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Abstract

We propose an algorithm for computing invariant rings of algebraic

groups which act linearly on affine space, provided that degree bounds for

the generators are known. The groups need not be finite nor reductive, in

particular, the algorithm does not use a Reynolds operator. If an invari-

ant ring is not finitely generated the algorithm can be used to compute

invariants up to a given degree.

Introduction

There are several efficient algorithms for computing invariant rings of finite ma-
trix groups or of linear actions of reductive algebraic groups on affine space. For
finite groups Gregor Kemper provided efficient algorithms, cf. [Kemper1996],
[Kemper1997], and [Kemper and Steel1997], together with an implementation
in Maple and the Magma system (cf. [Bosma et.al.1997]). Other approaches
can be found, e.g., in [Bayer1998], [Decker et. al1997]), [Heydtmann1997], or
[Sturmfels1993]. Invariant rings of reductive groups can be computed by Derk-
sen’s algorithm, cf. [Derksen1997]. In general, these approaches require the use
of a Reynolds operator to obtain algebra generators.

We propose an algorithm which computes the invariant ring of an arbitrary
algebraic group which acts linearly on affine space without using a Reynolds
operator, provided that a degree bound for the generators is known and all
variables of the coordinate ring have weight > 0. In particular, the algorithm
can handle unipotent groups which play an important role in the construc-
tion of moduli spaces for singularities, cf. [GP1993]. For degree bounds for
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finite, respectively reductive algebraic groups we refer, e.g., to [Kemper1999] or
[DK1995]. If the ring is not finitely generated, as might happen if the group is
not reductive (cf. [Nagata1958]), the algorithm can be used to compute invari-
ants up to a given degree.

1 Invariant Rings

Let K be a field and G be an algebraic group defined by the radical ideal
IG ⊆ K[s1, s2, . . . , sm]. The algebraic group action of G on the affine space Kn

is given on the ring level by

Ψ : K[t1, t2, . . . , tn] → K[s1, s2, . . . , sm]/IG ⊗ K[t1, t2, . . . , tn],

ti 7→ ψi(s1, s2, . . . , sm, t1, t2, . . . , tn)

where ψ1, ψ2, . . . , ψn ∈ K[s1, s2, . . . , sm, t1, t2, . . . , tn]. For σ ∈ G and t ∈ Kn

the group action is given by σ · f(t) := Ψ(f)(σ, t). We consider polynomials
as functions by allowing them to take values in the algebraic closure of K if
the field K is finite. A polynomial f ∈ K[t1, t2, . . . , tn] is invariant w.r.t. G
if σ · f(t1, t2, . . . , tn) = f(t1, t2, . . . , tn) for all σ ∈ G. The invariant ring

K[t1, t2, . . . , tn]G of G is the subring of K[t1, t2, . . . , tn] containing all poly-
nomials invariant under G. Note that the invariant ring K[t1, t2, . . . , tn]G is
isomorphic to

K[t1, t2, . . . , tn]G ≃

−→
K[ψ1, ψ2, . . . , ψn] ∩ K[t1, t2, . . . , tn]

f 7→ [f ] ,

where the rings on the right hand side are considered to be subrings of K[s1, s2, . . . ,
sm, t1, t2, . . . , tn]/IG. We obtain generators for the invariant ring of G by com-
puting generators for the intersection on the right hand side.

To test if a polynomial is invariant w.r.t. the action of G, given by ψ1, ψ2, . . .
, ψn, can be done as follows (cf. [Vasconcelos1998], Prop. 7.4.3). Note that IG
is a radical ideal.

Lemma 1 A polynomial f ∈ K[t1, t2, . . . , tn] is invariant w.r.t. G iff

f − Ψ(f) ∈ 〈IG〉 ⊂ K[s1, s2, . . . , sm, t1, t2, . . . , tn].

Proof. For f ∈ K[t1, t2, . . . , tn]G the polynomial f − Ψ(f) vanishes on the
variety G × Kn by assumption. Hence f − Ψ(f) is contained in the ideal of
G×Kn which is precisely the ideal IG. Conversely, f −Ψ(f) ∈ IG implies that
f−Ψ(f) vanishes identically on {σ}×Kn for every σ ∈ G, i.e., f(t1, t2, . . . , tn) =
Ψ(f)(σ, t1, t2, . . . , tn) = σ · f(t1, t2, . . . , tn). Therefore f is invariant w.r.t. G. 2
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2 The Algorithm

In this section let IG ⊂ K[s1, s2, . . . , sm] be a radical ideal defining an algebraic
group G. We make use of homogenization of polynomials and ideals w.r.t. a
new variable X , which we denote by “h” and refer, e.g., to [Vasconcelos1998]
for computational properties. We assume that the polynomials ψ1, ψ2, . . . , ψn ∈
K[s1, s2, . . . , sm, t1, t2, . . . , tn] which define a linear action of G on Kn, are homo-
geneous of the same degree. This can be achieved by homogenizing ψ1, ψ2, . . . , ψn

w.r.t. a new variable s (not X) and adding the equation s− 1 to IG.
The algorithm is based on the following observation.

Proposition 1 Let ψ1, ψ2, . . . , ψn ∈ K[s1, s2, . . . , sm, t1, t2, . . . , tn] be homoge-
neous polynomials of degree δ defining a linear action of the algebraic group G on
Kn and let I =

〈

〈ψα1

1 ψα2

2 . . . ψαn
n : |α| = d〉 ∪ Ih

G

〉

⊂ K[s1, s2, . . . , sm, t1, t2, . . . , tn].
If GB = {f1, f2, . . . , fk} is a Gröbner basis of the ideal J = I∩K[t1, t2, . . . , tn, X ]
we have, as K−vectorspaces,

〈fi(t1, t2, . . . , tn, 1) : 1 ≤ i ≤ k, deg(fi) = d · δ〉
K

= K[t1, t2, . . . , tn]Gd .

Proof. If deg(fi) < dδ then fi ∈
〈

Ih
G

〉

and therefore fi 6∈ I∩K[t1, t2, . . . , tn, X ],
a contradiction. Hence deg(fi) ≥ dδ for 1 ≤ i ≤ k. Since GB is a Gröbner Basis
and deg(fi) ≥ dδ the K−vectorspace 〈fi(t1, t2, . . . , tn, 1) : deg(fi) = dδ〉

K
is the

dehomogenization of Jdδ. Let f ∈ K[t1, t2, . . . , tn]Gd be a homogeneous invariant
of degree d and note that Ψ(f) ∈ I. By Lemma 1 f − Ψ(f) ∈ 〈IG〉 which im-
plies fXd·(δ−1) − Ψ(f) ∈

〈

Ih
G

〉

⊂ I, and therefore fXd·(δ−1) ∈ I. In particular,

fXd·(δ−1) ∈ J is of degree dδ as required.
Conversely, assume that f1 is of minimal degree. If deg(f1) > dδ then

deg(t1,t2,...,tn)(f1) > d because the action is linear in t1, t2, . . . , tn, so there are
no invariants of degree d in this case. Now assume deg(f1) = dδ and note that
the dehomogenization f ′

1 = f1(t1, t2, . . . , tn, 1) is a homogeneous polynomial of
degree d. The condition f1 ∈ I implies the existence of p ∈ K[t1, t2, . . . , tn]
and g ∈

〈

Ih
G

〉

s.t. p is homogeneous of degree d and f1 = Ψ(p) + g. Therefore

f1 − Ψ(p) ∈
〈

Ih
G

〉

and f1(t, 1) = f ′

1(t) = Ψ(p)(σ, t) for all σ ∈ G and t ∈ Kn.
In particular,

f ′

1(t) = Ψ(p)(id, t) = id · p(t) = p(t)

so f ′

1 = p and the claim follows from Lemma 1. 2

In the j−th iteration the algorithm computes a K−basis [fi1 ] , [fi2 ] , . . . , [fir
]

of the degree dj part of the intersection of K[ψ1, ψ2, . . . , ψn] ∩ K[t1, t2, . . . , tn]
as subrings of K[s1, s2, . . . , sm, t1, t2, . . . , tn]/Ih

G, where fi ∈ K[t1, t2, . . . , tn]Gdj

and dj is some degree.

Algorithm 1 Invariants(IG, 〈ψ1, ψ2, . . . , ψn〉 , degrees)
In: radical ideal IG ⊂ K[s1, s2, . . . , sm] of an algebraic group G and polynomials
ψ1, ψ2, . . . , ψn ∈ K[s1, s2, . . . , sm, t1, t2, . . . , tn] defining a linear action of G on
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Kn, a list degrees of positive integers, < a graded lex. order s.t. sρ > tτ > X.
Out: K−vectorspace basis of

{

f ∈ K[t1, t2, . . . , tn]Gd : d ∈ degrees
}

.
begin

{ψ′

1, ψ
′

2, . . . , ψ
′

n} := homogenization of {ψ1, ψ2, . . . , ψn} w.r.t. ’s’ s.t. deg(ψi) =
deg(ψj).
δ := deg(ψ′

1);
IG := IG ∪ {s− 1};
Ih
G := homogenization of IG w.r.t. new variable X.

B := {};
for j := 1 to |degrees| do

I :=
〈〈

ψ′α1

1 ψ′α2

2 . . . ψ′αn
n : |α| = degrees[j]

〉

∪ Ih
G

〉

;
{f1, f2, . . . , fk} :=GröbnerBasis<(I) ∩ K[t1, t2, . . . , tn, X ];
for i := 1 to k do

if deg(fi) = degrees[j] · δ then B := B ∪ {fi(t1, t2, . . . , tn, 1)} ;
end;

end;
return(B);
end Invariants.

Remark 1 (a) It suffices to compute the Gröbner Basis of I up to degree dδ.
(b) Since the algorithm computes a K−vectorspace basis of invariants of degree
dj in the j−th loop it can be used to compute primary invariants for finite groups
as described in [Kemper1997] or [Decker et. al1997]. In particular, one should
make use of the Hilbert series if it is known (e.g., by Molien’s Theorem, cf.
[Sturmfels1993]).

The ideal operations in the algorithm are performed by Gröbner bases com-
putations, cf. [Buchberger1985]. For the elimination of variables we refer, e.g.,
to [Vasconcelos1998].

Theorem 1 The algorithm Invariants is correct.

Proof. Fix a graded lex. order where sρ > tτ > X and let j > 0. We
show that any homogeneous invariant of degree d = degrees[j] is contained
in the linear span of B(j), where B(j) denotes the set B in the j−th iter-
ation of the for-loop. Let GB = {f1, f2, . . . , fr} be the Gröbner basis of I ⊂
K[s1, s2, . . . , sm, t1, t2, . . . , tn, X ] in the j−th iteration s.t. GB∩K[t1, t2, . . . , tn,
X ] = {f1, f2, . . . , fk} =: GB′. By elimination theory (cf., e.g., [Vasconcelos1998],
Proposition 2.1.1), GB′ is a Gröbner basis of the ideal I ∩ K[t1, t2, . . . , tn, X ].
By Proposition 1 we have

f ∈ K[t1, t2, . . . , tn]Gd ⇐⇒ f =

k
∑

i=1

λifi(t1, t2, . . . , tn, 1)

for some λ1, λ2, . . . , λk ∈ K. Hence f is contained in the linear span of B(j). 2
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In the two examples below we apply the algorithm to finite reductive/non-
reductive and infinite reductive/nonreductive groups. The invariant rings of
the first example can be computed, e.g., with Kemper’s algorithms, or with the
SINGLUAR library finvar.lib.

Example 1 (a) Let K = F5, σ1 =

(

1 2
3 4

)

, σ2 =

(

0 3
1 2

)

and G =

〈σ1, σ2〉. Since |G| = 96 the group G is reductive. By use of the Hilbert se-
ries we only compute invariants of degree 8 and 12 and obtain

h1 = t81 − 2t71t2 − 2t61t
2
2 + t51t

3
2 − t41t

4
2 + 2t31t

5
2 + 2t21t

6
2 − t1t

7
2 + t82,

h2 = t121 + 2t111 t2 + t101 t
2
2 + 2t81t

4
2 − 2t71t

5
2 − t51t

7
2 + 2t41t

8
2 − t21t

10
2 + t1t

11
2 + t122 .

Since h1, h2 are algebraically independent we conclude, by using the Hilbert se-
ries, that K[t1, t2]

G = K[h1, h2].
(b) Let K = F3 and consider the linear action of

G =

{(

1 0
0 1

)

,

(

1 1
0 1

)

,

(

1 2
0 1

)}

⊂ GL2(K).

The ideal IG of G is given by 〈s1(s1 − 1)(s1 − 2)〉 ⊂ K[s1] and the action is
defined by the two polynomials t1 + s1t2, t2. In the application of the algorithm
the action is homogenized w.r.t. s, the equation s− 1 is added to IG and IG is
homogenized w.r.t. X. We have Ih

G = 〈s1(s1 − 1)(s1 − 2), s−X〉 and a the new
action equals st1 + s1t2, st2. The algorithm computes the following fundamental
invariants (degree bound = 3).

t2, t
2
2, t

3
2, t

3
1 − t1t

2
2

Note that G does not admit a Reynolds operator.

We apply the algorithm to an infinite reductive and an infinite nonreductive
group.

Example 2 (a) The action of SL2(C) on V ⊕ V ⊕ S2V , where V is the usual
2−dimensional representation of SL2(C) (cf. Example 6.2 of [Derksen1997]).
The ideal of SL2(C) equals 〈s1s4 − s2s3 − 1〉 ⊂ C[s1, s2, s3, s4] and the action
is given by the representation

(

s1 s2
s3 s4

)

7→

(

s1 s2
s3 s4

)

⊕

(

s1 s2
s3 s4

)

⊕





s21 2s1s2 s22
s1s3 s1s4 + s2s3 s2s4
s23 2s3s4 s24





Derksen’s algorithm delivers an ideal basis of the nullcone having degrees 2, 2, 3, 3,
3 and containing the polynomial t1t3t7 − 2t2t3t6 + t2t4t5 which is not invariant.
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By applying Invariants with upper bound 3 we obtain fundamental invariants

−t1t4 + t2t3,−t5t7 + t26, t
2
3t7 − 2t3t4t6 + t24t5,

t1t3t7 − t1t4t6 − t2t3t6 + t2t4t5, t
2
1t7 − 2t1t2t6 + t22t5

having degrees 2, 2, 3, 3, 3.
(b) Consider the linear action of the nonreductive group

G =











B1 0 0
0 B2 0
0 0 B3



 : Bi =

(

1 bi
0 1

)

, b1 + 2b2 + 3b3 = 0







⊂ GL6(C)

on C6. The ideal of G is IG = 〈s1 + 2s2 + 3s3〉 ⊂ C[s1, s2, s3] and the action is
given by {ψ1, ψ2, . . . , ψ6} = {t1 + s1t2, t2, t3 + s2t4, t4, t5 + s3t6, t6}. A variant
of Invariants, where only those elements not contained in C[B] are added to
B, yields the invariants t2, t4, t6, 3t2t4t5 + 2t2t3t6 − t1t4t6 of degree ≤ 4.

3 Performance and Limitations

3.1 Performance

We provide running times of the algorithm in the computer algebra system
SINGULAR (cf. [GPS1997]) on a Sun Ultra 60 (300MHz, 384 MB). The imple-
mentation and the examples can be found at the homepage of the author. The
algorithm Invariants has been called with degree bounds, or with a list of
degrees as mentioned in the examples. By ∗ we denote that the Reynolds op-
erator must be applied to the output and by ’−’ we denote that the algorithm
cannot handle the current group. By Derksen and finvar we denote the run-
ning time of Derksen’s algorithm and of the algorithm invariant ring() from
finvar.lib, cf. [Heydtmann1997] respectively.

Ex. Invariants Derksen finvar

1(a) 0.46 9.59∗ 5.47
1(b) 0.06 − 0.19
2(a) 0.29 0.19∗ −
2(b) 0.94 − −

3.2 Limitations

Theoretical Limitations

The algorithm cannot handle nonlinear actions and variables of weight 0. The
variables t1, t2, . . . , tn must be of weight > 0 and the polynomials ψ1, ψ2, . . . , ψn

defining the group action must be homogeneous of degree 1 in the variables
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t1, t2, . . . , tn. E.g., the algorithm cannot handle the nonlinear Ga−action on
K7, given by

(λ, (t1, t2, . . . , t7)) 7→
(

t1, t2, t3, λ · t21 + t4, λ · t22 + t5, λ · t23 + t6, λ · t21t
2
2t

2
3 + t7

)

where the degree of t1, t2, t3 equals 0, the degree of t4, t5, t6, t7 equals 1. Note
that the invariant ring is not finitely generated (cf [A’Campo-Neuen1994]).

For Ga-actions, as in the example above, there are algorithms for computing
invariants up to a given degree, cf. [Maubach2000] or the ainvar.lib library
of SINGULAR.

Practical Limitations

For invariant subrings of K[t1, t2, . . . , tn] where the degree of a (minimal) gener-
ator equals d and

(

n+d−1
d−1

)

> 600, the computation may become infeasible. (e.g.,

action of S3 ×Z3 ×Z3 on C4, a minimal generator has degree 15, computation
aborted after 2 weeks). The algorithm seems to be better suited for infinite
groups.
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