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1 Introduction

In this study, our earlier representation of linear (MELL) proofs using affine simplices is used
to develop an approach to a certain version of the problem of full abstraction for a denotational
semantics for PCF. In this set of papers our interest is fundamentally in the the problem of syntax-
independent representations of sequentiality, and the semantics of sequentially computable func-
tions derived therefrom: thus we look at order-extensional models over the free interpretation—
that is, the free continuous algebra generated by the constants of PCF—and not the standard
interpretation—which has de facto come to characterize the problem of full abstraction for PCF.

We stay as far as possible, within the classical ideas of Scott, Berry and others, by conceiving
our denotational space as structured essentially as a certain kind of topological space (specifically,
a consistently complete, algebraic cpo); the generalization we use, is to look at this space not just
as a set of points as in traditional topology, but as a wvariable set, with its domain of variation
structured by the geometry of simplicial sets. This kind of generalization is well-known, coming
down to us from the work of Lawvere and others on toposes (particularly, Grothendieck toposes).
However, we would not go the full way along the construction of a topos, since we require the
geometry only in a very rudimentary way. The geometry used to enrich our points is then used
to control the size of the function spaces by cutting them down to consist of only those kinds of
continuous maps, which satisfy a criterion akin to the Kahn-Plotkin ([KP93]) notion of sequential
functions, but framed purely in terms of our underlying geometry.

An interesting aspect of this model is that it shares certain features with two other important
current approaches to the full abstraction problem—the Games model ([AJM94, AJ94a]) and the
Strong Stability /Sequential algorithms framework ([BE91, BE93, Ehr94]): with respect to the
former, it would be seen that the applicative structure in our model is defined on the basis of a
structure reminiscent of strategies, especially with regard to the alternation and well-bracketing
criteria; on the other hand, the domains in our model is equipped with a notion of Cells and hence
admits the notion of a Coherent subset, of the Strong Stability approach. Finally, since we are more
interested in models over the free interpretation, our attempt does not need to use an observable
quotient in the eventual step in order to eliminate intensional structure. On the other hand, this
entails that there is a great deal of syntactic determination in the model—a dialectic that is hard
to avoid in this game.



2 Basic Definitions

We shall use the symbol N for the set of natural numbers {0, 1,...}. We recall a few notions about
the infinite dimensional Euclidean Space E®°; most of the basic ideas are taken from the book by
Munkres on Algebraic Topology ([Mun84]). Let R denote the set of real numbers, and R* the
N-fold product of R with itself. An element of R may be thought of as the tuple (z;); . Let
E> be defined as the subset of R* consisting of tuples (z;);.y With z; non-zero for only a finite
number of indices 7. E* is a vector space with component-wise addition and and the usual scalar
multiplication. We would denote its zero vector as 0. A basis for E® is the set

B(EOO) = {ei | 1 € N,bi : N—)R}

where ¢; maps only the natural number ¢ to 1 and all other natural numbers to 0. The space E>
is a topological space: the “standard” topology on this space is induced by the metric:

T —y|| = max{|T; — Y;
| | Z.EN{I i —yil}t

, and it is straightforward to show that with this topology, every finite dimensional subspace of E*
is homeomorphic to the space R" for some finite n.

For notational economy in the sequel, we define the sequence (51) il of vectors in E*:
<bi | by = 6, biy1 = €i>i20

Given a linearly independent set P = {]5;), . ]5;9} of points (equivalently, position vectors) in E*,
the k-plane spanned by the points P is the set of points satisfying

k k
F=Yab; with ) ~a; =1 s.t. Vi.0 <a; <1 (2.1)
=0 =0

The standard _afﬁne n-simplex A" is the n-plane spanned by the set of points {50, e ,En} A finite
sub-sequence k = (ky,...kp) of the sequence of natural numbers N (in the usual order) would be
said to be continuous, iff the map kj11 =k; +1 (0 < i < n).

Given a subset K CN, or alternatively, an increasing map K : [k] - N (where k = |K]), we
shall say that the k-plane spanned by the set of points {l_;Z | i € K} (respectively, the set {EK(i) |
i € [k]}), denoted as A(K), is the K -face—presumably of some standard n-simplex, with n > k.
The ordered set {b; | i € K} would be called the Span of the face A(K). The smallest vector
in Span(K) would be denoted as A(K) and the largest as V(K). A face K would be said to be
principal, if 0 € K; we would usually represent a principal face K by the set Z(K) = K —{0}; by a
similar abuse of notation, we would say that Span(K) for a principal face A(K), is the ordered set
of vectors {l_); | i € Z(K)}. Thus, for principal faces, the operator A would now denote the least
vector in this notion of the Span.!

We denote by A, the subspace of E* given as
A® =] Ar
n>0

—in other words, the collection of simplices of the form A™ (for finite n); thus, every finite sub-
collection of this union is contained in some R" (for some finite n), though not the entire collection—
a consideration made possible precisely by the infinite dimensionality of the space E* (cf.[Mun84,
pg. 14]). We induce a coarser topology on A* by taking as its basis

B(A®) = {Int(A(K)) | K N}

!This abused representation of principal faces would in practice never create confusions with regard to non-principal
faces, since we would consider only principal faces in the sequel.



where, as the interior operator is defined w.r.t. the standard topology on E*, and acts as
Int(A(K)) = A(K) — Boundary(A(K)).

Let the set of Ground Types in PCF be denoted as T = {B,N} and the set of constants
(excluding the recursion combinator Y, for any Type) as C; let us assume some denumerably
infinite of set, say N, which are implicitly meant to be a set of occurrence identifiers. For a general
Type A represented as Ag=...=A,_1=A, where A is a Ground Type, we would say that the
output type of A is A. Let K be the set defined as K = K, U K. where

K,=TxN K. = {{c,t,n) | ¢ € C with output type ¢, or a special symbol &}

and let K denote the free (Z/2)-module? generated by K*, the free monoid over K. Note that K
has a standard bi-algebra structure; we shall denote by the (infix) operator symbol *, the composite
— — 5 — —V =
KxK—K®K —K
where 0 is the universal Z/2-bilinear function yielded by the definition of the tensor product ®,

and \/ is the algebra multiplication.

We shall consider the category of set-valued sheaves® A —that is, the category of functors
O(A>)P — Sets, satisfying the usual sheaf conditions. Our object of interest, and what we shall
call the universal type, is the unique sheaf x satisfying the following conditions:

1. for any basic open a € B(A™®), x(a) = K (the latter now considered as a set); and

2. for an open set a, s.t. a = bU ¢, we shall require that x(a) = x(b) x x(c); moreover, the
restriction maps x(b)<—x(a) = x(c) are given by the Cartesian projections.

The terminal object in this category would be denoted by as 1, mapping every open set to the
terminal object in Sets.

In the sequel, we would use abuse notation by using the same notation for the subset K CN,
instantiating a face A(K), and the basic open set Int(A(K)). We shall reserve the special face-
designator 0 for (the face formally corresponding to) the empty set 0.

Consider a global section (simply, section) v : 1— x of our universal type. Any basic open
derived from a face K CN such that the value of vx is not 0, would be said to be a boz (of the
section v); if the face K is principal, then the corresponding box would be said to be a principal box.
Such a box would be said to be contiguous if it is principal and Z(K) is a continuous sub-sequence
of the natural numbers. A (finite) set of contiguous boxes B would be said to be contiguous, if
it is pairwise disjoint and can be uniquely ordered into a sequence (By,...,By), s.t. V(B;) is one
lower in the enumeration order than A(B;41) (for 0 < i < n). We define the order < on boxes of
a specified section v: By < By iff BiCBy. The set of boxes strictly lesser than a box x in the <
order, would be denoted as |(r). We would use the symbol |(z) for the set of maximal boxes in

He).

A section v : 1— x would be said to be principal if the set of its boxes is finite and consists
only of principal boxes. The data for a principal global section v may be represented as a sum
> iy aixi, where z; is a box of v and a; the value of v,,. Henceforth, we would consider only
principal sections. A box of the (principal) section v is said to be well-structured iff it satisfies the
following inductively specified condition:

2(Z/2)-modules are essentially sets; however, understanding them as such kinds of modules allows us greater
economy in the formulation of certain notions—in particular, the map * used in the sequel.

31t is possible to give an entirely equivalent account using the notion of co-chains used in Part I of our study;
we prefer to use the idea of a sheaf since it indicates a context of generalization with regard to the simplicial topos,
which we would wish to pursue in later treatments of this theme of sequential computation.



1. any 1-box is well-structured;

2. a contiguous box z with Span(z) = {b,,... ,«+p+1} is well-structured, if the set i( ) is a
contiguous set of well-structured boxes {z1, ..., z,}, with A(z1) = b, and V(z,) = br+p for
some r,p € N

(we assume that the unique sequencing of the maximal boxes of | () is (z1, ..., z,)). The (principal)

section v = E?:o a;x; 1s said to be well-structured if the set of its boxes is < -directed with its <-
lub well-structured, and for all ¢ # j, [(z;) N} (z;) = 0. Under these conditions, any well-structured
section v has a maximal box, which we shall denote as v. In the sequel, we would assume that the
value of |(z) for any box x of a well-structured section is an ordered set (or sequence) (z1,...,Z,),
with V(z;) being lower in the enumeration order than A(B;;;) (for 0 < i < n).

A well-structured section v is said to be typable if the conditions 1-2 below are satisfied.

1. for any box z € v, an unique value of v(z), which is either of the form a for some a € K, or
of the form s; * s1 * --- x 5, where s, € K and each s; is of the form of s;, +--- + s;,, with
each s;, € K,. We shall write s, = Head(z), v(z) = Coeff(z) and s; = Coeff;(z);

2. for each s;;, there is an unique box y < x such that Head(y) = s;; ¢ K..

An important condition that we would stipulate is that the form of v(x) in terms *-factors would be
assumed as given in every instance; this is to avoid problems with non-unique such factorizations—
though it should be noted, that taking the second condition into account, we could always obtain
an unique factorization. A box z, such that Head(z) is of the form (&, _, -}, would be said to be a
weakening box.

For any typable section v, we may define, by mutual recursion, the following parameters for
any box z € v, which we shall call Spine (0,) and Type (7,). For any box € v, we shall write
Child, () for the sub-sequence of |(z) including only (and all) its non-weakening members. Then,

() = Head(x) if £ is <-minimal
o,(x) =
T,(z1)=...=7,(r,)=Head(x) otherwise
() = Head(x) if £ is <-minimal
T,(x) =
ou(y1)=...=0,(ym)=Head(r) otherwise
where (z1,...,2,) = Child,(z) and y; is the unique box <z such that Head(y;) is a summand in
Coefti(x).

Note the non-determinism in these definitions, expressed in the last line of the previous para-
graph: since Head(y;) is a summand, we may obtain a set of values instead of a single value when
we evaluate the o for any other summand of Coeffj(x). Thus we would say that the section v is
well-typed (or sometimes well-formed) if the definition of the parameters Spine and Type yields a
single well-defined value for any box of v.

With regard to a calculus with non-logical constants, we would impose an additional constraint
on well-typed sections to take into account the type restrictions on constants. Thus: for any box z
of a well-typed section v, with Head(z) = (c¢,t,n) € K., such that c¢: Ay=...=A,_1=1, we must
have that |(z) = (zo,..., 2, 1) with 7,(z;) = A; (for 0 <4 < n).

For any well-typed section v, we would say that the Type of v, 7(v) is the value of 7,(v). For
any Type A, we would write ||A|| for the set of (well-typed) sections v with 7(v) = A.



3 Type Extensions

In this section we define certain relations on [|A|| (for any Type A) that would facilitate the
interpretation of their sections in syntactic terms. We also take the first steps in defining the
extensions of the Types, and explore their order-theoretic structure.

For a section v € ||A]|, with maximal box v = x, with v(x) = s; * $1 * - -+ x 85, and a natural
number 0 < k < n, we define the operation Truncy(x) to result in the modified section v/, with
the coefficient of its maximal box z set to s; * Sg4q * - -+ * s,; all other data for the section are
unchanged. Obviously, the modified section would no longer be an element of ||A||.

Given a principal face y, with Span(y) = {gk, - ,5k+p}, and some integer n, we define Shift, (y)
to be the principal face with Span = {g;H_n, e gk—l—p-l—n}- Similarly, we define the operation Expy,(y)
to be the principal face with Span = {Ek, .. ,5k+p+n}. Consider a section v = Y  a;.z;, and a
specific index k € [n]; let Span(zy) = {bm, . .- ,gmﬂ,}. We define the section (v\k) to be

Z a;-Shift_,(z;) where, Vi € I.xp < ;.

1€l
and this formalizes the operation of instantiating the box corresponding to the index k as a well-
formed section in its own right. At several points in the sequel we would, by abuse of notation,

regard a box of a section as a section by itself without any further clarification. Obviously in such
cases, an application of the (.\.) operation would be implicit.

Consider now a section v = Y  a;.z; with V(v) = 5;, a specific index k£ € [n] and another
section p = ) 7" bj.y; such that 7(u) = 7, (7). Let I denote the subset of [n], s.t. V(z;) is lesser
than A(zg) (in the enumeration order) for any ¢ € I; let H denote the subset of [n] such that
xp < xp, T # op for any h € H; finally, let J denote the subset of [n] s.t. A(z;) is greater than
V(z) for any j € J. Let the cardinality of Span(u) be r, and that of Span(zy) be s; let ¢ = r — s.
Then we define the section v[k<—u] as a

Zai.xi + Zaj.Shiftq(xj) + Z ap-BExpy(zy) + Coeff().pu
icl jeJ heH

—which formalizes the operation of replacing the box z; in v by the maximal box in p.

We define the following equivalence on ||Al|. Consider sections v = >( a;2; and p = > bjy;

both in ||A]|. We define an equivalence relation = as follows: v = y iff there exists a permutation
7 on the set [n], such that for all i € [n]:

Tu(xi) = Tu(yﬂ(i)) and

where we define 7(z;) £ Yn(i), and extend this to act on sets and sequences as usual. For any type
A, we denote (||A]|/ £) as [A], and call it the eztension of the Type A.

Now given sections v = 31" ja;.7; and p = 377" bj.y;, and an element k € K, we define the
operation v Xy as follows: let Span(v) = {51, . ,En} and Span(u) = {51, - ,gm}; let z denote the

principal face with Span(z) = {51, . 5n+m+1}; We define the non-well-formed section v X s as:
n m
vRpu=1z+» apzi+ Y b;.Shifty(y;).
i=0 §=0

Thus, the operator X essentially juxtaposes the maximal boxes of its arguments, preserving the
coefficient values of all sub-boxes. Now given a section v (typically derived as the result of a X



operation), and a € K, we define the operation a.v as the operation which sets the Coeff of the
maximal box of v to «.

We define a couple operations on type-extensions and sections. Note that any Type A may
be written in the form A¢=...=A4,_1=A4, with A atomic; we shall write Out(A) for the type
(-occurrence) A. For any Type A we may define the constant section 7(A) in [A] as follows.

(4) = A(’C),l_)'l if A is atomic
A= (A%k)ag coilp1)m(Ag) B - Kn(Ap—1)) if Ais of the form Ay=...=A4,_1=4,

where A®) is an element of K, of the form (A, k) for some k € N, and in the second clause,
a; = Head(z;) where x; the maximal box in x(A4;) (for 0 < i < n); note that we may assume A, as
atomic without loss in generality. The constant section L 4 in [A] is defined to be n(A), but with
Head(x) set to (2, A, k), where x is the maximal box of n(A), and k is some occurrence identifier
in N.

On the basis of the previous notions, we define a partial order C 4 on any [A] as follows:
vEap & ((W\k) = Lp & p = v[k<p])

for some natural number k, type B and section p with 7(p) = B. Obviously, we have effaced the
difference between sections and their =-equivalence classes; this should be taken as implicit in this
and other statements in the sequel.

We note the following simple proposition.

Proposition 3.1 For any Type A, the poset ([A],C4) is a meet-semi-lattice with least element
L a; it is also consistently complete.

Proof: Consider sections v, u € [A]; writing -« for the binary predicate of consistency, it is straight-
forward to verify that v~y iff there is a section 7 = Y a;.2; € [A], and indices ki, k2 € [n],
such that (7\k1) = L4, and (7\k2) = La4,, (for some types A; and Ay) and v = w[ky+1/]
and p = w[ko<—p'] for some sections v/ € [A;] and ' € [Asz]]. In this case, we can easily
derive that v Uy p = (w[ky</'])[k24—p'], while M4 g = m. The meet semi-lattice property is
immediate.

We shall denote the directed completion of [A] as [A], and use the same symbol C 4 for its associated
partial order. The compact elements of [A] are in bijective correspondence with the elements of
[A] and we would denote them by the same symbols. The non-compact elements z would be
represented as the ideals | 4(z) (this use of | is subscripted by the Type to distinguish it from the
previous use in the context of the containment order on boxes). The partial order in [A] is given
as the subset order among ideals as is standard. We note the following property of the completion,
which may be easily verified.

Proposition 3.2 For any Type A, the poset ([A],C4) is a consistently complete algebraic CPO
(hence a Scott Domain); it is also prime algebraic, and in fact, a dI-Domain.

We topologize the CPO [A] by specifying its basis of Scott-open filters, viz.:

B([A]) = {t4(v) | v € [A], v sub-maximal} U{@}  where 1,(v) ={0 € [A] | vC A6}

We would use the same symbol to denote the CPO and the topological space based on it.



4 Applicative Structure

In this section, we define the various operations relevant to instantiating a typed combinatory
algebra structure on the collection of spaces of the form [A]. We shall define first, a certain (Z/2)-
algebra denoted as [N], and called the bracket algebra over N. Let B = {[,]}; then the sub-basis
of this algebra is the set ' = N x B—we would denote elements (n,[) or (n,]), as n-annotated
brackets, viz. [, or ], respectively. Thus, [N] is the free (Z/2)-module generated by N, and is
(up to isomorphism) the set of sequences of N-annotated brackets. As usual, this has a standard
bi-algebra structure, and we would denote the composite

IN] x [N] - [N] @ [N] % [N]

by the operator symbol .

Consider sections v = 37, a;.w; € [A=B] and p = ;. ;b;j.y; € [A] where the index sets
I,J C N are chosen to be disjoint. An element [ of [N] is said to be an interaction sequence
between v and pu iff it is a sum of sequences that are well-bracketed (upon ignoring annotations),
successive opening (respectively, closing) brackets are alternately annotated by valid indexes in v
and p respectively, and matching pairs of opening and closing brackets are annotated by the same
natural number. A sequence of the form [5..... | in the basis of [N] would be said to be a context,
and a context of the form [,.], would be known as a minimal context. We would, by abuse of
notation write expressions like 4 < j for indices 4,7 € I (or in J) to actually mean z; <z; in the
appropriate section.

A specific interaction sequence between v and p is said to be a dialogue if and only if it is
generated by the following recursive function W(v, u): ¥(v, i) is defined on the basis of a subsidiary
function ¢; we define ¥(v, u) = (v, i1, 1,0) where the definition of () is as follows:

¢($ia Yj, Ty m) = [Z']z
if the unique box z s.t. Coeff,(x;) = s, = Head(z) is weakening box, with z,z € v if m = 0, and
in p otherwise; then again, if Head(z;) = (9, _, ), then we define
'l:b(xh y]7 m, m) = [l']l
in the general case Coeff,,(z) = s, = s5 + --- + sh, we define
w(xia Yj, Ty m) = [k1*¢(yj, Z%a 17 m+) Koeeo Xk Qﬁ(yj, z11nl , M1, m+)*]k1
+ [k;Q*?,b(yj, Z%a 17 m+) Koeee Xk Qﬁ(yj, zTanam% m+)*]k2
")

+[kp*¢(yjaz11)717m+)*"'*qzb(yjazglpampam *]k;p

where 2* is the unique box s.t. Head(z¥) = sk, and ky, ..., k, are the indices (in v (respectively, u) if
m = 0 (respectively m = 1)) of the boxes z*,...,27, and s.t. [(2F) = {2f,... ,z’,jlk} (0 <k <p)—if

z¥ is not <-minimal, while m; = 1 and zfnk = (0 otherwise; finally, we have

w(xiuyjanam) = [l']l
if y; = 0.

We define a function ® from dialogues to (appropriately typed) sections. Givenv =, ;a;.z; €
[A=B] and p =} ;c; bj.zj € [A] (where again, the index sets I, J C N are chosen to be disjoint)
and the dialogue X = Xy + --- + X, between v and u, we define ®(X,v, ) on the basis of a



composed sequence of applications of a subsidiary operation ¢ (on sections) as follows. First let
the partial order <y on the set {X; | 0 < i < n} be defined as: X;=<xX; iff X; = s.[;.5; and
X = s.[¢.s; for some sequences s, s;, sj in the basis of [N], and such that p <gq in the appropriate
section. From the procedure by which the dialogue X is generated, it is a simple exercise to verify
the following proposition.

Proposition 4.1 The partial order <x equips X with the structure of a forest—uwith the root of
any component tree, a =<-maximal element.

Let X = (Xn,...,X,,) denote any particular linearization of X—i.e. a sequence based on some
permutation 7 on the indexing set [n] s.t. the partial order <x implies the sequential order of X.

The basic operation involved in the definition of @ is that of replacement at some box (corre-
spondingly, index) of a section—symbolized earlier in the form p[k<—o]. In its invocation in the
sequel, we would assume that the indices identify sub-boxes uniquely, even when they have been
substituted into sections of which they formed no part originally. We would also extend the defini-
tion of the operation p[k<o] to yield the embedding section p in case the particular box indexed
by k does not happen to be a box of p. In this latter case, we would say that the index k£ has been
weakened—a description which would be clarified in the sequel.

We may now define ® as follows:
n
(X, v, p) = H(}S(va’/inu)
i=0
where we use the symbol [] for the sequential composition of operations (in the order of indexing),
and vy = Trunc (v), and viy; = ¢(Xr,,vi,1n) (0 <7 < n)). ¢ is defined recursively on the form of
its first argument:

B By,
——— ——
A([oe [pyn---» loyoeees [be- - - loy, +Jor 0, 0)
p ifk=0o0r3dC.p=_1¢
= plbo] if either z; is <-minimal, or 3C.0 = L¢

Hle ¢(Bj,pj,Bj) otherwise
where, in the latter case, |(zy) = (B1,...,0k) (in the appropriate section); p1 = p [b< Truncy(o)],
while Pj+1 = (,ZS(Bj,pj,ﬂj) (fOI‘ 1<75< k)

For sections v € [A— B] and p € [A], we would write v.p for the section ®(s,v, ) where
s=U(v,p).

We are now in a position to define the admissible maps between spaces [A] and [B]. These are
going to be continuous maps, obtained on the basis of a dialogue with a specific invariant section
in [A — B], which we shall call the realizer for the map. Formally, a continuous map f : [A] — [B]
is said to be sequentially realized if there is an unique section f € [A=B], such that the image
of any compact y € [A] is given by @(s,f,y), and s = \I/(f,y) (or in other words, f(z) = fx)
By universal properties of the completion, we have the extension of this definition to non-compact
elements = € [A]; thus

F(Hap) = [ {F i} (4.2)
icl icl
where {z; | i € I} is the directed set of compact approximants of z. We shall say that f sequentially
realizes the map f; and in general, given any section z € [A=-B], we denote the unique map
sequentially realized by z as [z]. We note a few important properties of the sequentially realizable
functions.



Proposition 4.2 The map [z] sequentially realized by the section x € [A=B] is continuous for
any choice of x.

Proof: Monotonicity follows from the way the dialogue between a realizer and its argument is
defined. For arguments y1,y2, with y;C 4y2, we know that there exists an index k, such that
(y1\k) = L¢ and ya = yi[k<2z] for some section z and type C with z € ||C||. Now consider
the <-minimal index [, with £ </ in y; such that the the minimal context [;.]; occurs in the
dialogue ¥(z,y;). We have two possibilities that may arise: (1) that no such [ exists: — in
which case there is an instance of weakening in some application occurring at some super-face
of the box indexed by k; in this case, from the structure of the procedures 9 and subsequently
¢, we can see that the dialogue sequence at the this super-face may not contribute to any
syntactic extension of the result term—whatever be the substitution z at the index k; (2)
there is such an [: — in which case, if £ < [, then although the dialogue sequence would have
no extension at [, the box substituted by the procedure ¢ at the point [ would be C-greater
in the case of y9; on the other hand, if £k = [, then in fact the dialogue sequence at the point
I would get extended in the case of ys and we would eventually obtain a C-greater result.
Now preservation of finite bounded C-lubs (L) follow from the way these lubs are defined in
the proof of Proposition 3.1: we apply the preceding argument of monotonicity at each of
the non-overlapping pair of indices k1 and k3 in the binary case and extend the argument by
induction to the case of bounded sets of finite cardinality > 2. Finally, preservation of lubs
of infinite C-directed sets fall out of the definition of the sequentially realizable maps on the
non-compact elements of our domains.

We derive two interesting corollaries to Proposition 4.2, essentially through the argument through
which the property of monotonicity is derived. The first is essentially a version of the Kahn-Plotkin
sequential functions in the context of our representation.

Corollary 4.3 For a function f = [z] (z € [A=B]), an argument y € [A], and an index h € f(y),
such that (f(y)\h) = Lc (for some type C), it is either the case that (f(z)\h) = L¢ for all z,
yCaz, or there is an unique index k € y with (y\k) = Lp (for some type D) and such that
LeoCe(f(2)\h) implies that L pC p(z\k)—for any z, yCaz.

Proof: Note that we assume in the statement of this Corollary, that the identical parts (i.e.
common boxes) of sections related by the order C are identically indexed. The two cases
of the corollary correspond to the respective cases in the proof of Proposition 4.2. In other
words, the first case corresponds to an instance of weakening at some position I, k¥ </, and
any extension of the simplicial structure at index [ would be weakened away and have no
effect of the substitution done in procedure ¢ at the position [. The other case is respectively
the case when there is no such weakening, and in this case we may always identify the unique
index (box) k € y, associated with the index h through the functions v and ¢.

Corollary 4.4 For sections z,y € [A— B] with xC 4= gy, and any argument z € [A], we have
that [z](2)Cglyl(z) —in other words, [z] <a=p [y] (using the symbol < =p for the point-wise
order). In fact, we have that [x Ua=p y](z) = [z](2) Us [y](2).

Proof: Follows by exactly similar reasoning as in Proposition 4.2 applied now to the appropriate
indices in z and y.

We may state the fact that is the key to our extensionality result.

Proposition 4.5 The maps (/3 and [.] instantiate an order-preserving bijective correspondence
between the sequentially realized maps [A] — [B] (with the point-wise order) and the set [A=B].



Proof: It is quite easy to see that (extensionally) distinct maps in [A] — [B] must be realized
by distinct sections in [A=-B]: for, if this were not the case, then since the procedures
¥ and @ are deterministic and depend only on the values of the realizing and the argument
sections, we would obtain the same extensional map. Moving to the directed completion poses
no further complication in this argument, since the CPOs are algebraic and maps which are
distinct on compact elements would be also distinct on the set of non-compact one. For order-
preservation, we would invoke Corollary 4.4. The direct argument in the other direction is
not so easy, and we would postpone the proof since it is more elegantly obtainable on the
basis of a bijective correspondence to another extensional model set up in the last section
(¢f. Theorem 5.1). However, a brief sketch of the direct argument is as follows. Assuming
that f < ¢ (in the point-wise order), we have that for all = in their domains, f(z)Cgg(z).
Arguing by contraposition, assume that f /= g. This implies either of two cases: (1) that
g<f, or (2) f and § are incomparable in the order <. The first may be discounted, since
it leads to a contradiction, in view of the fact of monotonicity. For the second, we argue by
induction over the least <-depth at which f and ¢ differ. By case examination of the form
of the value of the section at the box at this depth, we eventually prove that the two sections
must agree at every depth (index) at which f is not L. Thus the only possibility is that § is
a derived by a substitution at such an index, and hence the proposition.

We would extend the class of maps in [A] — [B] by extending the definition of sequential realiz-
ability to non-compact sections of [A=-B], in the obvious manner. Given any non-compact section
xz € [A=B] and any section y € [A] we have the general definition of the map [z] sequentially
realized by .

[eI(y) = || || {I=D(y:)} (4.3)

i€l jeJ

where the sets {z; | ¢ € I'} and {y; | j € J} are the directed sets of compact approximants of z
and y respectively. We define a map f in [A]] — [B] to be sequentially realizable iff there exist an
element f € [A=B] such that f = [f]. Correspondingly we extend the definition of the application
operation . to non-compact arguments. It is straightforward to show that the Propositions 4.2 and
4.5 and Corollaries 4.3 and 4.4 continue to hold. Thus, anticipating Theorem 5.1 in the next section,
we can state the following.

Theorem 4.1 The maps (\) and [.] instantiate an order-isomorphism between the sequentially
realized maps [A] — [B] (with the point-wise order) and the set [A=B].

5 The Model and its Full-abstraction

In this section we use the applicative structure defined in the previous section, to instantiate a se-
mantics for PCF, and finally prove the various properties that imply the Full-abstraction condition.

We define a bijection ([.]4, Va(.)) (we would suppress the subscript when clear from the context)
between the set of Y-free normal form closed terms of the Type A and sections in the correspond-
ing extension [A]. They would furnish an useful tool for subsequent proofs, facilitating familiar
syntactic arguments in most cases. We assume that every variable-occurrence in the terms are type-
annotated with an unique type-occurrence (occurrence identifiers are drawn from the set of natural
numbers). The definition of the map ([.]4 is actually defined on the class of open normal-form
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terms for technical convenience.

[z : A] = n(A)
[(Az : A.N) : A=B] = Out(A)® [N : Blp
[fMy... M, : By=...=Bpy=A4]
=aa.([My: Ap) X --- K [M, : A, X n(By) X --- K n(By))

where, in Clause 2, the infix operator @ modifies the value of Coeff of its right argument by inserting
its left argument (an element of K,)) after the former’s Head; in Clause 3, a = @f . .. fx_1 with & of
the form (A, p), for p an appropriate occurrence identifier, if f is a variable (respectively, (f, A, p),
if f is a constant function of type A) (note that we have assumed that A is atomic, without loss
of generality). We would extend the definition of [.] 4 to terms of A which are not in normal form
(though Y-free) by defining in general [M]4 = [M']4 where M’ is the normal form of M. We would
also regard [.]4 as applying to finite Bohm trees of Type A; it may be noted that for both terms
and trees, the function is monotonic, w.r.t. their respective standard orders.

We define next the map V4(.) from (compact) global sections of the type extension [A] to
(closed) terms of PCF, which would subsequently evidence the condition of definability for our
model. Consider a global section v € [A], such that |(v) = {vp,...,vx} (ordered in the usual
fashion), and Coeff(r) is of the form s * so * ... 5., With each s; = s) +--- + sfci (0 <i < m); then,
we define

V(l/) = >\$0 H A() ey - Am.yV(VO) PN V(Vk;) (51)

where we have elided Type-subscripts for economy, and:

1. y is a “fresh” variable of Type o, (v), or the constant function f if Head(v) (= s) is of the
form (f, 7, (v),-);

2. A; = 0,(B}) such that B} is unique box of v with v(B}) = si;

3. and as a global constraint, we take care that the head variable of the term obtained in the
invocation V(Bj) is the variable symbol z; (Vi. V5.0 <i <m &0 <j < k).

In the sequel, we would regard the result of the function V4(.) as either a term or its Bohm tree,
depending on the the context of use. It is quite straightforward again to deduce the following
proposition.

Proposition 5.1 For any v € [A], the type of Va(v) is A, and the Bohm tree V 5o(v) is in its
mazimal n-expansion. Also [V a(v)]la =v and Va([N]a) = N for any section v and Béhm tree N
in its mazximal n-expansion.

Proof: Straightforward induction over the <-structure of the boxes of v, and properties of the
function [.]. For the second part, concerning maximal n-expansion of the result, note that the
structure of the K-values for a box of any well-typed section (Section 2), explicitly imposes the
maximal 7-expansion condition in conjunction with the procedure V:—any such box, in its
entirety, instantiates the head variable of the corresponding term it represents, and the Head
value of such a box may only have an atomic Type; thus, any box that would be instantiate
a functional variables of higher-type, may only be represented in the appropriate applicative
form—which is to imply that the instantiated variable would be in the maximal n-expansion.
Note that for higher-type constants, this condition is explicitly imposed as an adjunct to the
two typability conditions in Section 2. The last part, expressing that the functions V4 and
[.]a are inverses, follows in a straightforward fashion from induction over maximal height of
the <-order among the boxes in v, (correspondingly, on the height of the Bohm tree N).
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Our next step is to extend the definitions of [.] 4 and V() to non-compact elements of their respective
domains. In the case of the former, we shall now regard its domain of application as Bohm trees
partially ordered by the ordering inherited from (2-match ordering on the corresponding terms; this
is, of course, a Scott-domain. We would use the same symbol [.]4 for the continuous extension
of the earlier map to infinite (Y-free obviously) closed Béhm trees, defined by taking the U of its
compact approximants. Analogously, we use the same symbol V() for the continuous extension of
the earlier-defined function to non-compact elements—again by taking least upper bounds in its
co-domain of Bohm trees. With these extensions it easy to verify the following Lemma.

Lemma 5.1 The pair of maps (Va(.),[:]a) instantiate a continuous isomorphism between [A] and
the domain of maximally n-expanded Bohm trees of Type A.

Proof: Straightforward extension of the arguments of Proposition 5.1 to the respective directed
completions on the basis of least upper bounds.

An important idea that we would need to use in the sequel is that application in our typed algebra
of sections mirrors that in the continuous algebra of Bohm trees.

Lemma 5.2 For sections v € [A=B] and p € [A], we have that
V(W)V(p) = V(v.p)
where the left-hand juxtaposition signifies application in the applicative algebra of Bohm trees.

Proof: We deal with the compact case first. The result in this case follows by straightforward
induction over the length of a leftmost-outermost S-reduction sequence of the tree (V(v)V (1))
(we assume that any d-reductions are postponed till the after all the S-reductions have been
done—cf. [BCLS85, Prop. 3.1.2]). Note that trees in the range of V() are Y-free. The basic
idea is that every step in such a reduction strategy is mimicked by the function () in the
previous section—essentially, a S-reduction step, resulting in the substitution of an argument
at the head variable of some sub-tree K of the function term n, is echoed by 1 by the opening
of a context [ in the dialogue sequence, where k is the box index corresponding to the sub-tree
K. This context is closed by ] precisely when the reduction sequence initiated by the initial
substitution is complete. The sequence of substitutions indicated by the contexts is actually
implemented by the operation ¢(). The leftmost-outermost order is reflected precisely by
the partial order <y on the evaluation (¢()) of summands of the dialogue corresponding
to contracted variables (multiple occurrences of bound-variables). Finally, the J-reductions
implemented through the operator A() in our definition, are taken care of by the map Iz():
as may be easily seen, the former has been defined to agree with the latter precisely. The
extension to the non-compact case follows by routine application of the continuity of V(.),
that of the application operation . for sections (c¢f. Equation 4.3 and following remarks).

This proposition would furnish an important tool to prove facts about the semantic function P[.] p
in the sequel.

On the basis of the above facts, we have the following properties of the sequentially realizable

maps.

Lemma 5.3 The identity map is sequentially realizable, and the sequentially realizable maps are
closed under composition.

Proof: Given sequentially realizable maps f : [A] — [B], realized by | |,{f; | ¢ € I}, and ¢ :
[B] — [C], realized by | |;{g; | 7 € J}, we claim that the composed map go f: [A] = [C] is
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sequentially realized by the section [h : A=C] where
b= LI : A9 (g) (V(f)2)]}
JoI

(such a normal form would always exist, since recall that the recursion combinator Y would
not occur in either of the terms V(f;) or V(g;)). The result follows directly from Lemma 5.2
and the well-known syntactic continuity property of Bohm trees (¢f. [BCL85, Theorem 3.5.5]).
Moreover, composition is obviously left-strict. Again, the identity map in any [A] — [4]
would obviously be realized by the section [(Az : A.x) : A=A].

We define the category P to be the sub-category of topological spaces consisting of objects of the
form [A] (for A a PCF Type), and sequentially realizable maps.

Our semantics would be defined over the category P formed by closing P under products
and exponents conservatively; i.e. the least Cartesian closed sub-category of the category of sets
containing P, such that exponents of the objects existing in the latter coincide with the exponents
in the new Cartesian closed category. Let us define the binary operator = on sets as follows.
[A=DB] if X = [A] &Y = [B]

5.2
{f: X —=Y | f aset-theoretic map} otherwise (5:2)

X:>Y:{

where obviously A and B are PCF Types. Let us denote by = = {x}, the terminal object of the
category of sets. The category P is defined inductively: the set objects of P is the smallest set
satisfying:
* € Obj(P)
X € Obj(P) = X € Obj(P)
X,Y € Obj(P) = (X xY)e€ Obj(P)
X,Y € Obj(P) = (X=Y) e Obj(P)
The morphisms in P are give by the following rules.
fePX xY,Z) & 3FgePX,Y=2). f((z,y) = [9(x)](y)
fePX,YxZ) & FgeP(X,Y)IheP(X,Z).f=(g,h)
P(X,Y)=X=Y - inall other cases
where the operator [.] in the second clause is defined as earlier, if (Y=2) € Obj(P), and is the
identity otherwise. Following standard notation, we would refer to the unique morphism ¢ in the

second clause as A(f). In the sequel, we would confuse an element k € [A] with the corresponding
map K :x—[A] : * — k.

The Cartesian closure of P is a straightforward consequence of the definition.

Lemma 5.4 The category P is Cartesian closed.

Proof: More or less immediate from the defining conditions. The Cartesian projections g :
X XY —=>Xand 7 : X XY =Y are the usual in case X or Y ¢ P; otherwise, for X,Y € P
we have

A(mp) =[[A\z: A Xy : Bx]] and A(my) = [[Az: A )y : B.y]
where X = [A] and Y = [B]. The function sl eval() : (X=Y) x X =Y is inherited from the

Cartesian closed structure of sets: in case X,Y € P, we have explicitly

eval((f,z)) = [f](z)

and the Curry function A() is as defined earlier. The uniqueness of the value of A(f) for any
f is easy to see, as are the defining identities for any exponent object.
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An important fact to note is that P is order enriched.

Lemma 5.5 The category P is enriched over the category of dI-domains.

Proof: A simple induction over the [ength of the referring expression P (X, Y") for the Homset: the
length is defined as the sum of the lengths of X and Y; the length of X is 0 if X refers to
an object of P; length of X X Y is one more than the sum of the lengths of X and Y, while
length of X=Y is the same as the sum of the lengths of X and Y. All Homsets of P are
ordered in the point-wise order. For the base case of the induction, we know that Homsets
inherited from P obviously inherit the order on their co-domains, which are all dI-domains
(¢f. Proposition 3.2, Theorem 4.1). In the general case, we propagate this order along the
inductive structure of our category. Thus, Cartesian products are component-wise ordered,
and are obviously dI-domains whenever their components are. Exponents inherit this order
point-wise. Hence the argument.

In the sequel, we would use the operator (/3 as earlier if its argument is in Mor(P), and otherwise
define it as the identity.

The interpretation I of the ground Types B and N is given by the spaces [B] and [N] respec-
tively. The basic set of constant and function symbols are interpreted by the specific morphisms
sequentially realized by the corresponding sections (derived from the corresponding terms in maxi-
mally n-expanded form); thus, for instance, the constant function succ is interpreted by the specific
morphism in [N] — [N] sequentially realized by the section [Az : N.succ(z)] in [N=N]; the func-
tion cond” is interpreted by the specific morphism in [B] — [N=N=N] sequentially realized by
the section [Az : B.Ay : N.Az : N.cond¥ zyz] in [B==N=>N=N], and so forth. A constant k of any
ground Type T is interpreted by the corresponding map k : x— [T]. Thus, our interpretation is
not the standard one, but the free interpretation—i.e. the free continuous algebra generated by the
constants of base Types, which is also the initial interpretation.

The semantics of PCF in Cartesian categories enriched over the category of Scott-domains
is quite standard, and is in terms of a semantic functions P[.] p parameterized by a sequence p
containing all free variables (appropriately type-annotated) in the argument term. We sketch the
more important details of this scheme; precise technical details may be looked up in any standard
reference ([BCL85, Ber79, Ber80]).

We define the denotations (extensions) of the types as: P[A] = [A]. In general, the denotation
of any term M : A with Fvar(M)C(z; : Ai)g<i<p, i @ morphism P[Ag] x --- x P[A,] = P[A] in
P. We would denote the projection on the i-th component of this product as m;. Given morphisms

m:X—(Y=Z2) and n: X =Y, we would write m % n for the composition evalo (m,n). We may
define our semantic function by structural induction.

—

P[f: A],=1(f) : = P[A]
Plz: A],=m where z is the i-th member of p
P[2: A], =L :x—=P[4]
P[Y : (A= A4)=4], = (|_| Ag: A=A.g"(QY)]) 1 x— P[(A=A)=A]
n>0
P[MN], = P[M], « P[N],
P[Az: AM], = AP[M],,;.4)

where, in the fourth clause, ¢° = id and ¢"*! = g o ¢"; and f is any constant or constant function
of the indicated Type, in the first clause. Also, we use the notation p Uz : A to signify that z : A

is appended to the sequence p.
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The proof that P[.], defines a least fixed point (according to established usage; cf. [BCLS85,
Defn. 4.2.2]), or continuous model (c¢f. [Ong95, Pg. 306]) is quite standard, and we refer the reader
to the references quoted earlier (ibid.; in particular [BCL85, Theorem 6.2.2]). It is also a well-known
fact that the model defined in this fashion over the free interpretation is computationally adequate
and thus sound.

The Proposition 5.1 paves the way for our definability result.

Proposition 5.2 Any compact element f in a domain [A] of the model P is definable—i.e. the
denotation of an unique term f of the calculus.

Proof: Immediate, by Proposition 5.1: the unique term f posited in the proposition is simply
V(f); it is easily seen that P[f] = f (confusing the distinction between the element f and
the corresponding map from the terminal object).

The critical fact that falls out of the definability condition is that of order-extensionality. In order
to prove it, we use the map V(.) and its property above to import the order-extensionality of the
model BT, consisting of (finite and infinite) closed Béhm trees in maximal n-expansion, over the
free (initial) interpretation I°. This is a well-known result in the literature and we cite it below for
reference.

Lemma 5.6 The model BT, is order-extensional—in other words, for Bohm trees f,g of Type
A=B, we have

fEg & [lz)Eg(z)
for all trees « of Type A (the notation f(x) denotes the usual operation of application among Bohm
trees).

Proof: The proof is rather technical, and well-documented in [BCL85, Ber79, Ber80]; we would
refer the reader to these references. A brief sketch has also been provided in the proof of
Proposition 4.5.

Finally we may state the order-extensionality proposition.

Theorem 5.1 The model P is order-extensional—in other words, for any f,g: X =Y, we have
f<g9g & VzeX f(z)Cy(z)
where we use the symbol < for the point-wise order, and T for the order on the object Y.

Proof: We need consider only the case that X and Y are objects in P; the general case is argued
by a straightforward induction over the length of the referring expression for P(X,Y) as
in the proof of Lemma 5.5. The base case for the induction, with X, Y € Obj(P) goes as
follows. The key idea in the proof is importing the order-extensionality property from BT,,.
Considering the more difficult part of proposition of order-extensionality (the < direction),
we consider the case that f(x)<g(z) for all  in the domain of the functions f,g in our
model. Now,

f(@)Eg(z) = V(f(z)) EV(g

C z)) — continuity of V()
= V(f.z)CV(j.x

— since f(z) = f.x

= V(/)V(z)CV(§)V(z) - property of V; ¢f. Lemma 5.2

= V()T V(9) — order-extensionality of BT ; ¢f. Lemma 5.6
= fCg — applying [.] to both sides; ¢f. Lemma 5.1
=f<g — monotonicity; cf. Corollary 4.4
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where we have signified the 2-match order on Béhm trees by C. This proves the more difficult
part of the order-extensionality property; the converse is almost immediate from monotonicity
properties (c¢f. Corollary 4.4) and we shall not labor it. The rest of the induction argument is
straightforward, noting that the order on all function spaces and other objects is point-wise.

Hence finally, on the basis of the Proposition 5.2 and Theorem 5.1, we may assert our main result.

Theorem 5.2 The model P is order-extensional, and fully abstract with respect to the interpreta-
tion 1.

Proof: It is a well-known result, that an extensional model of PCF over the free interpretation
is fully abstract iff it is order-extensional and and all compact elements of the domains of
interpretation are definable (¢f. [BCL85, Theorem 5.3.3]).

6 Conclusions

This brings to a conclusion our attempt to study the intensional and extensional aspects of higher-
type sequential computation in the framework of affine geometry. The basic point of this exercise
was to demonstrate that enriching the topological spaces of traditional denotational theory with
the (local) geometrical structure of simplicial sets, gives a nice way to constrain the class of compu-
tations that we would like to model in such spaces to intrinsically sequential computations. The key
advantage of this additional geometric structure is to give a formal method to localize computations
to certain localities (cells, faces) of the domain, and to phase the resultant computations so that
certain basic causal dependencies are respected. These two basic operative principles are at the
heart of any kind of sequential computation and in our case, they are evidenced respectively, in the
generation of the dialogue sequences (recursing within and out of the simplicial sub-structure in a
“call-return” fashion; c¢f. [ADLR94, DR94]) and in the eventual evaluation of these sequences by
®, (weakly) constrained by the < order on the evidently parallel sets of such sequences.

The principal gaps in this framework are two-fold. First, as we have pointed out in the earlier
part, the normalization process on the basis of dialogue sequences are only tenuously related to the
cut-elimination process of the previous part of our study. It would be extremely desirable if such
sequences could be analytically generated on the basis of something like the Execution formula in
other approaches drawing upon the Geometry of Interaction ([Gir89, DR93, DR95, AJ94a, AJ94b]).
Second, the topological structure of our spaces are induced in a facile fashion from the syntactic
notion of 2-match, and the sequentially realizable maps are quite unrelated to the morphisms in
the initial category of (Z/2)-sheaves: both are really aspects of the general problem of the high
degree of syntactic determination in our model and it would certainly be desirable to have a more
synthetic topological structure. It is an aspect of our approach that observational quotienting is
not required for extensionality w.r.t. the free interpretation: however, the reader would note that
our semantics is still not fully abstract with respect to the standard interpretation—though it
contains only sequentially computable functions. This has to to do with the intensionality of our
representations at the ground types, and to eliminate this (thus obtaining a fully abstract model
over the standard interpretation) one would have to use some device as observational quotients.

Finally, it would appear that the categorical structure of the simplicial topos (and related
toposes, such as that of cuboidal sets, ¢f. [FPP97]) could be a viable basis to derive models of
Axiomatic and Synthetic domain theory, with a sequential realizability structure at its basis (see
also [FR]) . As remarked earlier, this has a good localization structure (it is a Grothendieck
topos) and could presumably furnish a nice framework for the study of inductive structure within
a constructive universe.
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