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TUM-INFO-01-I0707-0/1.-FI

Alle Rechte vorbehalten

Nachdruck auch auszugsweise verboten

c©2007

Druck: Institut für Informatik der

Technischen Universität München



Fast Lowest Common Ancestor Computations in Dags

Stefan Eckhardt Andreas M. Mühling Johannes Nowak
Fakultät für Informatik, Technische Universität München,

Boltzmannstraße 3, D-85748 Garching bei München, Germany

{eckhardt,muehling,nowakj}@in.tum.de

Abstract

This work studies lowest common ancestor problems in directed acyclic graphs. We
present fast algorithms for solving the All-Pairs Representative LCA and All-

Pairs All LCA problems with expected running time of O(n2 log n) and O(n3 log log n)
respectively. The speed-ups over recently developed methods are achieved by applying
transitive reduction on the input dags. The algorithms are experimentally evaluated
against previous approaches demonstrating a significant improvement. On the purely
theoretical side, we improve the upper bound for All-Pairs Representative LCA to
O(n2.575) and the upper bound for All-Pairs All LCA to O(n3.3399). We give first fully
dynamic algorithms for both All-Pairs Representative LCA and All-Pairs All

LCA . Here, the update complexities are O(n2.5) and O(n3) respectively, with constant
query times.

1 Introduction

Causality systems or other kinds of entity dependencies are naturally modeled by directed
acyclic graphs (dags). Thinking of causal relations among a set of events, natural questions
come up, such as: Which event entails two given events? What is the last event which entails two
given events? Transferring these questions to dags, answers are found by computing common
ancestors (CAs), i.e., vertices that reach via any path each of the given vertices, and computing
lowest common ancestors (LCAs), i.e., those common ancestors that do not reach any other
common ancestor of the two given vertices.

Although LCA algorithms for general dags are indispensable computational primitives, they
have been found an independent subject of studies only recently [7, 6, 17]. There is a lot
of sophisticated work devoted to LCA computations for the special case of trees (see, e.g.,
[16, 20, 6]), but due to the limited expressive power of trees they are often applicable only
in restrictive or over-simplified settings. There are numerous applications for LCA queries in
dags, e.g., object inheritance in programming languages, lattice operations for complex systems,
lowest common ancestor queries in phylogenetic networks, or queries concerning customer-
provider relationships in the Internet. For a more detailed description of possible applications,
we refer to [6, 5]. The algorithmic variants studied in this paper are:
All-Pairs Representative LCA : Compute one (representative) LCA for each pair of
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vertices, and
All-Pairs All LCA : Compute the set of all LCAs for each pair of vertices.

1.1 Related Work

LCA algorithms have been extensively studied in the context of trees with most of the research
rooted in [2, 22]. The first optimal algorithm for the all-pairs LCA problem in trees, with
linear preprocessing time and constant query time, was given in [16]. The same asymptotics
was reached using a simpler and parallelizable algorithm in [20]. Recently, a reduction to range
minimum queries has been used to obtain a further simplification with optimal bounds on
running time [6]. More algorithmic variants can be found in, e.g., [8, 25, 24, 9].

In the more general case of dags, a pair of nodes may have more than one LCA, which leads
to the distinction of representative versus all LCA solutions. In early research both versions
still coincide by considering dags with each pair having at most one LCA. Extending the work
on LCAs in trees, in [18], an algorithm was described with linear preprocessing and constant
query time for the LCA problem on arbitrarily directed trees (or, causal polytrees). Another
solution was given in [3], where the representative problem in the context of object inheritance
lattices was studied. The approach in [3], which is based on poset embeddings into boolean
lattices yielded O(n3) preprocessing and log n query time on lower semi-lattices.

The representative LCA problem on general dags has been recently studied in [7, 6, 17].
Both works rely on fast matrix multiplications (currently the fastest known algorithm needs

Õ(nω), with ω < 2.376 [11]) to achieve Õ(n
ω+3

2 ) [6] and Õ(n2+ 1

4−ω ) [17] preprocessing time
on dags with n nodes and m edges. For sparse dags, in [17], an O(nm) algorithm has been
presented as well.

The authors of [5] study variants of the representative LCA problem, namely (L)CA compu-
tations in weighted dags and the All-Pairs All LCA problem, i.e. finding all LCAs for each
vertex pair. For the latter problem, an upper bound of O(n3+µ) 1 is shown, as well as algorithms
with scaling properties. In [6], a short experimental study of the performance of All-Pairs

Representative LCA algorithms is presented. It is demonstrated, that a suboptimal but
simple O(n3) algorithm is the best practical choice.

1.2 Results

We summarize the technical contributions of this paper.

1. We present fast algorithms for solving the All-Pairs Representative LCA and All-

Pairs All LCA problems with expected running time of O(n2 log n) and O(n3 log log n)
respectively. The speed-ups over recently developed methods is achieved by applying
transitive reduction on the input dags.

1Throughout this work, ω(x, y, z) is the exponent of the algebraic matrix multiplication of a nx × ny with a
ny×nz matrix. Let µ be such that ω(1, µ, 1) = 1+2µ is satisfied. The fastest known algorithms for rectangular
matrix multiplication imply µ < 0.575 and ω(2, 1, 1) < 3.3399
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2. For All-Pairs Representative LCA , we improve previous approaches in [6, 17] to
O(n2+µ) by straightforward application of fast rectangular matrix multiplication.

3. We improve the recently shown upper bound for All-Pairs All LCA from O(n3+µ)
to O(nω(2,1,1)). This result is achieved by applying matrix multiplication to computing
witness matrices W (v) for each vertex v ∈ V , where a W (v)[x, y] indicates that v is a CA,
but not a LCA of (x, y).

4. We give first fully dynamical algorithms for both All-Pairs Representative LCA

and All-Pairs All LCA . Here, the update complexities are O(n2.5) and O(n3) respec-
tively, with constant query times. The update complexities improve over recomputing the
solutions from scratch. The dynamic algorithms are based on a technique which reduces
the matrix multiplications in the static solutions to transitive closure computations in
corresponding dags.

5. We study LCA computations experimentally. We demonstrate that simplicity and the
transitive reduction technique are fundamental to practically efficient algorithms. Fur-
thermore, we evaluate the running time of several All-Pairs Representative LCA

and All-Pairs All LCA algorithms in different settings.

2 Preliminaries

Let G = (V, E) be a directed graph. Throughout this work we denote by n the number of
vertices and by m the number of edges. G is a directed acyclic graph (dag) if and only if G
contains no cycles. Let Gclo = (V, Eclo) denote the transitive closure of G, i.e., the graph having
an edge (u, v) if v is reachable from u over some directed path in G. Similarly, let Gred = (V, Ered

be the transitive reduction of G, i.e., the smallest graph G′ such that Gclo = G′

clo. Throughout
this work, let |Ered | = mred. Observe that the transitive reduction of a dag G is a subgraph of
G [1].

A dag G = (V, E) imposes a partial ordering on the vertex set. Let N be a bijection from V
into {1, . . . , n}. N is said to be a topological ordering if N(u) < N(v) whenever v is reachable
from u in G. Such an ordering is consistent with the partial ordering of the vertex set imposed
by the dag. A value N(v) is said to be the topological number of v with respect to N . In many
contexts a consistent ordering is called a topological ordering of the vertex set. Observe that
a graph G is a dag if and only if it allows some topological ordering (folklore). Moreover, a
topological ordering can be found in time O(n+m) [12]: perform a depth-first-search on G and
insert each finished vertex at the front of a linked list. Then, the order of the vertices in the
list from left to right is a topological ordering. For technical reasons, we assume N(nil) = 0
throughout this work. We usually consider dags equipped with some topological ordering. In
such cases we often omit the ordering. We refer to a vertex z which has the maximal topological
number N(z) among all vertices in a set as the rightmost vertex.

Let G = (V, E) be a dag and x, y, z ∈ V . The vertex z is a common ancestor (CA) of x and
y if both x and y are reachable from z, i.e., (z, x) and (z, y) are in the transitive closure of G.
By CA(x, y), we denote the set of all CAs of x and y. A vertex z is a lowest common ancestor
(LCA) of x and y if and only if z ∈ CA(x, y) and for each z′ ∈ V with (z, z′) ∈ Eclo we have
z′ 6∈ CA(x, y). LCA(x, y) denotes the set of all LCAs of x and y.
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3 Fast LCA Algorithms

The algorithms we present in this section are based on the algorithms described in [5]. The
following lemma is fundamental to the speed-ups that lead to practically fast algorithms.

Lemma 1. For all x, y, z ∈ V , it is true that z = LCAG(x, y) if and only if z = LCAGred
(x, y).

Proof. Suppose, for the sake of contradiction, that z is a LCA of (x, y) in G, but not in Gred.
Then, by definition, either z is not a common ancestor of x and y in Gred or there exists a
common ancestor z′ of x and y such that z reaches z′ in Gred. Since the transitive relationships
between each pair of nodes is maintained between G and Gred, both implies that z cannot be
a LCA of x and y, contradiction the assumption. The opposite direction is analogous.

The above lemma implies that LCA computations in a dag G can be restricted to the graph
Gred. Observe, however, that this does not directly apply to LCA problems involving distances
[5]. The restriction to the transitive reduction turns out to be of critical importance in designing
practically fast algorithms for All-Pairs Representative LCA and All-Pairs All LCA

. Moreover, it is possible to explain the fast running times by analyzing the algorithms on
random dags.

3.1 All-Pairs Representative LCA

In [5], a dynamic programming algorithm which solves All-Pairs Representative LCA in
worst case time O(nm) is given. Applying Lemma 1 yields Algorithm 1

Algorithm 1: All-Pairs Representative LCA

Input: A dag G = (V,E)
Output: An array R of size n× n where R[x, y] is an LCA of x and y

begin1

Initialize R[x, y]← nil2

Compute the transitive reduction Gred and the transitive closure Gclo of G3

Compute a topological ordering N4

foreach v ∈ V in ascending order of N(v) do5

foreach (v, x) ∈ Ered do6

foreach y ∈ V with N(y) ≥ N(v) do7

if (x, y) ∈ Eclo then R[x, y]← x8

else if N(R[v, y]) > N(R[x, y]) then R[x, y]← R[v, y]9

end10

end11

end12

end13

Theorem 2. Algorithm 1 solves All-Pairs Representative LCA in O(n mred).

Proof. The algorithms presented [15] and [21] can be used to compute the transitive reduction
and the transitive closure of G in time O(n mred). The improvement in [21] is even faster. The
running time of the loop in lines 5-9 can clearly be bounded by O(n mred) by construction.
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Although the modified algorithm offers no theoretical advantage in the worst case, its supe-
rior practical performance can be explained by considering the expected value of the parameter
mred on random dags. Undirected graphs are studied under two popular random graph models,
Gn,p and Gn,M . Throughout this work, we restrict ourselves to random dags in the Gn,p model.
In this model, each possible edge in the graph is chosen independently with equal probability
p, where 0 < p < 1. A generalization of the random graph models for undirected graphs to
directed acyclic graphs was offered by Barak and Erdős[4]. Consider an arbitrary (but fixed)
ordering of the vertices of an undirected random graph and direct each edge from the lower to
the higher indexed vertex.

The following lemma is due to Simon [21].

Lemma 3. Let G = (V, E) be a random dag in the Gn,p model. Let mred be a random variable
denoting the number of edges in the transitive reduction of G. Then

E[mred] = O(n logn)

Corollary 4. Let G = (V, E) be a random dag in the Gn,p model. Then, the expected running
time of Algorithm 1 on G is O(n2 log n).

3.2 All-Pairs All LCA

We improve the algorithms for All-Pairs All LCA presented in [5] by applying Lemma 1.
Algorithm 2 is quite natural. First, it computes the transitive closure of G in O(nm). Then,

for every vertex z and every pair (x, y) it determines in time O(out-deg(z)) if z is an LCA of
(x, y). If z is a CA of (x, y), but none of its children, then z is LCA of (x, y). Checking whether
a given vertex is a CA of a vertex pair can be done by simple transitive closure look-up. The
total running time of the original algorithm is O(n2m). For this approach, Lemma 1 yields
directly an improvement by considering Gred instead of G. The bound on the expected running
time follows from Lemma 3

Theorem 5. The time needed by Algorithm 2 to solve All-Pairs All LCA on G = (V, E) is
bounded by O(n2 mred). Let G = (V, E) be a random graph in the Gn,p model. Then, Algorithm
2 solves All-Pairs All LCA on G = (V, E) in expected time O(n3 log n).

Algorithm 3 is based on dynamic programming and adopts ideas from Algorithm 1. Recall
that z ∈ CA(x, y) is an LCA of x and y if there is no other vertex z′ ∈ CA(x, y) such that
(z, z′) ∈ Eclo.

The set LCA(x, y) is iteratively constructed by merging the sets LCA(xℓ, y). In the merging
steps, all those vertices are discarded that are predecessors of some other vertices in the set. In
[5], it is shown that the merging operation can be performed in time O(min{n, k2}), where k
is the maximum cardinality of any LCA set. This finding allows for scaling with the maximal
LCA sets. Observe, however, that even for sparse graphs with m = O(n), the total size of the
LCA sets can be Ω(n3) [5].

Note that if we do not know k in advance, we can decide on-line which merging strategy
to use, without changing the asymptotic run-time: start Algorithm 3 with naive merging until
a vertex is reached in Line 4 having more LCAs with some neighbor vertex (Line 10) than
prescribed by some threshold. If this happens start the algorithm anew with refined merging.
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Algorithm 2: All-Pairs All LCA 1

Input: A dag G = (V,E)
Output: An array A of size n× n where A[x, y] is the set of all LCAs of x and y

begin1

Compute the transitive closure Gclo and the transitive reduction Gred of G2

Compute a topological ordering N3

foreach v ∈ V do4

foreach x, y ∈ V with N(v) ≤ N(x), N(y) do5

lowest = false6

if (v, x) ∈ Eclo AND (v, y) ∈ Eclo then lowest = true7

foreach z ∈ V such that (v, z) ∈ Ered do8

if (z, x) ∈ Eclo AND (z, y) ∈ Eclo then lowest = false9

end10

if (lowest) then A[x, y]← {v}11

end12

end13

end14

Theorem 6. The time needed by Algorithm 3 to solve All-Pairs All LCA on G = (V, E)
is bounded by O(n mred min{n, k2}), where k is the maximum LCA set. Let G = (V, E) be a
random dag in the Gn,p model. Then, Algorithm 3 solves the All-Pairs All LCA problem
in expected time O(n2 log n min{n, k2}).

As an immediate consequence we obtain fast algorithms for testing lattice-theoretic prop-
erties of posets represented by dags.

Corollary 7. Let G = (V ; E) be a random dag in the Gn,p model. Testing whether a given
dag is a lower semi-lattice, an upper semi-lattice, or a lattice can be done in expected time
O(n2 log n).

Algorithm 4 is based on the following idea. Suppose we are given a vertex z and want to
determine all pairs (x, y) for which z is an LCA. To this end, we employ an All-Pairs Rep-

resentative LCA algorithm on G using a topological ordering that maximizes N(z). Since
All-Pairs Representative LCA algorithms return rightmost LCAs, this approach guar-
antees that z is returned for the appropriate pairs. This can even be improved by maximizing
the topological numberings of vertices an a path simultaneously. For more details, we refer to
[5]. In Section 5, we empirically demonstrate the benefits of using path covers.

Theorem 8. The time needed by Algorithm 4 to solve All-Pairs All LCA on G = (V, E)
is bounded by O(n mred w), where w is the size of path cover. Let G = (V, E) be a random dag
in the Gn,p model. Then, Algorithm 4 solves All-Pairs All LCA in expected time O(n3) for
log2 n/n ≤ p < 1 and expected time O(n3 log log n) for 0 < p < log2 n/n.

Proof. The running time of algorithm 4 is given by O(n mred w) where w is the width of the
path cover of G. To analyze the expected running on a random dag, we use the following lemma
[21]:
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Algorithm 3: All-Pairs All LCA 2

Input: A dag G = (V,E)
Output: An array A of size n× n where A[x, y] is the set of all LCAs of x and y

begin1

Compute the transitive closure Gclo and the transitive reduction Gred of G2

Compute a topological ordering N3

foreach v ∈ V in ascending order of N(v) do4

foreach y ∈ V with N(v) < N(y) do5

if (v, y) ∈ Eclo then A[v, y]← {v}6

end7

foreach (v, x) ∈ Ered do8

foreach y ∈ V with N(x) < N(y) do9

if (x, y) ∈ Eclo then A[x, y]← {x}10

else A[x, y]← Merge(A[v, y], A[x, y])11

end12

end13

end14

end15

Lemma 9. Let G = (V, E) be a random dag in the Gn,p model. Then, there exists an algorithm
that computes a path cover of G of width w and the transitive reduction of G in time O(w mred).
Moreover

E[w mred] =

{

O(n2) for log2 n/n ≤ p < 1
O(n2 log log n) otherwise

Algorithm B in [21] with running time O(n+m) yields a path cover of size w satisfying the
conditions of the above lemma. Hence, the theorem follows.

4 Theoretical Improvements

4.1 All-Pairs Representative LCA

Kowaluk et al. [17] observed that rightmost LCAs are found by computing maximum witnesses
for boolean matrix multiplication. Let A, B, and C be boolean n× n matrices such that C =
A · B. We have C[i, j] = 1 if and only if there exists 1 ≤ k ≤ n such that A[i, k] = 1 = B[k, j];
in this case, we call k a witness for C[i, j]. We call k a maximum witness for C[i, j] if k is the
maximum one among all C[i, j]-witnesses.

Proposition 10. [17] Let G = (V, E) be a dag and let N be a topological ordering. Let A be the
adjacency matrix of the transitive closure (cloG) such that the vertices are ordered corresponding
to N . Then z is a rightmost ancestor of (x, y) if and only if z is a maximum witness for C[x, y],
where C = AT · A.

We briefly describe how to improve the approach taken in [17] by using fast rectangular
matrix multiplication [10] for computing the maximum witnesses. In the following, we assume
that we have already computed the adjacency matrix A of the transitive closure (cloG) of G in
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Algorithm 4: All-Pairs All LCA 3

Input: A dag G = (V,E)
Output: An array A of size n× n where A[x, y] is the set of all LCAs of x and y

begin1

Compute the transitive closure Gclo and the transitive reduction Gred of G2

Compute a path cover P of G3

foreach p ∈ P do4

Compute a topological ordering N such that N(z) is maximal for all vertices of p5

Solve All-Pairs Representative LCA with respect to N on Gred and get array R6

foreach (x, y) with R[x, y] = z and z ∈ P do7

A[x, y]← A[x, y] ∪ {z} (by multi-set-union)8

end9

end10

Remove elements of multiplicity greater than one from A[x, y] for all x, y ∈ V11

end12

Algorithm 5: All-Pairs Representative LCA

Input: A dag G = (V,E)
Output: An array R of size n× n where R[x, y] is an LCA of x and y

begin1

Initialize R[x, y]← nil2

Compute the transitive closure TC(G) and a topological ordering N of G3

foreach v ∈ V in ascending order of N(v) do4

foreach (v, x) ∈ E do5

foreach y ∈ V with N(y) ≥ N(v) do6

if (x, y) ∈ (cloG) then R[x, y]← x7

else if N(R[v, y]) > N(R[x, y]) then R[x, y]← R[v, y]8

end9

end10

end11

end12

time O(min{nm, nω}). Also, we assume implicitly that the rows and columns in A are ordered
according to a topological order of G’s vertex set.

Let µ ∈ [0; 1] be a parameter. We divide V into equal-sized sets V1, . . . , Vr of consecutive
vertices (with respect to the topological ordering), where r = ⌈n1−µ⌉. Thus, the size of the sets
is O(nµ). Maximum witnesses are found in two steps:

1. For each pair (x, y), determine l such that the maximum witness of (x, y) is in Vl.

2. For each (x, y) and l, search Vl to find the maximum witness.

The implementation of these two steps is straightforward: for a vertex set Vl, let AT
∗Vl

denote the

matrix AT restricted to the columns corresponding to vertices in Vl. Let M (l) = AT
∗Vl
· (AT

∗Vl
)T .

Observation 11. A pair (x, y) of vertices has a common ancestor z ∈ Vl if and only if
M (l)[x, y] = 1.
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Hence for l ∈ {1, . . . r}, we compute the O(n1−µ) (rectangular) matrix products M (l)

and choose for each pair the maximum index l such that M (l)[x, y] = 1. This takes time
O(n1−µ+ω(1,µ,1)). Recall that ω(1, µ, 1) is the exponent of the algebraic matrix multiplication of
an n×nµ with an nµ×n matrix. For the second step, we simply search for each pair (x, y) and
the corresponding index l of the set Vl manually, that is, for each z ∈ Vl in descending order
until we find z with both (z, x) and (z, y) are in (cloG). This takes time O(n2 · |Vl|) = O(n2+µ).
For µ satisfying 1− µ + ω(1, µ, 1) = 2 + µ we get the optimal complexity. Currently, the best
known upper bounds for rectangular matrix multiplication [10] imply µ < 0.575.

Theorem 12. All-Pairs Representative LCA can be solved in time O(n2+µ), where µ
satisfies 1 + 2µ = ω(1, µ, 1).

4.2 All-Pairs All LCA

We start by considering the following problem which we call One-Vertex All-Pairs LCA

. Given a dag G and a vertex v, find all pairs (x, y) such that v is an LCA of (x, y). Clearly,
from a One-Vertex All-Pairs LCA solution for each v ∈ V , a solution to All-Pairs All

LCA can be derived in O(n3).
One-Vertex All-Pairs LCA reduces to the following. Find all pairs (x′, y′) such that v

is a CA of (x′, y′). Then, test for each such pair, if there exists a witness, i.e. a successor of v
that is also a CA of this pair, or not. To this end, it is enough to consider the children of v in
G.

A solution to this problem works as follows. We initialize an n× matrix C(v), such that
C(v)[x, y] = 1 if and only if v is a CA of (x, y). Obviously, this can be done in time O(n2) with
knowledge of the transitive closure. Let A(v) be a n× n matrix such that A(v)[x, z] = 1 if and
only if x is reachable from z and z is a direct child of v. Let A(v)[x, z] = 0 otherwise. This
can be thought of as the transpose of the transitive closure restricted to the rows indexed with
children of v, all other entries set to zero. Let A be the adjacency matrix corresponding to Gclo.
Let W (v) = A(v) · A be the witness matrix of v.

Lemma 13. Let W (v) be the witness matrix of vertex v. Then, v is a LCA of (x, y) if and only
if W (v)[x, y] = 0 and C(v)[x, y] = 1.

Proof. Suppose v is a LCA. Then clearly, C(v)[x, y] = 1 by definition. On the other hand
there exists no witness. Suppose that A(v)[x, z] · A[z, y] = 1 for some z. Then obviously by
construction, z is a child of v and z reaches both x and y contradicting our assumption. That
is, A(v)[x, z] ·A[z, y] = 0 for all z and hence W (v)[x, y] = 0. The other direction is analogous.

Corollary 14. One-Vertex All-Pairs LCA can be solved in time O(nω).

The approach leads immediately to an O(n1+ω) algorithm for All-Pairs All LCA . Fast
rectangular matrix multiplication yields even a stronger upper bound. We can compute the
witness matrices W (v) for vertices v ∈ V in one step by multiplying a n2×n and a n×n matrix
in time O(nω(2,1,1)).











A(v1)

A(v2)

...
A(vn)











· A =











W (v1)

W (v2)

...
W (vn)











(1)
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Theorem 15. All-Pairs All LCA can be solved in time O(nω(2,1,1)).

Proof. The algorithm works as follows:

1. Compute the transitive closure of G

2. Compute the common ancestor matrices C(v) for all v ∈ V . Since Gclo is known, this can
be achieved in time O(n3).

3. Compute the witness matrices W (v) for all v ∈ V using Equation (1). This takes
time O(nω(2,1,1)). Currently, upper bounds for rectangular matrix multiplication imply
ω(2, 1, 1) < 3.3399.

4. Let L(v) = C(v) −W (v) for each v ∈ V . Then, for each pair (x, y), all LCAs can be read
from the entries L(v)[x, y] for each v. This step takes a total of O(n3) time.

4.3 Dynamic Algorithms

All-Pairs Representative LCA . We show how to solve the fully dynamic All-Pairs Rep-

resentative LCA problem with update time O(n2.5) and query time O(1). We consider
vertex-centered updates, that is, given a vertex v, edges incident to v can be arbitrarily added
or deleted in one update step. The approach is based on the matrix multiplication-based static
All-Pairs Representative LCA solution described above. The static algorithm is based
on rectangular matrix multiplications which serve as CA existence computations. To this end,
the vertices are divided into n1−r sets of size nr for some r ∈ [0, 1]. To ease exposition, we
assume in the sequel that nr and n1−r are integers. For each vertex set V i one rectangular
matrix product of an n × nr and an nr × n matrix is computed in order to identify all pairs
for which a CA in the set V i exists. The rightmost LCAs are then searched for in the vertex
set with the largest index i. In order to improve the upper bound for vertex-centered updates,
we reduce the rectangular matrix multiplications to transitive closure computations in dags
G1, . . . , Gl, where l = n1−r. The reduction has the following properties:

1. The adjacency matrices of the dags Gi correspond to the results of the rectangular matrix
products in the static solution.

2. Vertex-centered updates incur at most a constant time of vertex-centered updates in each
of the dags Gi.

Each of the transitive closures of the dags Gi can be updated in time O(n2) using recent results
[19].

Theorem 16. There exists an algorithm for dynamic All-Pairs Representative LCA

with O(n1−r+ω + n2+r) initialization, O(n1−r+2 + n2+r) update, and O(1) query time.

Proof. We start by describing the reduction of the rectangular matrix multiplications to tran-
sitive closure computations in corresponding dags Gi. Let V i be a subset of vertices of size nr.
Recall that the rectangular matrix multiplication is used to indentify all pairs (x, y) for which
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there exists a CA z ∈ V i. Let Gi = (V ′, E ′) be the following dag: let V ′ = V1 ∪ V i ∪ V2, where
V1 and V2 are copies of V . Observe that there exists a natural mapping m : V ′ → V . Further,
(x, y) ∈ E ′ if and only if one of the following is true:

1. x ∈ V1, y ∈ V1, (m(y), m(x)) ∈ E, i.e. (x, y) is a reverse edge of an edge in G

2. x ∈ V2, y ∈ V2, (m(x), m(y)) ∈ E or x ∈ V1, y ∈ V i, m(x) = m(y), i.e. copies of vertices
in V i are connected

3. x ∈ V i, y ∈ V2, m(x) = m(y), i.e. (x, y) is an edge in G.

This construction is similar to constructions used in [6] and [5]. Obviously, we have

Observation 17. Let x, y ∈ V be two vertices. Then, there exists a common ancestor z ∈ V i

of x and y if and only if y is reachable from x in Gi

This establishes property 1) of the reduction. Property 2), i.e., a vertex-centered update in
G incurs only O(1) vertex centered updates in Gi, also follows from the definition of Gi. The
edges in Gi are either edges in G, reverse edges in G, or connecting edges. Hence a vertex-
centered update in G incurs two vertex-centered updates in Gi. Now, the computation of
O(n1−r) transitive closures G

(i)
clo yields the same information as the rectangular matrix products

in the original approach. The rightmost LCAs can again be found by searching naively the
corresponding vertex sets provided (cloG) is updated along with the Gi

clo. However, the upper
bound of the static solution not invariant to this modification. The computation of All-Pairs

Representative LCA with transitive closures instead of rectangular matrix products takes
time O(n1−r+ω + n2+r). The above bound follows from the fact that corresponding transitive
closures cannot be guaranteed to be computed faster than O(nω), unlike the rectangular matrix
products. The best choice for r in this case is r = 0.688. The usage of transitive closures causes
a slight overhead here, but improves the bound on updates in a dynamic setting. It is well
known that the transitive closures of directed graphs and dags in particular can be updated
in time O(n2) under vertex-centered udpates [19]. Hence, we get a dynamic algorithm with
O(n1−r+ω + n2+r) initialization, O(n1−r+2 + n2+r) update, and O(1) query time.

Optimizing r for updates, we get O(n2.876) initialization, O(n2.5) update, and O(1) query
time.

All-Pairs All LCA . For All-Pairs All LCA we achieve O(n1+ω) initialization, O(n3)
update and O(1) query time for fully dynamic vertex-centered updates. Here, the key is to speed
up witness computations in the dynamic setting. Again, the dynamic speed-up is achieved
by using transitive closure computations instead of matrix products for the witness matrix
computations. The application of the reduction technique described above to All-Pairs All

LCA is straightforward.

Theorem 18. There exists an algorithm for dynamic All-Pairs Representative LCA

with O(n3.376) initialization, O(n3) update, and O(1) query time.

Observe that O(n3) update time is optimal in the worst case, since a single update can
change up to O(n3) entries. Combining the above two theorems with results on dynamic all-
pairs shortest distance computations [23], we get the following two corollaries concerning upper
bounds for dynamic LCA computations in weighted dags, see [5].
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Corollary 19. There exists an algorithm for dynamic All-Pairs Shortest Distance LCA

with O(n3.376) initialization, O(n3) update, and O(1) query time.

Corollary 20. There exists an algorithm for dynamic All-Pairs Shortest Distance CA

with APSD initialization, Õ(n2) update, and O(1) query time.

5 Experiments

Experimental Setup. We have implemented the All-Pairs Representative LCA (APRLCA)
and All-Pairs All LCA algorithms (APA1, APA2, APA3) described in Section 3 in C++.
For comparison with algoritms that were subject to the experimental study in [6], we adapted
the code provided by the authors to fit in our C++ framework. Additionally, we implemented
the two transitive closure algorithms described in [21]: the algorithm of Goralć́ıková (GK) and
Koubek[15] with expected running time of O(n2 log n) and the algorithm of Simon [21] (Simon)
with expected running time of O(n2 log log n). Our preprocessing routines are complemented
by the greedy algorithm for computing a path cover of G with running time O(n + m)[21].
Both of the transitive closure algorithms naturally compute the transitive reduction and are
used to accomplish both tasks. Approaches based on fast algebraic matrix multiplication were
excluded from this study. These methods are practically not efficient. The tests were done on a
system with an Opteron CPU clocked at 1.8 GHz with 1 GB RAM and running on Linux . The
test data is based on random dags. For each randomly created dag, a super-source, adjacent
to all other vertices was included, all other edges were added with probability p. In order to
mirror random dags of varying density we use the parameter p to control the expected number
of edges in the dag. In all of our experiments we considered sparse (E[m] = Θ(n)), medium
(E[m] = Θ(n log n)), and dense (E[m] = Θ(n2)) graphs. As a consequence of our experimental
results, we restrict ourselves to sparse and dense dags in this presentation.

Transitive Reduction. We first compared the two methods for creating the transitive
reduction of a dag, see Figure 1(a). Simon clearly outperforms GK, even on moderately sized
graphs. As a result of the study in all further experiments, this method was used to create the
transitive reductions. Additionally, we evaluated the effects of the transitive reduction on the
number of edges, see Figure1(b).
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All-Pairs Representative LCA . We compared the performance of Algorithm 1 with
two of the methods presented in [6]. The third algorithm tested in [6] was ruled due to its
inferior performance. This finding is in accordance with the results of the study presented in
[6]. RMQuery is based on combining ancestor lists for each of the vertices with LCA queries
on a spanning tree of G. The running time of the algorithm is O(n3), but as a result of the
experimental study in [6], it is efficient in practice. TCQuery is based on transitive closure
queries. It compute Gclo first and then chooses the rightmost CA of a pair (x, y) by comparing
the corresponding rows of the adjacency matrix of Gclo. The running time of the algorithm is
Θ(n3).

Furthermore, we examined the effects of transitive redcution on the running time of the
algorithms, i.e., on each density level, we tested the algorithms with and without transitive
reduction. The results can seen in Figure 2. The performance TCQuery was not considered
with transitive reduction.

The dynamic programming algorithm with transitive reduction proofs to be the algorithm of
choice. The benefits of using the transitive reduction significantly incraese at higher densities.
Observe that in Figure 2(f), the performance line corresponding to APRLCA is almost identical
to the x-axis.

All-Pairs All LCA . The All-Pairs All LCA algorithms were tested similarily. How-
ever, the large output complexity of the problem limits the tests to considerably smaller graphs,
i.e. n ≤ 800. The results of the eperiments are quite interesting. Obviously, APA2 is the best
choice. Although APA3 has the best expected running time, the overhead caused by the more
complicated data structures does not pay off for small graphs. The superior performance of
APA2 is not surprising considering the fact that the LCA sets are usually small. The average
number of LCAs for a pair is less then 2 in our experiments, even on large, dense dags.

We seperately tested the effects of using a path cover to maximize the topological number
of several vertices in one step over maximizing only a single vertex. The results can be seen in
Figures 3(e) and 3(f). While on sparse graphs, the additional cost of computing and maintaining
the cover does not pay off, the effects on medium and dense dags are considerable.

6 Conclusion

We have presented and experimentally evaluated fast algorithms for LCA problems in dags. As
the main finding of our experimental study, we have identified two critical factors for fast LCA
algorithms: simplicity of algorithms and usage of transitive reduction. More work remains to
be done, e.g., designing All-Pairs All LCA algorithms that can handle larger input dags.
Another line of future research is concerned with efficient implementations of algorithms for
shortest distance LCA problems.

On the theoretical side, we have improved the upper bound for All-Pairs All LCA

and described dynamical algorithms. Observe also that the results in this paper translate to
improved upper bounds for some of LCA variants studied in [5], e.g., All-Pairs Shortest

Distance LCAor testing lattice-theoretic properties of dags.
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Figure 2: Evaluation of All-Pairs Representative LCA algorithms
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Figure 3: Evaluation of All-Pairs All LCA algorithms
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