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Abstract. Automated theorem proving is both automatic and can be quite efficient.
When using theorem proving approaches for security protocol analysis, however, the
problem is often that absence of a proof of security of a protocol may give little hint
as to where the security weakness lies, to enable the protocol designer to improve the
protocol. For our approach to verify cryptographic protocols using automated theorem
provers for first-order logic (such as e-SETHEO or SPASS), we demonstrate a method
for automatically generating an attack using the automated theorem prover. The ap-
proach is general and independent from the theorem prover used. The formalization
in first-order logic is intuitive and allows a mechanical translation from cryptographic
protocols written as UML sequence diagrams, which we also sketch. As an example of
this approach for practical security analysis of communication protocols, we examine a
TLS variant protocol example.

Keywords: Security, Cryptographic Protocols, Verification, Automated Theorem Prov-
ing, Attack Generation.

1 Introduction

Automated theorem provers (ATPs) have been successfully applied to the problem
of verifying cryptographic protocols for security requirements [Sch97, Wei99]. An ad-
vantage of these approaches is the potential for being not only automatic, but also
quite efficient and powerful, because of the efficient decision procedures implemented
in these tools and because security requirements can be formalized efficiently in first-
order logic.

A disadvantage of many of these approaches is that it is often not easy to extract
an attack scenario when the tool is not able to prove a protocol secure. Unlike model-
checkers, for example, many automated theorem provers (such as e-SETHEO [SW00],
SPASS [WBH™'02], Vampire [RV01], or Waldmeister [HBVL97]) do not readily return
counter-examples when theorems are found not to be provable. The reason for this is
to some extent inherent: the efficiency and power of these tools relies on the fact that
they perform abstract derivations, instead of explicit enumerations, and on internal
optimizations. Both work against easy extraction of counter-examples. In principle,
models refuting a theorem may be available, but not in a form easily readable by
humans, so they would not be of much use to a security protocol developer trying to
improve a protocol.

We present a new approach for verifying cryptographic protocols using automated
theorem provers. The method is automatic and, for practical purposes, sufficiently
efficient and powerful. Our approach translates cryptographic protocols to formulas

* Supported within the Verisoft Project of the German Ministry for Education and Research.



in first-order logic with equality (more specifically, Horn formulas). The resulting
formulas are rather intuitive and compact. They are then input into any automated
theorem prover supporting the TPTP input notation (such as e-SETHEO and SPASS,
Vampire, and Waldmeister). This flexibility also increases the practical efficiency of the
approach since one can choose the theorem prover best suited for a given verification
task. If the analysis reveals that there could be an attack against the protocol, the
theorem prover is again called using an automated script to produce an attack scenario.
The protocol can then be improved by the designer, and the process repeated. We
demonstrated our approach at the hand of a variant of the Internet protocol TLS
proposed in [APS99]. Using our approach, we demonstrate an attack. We suggest a
correction, and verify the corrected protocol.

As a second goal of this work, we aim to transport our results formal methods re-
search into the context of software development by developers who may not themselves
be formal methods experts. We try to achieve this by making use of a specification
notation commonly used in industry. Specifically, we use UML sequence diagrams,
which our approach translates to first-order logic formulas. As our verification ap-
proach is incorporated in a tool supporting automated verification of UML models for
security requirements (as part of an effort presented in [Jiir04]), formal verification of
cryptographic protocols is available to developers without much background in formal
methods but with some knowledge in UML.

Section 2 explains how to translate UML sequence diagrams to first-order logic
formulas. In Section 3, we introduce our protocol case-study used in this paper, a
variant of the Internet protocol TLS. Section 4 explains the transformation of first-
order formulas to the ATP syntax, in which they are then analyzed in Section 5.
Section 6 explains our new approach for constructing attacks from first-order logic
formulas using ATPs. In Sect. 8, we explain how the translation from UML sequence
diagrams to ATPs is realized in a tool. After comparing our research with related
work, we close with a discussion and an outlook on ongoing research.

2 Translating UML Sequence Diagrams to First-order Logic
Formulas

We assume a set Keys of encryption keys disjointly partitioned in sets of symmetric
and asymmetric keys (where we write sym(K) to say that the key K is symmetric).
We fix a set Var of variables and a set Data of data values (which may include nonces
and other secrets).

The algebra of expressions Exp is the term algebra generated from the set Var U
Keys U Data with the operations below. Here _ denotes an argument place-holder;
thus for example _:: _ represents a binary operation. The operations are: _:: _ (con-
catenation), head(_) and tail(_) (breaking up concatenation), ()~! (private keys),
{_}_ (encryption), Dec_(-) (decryption), Sign (-) (signing), and &rt_() (extracting
from signature).

Based on this formalization of cryptographic operations, important conditions on
security-critical data (such as freshness, secrecy, integrity) can then be formulated as
usual following [DY83].

Our formalization below automatically derives an upper bound for the set of knowl-
edge the adversary can gain. It analyses a security protocol specified as a UML se-



VE1, Es. (knows(El) A knows(E2) = knows(Ey :: Ea) A knows({El}Ez))
A knows(Sign g, (E1))

Al knows(E; :: Ea) = knows(E1) A knows(Eg))

A(knows({E1}g,) A knows(Es ') = knows(El))

Al knows({E1}E,) A knows(E2) A sym(E2) = knows(El))

(
(
(
/\(knows SzgnE 1(E1)) A knows(E2) = knows(E1))

Fig. 1. Structural formulas

quence diagram, which for our purposes is essentially a sequence of command schemata
of the form await event e — check condition g — output event e’

We explain our translation from cryptographic protocols specified as UML se-
quence diagrams to first-order logic formulas which can be processed by the automated
theorem prover e-SETHEO.

Firstly, we observe that we can eliminate some of the constructs which, to increase
readability, were introduced in sequence diagrams: any usage of head(FE) can be re-
placed by introducing the condition F; :: Es = F and by substituting head(F) by F;
at each occurrence. In a similar way, tail(-), Dec_(_), and &xt_(_) can be eliminated.

The idea is then to use a predicate knows(E) meaning that the adversary may get
to know E during the execution of the protocol. For any data value s supposed to
remain confidential (which can be specified in the UMLsec model [Jiir02]), one thus
has to check whether one can derive knows(s).

The set of predicates defined to hold for a given UMLsec specification is defined
as follows.

For each publicly known expression E, one defines knows(E) to hold.

To model the fact that the adversary may enlarge his set of knowledge by con-
structing new expressions from the ones he knows (including the use of encryption
and decryption), one defines the formula in Fig. 1.

Suppose we are given a connection [ = (source(l), guard(l), msg(l), target(l)) in a se-
quence diagram with guard(l) = cond(argy, ..., arg,,), and msg(l) = exp(argy, ..., arg,),
where the parameters arg; of the guard and the message are variables which store the
data values exchanged during the course of the protocol. For each such connection,
we define a clause as in Fig. 2.

The formula formalisms the fact that, if the adversary knows expressions exp, ..., exp,

validating the condition cond(ezp,, ..., exp,), then he can send them to one of the

Vexpq,...,exp,. (knows(exp,) A ... A knows(exp,,)
Acond(expy, ..., exp,,)
= knows(ezp(expy, ..., exp,))

Fig. 2. Translation formulas



protocol participants to receive the message exp(ezpy,...,exp,) in exchange. With
this formalization, a data value s is said to be kept secret if it is not possible to derive
knows(s) from the formulas defined by a protocol.

This way, the adversary knowledge set is approximated from above (because one
abstracts away for example from the message sender and receiver identities and the
message order). This means, that one will find all possible attacks, but one may also
encounter “false positives”. However, this treatment turns out to be rather efficient.

Note that due to the undecidability of Horn formulas with equations, one may not
always be able to establish automatically that the adversary does not get to know a
certain data value. In our practical applications of our method, this limitation has,
however, not yet become observable. This is, by the way, the opposite situation for
example from the method proposed in [Sch97]. We will combine the two approaches
once the problem manifests itself in our approach.

3 A Variant of the Internet Protocol TLS

We will analyze a variant of the handshake protocol of TLS! proposed in [APS99]. To
show applicability of our approach, we demonstrate a flaw, suggest a correction, and
verify it. The goal of the protocol is to let a client send a secret over an untrusted com-
munication link to a server in a way that provides secrecy and server authentication,
by using symmetric session keys.

C:Client S:Server

init(N;, Kc, Si‘ganl (C b Kc))

resp ({SignK§1 (kj=:N) Y,

Sigan—A1 (St KS)) [snd(&xtk (cc))

= Kl]
[fst(Extke,(cs)) =SA xchd({secret}y)
snd(Extk, (DecKE1 (cx)))
= NI] . U
Csi=arge 1, N’ p=args

Cki=argc4
K" ::=snd(Ertke, (cs)) o
k::=fst(Extyn (DCCKEI(Ck))) Ccii=args 3

’ e—
K':=argg

Fig. 3. Variant of the TLS handshake protocol

As shown in Fig. 3, the protocol proceeds as follows. Here we assume that the set
Var contains elements arg, ; ,, for each O € Obj(D) and numbers [ and n, representing
the nth argument of the operation that is supposed to be the [th operation received
by O according to the sequence diagram D. The client C initiates the protocol by
sending the message init(N;,Kc,Sigan_l(C :: K¢)) to the server S. If the condition

[snd(&xtk (cc))=K'] holds, where K’ ::= argg, o and cci:=argsq 3 (that is, the key

L TLS (transport layer security) is the successor of the Internet security protocol SSL (secure sockets
layer).



K¢ contained in the signature matches the one transmitted in the clear), S sends the
message resp({Sign,—1(kj :: N') }x, ‘S'z'gm(}4 (S :: Ks)) back to C (where N ::= argg 1 1).

S C. sy
Then if the condition

[fSt(gxtKCA (Cs)):S AN Snd(&L‘tKH (D echl (Ck))):Ni]

holds, where cs ::=argc 1 1, Ck::=argc 1, and K” := snd(Extk ., (cs)) (that is, the cer-
tificate is actually for S and the correct nonce is returned), C sends xchd({si}«) to S,
where k ::= fst(Extyn (DecKc_l(ck))). If any of the checks fail, the respective protocol

participant stops the execution of the protocol.

4 Transformation of First-order Logic Formulas to ATP Syntax

We shortly explain how to translate the formulas from Sect. 2 into a popular automatic
theorem prover input format (TPTP) used for example by the e-SETHEO prover. We
explain the mapping to TPTP input format of:

— the basic intruder knowledge,
— the basic function types (enc, symenc, sign, conc) including properties,
— the first-order formula from Section 2 representing the protocol itself.

Each of these properties are expressed in TPTP input format by encapsulation within
input_formula constructs. The TPTP syntax consist of the usual first-order logic sym-
bols (written as in Fig. 4).

Syntax (TPTP) Meaning
lowercase words constants
uppercase letter words variables

f(a, b, ...) predicate function
& conjunction

| disjunction

=> implication

! [Argl, Arg2, ..] : forall

? [Argl, Arg2, ..] : exists

() priorities

Fig.4. TPTP syntax

The cryptographic operations (asymmetrical and symmetrical encryption, signa-
ture) and concatenation are represented as binary functions (enc, symenc, sign, and
conc) in e-SETHEO (cf. Fig. 5).

We explain the transformation to the TPTP format at the hand of the example
from Sect. 3. Firstly, the initial adversary knowledge (known before the start of the
protocol) is defined in Fig. 6. It is protocol-specific. The input formula which expresses
the basic and in advance known intruder knowledge is expressed in Fig. 6. Here k_a
and inv(k_a) represents arbitrary public and private key material of the intruder. The
expression k_ca is the public key of the certification authority which is known by all
parties of the protocol in advance.

The meaning of the operations is defined by input formulas representing the effect
on the intruder’s knowledge predicate known (cf. Fig. 7).



Meaning UMLsec operations e-SETHEO operations
Concatenation i conc(-,-)

Extraction tail(-), head(-) [derived]

Inverse keys ()1 inv(-)

Encryption {-}- enc(_,_) or symenc(-,-)
Decryption Dec_(-) [derived]

Signing Sign_(_) sign(_,-)

Signature Extracting | Ext_(_) [derived]

Fig. 5. UMLsec vs. eeSETHEO operations

input_formula(previous_knowledge,axiom, (
(  knows(k_a)
& knows(inv(k_a))
& knows(k_ca) ) )).

Fig. 6. Attackers initial knowledge

The main part of the transformation to the e-SETHEO approach is the protocol
definition itself (cf. Fig. 8). The input formula expresses the first-order formula as men-
tioned in the above UMLsec transformation section. The protocol itself is expressed by
a for-all quantification over the pieces of messages which are transferred over the com-
munication channel (e.g. network). The message variables ArgC_11 and ArgC_12 stand
for the messages received by the client. The message variables ArgS_11, ArgS_12 and
ArgS_13 stand for the server receiving messages parts. The protocol example includes
three messages (cf. Fig. 3). The first one sent from the client, the second one from the
server and the third one sent again from the client. Each message is expressed by a
single clause of the main conjunction. Therefore three clauses occur in the example.
The first one

knows(n) & knows(k_c) & knows(sign(conc(c, k_c), inv(kc) ))

is the message sent from the client to the server. It has no preconditions because of the
initial message type. The second and third protocol messages are specified by implica-
tions. In the preconditions of the implications the expected pieces of input message are
expressed by known(Arg_C11), known(ArgC_12), and known(ArgS_11), known(ArgS_12),
known(ArgS_13) respectively. Conditional parts of the received messages are expressed
by equations. For instance, the checking if the key of the signed message equals the
transmitted key k_c is expressed by:

? [X] : equal( sign(conc(X, ArgS_12), inv(ArgS_12) ), ArgS_13)

The conditional equations use the binary function equal(a,b) which is a predefined
expression of TPTP syntax and represents the equality relation. In order to express
extractions of parts of the messages a pattern matching approach is chosen. One
example is the third line of the third protocol message:

equal(sign(conc(s, DataC_KK), inv(k_ca)), ArgC_12)

The value which is determined by pattern matching is DataC_KK the server’s public
key for the signature verification. The implications postconditions include the messages
send over the communication channel like for example

knows(symenc(secret, DataC k))



%-——— Asymmetrical Encryption ---- h=———= Basic Relations on Knowledge —-----

input_formula(enc_equation,axiom, ( input_formula(construct_message_1,axiom, (
! [E1,E2] : ! [E1,E2] :
(C ( knows (enc(E1, E2)) C( knows (E1)
& knows(inv(E2)) ) & knows(E2) )
=> knows(E1l) ) )). = ( knows (conc(El1, E2))
& knows(enc(E1l, E2))
fm————— Symmetrical Encryption ------ & knows(symenc(E1l, E2))
input_formula(symenc_equation,axiom, ( & knows(sign(E1l, E2)) ) ) )).
1 [E1,E2] :
( ( knows(symenc(E1l, E2)) input_formula(construct_message_2,axiom, (
& knows(E2) ) ! [E1,E2] :
=> knows(E1l) ) )). ( knows (conc (E1, E2))
=> ( knows(E1l)
hm—mmm Signature ----------- & knows(E2) ) ) )).
input_formula(sign_equation,axiom, (
! [E,K] :
( ( knows(sign(E, inv(K) ) )
& knows(K) )

=>  knows(E) ) )).
Fig. 7. General ATP rules

in the last message from the client. The specification of fresh keys as it is used in
the second message from the server is expressed by encapsulating it within an unary
function kgen. For instance the key from the first message of the client within an unary
function named kgen, e.g. kgen(ArgS_12).

Other security protocols can be transformed through a converter program auto-
matically.

The logical transformation of the security protocol can be verified against an con-
jecture statement like depicted in figure 9. Here an confidentiality property is tested.
In other words the theorem prover proofs if the knowledge set of the intruder contains
the secret information or that the information can be derived from other knowledge
set information of the intruder.

5 Protocol Analyses with ATPs like e-SETHEO

The prover SETHEO (SEquential THEOrem prover)? is an efficient automated the-
orem prover for first oder logic in clausal normal form [Sch01]. Based on the model
elimination calculus it has been developed by the Automated Reasoning Group at
the Technische Universitiat Miinchen. To handle and reasoning about equality prop-
erties within the analysis of protocols the SETHEO prover has been extended to
the e-SETHEQ prover. The e-SETHEO prover includes further and progressive tech-
niques to handle equality efficiently. The two main techniques are unfailing completion
[BDP89] and superposition and to a small extent lazy para-modulation [GRS87].

We use of e-SETHEO for verifying security protocols as a “black-box”: A TPTP
input file is presented to the ATP and an output from the ATP is observed. No
internal properties of or information from e-SETHEOQ is used. This allows one to use

2 Other ATPs like the SPASS prover can also be used for the analysis and have almost the same
calling properties like SETHEOQO.



input_formula(tls_abstract_protocol,axiom, (
I [ArgS_11, ArgS_12, ArgS_13, ArgC_11, ArgC_12] : (
| [DataC_KK, DataC_k, DataC_n] : (
% Client —> Attacker (1. message)
(  knows(n)
& knows(k_c)
% asymetrical public key
& knows(sign(conc(c, k_c), inv(k_c) ) )
% signature of concatination
)
& % Server -> Attacker (2. message)
(  ( knows(ArgS_11)
% first part of receiving server message
& knows(ArgS_12)
% second part of receiving server message
& knows (ArgS_13)
% third part of receiving server message
& (7 [X] : equal( sign(conc(X, ArgS_12), inv(ArgS_12) ), ArgS_13 ) )
% condition test of snd(...)
)
=> ( knows(enc(sign(conc(kgen(ArgS_12), ArgS_11), inv(k_s) ), ArgS_12 ) )
& knows(sign(conc(s, k_s), inv(k_ca) ) ) )
)
& % Client -> Attacker (3. message)
(  ( knows(ArgC_11)
& knows (ArgC_12)
& equal(sign(conc(s, DataC_KK), inv(k_ca)), ArgC_12 )
% K’ = snd(Ext_{K_CA}(arg_C_12)
& equal(enc( sign(conc(DataC_k, DataC_n), inv(DataC_KK) ),
k_c), ArgC_11 )
% Decryption of message Dec_{K_C-1}(arg_C_11))
& ( 7 [DataC_ks] : equal(sign(conc(s, DataC_ks), inv(k_ca)), ArgC_12 ) )
% First Condition Testing == [fst(...)=S]
& equal(enc(sign(conc(DataC_k, n), inv(DataC_KK) ), k_c), ArgC_11 )
% Second Condition Testing == [snd(Ext_K’’(...))=N’]

=> ( knows(symenc(secret, DataC_k)) )

Fig. 8. Protocol Specification

b —- Attack --—-—---—————--—-
% Here you can see that the secret can be captured
% by an attacker!

input_formula(attack,conjecture, ( knows(secret) )).
Fig. 9. Example of a conjecture statement (security property)

e-SETHEO interchangeable with any other ATP accepting TPTP as an input format
(such as SPASS, Vampire and Waldmeister) when it may seem fit.
The running of e-SETHEO involves few parameters:

run-e-setheo [--add-eq] <input file> <resources> <strategy>

The add — eq option is used to enable the automatic adding of the equality proper-
ties like symmetricity and reflexivity to the TPTP file. The amount of time resources



in seconds of e-SETHEQ can be limited by the resources parameter, e.g. 300 seconds.
In the e-SETHEO approach several prove strategies are used in parallel within one
run. The time resources are subdivided to the individual prover strategies e-SETHEO
uses. In order to tell the proof system to use only a special one the strategy parameter
can be used (cf. [LS01]). The analysis of the TLS variant protocol is done by using
the e-SETHEO call:?

run-e-setheo tlsvariant-freshkey-check.tptp 300

An extract of the output of e-SETHEO is shown in Fig. 10. The result can be seen
in the bottom part of the output where the prover returns Proof found which means
that the conjection known(secret) can be derived from the defined rules within three
seconds by one the provers contained in e-SETHEO.

E-SETHEO csp03 single processor running on host ...
(c) 2003 Max-Planck-Institut fuer Informatik and
Technische Universitaet Muenchen

tlsvariant-freshkey-check.tptp

time limit information: 300 total (entering statistics module).
problem analysis ...

testing if first-order ...

first-order problem

statistics: 19 07 46 36 2012 14802 286

schedule selection: problem is horn with equality (class he).
schedule:605 3 300 597

entering next strategy 605 with resource 3 seconds.

analyzing results ...
proof found
time limit information: 298 total / 297 strategy (leaving wrapper).

e-SETHEO done. exiting
Fig. 10. Output of e-SETHEO

6 Attack Tracking Approach

We describe the approach of attack tracking with the assistance of an automatic
theorem prover (e.g. e-SETHEO or SPASS). We give an overview of the idea, describe
the tool implementation, and show on the TLS variant protocol how flaws can be
found. We fix the flaw and again verify the correctness of the protocol using the
automatic theorem prover.

In the protocol body (cf. Fig. 8) we can see that the knowledge of an attacker
can influence the running of the protocol. For instance, the attacker can use his own

3 The input file is available upon request from the authors and is documented in the appendix of the
longer version of the paper.



key material k_a and inv(k.-a) in order to fake messages so that the attacker can gain
additional knowledge from the other protocol participants.

As mentioned in the last section, the protocol specification together with a con-
jecture about the possible attacker knowledge can be proved by the automatic the-
orem prover. Until the ATP returns the message proof found, this means that an
(partial) assignment exists for the message variables. In the TLS variant protocol
example, this means that an assignment to the message variables ArgC_11, ArgC_12,
ArgS_11, ArgS_12, ArgS_13 can be found by an ATP proof of the conjecture (such as
known(secret)). The automatic theorem prover e-SETHEO does not return such an
assignment explicitly because the proof technique operates on an abstract level. In
order to find such an assignment, the message variables have to be filled step-by-step
in a proper way by possible values like k_a, n, k_c, enc(n, k_a),..., so that e-SETHEO
continues to find a proof until all assignment values are found. The first value found for
the first message variable is fixed to that message variable and used during the search
for the other message variables. Step by step the message variables are replaced by
values for which the invariant that the automatic theorem prover finds a proof holds.
E.g. if in the TLS variant protocol the first message variable ArgC_11 is replaced by the
value n, the automatic theorem prover e-SETHEO returns Proof found. The result-
ing protocol reduces then to only four message variables ArgC 12, ArgS_ 11, ArgS 12,
and ArgS_13. Therefore, the number of message variables in the for-all quantification
part of the protocol is reduced until all message variables have been instantiated. A
generalization of this idea leads to the following algorithm A:

Let protocol(Arg1, Arga, ..., Arg,) € {true, false, —} with the meaning that a protocol
is checked true, false or unknown by an automatic theorem prover (e.g. e-SETHEOQO)
by replacing the message variables occurring in the protocol’s for-all quantification
part by values of the assignment.

Algorithm A:

Input: VAL = set of message values vall, val2,

Output: Assignment for the message variables ARG = { Argl, ..., Argn}
Assignment[1] = Assignment[2] = ... = ’-7;

FOREACH arg in ARG DO
FOREACH val in VAL DO
IF protocol (Assignment) = true THEN
Assignment [arg] = val;

After the algorithm A terminates on the protocol it gives back an assignment of the
message variables where a value has been found (assuming that a value was included
in the set VAL). A protocol attacking assignment is found if for all message variables
a value has been found.

The reason why the above attack tracking algorithm works, is that the protocol
function has a homomorphic property?* of the form:

VV AL, ARG : protocol(valy, ..., val;, ...,val,) =
protocol(valy, Arga, ..., Argi, ... Argn) A ...\

4 In other words the assignment of the message variables does not depend on the order of assigning
by the values.



protocol(Argi, ..., Argi—1,val;, Argit1, ...Arg,) A ...\
protocol(Argy, ..., Arg;, ..., Arg,_1,valy,)

where A is the well-known conjunction operation with the exception that the occur-
rence of the assignment ’ —’ is ignored by the boolean conjunction operation, e.g. true
A - A false = false.

There are several advantages of the above attack tracking approach:

— The run time complexity of the algorithm A needs linear many calls of the ATP
system in relation to the input value set. Here in general the input value set consists
out of atomic values like n, k_c, ... or is a composition of the protocol operations
enc, symenc, sign, and conc assigned with atomic values. The set VAL is infinite
but can be reduced to a finite set in practice, e.g. only compositions to a constant
depth are relevant for the protocol.

— If the person who analyses the protocol has some pre-knowledge about the attack,
the set VAL can be made even smaller or can be a set constructed by deletion of
invalid or useless values pre-knowledge in-cooperated.

— Security protocols guarantee the homomorphic property mentioned above.

— Even a partial assignment of values to message variables can be found which can
give the expert user a hint for further attack investigations.

The above mentioned algorithm A has been implemented by a perl script environ-
ment. Fig. 11 gives an overview of the attack tracking perl tool environment.

Partially

exchanged
message

variables

Replace File
message (.tptp)
variables
 ales \;,
values

Automatic Theorem Prover

. VALHomoQuest e.g. e-SETHEO, SPASS, ...
N
RN Alg. A ;
Proof! v
4 1
7
. p
- [T

e Result

Protocol
Speci—
fication
File
(.tptp)

7

)

or  Tnitialise!

\

/
Output.

Start!

Fig. 11. Attack tracking tools suite

The set VAR and ARG are represented by two file stores which are initialized by
the user directly or via the output of a tool, e.g. UMLsec tool suite or a Message
Generator Tool. The security protocol specification (TPTP) is also generated by the
user himself or by a tool. This generation is done in the same way as described in
Sect. 2 and 4 above. The user then starts the VALHomoQuest perl script® with the
following parameter syntax:

VALHomoQuest <VAL filename> <ARG filename> <protocol filename> <time>

5 Available via http://wwwd4.in.tum.de/~kuhnt



The VAL and ARG text filename is the filename where the values and message variables
are listed. Each text line corresponds one value or message variables. The protocol
filename corresponds to the protocol specification as a TPTP input file. The time
parameter is used for telling the connected automated theorem prover how much
time/space resources it is allowed to use for each proofing trial. After consuming all
the time resources the automated theorem prover gives back * —’ which means no
answer was found for the time limit offered.

The attack tracking tool suite is used on the TLS variant protocol in order to
demonstrate the method. The protocol is given to the VALHomoQuest perl script
where as protocol filename tlsvariant — freshkey — check.tptp, the time resources for the
e-SETHEO automated theorem prover is set to 300 seconds, the VAL file is constructed
in this example by hand from the user® as depicted in Fig. 12, and the ARG file looks
like depicted in Fig. 13:

k_a

inv(k_a)

k_ca

n

k_c

sign(n,k_a)

sign(conc(c, k_a),inv(k_a)) Args_11
enc(sign(conc(kgen(k_a),n),inv(k_s)),k_a) ArgS_12
enc(sign(conc(kgen(k_a),n),inv(k_s)),k_c) ArgS_13
enc(sign(conc(kgen(k_a),n),k_s) ,k_a) ArgC_11
sign(conc(s, k_s), inv(k_ca) ) ArgC_12

Fig. 12. Values for attack ( VAL) Fig. 13. Message Variables ( ARG)

The command is then invoked by:
VALHomeQuest VAL.dat ARG.dat tlsvariant-freshkey-check.tptp 300

While proceeding the analysis the tool gives back the current working parameters
for status purposes and after finishing the analysis the assignment to the message
variables are given back (cf. Fig. 14. For this example the attack tracking tool needs
around 20 seconds on a SunFire 3800 (4 processors, 6 GByte RAM, Solaris 9).

VHQ: Attack Assignment:

ArgS_11:n

ArgS_12:k_a

ArgS_13:sign(conc(c, k_a),inv(k_a))
ArgC_11:enc(sign(conc(kgen(k_a),n),inv(k_s)) ,k_c)
ArgC_12:sign(conc(s, k_s), inv(k_ca) )

Fig. 14. Attack Assignment

This means that the protocol does not provide its intended security requirement,
secrecy of secret, against a realistic adversary.

6 In general this VAL file is generated automatically by an Message Generator or imported from a
connected other tool like the UMLsec tool suite



The derived message flow diagram corresponding to a man-in-the-middle attack
depicted in Fig. 15.

Ni::Kc::SignK,l (C:K¢) Ni::KA::SignK,l (C::K 4)
C A
C A S
{Signkgl (kj::Ni)}Kc ::SignKEj (S:Kg) {Siganl (kj::Ni)}KA ::SiganAl (S:Kg)
C A S
{secret}kj {secret}kj
C A S

Fig. 15. Attack Visualization: Man-in-the-middle

We propose to change the protocol to get a new specification by substituting
k; :: N; in the second message (server to client) by k; :: N; :: K¢ and by including a
check regarding this new message part at the client. Here, the public key K¢ of C is
included representatively for the identity of C' (in fact, one could also use k; :: N; :: C
instead).

Again, in traditional informal notation, the modified protocol line would be written
as follows:

S—C: {Siganl(kj N KC)}KC,SignKE}q(S i Ks)

Now the new version with the additional signature information about the client
key k_c can be verified by the automated theorem prover approach. The calling of
e-SETHEO looks like this:

run-e-setheo tlsvariant-fix-freshkey-check.tptp 300

When e-SETHEO runs on the fixed version of the protocol it now gives back Model
found within 5 seconds which means that there exists no proof of the conjecture
known(secret) and therefore the attacker cannot gain the secret knowledge anymore.

Note that since our approach approximates the adversary knowledge set from above
(which is a reason for its efficiency), it could consider protocols to be insecure which
are in fact secure. However, this problem has not shown up in any practical protocols.
If it would, the designer would, using the attack generation facility presented in this
section, see that the scenario that is produced is not a realistic attack.

7 Related Work

There has been extensive research in using formal models to verify secure systems.
Their main areas of application in this domain include security policies and security
protocols. Early influential work was given in [DY83, MCF87, BAN89, Mea91, Syv9l].
In particular, [Mea91] is based on the logic programming language Prolog and thus
related to using an automated theorem prover. However, there are differences, for ex-
ample in that [Mea91] uses a state search approach (see [Mea95] for details) whereas
our approach abstractly bounds the possible adversary knowledge from above using



inference rules of first order logic. Authentication logics such as [BAN89, Syv91] have
in common with our approach the abstract way of reasoning, which often allows au-
tomated verification. Our approach differs from some of these approaches by also
automatically finding attacks. Several approaches deal specifically with confidential-
ity requirements, as we do here (for example [Fol94]). In a line of work started at
[THGI8], the strand space approach provides a formal method tailored to the anal-
ysis of cryptographic protocols. Its aim is to provide a verification approach which
is sufficiently simple to be used manually. While we believe that our approach for
formalizing cryptographic protocols in first-order logic is also quite intuitive, our aim
is to provide an automatic method to enable its use (through the UML notation)
also by developers without much mathematical background. The process algebra CSP
has been employed quite successfully, for example in [Sch96, LR97, HPS01]. This has
been done to a large extent by making use of the model-checker FDR. Although, as a
model-checker, prone to the state-explosion problem, its use has been rather successful
due to the maturity of the tool and to results allowing the user to restrict the search
space. An alternative approach here is the “rank function” method which is being
implemented in an independent tool [HS00].

Most closely related to our work are approaches that also use first-order logic.
[Sch, Wei99, Coh00] employ first-order reasoning is for proving security properties of
cryptographic protocols using various automated theorem provers.

Relatively little work so far has been done using automated theorem provers for
cryptographic protocol analysis. As an example, [Sch97] uses e-SETHEO for verifying
authentication protocols in an approach based on BAN logic [BAN89]. In contrast to
that work, our approach can also deal with secrecy properties, and can generate at-
tacks automatically. [Wei99] uses the ATP SPASS to analyze the Neuman-Stubblebine
protocol. Again, an advantage of our approach is that it can also provide attack scenar-
ios. As another use of ATPs, [GP00] uses the Otter tool for validation of cryptographic
protocols by efficient automated testing.

[GSG99, Gol03, Mea03] give short overviews and point out open problems and crit-
ical things. For an overview of the work on verifying security protocols with a focus on
the process algebra CSP, see [RSGT01]. See [SCO1] for an overview on authentication
logics.

Other work in security engineering using UML includes [VMLO03], presenting a
business process-driven framework for security engineering with the UML. It is mo-
tivated by the fact that security requirements can be communicated best between
customers and developers at the level of business process models in UML. [LOTO03]
uses the notation SDL for a formal analysis of security systems. The approach uses
a specification notation based on HMSC/MSC, which can be automatically trans-
lated into a generic SDL specification. [HH03] uses UML to specify information flow
requirements for Java-based systems.



8 Tool Integration

For the ideas that were presented in the previous sections to be of benefit in practice, it
is important to have advanced tool-support to assist in using them, which is sketched
in Fig. 16. 7

UML Editor
{UML 1.4/ XM 1 2 - compliarl  fe————————
.. Poseidon 1.6 G data flow

-—“Uses"—

UML Model
fuML 1.4 ¢
XM 1E)

Modified

UML Medel Text Repart

Counter -
Example

Static Checker ||

I'—
%

Automatic Theorem Prover
e.g o-SETHEO
N Executable

Fig. 16. UML tools suite

Analysis Suite

9 Conclusion and Future Work

We presented a new approach for verifying cryptographic protocols, given as UML se-
quence diagrams, using automated theorem provers. The method is automatic and, for
practical purposes, sufficiently efficient and powerful. Our approach translates UML
sequence diagrams to formulas in first-order logic with equality (more specifically,
Horn formulas). The resulting formulas are rather intuitive and compact. They are
then input into any automated theorem prover supporting the TPTP input notation.
If the analysis reveals that there could be an attack against the protocol, the theorem
prover is again called using an automated script to produce an attack scenario. The
protocol can then be corrected by the designer, and the process repeated. We demon-
strated our approach at the hand of a variant of the Internet protocol TLS proposed in
[APS99]. Using our approach, we demonstrated an attack. We suggested an improved
version, and verified the corrected protocol.

A feature of our work is that it combines an industrially used notation such as UML
with the formal analysis of cryptographic protocols using automated theorem prov-
ing. It is both automatic and efficient, and compared with other automated theorem
proving approaches, it also features an automated attack generation. It does not rely
on especially implemented algorithms but may use a number of well-developed and

7 The tool is available for general use through a web-interface (User: Tooluser, Password: Imayusethis,
Link: http://www4.in.tum.de/csduml/interface/interface.html



well-supported tools interchangable, and profit from its improvements in the future
without the necessity of any adjustments.

Since automated theorem provers for first-order logic with equality rely on semi-
decision procedures, a limitation of our approach in principle could be that for a given
protocol, the theorem prover can neither establish existence nor absence of attacks.
However, in our tests, this theoretical problem has not become apparent. Also, this
seems to be a problem which is not specific to our approach but of a more general
nature [DLMS99]. Since one can use our method invariably with any theorem prover
accepting the TPTP notation, facing such a problem, one could then easily use another
prover with different decision procedures. Also, since our approach approximates the
adversary knowledge set from above (which is a reason for its efficiency), it could
consider protocols to be insecure which are in fact secure. Again, this problem has
not shown up in any practical protocols. If it would, the designer would see that the
scenario that is produced it is not a realistic attack.

As our verification approach is incorporated in a UML tool, it makes formal veri-
fication of cryptographic protocols available to developers without much background
in formal methods but with some knowledge in UML.

The method proposed here is being applied in security-relevant projects with indus-
try, for example in projects of a German car manufacturer, and a telecommunications
company.

For future work, we aim to apply the attack tracking approach to other protocols.
The construction of the message set VAL in Sect. 6 could be improved, for example
with the usage of intelligent strategies for generation of relevant terms where support
of additional user interaction is provided.
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10 Appendix

10.1 tlsvariant-freshkey-check.tptp

% File : The basic (-without- fix) TLS Variant Protocol is modelled here!
% (IEEE Infocom 99) [Authors: Thomas Kuhn, Jan Jrjens]
% Domain
% Problem
% Version
% English
% Refs
% Source
% Names :
% Status : unknown
% Rating : 7
% Syntax : Number of formulae : 26 (6 unit)
% Number of atoms : 65 ( 40 equality)
% Maximal formula depth : 14 (4 average)
% Number of connectives : 40 ( 1~ 0 |; 19 &)
T ( 0<=>; 20=>; 0 <=)
% ( 0 <7>; 0 ~l; 0 "&)
% Number of predicates : 2 (O propositional; 1-2 arity)
% Number of functors : 16 ( 8 constant; 0-2 arity)
% Number of variables : 60 ( 0 singleton; 60 !; 0 7)
% Maximal term depth : 6 (1 average)
% Comments :
% : tptp2X -f tptp -t add_equality tlsvariant.p
%
W Asymmetrical Encryption
input_formula(enc_equation,axiom, (
' [E1,E2]

( (. knows(enc(El, E2))
& knows (inv(E2)) )
=> knows(E1) ) )).

YA Symmetrical Encryption
input_formula(symenc_equation,axiom, (
! [E1,E2]
( (  knows(symenc(E1, E2))
& knows (E2) )
=> knows(E1) ) )).

A Signature
input_formula(sign_equation,axiom, (
! [E,K]
( (. knows(sign(E, inv(K) ) )



& knows(X) )
=> knows(E) ) )).

%---- Basic Relations on Knowledge where conc, enc, symenc and sign is included ----
input_formula(construct_message_1,axiom, (
! [E1,E2]

( (  knows(E1)
& knows(E2) )
= ( knows (conc(E1, E2))
& knows(enc(E1, E2))
& knows(symenc(E1l, E2))
& knows(sign(E1, E2)) ) ) )).

input_formula(construct_message_2,axiom, (
! [E1,E2]
( ( knows(conc(E1, E2)) )
=> ( knows(E1)
& knows(E2) ) ) )).

% Attackers Initial Knowledge
input_formula(previous_knowledge,axiom, (
(  knows(k_a)
& knows (inv(k_a))
& knows (k_ca)
) N,

% TLS Main Protocol Specification
input_formula(tls_abstract_protocol,axiom, (
%PERLPROTOCOLCHECK_BEGINNING
! [ArgS_11, ArgS_12, ArgS_13, ArgC_11, ArgC_12]
(
! [DataC_KK, DataC_k, DataC_n]
(% Client -> Attacker (1. message)

(  knows(n)
& knows (k_c) % asymetrical public key
& knows(sign(conc(c, k_c), inv(k_c) ) ) % signature of concatination
)
& % Server -> Attacker (2. message)
( (  knows(ArgS_11) % first part of receiving server message
& knows(ArgS_12) 7 second part of receiving server message
& knows(ArgS_13) Y third part of receiving server message
& (7 [X] : equal( sign(conc(X, ArgS_12), inv(ArgS_12) ),
ArgS_13 ) ) %, condition test of snd(...)
)
=> (  knows(enc(sign(conc(kgen(ArgS_12), ArgS_11), inv(k_s) ), ArgS_12 ) )
& knows(sign(conc(s, k_s), inv(k_ca) ) ) )
)

& % Client -> Attacker (3. message)
( ( knows(ArgC_11)
& knows (ArgC_12)
& equal(sign(conc(s, DataC_KK), inv(k_ca)), ArgC_12 )
% K>’ = snd(Ext_{K_CA}(arg C_12)
& equal(enc( sign(conc(DataC_k, DataC_n), inv(DataC_KK) ),
k_c), ArgC_11 )
% Decryption of message Dec_{K_C-1}(arg_C_11))
& ( 7 [DataC_ks] : equal(sign(conc(s, DataC_ks), inv(k_ca)
), ArgC_12 ) )
% First Condition Testing == [fst(...)=S]
& equal(enc(sign(conc(DataC_k, n), inv(DataC_KK) ), k_c),
ArgC_11 )
% Second Condition Testing == [snd(Ext_K’’(...))=N’]
)
=> ( knows(symenc(secret, DataC_k)) )

)

).



%PERLPROTOCOLCHECK_ENDING

% Attack
% Here you can see that the secret can be captured by an attacker!

input_formula(attack,conjecture, (
knows (secret) )).

10.2 tlsvariant-fix-freshkey-check.tptp

% File : The basic (-with- fix) TLS Variant Protocol is modelled here!
% (IEEE Infocom 99) [Authors: Thomas Kuhn, Jan Jrjens]
% Domain
% Problem
% Version
% English
% Refs
% Source
% Names :
% Status  : unknown
% Rating : 7
% Syntax : Number of formulae : 26 (6 unit)
% Number of atoms : 656 ( 40 equality)
% Maximal formula depth : 14 (4 average)
% Number of connectives : 40 ( 1~ 0 |; 19 &
h ( 0<=>; 20 =>; 0 <=)
% C 0<™>; 07l; 07°&
% Number of predicates : 2 (O propositional; 1-2 arity)
% Number of functors : 16 (8 constant; 0-2 arity)
% Number of variables : 60 ( 0 singleton; 60 !; 0 7)
% Maximal term depth : 6 (1 average)
% Comments :
% : tptp2X -f tptp -t add_equality tlsvariant.p
YA
% Asymmetrical Encryption
input_formula(enc_equation,axiom, (
! [E1,E2]
( (  knows(enc(El, E2))
& knows (inv(E2)) )
=> knows(E1l) ) )).
% Symmetrical Encryption
input_formula(symenc_equation,axiom, (
! [E1,E2]
( (. knows(symenc(E1l, E2))
& knows(E2) )
=> knows(E1) ) )).
% Signature
input_formula(sign_equation,axiom, (
! [E,K]
( (  knows(sign(E, inv(K) ) )
& knows(K) )
=> knows(E) ) )).
%---- Basic Relations on Knowledge where conc, enc, symenc and sign is included ----
input_formula(construct_message_1,axiom, (
! [E1,E2]

( ¢ knows(El1)
& knows(E2) )
=> (  knows(conc(El, E2))
& knows(enc(E1, E2))
& knows(symenc(E1l, E2))



& knows(sign(E1l, E2)) ) ) )).

input_formula(construct_message_2,axiom, (
! [E1,E2]
( ( knows(conc(E1, E2)) )
=> ( knows(E1)
& knows(E2) ) ) )).

% Attackers Initial Knowledge
input_formula(previous_knowledge,axiom, (
( knows(k_a)
& knows (inv(k_a))
& knows (k_ca)
) N

YA TLS Main Protocol Specification
input_formula(tls_abstract_protocol,axiom, (
! [ArgS_11, ArgS_12, ArgS_13, ArgC_11, ArgC_12, DataC_KK, DataC_k, DataC_n, DataC_r]
(% Client -> Attacker (1. message)
(  knows(m)
& knows (k_c)
& knows(sign(conc(c, k_c), inv(k_c) ) )

& % Server -> Attacker (2. message)
( ( knows(ArgS_11)
& knows (ArgS_12)
& knows (ArgS_13)
& (7 [X] : equal(sign(conc(X, ArgS_12), inv(ArgS_12) ), ArgS_13) )

)
=> ( knows(enc(sign(conc(conc(kgen(ArgS_12), ArgS_11), ArgS_12), inv(k_s) ), ArgS_12 ) )
& knows(sign(conc(s, k_s), inv(k_ca) ) ) )

& % Cient -> Attacker (3. message)
( ( knows(ArgC_11)

& knows (ArgC_12)
& equal(sign(conc(s, DataC_KK), inv(k_ca)), ArgC_12 )
& equal(enc(sign(conc(conc(DataC_k, DataC_n), DataC_r), inv(DataC_KK) ), k_c), ArgC_11 )
& ( 7 [DataC_ks] : equal(sign(conc(s, DataC_ks), inv(k_ca) ), ArgC_12 ) )
& equal(enc(sign(conc(conc(DataC_k, n), DataC_r), inv(DataC_KK) ), k_c), ArgC_11 )
& equal(enc(sign(conc(conc(DataC_k, DataC_n), k_c), inv(DataC_KK) ), k_c), ArgC_11 )
)
=> ( knows(symenc(secret, DataC_k))
)
)
) ).
% Attack

% Here you can see that the secret can’t be captured by an attacker!
h
input_formula(attack,conjecture, (

knows(secret) )).



