
The Geometry of Sequential Computation II:Full abstraction for PCFKalyan S. BasuAugust 27, 19971 IntroductionIn this study, our earlier representation of linear (MELL) proofs using a�ne simplices is usedto develop an approach to a certain version of the problem of full abstraction for a denotationalsemantics for PCF. In this set of papers our interest is fundamentally in the the problem of syntax-independent representations of sequentiality, and the semantics of sequentially computable func-tions derived therefrom: thus we look at order-extensional models over the free interpretation|that is, the free continuous algebra generated by the constants of PCF|and not the standardinterpretation|which has de facto come to characterize the problem of full abstraction for PCF.We stay as far as possible, within the classical ideas of Scott, Berry and others, by conceivingour denotational space as structured essentially as a certain kind of topological space (speci�cally,a consistently complete, algebraic cpo); the generalization we use, is to look at this space not justas a set of points as in traditional topology, but as a variable set, with its domain of variationstructured by the geometry of simplicial sets. This kind of generalization is well-known, comingdown to us from the work of Lawvere and others on toposes (particularly, Grothendieck toposes).However, we would not go the full way along the construction of a topos, since we require thegeometry only in a very rudimentary way. The geometry used to enrich our points is then usedto control the size of the function spaces by cutting them down to consist of only those kinds ofcontinuous maps, which satisfy a criterion akin to the Kahn-Plotkin ([KP93]) notion of sequentialfunctions, but framed purely in terms of our underlying geometry.An interesting aspect of this model is that it shares certain features with two other importantcurrent approaches to the full abstraction problem|the Games model ([AJM94, AJ94a]) and theStrong Stability/Sequential algorithms framework ([BE91, BE93, Ehr94]): with respect to theformer, it would be seen that the applicative structure in our model is de�ned on the basis of astructure reminiscent of strategies, especially with regard to the alternation and well-bracketingcriteria; on the other hand, the domains in our model is equipped with a notion of Cells and henceadmits the notion of a Coherent subset, of the Strong Stability approach. Finally, since we are moreinterested in models over the free interpretation, our attempt does not need to use an observablequotient in the eventual step in order to eliminate intensional structure. On the other hand, thisentails that there is a great deal of syntactic determination in the model|a dialectic that is hardto avoid in this game.
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2 Basic De�nitionsWe shall use the symbol N for the set of natural numbers f0; 1; : : : g. We recall a few notions aboutthe in�nite dimensional Euclidean Space E1; most of the basic ideas are taken from the book byMunkres on Algebraic Topology ([Mun84]). Let R denote the set of real numbers, and R1 theN -fold product of R with itself. An element of R1 may be thought of as the tuple hxiii2N . LetE1 be de�ned as the subset of R1 consisting of tuples hxiii2N with xi non-zero for only a �nitenumber of indices i. E1 is a vector space with component-wise addition and and the usual scalarmultiplication. We would denote its zero vector as ~0. A basis for E1 is the setB(E1) = f�i j i 2 N ; bi : N !Rgwhere �i maps only the natural number i to 1 and all other natural numbers to 0. The space E1is a topological space: the \standard" topology on this space is induced by the metric:kx� yk = maxi2N fjxi � yijg, and it is straightforward to show that with this topology, every �nite dimensional subspace of E1is homeomorphic to the space Rn for some �nite n.For notational economy in the sequel, we de�ne the sequence h~biii2N of vectors in E1:h~bi j ~b0 = ~0;~bi+1 = �iii�0Given a linearly independent set P = f ~P0; : : : ~Pkg of points (equivalently, position vectors) in E1,the k-plane spanned by the points P is the set of points satisfying~x = kXi=0 ai ~Pi with kXi=0 ai = 1 s.t. 8i: 0 � ai � 1 (2.1)The standard a�ne n-simplex �n is the n-plane spanned by the set of points f~b0; : : : ;~bng. A �nitesub-sequence k = hk1; : : : kni of the sequence of natural numbers N (in the usual order) would besaid to be continuous, i� the map ki+1 = ki + 1 (0 < i < n).Given a subset K �N , or alternatively, an increasing map K : [k]! N (where k = jKj), weshall say that the k-plane spanned by the set of points f~bi j i 2 Kg (respectively, the set f~bK(i) ji 2 [k]g), denoted as �(K), is the K-face|presumably of some standard n-simplex, with n � k.The ordered set f~bi j i 2 Kg would be called the Span of the face �(K). The smallest vectorin Span(K) would be denoted as ^(K) and the largest as _(K). A face K would be said to beprincipal, if 0 2 K; we would usually represent a principal face K by the set \(K) � K�f0g; by asimilar abuse of notation, we would say that Span(K) for a principal face �(K), is the ordered setof vectors f~bi j i 2 \(K)g. Thus, for principal faces, the operator ^ would now denote the leastvector in this notion of the Span.1We denote by �1, the subspace of E1 given as�1 = [n�0�n|in other words, the collection of simplices of the form �n (for �nite n); thus, every �nite sub-collection of this union is contained in some Rn (for some �nite n), though not the entire collection|a consideration made possible precisely by the in�nite dimensionality of the space E1 (cf.[Mun84,pg. 14]). We induce a coarser topology on �1 by taking as its basisB(�1) = fInt(�(K)) j K �Ng1This abused representation of principal faces would in practice never create confusions with regard to non-principalfaces, since we would consider only principal faces in the sequel.2



where, as the interior operator is de�ned w.r.t. the standard topology on E1, and acts asInt(�(K)) = �(K)� Boundary(�(K)).Let the set of Ground Types in PCF be denoted as T = fB ;Ng and the set of constants(excluding the recursion combinator Y , for any Type) as C ; let us assume some denumerablyin�nite of set, say N , which are implicitly meant to be a set of occurrence identi�ers. For a generalType �A represented as A0) : : :)An�1)A, where A is a Ground Type, we would say that theoutput type of �A is A. Let K be the set de�ned as K = Kv [Kc whereKv = T � N Kc = fhc; t; ni j c 2 C with output type t, or a special symbol ?gand let K denote the free (Z=2)-module2 generated by K�, the free monoid over K. Note that Khas a standard bi-algebra structure; we shall denote by the (in�x) operator symbol �, the compositeK �K ��! K 
K �̀! Kwhere � is the universal Z=2-bilinear function yielded by the de�nition of the tensor product 
,and ` is the algebra multiplication.We shall consider the category of set-valued sheaves3 �1|that is, the category of functorsO(�1)op!Sets, satisfying the usual sheaf conditions. Our object of interest, and what we shallcall the universal type, is the unique sheaf � satisfying the following conditions:1. for any basic open a 2 B(�1), �(a) = K (the latter now considered as a set); and2. for an open set a, s.t. a = b [ c, we shall require that �(a) = �(b) � �(c); moreover, therestriction maps �(b) �(a)!�(c) are given by the Cartesian projections.The terminal object in this category would be denoted by as 1, mapping every open set to theterminal object in Sets.In the sequel, we would use abuse notation by using the same notation for the subset K �N ,instantiating a face �(K), and the basic open set Int(�(K)). We shall reserve the special face-designator 0 for (the face formally corresponding to) the empty set ;.Consider a global section (simply, section) � : 1!� of our universal type. Any basic openderived from a face K�N such that the value of �K is not 0, would be said to be a box (of thesection �); if the face K is principal, then the corresponding box would be said to be a principal box.Such a box would be said to be contiguous if it is principal and \(K) is a continuous sub-sequenceof the natural numbers. A (�nite) set of contiguous boxes B would be said to be contiguous, ifit is pairwise disjoint and can be uniquely ordered into a sequence hB1; : : : ; Bni, s.t. _(Bi) is onelower in the enumeration order than ^(Bi+1) (for 0 � i < n). We de�ne the order 6 on boxes ofa speci�ed section �: B16B2 i� B1�B2. The set of boxes strictly lesser than a box x in the 6order, would be denoted as #(x). We would use the symbol #(x) for the set of maximal boxes in#(x).A section � : 1!� would be said to be principal if the set of its boxes is �nite and consistsonly of principal boxes. The data for a principal global section � may be represented as a sumPni=0 aixi, where xi is a box of � and ai the value of �xi . Henceforth, we would consider onlyprincipal sections. A box of the (principal) section � is said to be well-structured i� it satis�es thefollowing inductively speci�ed condition:2(Z=2)-modules are essentially sets; however, understanding them as such kinds of modules allows us greatereconomy in the formulation of certain notions|in particular, the map � used in the sequel.3It is possible to give an entirely equivalent account using the notion of co-chains used in Part I of our study;we prefer to use the idea of a sheaf since it indicates a context of generalization with regard to the simplicial topos,which we would wish to pursue in later treatments of this theme of sequential computation.3



1. any 1-box is well-structured;2. a contiguous box x with Span(x) = f~br; : : : ;~br+p+1g, is well-structured, if the set #(x) is acontiguous set of well-structured boxes fx1; : : : ; xng, with ^(x1) = ~br and _(xn) = ~br+p forsome r; p 2 N(we assume that the unique sequencing of the maximal boxes of #(x) is hx1; : : : ; xni). The (principal)section � =Pni=0 aixi is said to be well-structured if the set of its boxes is 6 -directed with its 6 -lub well-structured, and for all i 6= j, #(xi)\#(xj) = ;. Under these conditions, any well-structuredsection � has a maximal box, which we shall denote as �. In the sequel, we would assume that thevalue of #(x) for any box x of a well-structured section is an ordered set (or sequence) hx1; : : : ; xni,with _(xi) being lower in the enumeration order than ^(Bi+1) (for 0 � i < n).A well-structured section � is said to be typable if the conditions 1{2 below are satis�ed.1. for any box x 2 �, an unique value of �(x), which is either of the form a for some a 2 K, orof the form sx � s1 � � � � � sn where sx 2 K and each si is of the form of si1 + � � � + sik , witheach sij 2 Kv . We shall write sx = Head(x), �(x) = Coe�(x) and si = Coe�i(x);2. for each sij , there is an unique box y � x such that Head(y) = sij 62 Kc.An important condition that we would stipulate is that the form of �(x) in terms �-factors would beassumed as given in every instance; this is to avoid problems with non-unique such factorizations|though it should be noted, that taking the second condition into account, we could always obtainan unique factorization. A box x, such that Head(x) is of the form h?; ; i, would be said to be aweakening box.For any typable section �, we may de�ne, by mutual recursion, the following parameters forany box x 2 �, which we shall call Spine (��) and Type (��). For any box x 2 �, we shall writeChild�(x) for the sub-sequence of #(x) including only (and all) its non-weakening members. Then,��(x) = (Head(x) if x is 6 -minimal��(x1)) : : :)��(xn))Head(x) otherwise��(x) = (Head(x) if x is 6 -minimal��(y1)) : : :)��(ym))Head(x) otherwisewhere hx1; : : : ; xni = Child�(x) and yi is the unique box 6x such that Head(yi) is a summand inCoe�i(x).Note the non-determinism in these de�nitions, expressed in the last line of the previous para-graph: since Head(yi) is a summand, we may obtain a set of values instead of a single value whenwe evaluate the � for any other summand of Coe�i(x). Thus we would say that the section � iswell-typed (or sometimes well-formed) if the de�nition of the parameters Spine and Type yields asingle well-de�ned value for any box of �.With regard to a calculus with non-logical constants, we would impose an additional constrainton well-typed sections to take into account the type restrictions on constants. Thus: for any box xof a well-typed section �, with Head(x) = hc; t; ni 2 Kc, such that c : A0) : : :)An�1)t, we musthave that #(x) = hx0; : : : ; xn�1i with ��(xi) = Ai (for 0 � i < n).For any well-typed section �, we would say that the Type of �, �(�) is the value of ��(�). Forany Type A, we would write kAk for the set of (well-typed) sections � with �(�) = A.4



3 Type ExtensionsIn this section we de�ne certain relations on kAk (for any Type A) that would facilitate theinterpretation of their sections in syntactic terms. We also take the �rst steps in de�ning theextensions of the Types, and explore their order-theoretic structure.For a section � 2 kAk, with maximal box � � x, with �(x) = sx � s1 � � � � � sn, and a naturalnumber 0 < k � n, we de�ne the operation Trunck(x) to result in the modi�ed section � 0, withthe coe�cient of its maximal box x set to sx � sk+1 � � � � � sn; all other data for the section areunchanged. Obviously, the modi�ed section would no longer be an element of kAk.Given a principal face y, with Span(y) = f~bk; : : : ;~bk+pg, and some integer n, we de�ne Shiftn(y)to be the principal face with Span = f~bk+n; : : : ;~bk+p+ng. Similarly, we de�ne the operation Expn(y)to be the principal face with Span = f~bk; : : : ;~bk+p+ng. Consider a section � � Pni=0 ai:xi, and aspeci�c index k 2 [n]; let Span(xk) = f~bm; : : : ;~bm+pg. We de�ne the section (�nk) to beXi2I ai:Shift(�m)(xi) where, 8i 2 I: xk 6xi.and this formalizes the operation of instantiating the box corresponding to the index k as a well-formed section in its own right. At several points in the sequel we would, by abuse of notation,regard a box of a section as a section by itself without any further clari�cation. Obviously in suchcases, an application of the (�n�) operation would be implicit.Consider now a section � � Pni=0 ai:xi with _(�) = ~bl, a speci�c index k 2 [n] and anothersection � �Pmj=0 bj :yj such that �(�) = ��(xk). Let I denote the subset of [n], s.t. _(xi) is lesserthan ^(xk) (in the enumeration order) for any i 2 I; let H denote the subset of [n] such thatxk6xh, xk 6= xh for any h 2 H; �nally, let J denote the subset of [n] s.t. ^(xj) is greater than_(xk) for any j 2 J . Let the cardinality of Span(�) be r, and that of Span(xk) be s; let q = r � s.Then we de�ne the section �[k �] asXi2I ai:xi +Xj2J aj :Shiftq(xj) +Xh2H ah:Expq(xh) + Coe�(�):�|which formalizes the operation of replacing the box xk in � by the maximal box in �.We de�ne the following equivalence on kAk. Consider sections � = Pn0 aixi and � = Pn0 bjyjboth in kAk. We de�ne an equivalence relation �= as follows: � �= � i� there exists a permutation� on the set [n], such that for all i 2 [n]:��(xi) = ��(y�(i)) andChild�(xi) = �(Child�(y�(i)))where we de�ne �(xi) , y�(i), and extend this to act on sets and sequences as usual. For any typeA, we denote (kAk= �=) as JAK, and call it the extension of the Type A.Now given sections � � Pni=0 ai:xi and � � Pmj=0 bj:yj , and an element k 2 K, we de�ne theoperation ��� as follows: let Span(�) = f~b1; : : : ;~bng and Span(�) = f~b1; : : : ;~bmg; let z denote theprincipal face with Span(z) = f~b1; : : : ;~bn+m+1g; We de�ne the non-well-formed section � � � as:� � � = 1:z + nXi=0 ai:xi + mXj=0 bj:Shiftn(yj):Thus, the operator � essentially juxtaposes the maximal boxes of its arguments, preserving thecoe�cient values of all sub-boxes. Now given a section � (typically derived as the result of a �5



operation), and � 2 K, we de�ne the operation ��� as the operation which sets the Coe� of themaximal box of � to �.We de�ne a couple operations on type-extensions and sections. Note that any Type A maybe written in the form A0) : : :)An�1) �A, with �A atomic; we shall write Out(A) for the type(-occurrence) �A. For any Type A we may de�ne the constant section �(A) in JAK as follows.�(A) = (A(k):~b1 if A is atomic(A(k)n a0 : : : an�1)��(A0)� � � �� �(An�1)) if A is of the form A0) : : :)An�1)Anwhere A(k) is an element of Kv of the form hA; ki for some k 2 N , and in the second clause,ai = Head(xi) where xi the maximal box in �(Ai) (for 0 � i < n); note that we may assume An asatomic without loss in generality. The constant section ?A in JAK is de�ned to be �(A), but withHead(x) set to h
; A; ki, where x is the maximal box of �(A), and k is some occurrence identi�erin N .On the basis of the previous notions, we de�ne a partial order vA on any JAK as follows:�vA�, ((�nk) = ?B & � = �[k �])for some natural number k, type B and section � with �(�) = B. Obviously, we have e�aced thedi�erence between sections and their �=-equivalence classes; this should be taken as implicit in thisand other statements in the sequel.We note the following simple proposition.Proposition 3.1 For any Type A, the poset (JAK;vA) is a meet-semi-lattice with least element?A; it is also consistently complete.Proof: Consider sections �; � 2 JAK; writing` for the binary predicate of consistency, it is straight-forward to verify that �`� i� there is a section � �Pn0 ai:xi 2 JAK, and indices k1; k2 2 [n],such that (�nk1) = ?A1 and (�nk2) = ?A2 , (for some types A1 and A2) and � = �[k1 � 0]and � = �[k2 �0] for some sections � 0 2 JA1K and �0 2 JA2K. In this case, we can easilyderive that � tA � = (�[k1 � 0])[k2 �0], while � uA � = �. The meet semi-lattice property isimmediate.We shall denote the directed completion of JAK as JAK, and use the same symbolvA for its associatedpartial order. The compact elements of JAK are in bijective correspondence with the elements ofJAK and we would denote them by the same symbols. The non-compact elements x would berepresented as the ideals #A(x) (this use of # is subscripted by the Type to distinguish it from theprevious use in the context of the containment order on boxes). The partial order in JAK is givenas the subset order among ideals as is standard. We note the following property of the completion,which may be easily veri�ed.Proposition 3.2 For any Type A, the poset (JAK;vA) is a consistently complete algebraic CPO(hence a Scott Domain); it is also prime algebraic, and in fact, a dI-Domain.We topologize the CPO JAK by specifying its basis of Scott-open �lters, viz.:B(JAK) = f"A(�) j � 2 JAK; � sub-maximalg [ f;g where "A(�) = f� 2 JAK j �vA�gWe would use the same symbol to denote the CPO and the topological space based on it.6



4 Applicative StructureIn this section, we de�ne the various operations relevant to instantiating a typed combinatoryalgebra structure on the collection of spaces of the form JAK. We shall de�ne �rst, a certain (Z=2)-algebra denoted as [N ], and called the bracket algebra over N . Let B � f[; ]g; then the sub-basisof this algebra is the set N = N � B|we would denote elements hn; [i or hn; ]i, as n-annotatedbrackets, viz. [n or ]n respectively. Thus, [N ] is the free (Z=2)-module generated by N , and is(up to isomorphism) the set of sequences of N -annotated brackets. As usual, this has a standardbi-algebra structure, and we would denote the composite[N ]� [N ] ��! [N ]
 [N ] �̀! [N ]by the operator symbol �.Consider sections � = Pi2I ai:xi 2 JA)BK and � = Pj2J bj:yj 2 JAK where the index setsI; J � N are chosen to be disjoint. An element l of [N ] is said to be an interaction sequencebetween � and � i� it is a sum of sequences that are well-bracketed (upon ignoring annotations),successive opening (respectively, closing) brackets are alternately annotated by valid indexes in �and � respectively, and matching pairs of opening and closing brackets are annotated by the samenatural number. A sequence of the form [n� : : : �]n in the basis of [N ] would be said to be a context,and a context of the form [n�]n would be known as a minimal context. We would, by abuse ofnotation write expressions like i6 j for indices i; j 2 I (or in J) to actually mean xi6xj in theappropriate section.A speci�c interaction sequence between � and � is said to be a dialogue if and only if it isgenerated by the following recursive function 	(�; �): 	(�; �) is de�ned on the basis of a subsidiaryfunction  ; we de�ne 	(�; �) =  (�; �; 1; 0) where the de�nition of  () is as follows: (xi; yj ; n;m) = [i�]iif the unique box z s.t. Coe�n(xi) = sn = Head(z) is weakening box, with x; z 2 � if m = 0, andin � otherwise; then again, if Head(xi) = h
; ; i, then we de�ne (xi; yj ; n;m) = [i�]iin the general case Coe�n(x) = sn = s1n + � � �+ spn, we de�ne (xi; yj ; n;m) = [k1� (yj ; z11 ; 1;m+) � � � � �  (yj ; z1m1 ;m1;m+)�]k1+ [k2� (yj ; z21 ; 1;m+) � � � � �  (yj ; z2m2 ;m2;m+)�]k2...+ [kp� (yj ; zp1 ; 1;m+) � � � � �  (yj ; zpmp ;mp;m+)�]kpwhere zk is the unique box s.t. Head(zk) = skn, and k1; : : : ; kp are the indices (in � (respectively, �) ifm = 0 (respectively m = 1)) of the boxes z1; : : : ; zp, and s.t. #(zk) = fzk1 ; : : : ; zkmkg (0 < k � p)|ifzk is not 6 -minimal, while mk = 1 and zkmk = 0 otherwise; �nally, we have (xi; yj ; n;m) = [i�]iif yj = 0.We de�ne a function � from dialogues to (appropriately typed) sections. Given � =Pi2I ai:xi 2JA)BK and � =Pj2J bj:xj 2 JAK (where again, the index sets I; J � N are chosen to be disjoint)and the dialogue X � X0 + � � � + Xn between � and �, we de�ne �(X; �; �) on the basis of a7



composed sequence of applications of a subsidiary operation � (on sections) as follows. First letthe partial order �X on the set fXi j 0 � i � ng be de�ned as: Xi�XXj i� Xi = s�[p�si andXj = s�[q�sj for some sequences s; si; sj in the basis of [N ], and such that p6 q in the appropriatesection. From the procedure by which the dialogue X is generated, it is a simple exercise to verifythe following proposition.Proposition 4.1 The partial order �X equips X with the structure of a forest|with the root ofany component tree, a �-maximal element.Let X = hX�0 ; : : : ;X�ni denote any particular linearization of X|i.e. a sequence based on somepermutation � on the indexing set [n] s.t. the partial order �X implies the sequential order of X.The basic operation involved in the de�nition of � is that of replacement at some box (corre-spondingly, index) of a section|symbolized earlier in the form �[k �]. In its invocation in thesequel, we would assume that the indices identify sub-boxes uniquely, even when they have beensubstituted into sections of which they formed no part originally. We would also extend the de�ni-tion of the operation �[k �] to yield the embedding section � in case the particular box indexedby k does not happen to be a box of �. In this latter case, we would say that the index k has beenweakened|a description which would be clari�ed in the sequel.We may now de�ne � as follows:�(X; �; �) = nYi=0�(X�i ; �i; �)where we use the symbol Q for the sequential composition of operations (in the order of indexing),and �0 = Trunc1(�), and �i+1 = �(X�i ; �i; �) (0 � i < n)). � is de�ned recursively on the form ofits �rst argument:�([b� B1z }| {[b1 � : : : �]b1 � : : : � Bkz }| {[bk � : : : �]bk �]b; �; �)= 8><>:� if k = 0 or 9C: � = ?C� [b �] if either xb is 6 -minimal, or 9C: � = ?CQkj=1 �(Bj ; �j ; �j) otherwisewhere, in the latter case, #(xb) = h�1; : : : ; �ki (in the appropriate section); �1 = � [b Trunck(�)],while �j+1 = �(Bj ; �j ; �j) (for 1 � j < k).For sections � 2 JA!BK and � 2 JAK, we would write �:� for the section �(s; �; �) wheres = 	(�; �).We are now in a position to de�ne the admissible maps between spaces JAK and JBK. These aregoing to be continuous maps, obtained on the basis of a dialogue with a speci�c invariant sectionin JA!BK, which we shall call the realizer for the map. Formally, a continuous map f : JAK! JBKis said to be sequentially realized if there is an unique section f̂ 2 JA)BK, such that the imageof any compact y 2 JAK is given by �(s; f̂ ; y), and s = 	(f̂ ; y) (or in other words, f(x) = f̂ :x).By universal properties of the completion, we have the extension of this de�nition to non-compactelements x 2 JAK; thus f̂(Gi2Ifxig) =Gi2Iff̂ :xig (4.2)where fxi j i 2 Ig is the directed set of compact approximants of x. We shall say that f̂ sequentiallyrealizes the map f ; and in general, given any section x 2 JA)BK, we denote the unique mapsequentially realized by x as JxK. We note a few important properties of the sequentially realizablefunctions. 8



Proposition 4.2 The map JxK sequentially realized by the section x 2 JA)BK is continuous forany choice of x.Proof: Monotonicity follows from the way the dialogue between a realizer and its argument isde�ned. For arguments y1; y2, with y1vAy2, we know that there exists an index k, such that(y1nk) = ?C and y2 = y1[k z] for some section z and type C with z 2 kCk. Now considerthe 6 -minimal index l, with k6 l in y1 such that the the minimal context [l�]l occurs in thedialogue 	(x; y1). We have two possibilities that may arise: (1) that no such l exists: | inwhich case there is an instance of weakening in some application occurring at some super-faceof the box indexed by k; in this case, from the structure of the procedures  and subsequently�, we can see that the dialogue sequence at the this super-face may not contribute to anysyntactic extension of the result term|whatever be the substitution z at the index k; (2)there is such an l: | in which case, if k < l, then although the dialogue sequence would haveno extension at l, the box substituted by the procedure � at the point l would be v-greaterin the case of y2; on the other hand, if k = l, then in fact the dialogue sequence at the pointl would get extended in the case of y2 and we would eventually obtain a v-greater result.Now preservation of �nite bounded v-lubs (t) follow from the way these lubs are de�ned inthe proof of Proposition 3.1: we apply the preceding argument of monotonicity at each ofthe non-overlapping pair of indices k1 and k2 in the binary case and extend the argument byinduction to the case of bounded sets of �nite cardinality > 2. Finally, preservation of lubsof in�nite v-directed sets fall out of the de�nition of the sequentially realizable maps on thenon-compact elements of our domains.We derive two interesting corollaries to Proposition 4.2, essentially through the argument throughwhich the property of monotonicity is derived. The �rst is essentially a version of the Kahn-Plotkinsequential functions in the context of our representation.Corollary 4.3 For a function f � JxK (x 2 JA)BK), an argument y 2 JAK, and an index h 2 f(y),such that (f(y)nh) = ?C (for some type C), it is either the case that (f(z)nh) = ?C for all z,yvAz, or there is an unique index k 2 y with (ynk) = ?D (for some type D) and such that?CvC(f(z)nh) implies that ?DvD(znk)|for any z, yvAz.Proof: Note that we assume in the statement of this Corollary, that the identical parts (i.e.common boxes) of sections related by the order v are identically indexed. The two casesof the corollary correspond to the respective cases in the proof of Proposition 4.2. In otherwords, the �rst case corresponds to an instance of weakening at some position l, k6 l, andany extension of the simplicial structure at index l would be weakened away and have noe�ect of the substitution done in procedure � at the position l. The other case is respectivelythe case when there is no such weakening, and in this case we may always identify the uniqueindex (box) k 2 y, associated with the index h through the functions  and �.Corollary 4.4 For sections x; y 2 JA!BK with xvA)By, and any argument z 2 JAK, we havethat JxK(z)vBJyK(z)|in other words, JxK �A)B JyK (using the symbol �A)B for the point-wiseorder). In fact, we have that Jx tA)B yK(z) = JxK(z) tB JyK(z).Proof: Follows by exactly similar reasoning as in Proposition 4.2 applied now to the appropriateindices in x and y.We may state the fact that is the key to our extensionality result.Proposition 4.5 The maps c(�) and J�K instantiate an order-preserving bijective correspondencebetween the sequentially realized maps JAK! JBK (with the point-wise order) and the set JA)BK.9



Proof: It is quite easy to see that (extensionally) distinct maps in JAK! JBK must be realizedby distinct sections in JA)BK: for, if this were not the case, then since the procedures	 and � are deterministic and depend only on the values of the realizing and the argumentsections, we would obtain the same extensional map. Moving to the directed completion posesno further complication in this argument, since the CPOs are algebraic and maps which aredistinct on compact elements would be also distinct on the set of non-compact one. For order-preservation, we would invoke Corollary 4.4. The direct argument in the other direction isnot so easy, and we would postpone the proof since it is more elegantly obtainable on thebasis of a bijective correspondence to another extensional model set up in the last section(cf. Theorem 5.1). However, a brief sketch of the direct argument is as follows. Assumingthat f � g (in the point-wise order), we have that for all x in their domains, f(x)vBg(x).Arguing by contraposition, assume that f̂ 6 v ĝ. This implies either of two cases: (1) thatĝ < f̂ , or (2) f̂ and ĝ are incomparable in the order �. The �rst may be discounted, sinceit leads to a contradiction, in view of the fact of monotonicity. For the second, we argue byinduction over the least 6 -depth at which f̂ and ĝ di�er. By case examination of the formof the value of the section at the box at this depth, we eventually prove that the two sectionsmust agree at every depth (index) at which f̂ is not ?. Thus the only possibility is that ĝ isa derived by a substitution at such an index, and hence the proposition.We would extend the class of maps in JAK! JBK by extending the de�nition of sequential realiz-ability to non-compact sections of JA)BK, in the obvious manner. Given any non-compact sectionx 2 JA)BK and any section y 2 JAK we have the general de�nition of the map JxK sequentiallyrealized by x. JxK(y) =Gi2I Gj2JfJxiK(yj)g (4.3)where the sets fxi j i 2 Ig and fyj j j 2 Jg are the directed sets of compact approximants of xand y respectively. We de�ne a map f in JAK! JBK to be sequentially realizable i� there exist anelement f̂ 2 JA)BK such that f = Jf̂K. Correspondingly we extend the de�nition of the applicationoperation : to non-compact arguments. It is straightforward to show that the Propositions 4.2 and4.5 and Corollaries 4.3 and 4.4 continue to hold. Thus, anticipating Theorem 5.1 in the next section,we can state the following.Theorem 4.1 The maps c(�) and J�K instantiate an order-isomorphism between the sequentiallyrealized maps JAK! JBK (with the point-wise order) and the set JA)BK.5 The Model and its Full-abstractionIn this section we use the applicative structure de�ned in the previous section, to instantiate a se-mantics for PCF, and �nally prove the various properties that imply the Full-abstraction condition.We de�ne a bijection ([�]A;rA(�)) (we would suppress the subscript when clear from the context)between the set of Y -free normal form closed terms of the Type A and sections in the correspond-ing extension JAK. They would furnish an useful tool for subsequent proofs, facilitating familiarsyntactic arguments in most cases. We assume that every variable-occurrence in the terms are type-annotated with an unique type-occurrence (occurrence identi�ers are drawn from the set of naturalnumbers). The de�nition of the map ([�]A is actually de�ned on the class of open normal-form
10



terms for technical convenience.[x : A] = �(A)[(�x : A:N) : A)B] = Out(A)O [N : B]B[fM0 : : :Mn : B0) : : :)Bk)A] = ��([M0 : A0]� � � �� [Mn : An]� �(B0)� � � �� �(Bk))where, in Clause 2, the in�x operator O modi�es the value of Coe� of its right argument by insertingits left argument (an element ofKv) after the former's Head; in Clause 3, � = ���0 : : : �k�1 with �� ofthe form hA; pi, for p an appropriate occurrence identi�er, if f is a variable (respectively, hf;A; pi,if f is a constant function of type A) (note that we have assumed that A is atomic, without lossof generality). We would extend the de�nition of [�]A to terms of A which are not in normal form(though Y-free) by de�ning in general [M ]A = [M 0]A whereM 0 is the normal form ofM . We wouldalso regard [�]A as applying to �nite B�ohm trees of Type A; it may be noted that for both termsand trees, the function is monotonic, w.r.t. their respective standard orders.We de�ne next the map rA(�) from (compact) global sections of the type extension JAK to(closed) terms of PCF, which would subsequently evidence the condition of de�nability for ourmodel. Consider a global section � 2 JAK, such that #(�) = f�0; : : : ; �kg (ordered in the usualfashion), and Coe�(�) is of the form s � s0 � : : : sm, with each si = si0 + � � �+ siki (0 � i � m); then,we de�ne r(�) = �x0 : A0 : : : xm : Am:yr(�0) : : :r(�k) (5.1)where we have elided Type-subscripts for economy, and:1. y is a \fresh" variable of Type ��(�), or the constant function f if Head(�) (= s) is of theform hf; ��(�); i;2. Ai = ��(Bi0) such that Bi0 is unique box of � with �(Bi0) = si0;3. and as a global constraint, we take care that the head variable of the term obtained in theinvocation r(Biki) is the variable symbol xi (8i:8j: 0 � i � m& 0 � j � ki).In the sequel, we would regard the result of the function rA(�) as either a term or its B�ohm tree,depending on the the context of use. It is quite straightforward again to deduce the followingproposition.Proposition 5.1 For any � 2 JAK, the type of rA(�) is A, and the B�ohm tree rA(�) is in itsmaximal �-expansion. Also [rA(�)]A = � and rA([N ]A) = N for any section � and B�ohm tree Nin its maximal �-expansion.Proof: Straightforward induction over the 6 -structure of the boxes of �, and properties of thefunction [�]. For the second part, concerning maximal �-expansion of the result, note that thestructure of theK-values for a box of any well-typed section (Section 2), explicitly imposes themaximal �-expansion condition in conjunction with the procedure r:|any such box, in itsentirety, instantiates the head variable of the corresponding term it represents, and the Headvalue of such a box may only have an atomic Type; thus, any box that would be instantiatea functional variables of higher-type, may only be represented in the appropriate applicativeform|which is to imply that the instantiated variable would be in the maximal �-expansion.Note that for higher-type constants, this condition is explicitly imposed as an adjunct to thetwo typability conditions in Section 2. The last part, expressing that the functions rA and[�]A are inverses, follows in a straightforward fashion from induction over maximal height ofthe 6 -order among the boxes in �, (correspondingly, on the height of the B�ohm tree N).11



Our next step is to extend the de�nitions of [�]A andr() to non-compact elements of their respectivedomains. In the case of the former, we shall now regard its domain of application as B�ohm treespartially ordered by the ordering inherited from 
-match ordering on the corresponding terms; thisis, of course, a Scott-domain. We would use the same symbol [�]A for the continuous extensionof the earlier map to in�nite (Y-free obviously) closed B�ohm trees, de�ned by taking the t of itscompact approximants. Analogously, we use the same symbol r() for the continuous extension ofthe earlier-de�ned function to non-compact elements|again by taking least upper bounds in itsco-domain of B�ohm trees. With these extensions it easy to verify the following Lemma.Lemma 5.1 The pair of maps (rA(�); [�]A) instantiate a continuous isomorphism between JAK andthe domain of maximally �-expanded B�ohm trees of Type A.Proof: Straightforward extension of the arguments of Proposition 5.1 to the respective directedcompletions on the basis of least upper bounds.An important idea that we would need to use in the sequel is that application in our typed algebraof sections mirrors that in the continuous algebra of B�ohm trees.Lemma 5.2 For sections � 2 JA)BK and � 2 JAK, we have thatr(�)r(�) = r(�:�)where the left-hand juxtaposition signi�es application in the applicative algebra of B�ohm trees.Proof: We deal with the compact case �rst. The result in this case follows by straightforwardinduction over the length of a leftmost-outermost �-reduction sequence of the tree (r(�)r(�))(we assume that any �-reductions are postponed till the after all the �-reductions have beendone|cf. [BCL85, Prop. 3.1.2]). Note that trees in the range of r() are Y-free. The basicidea is that every step in such a reduction strategy is mimicked by the function  () in theprevious section|essentially, a �-reduction step, resulting in the substitution of an argumentat the head variable of some sub-tree K of the function term n, is echoed by  by the openingof a context [k in the dialogue sequence, where k is the box index corresponding to the sub-treeK. This context is closed by ]k precisely when the reduction sequence initiated by the initialsubstitution is complete. The sequence of substitutions indicated by the contexts is actuallyimplemented by the operation �(). The leftmost-outermost order is re
ected precisely bythe partial order �X on the evaluation (�()) of summands of the dialogue correspondingto contracted variables (multiple occurrences of bound-variables). Finally, the �-reductionsimplemented through the operator �() in our de�nition, are taken care of by the map IB():as may be easily seen, the former has been de�ned to agree with the latter precisely. Theextension to the non-compact case follows by routine application of the continuity of r(�),that of the application operation : for sections (cf. Equation 4.3 and following remarks).This proposition would furnish an important tool to prove facts about the semantic function PJ�K�in the sequel.On the basis of the above facts, we have the following properties of the sequentially realizablemaps.Lemma 5.3 The identity map is sequentially realizable, and the sequentially realizable maps areclosed under composition.Proof: Given sequentially realizable maps f : JAK! JBK, realized by FIffi j i 2 Ig, and g :JBK! JCK, realized by FJfgj j j 2 Jg, we claim that the composed map g � f : JAK! JCK is12



sequentially realized by the section [h : A)C] whereh =GJ GI f[�x : A:r(gj)(r(fi)x)]g(such a normal form would always exist, since recall that the recursion combinator Y wouldnot occur in either of the terms r(fi) or r(gj)). The result follows directly from Lemma 5.2and the well-known syntactic continuity property of B�ohm trees (cf. [BCL85, Theorem 3.5.5]).Moreover, composition is obviously left-strict. Again, the identity map in any JAK! JAKwould obviously be realized by the section [(�x : A:x) : A)A].We de�ne the category P to be the sub-category of topological spaces consisting of objects of theform JAK (for A a PCF Type), and sequentially realizable maps.Our semantics would be de�ned over the category P formed by closing P under productsand exponents conservatively; i.e. the least Cartesian closed sub-category of the category of setscontaining P , such that exponents of the objects existing in the latter coincide with the exponentsin the new Cartesian closed category. Let us de�ne the binary operator ) on sets as follows.X)Y = (JA)BK if X = JAK& Y = JBKff : X!Y j f a set-theoretic mapg otherwise (5.2)where obviously A and B are PCF Types. Let us denote by ? � f�g, the terminal object of thecategory of sets. The category P is de�ned inductively: the set objects of P is the smallest setsatisfying: ? 2 Obj(P)X 2 Obj(P ) ) X 2 Obj(P)X;Y 2 Obj(P) ) (X � Y ) 2 Obj(P)X;Y 2 Obj(P) ) (X)Y ) 2 Obj(P)The morphisms in P are give by the following rules.f 2 P(X � Y;Z) , 9!g 2 P(X;Y)Z): f(hx; yi) = Jg(x)K(y)f 2 P(X;Y � Z) , 9!g 2 P(X;Y ):9!h 2 P(X;Z): f = hg; hiP(X;Y ) = X)Y { in all other caseswhere the operator J�K in the second clause is de�ned as earlier, if (Y)Z) 2 Obj(P ), and is theidentity otherwise. Following standard notation, we would refer to the unique morphism g in thesecond clause as �(f). In the sequel, we would confuse an element k 2 JAK with the correspondingmap � : ?! JAK : � 7! k.The Cartesian closure of P is a straightforward consequence of the de�nition.Lemma 5.4 The category P is Cartesian closed.Proof: More or less immediate from the de�ning conditions. The Cartesian projections �0 :X � Y !X and �1 : X � Y ! Y are the usual in case X or Y 62 P ; otherwise, for X;Y 2 Pwe have �(�0) = J[�x : A:�y : B:x]K and �(�1) = J[�x : A:�y : B:y]Kwhere X � JAK and Y � JBK. The function sl eval() : (X)Y )�X!Y is inherited from theCartesian closed structure of sets: in case X;Y 2 P , we have explicitlyeval(hf; xi) = JfK(x)and the Curry function �() is as de�ned earlier. The uniqueness of the value of �(f) for anyf is easy to see, as are the de�ning identities for any exponent object.13



An important fact to note is that P is order enriched.Lemma 5.5 The category P is enriched over the category of dI-domains.Proof: A simple induction over the length of the referring expression P(X;Y ) for the Homset: thelength is de�ned as the sum of the lengths of X and Y ; the length of X is 0 if X refers toan object of P ; length of X � Y is one more than the sum of the lengths of X and Y , whilelength of X)Y is the same as the sum of the lengths of X and Y . All Homsets of P areordered in the point-wise order. For the base case of the induction, we know that Homsetsinherited from P obviously inherit the order on their co-domains, which are all dI-domains(cf. Proposition 3.2, Theorem 4.1). In the general case, we propagate this order along theinductive structure of our category. Thus, Cartesian products are component-wise ordered,and are obviously dI-domains whenever their components are. Exponents inherit this orderpoint-wise. Hence the argument.In the sequel, we would use the operator c(�) as earlier if its argument is in Mor(P ), and otherwisede�ne it as the identity.The interpretation I of the ground Types B and N is given by the spaces JB K and JN K respec-tively. The basic set of constant and function symbols are interpreted by the speci�c morphismssequentially realized by the corresponding sections (derived from the corresponding terms in maxi-mally �-expanded form); thus, for instance, the constant function succ is interpreted by the speci�cmorphism in JN K! JN K sequentially realized by the section [�x : N :succ(x)] in JN)N K; the func-tion condN is interpreted by the speci�c morphism in JB K! JN)N)N K sequentially realized bythe section [�x : B :�y : N :�z : N :condNxyz] in JB)N)N)N K, and so forth. A constant k of anyground Type T is interpreted by the corresponding map k : ?! JTK. Thus, our interpretation isnot the standard one, but the free interpretation|i.e. the free continuous algebra generated by theconstants of base Types, which is also the initial interpretation.The semantics of PCF in Cartesian categories enriched over the category of Scott-domainsis quite standard, and is in terms of a semantic functions PJ�K� parameterized by a sequence �containing all free variables (appropriately type-annotated) in the argument term. We sketch themore important details of this scheme; precise technical details may be looked up in any standardreference ([BCL85, Ber79, Ber80]).We de�ne the denotations (extensions) of the types as: PJAK = JAK. In general, the denotationof any term M : A with Fvar(M)�hxi : Aii0�i�n, is a morphism PJA0K� � � � � PJAnK!PJAK inP. We would denote the projection on the i-th component of this product as �i. Given morphismsm : X! (Y)Z) and n : X!Y , we would write m � n for the composition eval � hm;ni. We mayde�ne our semantic function by structural induction.PJf : AK� = dI(f) : ?!PJAKPJx : AK� = �i where x is the i-th member of �PJ
 : AK� = ? : ?!PJAKPJY : (A)A))AK� = �Gn�0[�g : A)A:gn(
A)]� : ?!PJ(A)A))AKPJMNK� = PJMK� �PJNK�PJ�x : A:MK� = �(PJMK�[x:A)where, in the fourth clause, g0 = id and gn+1 = g � gn; and f is any constant or constant functionof the indicated Type, in the �rst clause. Also, we use the notation � [ x : A to signify that x : Ais appended to the sequence �. 14



The proof that PJ�K� de�nes a least �xed point (according to established usage; cf. [BCL85,Defn. 4.2.2]), or continuous model (cf. [Ong95, Pg. 306]) is quite standard, and we refer the readerto the references quoted earlier (ibid.; in particular [BCL85, Theorem 6.2.2]). It is also a well-knownfact that the model de�ned in this fashion over the free interpretation is computationally adequateand thus sound.The Proposition 5.1 paves the way for our de�nability result.Proposition 5.2 Any compact element f in a domain JAK of the model P is de�nable|i.e. thedenotation of an unique term �f of the calculus.Proof: Immediate, by Proposition 5.1: the unique term �f posited in the proposition is simplyr(f); it is easily seen that PJ �fK = f (confusing the distinction between the element f andthe corresponding map from the terminal object).The critical fact that falls out of the de�nability condition is that of order-extensionality. In orderto prove it, we use the map r(�) and its property above to import the order-extensionality of themodel BT � consisting of (�nite and in�nite) closed B�ohm trees in maximal �-expansion, over thefree (initial) interpretation I0. This is a well-known result in the literature and we cite it below forreference.Lemma 5.6 The model BT � is order-extensional|in other words, for B�ohm trees f; g of TypeA)B, we have f v g , f(x)v g(x)for all trees x of Type A (the notation f(x) denotes the usual operation of application among B�ohmtrees).Proof: The proof is rather technical, and well-documented in [BCL85, Ber79, Ber80]; we wouldrefer the reader to these references. A brief sketch has also been provided in the proof ofProposition 4.5.Finally we may state the order-extensionality proposition.Theorem 5.1 The model P is order-extensional|in other words, for any f; g : X!Y , we havef � g , 8x 2 X: f(x)vg(x)where we use the symbol � for the point-wise order, and v for the order on the object Y .Proof: We need consider only the case that X and Y are objects in P ; the general case is arguedby a straightforward induction over the length of the referring expression for P(X;Y ) asin the proof of Lemma 5.5. The base case for the induction, with X;Y 2 Obj(P ) goes asfollows. The key idea in the proof is importing the order-extensionality property from BT �.Considering the more di�cult part of proposition of order-extensionality (the ( direction),we consider the case that f(x)6 g(x) for all x in the domain of the functions f; g in ourmodel. Now,f(x)v g(x))r(f(x))vr(g(x)) { continuity of r())r(f̂ :x)vr(ĝ:x) { since f(x) = f̂ :x)r(f̂)r(x)vr(ĝ)r(x) { property of r; cf. Lemma 5.2)r(f̂)vr(ĝ) { order-extensionality of BT �; cf. Lemma 5.6) f̂ v ĝ { applying [�] to both sides; cf. Lemma 5.1) f � g { monotonicity; cf. Corollary 4.415



where we have signi�ed the 
-match order on B�ohm trees by v. This proves the more di�cultpart of the order-extensionality property; the converse is almost immediate from monotonicityproperties (cf. Corollary 4.4) and we shall not labor it. The rest of the induction argument isstraightforward, noting that the order on all function spaces and other objects is point-wise.Hence �nally, on the basis of the Proposition 5.2 and Theorem 5.1, we may assert our main result.Theorem 5.2 The model P is order-extensional, and fully abstract with respect to the interpreta-tion I.Proof: It is a well-known result, that an extensional model of PCF over the free interpretationis fully abstract i� it is order-extensional and and all compact elements of the domains ofinterpretation are de�nable (cf. [BCL85, Theorem 5.3.3]).6 ConclusionsThis brings to a conclusion our attempt to study the intensional and extensional aspects of higher-type sequential computation in the framework of a�ne geometry. The basic point of this exercisewas to demonstrate that enriching the topological spaces of traditional denotational theory withthe (local) geometrical structure of simplicial sets, gives a nice way to constrain the class of compu-tations that we would like to model in such spaces to intrinsically sequential computations. The keyadvantage of this additional geometric structure is to give a formal method to localize computationsto certain localities (cells, faces) of the domain, and to phase the resultant computations so thatcertain basic causal dependencies are respected. These two basic operative principles are at theheart of any kind of sequential computation and in our case, they are evidenced respectively, in thegeneration of the dialogue sequences (recursing within and out of the simplicial sub-structure in a\call-return" fashion; cf. [ADLR94, DR94]) and in the eventual evaluation of these sequences by�, (weakly) constrained by the � order on the evidently parallel sets of such sequences.The principal gaps in this framework are two-fold. First, as we have pointed out in the earlierpart, the normalization process on the basis of dialogue sequences are only tenuously related to thecut-elimination process of the previous part of our study. It would be extremely desirable if suchsequences could be analytically generated on the basis of something like the Execution formula inother approaches drawing upon the Geometry of Interaction ([Gir89, DR93, DR95, AJ94a, AJ94b]).Second, the topological structure of our spaces are induced in a facile fashion from the syntacticnotion of 
-match, and the sequentially realizable maps are quite unrelated to the morphisms inthe initial category of (Z=2)-sheaves: both are really aspects of the general problem of the highdegree of syntactic determination in our model and it would certainly be desirable to have a moresynthetic topological structure. It is an aspect of our approach that observational quotienting isnot required for extensionality w.r.t. the free interpretation: however, the reader would note thatour semantics is still not fully abstract with respect to the standard interpretation|though itcontains only sequentially computable functions. This has to to do with the intensionality of ourrepresentations at the ground types, and to eliminate this (thus obtaining a fully abstract modelover the standard interpretation) one would have to use some device as observational quotients.Finally, it would appear that the categorical structure of the simplicial topos (and relatedtoposes, such as that of cuboidal sets, cf. [FPP97]) could be a viable basis to derive models ofAxiomatic and Synthetic domain theory, with a sequential realizability structure at its basis (seealso [FR]) . As remarked earlier, this has a good localization structure (it is a Grothendiecktopos) and could presumably furnish a nice framework for the study of inductive structure withina constructive universe. 16
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