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Design and Implementationof the GNU INSEL-Compiler gicMarkus PizkaTechnische Universit�at M�unchenInstitut f�ur Informatikpizka@informatik.tu-muenchen.deAbstractThe syntax of the object{based language INSEL is derivated from abstract andformal concepts developed in a language{based and top{down oriented approachto construct distributed systems. The concepts of INSEL serve as the startingpoint for all resource management steps required to transform the source codeinto an e�cient running systems. A language{based approach allows to tailor theresource management system to the language concepts. This in turn allows toautomatically exploit application speci�c properties based on the language con-cepts and therefore improves e�ciency. Obviously, the success of such an approachhighly depends on the abilities of the compiler to extract language-level propertiesand exploit the analyzed information to transform source code into an e�cienttarget representation.In contrast to comparable projects and due to experiences with prototypes, theINSEL compiler gic does not use an existing high{level language such as C as anintermediate language but interfaces with a modi�ed version of the well{knownGNU C compiler gcc. This report describes the architecture of the compiler andprovides important information on the interfaces of gcc. Syntax processing andmost parts of semantic checking is accomplished by a well structured INSEL front-end. The internal representations \`RTL" and \trees" of the GNU C compiler areused to transform abstract INSEL syntax trees in a structured and 
exible wayinto the target representation.This strategy allows the construction of a fast, portable and optimizing compiler,provides reusability of existing tools such as debuggers and allows for the 
exibilityneeded in our research project without the necessity to reinvent and re-implementexisting and successful techniques.
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1 IntroductionCurrently, a broad spectrum of research activities is focusing on the transitionfrom sequential and centralized processing to distributed, parallel and cooperativecomputing. To support the construction of complex but high-quality and e�cientdistributed systems, appropriate software environments have to be provided. Theseenvironments have to ful�ll at least two somehow contradictory goals. On the onehand, they should signi�cantly ease distributed programming by hiding as manydetails of the distributed nature of the hardware con�guration as possible. Onthe other hand, performance has to be enhanced by providing adaptability andscalability without introducing distinct management overhead.New resource management systems, comprising languages and software suchas compiler, linker and operating system (OS) kernels are required to meet theserequirements. We argue that the implementation of these tools does not have tostart from scratch. Existing software can be modi�ed to meet the demands ofdistributed computing [PE97a].To provide the desired simplicity of distributed programming we chose a language-based approach. The programming language INSEL provides concepts [SEL+96] toconstruct parallel and cooperative applications on a high-level of abstraction. Thedistributed nature of the execution environment is completely hidden for the pro-grammer. The development of a new programming language supporting parallelismand cooperation eases distributed computing signi�cantly by transferring the taskof resource management completely to the system level encompassing the OS andmanagement tools.Therefore, the importance of the construction of software tools is twofold. First,their implementation demands tremendous e�orts. Second, the quality of the toolsdetermines the success of the system. This report demonstrates, that by modifyingbut basically reusing an existing compiler both aspects can be addressed to developa high-quality compiler with acceptable e�ort.1.1 Programming Language INSELINSEL [RW96, Win96] provides language concepts to develop distributed applica-tions without knowledge about details of the underlying distributed hardware con-�guration. It is a high-level, type-safe, imperative and object-based programminglanguage, supporting explicit task parallelism.INSEL objects support encapsulation and can dynamically be created duringprogram execution as instances of class describing objects, called \generators". Toprevent dangling pointers, objects are automatically deleted according to a concep-tually de�ned life-time [PE97b]. In contrast to class concepts known, as for instancein C++ [Str91] generators are integrated into the system in the same way as otherobjects and can be nested within other generators or instances and vice versa.The generator also de�nes whether objects created as instances of this generatorare active, called \actors" or passive ones. An actor de�nes a separate 
ow of controland performs concurrently to its creator. Actors are dynamically and explicitlycreated in the path of computation just like any other (passive) object withoutany references to the execution environment, such as a speci�c node or virtualmemory address. Concurrency being a language and class property has importantadvantages relative to pure OS or runtime concepts such as multi{threading. It4



1.2. Particular Advantages of the INSEL Conceptseases the task of static analyzes of the 
ow graphs and allows the compiler togenerate dedicated code for actor classes to support concurrency at runtime.INSEL objects may communicate directly in a client-server style (message pass-ing paradigm) as well as indirectly by accessing shared passive objects (sharedmemory paradigm). All requests to objects are served synchronously. In additionto the concepts listed in table 1.1, INSEL also provides common building blocksknown from other imperative languages, such as loops, case statements and blocks.concept performs commentm{actor active concurrent yet synchronized subprogramc{actor active object performing its canonic operation concurrentlyc{order passive procedure performed synchronously by two actors ina rendezvousps/fs{order passive procedure/functiondepot passive containers that might serve as typed modules or dataobjects with [a]synchronized access ordersTable 1.1: Major concepts of INSELArguments are passed either IN, OUT or transient INOUT. The semantic of INis \copy-in" [ASU88a] and OUT determines to \copy-out" the results to the calleron return of the subprogram. INOUT therefore determines \copy-restore" seman-tics. In contrast to \call-by-reference" the concept of OUT parameters warrants,that the values of arguments passed between sequential and concurrently executingcomputations are always well-de�ned either holding the value before or after thecall. Furthermore, concurrent computations do not interfere unexpectedly becauseof OUT parameters being passed.All components (actors, orders, depots, simple data objects and generators) ofan INSEL system are \elaborated" at the time computation reaches their declara-tion. Elaboration can be regarded as �xing the properties of the component andhas to be prepared by the compiler and completed at runtime. For example, theelaboration of an array generator with statically unknown boundaries is completedby determining the layout of this generator at runtime as soon as the computationreaches its declaration. Furthermore all components of an INSEL system perform a\canonic operation" that consists of elaborating the declaration part and executingthe statement part inherited from the generator. Naturally, simple data objectssuch as integers do not have a declaration or statement part resulting in an emptycanonic operation.1.2 Particular Advantages of the INSEL ConceptsThe speci�c properties of the language concepts, such as nesting, argument passing,cooperation and the conceptually de�ned lifetime of all objects, implicitly establishstrong dependencies between the objects of an INSEL system. This kind of struc-turing information has several bene�ts. First, it re
ects application-level propertiesand can therefore be exploited to enforce automated application-speci�c resourcemanagement. Second, it is implicitly determined by the programmer by employingthe language concepts without the burden of having to specify hints to the resourcemanagement system. And third, since most of these dependencies are based on classproperties, they are easy to predetermine by software tools such as the compiler.Most important of these structures is the termination dependency de�ning apartial order on the termination and deletion of objects. The lifetime of each INSEL-5



1. Introductionobject depends conceptually on exactly one other object in a way ensuring, that noobject is deleted as long as it is accessible. In particular, a component of either kindcan only be deleted as soon as its termination dependent objects are terminated.Among others, it has the consequence, that created actors have to terminate beforethe creating component can be deleted. In practice this does not impose a majorrestriction for the programmer but has major bene�cial aspects for the OS.1.3 Rede�nition of the Term \Operating System"To enforce transparent, scalable and adaptable distributed resource management,we developed the architecture of a cooperative distributed management system[Gro96, GP97]. Based on the termination dependency, INSEL objects are clus-tered to actor-contexts (ACs) forming essential units of resource management. AnAC comprises exactly one actor and all its termination dependent passive objects.With each AC, exactly one abstract manager is associated, being responsible forperforming AC-speci�c resource management, that is to ful�ll all requirements ofthe actor-context. Besides fundamental tasks such as allocating memory for thestack, heap and code of the objects within the AC, the manager might also haveto provide facilities to maintain consistency of replicated objects, enforce access re-strictions or perform load balancing. Con
icts, such as stack collisions, arising fromdi�erent managers performing their tasks in parallel are solved by communicationbetween managers according to application-level structural dependencies betweenthe ACs. This management scheme is scalable as it does not have a potential centralbottleneck and is adaptable because resource management is performed based oncharacteristics of application-level objects. For instance, the resource managementsystem implements actors in a non-uniform manner. There is no single mapping ofactors to for example UNIX processes or threads with a �xed size stack portion.De�nition 1.3.1 (Cooperating Managers) The management of the distributedsystem splits up into multiple actor-context managers performing the task of globalresource management cooperatively.
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Figure 1.1: Software instances used to implement AC managersIt should be evident, that the straight forward approach of a rigid implementa-tion of managers as objects de�ned in a runtime library would lead to an unaccept-able overhead at runtime. In fact, the result of this idea would be closely related6



1.3. Redefinition of the Term \Operating System"with an interpreter for INSEL [Wei97] with very similar performance characteris-tics. Instead, all software tools involved in management must be considered in anintegrated way as the means to implement the abstract managers. The approachtaken is to systematically incorporate manager functionality into software instancesrelated with management. Each manager may individually be constructed by com-binations of the capabilities of the software instances used. Hence, an implementedmanager might solely consist of stack managing code inlined by the compiler or itmay itself be a complex object comprising further activities. The functionality andgranularity of the manager is tailored to the requirements of its AC.Figure 1.1 illustrates software instances used to implement management facilitiesas well as it emphasizes the tight integration of all implementation techniques. Ded-icated management instances (Mdc) are created speci�cally for one AC or eventuallyeven for a single component. A common but not single implementation techniquefor Mdc instances is inlining. Md denotes management functionality that is itselfimplemented as part of distributed system and jointly usable by more than oneAC manager. Finally, Mn is used to classify node speci�c management (e.g. TLBmanagement) mostly implemented in some kind of an OS kernel.Of major importance among these implementation alternatives are naturally thecompiler and the OS kernel, as the goal of the resource management system is toimprove execution speed while reducing the size of the target representation. Hence,the basic strategy is to incorporate management functionalities into the compileror the OS kernel instead of employing inlining techniques or runtime libraries.De�nition 1.3.2 (Management Instances) The management functionality ofabstract managers is implemented by several instances of an integrated managementtool set.A main issue of the approach taken is to exploit information concerning overallsystem behavior as well as application-speci�c information gained from static anddynamic analysis to achieve adaptive resource management. Information is system-atically exchanged between the managers [GR97] of the system and interchangedbetween the management instances.
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1. IntroductionDe�nition 1.3.3 (Operating System) The operating system is the managementof the computing system. It consists of cooperating actor context managers that areimplemented by an integrated tool set.As a consequence of this approach, distributed and parallel processing (DPP) willbe fully integrated into the architecture of this OS instead of consisting of adap-tional layers that inherently introduce overhead. The accumulated overhead of allmanagement instances due to support for DPP determines a lower bound for thee�ectiveness of the distributed OS. Scalability of all management techniques de-termines the upper bound for the e�ectiveness of the distributed OS. To extractthe chance of performance bene�ts due to the utilization of distributed hardwareresources, the overhead of runtime management has to be kept as low as possiblewhich can only be reached by a thorough design of \static" management | thecompiler.1.4 Goals of the gic ProjectRespective the above explained OS architecture, the compiler dominates the re-source management system. First, it is the most important instance to analyzeapplication-speci�c properties by reading the source code. Second, decisions madeby the compiler are of major impact on the decisions made by the resource man-agement in general. The role of the compiler as part of the targeted cooperativeOS architecture is de�ned as producing suitable resources for further processing. A\resource" in this general sense is either information or executable code.As the context of the project gic is the construction of a distributed OS, themethods investigated in theory of language design and compiler construction are ofsecondary interest. Instead, the goals of gic derivate from the dominant role of thecompiler for the management system. Most relevant is:� Establishing e�ective information interchange between the compiler and othermanagement instances.� Maximum 
exibility to adapt the management to the requirements of INSEL,including decisions such as ordering of machine instructions, register allocationand stack management.� Performance of executable code produced by the INSEL compiler has to becomparable to the e�ciency of an existing language and an existing industrialstrength compiler.Besides these goals, it has to be reconsidered, that INSEL as part of a researchproject is still an experimental language. Some concepts might change while otherswill be added or removed. Hence, maintainability of the INSEL compiler has strongin
uences on the implementation techniques to choose. Some other aspects, suchas portability, the performance of the compiler itself are respected but not theobjective target of the project gic. Furthermore, it can not be neglected that theavailability of a development environment is of major importance for the successof a new language. Hence, tools such as a debugger and a pro�ler either have tobe developed in addition to the compiler or some means to enforce reusability ofexisting tools are mandatory.1.5 Terminology and TypographyIn this report, several terms meaning di�erent things to di�erent readers will beused frequently. Following de�nitions should be respected to avoid confusion:8



1.6. Outline\gcc" The \GNU C compiler" distribution consists of numerous header �les, li-braries, executables and their source �les. With \GNU C compiler" or \gcc"in emphasized letters we refer to the entire distribution.\gcc-based compiler" Such a compiler is constructed using the concepts andsource codes of gcc. Well-known examples are the compilers for C, C++ andObjective-C.\front-end" With \front-end" we denote the part of the compiler that performssyntactic and semantic analyzes.\back-end" A generic \back-end" performing optimization and generating assem-bler output is shipped with gcc and linked to gcc-based compilers.\gic" The term \gic" is used to identify the project with the goal to develop agcc-based compiler for INSEL.\RTL" This acronym stands for \Register Transfer Language" that is the mostimportant intermediate representation of gcc-based compilers.\tree" With \tree" or \tree node" in emphasized font the data structure providedby gcc as the interface for language front-ends is denoted.Terms printed in typewriter font, such as \IN",\gperf",\gic1" or \i-init.c" areeither names of executable programs or source �les or keywords of INSEL.1.6 OutlineThe rest of this report is organized as follows. In chapter 2 important questionsabout the design of gic are discussed. Section 2.1 compares the alternative ap-proaches of developing an INSEL compiler using an existing language as interme-diate representation or writing a complete source to assembler compiler. Theseconsiderations are followed by an overview of gcc in section 2.1.2 and an explana-tion of the structure of the INSEL compiler in section 2.3. Chapter 3 elaboratesdetails of the implementation of gic and is intended to serve as a starting point fordevelopers of gic and might also be helpful to implement other gcc-based compilers.Afterwards, information on how to obtain, install and use gic is given in chapter4. The report will conclude in chapter 5 with the reconsideration of results of thegic project, information about the current state and future objectives. Technicalinformation about gcc, gic and INSEL such as important �les, function, grammar,etc. is listed in the appendix.
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2 Design of gicDriven by the goals stated in 1.4, the design of the INSEL compiler focuses onmaximum 
exibility of management decisions, advanced analysis techniques, infor-mation interchange and maintainability. Although its design is based on the GNUC compiler consisting in total of more than half a million lines of code, it is wellstructured into mostly pipelined passes with well-de�ned functionality and inter-faces. The most discriminative design issue compared to other gcc-based compilersis its additional abstract syntax tree (AST) representation and attribute evaluationmethod encompassing the handling of the symbol table.2.1 Choosing the Target RepresentationA question that has to be answered when constructing a compiler for a new lan-guage is the selection of the target representation. It is not obvious that the targetrepresentation must equal executable binary code. Numerous other intermediaterepresentations for further processing are conceivable. Analyzing the bene�ts andde�ciencies of the choices is a prerequisite and will be sketched in the followingparagraphs.2.1.1 C/C++ as a Portable Intermediate RepresentationAn often performed simpli�cation in the development of the compiler in a language{based approach is to choose an existing language as intermediate representation anduse an unmodi�ed compiler to generate target code. Examples for this approachusing C or C++ are the compilers constructed in the project Diamonds [NC96]and our own prototypical INSEL implementations EVA [Rad95] and AdaM [Win95].The compiler for Napier [Dea87] goes a few steps beyond this translation schemeby exploiting extensions of GNU C, to for example place certain data in �xedhardware registers. The inherent de�ciencies common to these approaches is, thatoverall management is not integrated due to a lack of 
exibility to tune decisionsmade by the compiler. Eventually even with the result of inconsistencies but atleast either limiting the success of static optimization or of runtime management.Calling conventions, register and stack allocation and optimization techniques havestrong interferences with management techniques such as distributed shared mem-ory (DSM) [Li86] or mapping of the virtual address space. Lacking coordination ofthe capabilities of the compiler and other management instances leads to consid-erable performance degradations that can hardly be compensated with distributedexecution.In the project EVA we experienced a drastical performance degradation of 700%for INSEL relative to C. The reason is, that the level of abstraction of the interme-diate C++ code produced is too high to serve as a good starting point to producean e�cient executable. Similar performance experiences were gained with compi-lation via low{level C in AdaM. Here, the reason is, that the low{level of the codeproduced | integrated stack management, etc. | spoils the potentialities of the Coptimizer.Besides these performance experiences, it is also worth noticing that existingdeveloping tools such as source level debugger or pro�lers can not be reused withoutmajor modi�cations in these approaches. Although it is possible to insert line10



2.1. Choosing the Target Representationnumber information into C/C++ code, complete associations between the codegenerated by the C/C++ compiler and the primary INSEL source code can hardlybe established as needed to allow advanced handling of the running program, suchas source level investigation of stack frames.The obvious solution to these problems is to write a complete optimizing nativesource to binary compiler. But, the e�ort required to ful�ll this task is unacceptablein a research project that is concerned with the development of distributed OStechnology. A promising compromise is to choose an existing compiler available insource code and adapt it to INSEL.2.1.2 gcc as a Retargetable Code-GeneratorDue to its outstanding properties concerning portability, documentation, optimiza-tion and most of all support for more than a single language, the GNU C compilerwas selected as the foundation for the INSEL compiler.
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Figure 2.1: Source to target transformation using gccGNU is a Unix-compatible operating system, being developed by the Free Soft-ware Foundation and distributed under the GNU Public License (GPL). GNU soft-ware is always distributed with its sources, and the GPL enjoys anyone who modi�esGNU software and redistributes the modi�ed product to supply the sources for themodi�cations as well. In this fashion, enhancements to the original software bene�tthe software community in large. The GNU C compiler is the centerpiece of theGNU software. It is a retargetable and rehostable compiler system with multiplefront-ends and a large number of hardware targets. The crucial asset of gcc is itsmostly independency from languages and targets. It produces excellent code forboth CISC and RISC machines. The machine dependent source code represents11



2. Design of giconly 10% of the total. New targets can be added by giving an algebraic descriptionof each machine instruction. The leverage of constructing a front-end for gcc is thusenormous: currently, more than 200 con�gurations of hardware architectures andOSs are supported. Optimization techniques developed and integrated by a largecommunity are reused by all front-ends without additional e�ort and most of thetools of the GNU development environment such as the debugger gdb can be fullyreused with hardly any modi�cations.Best known of gcc is the \compiler-driver" gcc. As shown in �gure 2.1 the userusually starts the compiler-driver to request a source to target transformation in-stead of directly calling a compiler. In fact, the program gcc analyzes commandline options and calls various other executables to perform the translation. Basedon the su�x of the input �le names, language speci�c processing usually consist-ing of preprocessing and source to assembler translation is performed by calls ofthe language speci�c compilers. If not excluded with command line options, gccafterwards calls an assembler and the linker to produce an executable.Compilers based on gcc are structured into a \front-end" for language-speci�cprocessing and a generic \back-end" for optimization and target code generation.Both parts have to be statically linked to build a source to assembler compiler forone language.Front-EndsLanguage-speci�c processing is the transformation of source text into the machine-independent tree representation accepted as input by the gcc back-end. Hence, thefront-end usually encompasses scanning, parsing, semantic analyzes and �nisheswith the synthesis of gcc trees. Table 2.1 lists some of the known languages forwhich front-ends are available and the name of the respective compilers. Otherlanguage compilerC cc1C++ cc1plusObjective-C cc1objFortran 77 f77Pascal gpasAda gnat1Table 2.1: Front-ends and compiler based on the GNU C compilerfront-ends for languages such as for Java are currently under development. Dueto similarities of the language INSEL with Ada, work performed in the context ofthe Ada compiler gnat [CGS] stimulated the project gic. Ada also provides explicittasking parallelism but lacks support for transparent distributed execution.Back-EndGeneration of optimized assembler output is performed by a generic back-end com-mon to all gcc-based compilers. The front-end passes trees to the back-end andsteers the compilation by calling procedures. The trees received are �rst translatedinto the machine-dependent lisp-like internal representation RTL [Sta95] (RegisterTransfer Language). All further optimization steps operate on RTL code beforeit is translated into the �nal assembler output. The features of the back-end arenot limited to the concepts of C. Instead, it already o�ers special support for nest-ing, dynamic arrays, objects and other concepts not existing in C. Further supportis added with the integration of new front-ends. As a result, the expressiveness12



2.2. Attributed Abstract Syntax Trees - MAXof the back-end outclasses the alternative of using C as intermediate. We com-pared the performance of back-end support for nesting with the solution used inthe PASCAL to C compiler p2c. Basic tests with a loop calling a nested functionthat accesses non-local variables demonstrated, that the gcc back-end integratedsupport for nesting outperforms the alternative most e�cient solution using C byconsiderable 30%, although the back-end does not yet use \displays" but a chainof static predecessors. This simple experiment already demonstrates the signi�cantbene�t of extended management 
exibility.2.2 Attributed Abstract Syntax Trees - MAXTo be able to provide the desired advanced analysis and information interchangefacilities while still preserving maintainability, an intermediate representation sup-porting 
exible attribute evaluation in a separate compilation pass was insertedbetween the parser and the gcc back-end. Usually gcc-based compilers such as theC compiler directly call procedures of the gcc back-end in the semantic actions ofthe parser speci�cation to construct trees and steer code generation. Although itmight deliver peak performance this approach has several disadvantages:1. The design of the grammar in
uences attribute evaluation and vice versa.(a) Some syntactical errors have to be treated as if they were semantic errors.(b) Tendency to decline analyzes due to di�cult integration into the parser.2. Re-evaluation of the attributes due to new information collected by runtimemonitoring is not possible without parsing the source code.3. Maintainability of both, the grammar and attribute evaluation is distinctivelyaggravated.Besides these inherent disadvantages it is also debatable whether hand-code syntax-driven semantic analyzes with complex symbol table handling and attribute evalu-ation realized with cumbersome techniques like \back-patching" [ASU88b] deliversperformance bene�ts. Attribute evaluation created by a well designed compiler com-piler can be expected to outperform hand-coded versions if they are not optimizedwith strong e�ort.Compilers developed as part of research projects in the �eld of distributed pro-cessing often create a separate abstract syntax tree (AST) as a tree of C++ ob-jects [NC96]. Compared to a hand-coded tree of C++ objects, tool supported gen-eration of such an AST representation in general reduces memory consumption,provides better performance and eases this task considerably. Nowadays, severalcompiler construction toolkits such as ELI [Gro94] and the Cocktail tool box [GE90]o�er tools that allow to specify AST properties and attribute evaluation on a highlevel of abstraction. Because of its simplicity, integrated support for concrete toabstract syntax tree transformation and automatic attribute evaluation we decidedto use the tool MAX [PH]. Among its major concepts are:� A tuple, alternatives and list notation to specify the abstract grammar,� a functional language augmented with pattern matching and an interface toC to operate on the AST and� a predicate logic to specify context conditions for semantic checking.MAX does not impose any restrictions on the order attributes have to be evaluated.Furthermore, AST nodes can itself be referenced by attribute values. Therefore,13



2. Design of gic

Figure 2.2: Part of a MAX browser screen shot14



2.3. Structure of the Compilation Processmaximum 
exibility for static analyzes of the source code is achieved. Understand-ing and debugging of the decorated AST is supported by an interactive browser,that visualizes the AST with its evaluated attributes (see �gure 2.2).The decomposition of our prototypical compiler, that used to employ syntax-driven semantic analyzes, into separate functional units for syntax checking andsemantic analyzes using MAX, proofed to tremendously reduce the amount andcomplexity of source code as well as increased 
exibility and speed.2.3 Structure of the Compilation ProcessThe INSEL front-end is decomposed into units with well-de�ned tasks and inter-faces. Tool support is deployed where possible. Figure 2.3 illustrates the internal
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2. Design of gic2.4 Information InterchangeThe decisions to on the one hand use gcc's back-end for code generation and there-fore gaining the possibility to completely control the code produced and on the otherto �t the AST in between parsing and semantic analyzes, deliver a sound foundationto establish information interchange between the compiler and other managementinstances.In the path of semantic checking performed by MAX generated code, attributesof the AST re
ecting application level properties are evaluated. These attributesare �rst used as usual in the synthesis step to decide about target representations toproduce. In contrast to common compilation techniques, relevant attribute valuesare later on not annihilated but forwarded to the linker and the runtime managementsystem in one of two ways. In most cases information is forwarded by \inlining" datainto dedicated management code. A simple example are inlined argument valuesdetermining the required stack size being used in calls to stack allocating codeto support the creation of actors with adequate stack portions. Besides inlining,attribute values are passed as extensions of the symbol information created withthe assembler code. Hence, no additional �les and associations between attributedata and target code has to be managed, neither by the compiler nor the linker.The basic approach to establish the reverse 
ow of information from runtimemonitoring to the compiler is based on attribute rereading and dynamic reevalu-ation in the AST representation. Values are either transfered via the augmentedsymbol information if they re
ect class properties or directly transfered from thestack frames of components in execution if instance speci�c management has tobe performed. The exploitation of reverse 
ow of information is subject to futureresearch.
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3 ImplementationDue to its complexity, a complete documentation of the implementation would ex-ceed the length of this report. Instead, the subsequent sections plot signi�cantaspects of gic's implementation. The issues addressed below are intended to sketchthe e�ort that has to be invested to implement a gcc-based compiler and to punc-tuate the results gained.3.1 Interfacing with gccTo be able to interface with the gcc back-end, several data structures as well asconventions comprising naming of �les and functions have to be respected. Un-fortunately, the otherwise excellent guide \Using and Porting GNU GCC" [Sta95]consisting of more than 500 pages of detailed information on gcc, does not describehow to add a new language-speci�c front-end. In fact, there seems to be no docu-ment elaborating this capability of gcc besides a collection of 146 slides [Ken95].
RTL

TREE

 ASSEMBLERFigure 3.1: Intermediate representation in the GNU C compilerAs shown in �gure 3.1, the GNU C compiler uses internally two intermediaterepresentations: an abstract syntax tree (short \tree") data structure and the \Reg-ister Transfer Language" RTL. The interface between a language speci�c front-endand the back-end is mostly de�ned by the tree data structure. The RTL layer is notcompletely hidden by the tree representation. In fact, constructing a front-end thatomits the tree representation is feasible but would contradict the objectives of thefront-end/back-end architecture resulting in awkward properties such as increasedcomplexity, lack of portability and compatibility. Instead, RTL is reasonably ac-cessed and generated in front-ends as a short cut to, for example emit library callsor implement new language-speci�c tree nodes. Because RTL is described in de-tail in [Sta95] the rest of the explanations of the front-end/back-end interface willconcentrate on trees.3.1.1 Directory Structure and FilesExcept for C, the source code of a language-speci�c front-end is kept in a separatesubdirectory of the gcc source tree, e.g. subdirectory \cp" for the C++ front-end.Hence, to integrate a new front-end into gcc's build process, a subdirectory withpreferably the name of the language has to be created. The �les listed in table3.1 must exist within this directory to allow gcc's build process to recognize andcompile the new front-end. Calling configure in the gcc root directory calls theconfig-lang.in �les of all front-ends, creates all Make�les and C header �les whichinclude the language-speci�c header �les listed in the table.17



3. ImplementationFile ContentMakefile.in Make�le to compile the front-end.Make-lang.in Make�le fragment copied into the parent Make�le. It de-scribes how to call the Make�le of the front-end.config-lang.in Called during con�guration of gcc and used to prepare com-pilation. For example, announcing the name of the lan-guage and the compiler, applying patches or setting of plat-form speci�c options.lang-options.h De�nes a list of strings of language-speci�c options to beadded to existing options.lang-specs.h Speci�cation of the �le name su�x for this language andhow to compile such �les including calls of the assemblerand linker. Documentation is only inlined in the sourcecode of the compiler driver (gcc.c).Table 3.1: Files expected by gcc3.1.2 Front-End Interface | The Tree Data StructureMost important for the compiler writer but poorly documented is the gcc internaltree data structure. It consists of multiply linked tree nodes and access macrosto operate with these nodes. It is a common misconception that gcc would buildtrees for entire functions or even �les. In reality, the front-end interface is mostlyprocedural and trees only exist for:� types (or INSEL: generators),� variables,� expressions and� blocks.The data structure tree is a C union type consisting of �elds common to all kindsof nodes and extensions for the di�erent possible kinds, such as a reference tothe string name in case of an identi�er node or a �eld describing the size of theframe for function nodes. Furthermore, the tree structure can be extended forlanguage-speci�c processing. The kind of a tree node is determined in the �eldTREE_CODE in its common area. About 127 di�erent codes currently exist (seetree.def) comprising codes for all constructs available in C and additionals neededin other languages, front-ends were already implemented for, such as C++ andPASCAL. Many of the bits of the tree structure are used for di�erent purposesdepending on the tree code. Therefore, it is a strong recommendation to use themacros provided for convenient and e�cient access of a tree node.A front-end constructs trees by calling a small subset of the procedures of theback-end (see tree.h). It �lls important �elds, eventually performs simple opti-mization such as constant folding, passes the tree back to the back-end and requestsits immediate expansion or to �nish the compilation of the current declaration. Theback-end then creates RTL code, optimizes the RTL code and outputs assemblercode augmented with additional information for debugging or pro�ling, if activated.Besides the interface to code generation, gcc also facilitates standard tasks as aconvenience and to standardize behavior of development environments. Among theservices o�ered are for example, error reporting functions graded into error, warningand sorry (not implemented) messages. With these services error reporting is alle-viated with automatic counting of messages, a message layout that is understoodby GNU development environments and automatic tracking of include stacks.18



3.2. The INSEL Front-End3.2 The INSEL Front-EndAs explained in section 2.2, the INSEL front-end does not use the tree representationfor its own purposes but solely for code generation. Although the tree frameworkis powerful enough to support all semantic actions we decided to clearly separatelanguage-speci�c processing from code-generation. In the following paragraphs wewill �rst discuss issues of syntactic and semantic analyzes before focusing on somespecial aspects of code generation to support parallel and distributed processing.3.2.1 Scanner and ParserBecause maximum performance of the compiler is not our primary interest, syntac-tical analyzes are constructed using table generated keyword hashing, scanning andparsing by utilizing the GNU tools gperf, flex and bison. The INSEL grammarcomplies to LALR(1) and consists of 211 rules and 43 keywords. Experiences so fardemonstrate, that performance of the constructed syntactic analyzes is su�cient tocompile large units of source code.3.2.2 Abstract Syntax Tree RepresentationINSEL's abstract grammar is derivated from its concrete syntax by removing \syn-tactical sugar" (keywords, etc.) and further making adjustments to simplify at-tribute evaluation and code generation. Since the AST is not analyzed but con-structed by calling procedures, it must not comply to LALR(1) and is thereforeeasier to specify and handle relative to the pars tree. The abstract grammar isde�ned with a high-level speci�cation serving as input to MAX, which producesC code to construct and traverse the AST. The code generated by MAX is �rstused in the semantic actions of the parser to construct a \term"-representation.After parsing is �nished, the resulting bracketed term is transformed into the ASTrepresentation by MAX generated code. In contrast to terms, ASTs can be freelytraversed and decorated with attributes. This property is exploited in the projectgic to perform all semantic actions on the INSEL AST. A MAX speci�cation ingeneral and INSEL's in particular consists of three parts:1. De�nition of the abstract grammar using tuple, list and variant productions.2. Attribute part and3. predicates and context conditions to de�ne semantic rules.Supplementary functions, written in MAX's functional language or imported fromother languages can be added to support attribute evaluation and semantic checking.The concept of logical predicates and context conditions eases the task of seman-tic checking signi�cantly. Example 3.2 is taken from the INSEL AST speci�cationand illustrates some of the concepts mentioned. Each AST node of sort UsedId isdecorated with the attribute DefId referencing the node within the AST that de-�nes this identi�er. By using MAX's powerful pattern matching feature, the nodeof sort Name containing the UID node searched is retrieved and analyzed. Evaluationof this attribute commences with the nodes matched, the value of further attributes(e.g. encl_scope) and supplemental functions (e.g. lookup_DefId). Notice, thatthe required order of attribute evaluation is determined by MAX. In the contextcondition UsedId, attribute def is used in the predicate to check that no nodeof sort UsedId without a de�nition of the corresponding identi�er exists. If thepredicate fails, the supplementary function IC_error is called which in turn callserror reporting functions of gcc. Again, the order of checking context conditions isdetermined by MAX. 19



3. Implementation// def evaluates the DefId-node (either SpecId or DeclId)// that defines the used id within the syntax tree.// For the distinction of whether the used id is within a// name or not, see explanation above ("decl").ATT def( UsedId@ UID ) DefId@ :IF Name@<*, NameItem@ NI, UsedId@ UID, *> :lookup_DefId( id(UID), local_DefIds( encl_scope ( basic_gen(type( NI ) ) ) ) )ELSE lookup_DefId( id(UID), env(encl_scope(UID)) )// This condition checks whether an used id has been defined beforeCND UsedId@ UID : def(UID) # nil()| LET E==IC_Error(file(UID), line( UID )):`"Identifier \"" namepartstr( UID ) "\" not defined."'Figure 3.2: Example of a MAX attribute and context conditionThe approach, to specify target code generation (gcc trees) as an automaticallyevaluated attribute was aborted, because the otherwise most pleasant property ofautomatic determination of the order attributes are evaluated is awkward in thiscase. Naturally, the order to evaluate the code attribute is most important. Addi-tionally, importing and exporting all required interfaces between gcc and the MAXspeci�cation proofed to be too complicated. Instead, it was decided to constructthe AST and evaluate all attributes within MAX and traverse the AST separatelyin C to steer synthesis using the gcc back-end.The combination of MAX with gcc further required to redirect MAX's standarderror reporting method using \stderr" to calls of error reporting services providedby the gcc back-end.3.2.3 Symbol TableAll information about symbols of the source code referring to abstract propertiesis kept in the AST and its attributes. The front{end does not maintain a separatesymbol table besides the AST. In contrast to the front-end, the gcc back{end main-tains separate symbol information with its tree representation. The technique usedin the back-end to record trees forms a symbol table holding all information aboutthe properties of symbols needed to generate target code, such as the assemblername of a declaration or the sizes of stack frames. In addition to this target coderelated information, the gcc symbol table is also capable of storing all other semanticproperties needed for compilation. As elaborated above, this feature is not used bythe INSEL front{end. But, since other front{ends make extensive use of the symboltable features provided by gcc and each front-end at least has to support it withprocedures called by the back-end, understanding its basic structure is mandatory.Figure 3.3 illustrates the organization of the symbol table as maintained by theback{end. The gcc tree nodes are organized in linked lists and \binding levels".The links plotted in the �gure are the TREE CHAIN links chaining nodes in the samebinding level1. Fast access to the tree nodes and their �elds is achieved by a hashingmechanism that associates identi�ers with their corresponding nodes. With theservice get_identifier an identi�er tree node is retrieved or newly allocated if not1In INSEL, binding levels represent lexical scopes.20



3.2. The INSEL Front-End
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Figure 3.3: gcc symbol handlingyet existent. Each block, function and aggregate generator de�nes a new bindinglevel temporarily shading the meaning of the identi�ers on previous binding levels.Actions to take when entering or leaving a binding level vary between languagesand must therefore be implemented with each front-end.3.2.4 Synthesis: AST to tree TransformationFinal task of the front-end compiling an INSEL source text into optimized assem-bler output is to traverse the decorated AST and call procedures of the back-endto generate, pass and expand gcc trees. The concepts of the GNU C compiler of-fer a broad spectrum of alternatives for this transition. Some of the less trivialtransformational actions are explained in the following paragraphs.Creation of Actors Similar to the common nomenclature of \caller" and \callee"used for subprograms, we will use \creator" and \createe" to designate a creatingcomponent (actor, order, depot, etc.) and the newly created actor. Naturally, gccdoes not yet o�er support for \Create-Statements" similar as for \Call-Statements"since its concepts are still bound to languages that do not o�er parallelism as alanguage concept. This shortage is currently compensated by techniques integratedinto the INSEL front-end that may later on be moved to the back-end.At least two assembler level functions are generated for each actor generator: astub function implementing the functionality to prepare the createe and a computefunction that performs the statement part of the actor generator. To be able todistinguish both functions at the assembler level, the su�x \.T"2 is added to theassembler name of the compute function. The signature of the stub function isequivalent to the signature of the actor generator on the abstract level. Hence, actorsare created by calling their stub function in the same way ordinary subprogramsare called. The signature of the compute function complies to the interface of thecall to create new threads on the selected platform.The stub function of an actor generator is interspersed with two calls of theINSEL supportive environment. First, ACTOR_ALLOCATE is called to have the run-2The su�x \.T" stands for \thread". The dot was selected to avoid con
icts with user de�nablesymbols. 21
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3.2. The INSEL Front-End\callee-copies" provides similar performance to the more common \caller-copies"method. In case of \callee-copies" the callee can itself optimize argument passingby omitting the creation of copies for unused objects. \Caller-copies" on the otherhand would improve register utilization in the context of argument passing.Argument passing to actors is more complex (see �gure 3.4). Actors are essentialunits of management with an own separate stack and are often executed on a remotenode wherefore costs for communications between the createe and the creator haveto be kept as low as possible. Furthermore, the service used to create the new
ow of control for an actor often only allows to pass a single argument of a pointertype. As a result, gic's support for the creation of actors aims to reduce networkcommunication and page faults, minimizes local copying and accommodates to thethread currently used. The creator of a new actor allocates virtual memory forall arguments of the actor within the initial stack of the createe. It further copiesthe values of IN arguments directly into the allocated space. Handling of OUTadditionally requires that the destination address is stored with each OUT argumentinside the createe. To correctly and e�ciently implement INSEL's conceptuallyde�ned �nish synchronization in combination with OUT arguments of actors, thecreatee must not copy back the values of OUT arguments by itself. Instead, witheach OUT argument, two additional �elds size and previous are stored and usedby the creator to fetch the results during �nish synchronization from the createe.INOUT arguments are passed in the same way as OUT arguments with the di�erence,that the creator also copies the input value to the space allocated for the OUT valueof the argument. It is important to notice, that the computation of the createedirectly operates on the space allocated for the arguments by the creator and noadditional copies are made. As a bene�cial e�ect of this compiler supported methodto create actors, expensive heap management techniques to pass arguments to actorsare omitted.Arguments of \depots" or \c-actors" | objects encapsulating data | are han-dled similar to �eld components of the object. The component comprising theparameterized depot or c-actor simply copies the argument values to and from ar-gument �elds of the object.It is worth mentioning, that the gcc back-end also has built-in support for\callee-copies" using \invisible references" to implement call-by-value. In fact, itshould be su�cient to de�ne the macros FUNCTION_ARG_PASS_BY_REFERENCE andFUNCTION_ARG_CALLEE_COPIES in the machine depended part of gcc to activatethe \callee-copies" alternative without any changes to the front-end. We decidedto integrate this technique into the front-end for two reasons. First, IN and OUTparameters need di�erent handling and second, not to confuse other front-ends.Start and Finish-Synchronization The INSEL concept of start and �nish syn-chronization de�nes regulations for the creation/call and the deletion of an INSELcomponent. Basic regulations are for example the semantics for argument passing.In case of actors, \start-sync" and \�nish-sync" must additionally ensure that acreator is not deleted before its createes. Hence, the management system has tokeep track of all concurrently performing actors. First, for scalable decentralizedmanagement, the task of globally recording parallelism (�-structure) is split amongthe managers of actor contexts (AC). Each manager only keeps track of the ac-tors created within its AC. Second, the synchronization concept enables to performstart and �nish-sync for actors stack alike with the di�erence, that createes mayterminate at any time. Figure 3.5 illustrates an e�cient solution implemented inthe context of gic. The path of computation of AC 1 managed by manager 1 hasreached a certain call level and performs a sequential computation on the currentstack frame. By incrementing and decrementing the �eld current_comp_id, the23
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3.3. Modifications to the Back{Endin case of start and �nish-sync is solved because, naturally PI_START_SYNC andPI_FINISH_SYNC do not create actors. Additionally, the performance of the systemin general is enhanced, since many more unneeded calls are avoided.Symbol Code of gcc tree node Size/ValueCHARACTER CHAR TYPE HOST BITS PER CHARINTEGER INTEGER TYPE HOST BITS PER INTREAL REAL TYPE HOST BITS PER WORDMANAGER T RECORD TYPE runtimeSTRING T RECORD TYPE runtimeTRUE INTEGER CST 1FALSE INTEGER CST 0NULL INTEGER CST 0Table 3.2: Built{in and joint symbolsBuilt-in Generators and ConstantsFundamental prede�ned generators and constants are handled as \built{in" by thecompiler. The constants HOST_BITS_PER_CHAR and HOST_BITS_PER_INT are usuallyset to 8 and 32. A new data type for 64 bit (LONG) will be added as soon as fullhardware and OS support is available.The integration of the generators MANAGER T and STRING T into the compilerdi�ers from the technique used to de�ne the rest of the symbols listed in table 3.2.The corresponding generator de�nitions are not hard-coded into the compiler butwritten in INSEL for themselves and read by the compiler in a certain order ensuringthat none of these is used before it was compiled. The only information hard-codedinto the compiler are the names of identi�ers used to denote these generators and�elds that are to be accessed by the compiler. The advantage of this strategy istwofold. First, the 
exible integration of these types allows for rapid and frequentchanges that are due to the progress of the research project. Second, managerrecords are intensively accessed by INSEL management code outside the compilerand string operations are also written in INSEL. Hence, both generators have tobe de�ned in the runtime environment, anyway. Additionally, hard-coding thesegenerators in the compiler would introduce the risk of inconsistencies while hardlyimprove the performance of the compiler. Symbols agreed between the compilerand other mainly management instances of the system are called joint symbols.The concept of joint data structures further emphasizes the tight integration of thecompiler into the resource management system. Other joint symbols are functionsde�ned in INSEL and called by the compiler to perform complex management tasksas for example the creation of actors explained above.3.3 Modi�cations to the Back{EndIn order to meet the requirements of the new concepts of INSEL and the aim tosupport distributed processing, some parts of the back{end of gcc had to be adapted.Although most tasks could also be performed in the front{end, modifying the back{end is advantageous wherever the task would be awkward or ine�cient to performin the front-end. As a bene�cial side{e�ect, compilers for other languages alsopro�t from these changes that mainly re
ect necessities of parallel and distributedprocessing. 25



3. Implementation3.3.1 Non-Contiguous StacksDue to its well-known advantages concerning persistency and mobility of objects, weemploy a single 64 bit virtual address space for our system. A major problem in suchparallel computing environments with �ne-grain parallelism is adequate memorymanagement for multiple activities within the single non-segmented address space.First, the management has to be performed decentralized to avoid bottlenecks andsecond, the stack size required for a parallel activity can not be statically predicted.A mechanism is needed that automatically handles stack growths, collisions andover
ows.In fact, hardware should provide advanced means to monitor stack evolution ofmultiple threads and the OS has to be prepared to expand and shrink stack sizestransparently. Since hardware support is not available, we have to integrate stackchecks into the compiler. Whenever stack space is (de-)allocated, the stack-pointerhas to be checked against upper and lower bounds of the current stack segment. Ifthese limits are exceeded, the runtime manager has to (de-)allocate stack segmentsby splitting or merging free segments. To avoid expensive reorganizations of thestack space, the newly allocated stack segment does not have to be contiguouswith existing ones, establishing a fragmented stack organization. According to thefragmentation of stack space the addressing scheme of the gcc back-end had to bechanged. For example on a SUN Sparc arguments are addressed via a constanto�set from the frame-pointer (%fp). We modi�ed the addressing scheme to uselocal register %l0 as an explicit argument pointer. For further details on virtualmemory management for INSEL see [GPR97].3.3.2 TrampolineFor compatibility reasons, gcc implements pointers to nested subprograms via atrampolining technique. If the address of a nested function g is taken within functionf , a portion of code, that sets up information about static predecessors beforebranching to g is inserted in the stack frame of f and the address of the trampoline isused in place of the address of g. This technique allows to use existing libraries, suchas pthreads [OSF92] without modi�cations together with languages that supportnesting.Unfortunately, since trampoline code is statically produced by the compiler, thisstrategy hampers dynamic extensibility. Trampolines can not be dynamically placedon stack frames of existing functions at the time new functionality is to be integratedinto the running system. To overcome this de�ciency we replaced the trampoliningmechanism with a customized addressing scheme for nested functions.53.4 InteroperabilityThe INSEL compiler allows to inter-operate with functionality written in languagesother than INSEL. This section will elaborate on interfacing between INSEL and Calthough most predications also comply to other languages. Except for union typesand bit �elds, INSEL allows to construct most of the types available in C. Directexchange of global data between INSEL and C is not supported.As long as the calling conventions of INSEL (see 1.1) are considered, globalINSEL orders can be called from C. Orders are global if they are de�ned eitheron the outermost nesting level or in a not nested depot. When calling orders ofa depot, the �rst argument has to be a pointer to the depot data. Calling of Cfunctions from INSEL is possible by de�ning their interfaces in the INSEL system.5These changes a�ect gcc's �les expr.c and function.c26



3.4. InteroperabilityThe method of creating new actors as explained in 3.2.4 allows to create newactors from within C. Currently neither start nor �nish synchronization is automat-ically performed for functions written in other languages than INSEL, whereforesynchronization of the created actors is performed with the INSEL component thatcalled the C component. PI_START_SYNC and PI_FINISH_SYNC may be explicitlycalled from within C to provide synchronization of created actors with the creatingC function.
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4 Installing and Using gicThe compiler and its source code is available for interested readers. Please contactthe author (see 5.3) to obtain an up to date snapshot.4.1 Portability and Tested PlatformsCurrently, the only platform dependent code of gic is the selection of hardwiredregisters for the argument pointer and to hold the address of the current runtimemanager which is done in the machine dependent part of the back{end. Besidesthe selection of these registers, the front{end of gic itself does not impose furtherportability restrictions. Therefore, the compiler should be portable to most ofthe more than 200 con�gurations supported by gcc. More important portabilityissues are determined by the INSEL supportive environment. It strongly relieson pthreads, TCP/IP sockets, signal handling and the possibility to compute themanager register in the signal handler. Additionally, the integrated browser for theAST and its evaluated attributes can only be compiled and used on platforms witha X11 window system. On other platforms, this feature must be omitted.Implementation of gic started on HP PA{RISC workstations running HP{UX9.x. Later on, due to the requirement of the runtime system, the project migrated tothe SUN UltraSparc architecture with SUN Solaris 2.5.1. This is the only platformcurrently tested. As the project advances, gic will be ported to Linux on x86processors, UltraLinux and back to HP{UX on PA{RISC processors. As the goal ofthe MoDiS and INSEL approach is to develop a stand alone distributed operatingsystem we are also working on a new micro{kernel called DyCoS [Cze97]. The longterm target is to port gic and its supportive environment to DyCoS which willtogether with other tools such as an incremental linker form the distributed OS asexplained in 1.3.4.2 InstallationTo compile gic from source, several tools besides a C compiler, linker and make haveto be installed on the build platform:� The perfect hash generator gperf to generate the hash table for keywordhashing.� To generate the scanner, flex has to be available although lex should besu�cient with minor adaptions of the scanner speci�cation.� The parser generator bison; with adaptions of the parser speci�cation yaccwill work but was not tested, yet.Modi�cation of the keyword list, parser, abstract grammar or attribute evaluatoris only possible, if noweave is installed, too. All �les related in the de�nition ofthe INSEL syntax are written using WEB to allow automatic generation of syntaxdocumentations. MAX and its X11 browser will be made available together withgic.The process of installation of gic is straight forward. First, a gcc source dis-tribution has to be obtained and unpacked. Next step is to unpack the gic source28



4.3. Using gicdistribution inside the gcc root directory. After this, the steps described in the �leINSTALL shipped with gcc have to be performed to build and install the compilersand supportive applications for the selected languages.Simultaneous development of a gcc{based compiler by multiple developers tendsto utilize tremendous amounts of disk space. Instead of every developer using anown dedicated version of the gcc build tree (� 100MB), it is advisable to con�gureand compile gcc with the gic patches applied once and to create local working copiesusing links for all gcc �les that are not part of the INSEL front{end.4.3 Using gicAfter compilation and installation of gcc and gic, INSEL �les can be compiled usingthe compiler driver gcc. The compiler driver recognizes the language of source �lesaccording to the su�x of the �le name. For \.insel" �les, the INSEL compilergic1 is called to produce assembler code.Besides language independent options of gcc that can be used for INSEL �les aswell, gic adds two new options to the command line:-�v is a debugging option that produces line number information as well as outputabout the AST node currently processed on stdout.-�b activates the INSEL browser. After successful parsing and attribute evaluation,the X11 AST browser is started as a separate process.
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5 ConclusionTo support the development of complex but high-quality distributed systems, newprogramming environments are required. The foundation of the environment pre-sented are high-level language concepts o�ered by INSEL. Concepts and techniquesfor an innovative distributed resource management system that tightly integratescompiler, linker and OS functionalities are derivated from the language conceptsin a top-down oriented manner. We argue, that the complete set of software toolsinvolved in the transformation of a parallel program into an e�cient distributedexecutable, has to be tailored to the requirements of distributed computing. Thealternative to construct layers above existing unmodi�ed tools inherently introducesoverhead and even con
icts, limiting the potential e�ciency of distributed process-ing.Although new tools have to be constructed, existing and successful techniquesintegrated and implemented in available software can and should be reused. Mod-i�cations instead of re-inventions are necessary to decrease the development e�ortand at the same time increase the success of distributed and parallel processing.We elaborated on the construction of the INSEL compiler gic which is based on theGNU C compiler gcc to demonstrate our general strategy. The tight integrationof the modi�ed gcc into our resource management system eliminated the expensiveneed to implement a new code-generator while still preserving full 
exibility forthe source to target transformation and the opportunity to make use of a largecollection of advanced compilation techniques.Several features of the INSEL compiler constructed would either not be possiblewithout the approach taken or extremely awkward and costly to realize. Followingis a incomplete list of some important features described in the text:1. The exact frame size needed for the compute function of an actor is deliv-ered as a bene�cial side-e�ect. Optimized register allocation and eliminationsof unused expressions are automatically considered. Hence, adaptive mem-ory management for concurrent actors is supported in a way hardly possiblewithout the unique design of gic.2. Sound starting point for extended management 
exibility with dynamicattribute re-evaluation and dynamic re-compilation.3. Full control over the assembler output produced which is important to con-struct the incremental linker.4. The already existing method to forward application-speci�c information assymbol information to tools such as the linker and debugger can easily beextended to enforce information interchange between the compiler and othermanagement instances of the cooperative management system.5. Support for source level debugging and pro�ling without hardly any additionale�ort.The compiler clearly separates di�erent steps of compilation to gain 
exibilityfor techniques such as dynamic re-compilation and increase maintainability signi�-cantly to meet the requirements of our research project. The utilization of compilercompilers and most of all interfacing with the GNU C compiler reduced the e�ortinvested by some orders of magnitude. 30



5.1. Distributed and Parallel Processing5.1 Distributed and Parallel ProcessingSeveral details of code generation were discussed. Some important changes andsanctions explained, directly re
ect necessities of the distributed and parallel natureof the execution environment and account for the integration of the compiler gic inthe cooperative manager architecture presented in 1.2.The selection of a hardwired global register to hold the address of the associatedruntime manager was only possible by modifying the machine{dependent code ofthe compiler. It greatly simpli�es the handling of the manager in the compiler andthe runtime system, provides compatibility with other front{ends and enhancesthe performance of the system relative to otherwise required passing of a managerargument. Using a hardware register determines a well{de�ned interface for thekernel to operate with managers as well as it allows to communicate the concerningmanager between the kernel and runtime system using signals. It serves as a goodexample for a minor sanction with the major e�ect of an e�cient integration of allmanagement instances.Of major impact is also the automatic creation of stub functions and in general,the method used to create actors. By interfering compiler and runtime functionalityit is possible to create concurrently and remotely executing actors in a way thatminimizes page faults and supports migration due to a packed implementation ofan actor, its arguments and its manager. Integration of this method directly intothe code generator further ensures advantageous symbiosis with existing techniqueslike register allocation.Other important particularities are decisions to integrate management facilitiessuch as dynamic stack checking as much as possible into the prologue and epilogue offunctions to support incremental extensibility of the distributed system at runtime.New attributes such as non-local and needs-sync are used to steer and en-hance optimization according to the changed execution environment that comprisesmultiple threads and distributed shared memory.5.2 Current State and Future WorkCurrently, gic supports about 80% of the INSEL syntax. The runtime environmentis partially written in C and INSEL because INSEL does not support system pro-gramming. Distributed execution is currently supported on SUN UltraSprac withSolaris 2.5.1. Experiences so far are promising as on the one hand INSEL programsproof to be far less complex than multi-threaded applications written in C withexplicit message passing and on the other hand, overall management overhead isstill low (� 10%) comparing sequential performance of INSEL and C.Besides the necessity to support the complete INSEL syntax, several other majordevelopment steps are objected. Of course, further modi�cations to the back-end ofgcc will be made re
ecting the change of paradigm from centralized and sequentialto distributed and parallel processing. An important example is the integration ofdisplays [ASU88b] to implement access to non-local data for languages that supportnesting. Currently, the GNU C compiler only uses a chain of static predecessors.Assuming that levels of nesting are low and program execution is centralized, thisscheme delivers su�cient performance. In case of distributed execution, perfor-mance is unacceptable, because tracing the chain might result in memory violationsof the distributed shared memory and messages being sent for each level of nesting.Although gic does and will run as a UNIX process, it is planed to further inte-grate the compiler into the INSEL system and support the incremental constructionof the system with some kind of incremental compilation. An important milestonewill be to use INSEL depots as input and output for gic instead of UNIX �les.31



5. ConclusionAnother important step will be to enhance interoperability of INSEL with otherlanguages by providing tools to automatically convert interface de�nitions fromone language to the other. INSEL will form the common ground for all otherlanguages and serve as a sort of interface de�nition language to avoid the necessityto implement O(n2) converters.Furthermore, advanced methods to establish reverse 
ow of information fromruntime to the compiler will be developed and its capabilities investigated. It isaimed to use the information returned also to recompile existing instances of objectsif runtime monitoring indicates its necessity.Finally, we are aware, that in the �eld of parallel programming, numerous newlanguages and compilers (e.g. PSather [MFLS93]) with speci�c optimizations forparallel processing are developed. We aim to incorporate major results of workperformed in this �eld into our general approach to resource management.5.3 Contacting the AuthorFeel free to contact the author of this report if you have questions, suggestions orwant to join the project.email: pizka@informatik.tu-muenchen.deWWW: http://www.informatik.tu-muenchen.de/�pizka5.4 AcknowledgmentThis project is sponsored by the DFG (german research council) as part of theproject SFB 342: \Tools and Methods for the Utilization of Parallel Architectures".Without the help and commitment of several people, the design and the currentstate of the project would be far from where it is. Many thanks go to RichardKenner who helped us to get started with his collection of 146 slides on \Targettingand Retargetting the GNU C Compiler" [Ken95]. At the time of writing, these slidesseem to be the only written information on how to add front{ends for new languagesto gcc, besides inlined comments. Arndt Poetzsch{Hefter greatly simpli�ed andspeeded{up the development of semantic processing including attribute evaluationby providing his tool MAX. J�urgen Rudolph contributed a lot of work in the designand implementation of syntactic analyzes as well as he integrated the valuableintermediate representation of abstract syntax trees using MAX. Special thanksgo to Christian Strobl who spent a lot of time in reading huge amounts of inlinedcomments in the source code to pave the way for the project and �nally implementedconsiderable parts of the compiler. Last but not least, Claudia Eckert deservesgreatest thanks for hours of helpful discussions and also for reading and correctingthis document.
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A INSEL - SyntaxA precise explanation of the INSEL syntax is subject to a special report on usingINSEL. In contrast to this, the subsequent sections should give insights in the syntaxfor the interested reader and compiler writers. As the project advances, the syntaxwill change.A.1 KeywordsACCEPT ACCESS AND ARRAYBEGIN BLOCK CACTOR CASECONSTANT DEPOT ELSE ELSIFEND ENTRY ENUM EXITEXPORT EXTERN FALSE FORFUNCTION GENERIC IMPORT INCOMPLETELOOP MACTOR MOD NEWNONE NOT NULL OTHERSOUT PROCEDURE RECORD RETURNRTMANAGER SELECT SPEC TERMINATETHEN TRUE TYPE WHENWHILE WITH XORTable A.1: INSEL reserved wordsA.2 INSEL SyntaxThe following list of INSEL grammar rules was directly produced from the bisonparser speci�cation. The semantic actions with calls of functions provided by MAXto construct the term representation are omitted for better readability.1. compilation-unit: declaration-part2;2. declaration-part: /* empty */j declaration-part2 declaration3 ';'j declaration-part2 error ';';3. declaration : de-generator35j da-generator4j generic-generator30j generic-generator-incarnation33j object-declaration46;4. da-generator : speci�cation-part5j implementation-part9; 33



A. INSEL - Syntax5. speci�cation-part: interface-speci�cation6j no-interface-speci�cation7j function-speci�cation8;6. interface-speci�cation: interface-generator-type13 SPEC IDENTIFIERformal-in-parameter-part24limitation-part17interface-part15;7. no-interface-speci�cation: no-interface-generator-type14 SPEC IDENTIFIERformal-parameter-part20limitation-part17;8. function-speci�cation: FUNCTION SPEC IDENTIFIERformal-in-parameter-part24limitation-part17RETURN name95;9. implementation-part: interface-implementation10j no-interface-implementation11j function-implementation12;10. interface-implementation: interface-generator-type13 IDENTIFIERformal-in-parameter-part24limitation-part17declaration-and-implementation-part16;11. no-interface-implementation: no-interface-generator-type14 IDENTIFIERformal-parameter-part20limitation-part17declaration-and-implementation-part16;12. function-implementation: FUNCTION IDENTIFIERformal-in-parameter-part24limitation-part17RETURN name95declaration-and-implementation-part16;13. interface-generator-type: CACTORj DEPOT;14. no-interface-generator-type: MACTOR 34



A.2. INSEL Syntaxj PROCEDUREj ENTRY;15. interface-part : /* empty */j IS declaration-part2END opt-identi�er29;16. declaration-and-implementation-part: IS declaration-part2BEGINstatement-part52END opt-identi�er29j IS EXTERN STRING-LITERAL;17. limitation-part: import-part18 export-part19j limitation-part17 error ';';18. import-part : /* empty */j IMPORT NONE ';'j IMPORT name-list28 ';';19. export-part : /* empty */j EXPORT NONE ';'j EXPORT identi�er-list27 ';';20. formal-parameter-part: /* empty */j '(' formal-parameter-list21 ')';21. formal-parameter-list: formal-parameter22j formal-parameter-list21 ';' formal-parameter22j error ';';22. formal-parameter: identi�er-list27 ':' parameter-mode23 name95;23. parameter-mode: INj OUTj IN OUTj /* empty default: IN ! */;24. formal-in-parameter-part: /* empty */j '(' formal-in-parameter-list25 ')'; 35



A. INSEL - Syntax25. formal-in-parameter-list: formal-in-parameter26j formal-in-parameter-list25 ';' formal-in-parameter26j error ';';26. formal-in-parameter: identi�er-list27 ':' IN name95j identi�er-list27 ':' name95;27. identi�er-list : IDENTIFIERj identi�er-list27 ',' IDENTIFIER;28. name-list : name95j name-list28 ',' name95;29. opt-identi�er : /* empty */j IDENTIFIER;30. generic-generator: GENERICformal-generic-parameter-part31da-generator4;31. formal-generic-parameter-part: /* empty */j formal-generic-parameter-part31 formal-generic-parametert32 ';'j formal-generic-parameter-part31 error ';';32. formal-generic-parameter: WITH IDENTIFIERj WITH FUNCTION IDENTIFIERformal-parameter-part20RETURN name95j WITH PROCEDURE IDENTIFIERformal-parameter-part20;33. generic-generator-incarnation: NEW interface-generator-type13 IDENTIFIER ISname95 actual-generic-parameter-part34;34. actual-generic-parameter-part: /* empty */j '(' name-list28 ')';35. de-generator : TYPE IDENTIFIERIS type-part48; 36



A.2. INSEL Syntax36. type-constructor: array-type-constructor37j enumeration-constructor38j pointer-type-constructor39j range-constructor40j record-type-constructor43;37. array-type-constructor: ARRAY '[' range-part-list41']' OF type-part48;38. enumeration-constructor: ENUM '(' identi�er-list27 ')';39. pointer-type-constructor: ACCESS type-part48;40. range-constructor: simple-expression87 RANGE-POINTS simple-expression87;41. range-part-list : range-part42j range-part-list41 ',' range-part42;42. range-part : name95j range-constructor40;43. record-type-constructor: RECORD�eld-declaration-list44END RECORD;44. �eld-declaration-list: �eld-declaration45 ';'j �eld-declaration-list44 �eld-declaration45 ';';45. �eld-declaration: identi�er-list27 ':' type-part48;46. object-declaration: identi�er-list27 ':' constant-part47 type-part48 init-part51;47. constant-part : /* empty */j CONSTANT48. type-part : name95 actual-parameter-part49j type-constructor36; 37



A. INSEL - Syntax49. actual-parameter-part: /* empty */j '(' expression-list50 ')';50. expression-list : expression85j expression-list50 ',' expression85;51. init-part : /* empty */j ASSIGN-OP expression85;52. statement-part: /* empty */j statement-part52 statement53 ';'j statement-part52 error ';';53. statement : da-related-statement54j compound-statement55j simple-statement56;54. da-related-statement: call-statement57j accept-statement58j select-statement59j block-statement65;55. compound-statement: loop-statement66j if-statement69j case-statement73;56. simple-statement: assignment79j return-statement80j exit-statement81j incomplete-statement82j empty-statement83;57. call-statement : name95 actual-parameter-part49;58. accept-statement: ACCEPT IDENTIFIER;59. select-statement: SELECTselect-alternatives60select-else-part64END SELECT; 38



A.2. INSEL Syntax60. select-alternatives: select-alternative61j select-alternatives60 OR select-alternative61;61. select-alternative: when-part62 accept-alternative63j when-part62 TERMINATE ';';62. when-part : /* empty */j WHEN condition84 DO;63. accept-alternative: accept-statement58 ';'statement-part52;64. select-else-part: /* empty */j ELSE statement-part52;65. block-statement: BLOCK IDENTIFIER ISdeclaration-part2BEGINstatement-part52END opt-identi�er29;66. loop-statement: label-part67 for-while-part68LOOPstatement-part52END LOOP opt-identi�er29;67. label-part : /* empty */j IDENTIFIER ':';68. for-while-part : /*empty */j FOR IDENTIFIER IN range-part42j WHILE condition84;69. if-statement : IF condition84 THEN statement-part52elsif-part70else-part72END IF;70. elsif-part : /* empty */j elsif-part70 elsif71; 39



A. INSEL - Syntax71. elsif : ELSIF condition84 THEN statement-part52;72. else-part : /* empty */j ELSE statement-part52;73. case-statement: CASE expression85 IScase-alternatives74END CASE;74. case-alternatives: case-alternative75j case-alternatives74 case-alternative75;75. case-alternative: WHEN choices-or-others76 DO statement-part52;76. choices-or-others: choices77j OTHERS;77. choices : choice78j choices77 choice78;78. choice : expression85j range-constructor40;79. assignment : name95 ASSIGN-OP expression85;80. return-statement: RETURN expression85;81. exit-statement : EXIT opt-identi�er29;82. incomplete-statement: INCOMPLETE;83. empty-statement: NULL;84. condition : expression85; 40



A.2. INSEL Syntax85. expression : relation86j expression85 logical-operator97 relation86;86. relation : simple-expression87j simple-expression87 relational-operator98 simple-expression87;87. simple-expression: term88j simple-expression87 adding-operator99 term88;88. term : factor89j term88 multiplying-operator100 factor89;89. factor : operand90j factor89 exponentiating-operator101 operand90;90. operand : primary91j unary-operator102 operand90;91. primary : literal92j variable-or-function-call94j generating-expression96j '(' expression85 ')';92. literal : CHARACTER-LITERALj STRING-LITERALj INTEGER-LITERALj REAL-LITERALj boolean-literal93j NULL;93. boolean-literal : TRUEj FALSE;94. variable-or-function-call /* includes type conversion */: name95 actual-parameter-part49;95. name : IDENTIFIERj name95 '.' IDENTIFIERj name95 DEREFj name95 '[' expression-list50 ']'j RTMANAGER; 41



A. INSEL - Syntax96. generating-expression: NEW name95 actual-parameter-part49;97. logical-operator: ANDj ORj XOR;98. relational-operator: '='j '<'j '>'j NEj LEj GE;99. adding-operator: '+'j '�'j '&';100. multiplying-operator: '�'j '='j MOD;101. exponentiating-operator: EXP;102. unary-operator: '+'j '�'j NOT;103. sign-part : '+'j '�'j /* empty */;A.3 Abstract INSEL Grammar1. CompUnit ( DeclList2 )2. DeclList � Decl33. Decl = DaGen4 j DeGen29 j GenGen40 j GenGenIncarn41 j ObjectDecl424. DaGen ( DefId121 DaGenType19 ParamList7 Import13 Export16 TypePart31 DaBody5)5. DaBody = String133 j DeclAndImplPart66. DeclAndImplPart ( DeclList2 StatementList47 OptUsedId118 )42



A.3. Abstract INSEL Grammar7. ParamList � Param88. Param ( DeclIdList120 ParamMode9 TypeName32 )9. ParamMode = In10 j Out11 j InOut1210. In ( )11. Out ( )12. InOut ( )13. Import ( ImportPart14 )14. ImportPart = All18 j TypeNameList1515. TypeNameList � TypeName3216. Export ( ExportPart17 )17. ExportPart = All18 j DeclIdList12018. All ( )19. DaGenType = AkteurGen20 j DepotGen23 j OrderGen2420. AkteurGen = MAkteurGen21 j KAkteurGen2221. MAkteurGen ( )22. KAkteurGen ( )23. DepotGen ( )24. OrderGen = SOrderGen25 j KOrderGen2825. SOrderGen = FSOrderGen26 j PSOrderGen2726. FSOrderGen ( )27. PSOrderGen ( )28. KOrderGen ( )29. DeGen ( DefId121 TypePart31 )30. TypePartList � TypePart3131. TypePart = TypeName32 j DeGenType3332. TypeName ( Name114 ExpList78 )33. DeGenType = Array34 j Enum35 j Pointer36 j Range37 j Record38 j Empty12534. Array ( TypePartList30 TypePart31 )35. Enum ( DeclIdList120 )36. Pointer ( TypePart31 )37. Range ( Exp79 Exp79 )38. Record � FieldDecl3939. FieldDecl ( DeclIdList120 TypePart31 )40. GenGen ( DeclId123 DeclList2 DaGen4 )41. GenGenIncarn ( DeclId123 DaGenType19 TypeName32 TypeNameList15 )43



A. INSEL - Syntax42. ObjectDecl = VarObjectDecl43 j ConstObjectDecl4443. VarObjectDecl ( DeclIdList120 TypePart31 InitPart45 )44. ConstObjectDecl ( DeclIdList120 TypePart31 InitPart45 )45. InitPart = Empty125 j Exp7946. Predeclared ( DeclList2 )47. StatementList � Statement4848. Statement = CallStatement72 j AcceptStatement61 j SelectStatement5449. IfStatement ( IfRuleList50 ElsePart52 )50. IfRuleList � IfRule5151. IfRule ( Cond53 StatementList47 )52. ElsePart ( StatementList47 )53. Cond ( Exp79 )54. SelectStatement ( SelectList55 ElsePart52 )55. SelectList � SelectItem5656. SelectItem ( OptCond57 TermAcceptPart58 )57. OptCond = Empty125 j Cond5358. TermAcceptPart = Terminate59 j AcceptPart6059. Terminate ( )60. AcceptPart ( AcceptStatement61 StatementList47 )61. AcceptStatement ( UsedId124 )62. BlockStatement ( DeclId123 DeclList2 StatementList47 OptUsedId118 )63. LoopStatement ( OptDeclId119 ForWhilePart64 StatementList47 OptUsedId118 )64. ForWhilePart = Empty125 j For65 j While6665. For ( DeclId123 TypePart31 )66. While ( Cond53 )67. CaseStatement ( Exp79 CaseList68 )68. CaseList � CaseItem6969. CaseItem ( ChoiceList70 StatementList47 )70. ChoiceList � ChoiceItem7171. ChoiceItem = Exp79 j Range3772. CallStatement ( Name114 ExpList78 )73. Assignment ( Name114 Exp79 )74. ReturnStatement ( Exp79 )75. ExitStatement ( OptUsedId118 )76. IncompleteStatement ( ) 44



A.3. Abstract INSEL Grammar77. EmptyStatement ( )78. ExpList � Exp7979. Exp = Literal80 j VarOrFctAppl81 j Operation88 j GenExp8280. Literal = Int131 j Char132 j String133 j Real83 j TrueVal84 j FalseVal8581. VarOrFctAppl ( Name114 ExpList78 )82. GenExp ( TypeName32 )83. Real ( String133 )84. TrueVal ( )85. FalseVal ( )86. NilVal ( )87. ManagerVal ( )88. Operation ( Operator89 ExpList78 )89. Operator ( OpType90 File126 LineNo127 )90. OpType = LogOpType91 j RelOpType92 j ArithOpType93 j StringOpType9491. LogOpType = AndOp95 j OrOp96 j XorOp97 j NotOp9892. RelOpType= EqOp99 j LessOp100 jGreaterOp101 jNeqOp102 j LeqOp103 j GeqOp10493. ArithOpType = AddOp105 j SubOp106 j MultOp107 j DivOp108 j ModOp10994. StringOpType = ConcOp11395. AndOp ( )96. OrOp ( )97. XorOp ( )98. NotOp ( )99. EqOp ( )100. LessOp ( )101. GreaterOp ( )102. NeqOp ( )103. LeqOp ( )104. GeqOp ( )105. AddOp ( )106. SubOp ( )107. MultOp ( )108. DivOp ( )109. ModOp ( )110. ExpOp ( )111. PosOp ( ) 45



A. INSEL - Syntax112. NegOp ( )113. ConcOp ( )114. Name � NameItem115115. NameItem = UsedId124 j Deref116 j ArrayAppl117 j ManagerVal87116. Deref ( )117. ArrayAppl ( ExpList78 )118. OptUsedId = Empty125 j UsedId124119. OptDeclId = Empty125 j DeclId123120. DeclIdList � DeclId123121. DefId = SpecId122 j DeclId123122. SpecId ( Ident130 File126 LineNo127 )123. DeclId ( Ident130 File126 LineNo127 )124. UsedId ( Ident130 File126 LineNo127 )125. Empty ( )126. File = Reference134127. LineNo = Int131128. LimitPart ( Import13 Export16 )129. Constant ( )130. Ident ( )131. Int ( )132. Char ( )133. String ( )134. Reference ( )
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B INSEL Example ProgramsThe following INSEL sample programs are listed to demonstrate some of the con-cepts of INSEL and the current abilities of the compiler.B.1 Nested Function-- $Id: function.insel,v 1.2 1997/09/12 16:37:33 pizka Exp $MACTOR System ISPROCEDURE WriteChar(c: IN character) IS EXTERN "putchar";PROCEDURE WriteInt (c: IN integer) IS EXTERN "WriteInt";a: integer := 5;b: integer;FUNCTION dummy(x,y : IN integer) RETURN integer ISlokal: integer;BEGINlokal := x+y+a;RETURN lokal;END dummy;BEGINb := 1;FOR I IN 1..1000000 LOOPb := dummy(a,I);END LOOP;WriteInt (b);WriteChar('\n');END System;Although function.insel is only a simple example, it already demonstratessome of the capabilities of the INSEL compiler:� Actors: Based on the source text MACTOR system ... the actor generatorsystem is elaborated at runtime. Each instance of an actor created on behalfof this generator performs its computation concurrently to its creator.� Nesting of generators: The Order{Generator dummy is nested within actorinstances of generator system.� Access to non{local variables as done with integer a in dummy.� Integration of external functions written in other languages such as C isdemonstrated with WriteChar and WriteInt.B.2 PrimesThis example of a naive generator for prime numbers illustrates the use of INSEL'spassive objects called \depots", dynamic data structures (pointer generators and47



B. INSEL Example Programsthe NEW operator) and an actor generator PrimeTest to create actors of extremely�ne granularity. Notice, that the program only determines, that actor incarna-tions of PrimeTest may perform concurrently to their creator. It is the task ofthe distributed cooperative management system including the functionality of thecompiler to enforce e�cient execution of the computation. In the case of the primegenerator, it demands the production of alternative code representations from thecompiler. The alternatives needed for PrimeTest actors allow to perform the com-putation of PrimeTest as a usual subprogram without a new thread or by onethread performing the computations of a set of PrimeTest actors.---- primes.naive.insel--MACTOR System ISPROCEDURE OutChar(c: IN CHARACTER) IS EXTERN "putchar";PROCEDURE OutInt (c: IN INTEGER) IS EXTERN "WriteInt";isPrim : boolean; -- shared result variableDEPOT listmanager is -- Passive object generatorTYPE listpointertype IS ACCESS listitem;TYPE listitem ISRECORDnext : listpointertype;item : integer;END RECORD;TYPE myrecord ISRECORDlaenge : integer;listhead : listpointertype;END RECORD;help, helpto, helpact : listpointertype;counter : integer;tmp : myrecord;PROCEDURE PrintList ISBEGINhelp := tmp.listhead;WHILE help /= NULL LOOPOutInt(help^.item);OutChar('>');help := help^.next;END LOOP;OutChar('\n');END PrintList;FUNCTION GetNextItem RETURN INTEGER ISBEGINhelp := helpact;IF helpact^.next /= NULL THENhelpact := helpact^.next;ELSEhelpact := tmp.listhead; 48



B.2. PrimesEND IF;RETURN (help^.item);END GetNextItem;FUNCTION Count RETURN INTEGER ISBEGINcounter := 0;help := tmp.listhead;WHILE help /= NULL LOOPcounter := counter + 1;help := help^.next;END LOOP;tmp.laenge := counter;RETURN counter;END Count;PROCEDURE Addnext(add : IN integer) ISBEGINhelpact := tmp.listhead;help := tmp.listhead;helpto := NULL;WHILE help /= NULL LOOPhelpto := help;help := help^.next;END LOOP;helpto^.next := NEW listpointertype;helpto^.next^.item := add;helpto^.next^.next := NULL;tmp.laenge := tmp.laenge + 1;END Addnext;PROCEDURE Createfirst ISBEGINtmp.listhead := NEW listpointertype;tmp.listhead^.item := 2;tmp.listhead^.next := NULL;tmp.laenge := 1;helpact := tmp.listhead;END Createfirst;BEGIN -- Canonic operation of the depottmp.laenge := 0;tmp.listhead := NULL;END listmanager; -- Actor generator !MACTOR Primtest(c : IN integer; p : IN integer) ISBEGINIF c MOD p = 0 THENisPrim := false;END IF;END Primtest;prim : listmanager; -- variable local to SYSTEMlength : integer;cand : integer := 3;wurzel : integer;BEGINprim.Createfirst; 49



B. INSEL Example ProgramsWHILE prim.Count <= 200 LOOPisPrim := true;BLOCK PrimeTestBlock is -- Block syncing the testersBEGINFOR i IN 1 .. prim.Count LOOPwurzel := prim.GetNextItem;IF wurzel * wurzel <= cand THENPrimtest(cand, wurzel);END IF;END loop;END PrimeTestBlock; -- end of sync blockIF isPrim THENprim.Addnext(cand);END IF;cand := cand + 2;END LOOP;prim.PrintList;END System;Another concept illustrated in this example is the use of a block to synchronizemultiple actors. Block PrimeTestBlock at the end of the source text inside thestatement part of SYSTEM synchronizes all test actors created inside the for{loop.The computation does not leave the block before all actors created inside the loopare terminated.

50



C Interface of the gcc Back-End
C.1 Important FilesFile Contentstree.def Contains the de�nitions and documentation for the di�erent kinds (dis-tinguished by codes) of tree nodes available and used in the GNU Ccompiler.tree.h Front-end tree de�nitions for GNU compilers. De�nes the union typetree and access macros. Declarations of functions to create and expandtrees. Incomplete list of symbols that a front{end has to de�ne.toplev.c Top level of GNU compilers. Comprises main and someother very useful functions, such as error, warning, sorry andrest_of_decl_compilation.Table C.1: Important �les of gccSee insel/gcc.h for other relevant �les and functions that are needed or helpfulto develop a GNU based compiler.C.2 Symbols Front{Ends Have to De�neFollowing functions and variable identi�ers have to be declared and de�ned by eachfront{end. Documentation about the expected semantics can partially be found intree.h and must otherwise be extracted from the source codes of existing compiler,e.g. gic.� Initialization and parsing{ init lex(){ init decl processing(){ lang decode option(){ lang init(){ lang finish(){ lang identyfy(){ yyparse()

� Management of lexical scopes{ pushlevel(){ poplevel(){ insert block(){ set block(){ pushdecl(){ getdecl(){ global bindings p(){ kept level p(){ copy lang decl()� Handling of types{ incomplete type error(){ type for size(){ type for mode() { signed type(){ unsigned type(){ signed or unsigned type(){ truthvalue conversion()51



C. Interface of the gcc Back-End{ convert(){ mark addressable()� Language specific output{ print lang decl(){ print lang type(){ print lang identifier(){ print lang statistics()� Expected data{ language string{ error mark node{ integer type node

{ char type node{ viod type node{ integer zero node{ integer one node{ current function decl{ flag traditional
C.3 Important Functions Provided by gccFollowing list of C functions represents a selection of important operations providedby the generic back{end. For further information consult the source code of gcc,especially tree.h, tree.c, expr.c and stmt.c.� Access to the symbol table:{ get identifier()� To start compilation of a function:{ push function context(){ announce function(){ make function rtl(){ init function start(){ expand function start(){ expand start bindings()� Finishing compilation of a function:{ expand end bindings(){ expand function end(){ rest of compilation(){ pop function context()� Compilation of declarations{ expand decl()� Expressions{ expand expr stmt()� Code generation for loop statements{ expand end loop(){ expand exit loop() 52



C.3. Important Functions Provided by gcc{ expand exit loop if false()� Conditions{ expand start cond(){ expand start elseif(){ expand start else(){ expand end cond()� Error reporting{ error(){ warning(){ sorry()
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