets in terms of a class of high level

Petri nets.

2 The automata-theoretic approach to model-checking

2.1 Transition systems

A labelled transition system is a fourtuple (Act, Q, A, qo), where Act is an alphabet of actions, @) is a set
of states, A C Q x Act x @ is a set of transitions, and qo € @ is the nitial state.

A full run of a labelled transition system is an infinite sequence gpagqiaiqs . . . such that (¢;, a;, ¢;41) €
A for every ¢ > 0. We also denote a full run by ¢o o e

When labelled transition systems are used as semantics of some process algebra only the labels of
the transitions carry useful information; the intermediate states are usually irrelevant. We speak in this
case of an action-based semantics. In action-based semantics the following definition is useful: An infinite
sequence agaids ... of actions of 7 is an action run if there exists a full run ¢q LN q1 LT q2 N
The action language Lo (T) of T is the set of all action runs.

When labelled transition systems are used as semantics of languages with variables, the information
about the actual values of the variables is encoded into the states; the labels of the transitions are
usually irrelevant. We speak in this case of a state-based semantics. In state-based semantics the following
definition 1s useful: An infinite sequence qpqi1q- ... of states of T 1s a state run if there exists a full run
G0 —> q1 = qo The state language Ls(T) of T is the set of all state runs.

For state-based semantics it is convenient to use (unlabelled) transition systems instead of carrying a
useless action set Act around. An (unlabelled) transition system is a tuple (@, A, q0), where A C @ x Q.
It can be seen as a particular case of labelled transition system in which all transitions carry the same
label.

In the paper we use L(7) to denote any of L,(7T) or Ls(T).

2.2 Linear-time Temporal Logic

Let X' be a finite alphabet, and let I7 be a set of propositions over X, i.e., a set of mappings with X as
domain and the set {true, false} as range. The set of formulae of linear-time propositional temporal logic
(LTL) over the set IT is inductively defined as follows:

— if ¢ € II then ¢ is a formula
— if ¢ and ¢ are formulae then so are ¢ A+, =¢, X¢ and ¢ Up.

We make use of the abbreviations ¢ V ¢ = =(=¢ A =), ¢ Vb = —=(=¢ U—), 0¢p = truelU ¢ and
O¢ = - o—¢. An interpretation of an LTL-formula is an infinite word £ € X%, In order to formally define
the satisfaction relation = of LTL, let £(0) denote the first element of &, and let €% (x) = &(x 4 i) denote
the suffix of ¢ starting at position . We have:

— & wform e ITif ©(£(0)) = true.
—{E¢ifnot £ = ¢.
—EEPAY I Edand ¢

—(EXgifeW g

—¢tEUyifFieN : (0 EyandVj<i: V) g

The language L(¢) of a formula ¢ over IT is the set of all words of ¢ that satisfy ¢.

2.3 LTL on transition systems

We wish to use LTL to describe properties of both the action-based and the state-based semantics of a
labelled transition system 7 = (Act, @, A, qo). In the case of action-based semantics, we take X = Act.
IT is therefore a set of propositions on the set of actions, and the language L(¢) of a formula ¢ is a set
of action runs. We say that 7 satisfies ¢ if Lo(T) C L(¢), i.e., if every action run of T satisfies ¢. In
state-based semantics, we take X' = (), and so II is a set of propositions on the set of states. Analogously,

we say that T satisfies ¢ if Li(T) C L(¢).

2.4 Btuichi Automata

Let ¢ be a formula of LTL over a set of propositions I1. A labelled Biichi automaton over II is a tuple
A=(2",Q, A, q0, F), where @ is a finite set of states, A C Q) x 211 x @ is the transition relation, ¢ € Q
is the wnitial state, and F' C @ is the set of accepting states. An accepting run of A is an infinite sequence
o = qolloq1IT1q2 ... such that (q;, I1;, gi41) € A for every ¢ > 0, and some state of F' appears infinitely
often in o. A accepts an infinite word agajas ... € X% if there exists an accepting run qolloqiI11qs . ..
such that a; satisfies every predicate of II;, for every ¢ > 0.

We define the language L(A) of a labelled Biichi automaton A as the set of infinite words accepted
by A.

We have the following important result:
Theorem 1 [32]. Let ¢ be a formula of LTL. There exists a Biichi automaton A such that L(¢) = L(A)

In the sequel we use A, to denote a Biichi automaton satisfying L(¢) = L(Ay), which we assume has
been constructed using some algorithm, for instance the one described in [17].

We also use unlabelled Biichi automata, which are tuples A = (@, A, qo, F'), where A C @ x Q. They
can be seen as a special case of labelled Buchi automata in which all transitions are labelled by the empty
set of propositions.

The nonemptiness problem for alabelled or unlabelled Buichi automaton A consists of deciding whether
L(A) is nonempty. The problem is NLOGSPACE-complete [32].

2.5 Product automata

Let T.ys be a finite labelled transition system, and let ¢ be a formula over the actions or the states of

Tsys. The automata-based procedure to check if 7y, satisfies ¢ consists of the following steps:

— Build a labelled Biichi automaton A-, which accepts L(—¢).

— Build an unlabelled Biichi automaton A4,, called the product of 7;ys and A-4, which is empty iff
L(Teye) 01 L(=6) = 0.

— Check whether L(A4,) is nonempty.

Clearly, L(A,) is empty iff L(T;ys) N L(—¢) = 0 iff L(T,ys) C L(¢) iff T,y satisfies ¢.

The following two subsections show how to construct A, for action-based and state-based semantics.

Action-based semantics Let T,y = (Actsys, Qsys, Dsys, fosys) be a labelled transition system, and let
Aoy = (21, Q-p, Aap, Gomg, Fap) be the labelled Biichi automaton corresponding to the negation of ¢,
where I is a set of propositions on Act,y,. The product automaton of 7.y, and A4 is the unlabelled
Biichi automaton 4, = (Q, A, qo, F) given by

- Q = sts X Q—uba

— A is the smallest set such that if (¢1,a,¢2) € Asys, (r1,{71,...,Tn},72) € Aoy, and a satisfies m; for
every 1 < ¢ < n, then ((¢1,71), (g2,72)) € A.

— g0 = (qosys> 90-4);

- = sts X F_.¢.

It follows immediately from this definition that 4, is empty if and only if the set Lo (T,ys) N L(A-g) =
Lo(Tsys) N L(—¢) is also empty.

State-based semantics Let T,y, = (Qsys, Asys, qosys) be an unlabelled transition system, and let
Aoy = (QH,Q_.¢,A_.¢,qO_.¢,F_.¢) be the labelled Biuchi automaton corresponding to the negation of
¢, where I is a set of propositions on @)sys. The product automaton of 7,y and A-4 is the unlabelled
Biichi automaton 4, = (Q, A, qo, F) given by

- Q = sts X Q—uz)a
— A is the smallest set such that if (¢1,¢2) € Asys, (r1,{m1,..., 7}, 72) € Aoy and ¢q satisfies 7; for
every 1 <i <mn, then ((q1,71),(q2,72)) € 4,

- qo = (q05y5a QO—|¢)a
- = sts X F_.¢.

The only difference with the former definition is the fact that the propositions #; are now evaluated
on the state ¢1, and not on the action a.

Again, it follows immediately from this definition that A, is empty if and only if the set L,(7.ys) N
L(A-y) is also empty.

3 Lifting the automata-theoretic model-checking method to Petri nets

3.1 Multiset Notation

We define multisets in the usual way. Let X be a set. A multiset over X is a mapping p : Z — IN. The

set theoretical operations are extended to multisets as follows:

Union: (1 U pa)(@) = mmax(zr (a), iz (a)

Intersection: (w1 N p2)(a) = min(py(a), pa(a))

Sum: (1 4 p2)(a) = pa(a) + pa(a)

Difference: (1 \ i) (@) = {g”(“) ~ pra(a) ftffi <W>z ()

The set of multisets over X is denoted by M(X). Notions like cardinality and multiset inclusion are

defined in a straightforward way.

3.2 Petri nets

We introduce a definition of Petri nets which stresses the similarities between them and labelled transition
systems.

A labelled Petri net is a tuple N = (Act, P, T, My) where Act is a set of actions, P is a finite set of
places, T C (M(P) x Act x M(P)) is a set of transitions, and My € M(P) is a marking. For a transition
t = (P, Q) we sometimes call P (resp. Q) the preset (resp. postset) and write *¢ (resp. t*). Multisets of
places are called markings, and My is called the initial marking of N.

A transition t = (Py,a, P2) is enabled at M iff M(p) > 0 for every p € P;. If t is enabled at M,
then ¢ may fire or occur, yielding a new marking M’ = M — P, + P (where multiset addition and
difference are defined in the obvious way). We denote this by M L5 M. A finite or infinite sequence
My T My LER M, ... 1s called an occurrence sequence. M —%5 M’ for a € ¥ denotes that there exists
a transition t = (P1, a, P2) such that M L M A marking M is reachable if there exists an occurrence
sequence leading to it. A labelled Petri net is I-safe if M(p) < 1 holds for every place p and every
reachable marking M.

A full run of a Petri net 1s an infinite sequence MyagMiai; Moas . .. such that M; AN M; 41 for every
¢ > 0. We also denote a full run by Mg 29 My 2 M, Notice that for every full run there exists an
underlying occurrence sequence.

An infinite sequence agajas ... of actions 1s an action run if there exists a full run My Lo My 2
Ms ... The action language Lo(N) of N is the set of all action runs. An infinite sequence MMy M . ..
of markings is a state run if there exists a full run My 20 My 25 M, The state language Ls(N) of
N 1s the set of all state runs.

As usual, unlabelled Petri nets are obtained from labelled ones by dropping the labelling of transitions.

So an unlabelled Petri net is a tuple (P, T, My) where T'C M(P) x M(P).

If we are only interested in the structure of a Petri net, then we omit My and call (P, T') just a net.

3.3 LTL on 1-safe Petri nets

We define when a 1-safe Petri net satisfies a formula of LTL. In action-based semantics I7 is a set of
propositions on the set of actions of the Petri net. As for transition systems, we say that a net N satisfies
a formula ¢ if Lo(N) C L(¢), i.e., if every action-based run of N satisfies ¢.

The state-based case is more interesting. For transition systems, we let II be a set of propositions on
the set of states. Since the states of a Petri net are its reachable markings, for Petri nets we should take I7
as an arbitrary set of propositions on the set of markings. However, we restrict ourselves to propositions
mp, Where p is a place of the net, with the following interpretation: a marking M satisfies m, iff it marks
the place p. We say that a net N satisfies a formula ¢ if L (N) C L(¢).

It is easy to see that this restriction has no important consequences: the two logics we obtain (one
with arbitrary propositions over markings, the other with the restricted set), have the same expressive
power for 1-safe Petri nets. To see why, suppose that a formula ¢ contains an arbitrary proposition 7
on markings. We can replace 7 by a boolean combination of propositions of the form m,. This is at best
illustrated by an example: if 7 is the proposition that is true of the set of markings {M | (M(p1) =
1 and M (p2) = 0) or M (ps) = 1} then it can be replaced by (mp, A mp,) V 7p,.

3.4 Buchi Nets

The product of a Buchi automaton and a 1-safe Petri net is going to be a Buchi net, the net counterpart
of the unlabelled product Bichi automaton defined in Section 2.5.

A Biichi net is a tuple N = (P, T, Mg, F'), where (P, T, My) is an unlabelled Petri net and F is a
subset of P. An accepting run of N is a state run MoMj; M ... such that some place of F' appears in
infinitely many markings M;. N is nonempty if it has an accepting run.

The nonemptiness problem for a Biichi net N = (P, T, My, F') is the problem of deciding if N is

nonempty. We have the following result:
Theorem 2. The nonemptiness problem for 1-safe Biichi nets is PSPACE-complete.

Proof. Let N = (P, T, My, F') be a l-safe Biichi net. We show that the nonemptiness problem is in
NPSPACE, and then apply NPSPACE=PSPACE (Savitch’s theorem). The following nondeterministic
algorithm solves the nonemptiness problem using polynomial space: guess a 1-safe marking M; which
marks F' (i.e. ZpEF’

two occurrence sequences, one that leads from My to M; and another one (nonempty) that leads from

Mi(p’) > 0). Guess (one step at a time, storing only the currently reached marking)

M, back to M;. Clearly, the algorithm only needs to store two markings.

To prove hardness, we provide a reduction from the problem of deciding if a linearly bounded Turing
machine M accepts an input w. Given M and w, a standard construction (see for instance [10]) yields
in polynomial time a 1-safe Petri net N with a distinguished place p such that M accepts w iff some
reachable marking of N marks p. Moreover, p does not have any output transitions.

Modify the net N by adding a new transition with p as only input and output place, and transform
the result into a Biichi net by taking p as (the only) final place. Clearly, M accepts w iff the Biichi net

has an occurrence sequence that marks p infinitely often, i.e., iff N is nonempty. a

3.5 Product nets in action-based semantics

It is easy to lift the definition of the product automaton to the Petri net case.
Let Noys = (Actsys, Psys, Tsys, Mosys) be a 1-safe Petri net, and let A4 = (21 Q-p, Aais Qomp, Fog)

be the Biichi automaton corresponding to the negation of ¢, where II is a set of propositions on Act ;.
Definition 3. The product Biichi net N, = (P, T, My, F) of Ny, and A~ is given by

= P =Py, UQ-sy,

— T is the smallest set satisfying: if (P1, a, P2) € Tyys and (qq, {m1,...,Tn}, q2) € Aoy, and m;(a) holds
for every 1 < i< n, then (P +{q1}, P2+ {q2})) € T,

— My = Mosys +{q0-4},

- F =TI,

Notice that the cardinality of the set T'is at most [Ty, |- |A-4|, and that this upper bound is reachable.

The following theorem is easy to prove:

Theorem4. Let Ny, be a I-safe Petri net, and let A4 be the Biichi automaton corresponding to the
negation of a property ¢. Let N, be as in Definition 3. N, s I-safe and N,y satisfies ¢ off Np is empty.

Proof. First we show the 1-safeness of N,,. The place-vector § with S(p) = L for all p € Q-4 and S(p) =0
else, is a covering S-invariant for the subnet generated by A-4. Due to the l-safeness of Ny, and the
definition of My which has weight 1 w.r.t. §, we obtain directly the 1-safeness of N,.
Second we show that N,y does not satisfy ¢ iff N, is nonempty.

(=) Assume that Ny, does not satisfy ¢, i.e., Lo(Nyys) € L(¢). Then, there exists a full run My LI
M, 2 . of Nyys such that agay ... € L(—¢), i.e., aga ... is accepted by A-,. Let My o, M, BTG
be the underlying occurrence sequence, where t; = (P;, a;, P/), and let ¢ollgqi 1T, ... be an accepting run

of A.4. It follows easily from the definitions that the sequence

(Po+{g0},Po+{a01}) (Pr+{a1},Pi+{a=})
Mo +{q0} —— Mi+{g} ——m— ...

is a full run of N,,. Since ¢oIIgg1 117 . . . is an accepting run of A4, the sequence (Mo+{qo})(M1+{¢1}) ...
is an accepting run of N,. So N, is nonempty.

(<) Assume that N, is nonempty, i.e., there exists an accepting run MyM; ... of N, such that some
place of F'is infinitely often marked. Let My —= M; - ... be a corresponding full run. It is easy to see
that Mo|p,,, — M
Aog. So apay ... € Lq(Neys) N L(A-y), which implies that Ny, does not satisfy ¢. a

Puys 1y . .is a full run of Ngys, and that Mo|g_,Mi|q_, ... is an accepting run of

3.6 Product nets in state-based semantics

We fix an unlabelled 1-safe Petri net Nyys = (Piys, Tsys, Mosys). We assume that the set I of propositions
on the markings of N,,, used to construct formulae of LTL contains only predicates m, which hold iff
the place p is marked. Clearly, we can (and will) identify the proposition m, and the place p. With

this identification, the Biichi automaton A-4 for the negation of a formula ¢ has the form A, =

(2P3ys) Q“(ﬁa A“(ﬁa q0-¢, F“(ﬁ)
Our goal is to construct a product Buchi net satisfying the following property: the product net can

move from a marking (M1, ¢1) to (M2, ¢2) iff:

(1) Nsys can move from M; to Mo,
(2) there exists (¢1, R, ¢2) € Ay, and
(3) M; marks every place of R.

We show two different constructions. This first one 1s similar to that shown in Section 2.5 for transition
systems. The key idea is the following: if (Py, Py) is a transition of the Petri net and (¢1, R, ¢2) is a

transition of the Biuchi automaton, then we add the following transition to the product:
(Pt (R=P)+{n}, P2+ (R—P1)+{q})

It is immediate to see that this solution satisfies conditions (1) to (3) above. The product automaton

can then be defined in the following way:

Definition 5. The product Biichi net N, = (P, T, Mo, F) of Noys = (Psys, Lsys, Mosys) and Ay =
(2F v Qog, Asg, qomg, Fap) is given by

- P:PsysUQﬂ¢a

— T is the smallest set satisfying: if (P1, P2) € Ty, and (q1, R, q2) € Aoy, then (P + (R — P1) +

{n}, Po+(R=P1) +{q2}) €T,
Pl
p qo
H
Or2 (9)r
H

— Mo = Mosys + {q0-¢1,
- F =TI,
Fig.1. A Petri net N.y. (lhs.) and a Biichi automaton A-4 (rhs.).

Figure 2 illustrates this definition.

Fig.2. The product net Ny of N,y and A~y of Figure 1 w.r.t. definition 5.

Theorem 6. Let Ny, be a I-safe Petri net, and let A4 be the Biichi automaton corresponding to the
negation of a property ¢. Let N, be as in Definition 5. N, s I-safe and N,y satisfies ¢ off Np is empty.

Proof. First we show the 1-safeness of N,. We can divide P into three sets: P = N/ U(N,y; \N;ys)UQ_.¢

sYs
with N{, o ={p € R| (¢, R,p) € A-4}. The set of places Nyys \ Ny, is 1-safeness, due to the 1-safeness
of Ngys. Analogous (). It remains to show that every place p € N;ys is 1-safe. Due to PN (R—P1) =

we know that every incoming arc of p has weight one. If this also holds for every outgoing arc then p is
1-safe. Otherwise the transition ¢ which has a double weight arc to ¢ is dead, because N,y is 1-safe and
every marking that enables ¢ as transition of N,y,; has no token on place p, but this violates that ¢ is

enabled as transition of N,. Thus, p is 1-safe.

Second we show that N,y does not satisfy ¢ iff N, is nonempty.

(=) Assume that N,,, does not satisfy ¢, i.e., L;(Nsys) € L(¢). Then there exists a state run
MoM; ... of Ngys which does not satisfy ¢, and is therefore accepted by A-4. Let qolloqill; ... be an
accepting run of A-4. Recall that, since we have identified the propositions of LTL in the state-based
case with the places of the net, a marking M satisfies a set of propositions I iff II C M.

Let My o, My 1y be an occurrence sequence corresponding to the state run MyM; ..., where
t; = (P;,Q;). Due to our construction every transition ¢t of Ny, “synchronizes” with every transition
§ of A.y. In particular each transition ¢; synchronizes with é; = (¢i, i, ¢i+1) ylelding a transition

t=(P+ L —PF)+{¢:},Qi + (i — Bi) + {qit1}) of Np. Obviously, M; 4+ {¢;} enables t] only if all
places of II; are marked, but this is guaranteed by the condition I7; C M;. The occurrence of t] yields

the marking:

M +{qi} = (P + (i = B) —{qi} + Qi + (Ili = ;) + {qi+1}
=M — P+ Qi+ {¢git1}
= M1+ {g+1}

Accordingly, the state run o = (Mo + {q0}) (M1 + {¢1}) . .. is an accepting run of N,, because some final
state appears infinitely often in ¢oflyq1 I1; ... and thereby also in . So N, has at least one accepting run,
l.e., 1t 1s nonempty.

(<) Analogous to the corresponding proof of Theorem 4. a

Loosely speaking, in the second construction the automaton and the Petri net alternate their moves:
the automaton tests if the marking M; marks every place of R. If this is the case, then it moves from ¢;
to ¢2, and transfers controls to the net, who makes its move, and transfers control back to the automaton.
The alternation can be implemented by means of two scheduling places SC1, SC'5. A token on SCy (SC5)

means that the automaton (the net) has to move next.

Definition 7. The product Biichi net N, = (P, T, My, F') of the system Nyys = (Psys, Toys, Mosys) and
the Biichi automaton Ay = (X.4, Q-9, Aap, fomp, Fap) 1s given by

— P =Py, UQR-y U{SCq, ST},

— T is the smallest set satisfying: if (Pi, P2) € Tiys then (Py + {SCs}, Po 4+ {SC1}) € T, and if
(1, R, q2) € Aoy then ({q1,5C1}+ R,{q2,5C2}+ R) € T}

— Mo = Mosys + {qong, SC1},

- F =TI,

See Figure 3 for an example.

Theorem 8. Let Ny, be a I-safe net system, and let A4 be the Bucht automaton corresponding to the
negation of a property ¢. Let N, be as in Definition 5. N, s I-safe and N,y satisfies ¢ off Np is empty.

Proof. The 1-safeness of N, is obvious, because N,y is 1-safe and the scheduler places SC4,SCy and
A-4 can be covered by an S-invariant.

(=) Assume that N, does not satisfy ¢, i.e., there exists a state run MyM; ... of Ny, such that the
word MoM; ... 1is element of L(—¢). Due to Biichi’s definition of A, the word MyMy ... can be accepted
by A-g. W.lo.g. let qolloqiIl; ... be the accepting run of A .

Fig.3. The product net N, of N,y and A~y of figure 1 w.r.t. definition 7.

Now, let My Lo, My 1y be the corresponding run with t; = (P;, Q). Because qolloqi 11y . ..
satisfies MoM ... (i.e., II; C M;), a transition é; with preset [7; is enabled at marking M;. Therefore, the
sequence o = M Lo, M Loy M N My Ly with M! = M;+{SC1, ¢;} and M} = M;+{SC2, ¢i+1}
is a full run of N, because we have
(1) M{|p,,, = M; and thereby & = ({SC1, ¢i} + 1I;,{SC2, qiy1} + I1;) is enabled at marking M/,

(2) M{|p,,, = M{'|p,,, and thereby t; = ({SC2} + P;,{SC1} + Q;) is enabled at marking M/’,
(3) M! 25 MY e,

M= M —{SC1,qi} = II; + {SC, qip1} + II;
= M; +{5C1, ¢;} = {SC1, ¢} +{5C2, qiy1}
= M; +{5C2, qiz1},

(4) My L5 MY, e,

ML, = M {SCy} — Pi+ {SC1} + Qs
=M; + {SCo} + {gig1} — {SC2} — P, + {SC1} + Qs
= Miy1 +{5C1, qiy1}-

Moreover ¢ is an accepting run of N,, because some state of FL 4 appears infinitely often in qolloqi {1 . ..
and thereby in o. Thus N, has at least one accepting run, i.e., N, is nonempty.

(<) Assume that N, is nonempty, i.e., there exists a full run ¢ = M, Loy M,y Dy of N, such that
some place of F' is marked infinitely. Because {SC4,SC5} is covered by a binary P-invariant which is
initially marked by only one token and every transition of N, exchanges the token on {SC1,SC5}, we
can divide ¢ up into an even subsequence o, of o and an odd subsequence o, of .

On the one hand in o, occur only transitions of the type ({q;, SC1}+ I3, {¢s41, SC2} + I1;) and there-
fore o induces a run goll,q1 115 ... of A-4. Moreover, there exists some place of F' that is infinitely often
marked in o, because Ms;_1|p = Ma;|p. Thereby qoll,q1 Il ... is a run accepting the word MM,
Due to 2.4 = 2P:vs the word My Py Mz2|p,,, ... can also be accepted by qolloqilly

On the other hand in o, occur only transitions of the type (P + {SC2}, Q; 4+ {SC1}) and therefore o,
P Mslp,,, ... of Ngys. The words My|p,,, M2|p,,, ... and My|p,, Ms

induces a full run M;

Poy, -+ are

equal, because
Moy

Poye = (Ma2i = {SC1,qi} +{5C2, qiz1})

Psys = MZi Psys'

Finally, we can conclude that there exists a full run of Ny, that induces a state run that can be
accepted by A 4. Thus Ny, violates the formula ¢. a

This second construction, contrary to the first, remains very small: its size is essentially the sum of
the sizes of Ny, and A-4. Unfortunately, as shown in the next section, this second construction faces

other problems. We shall actually combine the two constructions in order to obtain good results.

4 Testing emptiness of Biichi nets using T-invariants

In Section 3 we have reduced the model-checking problem to the emptiness problem of Buchi nets. We
now develop a semidecision test for this latter problem which avoids the construction of the reachability
graph. The theory underlying the method is well-known; our contribution is a set of refinements and
techniques for its application.

We have developed this test in order to verify parallel programs modelled in the language B(PN)? [7, 5],
which are automatically translated into 1-safe Petri nets by the PEP tool [4, 1, 26]. The fact that a variable
z has a value v is modelled by putting a token on a place z,. Therefore, assertions like “the variable
z takes the value 1 infinitely often® are best formalised using state-based semantics. From now on we
concentrate on this semantics, but the technique is also applicable (even more easily) to the action-based
case.

The test is based on the notion of T-invariant. Recall that a T-invariant of a net is a mapping J that

assigns to each transition ¢ a rational number 7 (¢) and satisfies the following property for every place p:

Y IW=> T

te*p tep*

T-invariants have the following fundamental property. Let M and M’ be markings of a net NV, and let
o be a sequence of transitions such that M -2 M’. We have M = M’ iff the mapping which associates
to each transition ¢ the number of times that it appears in ¢ is a T-invariant of V.

A T-invariant J of a Biichi net N is realisable if there exists a reachable marking M and a nonempty
sequence of transitions o such that M ——+ M and every transition ¢ occurs exactly J(t) times in 0. The
sequence M —s M is called a realisation of J. Realisable T-invariants are always semi-positive, i.e., its
components have to be nonnegative, and at least one of them must be different from 0. A T-invariant J
is final if J(t) > 0 for some transition ¢ in the postset of a final place of N. The following result is easy

to prove:
Proposition9. A Buchi net is nonempty iff it has a final realisable T-invariant.

Proof. (=) If the Biichi net is nonempty, then it has an infinite occurrence sequence My IN M,y Loy
such that a final place p is marked at M, for infinitely many ¢ > 0. Since Buchi nets are 1-safe, there
must be two indices ¢ < j such that M; = M; and some marking between M; and M; puts a token on p.
Let 0 =t;41...%;, and let J be the mapping which assigns to a transition the number of times it occurs
mn o. J 1s a final realisable T-invariant.

(<) Let M —Z3 M be a realisation of a final realisable T-invariant. Since M is reachable and some
final place is marked along the execution of &, the infinite sequence My...(M ... M)¥ is an accepting

run. O

As an immediate consequence of this proposition, if a Buchi net has no final semi-positive T-invariants,
realisable or not, then it is empty. This sufficient condition for emptiness leads to a simple semideci-
sion test, since the absence of semipositive T-invariants can be checked by solving a system of linear

(in)equations of the form

N-X=0
X >0
2rers X(1) >1
where N 1s the incidence matrix of the Buichi net, and F' is the set of final places.

The practical interest of a semidecision test is directly proportional to its quality (i.e., how often it is
successful, or, in our case, how often does it prove emptiness) and inversely proportional to its compu-
tational complexity. It is well-known that systems of linear (in)equations can be solved very efficiently
using the simplex algorithm, and in guaranteed polynomial time by other techniques. So the test above
is very efficient. Unfortunately, its quality is very low. In nearly all examples of interest the test fails to
provide an answer even if the language of the net is empty.

A simple analysis of the T-invariants of the product Biuichi nets shows that the poor quality 1s not
surprising. The following proposition characterizes the T-invariants of the product net. For the charac-
terization we observe that a Biichi automaton (Q, A, go, F') can also be seen as a Biichi net (P, T, Mg, F'')
by taking P = Q, T = A, My = {qo} and F’ =

Buchi automaton.

F. So it makes sense to speak of the T-invariants of a

Proposition10. Let N, be the product net of a net system Ny, and a Bicht automaton Ay, obtained
using Definition 5 or 7. Ny has a final semipositive T-invariant off there exists a semupositive T-invariant

Jsys of Noys and a final semipositive T-invariant J4 of Ay such that

Y)= Y)

t€Tsys tEA-,
Proof. First of all, let us assume arbitrary enumerations of Ty, = {tiys,tzys, cos i) and Any =
{6}|¢, 6z¢, ..., 60, } and analogous Py, and Q. ,
(Proof w.r.t. definition 7). Let T, = {tiys, R }'¢>’ 00, and Py = {piys, o Diysy SC1, SCo, qi(z), e
The incidence matrix of the Biichi net N, constructed by application of definition 7 has the following
scheme:
0... 0
Nsys
0... 0
—1...—-1 1. 1
N, =
1... 1-1 -1
0... 0
N-g
0... 0

Now let J, be a final T-invariant of N,:

Ny Jp=0 A

>ty >1

ters,

& (Nesl0) - Jp=0 A (0]N=g)-Jy =0 A

Snt)= > =0 A D L)>1

tETeys tEA_, teFS,
If we divide J, into two subvectors J4 and Jyys, i.e. (Jsys]Ja)' = J;, then we directly obtain:

& NeysJas=0 A Nag-Ja=0 A

ST st = D> Ja)=0 A D> Jat)>1

tETsys tEA ters,

O
(Proof w.r.t. definition 5). Let T, = {tj,, x 6i¢,...,t§’§/s X 6i¢,...,t§ys X 004,y x 80} and
P, = {piys, oo Py qi(z), ce qf(z)}. Let N denote the i-th column of matrix N. The incidence matrix

of the Biichi net IV, has the following structure:

Np _ Nsys | Nsys i cee | Nsys

(1) (1) (2) (2)
NG NG)] NN

(n) (n)
‘ Nog - Ny
Each column vector N_(i; appears m-times in each submatrix. Using the above-mentioned enumeration

we identify the elements of J,:

J; = (Jp(tiys X 6}'¢)’ R Jp(t?ys X 6}|¢>)a

Tp(tays X 024), . Jp(th, x 62,),

Jb(tiys)OI), o Tp (s x 60%))

Final T-invariability of J, coincide with the following (un)-equations:

(Nyysl .- [Nyys) - Jp =0 A

W NN Ny g =00 A

m-times m-times

PRAGES!

ters,

Now we define J4 and J,y;:

Ja(6-s) = Y Tt x 6-p)

t€Tsys

szs(tsys) = Z J(tsys X (S)

5EA_.¢
Using this definition we directly obtain:
Nsys : szs =0 A
N_.¢ - Ja=0 A

Z Ja(t) >1

ters,

Finally, we can conclude:

ST sty = D> > J(tx6)

€T,y €T ys 6€ Ay

dS> 0 Jtxo)

5EA_.¢ tE/TSyS

> Tals)

5EA_.¢

a

The condition on the semi-positive T-invariants is very weak, and so it is not surprising that it is
fulfilled by most Biichi nets coming from real examples, even if they do not have realisable T-invariants.

We refine Definition b in order to improve the quality of the test. In Section 4.1 we observe that some
of the transitions of N, can never occur. Since these transitions never appear in any infinite occurrence
sequence of V,, they can be removed without affecting Theorem 6. Clearly, after removing this transitions
the resulting net has exactly the same realisable T-invariants, but less semipositive T-invariants, which
improves the quality of the test.

Unfortunately, with the improved definition of product the number of transitions of N, can still be
unacceptably large, similarly to what happened in the action-based case. In Section 4.2 we show that this

problem can be palliated by combining the improved Definition 5 with Definition 7.

4.1 Removing dead transitions

Let N, be a product net obtained according to Definition 5, and let t = (P + (R— P1) + {¢1}, P2+ (R —
P1) + {q2}) be a transition such that there exists a place p € (P — P1) N R. We show that ¢ can never
occur in Np.

Let M be a marking of Np which enables ¢. Then, the projection M,,, of M onto Py, puts a token
on every place of P; and on s. Therefore, M,,, enables the transition (P;, P). Since p € P», after the
occurrence of the transition the place p contains two tokens. Since Ny, is 1-safe, M, cannot be reachable
marking of N,y ;. Since the projection on Py, of a reachable marking of Np is a reachable marking of
Nyys, the marking M is not reachable in NV,.

This is how far we can go if we have no other information about N,,,. However, we often know that
Nys has a certain set of P-components which contain exactly one token at the initial marking. Recall
that a P-component is a connected subnet in which every transition has exactly one input and one output
place, and which is connected to other nodes of the net only through transitions?. The number of tokens
of a P-component remains constant under the occurrence of transitions.

Information about the P-components of the net is very often available in practice. Systems modelled
by 1-safe nets are usually composed by several sequential systems that communicate via message passing,
rendezvous, or shared variables. In all cases, the models of these components are P-components of the
global model.

Let N; = (P;,T;) be a P-component carrying exactly one token at the initial marking, and let

t=(PL+(R-P)+{q}, P2+ (R— P1) + {q2})

2 Sometimes P-components are also required to be strongly connected subnets, but that is not necessary in our

case.

be a transition such that |(P1 + (R — P1)) N P;| > 1. We show that ¢ can never occur in N,.

Let M be a marking of N, which enables ¢. Since N; is a P-component of Ny, we have |Py N P;| < 1.
Therefore, either P, N P; = § and |[RNP;| > 2, or p € PN P; and p' € RN P; such that p # p/. In
both cases the marking M,,, marks at least two places of F;, and so is not reachable in N,y,. Since the
projection on Ny, of a reachable marking of N, is a reachable marking of N,y,, the marking M is not
reachable in N,.

This effect can be noticed in Figure 2. The transition with the double weighted arc can be removed
due to the above mentioned fact.

We introduce the following definition:

Definition11. (P, P») € Ty, and (q1, R, ¢2) € A~y are compatible if the two following properties hold:

- (P:NR) C(PLNR),and
—forall 1 <i<k:if (PN P)#0and (PN R)#D, then (PLNFP)=(FNR).

If (P1, P2) and (q1, R, ¢2) are compatible, then we also say that (¢1, R, ¢2) is compatible with (Py, Pa), or
that (Py, Py) is compatible with (¢1, R, ¢2).

Now, in Definition 5 we can substitute the description of the set 7" by the following:

— T is the smallest set satisfying: if (P1, P») € Tsys and (q1, R, ¢2) € A~y are compatible, then (P; +
(R=P)+{a}, P+ (R—P1)+{e2}) €T

4.2 Combining Definition 5 and Definition 7

Let (Py, P») be a transition that is compatible with every transition of A.4. With respect to (Pi, Pa),
the new definition of product coincides with the old one: the same set of transitions of the product is
generated. However, n of these transitions generate n -|754| transitions in the product net, which can be
unacceptable if n is large.

The solution to this problem is to use the product discipline of Definition 7 for these transitions, and
reserve the discipline of Definition 5 for those which can improve the quality of the test. In order to

implement this idea we need the following definition:

Definition12. A transition (Pi, P») of Ny, is compatible with A, if it is compatible with every tran-
sition of A 4.

Definition13. The product Biichi net N, = (P, T, My, F') of the system Nyys = (Psys, Tsys, Mosys) and
the Biichi automaton Ay = (X.4, Q-9, Aap, fomp, Fap) 1s given by

— P =Py, UQ-y U{SCy, SCy},
— T is the smallest set satisfying:
(1) if (ql, R, q2) S A_.(z), then (R U {ql, 501}, RU {QQ, SCQ}) eT,
(2) if (P, P2) € T4y, is compatible with A4, then (P 4+ {SCy}, P+ {SC1}) € T,
(3) if (P, P2) € T4y, is not compatible with A-4, then (P1 + (R— P1) +{q1,5C1},Po+ (R— P1) +
{g2,5C1}) € T for every (q1, R, q2) € A~y compatible with (Py, P»).
- My = MOsys + {QO—uih Scl}a
- F =TI,

Theorem 14. Let N,y be a I-safe net system, and let Ay be the Biichi automaton corresponding to the
negation of a property ¢. Let N, be defined as in Definition 13. N, is I-safe and N,ys satisfies ¢ iff N,
15 empty.

Proof. Due to the 1-safeness of the product net defined in Definition 5 and Definition 7, we can directly
conclude that N, is 1-safe.

It remains to show that the local behavior of transitions of 7}, is equivalent to the combination of the
behavior of two transitions ¢,ys € Tsys and 6.4 € Aoy, i.e., transitions of type (1) and type (2) combine
their local semantics asynchronously while transitions of type (3) are synchronizations of Ty, and A .
Due to the fact that transitions of type (3) have a self loop with SC; these transitions cannot occur
between the occurrence of a transition of type (1) and the occurrence of type (2). Thus the argumentation

about full runs of N, is analogous to the proof of Theorem 6 and Theorem 8. ad

4.3 An improved Test

We have seen that a Biichi net is empty iff it has no final realisable T-invariants (a well known result).
This result leads to a test for the emptiness problem: if a Biichi net has no semipositive final T-invariants,
then it is empty. The computational complexity of the test is very good (polynomial in the size of the
net), but its quality is poor.

For Biichi nets coming from the product of a Petri net and a Buchi automaton we have improved
the quality by means of a refined definition of product net; unfortunately, our experiments show that the
quality of the improved test 1s still poor, and further ideas are needed.

In this section we trade off quality for computational complexity. We introduce the notion of T*-
invariant, and use it to define a new test. The new test does not have polynomial complexity anymore; it
is NP-complete®; however, as shown later, the quality is now good enough for verifying severalinteresting
liveness properties of real systems.

One of the main reasons why the test of the previous section has a low quality is the fact that the
Biichi nets we wish to analyse usually contain self-loops, 1.e., they contain places that are both input
and output places of transitions. The presence of self-loops may lead to the typical situation shown in
Figure 4. The vector 7 = (0,0, 1,1)" is a T-invariant, but not a realisable T-invariant. To prove it, observe
that the subnet N’ generated by the places {p1,p2} and the transitions {t1,...t4} is a P-component (see
Figure 6), and so M(p1) + M(p2) = 1 holds for every reachable marking M. Now, assume that 7 is
realisable. Then it has a realisation M — M. Since J = (0,0,1,1)%, & only contains occurrences of t3
and t4. It is easy to see that the projection M’ LI) M’ of M <5 M onto the places and transitions of
N’ is an occurrence sequence of N’. But this leads to a contradiction: since t3 needs a token on ps to
occur, and t4 needs a token on py, t3 can never occur immediately after ¢4; the transition £; must occur
inbetween. Similarly, {4 can never occur immediately after ¢3; the transition ¢; must occur inbetween.
More generally, the subnet of N’ generated by transitions ¢; and ¢5 together with their input and output
places (shown in Figure 5) is not strongly connected, and therefore no sequence containing only ¢3 and
t4 can be an occurrence sequence of N’. This shows that [is not realisable. In this proof we have used
again information about the P-components of the net, namely the fact that N’ is a P-component which

carries initially one single token. This leads to the following definition:

? Assuming of course P#NP.

P1
(o)
/
t1|:j Ps 4y P4
|
N '

P2

Fig.4. Net with selfloops.

@
ty
t3
P2
Fig.6. The P-component with
Fig.5. The subnet N’. places {p1,p2}-

/

O [[1®:
/

Definition15. Let N = (P,T) be a net and let N; = (P;,T;), 1 < i < n be a set of P-components of N.
We call a T-vector J a T*-wnvariant with respect to Ny, ..., Ny if

— J is a semi-positive T-invariant, and
— for every 1 < ¢ < n, the subnet of N; generated by the transitions of 7; that appear in J, together

with their input and output places, is strongly connected.

The T-invariant (0,0, 1,1)" above is not a T*-invariant with respect to N’, because the subnet of
Figure 5 is not strongly connected.

We show that the notion of T*-invariant leads to a new emptiness test.

Lemma 16. Realisable T-invariants are T*-invariants with respect to any set of P-components carrying

one token.

Proof. Let J be a realisable T-invariant of N, and let N’ be an arbitrary P-component of N carrying
one token at the initial marking. We show that the subnet N” of N’ generated by the transitions of N’
that appear in J, together with their input and output places, 1s strongly connected.

Let u and v be two arbitrary transitions of N”. Since [J is realisable, there exists a realisation

M -2 M. Since N’ is a P-component, the projection M’ —+ M’ of M -2 M on N’ is an occurrence

sequence of N’. Moreover, M’ U—I> M is also an occurrence sequence of N’/ because all transitions of ¢’
are contained in N”.

In particular, both w and v appear in ¢’, and so ¢’ contains a subsequence of the form u =
toty...th_11, = v. Since N” is a subnet of a P-component carrying one token at the initial marking,
there must be places pg,...p,_1 such that upgtipi ...pp—_stn_1Pn_1v is a pathof N.

Since u and v were chosen arbitrarily, any two transitions of A" are connected by a path, which shows

that N’ is strongly connected. O

Theorem 17. Let N be a Biichi net and let N;, 1 < < n be a sel of P-components of N carrying one
token at the initial marking. If N has no final T*-invariants with respect to Ny, ..., Ny, then it ts empty.

Proof. By Lemma 16, if N has no final T*-invariants with respect to Ny,..., Ni, then it has no final

realisable T-invariants. By Proposition 9, NV is empty.

4.4 Computational complexity

We call the problem of deciding the existence of a T*-invariant for a given net and a given set of P-

components the T*- invariant problem.
Theorem 18. The T*-invariant problem is NP-complete.

Proof. Let N be anet and let {Ny, ..., N} be aset of P-components of N. The following nondeterministic
algorithm solves the T*-invariant problem in polynomial time: guess a subset T” of transitions; check for
every P-component N; that the subnet generated by the transitions of 7’ that belong to N; together with
their input and output places is strongly connected; check that there exists a semi-positive T-invariant
J of N such that J(¢) > 0 iff ¢ € T”. This last part can be solved in polynomial time through reduction
to a linear programming problem.

We prove NP-hardness by a reduction from the satisfiability problem for propositional formulae in
conjunctive normal form (CON-SAT). An instance ¢ of CON-SAT is a conjunction of clauses C1,...,Cp,
over variables z1,...x,. A clause C; is a disjunction of literals L;;. A literal is either a variable z; or its
negation ;.

Given an instance of CON-SAT, we construct a Petri net N = (P,T) and a set of P-components
{Ni,...,N,} in polynomial time and show that N has a T*-invariant w.r.t. all N;, iff ¢ is satisfiable.

— The set P contains the following elements:
o for each clause Cj, 1 <17 < m, a place ¢;.
o for each variable z;, 1 < ¢ < n, two places z; and Z;.
— The components P; are defined by P; = {«;,7;}.
— The transitions in 7" are defined as follows:
For each literal L;; of clause C; there exists one single transition /;;. Each transition /;; is connected
to ¢; by its preset and to c;jg1 by its postset®. Moreover, if L;; denotes the variable z; (negation of

the variable z;) then the transition /;; is connected to place z; (Z7) by a selfloop:

{et+ x, {eip1} + x) with

lij
s if Lij = ZT;

X:{ﬂﬁ_iifLij:l‘_i

1 & denotes the addition modulo m.

Note that for each component N; the places z; and Z; are never connected. Thus, a T*-invariant does

not contain two different transitions which are connected to two different places of one single component.

Now we show that ¢ is satisfiable iff the constructed Petri net N has a T*-invariant.

Assume that N has a T*-invariant 7. Due to the connection of T-invariants the tokens have to move over
all places ¢;. Thus, J has at least m positive elements, one for each clause. From the above-mentioned
fact we can directly conclude that *||7||U||J||* never contains the two places of one component.

Moreover, the assignment 5 : {z1,...2,} — {true, false} with

rue it e € (CITNUITION U P
0<i<n
false it 7 e (ITIVITION U P

0<j<n

T+

is a valid model for ¢, because every clause is true under assignment 3.

Now we assume that ¢ is satisfiable. Then there must exist an assignment 5 that satisfies all clauses of
¢. This means that there exists a set of literals £ which contains for each clause at least one literal which
is true under the assignment 3. Now, it is obvious that the T-vector J with j(lij) =1if L;; € £ and
J(li;) = 0 otherwise is a T*-invariant of N. a

We illustrate this construction on an example. For this purpose we consider the formula ¢ = #; A (21 V
73). The set of P-components {({z1,Z1},0), ({x2, T3}, #)} results from the set of variables {z1,x2}. The

corresponding composed Petri net is shown in Figure 7. The relationship between transitions (places) and

Fig.7. The corresponding net of the formula ¢.
literals (clauses) is explained by:
¢=C1y N Cowith Cy = Ly = Loy = 21,05 = Loy V Los and Loy = 75
For example, the T*-invariant J defined by:

Jh1)=T(Ua1)=3
J(Laa) =1

corresponds to the assignment [3:

B(x1) = true B(x2) = false

So the complexity of the T*-invariant problem lies betwenn the complexity of the emptiness problem,
which is PSPACE-complete, and the complexity of the tests based on traditional T-invariants, which

require polynomial time [14].

5 An Implementation of the T*-Invariant Test Using Constraint

Programming

A system of linear inequations can be seen as a conjunction of linear constraints, i.e., the feasible region
of the system (its set of solutions) is the set of vectors that satisfy all the constraints.

We can thus interpret linear programming as a primitive constraint programming language, in which
the only available operator to combine constraints is AND. Simplex, or any other algorithm for linear
programming, can be seen as an inference engine for this programming language.

While the emptiness test based on traditional T-invariants can be implemented in linear programming,
this is no longer true for the T*-invariant problem: the AND construct is not powerful enough.

Fortunately, in the last years there have been a number of efforts to develop programming environments
for linear and integer programming that goes well beyond the AND construct. One of these environments
is 2lp [25]. Citing from [25]:“2lp is a constraint logic programming language [21, 24] with C-like syntax
which can be used to make linear and integer programming part of programming in the contemporary
sense of the word”.

An adequate introduction to 2lp is out of the scope of this paper; we refer the interested reader to [25].
For our purposes, it suffices to know that the semantics of a 2lp program is a (not necessarily linear)
constraint on the space of its variables, or, equivalently, a feasible region (the tuples of values of the
variables that satisfy the constraint). 2lp contains different operators to produce complex constraints out

of simpler ones. We introduce two of these operators in the following example:

dr— 2y =1;
either {# +y < 3}
or {2z —y > 3}

L

The operator “;” corresponds to the AND of linear programming. That is, the feasible region of the
program above is the intersection of the feasible regions of 32 — 2y = 1 and the either ...or constraint.
The feasible region of the either ...or constraint is the union of the feasible regions of the constraints
z+y<3and 2z —y > 3.

2lp also provides an operator to test the consistency of sets of constraints:

r<y+3;
y <3z —35;
if not x = y then printf(‘‘Inconsistent’’)

else printf(‘‘Consistent’’)

The feasible region associated to this program is the feasible region of its first two constraints (i.e,
the not operator does not change the feasible region). However, the if not ...then ...else instruction

determines if the constraint & = y is consistent with the first two, and answers accordingly.

We use these features to build a 2lp program that decides if a net contains a T*-invariant with respect
to a set of P-components. To lighten the notation, we consider only the case in which the set contains
only one component. The general case is similar.

We start by “massaging” the condition in the definition of T*-invariants concerning strong connect-
edness. Fix anet N = (P,T) and a P-component N’ = (P’,T") of N, and let U C T". Think of U as the
intersection of 7" and the set of transitions of a given T-invariant, of which we would like to determine
if it is also a T*-invariant. Let N{; be the subnet of N’ generated by U and P’ N (*U U U*). We wish to
know whether N{; is strongly connected or not.

Define the relation ~»C T” x T” as follows: t ~¢ ' if t,¢' € U, and there exists a place p € P’ such
that ¢t € *p and ¢/ € p*. A set V C U is closed under ~ if t € V and t ~+¢ ¢’ implies t’ € V. Notice that
U is trivially closed under ~+¢.

We have the following lemma:

Lemma19. N{; is strongly connected iff the only nonempty subset of U that is closed under ~y is U
wtself.

Proof. Let ~7; denote the reflexive and transitive closure of ~.
(=) Let V be a nonempty subset of U closed under ~»7, and let ¢ € V. Since N{; is strongly connected,
t ~7; t' for every transitiont/ € U. So U C V.
= is not strongly connected, then, since N’ is an S-net, there exist ¢,¢' € U such that ¢ ~¢
IfN[/J' t strongl ted, th 1 N'i S-net, th istt,t' € U h that ¢ t
but not t' ~3; ¢. Let V = {t |t/ ~}; ¢''}. V is nonempty because t' € V, and closed under ~¢ (follows
directly from the definition). However, V' # U because t € U \ V. O

We now define several sets of constraints on the following variables:

— A vector J € (QlTl.
— Two boolean vectors U,V € {0, 1}71

where we interpret the values of U and V as subsets of P’. Each set of constraints is to be understood

conjunctively, i.e., as if its elements were linked by AND, or by the semicolon of 2lp.

(1) Jis a semipositive T-invariant. For each p € P:

and for each t € T":

(2) 7Jis final.

Z Jt] >0

tere

(3) U is the intersection of 7" and the support of J. For each ¢ ¢ T":

Ui[t] =0

and for each t € T":

(4) Vis a subset of U. For each t € T

(5) Vis nonempty.
> v >0
teT

(6) Vis closed under ~¢;. For each ¢, € T" such that there exists p € P’ satisfying ¢t € *p and ¢’ € p*:
vl + 0] < 1+ (Y]

(this constraint is the linear equivalent of (t € VA € U) =t/ € V)

(7) V contains less transitions than U.

DoV < > uft]

el teT

Now, define the 2lp program LOGy as

(D)5 (2); (3);
not {(4); (5); (8); (M}

Proposition20. £OGx is infeasible iff N contains no final T*-invariants wrt. N'.

Proof. The feasible region of (1) and (3) is the set of triples (J,U, V) where J is a final semipositive
T-invariant and U is the intersection of T’ and the support of J. The feasible region of (4) to (7) is the
set of triples (J,U, V) where V is a proper and nonempty subset of U closed under ~»y. According to
the semantics of the not construct, LOG answers “No T*-invariants wrt. N’ iff the conjunction of the
constraints (4) to (7) is inconsistent with the conjunction of (3) and (6). Therefore, LOG N answers “No
T*-invariants wrt. N'” iff for every final semipositive T-invariant the only nonempty subset of U closed

under ~»g; is U itself. This is the case iff N contains no final T*-invariants wrt. N'. O

We illustrate the construction of LOGx by an example. Let us consider the Petri net given in the

Figure 8. The disjunctive program LOGy is given in the program notation of the CLP-tool 2lp [25]:

#define tr 4

continuous J[trl],
Ultr],

Fig.8. A P-component N; = (P, T) with F = {p,}.

vitr];
J[2] == J[1];
J[1]1 == J[2];

and (int 1=0; i < tr; i++)
either {J[i] == 0.0; U[i] == 0.0;}
or {J[i] >= 1.0; U[i] == 1.0;}

JLo] + J[1] >= 1.0;

not {
and (int 1 = 0; i < tr; i++)
{v[il <= U[il;
either V[i] == 0.0;

or V[i] == 1.0;}
V[0l + U[1] <= 1.0 + V[1];
VI1] + U[2] <= 1.0 + V[2];
V[1] + U[3] <= 1.0 + V[3];
v[2] + UL0] <= 1.0 + V[0];
VI[2] + U[1] <= 1.0 + V[1];
VI3] + U[2] <= 1.0 + V[2];

sigma (int i = 0; i < tr; i++)
V[i] >= 1.0;

sigma (int i = 0; i < tr; i++) V[i]

<=

(sigma (int i = 0; i < tr; i++) U[i]) - 1.0;
¥

6 Applications

In this section we demonstrate the applicability of our verification method by means of two examples.
We first consider a (variant of a) ring election algorithm designed by Chang and Roberts [12]. Then,
we verify Bouge’s snapshot algorithm [9]. The algorithms have been encoded in B(PN)? (Basic Petri Net
Programming Notation) [7, 5], an imperative language designed to have a simple Petri net semantics [3, 6].
1-safe Petri nets are then automatically generated by the PEP-tool [4, 1, 26].

6.1 A ring election algorithm

Specification Suppose a given distributed system which consists of N processes Py, ..., Py_1 that can
be definitely identified by identification numbers idy, ..., idy_1. Moreover, the processes are connected
via a token ring. The task of the ring election i1s the determination of an unique process, e.g. with the
highest identification number.

Ring election is often needed in distributed systems without monitor in order to enable an unique master

process to execute a critical operation [29)].

Implementation The algorithm of Chang and Roberts [12] operates as following®:

Initially every process F; sends its id; to its right process F;g1. Then, every process P; that receives an
id’ from its left process Pig1, transmits this id’ to its right process P;q1 if and only if this id’ is greater
than its own (i.e. id’ > id;). The process that finally receives its own identification number is definitely
the master process.

In the original paper [12] a terminating algorithm is introduced. We extend it to repeated ring elections
yielding a reactive system. After each ring election the master process distributes a reset signal to all
other process restarting at the beginning. The following program presents our extension for N processes
encoded in B(PN)2.

begin
var co,...cy—1 : chan 1 of {0,..., N — 1, reset};
var success : {true, false}

proc process (
const id: {0,..., N — 1},
ref in: chan 1 of {0,..., N — 1, reset},
ref out: chan 1 of {0,..., N — 1, reset})
begin
do
(out!=id);
do
(in? < id);
repeat

0

® In this context @, resp. S, stands for addition, resp. subtraction, modulo N.

(in? > id A out! = in? A in? F#reset);

repeat

in? = reset);

(
(
(out! = reset);
(
(

success’ = false);

exit
I
(in? = reset A out! = reset);
exit
od;
repeat
od
end;
process (ido, co,c1) || process (idi, c1,¢2) || ... || process (idn—1,cn—1,c0)
Py Py Prn—1
end
The token ring is modeled by the fifo queues cq, ..., cy—1 such that processes P; and Pjg are connected

via fifo ¢;. Queunes have capacity one and they are only used unidirectionally. The operation ¢;! corresponds
to a write operation in queue c;, whereas c;7 expresses a read operation from queue ¢;.
We use the boolean variable success to indicate that at least one master process is found during a single

ring election. After resetting all processes success is set to false.

Verification and results The main liveness property of the specification of the ring election is that
a master process is found infinitely often. The corresponding LTL-formula is O ¢ (success = true). We
have verified this property for N = 1...10 (N is the number of processes and fifo queues). Table 6.1
summaries the sizes of the original Petri net Nyy, and the product Biichi net N, for some representative
values of N, together with the time needed to verify the absence of T*-invariants compared to the time
SPIN [20] needed to verify the property. This example is particularly favourable to our technique due to
the fact that there exist no semipositive T-invariants containing transitions in the pre- or the postset of
the accepting places of the underlying Bichi automaton. It must also be said that the table does not
include the time needed to construct the Petri net from the B(PN)? program. This time was very large
(about half an hour for N = 10), but this is due to the fact that the implementation of the PEP-compiler
from B(PN)? into Petri nets has not been optimized yet.

6.2 A snapshot algorithm

In a distributed system each process knows only its own local state. However, under certain circumstances

one process must be able to check the local state of all other processes — not absolutely at the same time,

6 128 Mbytes main memory are exceeded.

Nays N, time (sec.)
Nolp | g7t | 1P| 71 | 2 | SPIN
5 93 91 99 96 | 1.24 2.20
6 | 117 | 115 | 123 | 120 | 2.38 9.50
7] 143 | 141 | 149 | 146 | 2.44 39.40
s | 17 | 169 | 177 | 174 | 33 | (97.30)°
9 | 201 | 199 | 207 | 204 | 3.68
10 | 233 | 231 | 239 | 236 | 5.01

Table 1. Results and comparison with SPIN for Chang and Roberts’ algorithm.

but each at a future point in time. This global state is called snapshot and makes information about stable
properties available | e.g. termination of single processes or deadlock of the whole system.
It is possible to generate this snapshot with or without a monitor process [9]. We implement a simplified

version with a monitor process presented in [2].

Specification Suppose a given distributed system with N processes and one single monitor process M.
Every process can synchronously communicate with its neighbour processes and with the monitor process.
The task of the snapshot algorithm is to enable any process at any time to initiate a snapshot that is
generated in the monitor process M. After the generation of a single snapshot all processes receive it and

they are reinitialized.

Implementation In [2] a method is presented to extend a given CSP-program [19] by means of certain
code fragments that enable repeated snapshots. Because of lack of space we omit the explanation of the
extension and refer to [9, 2] for a detailed description. However, we applied this extension to a ring ar-
chitecture with 4 processes, similar to that of the ring election of the previous section. In contrast to the
ring election which uses asynchronous communication via fifo queues, the snapshot algorithm of Bouge
uses synchronous communication. In B(PN)? synchronization is modeled by channels with capacity zero.

The following program describes the implementation for four processes connected via a ring:
begin

var co, c1,c2,cs : chan 0 of {data, signal};

var info,restart : chan 0 of {ido, 1d1,id2, 1ds};

proc process (
const id : {ido,id1,1d2,ids},
ref in : chan 0 of {data, signal},
ref out : chan 0 of {data, signal})

begin

var active, sent: {true, false} init false;

do
(active = false);
(active’ = true);
(infol = id);

repeat

(in? = signal);
do
(active = true);

exit;

(active = false);
(active’ = true);
(infol = id);
exit;

od;

repeat

(active = true A out! = signal A sent = false);
(sent’ = true);

repeat

(restart? = id);
(active’ = false);
(sent’ = false);
repeat

od

end;

proc monitor (
const 1d_0: {ido,id1,1d>,ids},
const id_1 : {ido,id1,1d>2,ids},
const 1d_2: {ido,id1,1d>,ids},
const id_3 : {ido,idy,1dz, 1ds})

begin

var rec_0, rec_1, rec_2, rec_3, snapshot_generated : {true,false} init false;

do
(info? = id_0 A rec_ 0’ = true);

repeat

(info? = id_1 A rec_1’ = true);

repeat

(info? = id_2 A rec_2’ = true);

repeat

(info? = id_8 A rec_3’ = true);

repeat

rec_0 = true A rec_ = true A rec_2 = true A rec_3 = true);
snapshot_generated’ = true);

restart! = id_0 N rec_0’ = false

)

restart! = id_2 N rec_2’ = false

restart! = id_3 N rec_3 = false

)

)

(
(
()
(restart! = id_1 A rec_1’ = false);
()
()
(

repeat
od
end;
process (idy, cg, c1) || process (idi, c1, c2) ||
process (idz, c2, c3) || process (ids, cs, co) ||

monitor (ido, idy, idy, ids)

end

Verification and results The task of the snapshot algorithm can be specified by the following LTL-

formula”:

3
a ((\/ active; = true) = osnapshot_generated = true)

i=0

The Petri net corresponding to the above-mentioned B(PN)?-program has 175 places and 178 transitions.
Moreover, this Petri net has 55 generating T-invariants®. We also tried to calculate the stubborn reduced
reachability graph using INA, but there are more than 206000 reduced states (we stopped the process
after 20 hours).

The synchronization with the Petri net associated with the Biichi automaton yields a product net with 179
places, 178 transitions, and 254 different® T-invariants that contain transitions of the pre- or the postset
of the accepting places of the underlying Buchi automaton. However, if we identify the components of the
Petri net corresponding the variables of the program, we see that no T-invariant satisfies the conditions of
a T*-invariant. We can construct the product net in 80.81 seconds and check the absence of T*-invariants

in 63.91 seconds. This example cannot!® be verified using the SPIN-tool.

7 Here, active; denotes the local variable of the i-th process.
8 We tried to calculate a semipositive base nsing INA, but INA needs more than 8 hours.
® Different w.r.t. their support.

10128 Mbytes main memory are exceeded.

7 Simple LTL

The semidecision test introduced in the previous sections is designed to capture the full expressiveness
of LTL. One question is closely related to its design:

How can we restrict LTL in order to obtain a faster semidecision test? One variation on LTL is simple
LTL, which contains only those formulae ¢ satisfying the following property: there exists a Buchi au-
tomaton A4 which accepts L(¢) such that every circuit of A, is a self-loop [8].

We call these automata simple Bichi automata. Simple LTL coincides with the logic simple PLTL¢
defined in [8] after remove its counting constraints. It is more expressive than Corbett’s w-star-less ex-
pressions [13], for which Corbett developed a semidecision test, because these expressions describe a
subclass of simple Biichi automata.

The following remarks are devoted to introduce LTL, that allows a refinement of the infeasibility test

which implies an impact on its performance.

First, we give a formal definition of simple LTL and the w-regular expressions [30] that correspond to
simple Biichi automata. We call these expressions simple regular sets. Our definition of simple regular
sets is inspired by [28] and is a generalization of Corbett’s star-less expressions.

In Section 2.2 we have defined LTL more abstractly in view of action based and state based semantics.
Now we come off this definition and define simple LTL in a more usual way, like [28], i.e., a given set of
propositions I7 and thereby X = 27,

Definition 21 Syntax of simple LTL. Given a finite set of propositions I7, simple LTL formulae are

defined inductively as follows:

— every proposition of I is a formula.
if ¢ and ¢ are formulae, then so are ¢ At and ¢ V .

— if ¢ is a formula and p is a proposition, then p U ¢ and ¢ V p are also formulae.

— if ¢ 18 a formula, then X ¢ is also a formula.

Definition 22 Semantics of simple LTL. The semantics of simple LTL is defined in a standard way.
An interpretation of a simple LTL-formula is an infinite word ¢ over the alphabet X i.e. a mapping from
the naturals to X.

—EEm if p e &(0) for m € IT.

—{FE oY, ifEE ¢ and £ F 4.
—E{EoVY,ifEEgor .
CeEpUsif3i>0: €0 Ep A Vi< pec())
S EEGVpifViz 0 peb() v Ii<i: &9 s
e X iteW o

Note, that the usual duality of U and V is not longer valid in simple LTL in general, because ¢ V p =
—(=¢ U =) is not definable in the scope of simple LTL.

For a given simple LTL formula ¢, we denote the set of models that satisfy ¢ by L(¢), i.e.

L(g) ={(el [F o}

Definition 23 Restricted regular sets [28]. Let A be a subset of X'. We define the following restricted

regular sets over X

— A is a restricted regular set.

— A”, the set of all (possibly empty) finite sequences over A, is a restricted regular set.

— AY, the set of all infinite sequences over A, is a restricted regular set.

— A® = A" U AY is a restricted regular set.

— Let & and &; be restricted regular sets. We denote by & o & the concatenation of the two sets,
defined by: & 08 ={o;0' |[ce&NE and o' € &t U{o|oe & NIV T
The set

m
H& = Eyo&lo...0&,
=0

is a restricted regular set.

If a set A is a singleton, e.g. A = {a} then we omit the brackets and write, for example, a o b instead of
{a}o{b}.

Definition 24 Simple regular sets. We call a restricted regular set R a A-set if

R:H(S;‘U‘fi)o il

1=0

for some S; C X for (1 <i<n-+1)and e € X for (1 <i < n),such that for all 1 < i < n either S; is

empty or e; denotes the empty word.
A restricted regular set £ is called a simple reqular set if

j=0
for some A-sets R; (1 <i < m).
We call a set of sequences simple regular definable if there exists an equivalent simple regular set.
Theorem 25. Given two simple reqular sets £ and &, then & N Es 1s simply regular definable.

Proof. Given & = |J/ A; and & = U;:O /1"7», we construct & N&E» = Ji ;1:20 A;; such that A; N /1"7» =
A;;. Let A; and /1"7» be A-sets given by

3

z

As

(S Ueir) oSy 44

=
I
o

3
o~

I /¥ /. 1w
A]— (S]kU6]k>OSn;+1

=
I
o

We define A;; inductively over n;
Base Case (n} =0): A; = S/:z);+1

nq

andi =] (Sik N S;j+1)* U (eik N Séj+1) o (Spo1 NS 11)
k=0

If n% + 1> 0 we have to distinguish two cases:

If Aj = S* o/llj, then A; ﬂ/lj =

U H ZkﬂS (6Z'k)ﬂS)O

—1<i<n;+1 k=0

S;O U €50 l = —
£ -1 n,

S A o [J(Squen)o Sy [Ny
Sit # 0 I+1

€ else

If A; = soA’;, then we have to consider the first occurrence of a non-empty e;; in A;. Therefore, let I/
be the minimum of {{|{ > 0 Ae; # €}.
If I/ is defined, then A, N A; =

I8 n;
U(Silﬂs)o ;»klO ((H (Sl*k. U@Z'k;)o ;LU,-I—l) ﬂA/])
=0 k=I+1

U (e N's) o ((H(ka Ueir) o ZU,H) ﬁA/j) :

k=’

If I/ is undefined, then A, N A; =

n;+1 ny
U (Sik ﬂs) 1) (Sz*k 1) H (Szk Uelk) S) ﬂA/

k=0 k=l+1

Theorem 26. Let p € X and ¢ be a simple LTL formula. Then the following holds:

L(p) =po X
L(pUg) =p"oL(9)
L(X¢) = Eoﬁ(fb)
L(¢Vp) =p= o(poZ¥NL(S))

Proof. We only proof the last equation. Let £ € L(¢ Vp),ie. £ EoVp.

SVYi>0 (p6€(i)\/3j§i : 5<J'>|:¢)

SWiz0: pe@) V(T <ic €9 EoAvk<] : pes(k)
SE=p"Vviepo(po ¥ NL(P))

S EepTo(poX¥NL(9))

Corollary 27. Let p,q € X and ¢ be a simple LTL formula. Then the following holds:

(pU(gUg)) =p"0oq Oﬁ(fb)

(pU(¢Vq)) =p*0q@o(goX¥NL())
L((eVp) V) =¢> pM)op o(poZ¥NL(¢))
L((pUe)Va) =¢®o(g0 2 Np*oL(e))

We can summarize the last two results that show which simple LTL coincides with simple regular sets

that correspond to simple Biichi automata.

Lemma 28. For every formula ¢ is L(¢) simply regqular definable.

Proof. The proof is done by induction over the structure of ¢.

Base case: see theorem 26.

Induction Step: see corollary 27 and note that simple regular sets are closed under union and intersection
(cp. theorem 25). a

Lemma 29. For every simple reqular set £ there exists a simple LTL formula ¢ such that
L(g)=¢

Proof. Let £ be the union of m simple regular set &. Now, we define a simple LTL formula ¢; recursively,
such that & = L(¢;). Note that we use yg, to denote \/sES,(/\QEs QA /\QEH\s =) (analogous e,).

Eij=5;0& 1
i = xs; Uit

Eij=ejo&ijn
Gij = Xey; N X (i j+1)

gi,n+1 = Sﬁ+1
Bintl = XSpin V false

Finally, we get:
L(d10V d20V ...V o) =&

a

Definition 30 Simple LTL_. A formula ¢ belongs to simple LTL-, iff the negation of ¢ is a simple LTL
formula, i.e. £(—¢) is simply regular definable.

Now we can make use of the previous results yielding the modified strategy for the net-theoretic approach:
For a given system N,y,, and a simple LTL- formula ¢ we construct the product net N, and check if we
can find a T-invariant of the product net that consists of exactly one transition of A4 corresponding to
a selfloop at an accepting state. In case of simple LTL_ a T-invariant includes only one accepting selfloop
and is thereby also a T*-invariant. This fact can be used as a constraint that allows cuts in the search
for such a T-invariant. Thus, in such a case we can refine the constraint (2) of LOGy of Proposition 20

yielding:

(2) 7Jis final.

dIEI>0 A Y It]1=0

teFe tg* FUF*

This refinement has an impact on the performance of the feasibility test of LOG . Altough the syntax
of LTL- is rather limited, its expressiveness still contains relevant properties:

If we consider the safety-progress classification of Chang, Manna and Pnueli [11], the classes:

— Safety,
— Guarantee,

— Obligation and Response

are included to simple LTL-. Lamport pointed out in [23] that the relevant liveness properties have the
simple structure O(p — <Oq) which as well can be expressed in simple LTL,,. Contrary, the persistence
formula [11] OO=qa with £(=C0-a) = (X 0 a)* cannot be expressed in simple LTL-,.

8 Conclusion

We have presented a semidecision test for the model-checking problem of 1-safe Petri nets and LTL.
We make use of the automata-theoretic approach to model-checking. We have shown how to reduce the
model-checking problem to the emptiness problem of a Buichi net. The test checks the presence or absence
of a particular class of T-invariants which we have called T*-invariants. If no T*-invariants are present,
then the Buchi net is empty, and the property holds. We were able to implement this check very easily
by making use of the constraint programming tool 2lp. We have shown that there exist real algorithms
for which our test allows to verify a property which cannot be proved using other exact methods.

We finish the section with some comments:

On the automata-theoretic approach to model-checking. We have shown how to lift the approach from
the level of transition systems to the Petri net level. This allows to apply different methods for emptiness
checking, not only semidecision tests. Wallner 1s working on the application of net unfoldings to the same
problem [35].

On the restriction to I-safe Petri nets. In the paper we have restricted our attention to 1-safe Petri
nets. A different version of our test, however, can also be applied to arbitrary Petri nets, even unbounded
ones (which is not true of the automata-theoretic approach). Essentially, instead of T-invariants it is
necessary to work with so called T-surinvariants.

On the T*-invariant test. The test we have developed is certainly not the only possible one. We see it
more as an experiment in using structural information to prove liveness properties of real examples. We
have implemented some such tests in the PEP-tool, which can be applied when exact methods fail.

On the complexity of the test. It may be criticized that our test involves solving an NP-complete
problem, namely the absence of T*-invariants, which may require exponential time. Actually, we think that
good tests are likely to be NP-complete. Complexity results show that almost all interesting verification
problems about 1-safe Petri nets are PSPACE-complete. Polynomial tests for such problems are bound to
have very poor quality, as confirmed by our experiments. NP-complete test lie between the poor quality

polynomial test and the PSPACE-complete exact methods.

On the implementation in 2lp. Linear programming plays an important role in net theory, but it is
often too restrictive. Constraint programming tools like 2lp open a wide range of new possibilities in the
application of structural objects like invariants, siphons and traps to verification problems. They also

allow to implement prototypes very quickly.

Acknowledgments

We wish to thank Robert Riemann for his critical comments on an earlier version of this paper. We also

benefited from numerous discussions with Frank Wallner and Ahmed Bouajjani.

A The M-net model

M-nets [6] are a class of traditional high-level Petri nets [22] with a generalized inscription of places,

transitions and arcs:
inscription = (label, annotation).

The annotation drives the vertical unfolding of a M-net into a classical P/T-nets.

Moreover, the M-net model is equipped by an algebra which allows to compose smaller M-nets to more
complex ones. This modular composition is called horizontal and is characterized by the labels of places
and transitions of an M-net. The commutativity of vertical unfolding and horizontal composition is one

of the major results of [6].

We now define the basic concepts of the M-net model.

A.1 Values, Variables and Bindings

Let us assume a fixed set of values VAL containing at least the distinguished element o. Every subset of
VAL describes a type.

Let VAR be a set of variables and OP a set of boolean and arithmetic operators, like 47, ’-7) ’<’, etc .
VT denotes the set of terms (called value terms) built from values VAL, variables VAR and operators
OP inductively in a standard way. A term without variables is called ground term.

A binding 0 1s a mapping o : VAR — VALU VAR. We canonically extend bindings of variables to bindings

of value terms.

A.2 Actions and Action Terms

We assume a given set ACT of action symbols, for short actions. Each action symbol @ € ACT has a
certain arity ar(a), representing the number of parameters. Moreover, we define a conjugation on ACT
as a bijection ~ : ACT — ACT with the following properties: for all @ € ACT: @ = a, @ # a, and
ar(a) = ar(a).

Terms a(vy,...v,) with ar(a) = n, a € ACT and v; € VT are called action terms. AT denotes the set of

all action terms. If all v; are ground terms, then we call the action term a ground action.

A.3 M-nets, their Markings and the Firing Rule

Definition 31 M-net. An M-net is a triple N = (P, T, ¢) with places P, transitions 7" and an inscription

function ¢ which labels

— each places p € P with (A,, «,) where XA € {e,0, 2} is a place label and o, C VAL is the type of p. The
place label e (resp. z) indicates p as an entry place (resp. exit place) otherwise we call p an internal
place.

— each transitions ¢t € T with (A, ;) where A; is finite multiset of action terms and «; is a finite set of
value terms.

— each arc f € (P x T) U (T x P)) with a finite multiset of variables.

Moreover, there is no incoming arc to any entry place and their type is {e}, similarly an exit place has

no outgoing arc and its type is also {e}.

An M-net is finite iff the set P of places and the set T of transitions are finite.

We define z* = {y | «((x,y)) # 0} and analogous *z = {y | ¢((y,z)) £ 0}, where z,y € P UT. An empty
arc inscription, i.e. ¢((n, m)) = @ signifies that no tokens may ever flow along that arc, i.e. there exists no
effective connection along it. If we depict M-nets we will only draw arcs with non-empty arc inscriptions.

A marking M of an M-net (P, T, ¢) is a mapping from places to finite multisets of values, respecting their
type, 1.e.
Yve VAL pe P : v&a, = (M(p))(v) =0.

Every M-net has a standard initial marking My defined by

{o} ifX, =¢

Mo(p) = { 0 else

with p € P.

Definition 32. The transition relation is a quaternary relation —C M X T X B x M where M denotes
the set of all markings of N and B denotes the set of all bindings. A quadruple (M1,t, 0, M>) is defined
to be in — iff:

— o is a binding!! of t.

— for all v € ay: v[o] = true.

— There is a marking M € M such that:
o forall pe P: Mi(p) = ¢((p,t))][e] + M(p)
o forallp e P: Ma(p) = M(p) + ¢((t,p))[c].

A sequence My Lo, My T My — ... —> My is called occurrence sequence iff there exists bindings
o; such that (M;, t;, 04, M;41) is in — for each ¢ < n.

' This binding has to fulfill some more properties that are not relevant in this paper. See [6] for the general

definition.

A.4 Some remarks on the M-net algebra

The above-mentioned algebra on M-nets contains the classical operators known from process-algebras
like CCS [27]. We need in this appendix only three of them. Let Ny, N2 be two M-nets and A C ACT be

a subset of action symbols:

— Ny || N2 denotes the parallel composition,
— Ny sy A synchronizes N; w.r.t. 4,
— Nj rs A restricts Ny w.rt. 4,

In order to explain the semantics of sy and rs we need many auxiliary notations, that are out of the
scope of our paper. The reader is referred to the original papers [3, 6]. In the next sections we show how

to create an appropriate semantics of Biichi automata by means of M-nets.

B M-net Semantics of Biuichi automata

Section 3 started with a Petri net Nyy, and an LTL formula ¢ with properties over places of N,,,. Since
markings of Petri nets put tokens on places and thereby distinguish between a marked and an unmarked
place, markings of M-nets put values, e.g. natural numbers, on places and we have to differentiate between
different values on one single place. Accordingly for a given M-net Ny, we suppose an LTL formula ¢
with properties over places and values.

The set of propositions of LTL has to be redefined in the context of M-nets, i.e. Il = P x VAL for a given
M-net (P, T,). Intuitively a proposition (p, v) € II expresses that the place p contains the value v in the
current state.

Now we redefine the product net N, for a given system Ny, and an LTL formula ¢:
Ny = 2(Noys, ||8]]) || ¥(A-g) sy Ars A
Therefore, we have to

— define a simple transformation {2 — an addition of observer transitions that are interfaces of places
appearing in propositions of ¢.
— define an M-net semantics ¥(A-4) of a Biichi automaton A-.

— specify a special set of actions A and action terms for an appropriate synchronization.

Before we give a formal definition of {2 and ¥, we want to classify our synchronization method. Godefroid

has already introduced in [18] two different synchronizations of automata:

— Two automata Ay, As are synchronized on actions iff all common actions of A; and A, are synchro-
nized, while all other actions are interleaved.
— On the contrary A; and As are synchronized on states iff the transitions of A, test the values of A

after each step of Aj.
Our synchronization is a mixed variation on both ones:

— The Biichi automaton A-4 and all transitions of the concurrent system N,,, that are connected to
places that are appearing in propositions of the formula ¢ are synchronized on actions.

— The Biichi automaton A-4 and all other transitions of N,,, are synchronized on states.

In order to guarantee synchronization on states, i.e. each step of the system is followed by a step of the

Bichi automaton, we use the same scheduler as in Section 3.

B.1 Preliminaries

Given an M-net N = (P, T,¢) we define ac(p) € ACT and @c(p) € ACT as two monadic, conjugated
action symbols for each place p € P. Moreover, let var(p) € VAR be a distinct variable for each place.

We distinguish two sets As, Ap C ACT of action symbols. The set Ag consists of four unary action
symbols {s,5,f f} = Ag (called scheduler actions) that realize the interleaving of Biichi automaton and

concurrent system. The synchronization on actions is driven by the aspect Ap given by
Ap ={ac(P),ae(P)|P"CP AN P #0}

Every action symbol ac(P’) € Ap with P’ C P has the arity ar(ac(P’)) = |P’|. In order to define

well-formed action terms built on Ap we have to suggest an arbitrary total order (P, <) on P.

B.2 The Interfaces

Definition 33 Observer interfaces. An observer interface Ob(p) for a place p € P consists of a tran-

sitions ¢* and two arcs satisfying:

W(p,1%) = o((t",p)) = var(p) and «(t") = ({@e(var(p))}, {true}).

Definition 34 Scheduler interface. The M-net Mg with

Mg

({f}, {true})

is called the scheduler interface Mg.

B.3 The Transformations

Definition 35 2-Transformation. Let N = (P,T,:) be an M-net. We define (N, P') with P’ C P
as the M-net N'||Mg where Mg is the scheduler interface and N’ is a slightly modification of N:

— for all p’ € P/ we add an observer interface Ob(p’).

— for all t € T where its postset and P’ are disjoint we add the scheduler action s € Ag to its label, i.e.
o) = (Ar + {s}, o).

— for all t € T that are connected to P’ we take the variables of the outgoing arcs of ¢ as parameters of

the action term syn(t). Using the total order (P, <) we define
syn(t) = ac(t* NP (p1, .., pn)

where t* NP = {p1,...,pn}, {pi} = ¢((pi,1)) and p1 < ... < pn. Then we add this action term to
the label of ¢:
((t) = (M +syn(t), ar)

Definition 36 ¥-Transformation. Let A-y = (X254, Q-g, Aoy, qo_,, Ig) be a labelled Biichi automa-
ton. We define ¥(Ay4) = (P, T,¢) as the M-net semantics of A~ by the following rules:

— for every state ¢ € Q- we create a place ¢ € P with inscription ¢(¢) = (0, {e}),
— moreover, we add one distinguished place psiare € P with ¢(pstart) = (e, {®}),

— the place psiqare 1s connected to go_, by a distinguished transition £¢4p¢:
t((pstart; tstart)) = t({tstart, qo_,)) = ¢ with ¢ € VAR,

for every transition t = (¢;, Ry, ¢;) € Ay we create:

e a set of transitions

My =Ste [PPC (]
(pv)€L(?)

with an inscription ¢(¢p/) given by

At = ac(P') (var(pr), ..., var(pn)) + {f} + Z ac(p”)(var(p”))

(p!',v)ER,,
pllepl

o, = {var(p”") = v | (p",v) € Ri},

with {p1,...,pn} = P and p1 < ... < pn.

/
e two transitions t”, ij

* u(tiy) = Qe o)

€T and a place pij € P with inscription:

Moo= {1+ Y @(var(p))

(p"v)EL(?)
g, = oar(p) = v | (o) € i}

* L(t;;) = ({s}, {true}),
* u(pig) = (0, {e}),
e and finally we connect A(t),#;;,/;, and p;; in the following way:
« for each t' € A(t): «((p, ")) = ¢(t', ps;)) = L((pij,t;»fj)) = ((t’;,q)) =ce VAR,
x and «((p,t};)) = «((t};,q)) = ¢ with c € VAR,

Definition37. Let N,,, = (P,T,¢) be an M-net and A4 be a labelled Biichi automaton. Then
2 (Nays, |[6]1) | ¥ (4-g) sy Ars A

with
U {ac(p),ac(p)} UAg U U {ac(P"),ae(P")}
pellll PrC|igll
is called the product net N, of Ny, and A_g.

Now, we give a small example that shows the application of . Specified in LTL the formula ¢ = o0O(2 = 0)
expresses the property that eventually the value of the variable z will always be 0. Due to the duality of
the modal operators, we can derive its negation, i.e. 7¢ = 0o =(2z = 0) = O o (x = 1). By application of
classical algorithms, we get directly the Biichi automaton A-4 depicted in Figure 9. The corresponding
M-net is shown in Figure 10. Hereby, the inscription of the places and transitions is defined by:

Fig.10. The corresponding M-net of the automaton A-g.

(0, {o} = o(P1) = «(P2) = o(Ps) = o(Pa) = o(P5) = o(Fs)
(e, {o}) = o(P7)
({s}, {true }) = o(T4) = o(Ts) = o(Tv) = o(Ths)
({f, z(2)}, {x = 0}) = o(T5) = o(T5)
({f, z(2)}, {o = 1}) = o(T7) = 1(T12)
({fe(2) £}, {2z =1}) = u(T5) = o(T11)
({fe(2) £}, {2 =0}) = o(T2) = «(Tho)
(0, {true}) = (T1).

All arcs are inscripted by an arbitrary singleton.

References

. Eike Best. Partial order verification with PEP. In D. Peled, G. Holzmann, and V. Pratt, editors, Proc,
POMIV’96, Partial Order Methods in Verification. American Mathematical Society, August 1996.

. Eike Best. Sematics of Sequential and Parallel Programs. Prentice Hall, 1996.

. Eike Best, Raymond Devillers, and Jon G. Hall. The Box Calculus: A New Causal Algebra with Multi-
Label Communication. In G. Rozenberg, editor, Advances in Petri Nets 92, volume 609 of Lecture Notes in
Computer Science, pages 21 — 69. Springer-Verlag, 1992.

. Eike Best and Hans Fleischhack. PEP: Programming Environment Based on Petri Nets. Hildesheimer
Informatik Bericht 14/95, Universtat Hildesheim, May 1995.

. Eike Best, Hans Fleischhack, Wojciech Fraczak, Richard Pinder Hopkins, Hanna Klaudel, and Elisabeth Pelz.
An M-Net Semantics of B(PN)?. In Jorg Desel, editor, Structures in Concurrency Theorey (STRICT), pages

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

85 — 100. Springer, May 1995.

. Eike Best, Hans Fleischhack, Richard Pinder Hopkins, Wojciech Fraszak, Hanna Klaudel, and Elisabeth Pelz.

A Class of Composable High Level Petri Nets. In G.De Michelis and M. Diaz, editors, Petri Nets 95, LNCS,
1995.

Eike Best and Richard Pinder Hopkins. B(PN)? — a Basic Petri Net Programming Notation. In A. Bode,
M. Reeve, and G. Wolf, editors, Proceedings of PARLFE 93, volume 694 of Lecture Notes in Computer Science,
pages 379 — 390. Springer-Verlag, 1993.

. Ahmed Bouajjani and Peter Habermehl. Constrainted Properties, Semilinear Systems, and Petri Nets. In

Ugo Montanari and Vladimiro Sassone, editors, Proceedings of CONCUR °96, volume 1119 of Lecture Notes
in Computer Science, pages 481-497. Springer, 1996.

. Luc Bouge. Repeated Synchronous Snapshots and their Implementation in CSP. In W. Brauer, editor,

Proceedings 12th ICALP, volume 194 of Lecture Notes in Computer Science, pages 63 — 70. Springer, 1981.
Allan Chang, Javier Esparza, and Jens Palsberg. Complexity results for 1-safe nets. Theoretical Computer
Sceence, 147:117 — 136, 1995.

Edward Chang, Zohar Manna, and Amir Pnueli. The Safety-Progress Classification. In F.L. Bauer,
W. Brauer, and H. Schlichtenberg, editors, Logic and Algebra of Specifications, volume 94 of NATO ASI
Series: Series ' Computing and System Science, pages 143 — 202. Springer, 1993.

Ernest Chang and Rosemary Roberts. An Improved Algorithm for Decentralised Extrema-finding in Circular
Distributed Systems. Communication of the ACM, 22(5):281 — 283, 1979.

James C. Corbett. Automated Formal Analysis Methods for Concurrent and Real-Time Software. PhD thesis,
University of Massachusetts at Amherst, 1992.

Jorg Desel. Uber den Beweis von Zielen mit linear-algebraischen Techniken. In J. Desel, E. Kindler, and
A. Oberweis, editors, Proceedings of the 3rd Workshop Algorithmen und Werkzeuge fiir Petrinetze, Forschungs-
berichte, pages 8 — 13, Karlsruhe, October 1996. AIFB Universitat Karlsruhe.

E. A. Emerson. Temporal and Modal Logic. In Jan van Leeuwen, editor, Formel Models and Semantics,
Handbook of Theoretical Computer Science, chapter 16, pages 995 — 1072. Elsevier, 1990.

Javier Esparza and Glenn Bruns. Trapping Mutual Exclusion in the Box Calculus. Theoretical Computer
Science, 153:95 — 128, 1996.

Rob Gerth, Doron Peled, Moshe Vardi, and Pierre Wolper. Simple On-the-fly Automatic Verification of
Linear Temporal Logic. In Protocol Specification Testing and Verification, pages 3—-18, Warsaw, Poland,
1995. Chapman & Hall.

Patrice Godefroid. Partial-Order Methods for Verification of Concurrent Systems, volume 1032 of Lecture
Notes in Computer Science. Springer, 1996.

C. A. R. Hoare. Communicating sequential processes. Communications of the ACM, 21(8):666 — 677, 1978.
Gerald J. Holzmann. Basic Spin Manual. AT&T Bell Laboratories, Murray Hill, New Jersey 07974.

Joxan Jaffar and Jean-Lois Lassez. Constraint logic programming. In 14th Annual ACM Symposium on
Principles of Programming Languages, 1987.

Kurt Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use, volume 1 of FATCS
Monographs on Theoretical Computer Science. Springer, 1992.

Leslie Lamport. Sometimes is sometimes not ever — On the Temporal Logic of Programs. In Proceedings of
the 7th Symposium on Principles of Programming Languages, pages 174 — 185. ACM, 1980.

Brian Mayoh, Enn Tyugu, and Tarmo Uustalu. Constraint Satisfaction and Constraint Programming: A Brief
Lead-In. In Brian Mayoh, Enn Tyugu, and Jaan Penjam, editors, Advanced Study on Constraint Programming,
volume 131 of NATO ASI Series: Series F' Computer and Systems Science, pages 1 — 16. Spinger, 1994.

Ken McAloon and Carol Tretkoff. Optimization and Computational Logic. John Wiley & Sons, 1996.

26.

27.

28.

29.
30.

31.
32.

33.

34.

35.

Stephan Melzer, Stefan Romer, and Javier Esparza. Verification using PEP. In Martin Wirsing and Maurice
Nivat, editors, Proceedings of AMAST "96, volume 1101 of Lecture Notes in Computer Science, pages 591 —
594. Springer, 1996.

Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

A. Prasad Sistla and Lenore D. Zuck. On the Eventuality Operator in Temporal Logic. In Logics in Computer
Science. IEEE, 1987.

Gerard Tel. Introduction to distributed algorithms. Cambridge Press, 1994.

Wolfgang Thomas. Automata on Infinite Objects. In Jan van Leeuwen, editor, Formal Models and Semantics,
volume B of Handbook of Theoretical Computer Science, chapter 4, pages 133 — 192. Elsevier, 1990.

Antti Valmari. A Stubborn Attack on State Explosion. Formal Methods in System Design, 1:297 — 322, 1992.
M. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computation, 115(1):1 —
37, 1994.

Moshe Y. Vardi. An Automata-Theoretic Approach to Linear Temporal Logic. In Faron Moller and Graham
Birtwistle, editors, Logics for Concurrency, volume 1043 of Lecture Notes in Computer Science, pages 238 —
266. Springer, 1995.

Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic program verification. In
Proceedings of the First Symposium on Logics in Computer Science, pages 322 — 331, Cambridge, June 1986.
F. Wallner. Model-Checking LTL using Net Unfoldings. Technical report, Technische Universitat Miunchen,
Institut fir Informatik, Forthcoming 1997.

This article was processed using the INTpX macro package with LLNCS-12 :-) style

