
T U M
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as interfaes to speify ertain pattern or languages. E.g., in the widely avail-able programming environment Unix, regular (like) expressions an be found inlegion of software tools like, e.g., awk, ed, emas, egrep, lex, sed, vi, et., tomention a few of them. The syntax used to represent them may vary, but theonepts are very muh the same everywhere.Most of the above mentioned text-editing and searhing programs add ab-breviations and new operations to the basi regular expression notation fromtheoretial omputer siene, in order to make it easier to speify patterns orlanguages. This o�ers onsiderable onveniene in both theory and pratie.What onerns ommon abbreviations, as for instane, intersetion and om-plement, they do not add more desriptive power to regular expressions, butgive more onise desriptions. Besides the usage of meta-haraters in Unixlike expressions, the most signi�ant di�erene to ordinary regular expressions issome sort of pattern repeating operation. More preisely, it is possible to speifypatterns that are saved in a speial holding spae, used for further proessing, onthe underlying word. For instane, the Unix regular expression \([ab℄^*\)\1desribes the non-ontext-free language fww j w 2 fa; bg� g. For more detailswe refer to [11℄ and to the appendix, where we give a natural semantis forso alled regular expressions with bak referening1, a model for Unix regularexpressions, �rst briey disussed in [1℄.Kleene's well-known theorem, whih states that a language L is regular ifand only if there is a regular expression r with L = L(r). There have been someattempts to generalize this theorem in one of the following diretions: De�nean extension of regular expressions and determine the assoiated family of lan-guages (see, e.g., [16℄) or �nd the lass of expressions for a given extension of thefamily of regular languages (see, e.g., [13, 24, 29℄ haraterizing two-dimensionalregular languages, reognizable trae languages, and ontext-free (string) lan-guages, respetively). On the other hand, to our knowledge nothing omes loseto the repeating or opy operation mentioned above. This brings us to the aim ofthis paper. Inspired by Gruska's substitution expressions [14℄, whih were usedto haraterize the ontext-free languages, we introdue regular expressions en-rihed by some sort of opy operation, whih is lose to the repeating feature ofUnix regular like expressions.A good formal language theoreti approah to those pattern repetition op-erations is given by the operation of homomorphi replaement. Homomorphireplaement is a onept well-known in omputer siene. We mention someareas where it appeared in literature under various names within di�erent on-texts: For example, in van Wijngaarden grammars (W-grammars) homomorphireplaement is alled \onsistent substitution" or \onsistent replaement" [10℄.In onnetion with maro grammars [12℄ it is alled \inside-out (IO) substitu-tion," in Indian parallel grammars [27℄ the one-step derivation relation is nothingother then a homomorphi replaement with a �nite set, and in some algebraialapproah in formal language theory it appears as \all by value substitution."1 To our knowledge this was not done before.2



Another aspet of homomorphi replaement was investigated by Albert andWegner [2℄, who onsidered H-systems.In this paper, we study the usual language theoreti properties of regularexpressions extended by homomorphi replaement, suh as the desriptionalpower in omparison with the well-known lasses in the Chomsky hierarhy aswell as families of languages determined by mehanisms whih are related to ex-pressions with homomorphi replaement, losure properties and the omplexitystatus of some deision problems for expressions with homomorphi replaement.In the next setion we introdue the neessary de�nitions. Then in Setion 3 weompare the power of substitution versus homomorphi replaement and in Se-tion 4 we relate the latter to some other onepts in the literature. Setions 5and 6 are devoted to the study of losure and deision problems as mentionedabove. Finally in penultimate setion we summarize our results and state someopen problems.2 De�nitionsWe assume the reader to be familiar with some basi notions of formal languagetheory, as ontained in [9℄. In partiular we onsider the following well-knownformal language families generated by regular (i.e., right-linear), linear ontext-free, ontext-free, and ontext-sensitive Chomsky grammars whih are denotedby REG, LIN, CF, and CS, respetively. Moreover, the family of extended (ex-tended deterministi, respetively) tabled ontext-free Lindenmayer languages isdenoted by ET0L (EDT0L, respetively). The lass of �nite languages is de-noted by FIN.In this paper we are dealing with regular like expressions. Ordinary regularexpression are de�ned as follows:De�nition 1 (R-expressions). Let � be an alphabet. The regular expressions(R-expressions) over � and the sets that they denote are de�ned reursively asfollows:1. ; is a regular expression and denotes the set L(;) = ;.2. � is a regular expression and denotes the set L(�) = f�g.3. For eah a 2 �, a is a regular expression and denotes the set L(a) = fag.4. If r and s are regular expressions, then (r + s), (rs), and (r�) are regularexpressions that denote the sets L(r+ s) = L(r) [L(s), L(rs) = L(r) �L(s),and L(r�) = L(r)�, respetively.5. Nothing else is a regular expression.It is well known that regular expressions exatly haraterize the family ofregular languages REG. We all a language regular like expression language, ifit an be desribed by a regular like expression, i.e., a regular expression withan enhaned set of operations as, e.g., union, onatenation, Kleene star, anditerated substitution or iterated homomorphi replaement. Both operations arede�ned formally in the next setion. 3



Besides the expressive power of regular like expressions, we also investigatesome omplexity theoretial issues on these language families. We assume thereader to be familiar with some basi notions of omplexity theory, as on-tained in [4℄. In partiular we onsider the following well-known hain of inlu-sions: NL � P � NP � PSpae. Here NL is the set of problems aeptedby nondeterministi logarithmi spae bounded Turing mahines, and P (NP,respetively) is the set of problems aepted by deterministi (nondeterministi,respetively) polynomially time bounded Turing mahines. Moreover, PSpaeis SkDSpae(nk).Completeness and hardness are always meant with respet to deterministilog-spae many-one reduibilities. A problem A is said to be log-spae many-oneequivalent or as hard as B, if and only if A redues to B and B redues to A.We investigate the �xed membership, the general membership, the equiva-lene, and the emptiness problem for regular like expression languages. The �xedmembership problem for regular like expression languages is de�ned as follows:{ Fix a regular like expression r. For a given word w, is w 2 L(r)?A natural generalization is the general membership problem whih is de�ned asfollows:{ Given a regular like expression r and a word w, i.e., an enoding hr; wi, isw 2 L(r)?The equivalene problem is the following one:{ Given two regular like expressions r and s, does L(r) = L(s) hold?Finally, the emptiness problem is de�ned as:{ Given a regular like expression r, is L(r) = ;?The general membership, the equivalene, and emptiness problem have regu-lar like expressions as inputs. Therefore we need an appropriate oding funtionh�i whih maps,e.g., a regular like expression r and a string w into a word hr; wiover a �xed alphabet �. We do not go into the details of h�i, but assume itful�lls ertain standard properties; for instane, that the oding of the alphabetsymbols is of logarithmi length.3 Substitution Versus Homomorphi ReplaementIn this setion we introdue the homomorphi replaement operation and studythe expressive power of regular like expressions involving this new operation.We ompare the indued language family to the lower lasses of the Chomskyhierarhy and to the family EDT0L of languages generated by extended deter-ministi tabled 0L systems. Next we reall Gruska's [14℄ approah to haraterizethe ontext-free languages and then we de�ne homomorphi replaement.4



3.1 Substitution and Iterated SubstitutionReall the approah given by Gruska [14℄ in his seminal paper, where a-substi-tutions and their iteration are the additional operations to regular expressions.Let a be a letter and L1; L2 be languages. The a-substitution of L2 in L1,denoted by L1 #a L2, is de�ned byL1 #a L2 = fu1v1u2 : : : ukvkuk+1 j u1au2a : : : auk+1 2 L1;a does not our in u1u2 : : : uk+1, and v1; v2 : : : ; vk 2 L2 g;and the iterated a-substitution of language L, denoted by L#a , is de�ned byL#a = fw 2 L[(L #a L)[(L #a L #a L)[� � � j w has no ourrene of letter a gwhere any further braketing is omitted sine a-substitution is obviously asso-iative.Based on these operations an extension of regular expressions is de�ned.Let � be an alphabet. The regular expressions with substitution (S-expressions)and regular expressions with extended substitution (ES-expressions) over � andthe sets they denote are de�ned reursively as follows:1. Every regular expression over � is an S- and ES-expression.2. If r and s are S- and ES-expressions, resp., denoting the languages L(r)and L(s), resp., then (r+ s), (rs), (r�), and (r #a s), for some a 2 �, are S-and ES-expressions, respetively, that denote the sets L(r)[L(s), L(r)�L(s),L(r)�, and L(r) #a L(s), respetively.3. Let a 2 �. If r is an ES-expression denoting the language L(r), then (r#a )is an ES-expression that denotes the set L(r)#a .4. Nothing else is an S- or ES-expressions, respetively.The families of languages desribed by S- and ES-expressions are denoted bySREG and ESREG, respetively. While SREG equals REG, whih is easilyseen, In [14℄ Gruska has shown that ESREG oinides with the family CF ofontext-free languages.3.2 Homomorphi and Iterated Homomorphi ReplaementHomomorphi replaement was investigated by Albert and Wegner [2℄ and ap-peared in the literature under various names within di�erent ontexts. For in-stane, in van Wijngaarden grammars (W-grammars) homomorphi replaementis alled \onsistent substitution" or \onsistent replaement" [10℄. In onne-tion with maro grammars [12℄ it is alled \inside-out (IO) substitution," inIndian parallel grammars [27℄ the one-step derivation relation is nothing otherthen a homomorphi replaement with a �nite set, and in some algebraial ap-proah in formal language theory it appears as \all by value substitution." Theessential feature of homomorphi replaement is opying. Thus, we introdue anoperation on languages whih models this feature. Our de�nition was inspired5



by Gruska's a-substitution [14℄. Aording to the de�nition of a-substitution, wehave to replae any ourrene of a by a word of L2, and it is allowed that di�er-ent ourrenes are replaed by di�erent words. We now modify this mehanismby the requirement that any ourrene of a has to be replaed by the sameword of L2.De�nition 2. Let a be a letter and L1; L2 be languages. The a-homomorphireplaement of L2 in L1, denoted by L1 *a L2, is de�ned byL1 *a L2 = fu1vu2 : : : ukvuk+1 j u1au2a : : : auk+1 2 L1;a does not our in u1u2 : : : uk+1, and v 2 L2 g:The reader may easily verify that the following lemma is valid.Lemma 1. For eah letter a, the operation *a is assoiative, i.e.,(L1 *a L2) *a L3 = L1 *a (L2 *a L3):Observe, that the previous lemma is not true if we use di�erent letters forthe replaement operation beause(fbg *a fag) *b fag = fag 6= fbg = fbg *a (fag *b fag) :We also onsider the iterated version of homomorphi replaement.De�nition 3. Let a be a letter and L a language. The iterated a-homomorphireplaement of L, denoted by L*a , is de�ned byL*a = fw 2 L[(L *a L)[(L *a L *a L)[� � � j w has no ourrene of letter a g:Due to Lemma 1 we do not have to speify the braketing of the a-homomor-phi replaement operations in the previous de�nition. Note, if a is not in �,then for language L � �� we have L� = (La [ f�g)*a and L+ = (La [ L)*a .Here � denotes the empty word.Homomorphi replaement is very powerful, beause one an desribe thenon-ontext-free language fww j w 2 fa; bg� g by fg * fa; bg�. In fat, thisshows that the low levels of the Chomsky hierarhy are not losed under a-homomorphi and iterated a-homomorphi replaement.Theorem 1. 1. The family of �nite languages is losed under a-homomorphireplaement. Neither the family of regular, linear ontext-free nor the familyof ontext-free languages is losed under a-homomorphi replaement.2. Neither the family of �nite languages, regular, linear ontext-free nor thefamily of ontext-free languages is losed under iterated a-homomorphi re-plaement. utObviously, the family of reursively enumerable languages is losed undera-homomorphi replaement, but for the family of ontext-sensitive languageswe have to be areful whether the replaement is �-free or not. In the �-free6



ase CS is losed under this type of operation what an readily be shown byLBA onstrution. In general this family is not losed under a-homomorphireplaement, beause it is possible to simulate arbitrary homomorphisms and thewell-known fat that every reursively enumerable language is a homomorphiimage of a ontext-sensitive language. We briey summarize our results:Theorem 2. The family of ontext sensitive languages is not losed under ar-bitrary (iterated) a-homomorphi replaement, but is losed under �-free one.Finally, the family of reursively enumerable languages is losed under a-homo-morphi and iterated a-homomorphi replaement. utNow we are ready to de�ne the entral notion of this paper, whih is that ofregular expressions with (iterated) homomorphi replaement.De�nition 4. Let � be an alphabet. The regular expressions with homomor-phi replaement (H-expressions) and extended homomorphi replaement (EH-expressions), respetively, over � and the sets they denote are reursively de�nedas follows:1. Every regular expression over � is also an H- and EH-expression, respe-tively.2. If r and s are H- and EH-expressions, resp., denoting the languages L(r)and L(s), resp., then (r + s), (rs), (r�), and (r *a s), for some a 2 �,are H- and EH-expressions, respetively, that denote the sets L(r) [ L(s),L(r) � L(s), L(r)�, and L(r) *a L(s), respetively.3. Let a 2 �. If r is an EH-expression denoting the language L(r), then (r*a )is an EH-expression that denotes the set L(r)*a .4. Nothing else are H- and EH-expressions, respetively.The set of languages desribed by H- and EH-expressions is denoted by HREGand EHREG, respetively.If there is no danger of onfusion, we omit out-most brakets. Let us givesome examples:Example 1. 1.  * (a + b)� denotes the language fww j w 2 fa; bg� g, whihis non-ontext-free.2. (ab+ aAb)*A desribes the non-regular language f anbn j n � 1 g.3. (a+AA)*A denotes the non-ontext-free language f a2n j n � 0 g.Next, onsider the following hain of inlusions:Theorem 3. REG �HREG � EHREG.Proof. The inlusions are obvious; the stritness of the �rst one is seen fromExample 1. 1 and the stritness of the seond inlusion follows by Example 1.3together with the fat that every language in HREG is semi-linear. This is be-ause ordinary regular operations and, by easy alulations, also a-homomorphireplaement preserves semi-linearity. ut7



In the following theorem we relate EHREG with the linear ontext-freelanguages and the family EDT0L. For further details on EDT0L languages werefer to [25℄.Theorem 4. LIN � EHREG � EDT0L.Proof. Let G = (N;T; P; S) be a linear ontext-free grammar with the set ofnonterminals N = fA1; A2; : : : ; Ang and let S = A1. Then for 1 � i � n, we setGi = (N n fA1; A2; : : : ; Ai�1g; T [ fA1; A2; : : : ; Ai�1g; n[j=iPj ; Ai);where Pi = fAi ! w j Ai ! w 2 P g. Moreover, for 1 � i � n, let si be theEH-expressions with L(si) = fw j Ai ! w 2 P g. Then indutively de�nern = (sn)*Anand ri =  �: : :��s*Aii *An rn� *An�1 rn�1� : : :� *Ai+1 ri+1!*Ai ;for 1 � i � n� 1. Then one an readily verify that L(Gi) = L(ri) for 1 � i � n,whih immediately implies L(G) = L(r1), beause G1 equals G. This proves the�rst inlusion whih has to be strit by Example 1.3.The seond inlusion follows by the losure of EDT0L under the operationsin onsideration, whih an be shown by standard onstrutions. utIn order to relate the families HREG and EHREG to the families of linearontext-free, ontext-free, and EDT0L languages, the following to lemmata areneeded.De�nition 5. We de�ne the depth of an R-expression or H-expression overalphabet � indutively by1. d(;) = d(�) = d(a) = 0 for any a 2 �.2. If r and s are R- or H-expressions of depth d(r) and d(s), respetively, thend(r + s) = d(r � s) = d(r *a s) = d(r) + d(s) + 1 for a 2 �.3. If r is an R- or H-expression of depth d(r), then d(r�) = d(r) + 1.For a language L 2 HREG, we setd(L) = minf d(r) j L(r) = L g:We say that an H-expression r is �-free if it does not ontain a subexpressions *a u with L(u) = f�g.Lemma 2. For any H-expression r = s *a u with L(u) = f�g there is a �-freeH-expression t suh that L(t) = L(r) and d(t) � d(s).8



Proof. Let us assume that the lemma does not hold. Let K be the set of allH-expressions r suh that r is of the form r = s *a u with L(u) = f�g and thereis no t for r satisfying the onditions of the lemma. By assumption, K is notempty. Let k = minf d(r) j r 2 K g. We onsider an H-expression r = s *a u 2 Ksuh that d(r) = k. Obviously, if s *a u in K, then s *a � is in K, too. Bythe minimality of r with respet to the depth, we an assume without loss ofgenerality that r = u *a �.Obviously, k � 1. In ase k = 1, then one of the following ases holds:1. If s = ;, then L(s *a �) = L(;) and d(;) = d(s).2. If s = �, then L(s *a �) = L(�) and d(�) = d(s).3. If s = a, then L(s *a �) = L(�) and d(�) = d(s).4. If s = b for b 2 � n fag, then L(s *a �) = L(b) and d(b) = d(s).Thus, let k > 1 and we distinguish the following four ases:1. Let s = s1 + s2 for some H-expressions s1 and s2 with d(s1) � k � 2 andd(s2) � k � 2. Then we de�ne the H-expressions t1 = s1 *a � and t2 =s2 *a �. Obviously, d(t1) � k � 1 and d(t2) � k � 1. By the minimalityof k, there exist �-free H-expressions t01 and t02 with L(t01) = L(s1 *a �) andL(t02) = L(s2 *a �), respetively, satisfying d(t01) � d(s1) and d(t02) � d(s2).Thus, t01 + t02 ful�llsd(t01 + t02) = d(t01) + d(t02) + 1 � d(s1) + d(s2) + 1 = d(s)andL(t01 + t02) = L(t01) [ L(t02)= L(s1 *a �) [ L(s2 *a �) = L((s1 *a �) + (s2 *a �))= L((s1 + s2) *a �) = L(s *a �) = L(r):Moreover, beause t01 and t02 are �-free, expression t01+t02 is �-free, too. Hene,t01 + t02 ful�lls all onditions of the lemma in ontrast to r 2 K.2. Let s = s1s2 for some H-expressions s1 and s2 with d(s1) � k � 2 andd(s2) � k�2. In analogy to the �rst ase above, we an show a ontraditionwhih is left to the reader.3. Let s = s�1 for some H-expressions s1 with d(s1) � k�2. Again, we an showa ontradition analogously to the �rst ase above.4. Let s = s1 *b s2 for some H-expressions s1 and s2 with d(s1) � k � 2 andd(s2) � k � 2. We onsider the �-free H-expressions t01 and t02 as in the �rstase above. ThereforeL(t01) = L(s1 *a �);L(t02) = L(s2 *a �) with d(t01) � d(s1) and d(t02) � d(s2) (1)Moreover, if a 6= b, thenL(t01 *b t02) = L((s1 *a �) *b (s2 *a �))= L((s1 *b s2) *a �) = L(s *a �) = L(r): (2)9



If a = b, for 1 � i � 2, we modify si to s0i by a renaming of a by a0 where a0is a new letter and get the relations of (1) and (2) for the orresponding�-free expressions t01 and t02.Let L(t01) 6= f�g. Then, in analogy to the above onsideration, a ontraditionto the hoie of r is obtained. Finally let L(t02) = f�g. Thend(t01 *b t02) � d(s1) + d(s2) + 1 = d(s) < d(r): (3)By the minimality of k, there is a �-free H-expression t suh that L(t) =L(t01 *b t02) and d(t) � d(t01). By (1), (2), and (3), we obtain L(t) = L(r) andd(t) � d(s1) � d(s) � d(r). Therefore t satis�es all onditions of the lemmain ontrast to the hoie of r 2 K. utFor an alphabet �, a partition C = (�1; � n�1) and two letters a and b notin � we de�ne the morphism �C by�C(x) = � a x 2 �1b x 2 � n�1 :Let L be a language over � and a and b two letters not in �. Then L isalled an (a; b)-language i� there exist a partition C = (�1; � n �1) of � suhthat the following onditions hold:A1 �C(L) � a�b�,A2 �C(L) is in�nite,A3 for any natural number n, D(a; n; L) = fm j anbm 2 �C(L) g is a �nite set,andA4 for any natural number n, D(b; n; L) = fm j ambn 2 �C(L) g is a �nite set.We note that the onditions A3 and A4 are equivalent to the existene of aonstant k � 0 suh that anbm 2 �(L) implies jn�mj � k.Before showing that any (a; b)-language is not an HREG language we needthe following statements on the behaviour of (a; b)-languages under the operationused in the onstrution of HREG languages.Lemma 3. 1. If L1[L2 is an (a; b)-language, then L1 or L2 are (a; b)-languages.2. If L1 � L2 is an (a; b)-language, then L1 or L2 are (a; b)-languages.3. For any L, language L� is not an (a; b)-language.4. If the set L1 * L2 is an (a; b)-language, for some , and L2 6= f�g, then L1or L2 are (a; b)-languages.Proof. 1. Let C be the partition for L1 [L2. Beause �C(Li) � �C(L1 [L2) �a�b� and D(x; n; Li) � D(x; n; L1 [ L2), for i 2 f1; 2g and x 2 fa; bg,onditions A1, A3 and A4 hold for the languages L1 and L2, too. Moreover,the in�nity of �C(L1 [L2) implies that at least one of the languages �C(L1)and �C(L2) is in�nite. Hene ondition A2 holds for L1 or L2, too.10



2. Again, let C be the partition for L1 �L2. Sine �C(L1 �L2) = �C(L1) � �C(L2)and L1 � L2 satis�es onditions A1 and A2, both fators �C(L1) and �C(L2)are ontained in a�b� and one of the fators has to be in�nite and the otherone is non-empty. Let us assume that L1 is in�nite.We prove that L1 satis�es ondition A3. If A3 does not hold for L1, thenthere is an integer n suh that D(a; n; L1) is in�nite. Let anbm 2 �C(L1) forsome m � 1. Let v be a word of L1 with �C(v) = anbm. Furthermore, letw 2 L2 and �C(w) = asbr. If s � 0, then anbmasbr = �C(vw) 2 �C(L1 � L2)in ontrast to the validity of ondition A1 for L1 � L2. If s = 0, then m 2D(a; n; L1) i� m + r 2 D(a; n; L1w), and thus D(a; n; L1w) is in�nite. ByD(a; n; L1w) � D(a; n; L1L2) we obtain a ontradition to the validity ofondition A3 for L1 � L2.Analogously, we prove that L1 satis�es ondition A4. Combining these fats,language L1 is an (a; b)-language. By similar arguments we an show that inase of in�nity of L2. Thus, L2 is an (a; b)-language.3. Let us assume that L� is an (a; b)-language, and let C be the partitionfor L�. Sine �C(L�) = (�C(L))� and �C(L�) is in�nite by ondition A2,�C(L) 6= ; and �C(L) 6= f�g. Moreover, �C(L) � a�b� sine ondition A1holds for L�. If �C(L) ontains a word arbs with r � 1 and s � 1, thenarbsarbs 2 (�C(L))2 � �C(L�) in ontrast to the validity of ondition A1for L�. Hene �C(L) � a� or �C(L) � b�. In the former ase we get ar 2 �C(L)with r � 1. Thus, fakr j k � 0g � �C(L�) and D(b; 0; L�) is in�nite inontrast to the validity of ondition A4 for L�. Analogously, we show aontradition in the ase that �C(L) � b�4. If #(w) = 0 for all w 2 L1, then L1 * L2 = L1 and the statement is shown.Thus, we an assume that there is a word w 2 L1 with #(w) � 1.Again, let C = (�1; � n�1) be the partition. Obviously, �C(L2) � a�b�. Weonsider the following three subases:(a) Let �C(L2) � a�. If �C(L2) is in�nite, then, for any w 2 L1, language�C(w * L2) is in�nite, too. Therefore there is an integer n suh thatD(b; n; w * L2) and hene D(b; n; L1 * L2) are in�nite. This ontra-dits ondition A4 for L1 * L2.Thus, we an assume that �C(L2) � a� is �nite. We now prove that L1is an (a; b)-language with respet to the partition D = (�1 [ fg; � n(�1[fg)). Note that C = D is possible. Sine  is substituted by wordsof a� in L1 * L2, we obtain �D(L1) � a�b�, i.e., language L1 satis�esondition A1. Moreover, the in�nity of �C(L1 * L2) and the �nitenessof �C(L2) imply the in�nity of �D(L1). Hene ondition A2 is ful�lledby L1.Now assume that L1 does not satisfy ondition A4. Then there is aninteger n suh that D(b; n; L1) is in�nite. Let k � 0 be an arbitraryinteger. Sine D(b; n; L1) is in�nite, there is an integer k0 � k suh thatak0bn 2 �D(L1). Let u be a word in L1 with �D(u) = ak0bn. Then, byL2 6= f�g, the set �C(u * L2) ontains a word ak00bn with k00 � k0 � k.Thus, D(b; n; L1 * L2) is in�nite, too, in ontrast to the validity ofondition A4 for L1 * L2. 11



Now assume that L1 does not satisfy ondition A3. Then there is aninteger n suh that D(a;m;L1) is in�nite. Let w be an element of L1with �D(w) 2 amb�. Then w = w0w00 for some w0 2 (V1 [ fg)� andw00 2 (V n (V1 [ fg))� with jw0j = m. Sine there is a �nite number ofdi�erent words w0 with w0 2 (V1 [ fg)� and jw0j = m, the in�nity ofD(a;m;L1) implies the existene of a word w0 over �1[fg of length msuh thatE = f �D(w00) j w00 2 (� n (�1 [ fg))�; w0w00 2 L1; �D(w0w00) 2 amb� gis in�nite. We setF = fw0w00 j w0w00 2 L1 and �D(w00) 2 E g:Let w0 = w1i1w2i2 : : : wrirwr+1for some r � 0 with wr+1 2 (�1 n fg)� and wj 2 (�1 n fg)�, ij � 1 for1 � j � r. Then jw1w2 : : : wr+1j+ (i1 + � � �+ ir) = m:Let v 2 L2 with �C(v) = as. Then D(a; jw1w2 : : : wr+1j + (i1 + � � � +ir)s; F * v) and thereforeD(a; jw1w2 : : : wr+1j+(i1+� � �+ir)s; L1 * L2)are in�nite whih gives the desired ontradition.(b) Let �C(L2) � b�. We obtain a ontradition analogously to the �rst aseabove.() Let �C(L2) � a+b+. First let us assume that there is a word w 2 L1with at least two ourrenes of . Then the existene of a word v 2 L2with �C(v) = arbs with r > 0 and s > 0 implies �C(w * v) =u1arbsu2arbsu3 2 �C(L1 * L2) for some words u1; u2; u3 2 fa; bg�,i.e., ondition A1 does not hold for L1 * L2 in ontrast to our sup-position. Thus, we an assume that any word of L1 ontains at mostone ourrene of . Moreover, by analogous arguments, any word wof L1 with #(w) = 1 has the form w = w1w2 with w1 2 ��1 andw2 2 � n (�1 [ fg).Let �C(L2) be in�nite. We prove that L2 is an (a; b)-language. Lan-guage L1 ontains a word w = w1w2 with w1 2 ��1 and w2 2 � n (�1 [fg). If jw1j = r and jw2j = s, then �C(w) = ar+1bs or �C(w) = arbs+1.In the sequel we only disuss the former ase, the latter one an be han-dled by analogous onsiderations. If L2 is not an (a; b)-language, thenone of the sets D(a; n; L2) or D(b; n; L2) is in�nite. This implies the in-�nity of D(a; n + r + 1; w *a L2) or D(b; n + s; w *a L2). Therefore,D(a; n+ r + 1; L1 *a L2) or D(b; n+ s; L1 *a L2) is in�nite in ontrastto the fat that L1 *a L2 is an (a; b)-language.Thus, let �C(L2) be �nite. We show again, that L1 is an (a; b)-languagewith respet to the partition D de�ned as above. Obviously, �D(L1) isin�nite and ontained in a�b�. Now assume that L1 does not satisfy12



ondition A4. Then there is an integer n suh that D(b; n; L1) is in�nite.Let k � 0 be an arbitrary integer. Sine D(b; n; L1) is in�nite, there isan integer k0 � k suh that ak0bn 2 �D(L1). Let u be a word in L1with �D(u) = ak0bn. Then, by L2 6= f�g, the set �C(u * L2) ontainsa word ak00bn with k00 � k0 � k. Thus, D(b; n; L1 * L2) is in�nite, too,in ontrast to the validity of ondition A4 for L1 * L2. Analogously weprove that L1 satis�es ondition A3. utNow we are ready to show that no (a; b)-language an be anHREG language.Lemma 4. Any (a; b)-language is not an HREG language.Proof. Let us assume that there is an (a; b)-language K in HREG. Letk = minf d(K) j K 2 HREG and K is an (a; b)-languagegand let L be an (a; b)-language in HREG with d(L) = k. By Lemma 2, thereis an H-expression r onstruted without steps of the form s * � suh thatL(r) = L. Then k � 1 sine (a; b)-languages are in�nite by ondition A2. Now,by Lemma 3 there are H-expressions s and t with d(s) < k and d(t) < k suhthat r = s+t or r = st or r = s * t for some . By Lemma 3 we obtain that L(s)or L(t) are (a; b)-languages in ontrast to the de�nition of k. utTheorem 5. Let X 2 fCF;LINg. Then the family of languages X is inom-parable to the family HREG.Proof. By Theorem 3 it is suÆient to show that there is are languages K1 2LIN nHREG and K2 2 HREG nCF. Obviously, the linear ontext-free lan-guage K1 = f ndn j n � 1 g is an (a; b)-language. Thus, K1 =2 HREG followsfrom Lemma 4. If we hoose K2 = fww j w 2 fa; bg� g, we are, obviously, done.We have already seen that HREG ontains non-ontext-free languages. Onthe other hand, it is known, that the Dyk set is not an EDT0L language [25,Exerise 3.3, page 205℄, and thus is not ontained in HREG by Theorem 4. Thisproves the following orollary.Corollary 1. The language families CF and EHREG are inomparable. ut4 Homomorphi Replaement Systems and RelatedMehanismsIn this setion we disuss several aspets of homomorphi replaement whih arerelated to H- and EH-expressions. As already mentioned, homomorphi replae-ment was investigated by Albert and Wegner [2℄ in the ontext of homomorphireplaement systems. As we will see, homomorphi replaement with regularlanguages in the sense of Albert and Wegner is a speial ase of H-expressions.These systems are de�ned as follows: 13



De�nition 6 (H-systems). A homomorphi replaement system (H-system) isa quadruple H = (�1; �2; L1; ') with meta-alphabet �1, terminal alphabet �2,suh that �1 \ �2 = ;, meta-language L1 � ��1 , and a funtion ' : �1 ! 2��2whih assigns to eah a 2 �1 a language '(a) � ��2 . Instead of '(a) we shallwrite also La.The language of an H-system H = (�1; �2; L1; ') is de�ned asL(H) = fh(w) j w 2 L1 and h is a homomorphism withh(a) 2 '(a) for all a 2 �1 g:The family of H-system languages with regular meta-languages and regularlanguages La for every a 2 �1 is denoted by H(REG;REG).Reently a restrited form of homomorphi replaement systems, so alledpattern or multi-pattern languages [21, 23℄ have gained interest in the formal lan-guage ommunity. Pattern (multi-pattern, respetively) languages are languagesgenerated by H-systems with the following restritions:1. L1 is a singleton (or a �nite language, respetively),2. there is a partition of �1 into �01 and �001 , and3. '(a) � �2 is a singleton for a 2 �01 and '(b) = ��2 for b 2 �001 .Let PAT (MPAT, respetively) denote the family of all pattern (multi-pattern,respetively) languages.Obviously, multi-pattern languages are a subset ofH(FIN;REG), the familyof H-system languages with �nite meta-languages and regular languages La forevery a 2 �1. Beause the H(REG;REG) language f (anb)m j n;m � 1 ggenerated by the H-system H = (fA;Bg; fa; bg; L1; ') with L1 = f (AB)m jm � 1 g and '(A) = a+ and '(B) = b, doesn't belong to H(FIN;REG), whihwas shown in [2℄, we obtain the following theorem, where the �rst strit inlusionis due to [21℄:Theorem 6. PAT �MPAT � H(REG;REG). utMoreover, by the fat that (ab)� is not a multi-pattern language but belongsto H(REG;REG) one onludes that the family of pattern and multi-patternlanguages are inomparable with the family REG, LIN, and CF of regular,linear ontext-free, and ontext-free languages, respetively. Now onsider thefollowing hain of strit inlusions:Theorem 7. REG � H(REG;REG) �HREG.Proof. The �rst inlusion is obvious; the stritness is seen from the non-regularlanguage f anban j n � 1 g generated by the H-systemH = (fA;Bg; fa; bg; L1; ')with L1 = fABAg and '(A) = a� and '(B) = b.Let L 2 H(REG;REG). Then there is an H-system H = (�1; �2; L1; ')with regular meta-language L1 and regular languages La for all a 2 �1, suhthat L = L(H). Without loss of generality we assume that �1 = fa1; : : : ; ang.14



Sine L1 (La for a 2 �1, resp.) is regular there exists a regular expression r1(ra for a 2 �1, resp.) suh that L1 = L(r1) ('(a) = L(ra), resp.). Beause�1 \�2 = ; it is easy to see that the H-expression �: : :��r1 *a1 ra1� *a2 ra2� : : :� *an ran!exatly desribes language L. This shows that H(REG;REG) � HREG.It remains to show that the inlusion is proper. By Albert and Wegner [2℄ itwas shown that the languagef (anb)m#(anb)m j n;m � 1 g 62 H(REG;REG):The reader may verify, that the H-expression�(A#A) *A �B+ *B �a+b��� or ���A#A� *A B+� *B (a+b)�desribes this language. Thus, the laim follows. utWe want to stress that Theorem 5 an be generalized as follows. We statethe result without proof.Theorem 8. Let X 2 fCF;LINg and Y 2 fHREG;H(REG;REG)g. Thenthe family of languages X is inomparable to the family of languages Y . utA slightly more general lass than H(REG;REG) was introdued and in-vestigated by Birget and Stephen [5℄. They de�ne a uniform sustitution to bea funtion SH : �1 ! 2�2 , whih is determined by a set H of homomorphisms��1 ! ��2 as follows: For w 2 �1, we de�ne SH(w) = f'(w) j ' 2 H g and for alanguage L in ��1 set SH(L) = f'(w) j w 2 L and ' 2 H g. Then let ReREGbe the lass of languages of the form SH(L), where L is regular and H is a reog-nizable set of homomorphisms form ��1 to �2, i.e., for �1 = fv1; : : : ; vng the setf'(v1)# : : :#'(vn) 2 (�2 [ f#g)� j ' 2 H g is a regular subset of (�2 [ f#g)�,where # is a symbol not in �2. By Mezei's theorem, see, e.g., [5, page257, The-orem A.1℄, the set f'(v1)# : : :#'(vn) 2 (�2 [ f#g)� j ' 2 H g is regular if andonly if it is equal to a �nite union of sets of the form L1# : : :#Ln, where eah Li,for 1 � i � n, is regular. Using this fat, one an easy see thatReREG is a sub-set ofHREG. Moreover, the inlusion is strit, beause the above used languageto separate H(REG;REG) from HREG is also not a member of ReREG [5,page 253, Example 1℄. Thus, we have shown the following theorem:Theorem 9. ReREG � HREG. utA more diret way to generalize H(REG;REG) systems is to iterate theinsertion proess whih leads us to the de�nition ofH�(REG;REG) = 1[n=0Hn(REG;REG);15



where H0(REG;REG) = REG andHn(REG;REG) = fL(H) j H = (�1; �2; L1; ') withL1 in Hn�1(REG;REG) and '(a) in REG for all a 2 �1 gif n � 1. At �rst glane we show that H�(REG;REG) is sandwihed in betweenH(REG;REG) and HREG.Theorem 10. H(REG;REG) � H�(REG;REG) � HREG.Proof. The �rst inlusion is obvious and its stritness is seen as follows. ByAlbert and Wegner [2℄ it was shown that the language f (anb)m#(anb)m jn;m � 1 g 62 H(REG;REG): The reader may verify, that the H-system H =(fBg; fa; bg; L1; ') with the H(REG;REG) meta-language L1 = fBm#Bm jm � 1 g and the regular language '(B) = f anb j n � 1 g desribes this language.For the inlusion H�(REG;REG) �HREG we proeed as follows. In asen = 0 and n = 1 we have already seen that Hn(REG;REG) � HREG. So letn � 1 and assume by indution hypothesis that Hn(REG;REG) 2 HREG.Let L 2 Hn+1(REG;REG). Then there is a H-system H = (�1; �2; L1; ')with L1 2 Hn(REG;REG) and '(a) 2 REG for all a 2 �1 suh that L =L(H). We assume that �1 = fa1; : : : ang. By indution hypothesis there existsH-expression r1 (ra for a 2 �1, resp.) suh that L1 = L(r1) ('(a) = L(ra),resp.). Beause �1 \�2 = ; it is easy to see that the H-expression �: : :��r1 *a1 ra1� *a2 ra2� : : :� *an ran!exatly desribes language L. This shows that L 2 HREG. utReently a partiular extension of regular expressions and patterns so alledpattern expressions were investigated by Campeanu and Yu [7℄. For readabil-ity we slightly adapt their notation. Pattern expressions are based on regularpatterns whih are de�ned as follows:De�nition 7. Let � and V be two disjoint alphabets. A regular expression over� [ V is alled a regular pattern over � with variables from V . The languageassoiated with a regular pattern r over � [ V is the language L(r) � (� [ V )�.Next we de�ne pattern expressions:De�nition 8. Let � and V be two disjoint alphabets with V = fx0; x1; : : : ; xng.A pattern expression p over � with variables from V is a �nite set of equationsof the form xi = pi, for eah 0 � i � n, where xi 2 V is a variable and pi is aregular pattern over � with variables from fxi+1; : : : ; xng.The language of the pattern expression p is de�ned asL(p) =  �: : :��L(p0) *x1 L(p1)� *x2 L(p2)� : : :� *xn L(pn)!and the family of languages desribed by pattern expressions is abbreviated byPATEXP. 16



Remark 1. Observe that from the de�nition of pattern expressions it follows thatthe last regular pattern (at least pn) is always a regular expression.If there is no danger of onfusion we simply write p = (p0; x1 = p1; : : : ; xn =pn) to denote the regular pattern expression p desribed by the �nite set ofequations fx0 = p0; x1 = p1; : : : ; xn = png over � with variables from V =fx0; x1; : : : ; xng.New we show that pattern expressions exatly desribe the languages fromthe family H�(REG;REG) and vie versa.Theorem 11. H�(REG;REG) = PATEXP.Proof. The inlusion from left to right is seen by indution on n. In ase n = 0and n = 1 obviously, Hn(REG;REG) � PATEXP. So let n � 1 and assumeby indution hypothesis that Hn(REG;REG) � PATEXP.Let L 2 Hn+1(REG;REG). Then there is a H-system H = (�1; �2; L1; ')with L1 2 Hn(REG;REG) and '(a) 2 REG for all a 2 �1 suh that L =L(H). We assume that �1 = fa1; : : : asg. By indution hypothesis there existsa pattern expression p = (p0; x1 = p1; : : : ; xm = pm) over �1 with variablesfrom fx0; x1; : : : xmg, for some m, suh that L1 = L(p). Moreover, sine '(a)is regular for all a 2 �1 we �nd regular patterns qa over �2 with no variablessuh that '(a) = L(qa). Beause �1 \�2 = ; it is easy to see that the patternexpression p0 = (p0; x1 = p1; : : : ; xm = pm; a1 = qa1 ; : : : ; as = qas)exatly desribes language L sineL =  �: : :��L1 *a1 '(a1)� *a2 '(a2)� : : :� *as '(as)! �: : :��L(p) *a1 L(qa1)� *a2 L(qa2)� : : :� *as L(qas)!= L(p0):This shows that Hn(REG;REG) � PATEXP for eah n � 0.Next onsider PATEXP � H�(REG;REG). This inlusion is shown byindution on the number of variables used in a pattern expression. The baseases n = 0 and n = 1 are trivial and left to the reader. So let n � 1 andassume by indution that hypothesis that for every pattern expression p using nvariables belongs to H�(REG;REG).Let L 2 PATEXP be a language desribed by a pattern expression p =(p0; x1 = p1; : : : ; xn = pn) over � using variables from fx0; x1; : : : ; xng. Considerthe pattern expression not using variable xn, i.e., the expressionp0 = (p0; x1 = p1; : : : ; xn�1 = pn�1)17



over � [ fxng using variables fx0; x1; : : : ; xn�1g. By indution hypothesis thereexists a H-system H = (�1; � [ fxng; L1; ') with L1 2 Hm(REG;REG), forsome m, and '(a) 2 REG for all a 2 �1, suh that L(p0) = L(H). In orderto get rid-o� the letter xn in the words of L we have to replae them by wordsfrom L(pn). Sine it is required that the meta- and terminal language have tobe disjoint we de�ne the two H-systems as follows. Let �0 = f a0 j a 2 � g with�\�0 = ; and assume that x0n is a new variable not ontained in fx0; x1; : : : ; xng.De�ne H1 = (� [ fxng; �0 [ fx0ng; L(H); '1) with '1(a) = a0 if a 2 � and'1(xn) = x0n otherwise. Finally de�ne H2 = (�0 [ fx0ng; �; L(H1); '2) with'2(a0) = a if a0 2 �0 and '(x0n) = L(pn). By easy alulations one sees thatL = L(H2) whih proves our laim. Hene, PATEXP � H�(REG;REG). ut5 Closure and Non-Closure PropertiesIn this setion we study some losure properties of the lasses HREG andEHREG. We �nd that the family HREG is not a TRIO. First, we start ourinvestigations with a fairly easy theorem.Theorem 12. The language families HREG and EHREG are losed underhomomorphisms, reversal, union, onatenation, and Kleene star.Proof. The losure under union, onatenation, and Kleene star is trivial, and thelosure under reversal may be easily seen by indution on H- and EH-expressions,respetively. The details are left to the reader.For the losure under homomorphism we do as follows: Let r be an EH-expression over � and h : �� ! �� a homomorphism. We onstrut an expres-sion r0 over � suh that L(r0) = h(L(r)) holds.By indution on r we argue in the following way. If r is of the form ; (�,a, for some a 2 �, respetively), then r0 = ;, (r0 = �, r0 = a1 + � � � + anif h(a) = a1 : : : an, for ai 2 � and 1 � i � n, respetively). In ase r = s + t(r = st, r = s�, respetively), then by indution hypothesis, there exists s0 and t0suh that L(s0) = h(L(s)) and L(t0) = h(L(t)). Thus, we set r0 = s0+t0 (r0 = s0t0,r0 = (s0)�, respetively). Finally, if r = s *a t (r = s*a , respetively), then byindution hypothesis again, there exists s0 and t0 suh that L(s0) = h0(L(s)) andL(t0) = h(L(t)), where h0(b) = h(b) if b 2 � nfag and h0(b) = a otherwise. Then,we set r0 = s0 *a t0 (r0 = s0*a , respetively). This ompletes the onstrutionand shows that the language families HREG and EHREG are losed underhomomorphism. utNext we onsider losure under intersetion with regular sets. The below givenargument re-proves, in passing, also intersetion losure of the family REG,using expressions only.Theorem 13. The family HREG is losed under intersetion with regular lan-guages. 18



Proof. Let r be an H-expression and R a regular language over �. Then thereexists a �nite monoid (M; �), a homomorphism h : �� !M , and a set F �M ,suh that w 2 R if and only if h(w) 2 F .For m 2M let [m℄ denote the set fw 2 �� j h(w) = m g, whih is regular forany m 2M . Beause of R = [m2F [m℄, it suÆient to onstrut an expression r0over � suh that L(r0) = L(r) \ [m℄ for some m 2 M . To this end we performindution on r.If r is of the form ; (�, a, for a 2 �, respetively), then set r0 = ; (r0 = �if � 2 [m℄ and r0 = ; otherwise, r0 = a if a 2 [m℄ and r0 = ; otherwise,respetively). In ase r = s+ t, we set r0 = s0 + t0, where s0 (t0, respetively) isan H-expression suh that L(s0) = L(s) \ [m℄ (L(t0) = L(t) \ [m℄, respetively),whih exist by indution hypothesis. If r = st or r = s�, then we do as follows.Note, that by indution hypothesis again, there are H-expressions s0m1 (t0m2 ,respetively), for m1;m2 2M , with L(s0m1) = L(s)\ [m1℄ (L(t0m2) = L(t)\ [m2℄,respetively). Now in the former ase, i.e., r = st, we setr0 = Xm=m1�m2(s0m1t0m2):In the latter ase, i.e., r = s�, we generalize the above given argument. Considerthe language L = fm = m1 : : :mn j m1 � : : : �mn 2M g over M�. Obviously, Lis regular, therefore there exists an equivalent regular expression over M . Now,we an desribe r0 by taking this regular expression and substitute smi , for eahmi 2 M , in that partiular expression. As in the previous ase, the reader mayverify that the onstruted r0 satis�es L(r0) = L(r) \ [m℄.Finally onsider r = s *a t. By indution hypothesis, there exist expres-sions s0m1;m2 , for m1;m2 2M , with L(s0m1;m2) = L(s)\ [m1;m2℄, where [m1;m2℄equals the equivalene lass [m1℄ of the regular language R0, whih is de�nedas R, i.e., via the monoid M and the set F � M , exept that we alter thehomomorphism h on letter a suh that h(a) = m2. Moreover, we also have ex-pressions t0m3 , for m3 2 M , suh that L(t0m3) = L(t) \ [m3℄. Putting all thingstogether, expression r0 reads asr0 = Xm12M �s0m;m1 *a t0m1� :This ompletes our onstrution. utFinally, on the remaining TRIO operation inverse homomorphism we alsoget a non-losure result for H-expression languages.Corollary 2. The family HREG is not losed under inverse homomorphisms.Proof. Consider the H-expression r = (A#A) *A a�, whih desribes the lan-guage f an#an j n � 0 g. De�ne two homomorphisms g : fa; b;#g� ! fa; bg�and homomorphism h : fa; b;#g� ! fa; bg� as follows: g(a) = a, g(b) = b,and g(#) = �. Moreover, set h(a) = a, h(b) = a, and h(#) = #. Theng(h�1(L(r)) \ a�#b�) equals f anbn j n � 0 g, whih does not belong to the19



family HREG by Theorem 8. Sine H-expressions are losed under homomor-phism and intersetion with regular languages, our laim follows. utUnfortunately, at this point it remains open whether the family EHREG islosed under intersetion with regular languages and inverse homomorphisms.The non-losure under the TRIO operations destroys the hope to get a nieharaterization of HREG languages in terms of an one-way automaton model.This is beause most automata in formal language theory as, e.g., pushdownautomata, stak automata, queue automata, an be haraterized in terms ofautomata with abstrat storage. As shown by Dassow and Lange [8℄ automatawith abstrat storage imply a Chomsky-Sh�utzenberger like theorem of the de-sribed language family, i.e., every language from the family an be written ash(g�1(D) \ R), where g and h are homomorphisms, R is a regular language,and D is protool language of the abstrat storage type.6 Complexity Theoretial IssuesIn this setion we study some omplexity theoretial problems for H- and EH-expressions. We start with the �xed membership problem, showing that it isNL-omplete for both H- and EH-expression languages.Theorem 14. The �xed membership problem for H- and EH-expressions is NL-omplete.Proof. The �xed membership problem for EDT0L systems isNL-omplete [19℄.Sine, by Theorem 4 we have EHREG � EDT0L, the �xed membershipproblem for both H- and EH-expressions is in NL, too. In order to prove NL-hardness, we redue some speial ase of the graph aessibility problem, whihis known to be NL-omplete to (see, e.g., [15℄) to the �xed membership problemfor H-expressions. This problem is de�ned as follows: Given an ordered diretedgraph G = (V;E) with out-degree two, where V = f1; 2; : : : ; ng is the set ofnodes, E � V � V is the set of edges, and (i; j) in E implies that i � j. Is therea path from node 1 to node n in G?The below given onstrution follows the lines of Sudborough [28℄. Let1##1$1j11##1$1j12##12$1j21##12$1j22# : : :#1n$1jn1##1n$1jn2##1n;be the oding of the graph G, where (i; ji1) and (i; ji2) are edges in E. The graphaessibility problem for G is redued to the �xed membership problem for theexpression r = ��a#�#1+$1+#��#a$� *a 1+��over � = f0; 1; a;#; $g.Obviously, the oding of G an be omputed in logarithmi spae. In wordsof L(r), one subword of L(s), wheres = �a#�#1+ $1+#��#a$� *a 1+;20



orresponds to one blok between two markers, more preisely beginning withthe seond part of a marked ouple and ending with the �rst part of the nextmarked ouple. Therefore, it is easily seen that the oding of G belongs to L(r) ifand only if there is a (ordered) path from 1 to n in G. This proves our laim. utIn the next theorem we turn our attention to the general membership prob-lem. There we were not able to exatly haraterize its omplexity, and we anonly give some lower and upper bound.Theorem 15. The general membership problem both for H- and EH-expressionsis NP-hard and belongs to PSpae.Proof. Analogously to the argument in the proof of Theorem 14, the ontain-ment in PSpae is inherited from the general membership problem for EDT0Lsystems [20℄.For lower bound, it is suÆient to redue the well-known NP-ompletesatis�ability problem for Boolean formulas in onjuntive normal form (SAT)to the general membership problem for H-expressions. Let a Boolean formulaf = C1 ^C2 ^ : : :^Cm, for some m � 1, be given, where Ci, for 1 � i � m, is adisjuntion of variables or negated variables from fx1; : : : ; xng.From f we ompute an instane for the general membership problem of H-expressions as follows: First set for 1 � i � m the H-expressionsri = Xxj is in Ci xj + X�xj is in Cj �xjover the alphabet fx1; : : : ; xn; �x1; : : : ; �xng. Then lets0 = x1�x1#x2�x2# : : :#xn�xn#$r1#r2# : : :#rm#and indutively de�nesi+1 = ��si *xi+1 ��+ 1�� *�xi+1 ��+ 1��;for 0 � i < n, over the alphabet � = fx1; x2; : : : ; xn; �x1; �x2; : : : ; �xn;#; $; 1g.Finally, let hsn; wi be the instane of the general membership problem for H-expressions, where w = (1#)n$(1#)m.Clearly, the above spei�ed instane is omputed in logarithmi spae from asuitable desription of f . Moreover, to eah literal of the form xi ourring in fa Boolean value is assigned by replaing it onsistently by 1 (�, respetively)orresponding to true (false, respetively). Analogously, to eah literal of theform �xi ourring in f a Boolean value is assigned. After these replaements,the string w belongs to L(sn) if and only if (1) the Boolean assignment is aorret one, i.e., where xi and �xi evaluate not equally, for 1 � i � n, whih isheked in the part left to the $ in w and (2) eah of the lauses Ci, for 1 � i � m,is satis�able, whih is tested in the left-hand part of w. Therefore, we have w isin L(sn) if and only if f is satis�able. utThe next theorem holds trivially. 21



Theorem 16. Let r be an H-expression (EH-expression, respetively) and let r0be the S-expression (ES-expression, respetively) obtained from r by replaingevery * by # (and every * by #) and vie versa. Then L(r) = ; i� L(r0) = ;. utWe use the above given theorem to prove that the emptiness problem for H-and EH-expression is P-omplete.Theorem 17. The emptiness problem for both H- and EH-expressions is P-omplete.Proof. Given an ES-expression r, one an onstrut an equivalent ontext-freegrammar by indution on r, mainly following the idea given in [14, Theorem 2.7℄.This onstrution an be done in deterministi logarithmi spae. Therefore, theemptiness problem for ES-expressions is not harder then the emptiness problemfor ontext-free grammars, i.e., it an be solved in polynomial time by a deter-ministi Turing mahine [18℄. Due to Theorem 16, even the emptiness problemfor EH-expressions and hene for H-expressions an be solved within this timebound. This proves the ontainments in P.In order to show P-hardness, it is suÆient to redue the P-omplete empti-ness problem for ontext-free grammars to the emptiness problem for H-expres-sions or, due to Theorem 16, for S-expressions. The ompleteness for EH-expres-sions (ES-expressions, respetively) follows trivially, beause every H-expressions(S-expression, respetively) is also an EH-expression (ES-expression).Let G = (N;T; P; S) be a ontext-free grammar with nonterminals N =fA1; : : : Ang and assume S = A1. De�ne the homomorphism h : (N [T )� ! N�as h(A) = A if A 2 N and h(a) = � otherwise. Furthermore, for A 2 N let sAdenote the H-expressions (S-expression) with L(sA) = fh(�) j A! � is in P g.Then let r0 = sA1 , indutively for 0 � i < n de�neri+1 =  �: : :��ri *A1 sA1� *A2 sA2� : : :� *An sAn!;and let rn+1 = ((: : : ((ri *A1 ;) *A2 ;) : : :) *An ;). By indution the reader mayverify that L(rn+1) = ; if and only if L(G) = ;. Sine the sAi expressions andthus also the ri expressions, in partiular the rn+1 expression, are deterministilogarithmi spae onstrutible from G, we onlude that the emptiness problemfor H- and EH-expressions is P-hard, too. utTheorem 18. The equivalene problem for EH-expressions is undeidable.The proof an be given by redution of Post's orrespondene problem (see,e.g., [17℄) whih is rather standard and therefore omitted here. The deidabilitystatus of the equivalene problem for H-expressions remains open.7 ConlusionsIn this paper we have studied the expressive power of H- and EH-expressions,whih are de�ned as an extension of regular expressions by homomorphi and22



iterated homomorphi replaement. The inlusion relations among the lassesonsidered are depited in Figure 1. Besides the expressive power we have alsoinvestigated the losure and non-losure properties of these lasses under Booleanoperations, Kleene star, and TRIO operations. In most ases we lassi�ed theproblems under onsideration ompletely. Nevertheless, we left some problemsopen, suh as whether the family of EH-expression languages is losed underintersetion with regular languages and inverse homomorphism. Moreover, wealso foused on some issues of omputational omplexity as the �xed and gen-eral membership, non-emptiness, and equivalene. The deidability status of theequivalene problem for H-expression languages remains open.
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FINFig. 1. The inlusion struture of the onsidered language families.We hope that the investigation of homomorphi replaement, as one sort ofpattern repeating operation, helps to understand the expressive power of regularlike expressions muh better. Nevertheless, regular like expressions in program-ming environments still lak omplete theoretial understand.23
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AppendixIn this appendix we give an operational semantis for regular expressions withbak referening. Bak referening is an assignment operator was introduedin [1℄ and allows to repeat ertain patterns. Below we give a de�nition of regularexpressions with bak referening whih is suitable to model Unix regular likeexpressions.De�nition 9 (BR-expressions). Let � be an alphabet and � a set of variableswith � \� = ;. The regular expressions with bak referening (BR-expression)over � and � and their set of assigned variables, alled asg, are de�ned reur-sively as follows:1. ; is a BR-expression and asg (;) = ;.2. � is a BR-expression and asg (�) = ;.3. For eah a 2 �, a is a BR-expression and asg (a) = ;.4. For eah v 2 �, v is a BR-expression and asg (v) = ;.5. Let v 2 � be a variable and r; s are BR-expressions. Then the followingstrings are BR-expressions:(a) (r + s) is a BR-expression if asg (r) \ asg (s) = ;, and asg (r + s) =asg (r) [ asg (s).(b) (rs) is a BR-expression if asg (r) \ asg (s) = ;, and asg (rs) = asg (r) [asg (s).() (r�) is a BR-expression with asg (r�) = asg (r).(d) (r%v) is a BR-expressions if v 62 asg (r), and asg (r%v) = asg (r)[ fvg.6. Nothing else is a BR-expression.The set of languages desribed by BR-expressions is denoted by BREG.As for regular expression, redundant parenthesis an be avoided using thesame preedenes and assoiatives as in regular expressions. The bak refereningoperator % is left-assoiative and has the highest preedene. Thus, if there isno danger of onfusion, we omit out-most brakets. Let us give some examples.Example 2. 1. r = ((a+ b)%v)v is a BR-expression with asg (r) = fvg.2. s = (((a+ b)�%v)v)�v is a BR-expression with asg (s) = fvg.3. t = v((a+ b)%v) is a BR-expression with asg (t) = fvg.4. u = (v%v) is a BR-expression with asg (u) = fvg.The reader familiar with Unix regular expression may have notied, thatour de�nition is more relaxed then in the Unix ase. For instane, we allow theusage of a variable before it is de�ned by an assignment as in ases 3 and 4 of ourexamples. As we will see later, these BR-expressions will denote the empty-setonly. Nevertheless, BR-expressions an be seen as one possible model for Unixregular expression.It remains to de�ne a semanti for BR-expressions. In ontrast to ordinaryregular expression, where usually the semantis is given by an indutive de�ni-tion, here we run into problems beause the variable v as a BR-expression will26



have no value, but the BR-expression ((a + b)�%v)v shall have one. To over-ome this situation we give a operational semantis of BR-expressions based onation relations as used in proess algebra (see, e.g., [3℄). Before we need somenotations:Let f : � ! �� be a partial funtion from the set of variables into the freemonoid build by the input alphabet. Sometimes f is alled the memory funtionon � and �. Let f be a memory funtion on � and � and r a BR-expressionsover � and �, then we all the tuple [f; r℄ and [f;p℄ a on�guration. The latteron�guration is the so alled terminal on�guration. Now we are ready to de�nea redution system based on a (generalized) ation relation as follows:De�nition 10. 1. The ation relation on on�gurations is de�ned as follows:(a) [f; �℄ �! [f;p℄ and [f; a℄ a! [f;p℄(b) [f; r�℄ �! [f;p℄ and [f; r�℄ �! [f; rr�℄.2. The generalized ation relation is indutively de�ned:(a) [f; r℄ a! [g;p℄ implies [f; r℄ a) [g;p℄ and [f; r℄ a! [g; s℄ implies [f; r℄ a)[g; s℄.(b) [f; r℄ w) [g;p℄ implies [f; r + s℄ w) [g;p℄ and [f; s+ r℄ w) [g;p℄.() [f; r℄ w) [g;p℄ implies [f; rs℄ w) [g; s℄.(d) [f; v℄ w) [f;p℄ if f(v) is de�ned and evaluates to w.(e) [f; r℄ w) [g;p℄ implies [f; r%v℄ w) [g0;p℄, where g0 is idential to g exeptthat g0(v) evaluates to w.(f) [f; r℄ w) [g; s℄ and [g; s℄ x) [h;p℄ implies [f; r℄ wx) [h;p℄. Moreover,[f; r℄ w) [g; s℄ and [g; s℄ x) [h; t℄ implies [f; r℄ wx) [h; t℄.Observe, that by de�nition the on�guration [f; ;℄ does not derive any otheron�guration and [f; ;�℄ �! [f;p℄ regardless of the hosen memory funtion f .Moreover, note that a derivation that starts with [f; ;�℄ �! [f; ;;�℄ does notterminate at all, beause the leading term ; an not be eliminated anymore.Now we are ready to de�ne the language assoiated to a partiular BR-expression as follows.De�nition 11. Let ? be the everywhere unde�ned memory funtion on alpha-bet � and variables �. Then the language de�ned by a BR-expression r over �and � is the language L(r) = fw 2 �� j [?; r℄ w) [g;p℄ g.At this point we should give a larger example.Example 3. Let r = ((a+b)�%v)v be one of the BR-expression from our previousexample. The below given derivations hold for an arbitrary memory funtion f .1. [f; a℄ a! [f;p℄ and [f; b℄ a! [f;p℄.2. [f; a+ b℄ a) [f;p℄ and [f; a+ b℄ b) [f;p℄.3. In general we �nd [f; (a+b)�℄ w) [f;p℄ if w 2 fa; bg�, beause of the followingthree derivations:(a) [f; (a+ b)�℄ �! [f;p℄, 27



(b) [f; (a+ b)�℄ �! [f; (a+ b)(a+ b)�℄ a) [f; (a+ b)�℄, and() [f; (a+ b)�℄ �! [f; (a+ b)(a+ b)�℄ b) [f; (a+ b)�℄.4. [f; (a+ b)�%v℄ w) [f 0;p℄ if w 2 fa; bg� and f 0 is idential with f exept thatf(v) = w.5. [f; (a + b)�%v)v℄ w) [f 0; v℄, where f 0 and w are de�ned as in (4). Moreover,[f 0; v℄ w) [f 0;p℄. Thus,[f; ((a+ b)�%v)v℄ w) [f 0; v℄ w) [f 0;p℄;and hene [f; ((a+ b)�%v)v℄ ww) [f 0;p℄. This ompletes our example.Thus, we have shown that L(r) = fww j w 2 fa; bg� g.A loser look on the other examples shows that s = (((a+b)�%v)v)�v denotesthe set L(s) = fw1w1w2w2 : : : wn�1wn�1wnwnwn j wi 2 fa; bg� and n � 1 g,while the remaining two BR-expressions t = v((a + b)%v) and u = (v%v) bothdenote the empty-set only, i.e., L(t) = L(u) = ;. The latter is due to the fat thatvariable v is used before some value is assigned to it, and thus the generalizedation relation terminates abnormally.We have just seen that BR-expressions are quite powerful and an desribenon-ontext-free languages. On the other hand, we onjeture that even thelinear ontext-free language f anbn j n � 0 g is not a BR-expression language.Up to now we were not able to give a formal prove of this statement based onour formalism on the semantis of BR-expressions.
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