
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Extending Regular Expressions with
Homomorphic Replacement

Henning Bordihn and J̈urgen Dassow and Markus Holzer

ABCDEFGHIJKLMNO
TUM-I0102
August 01

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-08-I0102-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c
2001

Druck: Institut f ür Informatik der
Technischen Universit ät M ünchen

Extending Regular Expressions withHomomorphi
 Repla
ement?Henning Bordihn1?? and J�urgen Dassow2 and Markus Holzer3? ? ?1 Institut f�ur Informatik, Universit�at Potsdam,Am Neuen Palais 10, D-14469 Postdam, Germanyemail: bordihn�
s.uni-potsdam.de2 Fakult�at f�ur Informatik, Otto-von-Gueri
ke-Universit�at Magdeburg,Postfa
h 4120, D-39016 Magdeburg, Germanyemail: dassow�iws.
s.uni-magdeburg.de3 Institut f�ur Informatik, Te
hnis
he Universit�at M�un
hen,Ar
isstra�e 21, D-80290 M�un
hen, Germanyemail: holzer�informatik.tu-muen
hen.deAbstra
t. We de�ne H-expressions and EH-expressions as extensions ofregular expressions by adding homomorphi
 and iterated homomorphi
repla
ement as new operations, respe
tively. The de�nition is analogousto the extension given by Gruska in order to
hara
terize
ontext-freelanguages. We
ompare the families of languages obtained by these ex-tensions with the families of regular, linear
ontext-free,
ontext-free,and EDT0L languages. Furthermore, we present their
losure proper-ties with respe
t to TRIO operations and dis
uss the de
idability statusand
omplexity of �xed and general membership, emptiness, and theequivalen
e problem. Some of our proofs are only based on expressions,and thus
an be used in order to get new proofs for regular sets, too.1 Introdu
tionThe family REG of regular languages, de�ned as the family of languages a
-
epted by (deterministi
 or nondeterministi
) �nite automata or, equivalently,generated by right-linear grammars, is one of the most important and well inves-tigated
lasses of formal languages. Regular expressions, whi
h were originallyintrodu
ed by Kleene [22℄ and are a lovely set-theoreti

hara
terization of reg-ular languages, are better suited for human users and therefore are often used? An extended abstra
t of this paper appeared in the pro
eedings of the 9th Theo-ryday of the GI-Workinggroup 0.1.5 "Automaten und Formale Spra
hen" held atS
hauenburg-Elmshagen near Kassel, Germany, in September 1999 [6℄.?? Part of the work was done while the author was at Fakult�at f�ur Informatik, Otto-von-Gueri
ke-Universit�at Magdeburg, Postfa
h 4120, D-39016 Magdeburg, Germany.? ? ? Part of the work was done while the author was at D�epartement d'I.R.O., Universit�ede Montr�eal, C.P. 6128, su

. Centre-Ville, Montr�eal (Qu�ebe
), H3C 3J7 Canada. Hewas supported in part by the Deuts
he Fors
hungsgemeins
haft (DFG), the NationalS
ien
es and Engineering Resear
h Coun
il (NSERC) of Canada, and by the Fondspour la Formation de Cher
heurs et l'Aide �a la Re
her
he (FCAR) of Qu�ebe
.

as interfa
es to spe
ify
ertain pattern or languages. E.g., in the widely avail-able programming environment Unix, regular (like) expressions
an be found inlegion of software tools like, e.g., awk, ed, ema
s, egrep, lex, sed, vi, et
., tomention a few of them. The syntax used to represent them may vary, but the
on
epts are very mu
h the same everywhere.Most of the above mentioned text-editing and sear
hing programs add ab-breviations and new operations to the basi
 regular expression notation fromtheoreti
al
omputer s
ien
e, in order to make it easier to spe
ify patterns orlanguages. This o�ers
onsiderable
onvenien
e in both theory and pra
ti
e.What
on
erns
ommon abbreviations, as for instan
e, interse
tion and
om-plement, they do not add more des
riptive power to regular expressions, butgive more
on
ise des
riptions. Besides the usage of meta-
hara
ters in Unixlike expressions, the most signi�
ant di�eren
e to ordinary regular expressions issome sort of pattern repeating operation. More pre
isely, it is possible to spe
ifypatterns that are saved in a spe
ial holding spa
e, used for further pro
essing, onthe underlying word. For instan
e, the Unix regular expression \([ab℄^*\)\1des
ribes the non-
ontext-free language fww j w 2 fa; bg� g. For more detailswe refer to [11℄ and to the appendix, where we give a natural semanti
s forso
alled regular expressions with ba
k referen
ing1, a model for Unix regularexpressions, �rst brie
y dis
ussed in [1℄.Kleene's well-known theorem, whi
h states that a language L is regular ifand only if there is a regular expression r with L = L(r). There have been someattempts to generalize this theorem in one of the following dire
tions: De�nean extension of regular expressions and determine the asso
iated family of lan-guages (see, e.g., [16℄) or �nd the
lass of expressions for a given extension of thefamily of regular languages (see, e.g., [13, 24, 29℄
hara
terizing two-dimensionalregular languages, re
ognizable tra
e languages, and
ontext-free (string) lan-guages, respe
tively). On the other hand, to our knowledge nothing
omes
loseto the repeating or
opy operation mentioned above. This brings us to the aim ofthis paper. Inspired by Gruska's substitution expressions [14℄, whi
h were usedto
hara
terize the
ontext-free languages, we introdu
e regular expressions en-ri
hed by some sort of
opy operation, whi
h is
lose to the repeating feature ofUnix regular like expressions.A good formal language theoreti
 approa
h to those pattern repetition op-erations is given by the operation of homomorphi
 repla
ement. Homomorphi
repla
ement is a
on
ept well-known in
omputer s
ien
e. We mention someareas where it appeared in literature under various names within di�erent
on-texts: For example, in van Wijngaarden grammars (W-grammars) homomorphi
repla
ement is
alled \
onsistent substitution" or \
onsistent repla
ement" [10℄.In
onne
tion with ma
ro grammars [12℄ it is
alled \inside-out (IO) substitu-tion," in Indian parallel grammars [27℄ the one-step derivation relation is nothingother then a homomorphi
 repla
ement with a �nite set, and in some algebrai
alapproa
h in formal language theory it appears as \
all by value substitution."1 To our knowledge this was not done before.2

Another aspe
t of homomorphi
 repla
ement was investigated by Albert andWegner [2℄, who
onsidered H-systems.In this paper, we study the usual language theoreti
 properties of regularexpressions extended by homomorphi
 repla
ement, su
h as the des
riptionalpower in
omparison with the well-known
lasses in the Chomsky hierar
hy aswell as families of languages determined by me
hanisms whi
h are related to ex-pressions with homomorphi
 repla
ement,
losure properties and the
omplexitystatus of some de
ision problems for expressions with homomorphi
 repla
ement.In the next se
tion we introdu
e the ne
essary de�nitions. Then in Se
tion 3 we
ompare the power of substitution versus homomorphi
 repla
ement and in Se
-tion 4 we relate the latter to some other
on
epts in the literature. Se
tions 5and 6 are devoted to the study of
losure and de
ision problems as mentionedabove. Finally in penultimate se
tion we summarize our results and state someopen problems.2 De�nitionsWe assume the reader to be familiar with some basi
 notions of formal languagetheory, as
ontained in [9℄. In parti
ular we
onsider the following well-knownformal language families generated by regular (i.e., right-linear), linear
ontext-free,
ontext-free, and
ontext-sensitive Chomsky grammars whi
h are denotedby REG, LIN, CF, and CS, respe
tively. Moreover, the family of extended (ex-tended deterministi
, respe
tively) tabled
ontext-free Lindenmayer languages isdenoted by ET0L (EDT0L, respe
tively). The
lass of �nite languages is de-noted by FIN.In this paper we are dealing with regular like expressions. Ordinary regularexpression are de�ned as follows:De�nition 1 (R-expressions). Let � be an alphabet. The regular expressions(R-expressions) over � and the sets that they denote are de�ned re
ursively asfollows:1. ; is a regular expression and denotes the set L(;) = ;.2. � is a regular expression and denotes the set L(�) = f�g.3. For ea
h a 2 �, a is a regular expression and denotes the set L(a) = fag.4. If r and s are regular expressions, then (r + s), (rs), and (r�) are regularexpressions that denote the sets L(r+ s) = L(r) [L(s), L(rs) = L(r) �L(s),and L(r�) = L(r)�, respe
tively.5. Nothing else is a regular expression.It is well known that regular expressions exa
tly
hara
terize the family ofregular languages REG. We
all a language regular like expression language, ifit
an be des
ribed by a regular like expression, i.e., a regular expression withan enhan
ed set of operations as, e.g., union,
on
atenation, Kleene star, anditerated substitution or iterated homomorphi
 repla
ement. Both operations arede�ned formally in the next se
tion. 3

Besides the expressive power of regular like expressions, we also investigatesome
omplexity theoreti
al issues on these language families. We assume thereader to be familiar with some basi
 notions of
omplexity theory, as
on-tained in [4℄. In parti
ular we
onsider the following well-known
hain of in
lu-sions: NL � P � NP � PSpa
e. Here NL is the set of problems a

eptedby nondeterministi
 logarithmi
 spa
e bounded Turing ma
hines, and P (NP,respe
tively) is the set of problems a

epted by deterministi
 (nondeterministi
,respe
tively) polynomially time bounded Turing ma
hines. Moreover, PSpa
eis SkDSpa
e(nk).Completeness and hardness are always meant with respe
t to deterministi
log-spa
e many-one redu
ibilities. A problem A is said to be log-spa
e many-oneequivalent or as hard as B, if and only if A redu
es to B and B redu
es to A.We investigate the �xed membership, the general membership, the equiva-len
e, and the emptiness problem for regular like expression languages. The �xedmembership problem for regular like expression languages is de�ned as follows:{ Fix a regular like expression r. For a given word w, is w 2 L(r)?A natural generalization is the general membership problem whi
h is de�ned asfollows:{ Given a regular like expression r and a word w, i.e., an en
oding hr; wi, isw 2 L(r)?The equivalen
e problem is the following one:{ Given two regular like expressions r and s, does L(r) = L(s) hold?Finally, the emptiness problem is de�ned as:{ Given a regular like expression r, is L(r) = ;?The general membership, the equivalen
e, and emptiness problem have regu-lar like expressions as inputs. Therefore we need an appropriate
oding fun
tionh�i whi
h maps,e.g., a regular like expression r and a string w into a word hr; wiover a �xed alphabet �. We do not go into the details of h�i, but assume itful�lls
ertain standard properties; for instan
e, that the
oding of the alphabetsymbols is of logarithmi
 length.3 Substitution Versus Homomorphi
 Repla
ementIn this se
tion we introdu
e the homomorphi
 repla
ement operation and studythe expressive power of regular like expressions involving this new operation.We
ompare the indu
ed language family to the lower
lasses of the Chomskyhierar
hy and to the family EDT0L of languages generated by extended deter-ministi
 tabled 0L systems. Next we re
all Gruska's [14℄ approa
h to
hara
terizethe
ontext-free languages and then we de�ne homomorphi
 repla
ement.4

3.1 Substitution and Iterated SubstitutionRe
all the approa
h given by Gruska [14℄ in his seminal paper, where a-substi-tutions and their iteration are the additional operations to regular expressions.Let a be a letter and L1; L2 be languages. The a-substitution of L2 in L1,denoted by L1 #a L2, is de�ned byL1 #a L2 = fu1v1u2 : : : ukvkuk+1 j u1au2a : : : auk+1 2 L1;a does not o

ur in u1u2 : : : uk+1, and v1; v2 : : : ; vk 2 L2 g;and the iterated a-substitution of language L, denoted by L#a , is de�ned byL#a = fw 2 L[(L #a L)[(L #a L #a L)[� � � j w has no o

urren
e of letter a gwhere any further bra
keting is omitted sin
e a-substitution is obviously asso-
iative.Based on these operations an extension of regular expressions is de�ned.Let � be an alphabet. The regular expressions with substitution (S-expressions)and regular expressions with extended substitution (ES-expressions) over � andthe sets they denote are de�ned re
ursively as follows:1. Every regular expression over � is an S- and ES-expression.2. If r and s are S- and ES-expressions, resp., denoting the languages L(r)and L(s), resp., then (r+ s), (rs), (r�), and (r #a s), for some a 2 �, are S-and ES-expressions, respe
tively, that denote the sets L(r)[L(s), L(r)�L(s),L(r)�, and L(r) #a L(s), respe
tively.3. Let a 2 �. If r is an ES-expression denoting the language L(r), then (r#a)is an ES-expression that denotes the set L(r)#a .4. Nothing else is an S- or ES-expressions, respe
tively.The families of languages des
ribed by S- and ES-expressions are denoted bySREG and ESREG, respe
tively. While SREG equals REG, whi
h is easilyseen, In [14℄ Gruska has shown that ESREG
oin
ides with the family CF of
ontext-free languages.3.2 Homomorphi
 and Iterated Homomorphi
 Repla
ementHomomorphi
 repla
ement was investigated by Albert and Wegner [2℄ and ap-peared in the literature under various names within di�erent
ontexts. For in-stan
e, in van Wijngaarden grammars (W-grammars) homomorphi
 repla
ementis
alled \
onsistent substitution" or \
onsistent repla
ement" [10℄. In
onne
-tion with ma
ro grammars [12℄ it is
alled \inside-out (IO) substitution," inIndian parallel grammars [27℄ the one-step derivation relation is nothing otherthen a homomorphi
 repla
ement with a �nite set, and in some algebrai
al ap-proa
h in formal language theory it appears as \
all by value substitution." Theessential feature of homomorphi
 repla
ement is
opying. Thus, we introdu
e anoperation on languages whi
h models this feature. Our de�nition was inspired5

by Gruska's a-substitution [14℄. A

ording to the de�nition of a-substitution, wehave to repla
e any o

urren
e of a by a word of L2, and it is allowed that di�er-ent o

urren
es are repla
ed by di�erent words. We now modify this me
hanismby the requirement that any o

urren
e of a has to be repla
ed by the sameword of L2.De�nition 2. Let a be a letter and L1; L2 be languages. The a-homomorphi
repla
ement of L2 in L1, denoted by L1 *a L2, is de�ned byL1 *a L2 = fu1vu2 : : : ukvuk+1 j u1au2a : : : auk+1 2 L1;a does not o

ur in u1u2 : : : uk+1, and v 2 L2 g:The reader may easily verify that the following lemma is valid.Lemma 1. For ea
h letter a, the operation *a is asso
iative, i.e.,(L1 *a L2) *a L3 = L1 *a (L2 *a L3):Observe, that the previous lemma is not true if we use di�erent letters forthe repla
ement operation be
ause(fbg *a fag) *b fag = fag 6= fbg = fbg *a (fag *b fag) :We also
onsider the iterated version of homomorphi
 repla
ement.De�nition 3. Let a be a letter and L a language. The iterated a-homomorphi
repla
ement of L, denoted by L*a , is de�ned byL*a = fw 2 L[(L *a L)[(L *a L *a L)[� � � j w has no o

urren
e of letter a g:Due to Lemma 1 we do not have to spe
ify the bra
keting of the a-homomor-phi
 repla
ement operations in the previous de�nition. Note, if a is not in �,then for language L � �� we have L� = (La [f�g)*a and L+ = (La [L)*a .Here � denotes the empty word.Homomorphi
 repla
ement is very powerful, be
ause one
an des
ribe thenon-
ontext-free language fww j w 2 fa; bg� g by f

g *
 fa; bg�. In fa
t, thisshows that the low levels of the Chomsky hierar
hy are not
losed under a-homomorphi
 and iterated a-homomorphi
 repla
ement.Theorem 1. 1. The family of �nite languages is
losed under a-homomorphi
repla
ement. Neither the family of regular, linear
ontext-free nor the familyof
ontext-free languages is
losed under a-homomorphi
 repla
ement.2. Neither the family of �nite languages, regular, linear
ontext-free nor thefamily of
ontext-free languages is
losed under iterated a-homomorphi
 re-pla
ement. utObviously, the family of re
ursively enumerable languages is
losed undera-homomorphi
 repla
ement, but for the family of
ontext-sensitive languageswe have to be
areful whether the repla
ement is �-free or not. In the �-free6

ase CS is
losed under this type of operation what
an readily be shown byLBA
onstru
tion. In general this family is not
losed under a-homomorphi
repla
ement, be
ause it is possible to simulate arbitrary homomorphisms and thewell-known fa
t that every re
ursively enumerable language is a homomorphi
image of a
ontext-sensitive language. We brie
y summarize our results:Theorem 2. The family of
ontext sensitive languages is not
losed under ar-bitrary (iterated) a-homomorphi
 repla
ement, but is
losed under �-free one.Finally, the family of re
ursively enumerable languages is
losed under a-homo-morphi
 and iterated a-homomorphi
 repla
ement. utNow we are ready to de�ne the
entral notion of this paper, whi
h is that ofregular expressions with (iterated) homomorphi
 repla
ement.De�nition 4. Let � be an alphabet. The regular expressions with homomor-phi
 repla
ement (H-expressions) and extended homomorphi
 repla
ement (EH-expressions), respe
tively, over � and the sets they denote are re
ursively de�nedas follows:1. Every regular expression over � is also an H- and EH-expression, respe
-tively.2. If r and s are H- and EH-expressions, resp., denoting the languages L(r)and L(s), resp., then (r + s), (rs), (r�), and (r *a s), for some a 2 �,are H- and EH-expressions, respe
tively, that denote the sets L(r) [L(s),L(r) � L(s), L(r)�, and L(r) *a L(s), respe
tively.3. Let a 2 �. If r is an EH-expression denoting the language L(r), then (r*a)is an EH-expression that denotes the set L(r)*a .4. Nothing else are H- and EH-expressions, respe
tively.The set of languages des
ribed by H- and EH-expressions is denoted by HREGand EHREG, respe
tively.If there is no danger of
onfusion, we omit out-most bra
kets. Let us givesome examples:Example 1. 1.

 *
 (a + b)� denotes the language fww j w 2 fa; bg� g, whi
his non-
ontext-free.2. (ab+ aAb)*A des
ribes the non-regular language f anbn j n � 1 g.3. (a+AA)*A denotes the non-
ontext-free language f a2n j n � 0 g.Next,
onsider the following
hain of in
lusions:Theorem 3. REG �HREG � EHREG.Proof. The in
lusions are obvious; the stri
tness of the �rst one is seen fromExample 1. 1 and the stri
tness of the se
ond in
lusion follows by Example 1.3together with the fa
t that every language in HREG is semi-linear. This is be-
ause ordinary regular operations and, by easy
al
ulations, also a-homomorphi
repla
ement preserves semi-linearity. ut7

In the following theorem we relate EHREG with the linear
ontext-freelanguages and the family EDT0L. For further details on EDT0L languages werefer to [25℄.Theorem 4. LIN � EHREG � EDT0L.Proof. Let G = (N;T; P; S) be a linear
ontext-free grammar with the set ofnonterminals N = fA1; A2; : : : ; Ang and let S = A1. Then for 1 � i � n, we setGi = (N n fA1; A2; : : : ; Ai�1g; T [fA1; A2; : : : ; Ai�1g; n[j=iPj ; Ai);where Pi = fAi ! w j Ai ! w 2 P g. Moreover, for 1 � i � n, let si be theEH-expressions with L(si) = fw j Ai ! w 2 P g. Then indu
tively de�nern = (sn)*Anand ri = �: : :��s*Aii *An rn� *An�1 rn�1� : : :� *Ai+1 ri+1!*Ai ;for 1 � i � n� 1. Then one
an readily verify that L(Gi) = L(ri) for 1 � i � n,whi
h immediately implies L(G) = L(r1), be
ause G1 equals G. This proves the�rst in
lusion whi
h has to be stri
t by Example 1.3.The se
ond in
lusion follows by the
losure of EDT0L under the operationsin
onsideration, whi
h
an be shown by standard
onstru
tions. utIn order to relate the families HREG and EHREG to the families of linear
ontext-free,
ontext-free, and EDT0L languages, the following to lemmata areneeded.De�nition 5. We de�ne the depth of an R-expression or H-expression overalphabet � indu
tively by1. d(;) = d(�) = d(a) = 0 for any a 2 �.2. If r and s are R- or H-expressions of depth d(r) and d(s), respe
tively, thend(r + s) = d(r � s) = d(r *a s) = d(r) + d(s) + 1 for a 2 �.3. If r is an R- or H-expression of depth d(r), then d(r�) = d(r) + 1.For a language L 2 HREG, we setd(L) = minf d(r) j L(r) = L g:We say that an H-expression r is �-free if it does not
ontain a subexpressions *a u with L(u) = f�g.Lemma 2. For any H-expression r = s *a u with L(u) = f�g there is a �-freeH-expression t su
h that L(t) = L(r) and d(t) � d(s).8

Proof. Let us assume that the lemma does not hold. Let K be the set of allH-expressions r su
h that r is of the form r = s *a u with L(u) = f�g and thereis no t for r satisfying the
onditions of the lemma. By assumption, K is notempty. Let k = minf d(r) j r 2 K g. We
onsider an H-expression r = s *a u 2 Ksu
h that d(r) = k. Obviously, if s *a u in K, then s *a � is in K, too. Bythe minimality of r with respe
t to the depth, we
an assume without loss ofgenerality that r = u *a �.Obviously, k � 1. In
ase k = 1, then one of the following
ases holds:1. If s = ;, then L(s *a �) = L(;) and d(;) = d(s).2. If s = �, then L(s *a �) = L(�) and d(�) = d(s).3. If s = a, then L(s *a �) = L(�) and d(�) = d(s).4. If s = b for b 2 � n fag, then L(s *a �) = L(b) and d(b) = d(s).Thus, let k > 1 and we distinguish the following four
ases:1. Let s = s1 + s2 for some H-expressions s1 and s2 with d(s1) � k � 2 andd(s2) � k � 2. Then we de�ne the H-expressions t1 = s1 *a � and t2 =s2 *a �. Obviously, d(t1) � k � 1 and d(t2) � k � 1. By the minimalityof k, there exist �-free H-expressions t01 and t02 with L(t01) = L(s1 *a �) andL(t02) = L(s2 *a �), respe
tively, satisfying d(t01) � d(s1) and d(t02) � d(s2).Thus, t01 + t02 ful�llsd(t01 + t02) = d(t01) + d(t02) + 1 � d(s1) + d(s2) + 1 = d(s)andL(t01 + t02) = L(t01) [L(t02)= L(s1 *a �) [L(s2 *a �) = L((s1 *a �) + (s2 *a �))= L((s1 + s2) *a �) = L(s *a �) = L(r):Moreover, be
ause t01 and t02 are �-free, expression t01+t02 is �-free, too. Hen
e,t01 + t02 ful�lls all
onditions of the lemma in
ontrast to r 2 K.2. Let s = s1s2 for some H-expressions s1 and s2 with d(s1) � k � 2 andd(s2) � k�2. In analogy to the �rst
ase above, we
an show a
ontradi
tionwhi
h is left to the reader.3. Let s = s�1 for some H-expressions s1 with d(s1) � k�2. Again, we
an showa
ontradi
tion analogously to the �rst
ase above.4. Let s = s1 *b s2 for some H-expressions s1 and s2 with d(s1) � k � 2 andd(s2) � k � 2. We
onsider the �-free H-expressions t01 and t02 as in the �rst
ase above. ThereforeL(t01) = L(s1 *a �);L(t02) = L(s2 *a �) with d(t01) � d(s1) and d(t02) � d(s2) (1)Moreover, if a 6= b, thenL(t01 *b t02) = L((s1 *a �) *b (s2 *a �))= L((s1 *b s2) *a �) = L(s *a �) = L(r): (2)9

If a = b, for 1 � i � 2, we modify si to s0i by a renaming of a by a0 where a0is a new letter and get the relations of (1) and (2) for the
orresponding�-free expressions t01 and t02.Let L(t01) 6= f�g. Then, in analogy to the above
onsideration, a
ontradi
tionto the
hoi
e of r is obtained. Finally let L(t02) = f�g. Thend(t01 *b t02) � d(s1) + d(s2) + 1 = d(s) < d(r): (3)By the minimality of k, there is a �-free H-expression t su
h that L(t) =L(t01 *b t02) and d(t) � d(t01). By (1), (2), and (3), we obtain L(t) = L(r) andd(t) � d(s1) � d(s) � d(r). Therefore t satis�es all
onditions of the lemmain
ontrast to the
hoi
e of r 2 K. utFor an alphabet �, a partition C = (�1; � n�1) and two letters a and b notin � we de�ne the morphism �C by�C(x) = � a x 2 �1b x 2 � n�1 :Let L be a language over � and a and b two letters not in �. Then L is
alled an (a; b)-language i� there exist a partition C = (�1; � n �1) of � su
hthat the following
onditions hold:A1 �C(L) � a�b�,A2 �C(L) is in�nite,A3 for any natural number n, D(a; n; L) = fm j anbm 2 �C(L) g is a �nite set,andA4 for any natural number n, D(b; n; L) = fm j ambn 2 �C(L) g is a �nite set.We note that the
onditions A3 and A4 are equivalent to the existen
e of a
onstant k � 0 su
h that anbm 2 �
(L) implies jn�mj � k.Before showing that any (a; b)-language is not an HREG language we needthe following statements on the behaviour of (a; b)-languages under the operationused in the
onstru
tion of HREG languages.Lemma 3. 1. If L1[L2 is an (a; b)-language, then L1 or L2 are (a; b)-languages.2. If L1 � L2 is an (a; b)-language, then L1 or L2 are (a; b)-languages.3. For any L, language L� is not an (a; b)-language.4. If the set L1 *
 L2 is an (a; b)-language, for some
, and L2 6= f�g, then L1or L2 are (a; b)-languages.Proof. 1. Let C be the partition for L1 [L2. Be
ause �C(Li) � �C(L1 [L2) �a�b� and D(x; n; Li) � D(x; n; L1 [L2), for i 2 f1; 2g and x 2 fa; bg,
onditions A1, A3 and A4 hold for the languages L1 and L2, too. Moreover,the in�nity of �C(L1 [L2) implies that at least one of the languages �C(L1)and �C(L2) is in�nite. Hen
e
ondition A2 holds for L1 or L2, too.10

2. Again, let C be the partition for L1 �L2. Sin
e �C(L1 �L2) = �C(L1) � �C(L2)and L1 � L2 satis�es
onditions A1 and A2, both fa
tors �C(L1) and �C(L2)are
ontained in a�b� and one of the fa
tors has to be in�nite and the otherone is non-empty. Let us assume that L1 is in�nite.We prove that L1 satis�es
ondition A3. If A3 does not hold for L1, thenthere is an integer n su
h that D(a; n; L1) is in�nite. Let anbm 2 �C(L1) forsome m � 1. Let v be a word of L1 with �C(v) = anbm. Furthermore, letw 2 L2 and �C(w) = asbr. If s � 0, then anbmasbr = �C(vw) 2 �C(L1 � L2)in
ontrast to the validity of
ondition A1 for L1 � L2. If s = 0, then m 2D(a; n; L1) i� m + r 2 D(a; n; L1w), and thus D(a; n; L1w) is in�nite. ByD(a; n; L1w) � D(a; n; L1L2) we obtain a
ontradi
tion to the validity of
ondition A3 for L1 � L2.Analogously, we prove that L1 satis�es
ondition A4. Combining these fa
ts,language L1 is an (a; b)-language. By similar arguments we
an show that in
ase of in�nity of L2. Thus, L2 is an (a; b)-language.3. Let us assume that L� is an (a; b)-language, and let C be the partitionfor L�. Sin
e �C(L�) = (�C(L))� and �C(L�) is in�nite by
ondition A2,�C(L) 6= ; and �C(L) 6= f�g. Moreover, �C(L) � a�b� sin
e
ondition A1holds for L�. If �C(L)
ontains a word arbs with r � 1 and s � 1, thenarbsarbs 2 (�C(L))2 � �C(L�) in
ontrast to the validity of
ondition A1for L�. Hen
e �C(L) � a� or �C(L) � b�. In the former
ase we get ar 2 �C(L)with r � 1. Thus, fakr j k � 0g � �C(L�) and D(b; 0; L�) is in�nite in
ontrast to the validity of
ondition A4 for L�. Analogously, we show a
ontradi
tion in the
ase that �C(L) � b�4. If #
(w) = 0 for all w 2 L1, then L1 *
 L2 = L1 and the statement is shown.Thus, we
an assume that there is a word w 2 L1 with #
(w) � 1.Again, let C = (�1; � n�1) be the partition. Obviously, �C(L2) � a�b�. We
onsider the following three sub
ases:(a) Let �C(L2) � a�. If �C(L2) is in�nite, then, for any w 2 L1, language�C(w *
 L2) is in�nite, too. Therefore there is an integer n su
h thatD(b; n; w *
 L2) and hen
e D(b; n; L1 *
 L2) are in�nite. This
ontra-di
ts
ondition A4 for L1 *
 L2.Thus, we
an assume that �C(L2) � a� is �nite. We now prove that L1is an (a; b)-language with respe
t to the partition D = (�1 [f
g; � n(�1[f
g)). Note that C = D is possible. Sin
e
 is substituted by wordsof a� in L1 *
 L2, we obtain �D(L1) � a�b�, i.e., language L1 satis�es
ondition A1. Moreover, the in�nity of �C(L1 *
 L2) and the �nitenessof �C(L2) imply the in�nity of �D(L1). Hen
e
ondition A2 is ful�lledby L1.Now assume that L1 does not satisfy
ondition A4. Then there is aninteger n su
h that D(b; n; L1) is in�nite. Let k � 0 be an arbitraryinteger. Sin
e D(b; n; L1) is in�nite, there is an integer k0 � k su
h thatak0bn 2 �D(L1). Let u be a word in L1 with �D(u) = ak0bn. Then, byL2 6= f�g, the set �C(u *
 L2)
ontains a word ak00bn with k00 � k0 � k.Thus, D(b; n; L1 *
 L2) is in�nite, too, in
ontrast to the validity of
ondition A4 for L1 *
 L2. 11

Now assume that L1 does not satisfy
ondition A3. Then there is aninteger n su
h that D(a;m;L1) is in�nite. Let w be an element of L1with �D(w) 2 amb�. Then w = w0w00 for some w0 2 (V1 [f
g)� andw00 2 (V n (V1 [f
g))� with jw0j = m. Sin
e there is a �nite number ofdi�erent words w0 with w0 2 (V1 [f
g)� and jw0j = m, the in�nity ofD(a;m;L1) implies the existen
e of a word w0 over �1[f
g of length msu
h thatE = f �D(w00) j w00 2 (� n (�1 [f
g))�; w0w00 2 L1; �D(w0w00) 2 amb� gis in�nite. We setF = fw0w00 j w0w00 2 L1 and �D(w00) 2 E g:Let w0 = w1
i1w2
i2 : : : wr
irwr+1for some r � 0 with wr+1 2 (�1 n f
g)� and wj 2 (�1 n f
g)�, ij � 1 for1 � j � r. Then jw1w2 : : : wr+1j+ (i1 + � � �+ ir) = m:Let v 2 L2 with �C(v) = as. Then D(a; jw1w2 : : : wr+1j + (i1 + � � � +ir)s; F *
 v) and thereforeD(a; jw1w2 : : : wr+1j+(i1+� � �+ir)s; L1 *
 L2)are in�nite whi
h gives the desired
ontradi
tion.(b) Let �C(L2) � b�. We obtain a
ontradi
tion analogously to the �rst
aseabove.(
) Let �C(L2) � a+b+. First let us assume that there is a word w 2 L1with at least two o

urren
es of
. Then the existen
e of a word v 2 L2with �C(v) = arbs with r > 0 and s > 0 implies �C(w *
 v) =u1arbsu2arbsu3 2 �C(L1 *
 L2) for some words u1; u2; u3 2 fa; bg�,i.e.,
ondition A1 does not hold for L1 *
 L2 in
ontrast to our sup-position. Thus, we
an assume that any word of L1
ontains at mostone o

urren
e of
. Moreover, by analogous arguments, any word wof L1 with #
(w) = 1 has the form w = w1
w2 with w1 2 ��1 andw2 2 � n (�1 [f
g).Let �C(L2) be in�nite. We prove that L2 is an (a; b)-language. Lan-guage L1
ontains a word w = w1
w2 with w1 2 ��1 and w2 2 � n (�1 [f
g). If jw1j = r and jw2j = s, then �C(w) = ar+1bs or �C(w) = arbs+1.In the sequel we only dis
uss the former
ase, the latter one
an be han-dled by analogous
onsiderations. If L2 is not an (a; b)-language, thenone of the sets D(a; n; L2) or D(b; n; L2) is in�nite. This implies the in-�nity of D(a; n + r + 1; w *a L2) or D(b; n + s; w *a L2). Therefore,D(a; n+ r + 1; L1 *a L2) or D(b; n+ s; L1 *a L2) is in�nite in
ontrastto the fa
t that L1 *a L2 is an (a; b)-language.Thus, let �C(L2) be �nite. We show again, that L1 is an (a; b)-languagewith respe
t to the partition D de�ned as above. Obviously, �D(L1) isin�nite and
ontained in a�b�. Now assume that L1 does not satisfy12

ondition A4. Then there is an integer n su
h that D(b; n; L1) is in�nite.Let k � 0 be an arbitrary integer. Sin
e D(b; n; L1) is in�nite, there isan integer k0 � k su
h that ak0bn 2 �D(L1). Let u be a word in L1with �D(u) = ak0bn. Then, by L2 6= f�g, the set �C(u *
 L2)
ontainsa word ak00bn with k00 � k0 � k. Thus, D(b; n; L1 *
 L2) is in�nite, too,in
ontrast to the validity of
ondition A4 for L1 *
 L2. Analogously weprove that L1 satis�es
ondition A3. utNow we are ready to show that no (a; b)-language
an be anHREG language.Lemma 4. Any (a; b)-language is not an HREG language.Proof. Let us assume that there is an (a; b)-language K in HREG. Letk = minf d(K) j K 2 HREG and K is an (a; b)-languagegand let L be an (a; b)-language in HREG with d(L) = k. By Lemma 2, thereis an H-expression r
onstru
ted without steps of the form s *
 � su
h thatL(r) = L. Then k � 1 sin
e (a; b)-languages are in�nite by
ondition A2. Now,by Lemma 3 there are H-expressions s and t with d(s) < k and d(t) < k su
hthat r = s+t or r = st or r = s *
 t for some
. By Lemma 3 we obtain that L(s)or L(t) are (a; b)-languages in
ontrast to the de�nition of k. utTheorem 5. Let X 2 fCF;LINg. Then the family of languages X is in
om-parable to the family HREG.Proof. By Theorem 3 it is suÆ
ient to show that there is are languages K1 2LIN nHREG and K2 2 HREG nCF. Obviously, the linear
ontext-free lan-guage K1 = f
ndn j n � 1 g is an (a; b)-language. Thus, K1 =2 HREG followsfrom Lemma 4. If we
hoose K2 = fw
w j w 2 fa; bg� g, we are, obviously, done.We have already seen that HREG
ontains non-
ontext-free languages. Onthe other hand, it is known, that the Dy
k set is not an EDT0L language [25,Exer
ise 3.3, page 205℄, and thus is not
ontained in HREG by Theorem 4. Thisproves the following
orollary.Corollary 1. The language families CF and EHREG are in
omparable. ut4 Homomorphi
 Repla
ement Systems and RelatedMe
hanismsIn this se
tion we dis
uss several aspe
ts of homomorphi
 repla
ement whi
h arerelated to H- and EH-expressions. As already mentioned, homomorphi
 repla
e-ment was investigated by Albert and Wegner [2℄ in the
ontext of homomorphi
repla
ement systems. As we will see, homomorphi
 repla
ement with regularlanguages in the sense of Albert and Wegner is a spe
ial
ase of H-expressions.These systems are de�ned as follows: 13

De�nition 6 (H-systems). A homomorphi
 repla
ement system (H-system) isa quadruple H = (�1; �2; L1; ') with meta-alphabet �1, terminal alphabet �2,su
h that �1 \ �2 = ;, meta-language L1 � ��1 , and a fun
tion ' : �1 ! 2��2whi
h assigns to ea
h a 2 �1 a language '(a) � ��2 . Instead of '(a) we shallwrite also La.The language of an H-system H = (�1; �2; L1; ') is de�ned asL(H) = fh(w) j w 2 L1 and h is a homomorphism withh(a) 2 '(a) for all a 2 �1 g:The family of H-system languages with regular meta-languages and regularlanguages La for every a 2 �1 is denoted by H(REG;REG).Re
ently a restri
ted form of homomorphi
 repla
ement systems, so
alledpattern or multi-pattern languages [21, 23℄ have gained interest in the formal lan-guage
ommunity. Pattern (multi-pattern, respe
tively) languages are languagesgenerated by H-systems with the following restri
tions:1. L1 is a singleton (or a �nite language, respe
tively),2. there is a partition of �1 into �01 and �001 , and3. '(a) � �2 is a singleton for a 2 �01 and '(b) = ��2 for b 2 �001 .Let PAT (MPAT, respe
tively) denote the family of all pattern (multi-pattern,respe
tively) languages.Obviously, multi-pattern languages are a subset ofH(FIN;REG), the familyof H-system languages with �nite meta-languages and regular languages La forevery a 2 �1. Be
ause the H(REG;REG) language f (anb)m j n;m � 1 ggenerated by the H-system H = (fA;Bg; fa; bg; L1; ') with L1 = f (AB)m jm � 1 g and '(A) = a+ and '(B) = b, doesn't belong to H(FIN;REG), whi
hwas shown in [2℄, we obtain the following theorem, where the �rst stri
t in
lusionis due to [21℄:Theorem 6. PAT �MPAT � H(REG;REG). utMoreover, by the fa
t that (ab)� is not a multi-pattern language but belongsto H(REG;REG) one
on
ludes that the family of pattern and multi-patternlanguages are in
omparable with the family REG, LIN, and CF of regular,linear
ontext-free, and
ontext-free languages, respe
tively. Now
onsider thefollowing
hain of stri
t in
lusions:Theorem 7. REG � H(REG;REG) �HREG.Proof. The �rst in
lusion is obvious; the stri
tness is seen from the non-regularlanguage f anban j n � 1 g generated by the H-systemH = (fA;Bg; fa; bg; L1; ')with L1 = fABAg and '(A) = a� and '(B) = b.Let L 2 H(REG;REG). Then there is an H-system H = (�1; �2; L1; ')with regular meta-language L1 and regular languages La for all a 2 �1, su
hthat L = L(H). Without loss of generality we assume that �1 = fa1; : : : ; ang.14

Sin
e L1 (La for a 2 �1, resp.) is regular there exists a regular expression r1(ra for a 2 �1, resp.) su
h that L1 = L(r1) ('(a) = L(ra), resp.). Be
ause�1 \�2 = ; it is easy to see that the H-expression �: : :��r1 *a1 ra1� *a2 ra2� : : :� *an ran!exa
tly des
ribes language L. This shows that H(REG;REG) � HREG.It remains to show that the in
lusion is proper. By Albert and Wegner [2℄ itwas shown that the languagef (anb)m#(anb)m j n;m � 1 g 62 H(REG;REG):The reader may verify, that the H-expression�(A#A) *A �B+ *B �a+b��� or ���A#A� *A B+� *B (a+b)�des
ribes this language. Thus, the
laim follows. utWe want to stress that Theorem 5
an be generalized as follows. We statethe result without proof.Theorem 8. Let X 2 fCF;LINg and Y 2 fHREG;H(REG;REG)g. Thenthe family of languages X is in
omparable to the family of languages Y . utA slightly more general
lass than H(REG;REG) was introdu
ed and in-vestigated by Birget and Stephen [5℄. They de�ne a uniform sustitution to bea fun
tion SH : �1 ! 2�2 , whi
h is determined by a set H of homomorphisms��1 ! ��2 as follows: For w 2 �1, we de�ne SH(w) = f'(w) j ' 2 H g and for alanguage L in ��1 set SH(L) = f'(w) j w 2 L and ' 2 H g. Then let Re
REGbe the
lass of languages of the form SH(L), where L is regular and H is a re
og-nizable set of homomorphisms form ��1 to �2, i.e., for �1 = fv1; : : : ; vng the setf'(v1)# : : :#'(vn) 2 (�2 [f#g)� j ' 2 H g is a regular subset of (�2 [f#g)�,where # is a symbol not in �2. By Mezei's theorem, see, e.g., [5, page257, The-orem A.1℄, the set f'(v1)# : : :#'(vn) 2 (�2 [f#g)� j ' 2 H g is regular if andonly if it is equal to a �nite union of sets of the form L1# : : :#Ln, where ea
h Li,for 1 � i � n, is regular. Using this fa
t, one
an easy see thatRe
REG is a sub-set ofHREG. Moreover, the in
lusion is stri
t, be
ause the above used languageto separate H(REG;REG) from HREG is also not a member of Re
REG [5,page 253, Example 1℄. Thus, we have shown the following theorem:Theorem 9. Re
REG � HREG. utA more dire
t way to generalize H(REG;REG) systems is to iterate theinsertion pro
ess whi
h leads us to the de�nition ofH�(REG;REG) = 1[n=0Hn(REG;REG);15

where H0(REG;REG) = REG andHn(REG;REG) = fL(H) j H = (�1; �2; L1; ') withL1 in Hn�1(REG;REG) and '(a) in REG for all a 2 �1 gif n � 1. At �rst glan
e we show that H�(REG;REG) is sandwi
hed in betweenH(REG;REG) and HREG.Theorem 10. H(REG;REG) � H�(REG;REG) � HREG.Proof. The �rst in
lusion is obvious and its stri
tness is seen as follows. ByAlbert and Wegner [2℄ it was shown that the language f (anb)m#(anb)m jn;m � 1 g 62 H(REG;REG): The reader may verify, that the H-system H =(fBg; fa; bg; L1; ') with the H(REG;REG) meta-language L1 = fBm#Bm jm � 1 g and the regular language '(B) = f anb j n � 1 g des
ribes this language.For the in
lusion H�(REG;REG) �HREG we pro
eed as follows. In
asen = 0 and n = 1 we have already seen that Hn(REG;REG) � HREG. So letn � 1 and assume by indu
tion hypothesis that Hn(REG;REG) 2 HREG.Let L 2 Hn+1(REG;REG). Then there is a H-system H = (�1; �2; L1; ')with L1 2 Hn(REG;REG) and '(a) 2 REG for all a 2 �1 su
h that L =L(H). We assume that �1 = fa1; : : : ang. By indu
tion hypothesis there existsH-expression r1 (ra for a 2 �1, resp.) su
h that L1 = L(r1) ('(a) = L(ra),resp.). Be
ause �1 \�2 = ; it is easy to see that the H-expression �: : :��r1 *a1 ra1� *a2 ra2� : : :� *an ran!exa
tly des
ribes language L. This shows that L 2 HREG. utRe
ently a parti
ular extension of regular expressions and patterns so
alledpattern expressions were investigated by Campeanu and Yu [7℄. For readabil-ity we slightly adapt their notation. Pattern expressions are based on regularpatterns whi
h are de�ned as follows:De�nition 7. Let � and V be two disjoint alphabets. A regular expression over� [V is
alled a regular pattern over � with variables from V . The languageasso
iated with a regular pattern r over � [V is the language L(r) � (� [V)�.Next we de�ne pattern expressions:De�nition 8. Let � and V be two disjoint alphabets with V = fx0; x1; : : : ; xng.A pattern expression p over � with variables from V is a �nite set of equationsof the form xi = pi, for ea
h 0 � i � n, where xi 2 V is a variable and pi is aregular pattern over � with variables from fxi+1; : : : ; xng.The language of the pattern expression p is de�ned asL(p) = �: : :��L(p0) *x1 L(p1)� *x2 L(p2)� : : :� *xn L(pn)!and the family of languages des
ribed by pattern expressions is abbreviated byPATEXP. 16

Remark 1. Observe that from the de�nition of pattern expressions it follows thatthe last regular pattern (at least pn) is always a regular expression.If there is no danger of
onfusion we simply write p = (p0; x1 = p1; : : : ; xn =pn) to denote the regular pattern expression p des
ribed by the �nite set ofequations fx0 = p0; x1 = p1; : : : ; xn = png over � with variables from V =fx0; x1; : : : ; xng.New we show that pattern expressions exa
tly des
ribe the languages fromthe family H�(REG;REG) and vi
e versa.Theorem 11. H�(REG;REG) = PATEXP.Proof. The in
lusion from left to right is seen by indu
tion on n. In
ase n = 0and n = 1 obviously, Hn(REG;REG) � PATEXP. So let n � 1 and assumeby indu
tion hypothesis that Hn(REG;REG) � PATEXP.Let L 2 Hn+1(REG;REG). Then there is a H-system H = (�1; �2; L1; ')with L1 2 Hn(REG;REG) and '(a) 2 REG for all a 2 �1 su
h that L =L(H). We assume that �1 = fa1; : : : asg. By indu
tion hypothesis there existsa pattern expression p = (p0; x1 = p1; : : : ; xm = pm) over �1 with variablesfrom fx0; x1; : : : xmg, for some m, su
h that L1 = L(p). Moreover, sin
e '(a)is regular for all a 2 �1 we �nd regular patterns qa over �2 with no variablessu
h that '(a) = L(qa). Be
ause �1 \�2 = ; it is easy to see that the patternexpression p0 = (p0; x1 = p1; : : : ; xm = pm; a1 = qa1 ; : : : ; as = qas)exa
tly des
ribes language L sin
eL = �: : :��L1 *a1 '(a1)� *a2 '(a2)� : : :� *as '(as)! �: : :��L(p) *a1 L(qa1)� *a2 L(qa2)� : : :� *as L(qas)!= L(p0):This shows that Hn(REG;REG) � PATEXP for ea
h n � 0.Next
onsider PATEXP � H�(REG;REG). This in
lusion is shown byindu
tion on the number of variables used in a pattern expression. The base
ases n = 0 and n = 1 are trivial and left to the reader. So let n � 1 andassume by indu
tion that hypothesis that for every pattern expression p using nvariables belongs to H�(REG;REG).Let L 2 PATEXP be a language des
ribed by a pattern expression p =(p0; x1 = p1; : : : ; xn = pn) over � using variables from fx0; x1; : : : ; xng. Considerthe pattern expression not using variable xn, i.e., the expressionp0 = (p0; x1 = p1; : : : ; xn�1 = pn�1)17

over � [fxng using variables fx0; x1; : : : ; xn�1g. By indu
tion hypothesis thereexists a H-system H = (�1; � [fxng; L1; ') with L1 2 Hm(REG;REG), forsome m, and '(a) 2 REG for all a 2 �1, su
h that L(p0) = L(H). In orderto get rid-o� the letter xn in the words of L we have to repla
e them by wordsfrom L(pn). Sin
e it is required that the meta- and terminal language have tobe disjoint we de�ne the two H-systems as follows. Let �0 = f a0 j a 2 � g with�\�0 = ; and assume that x0n is a new variable not
ontained in fx0; x1; : : : ; xng.De�ne H1 = (� [fxng; �0 [fx0ng; L(H); '1) with '1(a) = a0 if a 2 � and'1(xn) = x0n otherwise. Finally de�ne H2 = (�0 [fx0ng; �; L(H1); '2) with'2(a0) = a if a0 2 �0 and '(x0n) = L(pn). By easy
al
ulations one sees thatL = L(H2) whi
h proves our
laim. Hen
e, PATEXP � H�(REG;REG). ut5 Closure and Non-Closure PropertiesIn this se
tion we study some
losure properties of the
lasses HREG andEHREG. We �nd that the family HREG is not a TRIO. First, we start ourinvestigations with a fairly easy theorem.Theorem 12. The language families HREG and EHREG are
losed underhomomorphisms, reversal, union,
on
atenation, and Kleene star.Proof. The
losure under union,
on
atenation, and Kleene star is trivial, and the
losure under reversal may be easily seen by indu
tion on H- and EH-expressions,respe
tively. The details are left to the reader.For the
losure under homomorphism we do as follows: Let r be an EH-expression over � and h : �� ! �� a homomorphism. We
onstru
t an expres-sion r0 over � su
h that L(r0) = h(L(r)) holds.By indu
tion on r we argue in the following way. If r is of the form ; (�,a, for some a 2 �, respe
tively), then r0 = ;, (r0 = �, r0 = a1 + � � � + anif h(a) = a1 : : : an, for ai 2 � and 1 � i � n, respe
tively). In
ase r = s + t(r = st, r = s�, respe
tively), then by indu
tion hypothesis, there exists s0 and t0su
h that L(s0) = h(L(s)) and L(t0) = h(L(t)). Thus, we set r0 = s0+t0 (r0 = s0t0,r0 = (s0)�, respe
tively). Finally, if r = s *a t (r = s*a , respe
tively), then byindu
tion hypothesis again, there exists s0 and t0 su
h that L(s0) = h0(L(s)) andL(t0) = h(L(t)), where h0(b) = h(b) if b 2 � nfag and h0(b) = a otherwise. Then,we set r0 = s0 *a t0 (r0 = s0*a , respe
tively). This
ompletes the
onstru
tionand shows that the language families HREG and EHREG are
losed underhomomorphism. utNext we
onsider
losure under interse
tion with regular sets. The below givenargument re-proves, in passing, also interse
tion
losure of the family REG,using expressions only.Theorem 13. The family HREG is
losed under interse
tion with regular lan-guages. 18

Proof. Let r be an H-expression and R a regular language over �. Then thereexists a �nite monoid (M; �), a homomorphism h : �� !M , and a set F �M ,su
h that w 2 R if and only if h(w) 2 F .For m 2M let [m℄ denote the set fw 2 �� j h(w) = m g, whi
h is regular forany m 2M . Be
ause of R = [m2F [m℄, it suÆ
ient to
onstru
t an expression r0over � su
h that L(r0) = L(r) \ [m℄ for some m 2 M . To this end we performindu
tion on r.If r is of the form ; (�, a, for a 2 �, respe
tively), then set r0 = ; (r0 = �if � 2 [m℄ and r0 = ; otherwise, r0 = a if a 2 [m℄ and r0 = ; otherwise,respe
tively). In
ase r = s+ t, we set r0 = s0 + t0, where s0 (t0, respe
tively) isan H-expression su
h that L(s0) = L(s) \ [m℄ (L(t0) = L(t) \ [m℄, respe
tively),whi
h exist by indu
tion hypothesis. If r = st or r = s�, then we do as follows.Note, that by indu
tion hypothesis again, there are H-expressions s0m1 (t0m2 ,respe
tively), for m1;m2 2M , with L(s0m1) = L(s)\ [m1℄ (L(t0m2) = L(t)\ [m2℄,respe
tively). Now in the former
ase, i.e., r = st, we setr0 = Xm=m1�m2(s0m1t0m2):In the latter
ase, i.e., r = s�, we generalize the above given argument. Considerthe language L = fm = m1 : : :mn j m1 � : : : �mn 2M g over M�. Obviously, Lis regular, therefore there exists an equivalent regular expression over M . Now,we
an des
ribe r0 by taking this regular expression and substitute smi , for ea
hmi 2 M , in that parti
ular expression. As in the previous
ase, the reader mayverify that the
onstru
ted r0 satis�es L(r0) = L(r) \ [m℄.Finally
onsider r = s *a t. By indu
tion hypothesis, there exist expres-sions s0m1;m2 , for m1;m2 2M , with L(s0m1;m2) = L(s)\ [m1;m2℄, where [m1;m2℄equals the equivalen
e
lass [m1℄ of the regular language R0, whi
h is de�nedas R, i.e., via the monoid M and the set F � M , ex
ept that we alter thehomomorphism h on letter a su
h that h(a) = m2. Moreover, we also have ex-pressions t0m3 , for m3 2 M , su
h that L(t0m3) = L(t) \ [m3℄. Putting all thingstogether, expression r0 reads asr0 = Xm12M �s0m;m1 *a t0m1� :This
ompletes our
onstru
tion. utFinally, on the remaining TRIO operation inverse homomorphism we alsoget a non-
losure result for H-expression languages.Corollary 2. The family HREG is not
losed under inverse homomorphisms.Proof. Consider the H-expression r = (A#A) *A a�, whi
h des
ribes the lan-guage f an#an j n � 0 g. De�ne two homomorphisms g : fa; b;#g� ! fa; bg�and homomorphism h : fa; b;#g� ! fa; bg� as follows: g(a) = a, g(b) = b,and g(#) = �. Moreover, set h(a) = a, h(b) = a, and h(#) = #. Theng(h�1(L(r)) \ a�#b�) equals f anbn j n � 0 g, whi
h does not belong to the19

family HREG by Theorem 8. Sin
e H-expressions are
losed under homomor-phism and interse
tion with regular languages, our
laim follows. utUnfortunately, at this point it remains open whether the family EHREG is
losed under interse
tion with regular languages and inverse homomorphisms.The non-
losure under the TRIO operations destroys the hope to get a ni
e
hara
terization of HREG languages in terms of an one-way automaton model.This is be
ause most automata in formal language theory as, e.g., pushdownautomata, sta
k automata, queue automata,
an be
hara
terized in terms ofautomata with abstra
t storage. As shown by Dassow and Lange [8℄ automatawith abstra
t storage imply a Chomsky-S
h�utzenberger like theorem of the de-s
ribed language family, i.e., every language from the family
an be written ash(g�1(D) \ R), where g and h are homomorphisms, R is a regular language,and D is proto
ol language of the abstra
t storage type.6 Complexity Theoreti
al IssuesIn this se
tion we study some
omplexity theoreti
al problems for H- and EH-expressions. We start with the �xed membership problem, showing that it isNL-
omplete for both H- and EH-expression languages.Theorem 14. The �xed membership problem for H- and EH-expressions is NL-
omplete.Proof. The �xed membership problem for EDT0L systems isNL-
omplete [19℄.Sin
e, by Theorem 4 we have EHREG � EDT0L, the �xed membershipproblem for both H- and EH-expressions is in NL, too. In order to prove NL-hardness, we redu
e some spe
ial
ase of the graph a

essibility problem, whi
his known to be NL-
omplete to (see, e.g., [15℄) to the �xed membership problemfor H-expressions. This problem is de�ned as follows: Given an ordered dire
tedgraph G = (V;E) with out-degree two, where V = f1; 2; : : : ; ng is the set ofnodes, E � V � V is the set of edges, and (i; j) in E implies that i � j. Is therea path from node 1 to node n in G?The below given
onstru
tion follows the lines of Sudborough [28℄. Let1##1$1j11##1$1j12##12$1j21##12$1j22# : : :#1n$1jn1##1n$1jn2##1n;be the
oding of the graph G, where (i; ji1) and (i; ji2) are edges in E. The grapha

essibility problem for G is redu
ed to the �xed membership problem for theexpression r = ��a#�#1+$1+#��#a$� *a 1+��over � = f0; 1; a;#; $g.Obviously, the
oding of G
an be
omputed in logarithmi
 spa
e. In wordsof L(r), one subword of L(s), wheres = �a#�#1+ $1+#��#a$� *a 1+;20

orresponds to one blo
k between two markers, more pre
isely beginning withthe se
ond part of a marked
ouple and ending with the �rst part of the nextmarked
ouple. Therefore, it is easily seen that the
oding of G belongs to L(r) ifand only if there is a (ordered) path from 1 to n in G. This proves our
laim. utIn the next theorem we turn our attention to the general membership prob-lem. There we were not able to exa
tly
hara
terize its
omplexity, and we
anonly give some lower and upper bound.Theorem 15. The general membership problem both for H- and EH-expressionsis NP-hard and belongs to PSpa
e.Proof. Analogously to the argument in the proof of Theorem 14, the
ontain-ment in PSpa
e is inherited from the general membership problem for EDT0Lsystems [20℄.For lower bound, it is suÆ
ient to redu
e the well-known NP-
ompletesatis�ability problem for Boolean formulas in
onjun
tive normal form (SAT)to the general membership problem for H-expressions. Let a Boolean formulaf = C1 ^C2 ^ : : :^Cm, for some m � 1, be given, where Ci, for 1 � i � m, is adisjun
tion of variables or negated variables from fx1; : : : ; xng.From f we
ompute an instan
e for the general membership problem of H-expressions as follows: First set for 1 � i � m the H-expressionsri = Xxj is in Ci xj + X�xj is in Cj �xjover the alphabet fx1; : : : ; xn; �x1; : : : ; �xng. Then lets0 = x1�x1#x2�x2# : : :#xn�xn#$r1#r2# : : :#rm#and indu
tively de�nesi+1 = ��si *xi+1 ��+ 1�� *�xi+1 ��+ 1��;for 0 � i < n, over the alphabet � = fx1; x2; : : : ; xn; �x1; �x2; : : : ; �xn;#; $; 1g.Finally, let hsn; wi be the instan
e of the general membership problem for H-expressions, where w = (1#)n$(1#)m.Clearly, the above spe
i�ed instan
e is
omputed in logarithmi
 spa
e from asuitable des
ription of f . Moreover, to ea
h literal of the form xi o

urring in fa Boolean value is assigned by repla
ing it
onsistently by 1 (�, respe
tively)
orresponding to true (false, respe
tively). Analogously, to ea
h literal of theform �xi o

urring in f a Boolean value is assigned. After these repla
ements,the string w belongs to L(sn) if and only if (1) the Boolean assignment is a
orre
t one, i.e., where xi and �xi evaluate not equally, for 1 � i � n, whi
h is
he
ked in the part left to the $ in w and (2) ea
h of the
lauses Ci, for 1 � i � m,is satis�able, whi
h is tested in the left-hand part of w. Therefore, we have w isin L(sn) if and only if f is satis�able. utThe next theorem holds trivially. 21

Theorem 16. Let r be an H-expression (EH-expression, respe
tively) and let r0be the S-expression (ES-expression, respe
tively) obtained from r by repla
ingevery * by # (and every * by #) and vi
e versa. Then L(r) = ; i� L(r0) = ;. utWe use the above given theorem to prove that the emptiness problem for H-and EH-expression is P-
omplete.Theorem 17. The emptiness problem for both H- and EH-expressions is P-
omplete.Proof. Given an ES-expression r, one
an
onstru
t an equivalent
ontext-freegrammar by indu
tion on r, mainly following the idea given in [14, Theorem 2.7℄.This
onstru
tion
an be done in deterministi
 logarithmi
 spa
e. Therefore, theemptiness problem for ES-expressions is not harder then the emptiness problemfor
ontext-free grammars, i.e., it
an be solved in polynomial time by a deter-ministi
 Turing ma
hine [18℄. Due to Theorem 16, even the emptiness problemfor EH-expressions and hen
e for H-expressions
an be solved within this timebound. This proves the
ontainments in P.In order to show P-hardness, it is suÆ
ient to redu
e the P-
omplete empti-ness problem for
ontext-free grammars to the emptiness problem for H-expres-sions or, due to Theorem 16, for S-expressions. The
ompleteness for EH-expres-sions (ES-expressions, respe
tively) follows trivially, be
ause every H-expressions(S-expression, respe
tively) is also an EH-expression (ES-expression).Let G = (N;T; P; S) be a
ontext-free grammar with nonterminals N =fA1; : : : Ang and assume S = A1. De�ne the homomorphism h : (N [T)� ! N�as h(A) = A if A 2 N and h(a) = � otherwise. Furthermore, for A 2 N let sAdenote the H-expressions (S-expression) with L(sA) = fh(�) j A! � is in P g.Then let r0 = sA1 , indu
tively for 0 � i < n de�neri+1 = �: : :��ri *A1 sA1� *A2 sA2� : : :� *An sAn!;and let rn+1 = ((: : : ((ri *A1 ;) *A2 ;) : : :) *An ;). By indu
tion the reader mayverify that L(rn+1) = ; if and only if L(G) = ;. Sin
e the sAi expressions andthus also the ri expressions, in parti
ular the rn+1 expression, are deterministi
logarithmi
 spa
e
onstru
tible from G, we
on
lude that the emptiness problemfor H- and EH-expressions is P-hard, too. utTheorem 18. The equivalen
e problem for EH-expressions is unde
idable.The proof
an be given by redu
tion of Post's
orresponden
e problem (see,e.g., [17℄) whi
h is rather standard and therefore omitted here. The de
idabilitystatus of the equivalen
e problem for H-expressions remains open.7 Con
lusionsIn this paper we have studied the expressive power of H- and EH-expressions,whi
h are de�ned as an extension of regular expressions by homomorphi
 and22

iterated homomorphi
 repla
ement. The in
lusion relations among the
lasses
onsidered are depi
ted in Figure 1. Besides the expressive power we have alsoinvestigated the
losure and non-
losure properties of these
lasses under Booleanoperations, Kleene star, and TRIO operations. In most
ases we
lassi�ed theproblems under
onsideration
ompletely. Nevertheless, we left some problemsopen, su
h as whether the family of EH-expression languages is
losed underinterse
tion with regular languages and inverse homomorphism. Moreover, wealso fo
used on some issues of
omputational
omplexity as the �xed and gen-eral membership, non-emptiness, and equivalen
e. The de
idability status of theequivalen
e problem for H-expression languages remains open.
ET0L EDT0LEHREG

H(REG;REG)
CF = ESREG

LIN HREG
REG = SREG PATMPAT

H�(REG;REG) = PATEXP

CS

FINFig. 1. The in
lusion stru
ture of the
onsidered language families.We hope that the investigation of homomorphi
 repla
ement, as one sort ofpattern repeating operation, helps to understand the expressive power of regularlike expressions mu
h better. Nevertheless, regular like expressions in program-ming environments still la
k
omplete theoreti
al understand.23

Referen
es1. A. V. Aho. Algorithms for �nding patterns in strings. In J. van Leeuwen, editor,Handbook of Theoreti
al Computer S
ien
e. Elsevier S
ien
e Publishers B.V., 1990.2. J. Albert and L. Wegner. Languages with homomorphi
 repla
ements. In Pro
eed-ings of the 7th International Colloquium on Automata Languages and Program-ming, number 85 in LNCS, pages 19{29. Springer, July 1980.3. J. C. M. Baeten and W. P. Weijland. Pro
ess Algebra, volume 18 of CambridgeTra
ts in Theoreti
al Computer S
ien
e. Cambridge University Press, 1991.4. J. L. Bal
�azar, J. D��az, and J. Gabarr�o. Stru
tural Complexity I, volume 11 ofEATCS Monographs on Theoreti
al Computer S
ien
e. Springer, 1988.5. J.-C. Birget and J. B. Stephen. Formal languages de�ned by uniform substitutions.Theoreti
al Computer S
ien
e, 132:243{258, 1994.6. H. Bordihn, J. Dassow, and M. Holzer. H-Ausd�u
ke|eine Erweiterung regul�arerAusdr�u
ke. In F. Otto and G. Niemann, editors, 9. Theorietag der GI-Fa
hgruppe0.1.5 "`Automaten und Formale Spra
hen"', page 26. Fa
hberei
h 17 Mathe-matik/Informatik, Universit�at Gesamtho
hs
hule Kassel, Heinri
h-Plett Stra�e 40,D-34132 Kassel, Germany, September 1999.7. C. Campeanu and S. Yu. Pattern expressions. Unpublished manus
ript, 1999.8. J. Dassow and K.-J. Lange. Complexity of automata with abstra
t storages. InL. Brim, J. Gruska, and J. Zlatuska, editors, Pro
eedings of the 8th InternationalConferen
e on Fundamentals of Computation Theory, number 529 in LNCS, pages200{209, Brno, Cze
h Republi
, September 1991. Springer.9. J. Dassow and Gh. P�aun. Regulated Rewriting in Formal Language Theory, vol-ume 18 of EATCS Monographs in Theoreti
al Computer S
ien
e. Springer, 1989.10. P. Dembi�nski and J. Ma luszy�nski. Two level grammars: CF-grammars with equa-tion s
hemes. In Pro
eedings of the 6th International Colloquium on AutomataLanguages and Programming, number 71 in LNCS, pages 171{187. Springer, 1979.11. D. Dougherty. sed & awk. O'Reilly & Asso
iates, In
., 1990.12. J. Engelfriet and E. M. S
hmidt. IO and OI. Part I and II. Journal of Computerand System S
ien
es, 15 and 16:328{353, 67{99, 1977.13. D. Giammarresi and A. Restivo. Two-dimensional languages. In Rozenberg andSalomaa [26℄, pages 215{267.14. J. Gruska. A
hara
terization of
ontext-free languages. Journal of Computer andSystem S
ien
es, 5:353{364, 1971.15. J. Hartmanis, N. Immerman, and S. Mahaney. One-way log-tape redu
tions. InPro
eedings of the 19th Annual Symposium on Foundations of Computer S
ien
e,pages 65{72, Ann Arbor, Mi
higan, O
tober 1978. IEEE So
iety Press.16. K. Hashigu
hi and H. Yoo. Extended regular expressions of degree at most two.Theoreti
al Computer S
ien
e, 76:273{284, 1990.17. J. E. Hop
roft and J. D. Ullman. Introdu
tion to Automata Theory, Languagesand Computation. Addison-Wesley, 1979.18. N. D. Jones and W. T. Laaser. Complete problems for deterministi
 polynomialtime. Theoreti
al Computer S
ien
e, 3:105{117, 1977.19. N. D. Jones and S. Skyum. Re
ognition of deterministi
 ET0L languages in loga-rithmi
 spa
e. Information and Computation, 35:177{181, November 1977.20. N. D. Jones and S. Skyum. Complexity of some problems
on
erning L systems.Mathemati
al Systems Theory, 13:29{43, 1979.21. L Kari, A. Matees
u, Gh. P�aun, and A. Salomaa. Multi-pattern languages. Theo-reti
al Computer S
ien
e, 141:253{268, 1995.24

22. S. C. Kleene. Representation of events in nerve nets and �nite automata. InC. E. Shannon and J. M
Carthy, editors, Automata studies, volume 34 of Annalsof mathemati
s studies, pages 2{42. Prin
eton University Press, 1956.23. A. Matees
u and A. Salomaa. Aspe
ts of
lassi
al language theory. In Rozenbergand Salomaa [26℄, pages 175{251.24. E. O
hmanski. Regular behaviour for
on
urrent pro
esses. Bulletin of the Euro-pean Asso
iation for Theoreti
al Computer S
ien
e, 27:56{67, 1985.25. G. Rozenberg and A. Salomaa. The Mathemati
al Theory of L Systems, volume 90of Pure and Applied Mathemati
s. A
ademi
 Press, 1980.26. G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, volume1{3. Springer, 1997.27. R. Siromoney and K. Krithivasan. Parallel
ontext-free grammars. Informationand Control, 24:155{162, 1974.28. I. H. Sudborough. A note on tape-bounded
omplexity
lasses and linear
ontext-free languages. Journal of the ACM, 22(4):499{500, O
tober 1975.29. M. K. Yntema. Cap expressions for
ontext-free languages. Information and Con-trol, 18(4):311{318, May 1971.

25

AppendixIn this appendix we give an operational semanti
s for regular expressions withba
k referen
ing. Ba
k referen
ing is an assignment operator was introdu
edin [1℄ and allows to repeat
ertain patterns. Below we give a de�nition of regularexpressions with ba
k referen
ing whi
h is suitable to model Unix regular likeexpressions.De�nition 9 (BR-expressions). Let � be an alphabet and � a set of variableswith � \� = ;. The regular expressions with ba
k referen
ing (BR-expression)over � and � and their set of assigned variables,
alled asg, are de�ned re
ur-sively as follows:1. ; is a BR-expression and asg (;) = ;.2. � is a BR-expression and asg (�) = ;.3. For ea
h a 2 �, a is a BR-expression and asg (a) = ;.4. For ea
h v 2 �, v is a BR-expression and asg (v) = ;.5. Let v 2 � be a variable and r; s are BR-expressions. Then the followingstrings are BR-expressions:(a) (r + s) is a BR-expression if asg (r) \ asg (s) = ;, and asg (r + s) =asg (r) [asg (s).(b) (rs) is a BR-expression if asg (r) \ asg (s) = ;, and asg (rs) = asg (r) [asg (s).(
) (r�) is a BR-expression with asg (r�) = asg (r).(d) (r%v) is a BR-expressions if v 62 asg (r), and asg (r%v) = asg (r)[fvg.6. Nothing else is a BR-expression.The set of languages des
ribed by BR-expressions is denoted by BREG.As for regular expression, redundant parenthesis
an be avoided using thesame pre
eden
es and asso
iatives as in regular expressions. The ba
k referen
ingoperator % is left-asso
iative and has the highest pre
eden
e. Thus, if there isno danger of
onfusion, we omit out-most bra
kets. Let us give some examples.Example 2. 1. r = ((a+ b)%v)v is a BR-expression with asg (r) = fvg.2. s = (((a+ b)�%v)v)�v is a BR-expression with asg (s) = fvg.3. t = v((a+ b)%v) is a BR-expression with asg (t) = fvg.4. u = (v%v) is a BR-expression with asg (u) = fvg.The reader familiar with Unix regular expression may have noti
ed, thatour de�nition is more relaxed then in the Unix
ase. For instan
e, we allow theusage of a variable before it is de�ned by an assignment as in
ases 3 and 4 of ourexamples. As we will see later, these BR-expressions will denote the empty-setonly. Nevertheless, BR-expressions
an be seen as one possible model for Unixregular expression.It remains to de�ne a semanti
 for BR-expressions. In
ontrast to ordinaryregular expression, where usually the semanti
s is given by an indu
tive de�ni-tion, here we run into problems be
ause the variable v as a BR-expression will26

have no value, but the BR-expression ((a + b)�%v)v shall have one. To over-
ome this situation we give a operational semanti
s of BR-expressions based ona
tion relations as used in pro
ess algebra (see, e.g., [3℄). Before we need somenotations:Let f : � ! �� be a partial fun
tion from the set of variables into the freemonoid build by the input alphabet. Sometimes f is
alled the memory fun
tionon � and �. Let f be a memory fun
tion on � and � and r a BR-expressionsover � and �, then we
all the tuple [f; r℄ and [f;p℄ a
on�guration. The latter
on�guration is the so
alled terminal
on�guration. Now we are ready to de�nea redu
tion system based on a (generalized) a
tion relation as follows:De�nition 10. 1. The a
tion relation on
on�gurations is de�ned as follows:(a) [f; �℄ �! [f;p℄ and [f; a℄ a! [f;p℄(b) [f; r�℄ �! [f;p℄ and [f; r�℄ �! [f; rr�℄.2. The generalized a
tion relation is indu
tively de�ned:(a) [f; r℄ a! [g;p℄ implies [f; r℄ a) [g;p℄ and [f; r℄ a! [g; s℄ implies [f; r℄ a)[g; s℄.(b) [f; r℄ w) [g;p℄ implies [f; r + s℄ w) [g;p℄ and [f; s+ r℄ w) [g;p℄.(
) [f; r℄ w) [g;p℄ implies [f; rs℄ w) [g; s℄.(d) [f; v℄ w) [f;p℄ if f(v) is de�ned and evaluates to w.(e) [f; r℄ w) [g;p℄ implies [f; r%v℄ w) [g0;p℄, where g0 is identi
al to g ex
eptthat g0(v) evaluates to w.(f) [f; r℄ w) [g; s℄ and [g; s℄ x) [h;p℄ implies [f; r℄ wx) [h;p℄. Moreover,[f; r℄ w) [g; s℄ and [g; s℄ x) [h; t℄ implies [f; r℄ wx) [h; t℄.Observe, that by de�nition the
on�guration [f; ;℄ does not derive any other
on�guration and [f; ;�℄ �! [f;p℄ regardless of the
hosen memory fun
tion f .Moreover, note that a derivation that starts with [f; ;�℄ �! [f; ;;�℄ does notterminate at all, be
ause the leading term ;
an not be eliminated anymore.Now we are ready to de�ne the language asso
iated to a parti
ular BR-expression as follows.De�nition 11. Let ? be the everywhere unde�ned memory fun
tion on alpha-bet � and variables �. Then the language de�ned by a BR-expression r over �and � is the language L(r) = fw 2 �� j [?; r℄ w) [g;p℄ g.At this point we should give a larger example.Example 3. Let r = ((a+b)�%v)v be one of the BR-expression from our previousexample. The below given derivations hold for an arbitrary memory fun
tion f .1. [f; a℄ a! [f;p℄ and [f; b℄ a! [f;p℄.2. [f; a+ b℄ a) [f;p℄ and [f; a+ b℄ b) [f;p℄.3. In general we �nd [f; (a+b)�℄ w) [f;p℄ if w 2 fa; bg�, be
ause of the followingthree derivations:(a) [f; (a+ b)�℄ �! [f;p℄, 27

(b) [f; (a+ b)�℄ �! [f; (a+ b)(a+ b)�℄ a) [f; (a+ b)�℄, and(
) [f; (a+ b)�℄ �! [f; (a+ b)(a+ b)�℄ b) [f; (a+ b)�℄.4. [f; (a+ b)�%v℄ w) [f 0;p℄ if w 2 fa; bg� and f 0 is identi
al with f ex
ept thatf(v) = w.5. [f; (a + b)�%v)v℄ w) [f 0; v℄, where f 0 and w are de�ned as in (4). Moreover,[f 0; v℄ w) [f 0;p℄. Thus,[f; ((a+ b)�%v)v℄ w) [f 0; v℄ w) [f 0;p℄;and hen
e [f; ((a+ b)�%v)v℄ ww) [f 0;p℄. This
ompletes our example.Thus, we have shown that L(r) = fww j w 2 fa; bg� g.A
loser look on the other examples shows that s = (((a+b)�%v)v)�v denotesthe set L(s) = fw1w1w2w2 : : : wn�1wn�1wnwnwn j wi 2 fa; bg� and n � 1 g,while the remaining two BR-expressions t = v((a + b)%v) and u = (v%v) bothdenote the empty-set only, i.e., L(t) = L(u) = ;. The latter is due to the fa
t thatvariable v is used before some value is assigned to it, and thus the generalizeda
tion relation terminates abnormally.We have just seen that BR-expressions are quite powerful and
an des
ribenon-
ontext-free languages. On the other hand, we
onje
ture that even thelinear
ontext-free language f anbn j n � 0 g is not a BR-expression language.Up to now we were not able to give a formal prove of this statement based onour formalism on the semanti
s of BR-expressions.

28

