T UM

INSTITUT FUR INFORMATIK

Extending Reqgular Expressions with
Homomorphic Replacement

Henning Bordihn andiufgen Dassow and Markus Holzer

TUM-10102
August 01

TECHNISCHE UNIVERSITATMUNCHEN

TUM-INFO-08-10102-0/1.-FlI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©2001

Druck: Institut f ur Informatik der
Technischen Universit at Munchen

Extending Regular Expressions with
Homomorphic Replacement*

Henning Bordihn*** and Jiirgen Dassow? and Markus Holzer?* * *

! Institut fiir Informatik, Universitit Potsdam,
Am Neuen Palais 10, D-14469 Postdam, Germany
email: bordihn@cs.uni-potsdam.de
2 Fakultét fiir Informatik, Otto-von-Guericke-Universitiit Magdeburg,
Postfach 4120, D-39016 Magdeburg, Germany
email: dassow@iws.cs.uni-magdeburg.de
3 Institut fiir Informatik, Technische Universitit Miinchen,

Arcisstrafie 21, D-80290 Miinchen, Germany
email: holzerQ@informatik.tu-muenchen.de

Abstract. We define H-expressions and EH-expressions as extensions of
regular expressions by adding homomorphic and iterated homomorphic
replacement as new operations, respectively. The definition is analogous
to the extension given by Gruska in order to characterize context-free
languages. We compare the families of languages obtained by these ex-
tensions with the families of regular, linear context-free, context-free,
and EDTOL languages. Furthermore, we present their closure proper-
ties with respect to TRIO operations and discuss the decidability status
and complexity of fixed and general membership, emptiness, and the
equivalence problem. Some of our proofs are only based on expressions,
and thus can be used in order to get new proofs for regular sets, too.

1 Introduction

The family REG of regular languages, defined as the family of languages ac-
cepted by (deterministic or nondeterministic) finite automata or, equivalently,
generated by right-linear grammars, is one of the most important and well inves-
tigated classes of formal languages. Regular expressions, which were originally
introduced by Kleene [22] and are a lovely set-theoretic characterization of reg-
ular languages, are better suited for human users and therefore are often used

* An extended abstract of this paper appeared in the proceedings of the 9th Theo-
ryday of the GI-Workinggroup 0.1.5 ” Automaten und Formale Sprachen” held at
Schauenburg-Elmshagen near Kassel, Germany, in September 1999 [6].

** Part of the work was done while the author was at Fakultat fiir Informatik, Otto-von-
Guericke-Universitat Magdeburg, Postfach 4120, D-39016 Magdeburg, Germany.
*** Part of the work was done while the author was at Département d’I.R.O., Université
de Montréal, C.P. 6128, succ. Centre-Ville, Montréal (Québec), H3C 3J7 Canada. He
was supported in part by the Deutsche Forschungsgemeinschaft (DFG), the National
Sciences and Engineering Research Council (NSERC) of Canada, and by the Fonds
pour la Formation de Chercheurs et [’Aide a la Recherche (FCAR) of Québec.

as interfaces to specify certain pattern or languages. E.g., in the widely avail-
able programming environment UNIX, regular (like) expressions can be found in
legion of software tools like, e.g., awk, ed, emacs, egrep, lex, sed, vi, etc., to
mention a few of them. The syntax used to represent them may vary, but the
concepts are very much the same everywhere.

Most of the above mentioned text-editing and searching programs add ab-
breviations and new operations to the basic regular expression notation from
theoretical computer science, in order to make it easier to specify patterns or
languages. This offers considerable convenience in both theory and practice.
What concerns common abbreviations, as for instance, intersection and com-
plement, they do not add more descriptive power to regular expressions, but
give more concise descriptions. Besides the usage of meta-characters in UNIX
like expressions, the most significant difference to ordinary regular expressions is
some sort, of pattern repeating operation. More precisely, it is possible to specify
patterns that are saved in a special holding space, used for further processing, on
the underlying word. For instance, the UNIX regular expression \ ([ab] “*\)\1
describes the non-context-free language { ww | w € {a,b}* }. For more details
we refer to [11] and to the appendix, where we give a natural semantics for
so called regular expressions with back referencing®, a model for UNIX regular
expressions, first briefly discussed in [1].

Kleene’s well-known theorem, which states that a language L is regular if
and only if there is a regular expression r with L = L(r). There have been some
attempts to generalize this theorem in one of the following directions: Define
an extension of regular expressions and determine the associated family of lan-
guages (see, e.g., [16]) or find the class of expressions for a given extension of the
family of regular languages (see, e.g., [13,24,29] characterizing two-dimensional
regular languages, recognizable trace languages, and context-free (string) lan-
guages, respectively). On the other hand, to our knowledge nothing comes close
to the repeating or copy operation mentioned above. This brings us to the aim of
this paper. Inspired by Gruska’s substitution expressions [14], which were used
to characterize the context-free languages, we introduce regular expressions en-
riched by some sort of copy operation, which is close to the repeating feature of
UNIX regular like expressions.

A good formal language theoretic approach to those pattern repetition op-
erations is given by the operation of homomorphic replacement. Homomorphic
replacement is a concept well-known in computer science. We mention some
areas where it appeared in literature under various names within different con-
texts: For example, in van Wijngaarden grammars (W-grammars) homomorphic
replacement is called “consistent substitution” or “consistent replacement” [10].
In connection with macro grammars [12] it is called “inside-out (IO) substitu-
tion,” in Indian parallel grammars [27] the one-step derivation relation is nothing
other then a homomorphic replacement with a finite set, and in some algebraical
approach in formal language theory it appears as “call by value substitution.”

! To our knowledge this was not done before.

Another aspect of homomorphic replacement was investigated by Albert and
Wegner [2], who considered H-systems.

In this paper, we study the usual language theoretic properties of regular
expressions extended by homomorphic replacement, such as the descriptional
power in comparison with the well-known classes in the Chomsky hierarchy as
well as families of languages determined by mechanisms which are related to ex-
pressions with homomorphic replacement, closure properties and the complexity
status of some decision problems for expressions with homomorphic replacement.
In the next section we introduce the necessary definitions. Then in Section 3 we
compare the power of substitution versus homomorphic replacement and in Sec-
tion 4 we relate the latter to some other concepts in the literature. Sections 5
and 6 are devoted to the study of closure and decision problems as mentioned
above. Finally in penultimate section we summarize our results and state some
open problems.

2 Definitions

We assume the reader to be familiar with some basic notions of formal language
theory, as contained in [9]. In particular we consider the following well-known
formal language families generated by regular (i.e., right-linear), linear context-
free, context-free, and context-sensitive Chomsky grammars which are denoted
by REG, LIN, CF, and CS, respectively. Moreover, the family of extended (ex-
tended deterministic, respectively) tabled context-free Lindenmayer languages is
denoted by ETOL (EDTOL, respectively). The class of finite languages is de-
noted by FIN.

In this paper we are dealing with regular like expressions. Ordinary regular
expression are defined as follows:

Definition 1 (R-expressions). Let X' be an alphabet. The regular expressions
(R-expressions) over X and the sets that they denote are defined recursively as
follows:

. 0 is a regular expression and denotes the set L() = 0.

. A\ is a regular expression and denotes the set L(\) = {\}.

. For each a € X, a is a reqular expression and denotes the set L(a) = {a}.

. If r and s are regular expressions, then (r + s), (rs), and (r*) are regular
expressions that denote the sets L(r +s) = L(r)U L(s), L(rs) = L(r) - L(s),
and L(r*) = L(r)*, respectively.

5. Nothing else is a reqular expression.

BN S

It is well known that regular expressions exactly characterize the family of
regular languages REG. We call a language regular like expression language, if
it can be described by a regular like expression, i.e., a regular expression with
an enhanced set of operations as, e.g., union, concatenation, Kleene star, and
iterated substitution or iterated homomorphic replacement. Both operations are
defined formally in the next section.

Besides the expressive power of regular like expressions, we also investigate
some complexity theoretical issues on these language families. We assume the
reader to be familiar with some basic notions of complexity theory, as con-
tained in [4]. In particular we consider the following well-known chain of inclu-
sions: NL C P C NP C PSpace. Here NL is the set of problems accepted
by nondeterministic logarithmic space bounded Turing machines, and P (NP,
respectively) is the set of problems accepted by deterministic (nondeterministic,
respectively) polynomially time bounded Turing machines. Moreover, PSpace
is J, DSpace(n*).

Completeness and hardness are always meant with respect to deterministic
log-space many-one reducibilities. A problem A is said to be log-space many-one
equivalent or as hard as B, if and only if A reduces to B and B reduces to A.

We investigate the fixed membership, the general membership, the equiva-
lence, and the emptiness problem for regular like expression languages. The fized
membership problem for regular like expression languages is defined as follows:

— Fix a regular like expression 7. For a given word w, is w € L(r)?

A natural generalization is the general membership problem which is defined as
follows:

— Given a regular like expression r and a word w, i.e., an encoding (r,w), is
w € L(r)?

The equivalence problem is the following one:

— Given two regular like expressions r and s, does L(r) = L(s) hold?
Finally, the emptiness problem is defined as:

— Given a regular like expression r, is L(r) = (7

The general membership, the equivalence, and emptiness problem have regu-
lar like expressions as inputs. Therefore we need an appropriate coding function
(-y which maps,e.g., a regular like expression r and a string w into a word (r, w)
over a fixed alphabet X. We do not go into the details of (-), but assume it
fulfills certain standard properties; for instance, that the coding of the alphabet
symbols is of logarithmic length.

3 Substitution Versus Homomorphic Replacement

In this section we introduce the homomorphic replacement operation and study
the expressive power of regular like expressions involving this new operation.
We compare the induced language family to the lower classes of the Chomsky
hierarchy and to the family EDTOL of languages generated by extended deter-
ministic tabled OL systems. Next we recall Gruska’s [14] approach to characterize
the context-free languages and then we define homomorphic replacement.

3.1 Substitution and Iterated Substitution

Recall the approach given by Gruska [14] in his seminal paper, where a-substi-
tutions and their iteration are the additional operations to regular expressions.

Let a be a letter and Ly, Lo be languages. The a-substitution of Ly in Ly,
denoted by Ly |, Lo, is defined by

Ly o Ly = {ugvrus . .. upvpupyy | urausa. .. aupyy € Ly,

a does not occur in wyus ... ug+1, and v1,va ..., v € Lo },
and the iterated a-substitution of language L, denoted by L‘«, is defined by
Lts = {w € LU(L {4 L)U(L }o L Lo L)U--- | w has no occurrence of letter a }

where any further bracketing is omitted since a-substitution is obviously asso-
ciative.

Based on these operations an extension of regular expressions is defined.
Let X' be an alphabet. The regular expressions with substitution (S-expressions)
and regular expressions with extended substitution (ES-expressions) over X and
the sets they denote are defined recursively as follows:

1. Every regular expression over X is an S- and ES-expression.

2. If r and s are S- and ES-expressions, resp., denoting the languages L(r)
and L(s), resp., then (r + s), (rs), (r*), and (r {4 s), for some a € X, are S-
and ES-expressions, respectively, that denote the sets L(r)UL(s), L(r)-L(s),
L(r)*, and L(r) |, L(s), respectively.

3. Let a € X. If r is an ES-expression denoting the language L(r), then (rte)
is an ES-expression that denotes the set L(r)%e.

4. Nothing else is an S- or ES-expressions, respectively.

The families of languages described by S- and ES-expressions are denoted by
SREG and ESREG, respectively. While SREG equals REG, which is easily
seen, In [14] Gruska has shown that ESREG coincides with the family CF of
context-free languages.

3.2 Homomorphic and Iterated Homomorphic Replacement

Homomorphic replacement was investigated by Albert and Wegner [2] and ap-
peared in the literature under various names within different contexts. For in-
stance, in van Wijngaarden grammars (W-grammars) homomorphic replacement
is called “consistent substitution” or “consistent replacement” [10]. In connec-
tion with macro grammars [12] it is called “inside-out (IO) substitution,” in
Indian parallel grammars [27] the one-step derivation relation is nothing other
then a homomorphic replacement with a finite set, and in some algebraical ap-
proach in formal language theory it appears as “call by value substitution.” The
essential feature of homomorphic replacement is copying. Thus, we introduce an
operation on languages which models this feature. Our definition was inspired

by Gruska’s a-substitution [14]. According to the definition of a-substitution, we
have to replace any occurrence of a by a word of Lo, and it is allowed that differ-
ent occurrences are replaced by different words. We now modify this mechanism
by the requirement that any occurrence of a has to be replaced by the same
word of Ls.

Definition 2. Let a be a letter and L1, Lo be languages. The a-homomorphic
replacement of Ly in Ly, denoted by Ly Y, L2, is defined by

Ly fto Lo = {ugvus . . . ugvups | urausa. .. augyq € Ly,

a does not occur in U us . .. Ugt1, and v € Ly }.
The reader may easily verify that the following lemma is valid.

Lemma 1. For each letter a, the operation . ¢S associative, i.e.,

(L1 o L2) fra Ls = Ly fra (L2 e L3).

Observe, that the previous lemma is not true if we use different letters for
the replacement operation because

({0} fra {a}) o {a} = {a} # {b} = {b} fta ({a} Mo {a}).
We also consider the iterated version of homomorphic replacement.

Definition 3. Let a be a letter and L a language. The iterated a-homomorphic
replacement of L, denoted by L=, is defined by

L = {w € LU(L fty L)U(L fto L ftq L)U--- | w has no occurrence of letter a'}.

Due to Lemma 1 we do not have to specify the bracketing of the a-homomor-
phic replacement operations in the previous definition. Note, if @ is not in X,
then for language L C X¥* we have L* = (La U {A\})" and Lt = (La U L),
Here A denotes the empty word.

Homomorphic replacement is very powerful, because one can describe the
non-context-free language {ww | w € {a,b}*} by {cc} . {a,b}*. In fact, this
shows that the low levels of the Chomsky hierarchy are not closed under a-
homomorphic and iterated a-homomorphic replacement.

Theorem 1. 1. The family of finite languages is closed under a-homomorphic
replacement. Neither the family of regular, linear context-free nor the family
of context-free languages is closed under a-homomorphic replacement.

2. Neither the family of finite languages, reqular, linear context-free nor the
family of context-free languages is closed under iterated a-homomorphic re-
placement. O

Obviously, the family of recursively enumerable languages is closed under
a-homomorphic replacement, but for the family of context-sensitive languages
we have to be careful whether the replacement is A-free or not. In the A-free

case CS is closed under this type of operation what can readily be shown by
LBA construction. In general this family is not closed under a-homomorphic
replacement, because it is possible to simulate arbitrary homomorphisms and the
well-known fact that every recursively enumerable language is a homomorphic
image of a context-sensitive language. We briefly summarize our results:

Theorem 2. The family of context sensitive languages is not closed under ar-
bitrary (iterated) a-homomorphic replacement, but is closed under \-free one.
Finally, the family of recursively enumerable languages is closed under a-homo-
morphic and iterated a-homomorphic replacement. ad

Now we are ready to define the central notion of this paper, which is that of
regular expressions with (iterated) homomorphic replacement.

Definition 4. Let X be an alphabet. The reqular expressions with homomor-
phic replacement (H-expressions) and extended homomorphic replacement (EH-
expressions), respectively, over X and the sets they denote are recursively defined
as follows:

1. Every regular expression over X is also an H- and EH-expression, respec-
tively.

2. If r and s are H- and EH-expressions, resp., denoting the languages L(r)
and L(s), resp., then (r + s), (rs), (r*), and (r ft, s), for some a € ¥,
are H- and EH-expressions, respectively, that denote the sets L(r) U L(s),
L(r) - L(s), L(r)*, and L(r) 1, L(s), respectively.

3. Let a € X. If r is an EH-expression denoting the language L(r), then (rf)
is an EH-expression that denotes the set L(r)fe.

4. Nothing else are H- and EH-expressions, respectively.

The set of languages described by H- and EH-expressions is denoted by HREG
and EHREG, respectively.

If there is no danger of confusion, we omit out-most brackets. Let us give
some examples:

Ezample 1. 1. cc . (a + b)* denotes the language { ww | w € {a,b}* }, which
is non-context-free.
2. (ab+ aAb)™ describes the non-regular language { a™b™ |n > 1}.
3. (a+ AA)M denotes the non-context-free language { a®" |n > 0}.

Next, consider the following chain of inclusions:
Theorem 3. REG C HREG C EHREG.

Proof. The inclusions are obvious; the strictness of the first one is seen from
Example 1. 1 and the strictness of the second inclusion follows by Example 1.3
together with the fact that every language in HREG is semi-linear. This is be-
cause ordinary regular operations and, by easy calculations, also a-homomorphic
replacement preserves semi-linearity. ad

In the following theorem we relate EHREG with the linear context-free
languages and the family EDTOL. For further details on EDTOL languages we
refer to [25].

Theorem 4. LIN C EHREG C EDTOL.

Proof. Let G = (N,T,P,S) be a linear context-free grammar with the set of
nonterminals N = {4y, As,..., A, } and let S = A;. Then for 1 < i <n, we set

Gi=(N\{A1,4s,.. ., A1}, TU{A1, Ay, A) U Pj, A;),
j=i

where P, = {A; — w | 4; w € P}. Moreover, for 1 < i < n, let s; be the
EH-expressions with L(s;) = {w | A; = w € P }. Then inductively define

= (s) M40

fa;
ri = ((.- ((S?Ai ﬂAn rn) ﬂAn_1 rn—l) .- > ﬂAi+1 Ti-i-l) ,

for 1 <i <n —1. Then one can readily verify that L(G;) = L(r;) for 1 <i < n,
which immediately implies L(G) = L(ry), because G equals G. This proves the
first inclusion which has to be strict by Example 1.3.

The second inclusion follows by the closure of EDTOL under the operations
in consideration, which can be shown by standard constructions. O

and

In order to relate the families HREG and EHREG to the families of linear
context-free, context-free, and EDTOL languages, the following to lemmata are
needed.

Definition 5. We define the depth of an R-expression or H-expression over
alphabet X inductively by

1. d(0) =d(N\) =d(a) =0 for any a € X.

2. If r and s are R- or H-expressions of depth d(r) and d(s), respectively, then
dir +s)=d(r-s)=d(rfta s) =d(r) +d(s) +1 fora e X.

3. If r is an R- or H-expression of depth d(r), then d(r*) = d(r) + 1.

For a language L € HREG, we set
d(L) = min{d(r) | L(r) = L }.

We say that an H-expression r is A-free if it does not contain a subexpression
s e u with L(u) = {\}.

Lemma 2. For any H-expression r = s T, u with L(u) = {\} there is a A-free
H-expression t such that L(t) = L(r) and d(t) < d(s).

Proof. Let us assume that the lemma does not hold. Let K be the set of all
H-expressions r such that r is of the form r = s ff, v with L(u) = {\} and there
is no t for r satisfying the conditions of the lemma. By assumption, K is not
empty. Let K = min{ d(r) | r € K }. We consider an H-expressionr = s f}, u € K
such that d(r) = k. Obviously, if s f}, w in K, then s ff, A is in K, too. By
the minimality of r with respect to the depth, we can assume without loss of
generality that r = u f}, A.

= N =

Obviously, k£ > 1. In case k = 1, then one of the following cases holds:

. If s =0, then L(s ft, A\) = L(0) and d(0) = d(s).
. If s = A, then L(s o A\) = L(A) and d(\) = d(s).
. If s = a, then L(s fto A) = L(\) and d(\) = d(s).
Ifs=bfor be X\ {a}, then L(s {1, A) = L(b) and d(b) = d(s).

Thus, let £ > 1 and we distinguish the following four cases:

. Let s = s1 + s2 for some H-expressions s; and s with d(s1) < k — 2 and

d(s2) < k — 2. Then we define the H-expressions t; = s1 fq A and to =
s2 fta A. Obviously, d(t1) < k —1 and d(t2) < k — 1. By the minimality
of k, there exist A-free H-expressions | and ¢, with L(t) = L(s1 {1, A) and
L(t},) = L(s2 fra A), respectively, satisfying d(#]) < d(s1) and d(t,) < d(s2).
Thus, t| + t, fulfills

d(t) +t5) =d(t)) +d(th) +1 < d(s1) +d(s2) + 1 =d(s)
and
L(ty +t5) = L(t}) U L(t,)

= L(s1 ta A) U L(s2 1 A) = L((51 fa A) + (52 Tha A))
=L((s1 +s2) ta A) = L(s fta A) = L(r).

Moreover, because t] and ¢}, are A\-free, expression t| +t} is A-free, too. Hence,
t} + t4 fulfills all conditions of the lemma in contrast to r € K.

. Let s = sys9 for some H-expressions s; and s, with d(s;) < k — 2 and

d(s2) < k—2. In analogy to the first case above, we can show a contradiction
which is left to the reader.

. Let s = s for some H-expressions s; with d(s;) < k—2. Again, we can show

a contradiction analogously to the first case above.

. Let s = s1 M1 s2 for some H-expressions s; and s» with d(s1) < k — 2 and

d(sz) < k —2. We consider the A-free H-expressions ¢} and ¢} as in the first
case above. Therefore

L(tll) = L(s1 fha A),
L(t5) = L(sa fta A) with d(#}) <d(s1) and d(th) < d(s2) (1)

Moreover, if a # b, then

L(tll o tl2) = L((51 ta A) oo (52 ha A))
=L((s1 M $2) fa A) = L(s 1o A) = L(r). (2)

If a = b, for 1 <i < 2, we modify s; to s} by a renaming of a by a’ where o'
is a new letter and get the relations of (1) and (2) for the corresponding
A-free expressions t] and .

Let L(t}) # {A}. Then, in analogy to the above consideration, a contradiction
to the choice of r is obtained. Finally let L(t}) = {A}. Then

d(t) fp ty) < d(s1) +d(s2) +1 =d(s) < d(r). (3)

By the minimality of k, there is a A-free H-expression ¢ such that L(t) =
L(t} e th) and d(t) < d(t}). By (1), (2), and (3), we obtain L(t) = L(r) and
d(t) < d(s1) < d(s) < d(r). Therefore t satisfies all conditions of the lemma
in contrast to the choice of r € K. O

For an alphabet X, a partition C = (¥, X'\ X1) and two letters a and b not
in X we define the morphism 7 by

_Ja xzely
0@ =1 rex\xy

Let L be a language over X and a and b two letters not in X'. Then L is
called an (a,b)-language iff there exist a partition C = (X1, X \ X) of ¥ such
that the following conditions hold:

Al 7¢(L) C a*b*,

A2 7¢(L) is infinite,

A3 for any natural number n, D(a,n,L) = {m | a"b™ € 7<(L) } is a finite set,
and

A4 for any natural number n, D(b,n,L) = {m | a™b" € 7c(L) } is a finite set.

We note that the conditions A3 and A4 are equivalent to the existence of a
constant k£ > 0 such that a™b™ € 7.(L) implies |n —m| < k.

Before showing that any (a,b)-language is not an HREG language we need
the following statements on the behaviour of (a, b)-languages under the operation
used in the construction of HREG languages.

Lemma 3. 1. IfL UL is an (a,b)-language, then Ly or Ly are (a,b)-languages.
2. If Ly - Ly is an (a,b)-language, then Ly or Ly are (a,b)-languages.
3. For any L, language L* is not an (a,b)-language.
4. If the set Ly ff. Lo is an (a,b)-language, for some c, and Ly # {\}, then L,
or Ly are (a,b)-languages.

Proof. 1. Let C be the partition for Ly U Ls. Because 7¢(L;) C 7¢(Ly U L) C
a*b* and D(z,n,L;) C D(x,n,L; U Ly), for i € {1,2} and =z € {a,b},
conditions A1, A3 and A4 hold for the languages L; and L2, too. Moreover,
the infinity of 7¢(L; U L») implies that at least one of the languages 7¢ (L)
and 7¢/(L2) is infinite. Hence condition A2 holds for Ly or Lo, too.

10

2. Again, let C be the partition for L; - Ly. Since 7¢(Ly - L2) = 7¢:(L1) - 7o (L2)
and L; - Ly satisfies conditions A1 and A2, both factors 7¢(L;) and 7¢(Ls)
are contained in a*b* and one of the factors has to be infinite and the other
one is non-empty. Let us assume that L; is infinite.

We prove that L; satisfies condition A3. If A3 does not hold for Lq, then

there is an integer n such that D(a,n, L;) is infinite. Let a™b™ € 7¢(L,) for

some m > 1. Let v be a word of L; with 7¢(v) = a™b™. Furthermore, let

w € Ly and 7¢(w) = a®b". If s > 0, then a"0™a’b" = 7¢(vw) € 17¢(Ly - L2)

in contrast to the validity of condition Al for Ly - Ly. If s = 0, then m €

D(a,n,Ly) iff m +r € D(a,n, Lyw), and thus D(a,n, Lyw) is infinite. By

D(a,n,Liw) C D(a,n,L;Ls) we obtain a contradiction to the validity of

condition A3 for L; - L».

Analogously, we prove that L satisfies condition A4. Combining these facts,

language L, is an (a, b)-language. By similar arguments we can show that in

case of infinity of L. Thus, Ls is an (a, b)-language.

3. Let us assume that L* is an (a,b)-language, and let C' be the partition
for L*. Since 7¢(L*) = (17¢(L))* and 7¢(L*) is infinite by condition A2,
T7¢(L) # 0 and 7¢(L) # {\}. Moreover, 7¢(L) C a*b* since condition Al
holds for L*. If 7¢(L) contains a word a"b® with r > 1 and s > 1, then
a"b*a"b* € (1¢(L))? C 7¢(L*) in contrast to the validity of condition A1l
for L*. Hence 7 (L) C a* or 7¢ (L) C b*. In the former case we get a” € 7¢(L)
with 7 > 1. Thus, {a*" | k > 0} C 7¢(L*) and D(b,0,L*) is infinite in
contrast to the validity of condition A4 for L*. Analogously, we show a
contradiction in the case that 7« (L) C b*

4. If #.(w) = 0for all w € Ly, then L; f. Ly = Ly and the statement is shown.
Thus, we can assume that there is a word w € Ly with #.(w) > 1.

Again, let C = (X}, X'\ X1) be the partition. Obviously, 7¢(Lz2) C a*b*. We

consider the following three subcases:

(a) Let 7¢(L2) C a*. If 7¢(L2) is infinite, then, for any w € L;, language
To(w fe Lo) is infinite, too. Therefore there is an integer n such that
D(b,n,w ft. L2) and hence D(b,n,L; f. L2) are infinite. This contra-
dicts condition A4 for L f}. L.

Thus, we can assume that 7 (L) C a* is finite. We now prove that L;
is an (a,b)-language with respect to the partition D = (X U {c}, X'\
(X1U{e})). Note that C' = D is possible. Since ¢ is substituted by words
of a* in Ly ff. L2, we obtain 7p(Ly) C a*b*, i.e., language L; satisfies
condition A1l. Moreover, the infinity of 7¢(Ly 1. L2) and the finiteness
of 7¢(L2) imply the infinity of 7p(L1). Hence condition A2 is fulfilled
by Ll.

Now assume that L, does not satisfy condition A4. Then there is an
integer n such that D(b,n, L) is infinite. Let k& > 0 be an arbitrary
integer. Since D(b,n, L) is infinite, there is an integer k' > k such that
a¥b" € 7p(Ly). Let u be a word in L, with 7p(u) = a* b". Then, by
Ly # {\}, the set 7¢(u f}. Ly) contains a word ¥ b" with k" > k' > k.
Thus, D(b,n, Ly ff. L») is infinite, too, in contrast to the validity of
condition A4 for Li f}. Lo.

11

Now assume that L; does not satisfy condition A3. Then there is an
integer n such that D(a,m, L) is infinite. Let w be an element of L;
with 7p(w) € a™b*. Then w = w'w” for some w' € (V1 U {c})* and
w" € (V\ (V1 U{c}))* with |w'| = m. Since there is a finite number of
different words w’ with w' € (Vi U {c})* and |w'| = m, the infinity of
D(a,m, Ly) implies the existence of a word w' over X; U {c} of length m
such that

E={mp")|w" e (X\ (ZU{c})", w'w" € Li,7p(w'w") € a™b*}
is infinite. We set
F={vww" |ww" € Ly and 7p(w") € E}.

Let
w' = wicMwec” . wpc Wy

for some r > 0 with wy41 € (X1 \ {c})* and w; € (21 \ {c})*, i; > 1 for
1 <j <r. Then

|lwiwsy ... wepr |+ (G + - + i) =m.

Let v € Ly with 7¢(v) = a®. Then D(a,|wiws ... wpy1| + (i1 + -+ +
ir)s, F' . v) and therefore D(a, |wiws ... w,q1]|+(i1+ - -+i,)s, L1 fe Lo)
are infinite which gives the desired contradiction.

Let 7¢(L2) C b*. We obtain a contradiction analogously to the first case
above.

Let 7¢(Ls) C a™bt. First let us assume that there is a word w € L
with at least two occurrences of ¢. Then the existence of a word v € Lo
with 7¢(v) = a"b® with r > 0 and s > 0 implies 7¢(w ft. v) =
ura"b’usa"b’ug € 1o (Ly ft. L2) for some words wui,us,us € {a,b}*,
i.e., condition A1l does not hold for Ly f} Lo in contrast to our sup-
position. Thus, we can assume that any word of L; contains at most
one occurrence of ¢. Moreover, by analogous arguments, any word w
of Ly with #.(w) = 1 has the form w = wicws with wy € X and
wy € X\ (X1 U{c}).

Let 7¢(L2) be infinite. We prove that Lo is an (a,b)-language. Lan-
guage L; contains a word w = wycws with w; € X and we € X'\ (X U
{c}). If jwi| = r and |wsy| = s, then 7 (w) = a""1b% or 7o (w) = a"b**L.
In the sequel we only discuss the former case, the latter one can be han-
dled by analogous considerations. If Lo is not an (a,b)-language, then
one of the sets D(a,n, L>) or D(b,n, L») is infinite. This implies the in-
finity of D(a,n +r + 1,w {t, L2) or D(b,n + s,w T4 L2). Therefore,
D(a,n+r+1,Ly ftq L2) or D(b,n + s,L; f}o L2) is infinite in contrast
to the fact that Ly f}, Lo is an (a, b)-language.

Thus, let 7 (L) be finite. We show again, that L; is an (a, b)-language
with respect to the partition D defined as above. Obviously, 7p(L1) is
infinite and contained in a*b*. Now assume that L; does not satisfy

12

condition A4. Then there is an integer n such that D(b,n, L) is infinite.
Let k > 0 be an arbitrary integer. Since D(b,n, L1) is infinite, there is
an integer k' > k such that ak'pn € mp(L1). Let u be a word in L
with 7p(u) = a¥'b™. Then, by Ly # {A}, the set 7¢(u f}. Ls) contains
a word a*” b with k" > k' > k. Thus, D(b,n, Ly ff. L) is infinite, too,
in contrast to the validity of condition A4 for Ly {}. Ls. Analogously we
prove that L, satisfies condition A3. a

Now we are ready to show that no (a, b)-language can be an HREG language.
Lemma 4. Any (a,b)-language is not an HREG language.
Proof. Let us assume that there is an (a,b)-language K in HREG. Let
k=min{d(K) | K € HREG and K is an (a,b)-language }

and let L be an (a,b)-language in HREG with d(L) = k. By Lemma 2, there
is an H-expression r constructed without steps of the form s f}. A such that
L(r) = L. Then k > 1 since (a,b)-languages are infinite by condition A2. Now,
by Lemma 3 there are H-expressions s and ¢ with d(s) < k and d(t) < k such
that » = s+t or r = st or r = s . t for some ¢. By Lemma 3 we obtain that L(s)
or L(t) are (a,b)-languages in contrast to the definition of k. a

Theorem 5. Let X € {CF,LIN}. Then the family of languages X is incom-
parable to the family HREG.

Proof. By Theorem 3 it is sufficient to show that there is are languages K; €
LIN \ HREG and K, € HREG \ CF. Obviously, the linear context-free lan-
guage K7 = {c"d" | n > 1} is an (a, b)-language. Thus, K; ¢ HREG follows
from Lemma 4. If we choose K5 = {wcw | w € {a,b}* }, we are, obviously, done.

We have already seen that HREG contains non-context-free languages. On
the other hand, it is known, that the Dyck set is not an EDTOL language [25,
Exercise 3.3, page 205], and thus is not contained in HREG by Theorem 4. This
proves the following corollary.

Corollary 1. The language families CF and EHREG are incomparable. O

4 Homomorphic Replacement Systems and Related
Mechanisms

In this section we discuss several aspects of homomorphic replacement which are
related to H- and EH-expressions. As already mentioned, homomorphic replace-
ment was investigated by Albert and Wegner [2] in the context of homomorphic
replacement systems. As we will see, homomorphic replacement with regular
languages in the sense of Albert and Wegner is a special case of H-expressions.
These systems are defined as follows:

13

Definition 6 (H-systems). A homomorphic replacement system (H-system) is
a quadruple H = (X1, X2, L1,) with meta-alphabet Xy, terminal alphabet Yo,
such that X1 N Xy = 0, meta-language L1 C X5, and a function ¢ : X1 — 2%3
which assigns to each a € Xy a language (a) C X3. Instead of ¢(a) we shall
write also L,,.

The language of an H-system H = (X1, X2, L1, p) is defined as

L(H) ={h(w) |w € Ly and h is a homomorphism with
h(a) € p(a) for all a € Xy }.

The family of H-system languages with regular meta-languages and regular
languages L, for every a € Xy is denoted by H(REG, REG).

Recently a restricted form of homomorphic replacement systems, so called
pattern or multi-pattern languages [21, 23] have gained interest in the formal lan-
guage community. Pattern (multi-pattern, respectively) languages are languages
generated by H-systems with the following restrictions:

1. L, is a singleton (or a finite language, respectively),
2. there is a partition of ¥; into X} and X7, and
3. p(a) C X is a singleton for a € X} and p(b) = X3 for b€ Y.

Let PAT (MPAT, respectively) denote the family of all pattern (multi-pattern,
respectively) languages.

Obviously, multi-pattern languages are a subset of H(FIN, REG), the family
of H-system languages with finite meta-languages and regular languages L, for
every a € Y. Because the H(REG,REG) language {(a"b)™ | n,m > 1}
generated by the H-system H = ({4, B},{a,b},L1,p) with L, = {(AB)™ |
m > 1} and p(A) = a™ and p(B) = b, doesn’t belong to H(FIN, REG), which
was shown in [2], we obtain the following theorem, where the first strict inclusion
is due to [21]:

Theorem 6. PAT C MPAT C H(REG,REG). a

Moreover, by the fact that (ab)* is not a multi-pattern language but belongs
to H(REG, REG) one concludes that the family of pattern and multi-pattern
languages are incomparable with the family REG, LIN, and CF of regular,
linear context-free, and context-free languages, respectively. Now consider the
following chain of strict inclusions:

Theorem 7. REG C #(REG,REG) C HREG.

Proof. The first inclusion is obvious; the strictness is seen from the non-regular
language { a™ba™ | n > 1} generated by the H-system H = ({4, B}, {a,b}, L1, @)
with L1 = {ABA} and p(A4) = a* and ¢(B) = b.

Let L € H(REG,REG). Then there is an H-system H = (X, X, L1, ¢)
with regular meta-language L; and regular languages L, for all a € Xy, such
that L = L(H). Without loss of generality we assume that ¥y = {a1,...,an}.

14

Since Ly (L, for a € X, resp.) is regular there exists a regular expression r;
(ro for a € Xy, resp.) such that L1 = L(r1) (¢(a) = L(r,), resp.). Because
Y1 N Xy =it is easy to see that the H-expression

(((CERERE N) fra, m)

exactly describes language L. This shows that H(REG, REG) C HREG.
It remains to show that the inclusion is proper. By Albert and Wegner [2] it
was shown that the language

{(@"b)"#(a"b)™ | n,m > 1} ¢ H(REG,REG).

The reader may verify, that the H-expression
((A#A) fia (B* s (a*b))) or (((A#A) f1a BY) fy (a*b))

describes this language. Thus, the claim follows. O

We want to stress that Theorem 5 can be generalized as follows. We state
the result without proof.

Theorem 8. Let X € {CF,LIN} and Y € {HREG, H(REG,REG)}. Then
the family of languages X is incomparable to the family of languages Y . O

A slightly more general class than H(REG, REG) was introduced and in-
vestigated by Birget and Stephen [5]. They define a uniform sustitution to be
a function Sy : X1 — 2%2, which is determined by a set H of homomorphisms
X — X5 as follows: For w € Xy, we define Spg(w) = { p(w) | ¢ € H } and for a
language L in X} set Sg(L) = {¢(w) | w € L and ¢ € H }. Then let RecREG
be the class of languages of the form Sy (L), where L is regular and H is a recog-
nizable set of homomorphisms form X} to X, i.e., for ¥y = {vy,...,v,} the set
{o()# ... #o(vy) € (X2 U{#})* | ¢ € H } is a regular subset of (X2 U {#})*,
where # is a symbol not in ¥5. By Mezei’s theorem, see, e.g., [5, page257, The-
orem A.1], the set {¢(v1)# ... #o(vn) € (X2 U{#})* | ¢ € H } is regular if and
only if it is equal to a finite union of sets of the form L,# ... #L,,, where each L;,
for 1 < i < mn,isregular. Using this fact, one can easy see that RecREG is a sub-
set of HREG. Moreover, the inclusion is strict, because the above used language
to separate H(REG, REG) from HREG is also not a member of RecREG [5,
page 253, Example 1]. Thus, we have shown the following theorem:

Theorem 9. RecREG C HREG. O
A more direct way to generalize H(REG,REG) systems is to iterate the

insertion process which leads us to the definition of

"*(REG,REG) = |] #"(REG,REG),

n=0

15

where H°(REG, REG) = REG and
H"(REG,REG) = { L(H) | H = (51, %5, L1,) with
Ly in H" ' (REG,REG) and ¢(a) in REG for all a € X} }

if n > 1. At first glance we show that H*(REG, REG) is sandwiched in between
H(REG,REG) and HREG.

Theorem 10. H(REG,REG) C #*(REG,REG) C HREG.

Proof. The first inclusion is obvious and its strictness is seen as follows. By
Albert and Wegner [2] it was shown that the language { (a™b)™#(a"b)™ |
n,m > 1} € H(REG,REG). The reader may verify, that the H-system H =
({B},{a,b}, L1,¢) with the H(REG, REG) meta-language L; = { B"#B™ |
m > 1} and the regular language ¢(B) = {a"b | n > 1} describes this language.

For the inclusion #*(REG, REG) C HREG we proceed as follows. In case
n =0 and n = 1 we have already seen that H"(REG,REG) C HREG. So let
n > 1 and assume by induction hypothesis that H"(REG, REG) € HREG.

Let L € H""(REG,REG). Then there is a H-system H = (X1, X, L1,)
with L1 € H"(REG,REG) and ¢(a) € REG for all a € X} such that L =
L(H). We assume that Xy = {ay,...a,}. By induction hypothesis there exists
H-expression r; (r, for a € Xy, resp.) such that Ly = L(r1) (¢(a) = L(r,),
resp.). Because X7 N Xy = () it is easy to see that the H-expression

(((CEERE N) fra, m)

exactly describes language L. This shows that L € HREG. O

Recently a particular extension of regular expressions and patterns so called
pattern expressions were investigated by Campeanu and Yu [7]. For readabil-
ity we slightly adapt their notation. Pattern expressions are based on regular
patterns which are defined as follows:

Definition 7. Let X and V be two disjoint alphabets. A regular expression over
XUV is called a regular pattern over X with variables from V. The language
associated with a regular pattern r over X UV is the language L(r) C (X UV)*.

Next we define pattern expressions:

Definition 8. Let X and V be two disjoint alphabets with V = {zg,x1,...,xn}.
A pattern expression p over X with variables from V is a finite set of equations
of the form x; = p;, for each 0 < i < n, where x; € V is a variable and p; is a
reqular pattern over X with variables from {x;11,...,z,}.

The language of the pattern expression p is defined as

L(p) = ((. ((L(Po) fray L(p1)) Mas L(Pz))) Mz, L(Pn))

and the family of languages described by pattern expressions is abbreviated by
PATEXP.

16

Remark 1. Observe that from the definition of pattern expressions it follows that
the last regular pattern (at least p,,) is always a regular expression.

If there is no danger of confusion we simply write p = (po, z1 = p1,-..,&n =
pn) to denote the regular pattern expression p described by the finite set of
equations {zg = po,z1 = p1,...,&, = pp} over X with variables from V =
{37073317 s 7$n}'

New we show that pattern expressions exactly describe the languages from
the family H*(REG,REG) and vice versa.

Theorem 11. H*(REG,REG) = PATEXP.

Proof. The inclusion from left to right is seen by induction on n. In case n = 0
and n = 1 obviously, H*(REG,REG) C PATEXP. So let n > 1 and assume
by induction hypothesis that H*(REG, REG) C PATEXP.

Let L € H""'(REG,REG). Then there is a H-system H = (X1, X, L1,)
with L1 € H"(REG,REG) and ¢(a) € REG for all a € X} such that L =
L(H). We assume that ¥y = {ay,...as}. By induction hypothesis there exists
a pattern expression p = (pg,x1 = p1,...,Tm = Pm) Over X with variables
from {xzg,x1,...2y}, for some m, such that L; = L(p). Moreover, since ¢(a)
is regular for all a € Xy we find regular patterns ¢, over X5 with no variables
such that ¢(a) = L(g,). Because X} N Xy =) it is easy to see that the pattern
expression

P'=(Po,T1 =DP1,-- s Tm = Pm> 01 = qays---,0s = qa,)

exactly describes language L since

L= ((.. ((L1 oy %0(@1)) Mas 90((12)) > as ‘P(as)>
(((0 Do £00a)) s D)) 1 L(qag)

= L(p).

This shows that H"(REG, REG) C PATEXP for each n > 0.

Next consider PATEXP C H*(REG,REG). This inclusion is shown by
induction on the number of variables used in a pattern expression. The base
cases n = 0 and n = 1 are trivial and left to the reader. So let n > 1 and
assume by induction that hypothesis that for every pattern expression p using n
variables belongs to H*(REG,REG).

Let L € PATEXP be a language described by a pattern expression p =
(po, 1 = p1,..., T, = py,) over X using variables from {zo, z1,...,z,}. Consider
the pattern expression not using variable x,,, i.e., the expression

p' = (P0,$1 = P15, Tp-1 an—1)

17

over ¥’ U {z,} using variables {xq,1,...,%,—1}. By induction hypothesis there
exists a H-system H = (X, XY U {z,}, L1,¢) with L; € H™(REG,REG), for
some m, and p(a) € REG for all ¢ € X, such that L(p') = L(H). In order
to get rid-off the letter z,, in the words of L we have to replace them by words
from L(p,). Since it is required that the meta- and terminal language have to
be disjoint we define the two H-systems as follows. Let X' = {a’ | a € X'} with
YNX'" = P and assume that z!, is a new variable not contained in {zg, z1, ..., Tn}
Define Hy = (X U {z,}, X" U {2}, L(H),p1) with p1(a) = @' if a € ¥ and
v1(zy) = =), otherwise. Finally define Hy = (X' U {z]}, X, L(H;), p2) with
p2(a') = aif a' € X' and ¢(z!) = L(py). By easy calculations one sees that
L = L(H,) which proves our claim. Hence, PATEXP C #*(REG,REG). O

5 Closure and Non-Closure Properties

In this section we study some closure properties of the classes HREG and
EHREG. We find that the family HREG is not a TRIO. First, we start our
investigations with a fairly easy theorem.

Theorem 12. The language families HREG and EHREG are closed under
homomorphisms, reversal, union, concatenation, and Kleene star.

Proof. The closure under union, concatenation, and Kleene star is trivial, and the
closure under reversal may be easily seen by induction on H- and EH-expressions,
respectively. The details are left to the reader.

For the closure under homomorphism we do as follows: Let r be an EH-
expression over X' and h : X* — X* a homomorphism. We construct an expres-
sion 7’ over X such that L(r') = h(L(r)) holds.

By induction on r we argue in the following way. If r is of the form ((],
a, for some a € X, respectively), then ' = 0, (' = X\, ' = a1 + - + ay,
if h(a) = ay...a,, for a; € ¥ and 1 < i < n, respectively). In case r = s + ¢
(r = st, r = s*, respectively), then by induction hypothesis, there exists s’ and ¢'
such that L(s") = h(L(s)) and L(t') = h(L(t)). Thus, we set 7' = s'+t' (' = s't/,
r" = (s")*, respectively). Finally, if r = s ft, t (r = s, respectively), then by
induction hypothesis again, there exists s’ and ' such that L(s") = h'(L(s)) and
L(t") = h(L(t)), where h'(b) = h(b) if b € X'\ {a} and h'(b) = a otherwise. Then,

we set ' = s’ f, t' (r' = s'Me, respectively). This completes the construction
and shows that the language families HREG and EHREG are closed under
homomorphism. ad

Next we consider closure under intersection with regular sets. The below given
argument re-proves, in passing, also intersection closure of the family REG,
using expressions only.

Theorem 13. The family HREG is closed under intersection with reqular lan-
guages.

18

Proof. Let r be an H-expression and R a regular language over X. Then there
exists a finite monoid (M,), a homomorphism h : X* — M, and a set FF C M,
such that w € R if and only if h(w) € F.

For m € M let [m] denote the set {w € X* | h(w) = m }, which is regular for
any m € M. Because of R = U,,,er[m], it sufficient to construct an expression 7/
over ¥ such that L(r') = L(r) N [m] for some m € M. To this end we perform
induction on r.

If r is of the form @ (A, a, for a € X, respectively), then set ' = 0 (7' = X
if A\ € [m] and ' = 0 otherwise, ' = a if a € [m] and ' = 0 otherwise,
respectively). In case 7 = s + ¢, we set ' = s’ +t', where s’ (¢, respectively) is
an H-expression such that L(s") = L(s) N[m] (L(t') = L(t) N [m], respectively),
which exist by induction hypothesis. If r = st or r = s*, then we do as follows.
Note, that by induction hypothesis again, there are H-expressions sy, (t,,,
respectively), for mi,my € M, with L(s,) = L(s)N[m1] (L(t,,) = L(t)N[m2],
respectively). Now in the former case, i.e., r = st, we set

r = Z (S by)-

m=mi-mz2

In the latter case, i.e., r = s*, we generalize the above given argument. Consider
the language L = {m =my...m, | my -...-m, € M } over M*. Obviously, L
is regular, therefore there exists an equivalent regular expression over M. Now,
we can describe r' by taking this regular expression and substitute s,,,, for each
m; € M, in that particular expression. As in the previous case, the reader may
verify that the constructed r' satisfies L(r') = L(r) N [m)].

Finally consider r = s f}, t. By induction hypothesis, there exist expres-
sions 8y, 1, for my,my € M, with L(sy,, ,,) = L(s)N[m1, ma], where [my, mo]
equals the equivalence class [mq] of the regular language R', which is defined
as R, i.e., via the monoid M and the set FF C M, except that we alter the
homomorphism A on letter a such that h(a) = ms. Moreover, we also have ex-
pressions t,,_, for m3 € M, such that L(t,.) = L(t) N [m3]. Putting all things
together, expression ' reads as

r = Z (s;mm1 M t;nl))
mi1EM

This completes our construction. a

Finally, on the remaining TRIO operation inverse homomorphism we also
get a non-closure result for H-expression languages.

Corollary 2. The family HREG is not closed under inverse homomorphisms.

Proof. Consider the H-expression r = (A#A) ft4 a*, which describes the lan-
guage {a"#a" | n > 0}. Define two homomorphisms ¢ : {a,b, #}* — {a,b}*
and homomorphism h : {a,b,#}* — {a,b}* as follows: g(a) = a, g(b) = b,
and g(#) = A\ Moreover, set h(a) = a, h(b) = a, and h(#) = #. Then
g(h=Y(L(r)) N a*#b*) equals {a"b™ | n > 0}, which does not belong to the

19

family HREG by Theorem 8. Since H-expressions are closed under homomor-
phism and intersection with regular languages, our claim follows. O

Unfortunately, at this point it remains open whether the family EHREG is
closed under intersection with regular languages and inverse homomorphisms.

The non-closure under the TRIO operations destroys the hope to get a nice
characterization of HREG languages in terms of an one-way automaton model.
This is because most automata in formal language theory as, e.g., pushdown
automata, stack automata, queue automata, can be characterized in terms of
automata with abstract storage. As shown by Dassow and Lange [8] automata
with abstract storage imply a Chomsky-Schiitzenberger like theorem of the de-
scribed language family, i.e., every language from the family can be written as
h(g=*(D) N R), where g and h are homomorphisms, R is a regular language,
and D is protocol language of the abstract storage type.

6 Complexity Theoretical Issues

In this section we study some complexity theoretical problems for H- and EH-
expressions. We start with the fixed membership problem, showing that it is
NL-complete for both H- and EH-expression languages.

Theorem 14. The fized membership problem for H- and EH-expressions is NL-
complete.

Proof. The fixed membership problem for EDTOL systems is NL-complete [19].
Since, by Theorem 4 we have EHREG C EDTOL, the fixed membership
problem for both H- and EH-expressions is in NL, too. In order to prove NL-
hardness, we reduce some special case of the graph accessibility problem, which
is known to be NL-complete to (see, e.g., [15]) to the fixed membership problem
for H-expressions. This problem is defined as follows: Given an ordered directed
graph G = (V, E) with out-degree two, where V' = {1,2,...,n} is the set of
nodes, E C V x V is the set of edges, and (i,7) in E implies that ¢ < j. Is there
a path from node 1 to node n in G7
The below given construction follows the lines of Sudborough [28]. Let

THHAISV A1 2 12§12 12§ 10224 1§11 G2 g1

be the coding of the graph G, where (4, j;1) and (i, j;2) are edges in E. The graph
accessibility problem for G is reduced to the fixed membership problem for the
expression

r= ((a#(#1+$1+#)*#a$) Ma 1+>
over X' = {0,1,a,#,8$}.

Obviously, the coding of G can be computed in logarithmic space. In words
of L(r), one subword of L(s), where

5= (a#t (#1+$1+4) #a$) fa 17,

20

corresponds to one block between two markers, more precisely beginning with
the second part of a marked couple and ending with the first part of the next
marked couple. Therefore, it is easily seen that the coding of G belongs to L(r) if
and only if there is a (ordered) path from 1 to n in G. This proves our claim. 0O

In the next theorem we turn our attention to the general membership prob-
lem. There we were not able to exactly characterize its complexity, and we can
only give some lower and upper bound.

Theorem 15. The general membership problem both for H- and EH-expressions
is NP-hard and belongs to PSpace.

Proof. Analogously to the argument in the proof of Theorem 14, the contain-
ment in PSpace is inherited from the general membership problem for EDTOL
systems [20].

For lower bound, it is sufficient to reduce the well-known NP-complete
satisfiability problem for Boolean formulas in conjunctive normal form (SAT)
to the general membership problem for H-expressions. Let a Boolean formula
f=CiNCsN...NCy,, for some m > 1, be given, where C;, for 1 <i <m, is a
disjunction of variables or negated variables from {x1,...,2,}.

From f we compute an instance for the general membership problem of H-
expressions as follows: First set for 1 < i < m the H-expressions

ri = Z Tj + Z Tj

z; is in C} z; is in C}
over the alphabet {z1,...,2,,Z1,...,Z,}. Then let

S0 = T1T1FT2ToFE - . FTpTnF#STIFr2FE . FrmH

and inductively define
Si+1 = <(Sz ﬂ$i+1 ()‘ + 1)) ﬂfi«{»l (/\ + 1))7

for 0 < i < n, over the alphabet ¥ = {z1,®a,...,2p, %1, T2,...,Tn, #,$,1}.
Finally, let (s,,w) be the instance of the general membership problem for H-
expressions, where w = (14)"$(1#)™.

Clearly, the above specified instance is computed in logarithmic space from a
suitable description of f. Moreover, to each literal of the form z; occurring in f
a Boolean value is assigned by replacing it consistently by 1 (A, respectively)
corresponding to true (false, respectively). Analogously, to each literal of the
form Z; occurring in f a Boolean value is assigned. After these replacements,
the string w belongs to L(s,) if and only if (1) the Boolean assignment is a
correct one, i.e., where x; and Z; evaluate not equally, for 1 < i < n, which is
checked in the part left to the $ in w and (2) each of the clauses C;, for 1 < i < m,
is satisfiable, which is tested in the left-hand part of w. Therefore, we have w is
in L(sy,) if and only if f is satisfiable. o

The next theorem holds trivially.

21

Theorem 16. Let r be an H-expression (EH-expression, respectively) and let r'
be the S-expression (ES-expression, respectively) obtained from r by replacing
every t by | (and every T by ¥) and vice versa. Then L(r) =0 iff L(+') =0. O

We use the above given theorem to prove that the emptiness problem for H-
and EH-expression is P-complete.

Theorem 17. The emptiness problem for both H- and FEH-expressions is P-
complete.

Proof. Given an ES-expression r, one can construct an equivalent context-free
grammar by induction on r, mainly following the idea given in [14, Theorem 2.7].
This construction can be done in deterministic logarithmic space. Therefore, the
emptiness problem for ES-expressions is not harder then the emptiness problem
for context-free grammars, i.e., it can be solved in polynomial time by a deter-
ministic Turing machine [18]. Due to Theorem 16, even the emptiness problem
for EH-expressions and hence for H-expressions can be solved within this time
bound. This proves the containments in P.

In order to show P-hardness, it is sufficient to reduce the P-complete empti-
ness problem for context-free grammars to the emptiness problem for H-expres-
sions or, due to Theorem 16, for S-expressions. The completeness for EH-expres-
sions (ES-expressions, respectively) follows trivially, because every H-expressions
(S-expression, respectively) is also an EH-expression (ES-expression).

Let G = (N,T,P,S) be a context-free grammar with nonterminals N =
{4:,... A, } and assume S = A;. Define the homomorphism i : (NUT)* — N*
as h(A) = Aif A € N and h(a) = X otherwise. Furthermore, for A € N let s
denote the H-expressions (S-expression) with L(s4) = {h(a) | A = aisin P }.

Then let 19 = s4,, inductively for 0 < ¢ < n define

Tig1 = ((((m’ fta, sa,) fra, SAZ)) 4., SAn>:

and let 71 = ((-- - ((ri tay, 0) fra, 0)...) fra, 0). By induction the reader may
verify that L(r,.1) = 0 if and only if L(G) = . Since the s4, expressions and
thus also the r; expressions, in particular the 7,11 expression, are deterministic
logarithmic space constructible from G, we conclude that the emptiness problem
for H- and EH-expressions is P-hard, too. a

Theorem 18. The equivalence problem for EH-expressions is undecidable.

The proof can be given by reduction of Post’s correspondence problem (see,
e.g., [17]) which is rather standard and therefore omitted here. The decidability
status of the equivalence problem for H-expressions remains open.

7 Conclusions

In this paper we have studied the expressive power of H- and EH-expressions,
which are defined as an extension of regular expressions by homomorphic and

22

iterated homomorphic replacement. The inclusion relations among the classes
considered are depicted in Figure 1. Besides the expressive power we have also
investigated the closure and non-closure properties of these classes under Boolean
operations, Kleene star, and TRIO operations. In most cases we classified the
problems under consideration completely. Nevertheless, we left some problems
open, such as whether the family of EH-expression languages is closed under
intersection with regular languages and inverse homomorphism. Moreover, we
also focused on some issues of computational complexity as the fixed and gen-
eral membership, non-emptiness, and equivalence. The decidability status of the
equivalence problem for H-expression languages remains open.

CS

ETOL

EDTOL

)

CF = ESREG EHREG

HREG

\

LIN H*(REG,REG) = PATEXP

H(REG,REG)

REG = SREG MPAT
FIN PAT

Fig. 1. The inclusion structure of the considered language families.

We hope that the investigation of homomorphic replacement, as one sort of
pattern repeating operation, helps to understand the expressive power of regular
like expressions much better. Nevertheless, regular like expressions in program-
ming environments still lack complete theoretical understand.

23

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A. V. Aho. Algorithms for finding patterns in strings. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science. Elsevier Science Publishers B.V.; 1990.
J. Albert and L. Wegner. Languages with homomorphic replacements. In Proceed-
ings of the 7th International Colloquium on Automate Languages and Program-
ming, number 85 in LNCS, pages 19-29. Springer, July 1980.

J. C. M. Baeten and W. P. Weijland. Process Algebra, volume 18 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1991.

J. L. Balcézar, J. Diaz, and J. Gabarré. Structural Complezity I, volume 11 of
EATCS Monographs on Theoretical Computer Science. Springer, 1988.

J.-C. Birget and J. B. Stephen. Formal languages defined by uniform substitutions.
Theoretical Computer Science, 132:243-258, 1994.

H. Bordihn, J. Dassow, and M. Holzer. H-Ausdiicke—eine Erweiterung regularer
Ausdriicke. In F. Otto and G. Niemann, editors, 9. Theorietag der GI-Fachgruppe
0.1.5 7‘Automaten und Formale Sprachen”’, page 26. Fachbereich 17 Mathe-
matik/Informatik, Universitdt Gesamthochschule Kassel, Heinrich-Plett Strafie 40,
D-34132 Kassel, Germany, September 1999.

C. Campeanu and S. Yu. Pattern expressions. Unpublished manuscript, 1999.

J. Dassow and K.-J. Lange. Complexity of automata with abstract storages. In
L. Brim, J. Gruska, and J. Zlatuska, editors, Proceedings of the 8th International
Conference on Fundamentals of Computation Theory, number 529 in LNCS, pages
200-209, Brno, Czech Republic, September 1991. Springer.

J. Dassow and Gh. Paun. Regulated Rewriting in Formal Language Theory, vol-
ume 18 of EATCS Monographs in Theoretical Computer Science. Springer, 1989.
P. Dembinski and J. Matuszynski. Two level grammars: CF-grammars with equa-
tion schemes. In Proceedings of the 6th International Colloquium on Automata
Languages and Programming, number 71 in LNCS, pages 171-187. Springer, 1979.
D. Dougherty. sed & awk. O’Reilly & Associates, Inc., 1990.

J. Engelfriet and E. M. Schmidt. IO and OI. Part I and II. Journal of Computer
and System Sciences, 15 and 16:328-353, 67-99, 1977.

D. Giammarresi and A. Restivo. Two-dimensional languages. In Rozenberg and
Salomaa [26], pages 215-267.

J. Gruska. A characterization of context-free languages. Journal of Computer and
System Sciences, 5:353-364, 1971.

J. Hartmanis, N. Immerman, and S. Mahaney. One-way log-tape reductions. In
Proceedings of the 19th Annual Symposium on Foundations of Computer Science,
pages 65—72, Ann Arbor, Michigan, October 1978. IEEE Society Press.

K. Hashiguchi and H. Yoo. Extended regular expressions of degree at most two.
Theoretical Computer Science, 76:273-284, 1990.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

N. D. Jones and W. T. Laaser. Complete problems for deterministic polynomial
time. Theoretical Computer Science, 3:105-117, 1977.

N. D. Jones and S. Skyum. Recognition of deterministic ETOL languages in loga-
rithmic space. Information and Computation, 35:177-181, November 1977.

N. D. Jones and S. Skyum. Complexity of some problems concerning L systems.
Mathematical Systems Theory, 13:29-43, 1979.

L Kari, A. Mateescu, Gh. Paun, and A. Salomaa. Multi-pattern languages. Theo-
retical Computer Science, 141:253-268, 1995.

24

22

23.

24.

25.

26.

27.

28.

29.

S. C. Kleene. Representation of events in nerve nets and finite automata. In
C. E. Shannon and J. McCarthy, editors, Automata studies, volume 34 of Annals
of mathematics studies, pages 2-42. Princeton University Press, 1956.

A. Mateescu and A. Salomaa. Aspects of classical language theory. In Rozenberg
and Salomaa [26], pages 175-251.

E. Ochmanski. Regular behaviour for concurrent processes. Bulletin of the Euro-
pean Association for Theoretical Computer Science, 27:56-67, 1985.

G. Rozenberg and A. Salomaa. The Mathematical Theory of L Systems, volume 90
of Pure and Applied Mathematics. Academic Press, 1980.

G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, volume
1-3. Springer, 1997.

R. Siromoney and K. Krithivasan. Parallel context-free grammars. Information
and Control, 24:155-162, 1974.

I. H. Sudborough. A note on tape-bounded complexity classes and linear context-
free languages. Journal of the ACM, 22(4):499-500, October 1975.

M. K. Yntema. Cap expressions for context-free languages. Information and Con-
trol, 18(4):311-318, May 1971.

25

Appendix

In this appendix we give an operational semantics for regular expressions with
back referencing. Back referencing is an assignment operator was introduced
in [1] and allows to repeat certain patterns. Below we give a definition of regular
expressions with back referencing which is suitable to model UNIX regular like
expressions.

Definition 9 (BR-expressions). Let X' be an alphabet and A a set of variables
with X N A = 0. The regular expressions with back referencing (BR-expression)
over X and A and their set of assigned variables, called asg, are defined recur-
sively as follows:

0 is a BR-expression and asg (0) = 0.

X is a BR-expression and asg (\) = .

For each a € X, a is a BR-expression and asg (a) = (.

For each v € A, v is a BR-expression and asg (v) = ().

Let v € A be a variable and r,s are BR-expressions. Then the following

strings are BR-expressions:

(a) (r + s) is a BR-expression if asg (r) N asg(s) = 0, and asg (r +s) =
asg (r) U asg (s).

(b) (rs) is a BR-expression if asg (r) N asg (s) =0, and asg (rs) = asg (r) U
asg (s).

(¢) (r*) is a BR-expression with asg (r*) = asg (r).

(d) (r%wv) is a BR-expressions if v € asg (1), and asg (r%v) = asg (r) U {v}.

6. Nothing else is a BR-expression.

Srds Lo o~

The set of languages described by BR-expressions is denoted by BREG.

As for regular expression, redundant parenthesis can be avoided using the
same precedences and associatives as in regular expressions. The back referencing
operator % is left-associative and has the highest precedence. Thus, if there is
no danger of confusion, we omit out-most brackets. Let us give some examples.

Ezample 2. 1. r = ((a + b)%v)v is a BR-expression with asg (r) = {v}.
2. s = (((a + b)*%v)v)*v is a BR-expression with asg (s) = {v}.

3. t =v((a + b)%v) is a BR-expression with asg (t) = {v}.

4. u = (v%v) is a BR-expression with asg (u) = {v}.

The reader familiar with UNIX regular expression may have noticed, that
our definition is more relaxed then in the UNIX case. For instance, we allow the
usage of a variable before it is defined by an assignment as in cases 3 and 4 of our
examples. As we will see later, these BR-expressions will denote the empty-set
only. Nevertheless, BR-expressions can be seen as one possible model for UNix
regular expression.

It remains to define a semantic for BR-expressions. In contrast to ordinary
regular expression, where usually the semantics is given by an inductive defini-
tion, here we run into problems because the variable v as a BR-expression will

26

have no value, but the BR-expression ((a + b)*%v)v shall have one. To over-
come this situation we give a operational semantics of BR-expressions based on
action relations as used in process algebra (see, e.g., [3]). Before we need some
notations:

Let f: A — X* be a partial function from the set of variables into the free
monoid build by the input alphabet. Sometimes f is called the memory function
on ¥ and A. Let f be a memory function on X' and A and r a BR-expressions
over X and A, then we call the tuple [f,r] and [f, /] a configuration. The latter
configuration is the so called terminal configuration. Now we are ready to define
a reduction system based on a (generalized) action relation as follows:

Definition 10. 1. The action relation on configurations is defined as follows:
(a) [£N 2 [£, V) and [£,a] % [£,/]
) [f,7*] D [f,v/] and [f,r*] D [f,rr*].

2. The generahzed action relation is inductively defined:

(a) ,r] N lg9,+/] implies [f,r] =N [9,V] and [f,7] 5 lg, s] implies [f,7] =N

(b)
(c)

[
9,
[f, V] implies [f,r+s] 2 [g9,+/] and [f,s + 7] = [9,V]-
Lf,

(d) [f,
L/,
t
[
[

",

r] = [g,+/] implies [f,7s] = [g, s].

v] 2 [f,+/] if f(v) is defined and evaluates to w.

] 2 g, /] implies [f,r%v] = [g',+/], where g' is identical to g except
hat g'(v) evaluates to w.

(e)

) If,7] = lg,5] and [g,] = [h,y/] implies [f,r] = [h,/]- Moreover,
;7] = [g,5] and [g,5] = [h,t] implies [f,r] = [h, 1].

Observe, that by definition the configuration [f, #] does not derive any other
configuration and [f, 0*] A [f,+/] regardless of the chosen memory function f.
Moreover, note that a derivation that starts with [f, (*] A [£,00%] does not
terminate at all, because the leading term) can not be eliminated anymore.

Now we are ready to define the language associated to a particular BR-
expression as follows.

Definition 11. Let L be the everywhere undefined memory function on alpha-
bet X and variables A. Then the language defined by a BR-expression r over X
and A is the language L(r) = {w € X* | [L,7] = [9,V] }-

At this point we should give a larger example.

Ezample 3. Let r = ((a+b)*%wv)v be one of the BR-expression from our previous
example. The below given derivations hold for an arbitrary memory function f.

L [f,a] = [f,V] and [£,0] = [£, V).

2 [fa+ 0] % [f, V] and [f,a+ 0] = [f, V]
3. In general we find [f, (a+b)*] = [f, /] if w € {a, b}*, because of the following
three derivations:

() [f,(a+b)] 3 [f, V],

27

b) [f,(a+b)*] 3 [f, (a+b)(a+b)*] 3 [f,(a+b)*], and

)
(©) [f,(a+0)] 3 [f, (@ +b)(a+b)] = [f, (. + b))
4. [f, (a+b)*%v] 2 [f', /] if w € {a,b}* and f'is identical with f except that
) = w.
5. [f, (a+ b)*%v)v] = [f',v], where f and w are defined as in (4). Moreover,
[f',v] = [f',+/]- Thus,

[f, ((a+b)*%v)] = [, 0] = [f', V],

and hence [f, ((a + b)*%wv)v] = [f',/]. This completes our example.
Thus, we have shown that L(r) = {ww | w € {a,b}* }.

A closer look on the other examples shows that s = (((a+b)*%v)v)*v denotes
the set L(s) = {wiwwows ... wy_ 1w, qw,wyw, | w; € {a,b}* andn > 1},
while the remaining two BR-expressions t = v((a + b)%v) and v = (v%v) both
denote the empty-set only, i.e., L(t) = L(u) = 0. The latter is due to the fact that
variable v is used before some value is assigned to it, and thus the generalized
action relation terminates abnormally.

We have just seen that BR-expressions are quite powerful and can describe
non-context-free languages. On the other hand, we conjecture that even the
linear context-free language {a”™b™ | n > 0} is not a BR-expression language.
Up to now we were not able to give a formal prove of this statement based on
our formalism on the semantics of BR-expressions.

28

