
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Tagungsband 2. Workshop zur
Software-Qualitätsmodellierung und -bewertung

Stefan Wagner, Manfred Broy, Florian Deissenboeck, Peter
Liggesmeyer, Jürgen Münch (Hrsg.)

TUM-I0917
Juli 09

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-07-I0917-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c©2009

Druck: Institut für Informatik der
Technischen Universität München

Vorwort

Qualität ist seit Beginn der kommerziellen Entwicklung von Software ein wichtiges Thema in Forschung und
Praxis und diese Bedeutung verstärkt sich noch weiter. Heutige Entwicklungen stellen zusätzliche
Anforderungen an verschiedenste Qualitätsaspekte dar. Beispielsweise führt die Durchdringung von kritischen
Systemen, wie Flugzeugen oder Automobilen, zu immer höheren Sicherheitsanforderungen an Software. Der
starke Anstieg der durchschnittlichen Code-Größen und die Langlebigkeit von Software-Systemen machen die
Wartbarkeit zu einer wichtigen Eigenschaft. Die Beherrschung von Software-Qualität stellt somit ein wichtiges
Ziel im Software Engineering dar. Diesem Ziel steht aber die Komplexität und Vielschichtigkeit von Qualität
gegenüber.
Es existiert eine große Zahl an unterschiedlichen Sichten und eine entsprechende Vielzahl an
Herangehensweisen zu diesem Thema. Für die praktische Anwendung in der Software-Entwicklung stehen
aufgrund dieser Vielfalt überwiegend nur Insellösungen zur Verfügung, die keine ganzheitliche Behandlung des
Themas ermöglichen. Beispielsweise sind trotz der engen Verbindung Bewertungen von Zuverlässigkeit und
Nutzbarkeit typischerweise nicht integriert.
Ein verbreitetes Vorgehen zur Bewältigung dieser Probleme stellt die Verwendung von Qualitätsmodellen und
daraus abgeleiteter bzw. damit in Beziehung gesetzter Bewertungen dar. Ein solches Vorgehen wird sowohl in
der Forschung untersucht, als auch bereits in der Praxis angewendet. Es hat sich aber oft gezeigt, dass Standards,
wie die ISO 9126, nicht direkt anwendbar sind und eigene Qualitätsmodelle für spezifische Situationen erstellt
werden müssen. Dies resultiert in teilweise sehr unterschiedlichen Ansätzen zur Qualitätsmodellierung und -
bewertung. Ziel dieses Workshops war es, wie bereits in der ersten Ausgabe dieses Workshops (SQMB '08),
diese Ansätze vorzustellen und zu diskutieren. Dies konnte durch ein breites Spektrum an Beiträgen von sehr
technisch-orientierten bis hin zu sehr managementorientierten Modellen für eingebettete Systeme wie auch
Informationssysteme erreicht werden.

Organisation

Der Workshop SQMB ’09 wurde in Zusammenarbeit der Technische Universität München und des Fraunhofer
IESE organisiert. Der Workshop fand im Zusammenhang mit der Konferenz SE 2009 statt.

Organisatoren

Stefan Wagner, Technische Universität München
Manfred Broy, Technische Universität München
Florian Deißenböck, Technische Universität München
Peter Liggesmeyer, Fraunhofer IESE
Jürgen Münch, Fraunhofer IESE

Programmkomitee

Ralf Ackermann, SAP
Klaus Beetz, Siemens
Thomas Beil, Daimler
Manfred Broy, TU München
Horst Degen-Hientz, KUGLER MAAG CIE
Florian Deißenböck, TU München
Reiner Dumke, Universität Magdeburg
Gregor Engels, Universität Paderborn
Max Fuchs, BMW
Jürgen Knoblach, BMW
Peter Kock, MAN Nutzfahrzeuge
Christian Körner, Siemens
Claus Lewerentz, TU Cottbus
Peter Liggesmeyer, Fraunhofer IESE

Oliver Mäckel, Siemens
Jürgen Münch, Fraunhofer IESE
Dietmar Pfahl, Simula Research Laboratory
Markus Pizka, itestra
Reinhold Plösch, JKU Linz
Ralf Reussner, Universität Karlsruhe
Wilhelm Schäfer, Universität Paderborn
Kurt Schneider, Universität Hannover
Andy Schürr, TU Darmstadt
Dirk Voelz, SAP
Stefan Wagner, TU München
Andreas Zeller, Universität des Saarlandes
Rolf Ziegler, SAP

Externe Gutachter

Oliver Sudmann

Messen von Software-Qualität bei der SAP:
der SAP Quality Index

Günther Limböck

SAP AG

Abstract. Der Vortrag geht auf die Herausforderungen ein, die mit dem Messen
von Software-Qualität verbunden sind. Es wird ein Projekt bei der SAP
vorgestellt, welches zum Ziel hatte, ein System zum Messen von
Softwarequalität einzuführen. Wesentliche Inhalte des Vortrages:
- den Prozess der Definition von Key Performance Indikatoren für Software
Qualität
- Überblick über die definierten KPIs sowie deren Aggregation in Form des
SAP-Quality-Index
- Die Herausforderungen beim Schaffen der notwenigen Infrastruktur und
Tools
- Konsequenzen für Governance und Betrieb des SAP-Quality-Index
Der Vortrag schließt mit einem Rückblick auf die Lessons Learned.

Comprehensive Landscapes for
Software-related Quality Models

Michael Kläs, Jens Heidrich, Jürgen Münch, Adam Trendowicz

Fraunhofer Institute for Experimental Software Engineering,
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

{michael.klaes, juergen.muench, jens.heidrich, adam.trendowicz}@iese.fraunhofer.de

Abstract. Managing quality (such as service availability or process adherence)
during the development, operation, and maintenance of software(-intensive)
systems and services is a challenging task. Although many organizations need
to define, control, measure, and improve various quality aspects of their devel-
opment artifacts and processes, nearly no guidance is available on how to se-
lect, adapt, define, combine, use, and evolve quality models. Catalogs of quality
models as well as selection and tailoring processes are widely missing. One es-
sential reason for this tremendous lack of support is that software development
is a highly context-dependent process. Therefore, quality models always need to
be adaptable to the respective project goals and contexts. A first step towards
better support for selecting and adapting quality models can be seen in a classi-
fication of existing quality models, especially with respect to their suitability for
different purposes and contexts. Such a classification of quality models can be
applied to provide an integrated overview of the variety of quality models. This
article presents the idea of so called comprehensive quality model landscapes
(CQMLs), which provide a classification scheme for quality models and help to
get an overview of existing quality models and their relationships. The article
describes the usage goals for such landscapes, presents a classification scheme,
presents the initial concept of such landscapes, illustrates the concept with se-
lected examples, and sketches open questions and future work.

Keywords: Software Quality, Quality Assurance, Project Management, Quality
Management, Quality Standards, Quality Definition, Quality Measurement

1 Introduction

The multitude of software-related quality models available and the lack of guidance
for identifying, evaluating, selecting, and adapting a set of appropriate models for a
specific organization or project implies 1) a need for getting a structured classification
and overview of available quality models, 2) a need for linking quality aspects to
higher-level goals of a project or an organization and the respective context, and 3) a
need for appropriate selection and customization processes. This article focuses on the
need for getting a structured classification and overview of available quality models.

Currently, a variety of quality models exists, originating from the literature, com-
pany standards, official standards, or other sources (e.g., they might be implicitly

defined in measurement systems, key performance indicators, or quality gates). Typi-
cally, quality models focus on product quality (e.g., [1], [2]), process quality (e.g.,
maturity models, process adherence, or performance models), resource quality (e.g.,
server availability model, qualification model), or project quality (e.g., milestone
slippage model or project cost). Each of these models usually supports only a limited
set of application purposes (like characterization [3], improvement [4], or prediction
[5]). In many cases, it is not obvious for which usage purposes the models are suit-
able, in which contexts they can be applied (e.g., in which application domain), and
how to customize them. In addition, it is not clear to what extent the models have
already been evaluated. In case of the availability of empirical evidence, evaluation
and dissemination are typically limited to a specific context and difficult to find in the
literature.

In consequence, quality assurance managers, quality managers, and project plan-
ners have significant problems in identifying the appropriate set of quality models that
is relevant for them. Furthermore, the lack of a uniform classification of quality mod-
els aggravates the communication regarding quality aspects.

The concept sketched in this article consists of a classification of quality models
and the use of this classification in a so-called comprehensive quality model land-
scape (CQML). The idea of cartographing quality models in landscapes can be com-
pared with so-called Enterprise IT landscapes that aim at improving the communica-
tion regarding networked IT systems in a company through graphical visualizations
[6].

The article is structured as follows: Section 2 defines a set of usage scenarios for
CQMLs, Section 3 sketches the classification scheme, Section 4 gives an overview of
the landscape concept, and Section 5 provides conclusions, open questions, and direc-
tions for future work.

2 Usage Scenarios for Comprehensive QM Landscapes

In the context of software engineering, a number of potential decision-making
processes may be effectively supported by QM landscapes. In their research, the au-
thors aim at the following particular CQMLs usage scenarios:

S1 Improve the communication between involved people (such as quality assurance
personnel, managers, project planners, developers, contractors) regarding qual-
ity models;

S2 Provide a comprehensive overview of (relevant) quality models;
S3 Support the identification of gaps (i.e., identify areas where quality models

would be necessary but are currently missing);
S4 Support the identification and selection of relevant quality models in a goal

oriented way;
S5 Support the adaptation of quality models to specific goals and contexts (this also

requires, for instance, an adaptation process);
S6 Support the identification of relationships between quality models;

S7 Support the combination of quality models (this also requires, for instance, ag-
gregation and composition models as well as a kind of unique format for de-
scribing quality models).

3 Classification Scheme for Quality Models

The authors see the following initial requirements for the classification and the land-
scape: Classification categories need to be (1) meaningful/minimal in the sense that
they contribute to at least one usage scenario, (2) complete in the sense that all quality
models can be categorized, and (3) orthogonal in the sense that the classification is as
unambiguous as possible.

In order to systematize and evaluate quality models, we created a classification
scheme including major dimensions based on the goal template provided by the well-
established Goal-Question-Metric (GQM) paradigm [7]. The GQM goal template
specifies five aspects that should be considered while defining goals of software
measurement. We utilize the GQM goal template as follows:
• Object specifies what is being examined by a quality model. The major classes of

objects include products, processes, resources, and projects.
• Purpose specifies the intent/motivation of quality modeling. The (initial) major

purposes include (ordered by an organization’s measuring capabilities):
• Characterization - describing objects with respect to quality,
• Understanding - explaining dependencies between (sub-)qualities of objects,
• Evaluation - assessing the achievement of quality goals,
• Prediction - estimating the expected value of quality,
• Improvement - determining what needs to be done for improving quality (quan-

titatively).
• Quality Focus specifies the quality attribute being modeled. Example software-

related qualities are reliability of products, maturity of processes, productivity of
personnel, or cost of projects.

• Viewpoint (Stakeholder) specifies the perspective from which the quality attribute
is modeled. Typically, the perspective refers to a stakeholder from whose view-
point the quality attribute is perceived.

• Context specifies the environment in which the quality modeling takes place. The
context characteristics should, in particular, cover aspects such as:
• Scope, which specifies the comprehension of an organizational and process area

covered by a quality model. An example organizational scope could be the
whole organization, business unit, group, or project, whereas an example proc-
ess scope could be process, activity, or task.

• Domain, which specifies the domain(s) a quality model covers (and is intended
for). Typical software application domains include: embedded software systems,
management & information systems, and web application.

These characteristics serve as a basis for pre-selecting major groups of quality
models. As, in practice, each group will probably contain many, largely heterogene-
ous, models, additional aspects need to be considered in order to select a narrower

group of quality models that will fit particular demands and capabilities. It must be
ensured that a model’s critical prerequisites are fulfilled before it can be utilized. One
essential aspect to consider are inputs required by a specific quality model. This in-
cludes type of data (e.g., objective-subjective, categorical-numerical, or certain-
uncertain), amount of data, and quality of data (e.g., completeness). Further, moti-
vated by industrial demands, we propose considering such aspects as empirical evi-
dence and utilization support. Empirical evidence specifies the amount and quality of
empirical studies proving that a quality model works in practice as expected. Utiliza-
tion support mainly refers to the amount and quality of documentation for a quality
model; it may also include the existence of tools supporting the utilization of a quality
model.

Finally, dependent on the values of the major characteristics, further aspects may
need to be considered. For example, given that a quality model does not perfectly fit
particular needs and capabilities its flexibility might be an essential characteristic to
consider. Flexibility here refers to the extent to which the model (1) is already prede-
fined (i.e., if it represents a fixed-model or a define-your-model approach) and (2) can
be adapted to the specific needs and capabilities. Moreover, dependent on the purpose
of modeling, the model’s availability might play an important role. In case of predic-
tion purposes, the earlier a prediction model can be applied (can provide estimates),
the better.

4 Landscaping Quality Models

As mentioned in Section 1, there exists a variety of different quality models for dif-
ferent application scenarios, and it is a challenging task to create a landscape of exist-
ing models. For example, one usage of CQMLs should be the selection of appropriate
quality models in a goal-oriented way for measurement goals defined on the basis of
GQM (S4). Depending on the specific application scenarios of an organization, dif-
ferent dimensions may be important for creating such a landscape. Furthermore, it can
be helpful to restrict the quality models presented in a landscape by fixing one or
more dimensions. For instance, one might consider product quality models only (by
restricting the “object” dimension) or one might only consider models relevant in a
certain context (e.g., by restricting the scope/domain). Quality models may consist of
several sub-models (e.g., ISO 9126 has models for internal quality, external quality,
and quality in use). Depending on the level of detail of a particular landscape, those
sub-models may have to be classified separately.

Improvement

Prediction

Evaluation

Understanding

Characterization

ProjectResourceProcessProduct

Improvement

Prediction

Evaluation

Understanding

Characterization

ProjectResourceProcessProduct

IEEE 1045-1992 Universal
Quality Focus

Specific Quality
Focus

Object

Quality
Focus

Pu
rp

os
e

IS
O

91

26

S
pi

ce

E
ar

ne
d

Va
lu

e

C
oB

R
A

R
el

ia
bi

lit
y

G
ro

w
th

Fig. 1. Sample Landscape of Quality Models.

To give an example, let us consider three main dimensions for creating a high-level
landscape of quality models: object, purpose, and quality focus. Fig. 1 gives a pre-
liminary classification of some popular quality models according to those three di-
mensions. The landscape uses quite simple classes for the three dimensions:
• Object: A quality model may consider different objects. For instance, ISO 9126 [2]

makes statements about the general software product quality, CoBRA [8] addresses
project costs, and reliability growth models [5] make statements about actual prod-
uct reliability or the remaining system test time of the test process. For our land-
scape, we want to classify the models into four classes: product, process, resource,
and project. A quality model may be assigned to more than one class or even only
address parts of a class (e.g., a certain sub-process like testing or a certain part of a
product like the design document).

• Purpose: A quality model may support different purposes. In our landscape, we
use the high-level classes: characterization, understanding, evaluation, prediction,
and improvement. In practice, a quality model may support more specific purposes
(like risk assessment or supplier management) that may be assigned to one or more
of the high-level classes presented here. For instance, ISO 9126 may be used to
characterize and understand software quality. There are no thresholds defined for
the metrics in the model. So, evaluation (comparison) using ISO 9126 is not possi-
ble out-of-the-box. Furthermore, no prediction and quantitative improvement sce-
narios are supported.

• Quality Focus: Creating universal classes for the quality focus would probably be
as difficult as creating a universal quality model. There exists a variety of qualities
and sub-qualities, which are mostly ordered and defined differently in different
quality models. For our landscape, we simply want to distinguish between quality
models addressing a single, specific quality focus (like productivity as one aspect
of process quality [3] or reliability as one aspect of product quality [5]) and models
claiming to have a universal quality focus (usually refining qualities by sub-
qualities), like the ISO 9126 for product quality.

5 Conclusions

This paper presents the first step towards developing a more comprehensive classifi-
cation scheme for quality models and goal-oriented landscapes (so-called CQMLs).
Future work will be in the area of refining and empirically evaluating the classifica-
tion scheme for accessing and improving the applicability and usefulness for the
stated scenarios. Existing quality models should be reviewed and classified based on
the validated schema to build up a database of existing quality models. The classifica-
tion scheme and landscapes should be integrated into a comprehensive model selec-
tion and adaptation process (inspired by the comprehensive reuse process [9]) for
building up an experience base of quality models. This work is planned to be con-
ducted as part of the publicly funded BMBF project “QuaMoCo”.

6 Acknowledgments

Parts of this work have been funded by the BMBF project “QuaMoCo – Software-
Qualität: Flexible Modellierung und integriertes Controlling” (grant 01 IS 08 023 C).

7 References

1. Barry W. Boehm, John R. Brown, Hans Kaspar, Myron Lipow, Gordon J. MacLeod,
and Michael J. Merritt, Characteristics of Software Quality. North Holland Publishing
Company, 1978.

2. ISO/IEC 9126 International Standard, Software engineering – Product quality, Part 1:
Quality model, 2001.

3. IEEE 1045 Standard for Software Productivity Metrics, 1992.
4. CMMI for Development, Version 1.2, CMU/SEI-2006-TR-008, Carnegie Mellon Uni-

versity, 2006.
5. Lyu M.R., Encyclopedia of Software Engineering. John Wiley & Sons, chapter Soft-

ware Reliability Theory, 2002.
6. Matthes, F., Softwarekartographie. in: Kurbel, Karl; Becker, Jörg, Gronau, Norbert;

Sinz, Elmar J.; Suhl, Leena (Hrs.): Enzyklopädie der Wirtschaftsinformatik, 1. Aufla-
ge, Oktober 2008.

7. Victor R. Basili: Software Modeling and Measurement: The Goal/Question/Metric
paradigm, Technical Report CS-TR-2956, Department of Computer Science, Univer-
sity of Maryland, College Park, MD 20742, 1992.

8. L.C. Briand, K. El Emam, F. Bomarius, CoBRA: A Hybrid Method for Software Cost
Estimation, Benchmarking and Risk Assessment, Proceedings of the 20th International
Conference on Software Engineering, pp. 390-399, 1998.

9. V. R. Basili, H. D. Rombach, Support for comprehensive reuse, Software Engineering
Journal, v.6 n.5, p.303-316, Sept. 1991.

A Proposal for a Quality Model Based on a Technical
Topic Classification

R. Plösch1, H. Gruber1, C. Körner2 , G. Pomberger1, S. Schiffer1

(1) Johannes Kepler University Linz, Institute for Business Informatics – Software
Engineering, Linz, Austria

reinhold.ploesch | harald.gruber | gustav.pomberger | stefan.schiffer @jku.at
(2) Siemens AG, Corporate Technology – SE 1, Otto-Hahn-Ring 6, Munich, Germany

christian.koerner@siemens.com

Abstract. Existing quality models like the ISO 9126 model lack preciseness in
order to be able to assign metrics provided by static code analysis tools.
Furthermore architects need a technical view on problems identified by static
code analysis tools – independent of the classification a specific tool might
provide. We therefore developed a Technical Topic Classification (TTC) that
tries to overcome the problems mentioned above and assigned approximately
2,000 metrics from various static code analysis tools for Java, C#, and C++ to
our TTC. The underlying metamodel for the TTC is semantically richer than the
metamodel of typical quality models.

1 Introduction and Overview

According to IEEE 1061 [9] “Software quality is the degree to which software
possesses a desired combination of quality attributes”. Following this definition it is
obvious that some mechanisms are necessary to systematically derive quality
attributes. The general structure of such a model typically follows the Factor-Criteria-
Metrics model (FCM) [1]. In this model the overall term quality is refined by quality
attributes and criteria up to a detail level that makes it possible to formulate metrics.
These metrics allow measuring the fulfillment of a piece of software with respect to a
specific quality attribute. This is crucial, because otherwise it is not possible to find
out whether a piece of software really possesses a desired quality (as requested by the
IEEE 1061 definition). The GQM approach [17], [18], [19] uses this general FCM
model and derives project-specific quality models by individually defining goals,
questions and metrics. Other approaches try to formulate quality models that typically
follow the FCM model and claim that they can be generally used in every software
project. These general quality models can be tailored to the specific needs of the
organization or project. Examples of such quality models are ISO 9126 [10], ISO
25000 [11], SATC [7] and FURPS [6] – just to name the most popular ones.

In our research project Code Quality Management (CQM) (see e.g. [13], [14] and
[15]) the emphasis currently is on providing methods, models and tools for
monitoring the quality of software throughout the development and maintenance
phases of a project. One important requirement is to know the quality of the software

(either generally or focused on some specific quality attributes) at any time with
minimal effort. Having this as background we heavily apply static code analysis tools
like PMD [16], FindBugs [5] or PC-Lint [12]. We therefore aim at operational quality
models where the metrics provided by the static code analysis tools (examples are
mentioned above) are assigned to the quality attributes. In our technical topic
classification we currently have assigned more than 2,000 metrics to the various
quality attributes. To build such a quality model it is first of all important for us that
the model is defined in a way that the assignment of metrics to quality attributes can
be done easily, by providing guidance for the assignment task in terms of rules and
constraints. The quality model as defined by ISO 9126 (this is also valid for other
published quality models) does not provide such guidance. It is for instance not easy
to decide whether a metric like “Number of methods that do not adhere to the naming
conventions” is an indicator for the quality attribute Readability or Changeability in
the ISO 9126 quality model. It is simply not clear; the only guidance available is the
definition of the quality attributes. In the specific case mentioned above the definition
of the quality attributes Readability and Changeability do not give precise answers,
though; see [3] for a more detailed discussion of shortcomings of the ISO 9126
quality model. Second, and even more important, we made the observation in various
quality management projects that architects and technical project managers prefer a
more technical view on quality. Although they are interested in maintainability (an
ISO 9126 quality attribute) in general, they are more interested in a technical
dimension – they want to find out more technically, why maintainability is bad. So
they are interested in topics like exception handling, inheritance, declaration and
definition, memory management, etc.

There are some approaches that try to provide a technical or problem classification
(see e.g. [8], [4] and [2]). None of these approaches is comprehensive enough (a
detailed analysis is outside the scope of this paper). From this background we
developed a technical topic classification (TTC) that is presented in the subsequent
chapters. Our principal approach is to provide a solid basis and a meaningful
classification that especially supports our requirements that will be presented in
Chapter 2. The TTC is extensible by nature, i.e. can be adapted to (domain) specific
needs without corrupting the principle structure.

2 Technical Topic Classification

The ISO 9126 standard defines three types of quality – internal quality, external
quality and quality in use. Our TTC focuses on internal quality, i.e. on the totality of
characteristics of the software product from an internal view. Internal quality is
measured and evaluated against the internal quality requirements. Details of internal
quality can be improved during code implementation and reviewing [10]. We will
show in the conclusion that the approach is flexible enough to cover external quality
and quality in use, too. From the introduction it should be clear that the TTC has to
adhere to a number of requirements:

The classification scheme must address the typical topics for a technical project
lead (or architect), i.e. runtime topics, design topics and code topics.
The classification must be flexible enough to cope with different development
paradigms, in particular with the imperative and the object-oriented paradigm.
On each level of the quality model a clear guidance must be available that makes
it easy to assign metrics to quality attributes.
There are always situations where multiple assignments are necessary and useful.
Nevertheless it must be made explicit in the quality model where this is
appropriate and under which conditions.
A metric must always be assigned to leaf elements in the quality model. If this is
not forced by the quality model, shortcomings of the classification remain hidden.

Taking this as input a very general metamodel for our TTC can be given in Fig. 1.
This metamodel is quite general and shows
the principal frame of the TTC, but is of
course not sufficient to understand the
model itself. The top-level hierarchy of our
TTC distinguishes Runtime topics, Code
topics and Design topics. Runtime topics
cover issues that are related to the
execution of software. Design topics cover
architectural issues and address abstract
data types, classes, modules and systems,
but explicitly not functions or expressions.

Finally, code topics cover typical implementation related aspects like naming
conventions, programming style, complexity, etc. Obviously the design topics could
also be part of the code topics, but as design topics are of vital interest in a project we
decided to give the design topics more weight by putting them on the top level of the
TTC. The following guidance rules (constraints) apply for the assignment of metrics
to the quality attributes:

Metric

Quality
Attribute

sub

*
{Constraints}

Runtime
topics

Design topics

Code topics

*

*

Fig. 1. Metamodel of the TTC

A metric assigned to the runtime topics must be assigned to the code topics or the
design topics, too.
Not every metric has to be assigned to the runtime topics.
Code topics and design topics are disjoint.

In the following subsections we will discuss the three main branches of the quality
model in more detail.

2.1 Classification of Runtime Topics

Fig. 2 shows our classification of runtime topics. In this branch of the TTC multiple
assignments of metrics to the top level quality attributes (Concurrency, Distribution,
etc.) are possible. Within one of these quality attributes metrics have to be assigned
uniquely to one leaf element of the sub-tree.

On the top level of the
classification we distinguish
resource related topics (Memory
topics, Performance topics,
External resources topics), Fault
tolerance topics, Concurrency
Topics and Distribution topics (i.e.
network related topics). On this
abstract level all runtime related
aspects can be assigned. For some
topics (e.g. Concurrency topics,
Performance topics) we do not yet
provide a more detailed
classification, as typical static
code analysis tools do not provide
a lot of metrics for these topics we
also did not provide a more

detailed classification here. On the most detailed level of the quality model there is
always a leaf element named “Other … topics”. This is necessary for assuring, that
metrics can always be assigned to a leaf element of the quality model. Furthermore
these “Other … topic” elements are a good source for enhancing the TTC over time.
It definitely makes sense to have a close look at metrics contained in this quality
attribute and to find out whether there are some similarities that would justify changes
to the quality model (renaming or refining of existing attributes, adding new
attributes).

Fig. 2. Runtime Topics

2.2 Classification of Code Topics

Fig. 3 shows the classification of code related topics. On the top level of this sub-
hierarchy the classification of metrics is based on the programming language
construct that a specific metric addresses. On this level five distinct categories are
offered; the categories are named and defined in a way that imperative programming
languages and object-oriented programming languages are both considered.
Especially for the category Expressions it would have been possible to refine this into
a more elaborate classification. We basically did not do this as architects are typically
not interested in such details. If their focus is on code topics they might differentiate
and focus on Expressions or Functions, but not on a specific kind of Expression.

The branches on this level are disjoint, so metrics must be assigned to one branch
only. Unfortunately there is a practical exception to this rule. Some static code
analyzers have badly designed rules. E.g., if they check naming conventions of
methods and classes in one rule, a duplication of rules (i.e. multiple assignments) is
inevitable.

On the next classification level we try to use the same classification topics for
each abstract language construct wherever possible. This should make it considerably
easier to assign metrics as the number of definitions that have to be kept in mind is
smaller – without loosing preciseness of the classification.

There are different groups of
metrics that are indicated by
colors in Fig. 3 and have the
following meaning:
Yellow: Applicable for all
language constructs. Comprises
the topics Naming and coding
style conventions as well as the
already discussed Other …
topics.
Red: Applicable for all
categories except Expressions:
This category comprises
documentation and declaration
topics. The documentation
topics are refined (not shown in
Fig. 3) in some sub-categories.
Green: Applicable for all
categories except Packages and
Modules. This category
comprises unorthodox language
usage as well as unorthodox
library usage. This category
might be refined later by
providing additional attributes
for different domains (i.e.,
unorthodox library usage for
domain specific libraries) or
subcategories formed by the
programming language.

Cyan: Applicable for functions and expressions; comprises correctness and
complexity topics. Besides these categorized topics (quality attributes) each topic can
have distinct quality attributes, e.g. Parameter topics or initialization topics (see
categories of Functions or Classes in Fig. 3). As a rule a metric may only be assigned
to one category within the code topics. At this point of reading it seems strange that
Complexity topics are assigned to Expressions and Functions, only. One would expect
to have them on the class level as well as on the package and module level. In our
opinion complexity beyond the expression and function layer has something to do
with design; we therefore put Complexity for the higher-order language constructs in
the design topics sub-branch (see next chapter).

Fig. 3. Code Topics

2.3 Classification of Design Topics

Fig. 4 shows the classification of design topics. On the top level of this sub-hierarchy
the classification of metrics is based on typical design elements that a specific metric
addresses. On this level four distinct categories are offered; they are named and
defined in a way that both imperative programming languages and object-oriented
programming languages are considered.

Again, on the next classification
level we try to use the same
classification topics for each
abstract language construct
wherever possible. This should
make it considerably easier to
assign metrics as the number of
definitions that have to be kept in
mind is smaller – without
loosing preciseness of the
classification. The two groups of
metrics are indicated by different
colors in Fig. 4:
Yellow: Applicable for all
language constructs. Comprises
the topics Information hiding
topics, Design best practice
topics, Complexity topics and
the already known Other…

topics. Red: Applicable for all categories except System. This category comprises
coupling and cohesion topics. Besides these categorized topics (quality attributes)
each topic can have distinct quality attributes – currently we have declared

Inheritance topics for classes. One
principal problem is that for example
inheritance topics can be viewed as design
best practice topics. The rule here is that
identified practices (metrics) should first
be assigned to the more specific topics

before assigning it to the Design best practice topics. Again, the assignment of rules
to these topics has to be disjoint. The design best practice topics are currently refined
as shown in Fig. 5. These design best practice topics deal with commonly used design
topics. The domain specific design topics can be refined (e.g. automation systems
domain or embedded systems domain) as well as the technology specific design
topics (e.g. CORBA topics, EJB topics, Message Queue topics or Transaction
Management topics). Currently these refinements are not done.

Fig. 4. Design Topics

Fig. 5. Design best practice topics

3 Refined Metamodel of the TTC

With the information presented in section 2 of this paper we can reformulate our
metamodel for the TTC and can therefore provide a model that gives more insight
about the structuring mechanisms applied to the TTC – see Fig. 6.

Language concept: The
language concepts are to be
understood as abstract
language concept. In order
to facilitate the meaning of
the abstract concepts
specific mappings of the
abstract language concepts
to the specific language
concepts (e.g. for the
programming language
Java) could be provided.

This would also ease the assignment process for metrics. Quality attribute group:
This is a set of quality attributes that is used for more than one language concept. In
the chapter 2 we marked these groups using a color code. Other … topics: This is a
specific quality attribute that has to be contained as leaf topic for every quality
attribute (for simplicity reasons this is not contained in Fig. 6). Constraints: On each
level of the TTC it is explicitly defined by means of constraints to which extent
multiple assignments of metrics to quality attributes are allowed. See chapter 2 for a
more detailed description of the constraints and guidance rules.

subDesign topics *

Language
concept

Quality
Attribute Group

*

Metric

Quality
Attribute

Runtime
topics*

{Constraints}

Code topics
*

Fig. 6. Refined metamodel of the TTC

4 Conclusion and Further Work

The quality model based on a technical classification is drawn on experience with
technical classifications for quality management in a number of projects. A previous
version of the TTC (unpublished) was used in more than 30 projects. The gained
experience and the identified shortcomings led to this proposal of a technical
classification.

Currently, only metrics from the tool PMD are assigned to the TTC – other tools
will follow in the near future. This will possibly cause changes of the TTC;
nevertheless we think that the metamodel will remain stable, as a number of possible
enhancements and additions are already foreseen. Domain specific design topics
currently are not refined into more specific topics – this will be done on demand, i.e.
when tools arise that provide specific support for a specific domain.

The focus of the current TTC is on internal quality and on integration of metrics of
static code analysis tools into the quality model. The integration of dynamic analysis
tools (focusing on internal quality) should be possible without problems; the existing
TTC is supposed to perfectly fit for that.

Adding quality attributes for external quality (e.g. correctness) will change the
structure of the metamodel (as shown in Fig. 6) by adding e.g. Correctness /

Functionality on the top level of the TTC. Nevertheless other quality attributes
relevant for external quality might need a deeper integration into the existing TTC
(e.g. for runtime topics in the context of performance).

The refined metamodel as presented in this paper focuses on the structure of the
quality model itself – other important aspects (besides the aspects already mentioned
in this concluding chapter) of the model are not yet covered and have to be considered
in the metamodel:

Justification of the Assignment of Metrics: It is important to have a justification
(which is structured information) for the assignment of metrics to quality
attributes. This has to be modeled as Attribute on the relation between a metric
and a quality attribute. Here some additional modeling is necessary that is not yet
incorporated in the actual meta model.
Metrics details: For an operational quality model detailed information about each
metric (Name, description, tool, version of tool, example) has to be available, but
also hints that help using these metrics (e.g., trustworthiness of the metrics,
expected costs for fixing a problem related to this metrics, examples how to fix a
problem)
Language concept details: Besides a description of the abstract language concept
details a mapping to programming language specific language concepts has to be
provided.
Quality attribute details: Besides a definition of the quality attribute, data about
the completeness of the quality attribute has to be provided. From point of view of
the metamodel this is quite easy as this can be realized by adding some additional
data fields. Nevertheless it will be difficult to fill these data fields, as this needs a
good understanding of what is missing. We think that this can be achieved more
easily with our TTC (compared to classical quality models like ISO 9126), as it is
easier to reason whether all Naming Conventions (one quality attribute of the
TTC) are covered by tools, than reasoning, whether all aspects of Readability (a
quality attribute of the ISO 9126 model) are covered.

Literature

1. Balzert H.: Lehrbuch der Software-Technik – Software Management; Software-
Qualitätssicherung, Unternehmensmodelierung, Spektrum Akademischer Verlag, 1998

2. Beizer B.: Software Testing Techniques. Electrical Engineering, Computer Science and
Engineering Series. Van Nostrand Reinhold, 1983.

3. Broy M., Deissenboeck F., Pizka M.: Demystifying maintainability. In: Proc. 4th Workshop
on Software Quality (4-WoSQ). ACM Press, 2006.

4. Chillarege R., Bhandari I.S., Chaar J.K., Halliday M.J., Moebus D.S., Ray B.K., Wong M-
Y.: Orthogonal defect classification – a concept for in-process measurements; IEEE
Transactions on Software Engineering, Vol. 18, No. 11, November 1992, pp. 943-955

5. Findbugs: Product information about FindBugs can be obtained via
http://findbugs.sourceforge.net

6. Grady R.B., Caswell D.L.: Software Metrics: Establishing a Company-Wide Program;
(Prentice Hall, Upper Saddle River, NJ 1987)

http://findbugs.sourceforge.net/

7. Hyatt L., Rosenberg L.: A software quality model and metrics for identifying project risks
and assessing software quality; In: Proceedings of 8th Annual Software Technology
Conference, Utah, April 1996

8. IEEE: IEEE Standard Classification for Software Anomalies (IEEE 1044-1993), IEEE, 1993
9. IEEE Standard 1061-1998 Standard for a Software Quality Metrics Methodology, IEEE,

1998
10. DIN ISO 9126: Informationstechnik – Beurteilen von Softwareprodukten,

Qualitätsmerkmale und Leitfaden zu deren Verwendung, 1991
11. ISO / IEC 25000:2005 – Software product Quality Requirements and Evaluation (SQuaRE)
12. Product information about PC-Lint can be obtained via

http://www.gimpel.com/html/pcl.htm
13. Plösch R., Gruber H., Hentschel A., Körner Ch., Pomberger G., Schiffer S., Saft M., Storck

S.: The EMISQ Method - Expert Based Evaluation of Internal Software Quality,
Proceedings of 3rd IEEE Systems and Software Week, March 3-8, 2007, Baltimore, USA,
IEEE Computer Society Press, 2007

14. Plösch R., Gruber H., Pomberger G., Saft M., Schiffer S.: Tool Support for Expert-Centred
Code Assessments, Proceedings of the IEEE International Conference on Software Testing,
Verification, and Validation (ICST 2008), April 9-11, 2008, Lillehammer, Norwegen, IEEE
Computer Society Press, 2008

15. Plösch R., Gruber H., Hentschel A., Körner Ch., Pomberger G., Schiffer S., Saft M., Storck
S.: The EMISQ Method and its Tool Support - Expert Based Evaluation of Internal Software
Quality, Journal of Innovations in Systems and Software Engineering, Springer London,
Volume 4(1), March 2008

16. PMD: Product information about PMD can be obtained via http://pmd.sourceforge.net/
17. Rombach H.D., Basili V.R.: Quantitative Software-Qualitätssicherung; In: Informatik

Spektrum, Band 10, Heft 3, Juni 1987, S 145-158
18. Solingen R.: The Goal/Question/Metric Approach; In: Encyclopedia of software

Engineering, two-volume set, 2002
19. Solingen R., Berghout E.: The Goal/Question/Metric Method; McGraw Hill Verlag,

Berkeley, 1999

http://www.gimpel.com/html/pcl.htm
http://pmd.sourceforge.net/

Modellierung von Software-Security mit
aktivitätenbasierten Qualitätsmodellen

Stefan Wagner, Shareeful Islam

Fakultät für Informatik
Technische Universität München
{wagnerst,islam}@in.tum.de

Zusammenfassung Security oder Informationssicherheit stellt für Soft-
ware immer noch eine große Herausforderung dar. Trotz breiter Anstren-
gungen Software sicher zu machen, ist die Zahl der berichteten Schwach-
stellen unvermindert hoch. Um dem entgegenzuwirken ist es wichtig,
Security-Anforderungen klar zu formulieren und den Entwicklern und
der Qualitätssicherung detaillierte Richtlinien an die Hand zu geben.
Dazu wird die Modellierung von Software-Security mit Hilfe von akti-
vitätenbasierten Qualitätsmodellen vorgestellt.

1 Einleitung

Trotz der vielfältigen und kostspieligen Anstrengungen, die Sicherheit von Soft-
ware sicherzustellen, ist bei den öffentlich-gemachten Sicherheitslücken kein si-
gnifikanter Rückgang zu verzeichnen [1]. Darüberhinaus sind aber nicht nur solch
einzelne Lücken, sondern auch das Zusammenspiel aller Security-Mechanismen
in einem Software-System entscheidend, was die Komplexität der Sicherheits-
analyse weiter erschwert. Software-Security ist daher immer noch eine große
Herausforderung in heutigen Softwaresystemen.

Qualitätsmodelle beschreiben was mit Qualität bedeutet und verfeinern die-
ses Konzept in einer strukturierten Art und Weise. In der Terminologie von [2]
sind also Qualitätsdefinitionsmodelle gemeint. In der Praxis wird dies oft auf
Metriken wie Zahl der gefundenen Fehler oder sehr abstrakte Beschreibungen
wie in der ISO 9126 [3] reduziert. Grundsätzlich werden Qualitätsmodelle min-
destens auf zwei Arten in einem Softwareprojekt eingesetzt: (1) als Basis zur
Definition von Qualitätsanforderungen und (2) zur Zuordnung von qualitätssi-
cherenden Maßnahmen und Messungen zu den Qualitätsanforderungen. Erste-
res wird in der Regel durch die Beschränkung üblicher Qualitätsattribute (Zu-
verlässigkeit, Wartbarkeit, . . .) eines Qualitätsmodells erreicht. In der Praxis
findet man beispielsweise verkürzte Formulierungen wie “Das System soll ein-
fach wartbar sein.” Die zweite Verwendung von Qualitätsmodellen wird oft nicht
explizit durchgeführt, sondern Metriken, wie die Zahl der durch Inspektion und
Test gefundenen Fehler, werden direkt verwendet. Der Grund ist die hochkom-
plexe Zuordnung von Metriken zu abstrakten Qualitätsattributen. Es ist also
prinzipiell wünschenwert, wenn Qualitätsmodelle hier mehr Struktur und Detail
liefern, so dass sie eng in den Entwicklungsprozess integriert werden können.

Problemstellung Security sollte, wie auch andere Qualitätsattribute, früh im
Entwicklungsprozess berücksichtigt werden. Jedoch fehlen auch im Bereich der
Sicherheit immer noch integrierte und konkrete Qualitätsmodelle, die sowohl
die präzise Spezifikation von Sicherheitsanforderungen, als auch deren direkte
Umsetzung und Überprüfung im System unterstützen.

Beitrag Das erprobte Vorgehen, Qualität mit Hilfe von aktivitätenbasierten Qua-
litätsmodellen zu beschreiben, wird auf Security übertragen. Dabei werden be-
kannte Quellen benutzt und integriert. Ziel ist die Integration von Security mit
Hilfe der Modellierung von System, System-Elementen, Umgebung und Prozess
und deren Einfluss auf Aktivitäten, insbesondere Angriffe. Dadurch wird die Si-
cherstellung von Security mit in den allgemeinen Qualitätsmanagement-Prozess
eingebunden.

2 Aktivitätenbasierte Qualitätsmodelle

Zur Erreichung dieser Strukturierung und des Detailgrads wurde die Verwen-
dung von aktivitätenbasierten Qualitätsmodellen vorgeschlagen [4]. Die Idee ist,
abstrakte “-ilities” für die Definition von Qualität zu vermeiden und stattdes-
sen Qualität in detaillierte Fakten herunter zu brechen und deren Einfluss auf
die Aktivitäten, die auf und mit dem System durchgeführt werden, zu beschrei-
ben. Für Wartbarkeit wird dies beispielsweise in [4] gezeigt. Das Modell enthält
Informationen über die Charakteristika eines Softwaresystems und anderer in-
teressanter Umgebungseinflüsse und deren Einfluss auf Wartungsaktivitäten, wie
beispielsweise Code lesen, Modifizieren oder Testen. Ein konkretes Beispiel dafür
sind redundante Methoden im Quelltext, also so genannte Klone. Sie haben
verschiedene Einflüsse, besonders wichtig ist aber der negative Einfluss auf Mo-
difikationen des Quelltextes, da Änderungen an Klonen an verschiedenen Stellen
im Text durchgeführt werden müssen. Das bedeutet, dass falls eine Systemen-
tität Methode das Attribut REDUNDANZ besitzt wird dies einen negativen Einfluss
auf die Aktivität Modifizieren (also eine Änderung der Methode) haben.

Das Modell enthält nicht nur diese Einflüsse der Fakten auf Aktivitäten son-
dern auch die Zusammenhänge untereinander. Sowohl die Fakten als auch die
Aktivitäten sind als Hierarchien abgelegt. Die oberste Aktivität Aktivität besitzt
Unteraktivitäten wie Benutzen, Warten oder Administrieren (siehe auch Abb. 1). In
praxistauglichen Modellen werden diese dann weiter verfeinert. Beispielsweise
kann die Wartung die Unteraktivitäten Code lesen und Modifizieren haben.

Die Fakten setzen sich zusammen aus Entitäten und Attributen, also Cha-
rakteristika einer Entität. Dies erlaubt die Entitäten einfach in einer Hierarchie
zu organisieren. Die oberste Ebene ist hier die Situation des Softwareentwick-
lungsprojekts. Es enthält beispielsweise das System, seine Umgebung und die Ent-

wicklungsorganisation. Wiederum müssen die Entitäten weiter verfeinert werden.
Beispielsweise besteht das System aus statischen und dynamischen Aspekten. All
Entitäten werden durch Attribute beschrieben. Ein Beispiel-Fakt ist die STRUK-

TURIERTHEIT des Systems: Ist das System in einer sinnvollen und definierten Art

und Weise strukturiert? Diese Fakten sind entweder automatisch oder manuell
überprüfbar. Soweit möglich werden auch entsprechende Metriken angegeben.

Beide Hierarchien, der Faktenbaum und der Aktivitätenbaum, können zu-
sammen mit den Einflüssen der Fakten auf die Aktivitäten als Matrix wie in
Abb. 1 dargestellt werden. Die Einflüsse sind dabei als Einträge in die Matrix
dargestellt, wobei ein “+” ein positiver und ein “-” ein negativer Einfluss ist.

Use Maintenance
Administra-

tion

Activity

O
rg
a
n
is
a
ti
o
n

E
n
v
ir
o
n
m
e
n
t

S
y
s
te
m

S
it
u
a
ti
o
n

Extent

Constrained-

ness

Distribution

- -

+ +

-

-

-

-

Structured-

ness

...

Danger

...

Personnel

turnover

...

Abbildung 1. Abstrakte Darstellung eines aktivitätenbasierten Qualitätsmodells als
Matrix

Es existiert eine abstrakte, textuelle Notation, die die entsprechenden En-
titäten, ihre Attribute und deren Einfluss auf Aktivitäten kompakt darstellt.
Beispielsweise ist das folgende Tupel ein Eintrag im Qualitätsmodell über kon-
sistente Bezeichner: [Bezeichner |KONSISTENZ]

+−→ [Modifizieren] Dies bedeutet, dass
konsistente Bezeichner einen positiven Einfluss auf Modifikationen am System
haben. Im Modell selbst werden darüberhinaus aber noch weitere Informationen,
wie ausführliche Beschreibungen und Quellen, dokumentiert.

Durch die Verwendung aktivitätenbasierte Qualitätsmodelle können früh kon-
krete und überprüfbare Anforderungen aufgestellt [5] und später auch konkrete
Qualitätssicherungsmaßnahmen abgeleitet werden. Beispielsweise können Check-
listen für Reviews automatisch generiert werden [4]. Weitere Informationen über
diese Art von Modellen und den bisherigen Erfahrungen in der Praxis sind
in [4, 6–8] zu finden.

3 Das Security-Modell

Das wichtigste neue Konzept für die Modellierung von Security ist Angriffe als
Aktivitäten zu sehen und in den Aktivitätenbaum zu integrieren. Diese Akti-

vitäten müssen also durch Fakten negativ beeinflusst werden, um ein hochqua-
litatives System zu erreichen.

3.1 Der Aktivitätenbaum

Zuvorderst muss zwischen erwarteten und unerwarteten Angriffen unterschieden
werden. Eine Hauptschwierigkeit bei Security ist nämlich, dass es unmöglich ist,
alle zukünftigen Angriffe, dem ein System ausgesetzt sein wird, zu kennen, da
täglich neue Angriffe entwickelt werden. Deshalb ist es wichtig zwei Strategien zu
verfolgen: (1) das System gegen erwartete Angriffe absichern und (2) das System
prinzipiell zu härten, also unempfindlicher gegenüber Angriffen zu machen. Für
die Klassifizierung der Angriffe können verschiedene Quellen verwendet werden.
Wir bauen hauptsächlich auf die Common Attack Pattern Enumeration and
Classification (CAPEC) [9], die vom U.S. Department of Homeland Security
vorangetrieben wird. In CAPEC werden existierende Angriffsmuster gesammelt
und klassifiziert. Diese Angriffe werden in einer Hierarchie angeordnet, die direkt
im Aktivitätenbaum wiederverwendet werden kann (Abb. 2).

Unanticipated

Attack

Anticipated

Attack

Abuse of

Functionality

Attack

Data Leakage

Attack

Data Structure

Attack

Exploitation of

Authentication

Exploitation of

Privilege/Trust

Injection Physical Attack
Probabilistic

Techniques

Resource

Depletion

Resource

Manipulation

Spoofing
Time and State

Attack
Data Attack Exploitation

Resource

Attack

Abbildung 2. Die obersten Ebenen des Angriff-Teilbaums des Aktivitätenbaums

Die erwarteten Angriffsarten (anticipated attacks) werden in eine Reihe von
Mustern und Untermustern aufgeteilt. Die Einteilung folgt dabei im wesentli-
chen der CAPEC und ist dabei nicht völlig überscheidungsfrei. Dies ist durch
die Komplexität der Angriffsarten nicht möglich, aber auch nicht notwendig. Ent-
scheidend ist, dass bestimmte Angriffsmuster schnell gefunden werden können.
Teilweise wird dabei unterschieden, was angegriffen wird (Abuse of Functionali-
ty, Data Attack, Physical Attack, Resource Attack), teilweise auch wie der Angriff
durchgeführt wird (Exploitation, Injection, Probabilistic Technique, Spoofing, Ti-
me and State Attack).

3.2 Der Faktenbaum

Die Erstellung des Faktenbaums ist demgegenüber wesentlich komplizierter. Es
muss das vorhandene Wissen über Charakteristiken eines Systems, der Umge-
bung und Organisation enthalten, die diese Angriffe beeinflussen. Dazu verwen-
den wir wiederum eine Reihe von Quellen, unter anderem die ISO/IEC 27001 [10]

oder die Sun Secure Coding Guidelines for the Java Programming Language [11].
Zwei Hauptquellen stellen dabei bestimmte Teile der Common Criteria (CC) [12]
und die Common Weakness Enumeration (CWE) [13] dar. Die Common Crite-
ria beschreiben Anforderungen, was ein System leisten soll, damit es sicher ist.
Dabei liegt der Fokus auf Funktionalitäten. Die CWE beleuchtet dies stärker
von der anderen Seite und beschreibt wiederkehrende Schwachstellen, die von
Angriffen ausgenutzt wurden. Zusammengenommen liefern diese beiden Quellen
ein starkes Fundament für das Security-Modell.

Wir können hier nicht alle Details des Modells darstellen, geben aber einige
Beispiele, wie Wissen aus den Quellen in das Modell überführt wurde. Dafür
verwenden wir einen Unterbaum des Faktenbaums (Abb. 3).

System

Data

Cryptographic

Support
File Handling

Ressource

Allocation
Web Page

Static StructureFunctionality Dynamics

Cookie HTTP Request

Abbildung 3. Beispielhafte Einträge des Faktenbaums

Viele der Einträge im Qualitätsmodell, die ihren Ursprung in den CC haben,
wurden als Teil der Entität Functionality modelliert, da sie überwiegend Verhal-
tensaspekte beschreiben, die für Security wichtig sind, beschreiben. Ein Beispiel
ist die kryptographische Unterstützung des Systems als Teil der Funktionalität.
Nach den CC kann sie in Cryptographic Key Management und Cryptographic Operation

unterteilt werden. Ersteres enthält wiederum Cryptographic Key Generation, zu dem
in den CC definiert wird, dass sie in Übereinstimmung mit einem spezifizierten
Algorithmus und spezifizierten Schlüsselgrößen sein soll. Im Modell wird dies
durch die Verwendung des Attributes APPROPRIATENESS für Cryptographic Key Gene-

ration ausgedrückt. Die textuelle Beschreibung dieses Fakts ist dann: “The system
generates cryptographic keys in accordance with a specified cryptographic key
generation algorithm and specified cryptographic key sizes that meet a specified
list of standards.” Die CC enthalten leider keine Beschreibungen von Einflüssen,
die sie noch nützlicher machen würden, da die Motivation für die angegebenen
Anforderungen gleich mitgeliefert würden. Aus diesem Grund ergänzen wir diese
Information aus anderen Quellen. In diesem Fall enthält CAPEC die Beschrei-
bung des Angriffs Kryptoanalyse und die Vermeidungsstrategie bewährte kryp-
tographische Algorithmen mit empfohlenen Schlüsselgrößen zu verwenden. Also
sieht der Einfluss wie folgt aus: [Cryptographic Key Generation | APPROPRIATENESS]

−−→
[Cryptanalysis]

Die CWE enthält oft Charakteristiken eines Systems und speziell von Quell-
text, die vermieden werden sollten. Dies kann so im Modell verwendet werden.

Einige beschriebene Schwachstellen in CWE beziehen sich nicht auf bestimmte
Attacken, werden aber als Indikatoren für potenzielle Sicherheitslöcher ange-
geben. Diese werden als Fakten modelliert, die einen Einfluss auf unerwartete
Angriffe haben. Ein Beispiel dafür ist toter Code, beispielsweise ungenutzte Va-
riablen. Im Modell ist dies wie folgt enthalten: [Variable | SUPERFLUOUSNESS]

+−→
[Unanticipated Attack].

Schließlich muss noch angemerkt werden, dass im Modell nicht nur die Möglich-
keit besteht Einflüsse auf Angriffe zu modellieren, sondern auch andere Akti-
vitiäten, wie die Benutzung des Systems können beeinflusst werden. Abhängig
von der Definition von Security kann man damit beispielsweise auch die zufällige
Veröffentlichung sensibler Daten darstellen.

3.3 Beispiel

Wir bearbeiten gerade eine größere Fallstudie zur Anwendung des Security-
Modells auf den Servlet-Container Tomcat1. Ingesamt liegt der Fokus dort auf
der Bestimmung der Security-Anforderungen. Wir beschränken uns hier aber
nur auf den Vergleich der veröffentlichten Security-Lücken von Tomcat und kor-
respondierender Einträge im Qualitätsmodell. Dies erlaubt noch keine quantita-
tive Aussage über den Wert des Einsatzes des Qualitätsmodells, aber es zeigt
das Potential des Ansatzes auf.

Insgesamt wurden für die Tomcat-Version 6.0 vom Dezember 2006 bis Juli
2008 19 Schwachstellen veröffentlicht. Die Tomcat-Entwickler klassifizieren diese
Schwachstellen in die Typen Cross-Site Scripting, Session Hi-Jacking, Direc-
tory Traversal, Information Disclosure, Data Integrity und Elevated Privileges.
Diese Typen können also zum Teil bereits auf unseren Aktivitätenbaum zurück-
geführt werden. Weiterhin wurde die Wichtigkeit der Schwachstellen bewertet.
Es wurden nun alle diese Schwachstellen mit dem Security-Modell verglichen,
um zu analysieren, ob entsprechende Qualitätsregeln enthalten sind. Tabelle 1
zeigt die Zahl der Schwachstellen im Verhältnis zur Zahl der entsprechend ge-
fundenen Qualitätsregeln im Modell auf. Es zeigt sich, dass nur für drei von 19
Schwachstellen keine Regel gefunden werden konnte. Es hätte also die Chance
bestanden durch Verwendung des Modells diese Schwachstellen zu vermeiden.
Ob dies wirklich gelingen kann, wird derzeit in der Fallstudie untersucht.

4 Verwandte Arbeiten

Allgemeine Qualitätsmodelle, die einen Dekompositionsmechanismus verwen-
den wurden bereits von Boehm [14] und McCall [15] vorgeschlagen. Trotz der
vielfältig dokumentierten Schwächen [16] folgen aktuelle ISO-Standards immer
noch dieser Tradition [3]. Im Gebiet der Security, können die oben erwähnten
Richtlinien wie die Secure Coding Guidelines for the Java Programming Langua-
ge oder die CERT C Secure Coding Standard verwendet werden. Solche Richt-

1 http://tomcat.apache.org/

Tabelle 1. Zusammenfassung des Vermeidungspotentials

Typ Anteil Wichtigkeit Anteil
cross-site scripting 7/7 low 10/10
session hi-jacking 4/4 moderate 2/2
directory traversal 1/2 important 4/7
information disclosure 3/4 total 16/19
data integrity 0/1
elevated privileges 1/1

linien sind wichtig und wertvoll, da sie spezifische und konkrete, oft auch über-
prüfbare Regeln angeben. Jedoch enthalten sie meist nicht den Einfluss, den
die Ein- bzw. Nichteinhaltung der Regeln hat. Darüberhinaus liefern Security-
Normen, wie die ISO/IEC 27001 [3] und die Common Criteria [12] einen breite-
ren Blick auf Security. Es werden nicht nur fr Quelltext Richtlinien angegeben,
sondern auch Aspekte der Funktionalität oder der Organisation berücksichtigt.
Dies führt aber auch dazu, dass diese Normen wesentlich generischer und damit
schwieriger zu überprüfen sind. Auch hier werden Auswirkungen und Einflüsse
kaum berücksichtigt.

Chung und Nixon [17] haben eine systematische Methode zum Umgang mit
Qualitätscharakteristika, das NFR-Rahmenwerk. Dieser Ansatz betrachtet Kor-
relationsregeln, um existierende Ziele mit neuen Zielen zu verbinden. Eine Ein-
bindung in die Qualitätssicherung wird aber nicht explizit angegeben. Zu einem
gewissen Grad, stehen auch Anforderungsansätze für Security-Anforderungen im
Bezug zu dieser Arbeit. Bekannte Vertreter sind hier SQUARE [18] und darauf
aufbauend SREP [19]. Beide konzentrieren sich stärker auf den Prozess, beziehen
sich aber sonst auf klassische Qualitätsmodelle.

5 Zusammenfassung

Die hier beschriebene Modellierung von Security mit Hilfe von aktivitätenba-
sierten Qualitätsmodellen stellt ein strukturiertes Vorgehen zur Erfassung von
sicherheitsrelevantem Wissen zur Verfügung. Darüberhinaus kann so auch die Si-
cherstellung von Sicherheit in den normalen Qualitätsmanagement-Prozess ein-
gebunden und sogar Überlappungen mit anderen Qualitätsattributen identifi-
ziert werden. Wir arbeiten derzeit an einem umfassenden Security Requirements
Engineering-Ansatz auf Basis des beschriebenen aktivitätenbasierten Qualitäts-
modells.

Danksagung

Diese Arbeit entstand teilweise mit Förderung des Bundesministeriums für Bil-
dung und Forschung (BMBF) im Projekt QuaMoCo (Förderkennzeichen: 01 IS
08023B).

Literatur

1. CERT: Vulnerability remediation statistics. Online verfügbar unter http://www.

cert.org/stats/vulnerability_remediation.html

2. Deissenboeck, F., Juergens, E., Lochmann, K., Wagner, S.: Software quality mo-
dels: Purposes, usage scenarios and requirements. In: Proc. 7th International Work-
shop on Software Quality (7-WoSQ), IEEE Computer Society (2009)

3. ISO: ISO 9126: Product Quality – Part 1: Quality Model (2003)
4. Deissenboeck, F., Wagner, S., Pizka, M., Teuchert, S., Girard, J.F.: An activity-

based quality model for maintainability. In: Proc. 23rd International Conference
on Software Maintenance (ICSM ’07), IEEE Computer Society Press (2007)

5. Wagner, S., Deissenboeck, F., Winter, S.: Managing quality requirements using
activity-based quality models. In: Proc. 6th International Workshop on Software
Quality (WoSQ ’08), ACM Press (2008) 29–34

6. Winter, S., Wagner, S., Deissenboeck, F.: A comprehensive model of usability.
In: Proc. Engineering Interactive Systems 2007 (EIS ’07). Volume 4940 of LNCS.,
Springer (2008)

7. Wagner, S., Deissenboeck, F., Feilkas, M., Juergens, E.: Software-Qualitätsmodelle
in der Praxis: Erfahrungen mit aktivitätenbasierten Modellen. In: Workshop-Band
SQMB 2008, TU München (2008)

8. Mas y Parareda, B., Streit, J.: Software quality put into practice. In: Workshop-
Band SQMB 2008, TU München (2008)

9. Homeland Security: Common attack pattern enumeration and classification (CA-
PEC). Available Online at http://capec.mitre.org/. Accessed in October 2008

10. ISO: ISO/IEC 27001: Information technology – Security techniques – Information
security management systems – Requirements (2005)

11. Microsystems, S.: Secure coding guidelines for the java programming language,
version 2.0. Available Online at http://java.sun.com/security/seccodeguide.

html

12. CCRA: Common criteria for information technology security evaluation, version
3.1. Available Online at http://www.commoncriteriaportal.org/

13. Homeland Security: Common weakness enumeration (CWE). Available Online at
http://cwe.mitre.org/. Accessed in October 2008

14. Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., Macleod, G.J., Merrit, M.J.:
Characteristics of Software Quality. North-Holland (1978)

15. McCall, J.A., Richards, P.K., Walters, G.F.: Factors in software quality. Reports
NTIS AD/A-049 014, 015, 055, US Rome Air Development Center (1977)

16. Kitchenham, B., Pfleeger, S.L.: Software quality: The elusive target. IEEE Software
13(1) (1996) 12–21

17. Chung, L., Nixon, B.A.: Dealing with non-functional requirements: Three experi-
mental studies of a process-oriented approach. In: Proc. 17th ICSE. (1995) 25–37

18. Mead, N., Steheny, T.: Security quality requirement engineering methodology. In:
Proc. Workshop on Software Engineering for Secure Systems (SESS ’05). (2005)

19. Mellado, D., Medina, E., Piattini, M.: Acommon criteria based security requi-
rements engineering process for the development of secure information system.
Computer standards & interfaces 29 (June 2007) 244–253

Towards an applicable software quality model for

individual software projects

Markus Großmann

Capgemini sd&m AG, Löffelstr. 46, 70597 Stuttgart, Germany

markus.grossmann@capgemini-sdm.com

Abstract. Capgemini sd&m develops quality models and tools for controlling

the software product quality and has been applying them in their individual

software projects since a couple of years. The first version of the quality model

was an attempt to implement ISO 9126-1 and the GQM method. It appeared

that the desired overall software quality characteristics (e.g., maintainability)

couldn’t be measured sufficiently. “Magic” quality index values were

distrusted. Projects had difficulties at applying GQM. It showed that there was

no need for a flexible, sophisticated quality metamodel. This resulted in a

change of the quality model design: the current version of the quality model

took up the idea of a “software blood count", i.e., a collection of software

product indicators relevant to quality assessment. Quality is not automatically

computed but instead rated by an experienced person that knows the project

context and uses the blood count as additional information. The software blood

count contains only few, in practice relevant metrics, together with heuristics

and interpretation patterns/antipatterns for analyzing quality risks. First

practical experiences with individual software projects showed that such a

lightweight quality model was better accepted and could be easier applied.

1 Introduction

Recent evolutions in the area of commercial software development put software

quality under pressure. There is a high time and cost pressure together with shorter

release cycles and stiff competition. The systems to be developed become larger and

more complex. Further challenges come with offshore development, SOA and the

integration of individual and standard software. This all demands an increased effort

and precise controlling to ensure a high quality of the produced software.

However, in comprehensive projects the assessment and controlling of the software

quality is particularly difficult. Quality requirements are often not precisely defined or

not explicitly requested. Means for assuring the “inner” quality characteristics of the

software (e.g., maintainability) are often not in place.

A high quality of software development projects and of the built products is an

important business objective of Capgemini sd&m. Therefore Capgemini sd&m

developed several constructive and analytical quality assurance techniques in the past

and used them in their software projects. Among them are analytical tools for the

assessment and visualization of product quality, centralized within a tool called

“software cockpit” and based on a quality model which was developed together with a

research partner [1].

Quality models have become a well-accepted means to describe and manage

software quality. However, there are still problems with them so that they haven’t

become widely adopted in practice. In the following the problems and experiences are

summarized which we faced at Capgemini sd&m when working with quality models

in individual software projects. We also depict a possible solution for an in practice

applicable quality model.

2 Experiences with the ISO 9126 quality model and GQM

The first version of the Capgemini sd&m quality model [1] was very much

inspired by the quality model of ISO 9126 [2] and the Goal-Question-Metric method

[3]. The motivation was to have a standardized quality model that measures overall

quality characteristics of the developed software (e.g., maintainability). Furthermore it

should be possible that projects create their own quality model for their specific

quality goals. Therefore the software cockpit provided a flexible quality metamodel

that could be instantiated by projects and it provided indicators that were measured

automatically by (only) static code analysis.

Additional input was a standard quality model, an instance of this quality

metamodel, that contained on the top-level the goals from ISO like maintainability,

efficiency and reliability. Projects should take the standard quality model, extend it

with their own quality goals and adjust the indicators where necessary. Fig. 1 shows a

fragment of the standard quality model. It also outlines the elements of the quality

metamodel: quality goals further refined by quality categories. Each quality category

could be assigned one or more quality indicators. With the GQM approach this kind

of structuring suggests itself and will not be further explained here. Details about the

quality metamodel can be found in [1].

Fig. 1. Example for the breakdown of a quality goal to quality indicators

The set of indicators for the first version of the standard quality model came from a

handful of experienced software architects at Capgemini sd&m and from research

done during the development of a method for controlling software product maturity

[4]. This set of indicators was only a first serve. We expected a learning phase in

which we take up feedback from the projects for further improvement of the standard

quality model.

2.2 Problems and experiences

The first version of the software cockpit implemented the described quality model

and provided a first version of the standard quality model. We tested it in six

individual software projects which were in the domains of automotive,

telecommunication and public sector. Both large and medium size projects were

represented.

2.2.1 Problems with ISO 9126 and quality indexes

It appeared very soon that the quality characteristics of the ISO 9126 could not be

measured sufficiently, for example the measurement of maintainability. Only

indicators for maintainability could be measured, not maintainability itself. Both

seemed to be correlated, however indicators could be manipulated by writing code in

a way that it gives good indicator values and correlation vanished. Furthermore there

were characteristics of source code that were highly relevant for maintainability but

couldn’t be measured automatically (e.g., the understandability of a source code

comment). So this method was scarcely suitable for obtaining a more precise control

on maintainability. People distrusted “magic” result values like a maintainability

index that was calculated from quality indicators. We experienced that such index

values were also too fragile to be comparable between projects. E.g., some projects

didn’t apply all quality indicators. In some projects misleading values were

contributed to the index (false positives). From a practioners viewpoint there was no

problem, but the quality index was impaired. It was also hard to determine whether

the index value represented a good or a bad value regarding the expected maturity of

the product. E.g., low values for maintainability needn’t be an indicator for bad

quality when building prototypes. The project management was misled to use the

index as a general measure and not as an indicator for quality. They wanted the index

values to be as reliable as the other metrics they were dealing with (e.g., time and

budget). “Use them but do not trust them” [5] was from a management point of view

unacceptable.

Conclusion 1: An applicable quality model shouldn’t contain any quality indexes.

It shouldn’t try to quantify software quality characteristics that can only be vaguely

measured. The risk is too high that quality indexes get broken and “guess” wrong, are

used as a simplistic answer for quality controlling or used to whitewash a project. It is

far the worst when such quality indexes are used in form of traffic lights at project

reporting. Sure, the demand for such an index is obvious, regarding the enormous

influence of maintainability for the long term ownership costs of software. Though

current quality models and the GQM approach appear to be no appropriate way to

determine it in practice. They draw a picture but are not able to tell the full truth. It is

like testing the intelligence of a person with questions that are already known in

advance or if you want to determine the stability of a building solely by analyzing a

picture of it.

2.2.2 Problems with GQM

We experienced that projects had difficulties at including their non-functional

requirements into the quality model. Most of the requirements were formulated in a

way that it was not obvious how to measure them (e.g., “the application should be

scalable”). Hence people didn’t know which of the quality indicators or metrics they

should select. And when they agreed to a solution they were still not sure how good

the quality of their quality model was. It’s like a dog chasing its tail. This problem

was not caused by a lack of experience with metrics but was a general problem: the

freedom and flexibility of a generic quality metamodel made the configuration too

complex. People in the projects didn’t had the time to get acquainted with a complex

quality model hence they didn’t use it.

Conclusion 2: An applicable quality model should be as simple as possible. It

should be less sophisticated and prohibit improper configuration. The challenge is to

find a quality model that hits an optimum between a high benefit and a low effort.

However, we also see the necessity for research at how to formulate non-functional

requirements in a way that they can be measured in practice. As far as individual

software projects today are too different here – some are more or less formal than

others – GQM seems to be a not universally applicable approach.

2.2.3 Quality rating by using heuristics

We experienced that projects directly looked at the metric values – in particular at

time trends. They used own heuristics to find potential quality problems (e.g., “Where

should I refactor classes with high cyclomatic complexity?”, “How is the trend of the

number of code duplicates developing?”). Here it showed that experienced people

knew more heuristics, had more ideas and better interpretation explanations than

inexperienced people. Experienced people were able to bring in their minds together

the quality indicator values, the project context and their knowledge about the project-

specific correlations. Most of the architects and projects leaders in our observed

projects had this experience. With experience we mean broad software engineering

know-how together with project experience.

We also saw that the overview got lost if metric values were collected on a fine

grained class and method level. Most people regarded it as sufficient to collect

metrics on a coarse grained component level. The first version of the software cockpit

included only tools for static code analysis. People encouraged us to include more

information sources related to quality assurance means (e.g., defects and test results).

Conclusion 3: An applicable quality model should consider heuristics and

interpretation patterns to be a central topic. Higher aggregations i.e. overall quality

ratings should only be done by experienced people. However, the quality assessment

should be supported by a couple of known patterns and antipatterns for quality

indicators.

Conclusion 4: An applicable quality model should provide metric values on a

component and subsystem level and should not focus only on source code metrics. It

should try to integrate as many as possible different information sources that give

answers to quality related questions.

2.2.4 Only collecting metrics is not enough

We experienced that it was not enough to collect the metrics and leave it to the

project to think about consequences or use cases where they could use the metrics.

The use cases of the software cockpit where not obvious, which made it difficult to

give projects clues about application areas of the quality model. Projects interpreted

the quality indicators but had difficulties at guessing appropriate consequences. Sure,

they often had the right ideas about how to react on a specific quality risk. But the

process was little structured and not very straightforward.

Conclusion 5: An applicable quality model should embed the quality indicators in

a workflow that starts with a use case and ends with clues about possible

consequences.

3 The Capgemini sd&m software blood count

The conclusions and experience with the first version of the quality model led us to

a new design of the quality model and a new philosophy how to use it. The idea: a

“software blood count” shall support the rating of the software quality. The analogy

comes from medicine: when your family doctor wants to check your health he doesn’t

pull out his pocket calculator and computes your health based on your size or your

weight. He will rather ask you some questions, auscultate your lungs and your

heartbeat and look at your blood count. The blood count may contain some risk

factors which your doctor brings in his mind together with the other information

before he lets you know his appraisal of your health.

The software blood count is a collection of few software product statistics which

are considered to be in practice relevant for the assessment of quality. Embedded in

an analytical workflow and together with interpretation patterns for these metrics it

forms a quality model where the quality is rated by an experienced person and not

calculated by a computer.

3.1 The role of quality indicators

The general design of the new quality model is shown in Fig. 2.

Fig. 2. Structure of the new quality model

At first sight there seem to be some similarities1 between the first version of the

quality model and the new version. However, the role of quality indicators has

changed. Watching quality indicators helps projects to recognize early whether they

are leaving the path of good quality. So the quality models aim is to reveal quality

risks. Our experience is that is easier to measure “bad smells” of software or a project

than to attest a high quality level. The benefit is anyhow considerable: projects can

adjust the development process before quality deficiencies start to pollute it. The

quality model indicates whether things are going well, or more analysis should be

performed, or whether the process needs to be adjusted because it is on the wrong

way. Today, such decisions often are either taken by gut feeling, or when trouble has

become obvious and projects are already in a state that they would have wanted to

avoid.

3.2 Examples for the implementation of the quality model

The software cockpit is the tool that automatically collects and displays the quality

indicators. This is essential, because otherwise collecting data is a too cumbersome

task to be performed regularly. It tells which indicators to watch and how to interpret

them. Currently the cockpit structures the interpretation patterns by the following use

cases, which appear directly in the GUI:

• Check the current build of the software

• Define and check quality guidelines

• Observe trends which may lead to quality problems

• Find quality assurance blind spots

• Find outliers and spots with potential quality problems

Each use case is associated with some patterns that support the interpretation. They

contain descriptions of quality risks and how they usually become manifest in the

quality indicator values. These patterns aim at revealing quality risks that are

associated with significant, avoidable costs. So, e.g., empty exception handlers are

normally no quality risk. The following table shows some examples for quality

heuristics that are currently implemented in the software cockpit. At present there are

about 30 patterns and heuristics available in the software cockpit. Users are free in

their choice to directly analyze and explore quality indicators or to go through the

patterns.

1 E.g., you could replace “Use Case” with “Goal” and “Categories” with “Heuristics”

Table 1. Examples for quality heuristics

3.2 Metrics of the software blood count

The software blood count contains source code attributes, defect statistics,

performance numbers as well as review and testing results. We also included some

soft factors, e.g., survey results. The software cockpit provides more than 20 metrics,

with a time trend and a component comparison for each.

Fig. 3. The Capgemini sd&m software blood count

3.4 Conclusion and outlook

Our first experiences at applying the new quality model in projects are promising.

Coming back to our five conclusions from the first quality model we are confident to

have addressed all relevant weaknesses and made a step forward towards an

applicable quality model for individual software projects. The software blood count as

a lightweight and easy to understand quality model was better accepted by projects.

The setup time was minimal (few days), the learning effort low – people could work

with the software cockpit in an intuitive way. Quality appraisal with the software

cockpit is a matter of hours, not a matter of days. Up to now the flexibility of a

configurable quality metamodel was not needed.

Quality indicators are not a measure of software quality. There is no simple

measure for it. Our profound credo is that quality arises by the careful, creative work

of a motivated team, not by tuning software metrics. The assessment of quality affects

the human, not the software - though the human is supported by the software in the

best possible manner. The software cockpit takes care of transparency over the

maturity of software, serves as an early warning system for quality problems and

helps – in accordance with the principle "knowing instead of believing" – to

substantiate intuition with facts. It is not an autopilot but it permits systematic and

continuous control of quality, as this was the case in the past.

Further work has to be done to collect and refine interpretation patterns and quality

heuristics. This includes also a classification and a prioritization of quality risks.

Moreover we want to do some empirical studies on how often the software blood

count should be watched and examine which are the non-obvious quality risks that

could be detected by the quality model.

References

[1] M. Bennicke, F. Steinbrückner, M. Radicke, J.-P. Richter: Das sd&m Software Cockpit:

Architektur und Erfahrungen, in R. Koschke, O. Herzog, K.-H. Rödiger, M. Ronthaler

(Hrsg.): INFORMATIK 2007, Beiträge der 37. Jahrestagung der Gesellschaft für Informatik

e.V. (GI), Lecture Notes in Informatics (LNI), GI Proceedings 110, Band 2, pp. 254—260

(2007)

[2] ISO 9126-1 Software Engineering – Product quality – Part 1: Quality model (2003)

[3] V. Basili, G. Caldiera, H. D. Rombach: The Goal Question Metric Approach. In:

Encyclopedia of Software Engineering, pp. 528—532, John Wiley & Sons (1994)

[4] H. Blau, S. Eicker, A. Hofmann, T. Spies: Reifegradüberwachung von Software. ICB

Research Report No 20, ISSN 1860-2770 (2007)

[5] C. Lewerentz, H. Rust, F. Simon: Quality – Metrics – Numbers – Consequences, in R.

Dumke, F. Lehner (Hrsg.): Software-Metriken, Entwicklungen, Werkzeuge und

Anwendungsverfahren, Wiesbaden: Gabler (2000)

An Approach for a Method and a Tool Supporting the

Evaluation of the Quality of Static Code Analysis Tools

Reinhold Plösch, Alois Mayr, Gustav Pomberger, Matthias Saft

(1) Johannes Kepler University Linz, Institute for Business Informatics – Software
Engineering, Linz, Austria

reinhold.ploesch | alois.mayr1 | gustav.pomberger @jku.at
(2) Siemens AG, Corporate Technology – SE 1, Otto-Hahn-Ring 6,

81739 Munich, Germany
matthias.saft@siemens.com

Abstract. There is a lack of information concerning the quality of static code
analysis tools. In order to overcome this we therefore developed a method and a
tool supporting quality engineers to determine the quality of static code analysis
tools. This paper shows how the method works and where the tool supports it.
We already applied the combination of the method and its tool to two static
code analysis tools in different versions. On this basis, we further illustrate
some results of the usage of the method.

Keywords: static code analysis tool, PMD, CodePro AnalytiX, quality model,
true positive, false positive, false positive rate.

1. Introduction and Overview

During software development, testing has high priority. One way to test software and
evaluate its quality is to perform a dynamic test. The source code of the software
product is executed in order to test the fulfillment of its requirements. On the other
hand performing a static test does not need the execution of the source code, so static
testing can be applied already in early development phases. Typically, these tools
check the source code in order to indicate problem areas or possible flaws. There are a
number of tools available (e.g. PMD [7], FindBugs [5], and CodePro AnalytiX [2] for
the programming language Java) which possess different levels of quality regarding
their results.

In this respect, quality of the results focuses on their preciseness. Of course, the
quality of static code analyzers has more aspects than the preciseness of its results,
e.g. the usability or performance. However, this paper uses the term quality in the
meaning of the preciseness of the results of the analyzers as that is its scope. All other
quality aspects remain ignored in this paper. Overall, the principle goal is to achieve
statements about the quality of the results, in order to support the selection procedure
of tools in practice. For this, we need to know the quality of the tools to allow proper
usage.

There are only a few literatures, which covers the quality of static code analyzers.
Some authors focus on the comparison of tools, e.g. [9] and [11], including the tool
PMD. Therefore, they classify the output of the tools into various categories. In [11]
the authors furthermore compare static code analysis with dynamic testing and
informal reviews.

In order to be able to ascertain and subsequently to compare the quality of the
results of static code analyzers or different versions of them, we need a method that
supports the process of ascertaining their quality in a systematic way. Beside this
method, we need a tool that automates as much tasks as possible to reduce manual
work.

The goal of this paper is to present a method and a tool helping users to evaluate
the quality of static code analyzers. Furthermore, it shows the application of the
method in practice. Moreover, comparing the results, so-called findings, of some
static code analyzers is possible. Furthermore, this paper describes the functionality of
a tool helping to automatically rate findings obtained by the application of a static
code analysis tool.

Both, the method and the tool enable determining the quality of several versions of
static code analyzers easily. On this basis, you can identify the development of the
quality of tools like their improvements or degradations over time (versions).
Additionally, we want to find out about differences in quality between tools and
furthermore to identify strengths and weaknesses of them. Therefore we need a
quality model that allows to compare the results of various tools, since their rules
differ and consequently not directly comparable to each other.

The identification of the preciseness of the results requires a classification of the
findings into at least two categories, the true positives (TP) and the false positives
(FP). A finding that is a TP actually is a potential flaw and detected correctly. FPs are
being listed as violations against rules too, but they are detected falsely. They are no
potential flaws.

According to [3] a “confusion matrix” helps to represent a “binary decision
problem”, where items have to be classified as positive or negative. We already
explained the positives above. True negatives (TN) are items that are correctly
classified as being negatives (not a potential flaw in our meaning). False negatives
(FN) are incorrectly classified as being negatives, they should be positives (a potential
flaw in our meaning, but not detected). Typically, there are some metrics supporting
to understand the results, e.g. True Positive Rate or so-called Recall (TP/(TP+FN)),
False Positive Rate (FP/(FP+TN)), or Precision (TP/(TP+FP)); Since the method only
considers the classification of findings into TP or FP, all metrics including true or
false negatives are not suitable at this. On this account, we define within this paper the
false positive rate (FPR) as the proportion of the FP to the sum of FP and TP, or with
respect to [3] as the value of 1 minus precision.

The expected result of an application of the method is a list of rated findings. On
this basis, it is possible to calculate the FPR, which indicates the preciseness of static
code analyzers very well.

According to [1] and [11] the FPR reaches from about 1 percent [1] to 47 percent
[11] for the tool FindBugs. In [11] the authors mention a FPR of 96 percent for a tool
called QJ Pro [8]. However, the FPR depends on the version of the tool (including its
configuration) as well as of the analyzed source code and, as mentioned above, differs

immense. Furthermore, it depends on what defines FPs. The authors are discordant to
this issue, [9] also alludes to this topic. Hence, we need a method that standardizes the
evaluation of the quality of tools, in particular the preciseness described by the FPR.

2. Approach / Methodology

The principal idea of our approach is to apply different static code analysis tools to a
defined set of source code and to conduct the analysis on these results, with an
emphasis on finding FPs. Therefore, it is necessary to define the reference source
code that serves as input for all tool analysis processes as described below. In our
analysis, the reference code consists of three open source projects in order to cover
different programming styles and application domains. In [11] the authors mention
the influence of different programming styles and experience, emphasizing the need
of various source code projects. These three open source projects are: Azureus
Version 2.5 which is a file sharing client; JFreeChart 1.0.2 which is a Java library to
display diagrams graphically; DrJava Stable Release 20060918 which is an integrated
development environment for Java [6].

The method for assessing the quality of static code analyzers splits up to five
different phases. The analysis of every version of a specific static code analysis tool
passes the following phases.

Fig. 1. Phases of the method

At the beginning of the analysis, we have to select the rules of interest. In general,
all rules of the next lower version of the tool are used plus the newly added ones. If
you investigate a tool for the first time, the default rule set serves as a basis, if
available. If no default rule set is available, you have to select the rules manually to
ensure that similar rules of already analyzed tools are used.

After defining the rules, you have to apply the static code analysis tool with the
respective rule set configurations to the reference source code. After this analysis the
resulting findings are converted to a homogeneous format, guaranteeing the
possibility to rate them in later phases.

The data collected in the previous step will now be rated automatically. Due to the
large amount of data (e.g. for PMD approximately 12.000 findings obtained by the
analysis of the above-mentioned reference code), this is a necessary step. Therefore, a
tool was developed (SimpleEval) that rates the analyzed findings using a heuristic
algorithm and a validated database. It compares every finding with the already rated
findings within the validated database. For this purpose, it considers the source code
file as well as the line number within the file. It is configurable how close the line
numbers have to be. Furthermore, it takes into account the descriptions of the
violation of the comparing findings. If another version of the same tool has already

been rated, a flag can be enabled that controls only to look at rated findings of the
same code analysis tool. The heuristic results in a measure for the probability to be
the same semantic finding. After calculating the probability for all rated findings near
the unrated one, SimpleEval applies the rating of the finding with the highest
probability to the unrated finding. Moreover, it classifies the probability in four
categories as follows: A25 indicates a very low equality; A50 indicates a middle
equality; A75 indicates a high equality; A100 indicates a very high equality.

The output of SimpleEval contains the following information for each rated
finding: the name of the tool; the version of the tool; the name of the rule which is
violated; the pathname as well as the filename where the finding is found in; the line
number within the file the finding occurs; a flag which defines the finding as TP or
FP; a flag which defines the finding being rated manually or by SimpleEval; a
description of the violation. Another tool reads this format and enables to process, sort
and search for findings very easily.

The findings that remain unrated or rated lower than A100 have to be rated
manually. That can be a large amount and depending on the rule a high effort. This
happens gradually for each rule that still lists unrated findings. For this purpose a
sample of at least 30 percent of the unrated findings of every rule is declared to be
rated manually. If one finding of this sample is a FP, all other findings of this rule
need to be rated by hand too. However, if every finding of the sample is a TP, we
assume all other findings of this rule to be TPs too. After finishing the rating of all
remaining findings, they are classified as one of the following values: TP, FP, or NA
that means that the finding cannot be rated because of a too vague description of the
rule or a too difficult or time-costly rating process.

The last phase of the method ensures a valid database by checking a sample of the
newly rated findings for a second time. An expert will do this. If the expert finds no
wrong rated finding, all newly rated findings can be added to the valid database and
subsequently be used for automatic rating with SimpleEval. If the expert finds a
wrong rated finding, all manually rated ones have to be rated and subsequently
reviewed again.

3. Results

The result of using this method is a benchmark file containing many findings rated
automatically or manually. At this time it contains the results of the analysis processes
of the tools PMD in version 3.7, 4.0, 4.1, and 4.2 plus CodePro AnalytiX in version
5.2 and 5.3. It currently lists about 90.000 rated findings. However, using this
benchmark file allows us to gain information about the quality of several versions of
tools. On this basis, we can determine the progress of a tool's quality over different
versions (intra-tool comparison) as well as how good or bad is a tool's quality
compared to another one (inter-tool comparison). For this, a quality model helps to
determine the strengths and weaknesses of a tool at specific quality attributes. Every
quality model would be suitable for this reason, but we developed a technical
classification (TIC – technical issue classification) that is similar to the ISO 9126
quality model [4]. It consists of a problem-oriented classification. It emphasizes the

needs of architects or technical project managers. Therefore, all rules of the tools
within the benchmark file have to be assigned to quality attributes. The count of TP or
FP as well as the FPR of a specific rule therefore serves as metrics within the quality
model.

As already mentioned above, we used this method and tool to analyze the quality
of the tools PMD and CodePro AnalytiX. Now let us take a closer look at the progress
of PMD's quality.

Table 1. Overview of PMD's quality progress

Version NA FP TP FP+TP ! FPR

PMD 3.7 644 185 12839 13024 13668 1.42%

PMD 4.0 624 188 13068 13256 13880 1.42%

PMD 4.1 636 89 12937 13026 13662 0.68%

PMD 4.2 636 87 12949 13036 13672 0.67%

Table 1 shows the number of findings classified as NA, FP or TP for every

investigated version. It only considers the rules analyzed in PMD 3.7, ignoring all
newly added rules in later versions. The column that gives us the most valuable
information is the last one, the FPR. The FPR drops from 1.42% to 0.68% in version
4.1 because of reduced FPs. This is a sign of increasing quality. Not only the count of
FP falls in version 4.1 compared to version 4.0, but also the count of TPs falls. This is
a sign of decreasing quality. Altogether, it is difficult to state the development of the
quality here, since it furthermore depends on the importance of the findings being lost
in version 4.1. Comparing version 4.1 with 4.2 let us recognize a slight reduction of
FPs combined with a small increase of TPs. This combination results in a better
quality of version 4.2 compared to 4.1 that also explains the lower FPR.

This is one example of the information we can gather about a tool's quality. We can
create and interpret the same table for every rule of a tool, or every quality attribute
within a quality model. Furthermore, it is possible to take all findings of all rules into
account.

Furthermore, an assignment of metrics to a quality model enables to analyze the
distribution of the findings over several tools. Fig. 2 shows this distribution for the
tools PMD and CodePro AnalytiX over nine quality attributes of TIC. As already
mentioned, TIC serves as a quality model where all metrics of PMD and CodePro
AnalytiX (plus metrics of other tools) are assigned to technical quality attributes.

Fig. 2. Distribution of findings for PMD and CodePro AnalytiX in context of TIC factors

We can see the main focuses concerning identified positives of a tool, e.g. PMD
4.2 at the factors Correctness Issues or Declaration and Definition Issues. This does
not automatically infer from that, to indicate good quality. On the other hand,
CodePro AnalytiX finds a lot more violations against rules at Notation Issues,
Procedural Issues or Special Issues. We will not explain the quality factors of TIC in
more detail, since it is not the focus of this paper and they only help us to illustrate
results of a first application of the method and the tool.

Now let us look at the tool's FPR of every quality factor in TIC, as presented in
Fig. 3.

Fig. 3. FPR of every quality factor in TIC of PMD and CodePro AnalytiX

This figure shows a higher FPRs of CodePro AnalytiX in comparison to PMD,
except in the quality factor Special Issues. In general, the tool with the lower FPR
should be preferred to analyze source code, as it is more precise. Nevertheless, it

depends on the damage that occurs if some positives remains ignored due to the fact
that findings have not been identified by the tool with the lower FPR. The
combination of more detected findings with a lower FPR like in Correctness Issues
prioritizes PMD for usage. CodePro AnalytiX should preferably analyze Special
Issues due to its lower FPR and the higher count of findings.

4. Conclusion

In order to be able to apply static code analyzers that work fine, there is a need to
know how good or bad they or specific versions of them work. As chapter 3 shows,
the method and tool that were implemented provide valuable results about the quality
of static code analyzers. Due to these results, it is possible to compare tools or tool
versions that enable to make funded purchase decisions. Therefore, statements about
the preciseness of tools or several rules are possible and enable a sustainable selection
of rules for the input of a quality model. Additionally, it is possible to increase the
trustworthiness into tools as they can be evaluated before potential usage.

As a result of our analysis processes, we know all true positives, false positives,
and false positive rates of every metric within every code analysis tool and their
versions we have investigated. These results can easily be illustrated using common
diagramming tools.

A validated database is essential and its quality is crucial, because it serves as basis
for the automatic rating of findings. It contains no information about false negatives.
False negatives are flaws which have not been found by the tool [10]. It is extremely
difficult to define all flaws within the reference code that would be necessary to
define the false negatives of an application of an analyzer. In an outlook, we could
consider false negatives, as we compare the true positives of a tool with those of
another tool or tool's version. The difference of the number of true positives is the
number of false negatives. Nevertheless, this comparison does not ensure to find all
false negatives (of the version with less true positives), since the comparing version
does not ensure to find all positives.

We have some ideas for improvements of SimpleEval, in order to reduce the need
for manual rating to a minimum. Firstly, the heuristic that is used to automatically rate
the findings should be improved. If a tool is rated for the first time, many findings
cannot be matched to already rated findings of another tool, because the descriptions
of the violations differ too much. Secondly, a matching of similar rules of different
tools could result in better outcomes concerning the equality of two findings. Based
on this SimpleEval could rate more findings with the highest equality level (A100).
This will effectively reduce the need for manual rating, which is very time-costly. The
effort to apply the method including both, automatic rating using SimpleEval and
manual rating, is about two man-days if an earlier version has already been analyzed.
If a new tool will be analyzed the effort increases to about five to ten times.

Due to the existing large database and the existing tool support, it will be
increasingly simpler to assess the quality of new versions of a tool and even new, not
yet considered, tools automatically.

Literature

1. Ayewah, N., Pugh, W., Morgenthaler, J. D., Penix, J.: Evaluating Static Analysis Defect
Warnings On Production Software, 2007

2. CodePro AnalytiX: Product information about CodePro AnalytiX can be obtained via
http://www.instantiations.com/codepro/analytix/index.html

3. Davis, J., Goadrich, M.: The Relationship Between Precision-Recall and ROC Curves,
Technical Report, 2006

4. DIN ISO 9126: Informationstechnik – Beurteilen von Softwareprodukten,
Qualitätsmerkmale und Leitfaden zu deren Verwendung, 1991

5. FindBugs: Product information about FindBugs can be obtained via
http://findbugs.sourceforge.net

6. Höllerer, M., Schrögenauer, J.: Systematische Evaluierung von statischen
Codeanalysewerkzeugen – Konzepte und Werkzeugunterstützung. Diplomarbeit, Institut für
Wirtschaftsinformatik Software Engineering, Universität Linz, 2007; In German.

7. PMD: Product information about PMD can be obtained via http://pmd.sourceforge.net
8. QJ Pro: Product information about QJ Pro can be obtained via http://qjpro.sourceforge.net
9. Rutar, N., Almazan, C., Foster, J.: A Comparison of Bug Finding Tools for Java, 2004
10. Shatkay, H., Feldman, R.: Mining the Biomedical Literature in the Genomic Era - An

Overview; Journal of Computational Biology, Vol. 10, No. 6, 2003, S. 821 - 855
11. Wagner, S., Jürjens, J., Koller, C., Trischberger, P.: Comparing Bug Finding Tools with

Reviews and Tests, 2005

Comparability of Assessment Results

Bhaskar Vanamali, Markus Müller

KUGLER MAAG CIE

Abstract. In recent years- the number of [ISO/IEC 15504] Assessments has
increased continuously. Alone in the automotive industry - particularly in
Europe – [ISO/IEC 15504] more than 300 official Assessments have been
performed only by HIS members till end of 2006 (source: Spokesman of HIS
group). The number of internal assessments in the automotive industry is
estimated more than twice as much. Other branches are also performing
[ISO/IEC 15504] Assessments. If you compare the results of successive
assessments or the expected assessment result after a preliminary assessment
with the “official” result what kind of delta is to be expected. Based on our
experience with this kind of situations we will prepare a comprehensive study
of deltas and the reasons. At the moment we have only preliminary results
which we will prove as the study is continuing.

Experiment for Comparing the Automatically Assessed
Source Code Quality with Experts' Opinions

Harald Gruber1, Anja Hentschel2, Reinhold Plösch1

1 Johannes Kepler University Linz, Altenberger Straße 69,4040 Linz, Austria
{harald.gruber, reinhold.ploesch}@jku.at

2 Siemens AG, Corporate Technology – SE 1, Otto-Hahn-Ring 6, 81739 Munich, Germany

{anja.hentschel}@siemens.com

Abstract. The evaluation of software quality is supported by numerous tools
but is still an extensive task that has to be carried out manually by an expert.
We present a method for an automatic assessment of source code quality by
using a benchmarking-oriented approach to rate the results of static code
analysis tools. Within an experiment we compared these results with the
evaluations of several experts who made a ranking of the software projects
regarding to their quality. As a result we can reveal that the experts' ranks
strongly correlate to the ranking of our automatic assessment method. The
approach is promising with the restriction that we just made statements about a
quality ranking of the software projects and skipped conclusions about the
absolute quality.

Keywords: Software Quality, Automatic Assessment, Static Code Analysis,
Benchmarking

1 Introduction

Managing the quality of a software project is a key success factor for a software
project. Numerous approaches are available to make the term quality operational in a
sense that it is possible to assess the quality of a software product. One field focuses
on systematically refining the term quality by means of a quality model - like the well
established ISO 9126 model [1] and the successor ISO/IEC 25000 [2]. Other research
groups (e.g. [3], [4] or more actual [5]) identified important metrics for measuring the
quality of a software system. Finally there are static code analysis tools available that
check whether a software product adheres to principal well defined coding best
practices. Wide spread representatives of such tools for the Java programming
language are FindBugs [6] and PMD [7].

Although considerable progress has already been made in the above research areas,
the evaluation of the quality of a specific software project is still an extensive task that
is usually done manually by an expert (see e.g. proposed methods in [8] and [9]).

Alternatively, an automated quality assessment approach has been developed in
scope of the QBench project [10] and is described in detail in [11]. The QBench

approach uses a set of 52 rules emphasizing object-oriented issues and rate them by
comparing the number of rule violations with benchmark data of about 100 software
projects. Then the quality level of the software is automatically calculated using a
defined but inflexible approach. One problem of this approach is that the automatic
assessment method is so strict that hardly any project goes beyond the lowest quality
level. Details on our experiences with the QBench approach can be found in [12].

Based on this experience we developed an automatic assessment method that is
based on the ideas of QBench. As one major difference we are not tied to a fixed set
of metrics and base our benchmarks on the metrics provided by any static code
analysis tools. Furthermore we propose calculation variants for aggregating the results
of different rules or metrics to a final quality statement. The details of the assessment
method are explained in section 2. Technically, we have a more flexible approach that
leads to more differentiated quality results when applied to different software
projects. Based on our model and our calculation methods we can therefore
distinguish software products with good internal quality and with bad internal quality.
This is promising. Nevertheless the question remains unanswered, whether this
calculation result has something to do with the “real” quality.

For this purpose we conducted an experiment where we asked experts to assess the
internal quality of five different open source software projects for which we
calculated quality statements with our automatic benchmark-oriented approach. The
experiment took place on one day where every participant had to assess the five
projects in limited time. The basic idea of this experiment is to find out, whether the
benchmark-oriented assessment can keep up with a human quality expert.

Section 2 briefly introduces our automatic assessment method and section 3
explains how the setup for the experiment has been arranged and how the evaluation
task of the experts has been carried out. In section 4 we present and discuss the results
of our experiment and give a conclusion in section 5.

2 Automatic Assessment Method

We developed an automatic assessment method based on the ideas of the
benchmarking-oriented evaluation method QBench project. According to [13]
benchmarking is the process of comparing products, services and practices with the
strongest competitors on the market. Learning from the best is one typical way to use
benchmarking; nevertheless we use this approach for comparing a software project
with other projects on the market aiming at determining the quality of the software in
relation to the benchmark base.

Obviously the benchmark base, i.e., the projects contained in there have an effect
on the benchmark results, as the quality of a project is always relative to the
benchmark base; it makes a difference whether the benchmark base contains average
quality projects or projects of extraordinary quality. We provide a flexible way to
select the reference projects that shall be used for the benchmark of a project. This is
one major difference from the QBench approach where this flexibility is not given,
but only a fixed set of projects form the benchmark base.

Furthermore we allow a flexible use of metrics and rules and therefore tools for
static code analysis. Besides SISSy [14], a tool that was implemented in the scope of
the QBench project, we primarily use FindBugs and PMD for Java and PC-Lint [15]
for C/C++ projects.

Typical rules these tools search for are for instance whether all String comparisons
are used correctly, closely related methods for a class are implemented or simply
naming conventions are obeyed.

The evaluation process in detail starts by comparing the number of rule violations
of the desired rules with the respective values that are stored in the benchmark base.
As it makes no sense to compare the absolute number of rule violations the results are
normalized by the size of the particular project measured by Logical Lines of Code
(LLOC, i.e., counting only lines that contain source code). The comparison with the
benchmark is done by building a statistical distribution of the values from the
reference projects for every rule. When working with quartiles the result for a single
rule can be one out of six: Below or equal the benchmark minimum, between
minimum and the lower quartile (1st quartile), between lower quartile and median (2nd
quartile), between median and upper quartile (3rd quartile), between upper quartile and
benchmark maximum or greater than the maximum. Fig. 1 illustrates a possible
distribution. As there is a separate distribution available for every rule we do not have
a problem that the range of values for every rule can be different.

0 0,5 1 1,5 2

Lower
quartile

0,30,1 0,7 1,2 1,8

Minimum Median
Upper
quartile Maximum

Fig. 1. Example of a quartile based distribution for a single rule calculated by the normalized
values of the reference projects in the benchmark base.

We have developed several methods for calculating a grade for the overall quality
or for assigning a quality level. The calculation method to use depends on the target
of the assessment, for example if you want to award a kind of certificate for a
software project you have to determine the conditions for certain quality levels. For
our experiment, where we just want to rank projects regarding to their quality, the
simple calculation of an average grade from the results of the used rules is sufficient.
Fig. 2 shows the formula for calculating this grade. The formula is kept very simple
and we weight every rule equally. In our opinion it would be little credible to use
different weights for particular rules as we use more than 500 rules for calculating the
average grade.

Total

i

i

Qi

NoR

iNoR

Avg

)5(
5

0

!"

=

#
=

=

Fig. 2. Calculation of the average grade (Avg) by multiplying the number of rules (NoR) with a
rating factor between 0 and 5 depending on the performance of the respective rule which is
defined by the quartile achieved (Qi). For instance the number of rules that do not exceed the
minimum (Q0) is multiplied with 5 while the number of rules that exceed the maximum (Q5) are
multiplied with 0. The sum of the rated rules is divided by the total number of rules (NoRTotal),
so the grade can have a value between 0 and 5 where a higher value is better.

The ranking of the software projects is very simple when using the average grade.
The project with the highest value will receive the 1st place while the project with the
lowest value will take the last place. If two projects should get the same average
grade, they will obtain the same rank.

3 Setup and Realization of the Experiment

The aim of the experiment was to determine, whether quality experts rank projects in
a similar way than the automatic benchmark approach. For this purpose, experts have
to assess and rank five selected software projects and their ranking results are
compared to the rankings of our automatic assessment method.
The projects of the benchmark base as well as the projects to assess should be open
source projects as it would be hardly possible to perform such an experiment with
industrial projects. Furthermore all projects should use the same programming
language to make them comparable. We decided to concentrate on the Java
programming language as sufficient tools for static code analysis are available and the
setup for static analysis is easier and typically more accurate than with other
languages like C++.

The selection of the projects was done together with the creation of the benchmark
base. The idea was to collect data from well known and wide spread Java open source
projects and to choose five of them for our research. Altogether 31 projects have been
analyzed, so 26 projects can be used for building the benchmark base.

The selection of the five projects for the experiment was not done randomly but by
applying some criteria. There should be both small and larger projects, projects with
few and projects with many rule violations and the projects should be either well-
established or they should at least have a graphic user interface so that experts can
also try out the applications. Finally we ended up with the five projects Checkstyle
[16], JabRef [17], Log4j [18], RSSOwl [19] and TV-Browser [20] where we typically
took the last stable release. The size of the projects is between 13,000 and 66,000
Logical Lines of Code (LLOC). Table 1 lists the five projects and their values of the
selection criteria.

Table 1. The values of the selection criteria for the chosen projects.

Open source project
(and release number)

Rank regarding
rule violation/LLOC

Project
size

Awareness
level

GUI

Checkstyle 4.4 1 small high no
JabRef 2.3.1 28 medium low yes
Log4j 1.2.15 14 small high no
RSSOwl 1.2.4 9 medium medium yes
TV-Browser 2.3.1 11 large medium yes

The experts were not chosen randomly, but it was important that they have

practical experience in software development, in software quality management and
know the Java programming language well. The nine experts that have participated in
the experiment work either in a software development company, are software
consultants or academics working at an institute related to software engineering.

The assessment by the experts was arranged on one day where they got one project
after the other and had to make statements about the quality attributes analyzability,
craftsmanship, reliability and structuredness. The experts didn't know in advance
which projects they would have to evaluate and they had to do their work
simultaneously and independently of each other.

The way for assessing the projects was left up to the experts. Due to the short time
- a project had to be assessed in a time between 45 and 60 minutes - it was clear that
no deep analysis would be possible. So if an expert wanted to base his evaluation on
the results of static code analysis tools he was free to use one. In fact two of the
experts made use of this possibility. Although one can argue that these evaluations
must be similar to the automatic assessment, there is a difference whether to judge a
project automatically by the findings or to go manually through findings and analyze
the possible problems found by the tools.

Another item is the order the projects are evaluated. The order can influence the
experts as this kind of evaluation (short time, five projects at one day) was new for all
of them. So for the first project they had to get accustomed to this situation and for the
following projects there were already comparisons to the foregoing projects possible.
Furthermore the last project had to be evaluated late in the afternoon were the
concentration could be lower than in the morning. To prevent that the experts'
assessments do not differ among each other just due to these facts, all experts had to
evaluate the projects in the same sequence. Moreover the experts got for instance
more time to evaluate the first project for compensating the acclimatization period. At
the end of the day every expert had to rank the five projects accordingly to his opinion
of the projects' software quality. For this final ranking of the projects the evaluation
order should be negligible.

4 Results of the Experiment

The main concern of the experiment was to check whether the automatic ranking
correlates with the experts' opinions about the quality of the investigated open source

projects. Further evaluations regarding single quality attributes stand on a too weak
statistical base to make accurate statements.

The automatic ranking was calculated by using the results from the three static
code analysis tools FindBugs, PMD and SISSy with their default rule sets. We
calculated an average grade for every project as it is explained in section 2 and ranked
the five projects respectively. Table 2 lists the ranking when calculating an average
grade by using the results of all three static code analysis tools together and the
ranking with the results for every tool separately. The rank with all tools is not a
combination of the separate tool ranks but an independent calculated rank using the
formula for calculating the average grade with all 562 rules of the three tools. For the
following analysis we use only the ranking that has been calculated with the results of
all tools. Thus the ranking is 1st place for Checkstyle, 2nd place for RSSOwl, 3rd place
for Log4j, 4th place for TV-Browser and the last place for JabRef.

Table 2. Automatic ranking of the projects with all tools and with each tool separately.

Open source project
(and release number)

All tools FindBugs PMD SISSy

Checkstyle 4.4 1 1 1 2
JabRef 2.3.1 5 5 5 5
Log4j 1.2.15 3 3 3 4
RSSOwl 1.2.4 2 2 2 1
TV-Browser 2.3.1 4 4 3 3

The automatic ranking was compared with the rankings of the experts. The nine

experts ranked the projects unequally. This shows that the selection of the projects
looks good as the source code quality of the projects is not obvious. Nevertheless the
correlation coefficient between the automatic evaluation and the experts' ones lies -
besides one outlier - between 0.6 and 0.9 and is hence statistically significant for more
than the half of the experts. Additionally we summarized the several evaluation
results of the experts to a kind of reference expert by taking either the ranks of the
majority or the median ranks. These reference expert results were as well correlated.
Table 3 shows the particular correlations between the experts (and the reference
experts) with the automatic ranking by using either Pearson's or Kendall's correlation
coefficient.

Table 3. Correlations between experts' rankings and the automatic ranking.

Experts Automatic ranking (all tools)

 Pearson correlation Kendall correlation
Expert 1 0.900 0.800
Expert 2 0.700 0.600
Expert 3 0.900 0.800
Expert 4 0.700 0.600
Expert 5 0.756 0.671
Expert 6 0.600 0.400
Expert 7 0.900 0.800

Expert 8 0.900 0.800
Expert 9 0.866 0.738
Reference expert majority 0.900 0.800
Reference expert median 0.962 0.949

The reference experts correlate equal or even better than any expert alone. This can

be interpreted in that way, that the automatic ranking achieved by tools' results
establishes a kind of common denominator of the experts.

5 Threats to Validity

The experiment for comparing an automatic quality assessment with the opinion of
experts has some limitations. The selection of the studied projects is a critical issue
and another selection could lead to a different result. Furthermore our pool of possible
projects was restricted to open source software; general conclusions about
commercial software would only be possible with great care.

We let the experts evaluate only five projects because a higher number of projects
would overburden every expert and it would be more difficult to get an adequate
number of persons for such an experiment. On the other hand this small number
doesn't allow us to perform detailed statistical analyses.

We tried to get a wide spectrum of experts with different background, but of course
a bigger number of experts would give the experiment a more robust base. But it was
more important for us to get evaluators with experience than to increase the number
of participants.

Finally it is not possible to make appropriate statements about particular quality
attributes as the statistical base for these correlations is too weak and there are too
many sources of irritation for such analyses.

6 Conclusions and Further Works

The automatic ranking of the five open source projects correlates well with the
rankings given by several experts that assessed the quality of these projects on one
day. So the automatic assessment method seems to be a good way to get a quick and
objective insight into the overall source code quality of a software project with low
effort. But of course one has to consider that the presented result is just a ranking of
projects and we make no statement about the absolute quality with our automatic
assessment method. Furthermore the time the experts have spent on the evaluation
was limited and we don't know if a detailed review would have lead to different
results.

To get more information about the significance of the automatic assessment it
would be interesting to perform further experiments with other experts, other projects
and also other programming languages. Moreover we will try to correlate the results
with other data like bug reports or results of unit testing.

7 Acknowledgments

We want to give a big sincere thank to Wolfgang Beer, Klaus-Peter Berg, Gernot
Binder, Christian Danner, Andreas Hangler, Markus Maier, Herbert Prähofer,
Andreas Pramböck, Gerhard Scheutz, Stefan Schiffer, and Josef Templ who were the
participants of the experiment that spent their valuable time for assessing the selected
software projects by hand and made this study possible at all.

References

1. ISO/IEC 9126-1:2001: Software engineering - Product quality - Part 1: Quality model
(2001)

2. ISO/IEC 25000: Software engineering - Software product Quality Requirements and
Evaluation (SQuaRE) - Guide to SQuaRE (2005)

3. McCabe, T. J.: A Complexity Measure. In: IEEE Transactions on Software Engineering,
vol. 2, no. 4, pp. 308--320 (1976)

4. Chidamber, S. R.; Kemerer, C.F.: A Metrics Suite for Object Oriented Design. In: IEEE
Transactions on Software Engineering, vol. 20, no. 6, pp. 476--493 (1994)

5. Gui, G., Scott, P. D.: New Coupling and Cohesion Metrics for Evaluation of Software
Component Reusability, International Conference for Young Computer Scientists, IEEE
Computer Society, pp. 1181--1186 (2008)

6. Product information about FindBugs can be obtained via http://findbugs.sourceforge.net
7. Product information about PMD can be obtained via http://pmd.sourceforge.net
8. Martin, A.E., Shafer, L.H.: Providing a Framework for Effective Software Quality

Assessment - A First Step In Automating Assessments. In: Proceedings of the first Annual
Software Engineering & Economics Conference, McLean (1996)

9. Plösch, R., Gruber, H., Hentschel, A., Körner, Ch., Pomberger, G., Schiffer, S., Saft, M.,
Storck, S.: The EMISQ Method - Expert Based Evaluation of Internal Software Quality. In:
Proceedings of 3rd IEEE Systems and Software Week, Baltimore, IEEE Computer Society
Press (2007)

10. Information about the QBench Approach can be obtained via http://www.qbench.de
11. Simon, F., Seng, O., Mohaupt, T.: Code-Quality-Management - Technische Qualität

industrieller Softwaresysteme transparent und vergleichbar gemacht. dpunkt Verlag,
Heidelberg (2006)

12. Gruber, H., Körner, Ch., Plösch, R., Pomberger, G., Schiffer, S.: Benchmakring-oriented
Analysis of Source Code Quality - Experiences with the QBench Approach. In:
Proceedings of the IASTED International Conference on Software Engineering, Innsbruck,
Austria, (2008)

13. Camp, R.: Benchmarking – The Search for Industry Best Practices that Lead to Superior
Performance, New York (1994)

14. Product information about SISSy can be obtained via http://sissy.fzi.de
15. Product information about PC-Lint can be obtained via http://www.gimpel.com
16. The open source project Checkstyle is available at http://checkstyle.sourceforge.net
17. The open source project JabRef is available at http://jabref.sourceforge.net
18. The open source project Log4j is available at http://logging.apache.org/log4j
19. The open source project RSSOwl is available at http://www.rssowl.org
20. The open source project TV-Browser is available at http://www.tvbrowser.org

