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Lossy Counter Machines

Richard Mayr*

Abstract

We consider lossy counter machines, i.e. counter machines with coun-
ters whose contents can spontaneously decrease at any time. They are
not Turing-powerful, since reachability is decidable for them, but they
still have interesting undecidable properties: For a lossy counter ma-
chine it is undecidable if there exists an initial configuration s.t. there
is an infinite run.

Lossy counter machines can be used as a general tool to show
the undecidability of many problems for lossy and non-lossy systems,
e.g. verification of lossy FIFO-channel systems, model checking lossy
Petri nets, problems for reset and transfer Petri nets, and parametric
problems like fairness of broadcast communication protocols.

1 Introduction

Lossy systems were introduced to model communication through unreliable
channels. The main example are lossy FIFO-channel systems. These are sys-
tems of finite-state processes who communicate through lossy FIFO-channels
(buffers) of unbounded length. These lossy FIFO-channels are unreliable,
because they can spontaneously loose messages. Since normal (non-lossy)
FIFO-channel systems are Turing-powerful, automatic analysis of them is
restricted to special cases [4]. Lossy FIFO-channel systems are not Turing-
powerful, since reachability and some safety-properties are decidable for them
(2, 6, 1]. However, some liveness-properties like the so-called ‘recurrent-state
problem’ are undecidable even for lossy FIFO-channel systems [3].

Here we generalize these negative results by introducing lossy counter ma-
chines (LCM). These are counter machines where the numbers in the counters
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can spontaneously become smaller at any time. We show that it is undecid-
able for an LCM if there is an initial configuration s.t. it has an infinite run.
The result does not depend on the notion of lossiness. For example one can
define that a counter can only spontaneously decrease by 1, or only be set
to zero, or become any smaller value. This result subsumes the result on
lossy FIFO-channel systems in [3], since lossy counter machines are a weaker
model (at least as far as infinite runs are concerned). Moreover, our proof is
much shorter and simpler.

Lossy counter machines can be used as a general tool to show the undecidabil-
ity of many problems. This is because there are many systems who cannot
simulate counter machines, but who can simulate lossy counter machines.

In Section 2 we define lossy counter machines. In Section 3 we briefly cite
some positive decidability results for LCM, while in Section 4 we show the
main negative decidability result for LCM. In Section 5 we apply this result
to show the undecidability of several verification problems and in Section 6
we draw some general conclusions.

2 Lossy Counter Machines

Definition 2.1 A n-counter machine M is described by a finite set of states
(2, an initial state gy € @), an accepting state accept € @), a rejecting state
reject € (), n counters ci,...,c, and a finite set of instructions of the form
(q: ¢i:=c;+1;goto q') or (¢: If ¢; =0 then goto ¢ else ¢; := ¢; — 1; goto ¢")
where i € {1,...,n} and ¢,¢,¢" € Q.

A configuration of M is described by a tuple (¢, my, ..., m,) where ¢ € Q
and m; € IN is the content of the counter ¢; for 1 < ¢ < n. The size of a
configuration is defined by

n

size((q,my,...,my)) == Z m;
i1

The possible computation steps are defined as follows:

L. (g,my,...,my) — (¢',mq,...,m;+1,...,my,) if there is an instruction
(q: ¢;:=c;+ 1;goto ¢).

2. (¢,mq,...,my) = (¢';mq,...,my,) if there is an instruction
(g : If ¢; =0 then goto ¢ else ¢; := ¢; — 1; goto ¢") and m; = 0.

3. (¢ymy,...,my) = (¢",my,...,m;—1,...,m,) if there is an instruction
(g : If ¢; =0 then goto ¢ else ¢; := ¢; — 1; goto ¢") and m; > 0.



A run of a counter machine is a (possibly infinite) sequence of configurations
S0, 81,592, ... with sg — 51 — 59 — 53 — .. ..

Now we define ‘lossiness relations’, which describe spontaneous changes in
the configurations of lossy counter machines.

Definition 2.2 Let - (for ‘sum’) be a relation on configurations of n-
counter machines which is defined as follows.

(g, m1, ... ,my) = (¢',mhy,...,m) & (g,mi,...,my) = (¢,m},...,ml)V
n n
(q:q' AD m;>> m]
i=1 i=1

This relation means that either nothing is changed or the sum of all counters

strictly decreases. Let id be the identity relation. A relation L is a lossiness

relation iff
id 5 cS

A lossy counter machine (LCM) is given by a counter machine M and a
lossiness relation —». Let — be the normal transition relation of M. The

lossy transition relation = of the lossy counter machine is defined by
51 = 5y 1= Jshsh. 515 8 — sh B osy

An arbitrary lossy counter machine is a lossy counter machine with an arbi-
trary (unspecified) lossiness relation.

The following relations are lossiness relations:

Perfect The relation id is a lossiness relation. Thus arbitrary lossy counter
machines subsume normal counter machines.

Classic Lossiness The classic lossiness relation <5 is defined by
(g, my,...,my) 4 (¢,my,....m) & q¢q=q A Vi.m; > m,

Here the contents of the counters can become smaller in any possible
way, but the state ¢ cannot change. A relation L is called a subclassic

cl

lossiness relation iff id C N C —.

Bounded Lossiness A counter can loose at most € IN before and after
every computation step. Here the lossiness relation '@ is defined by

(g, my,...,my) ) (¢',ml,...,m)) = q=¢ AVi.m;> m.> maz{0, m;—z}

I(z) . ) ) .
Note that EQ is a subclassic lossiness relation.



Reset Lossiness If a counter is to be tested for zero, then it can sud-

denly become zero. The lossiness relation "% is defined as follows:

(g, my,...,my) LAY (¢',ml,...,m!)iff ¢ = ¢' and for all i either m; = m/,

or m}, = 0 and there is an instruction (¢ : If ¢; = 0 then goto ¢’ else
¢; »= ¢; — 1;goto ¢"). Note that "% is a subclassic lossiness relation.

The definition of these lossiness relations carries over to other models like
Petri nets. There, places are considered instead of counters and the control-
states ¢ are ignored.

Definition 2.3 For any arbitrary lossy n-counter machine and any configu-
ration s let runs(s) be the set of runs that start at configuration s. (There
can be more than one run if the counter machine is nondeterministic or lossy.)
Let runs®(s) be the set of infinite runs that start at configuration s. A run
r={(¢",mt,...,m.)}*, € runs?(s) is space-bounded iff

dec € IN. V. Zm; <c
j=1

Let runsy(s) be the space-bounded infinite runs that start at s. An arbitrary
lossy n-counter machine M is

input-bounded iff in every run from any configuration the size of every
reached configuration is bounded by the size of the input.

Vs.Vr € runs(s).Vs' € r.size(s') < size(s)

strongly-cyclic iff every infinite run from any configuration visits the initial
state qo infinitely often.

Vg € Q,mq,...,m, € N.Vr € runs”((q,m1,...,my)).
Imy,...,m,. (g, my,...,ml) er

bounded-strongly-cyclic iff every space-bounded infinite run from any
configuration visits the initial state gq infinitely often.

Vg € Q,myq,...,m, € N.Vr € runsy((q¢,m1,...,my,)).
aml,...,ml. (g, m},...,m) Er

If M is strongly-cyclic then it is also bounded-strongly-cyclic. If M is input-
bounded and bounded-strongly-cyclic then it is also strongly-cyclic.



3 Decidable Properties

Since arbitrary LCM subsume normal counter machines, nothing is decidable
for them. However, some problems are decidable for classic LCM. They
are not Turing-powerful. The following results are special cases of positive
decidability results in [5, 6, 2].

Lemma 3.1 Let M be a classic LCM and s a configuration of M. The set
pre*(s) = {s'| s =" s} of predecessors of s is effectively constructible.

Proof Since M is a classic LCM, the set pre*(s) is upward closed and can
thus be characterized by finitely many minimal elements. These minimal
elements can be effectively constructed by Dickson’s Lemma (see [5]). |

Theorem 3.2 Reachability is decidable for classic LCM.

Proof Directly from Lemma 3.1. [

Theorem 3.3 Let M be a classic LCM with initial configuration sg. It is
decidable if there is an infinite run that starts at sg.

Proof Check for all runs if it terminates or it reaches a configuration s
s.t. there is a previous configuration s’ with s > s’. There is an infinite cyclic
run from s’ to s’ in the latter case, because M is classical lossy. These checks
are effective, because of Dickson’s Lemma. [

4 The Undecidability Result

In this section we show that the following problem is undecidable for every
lossiness relation.

(e, ¢)LCMY
Instance: A strongly-cyclic, input-bounded LCM M with five counters and
initial state qq.

Question: Do there exist my,...,ms € N and a state ¢ € @) s.t. there is an
infinite run that starts at (¢, mq,...,ms) ?

The proof proceeds in three steps:

1. We consider a normal 2-counter machine M. It is undecidable if there
exists an n € IN s.t. M accepts the input (n,0), i.e. if the computation
from the configuration (go, n,0) is accepting.
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2. We reduce this problem to the problem JaBSC-CMj. This problem
is for a bounded-strongly-cyclic 4-counter machine M’, if there ex-
ist my,...,mqy € IN s.t. there is an infinite space-bounded run from

(qg,ml, A ,m4).

3. We reduce JaBSC-CMY to J(a, ¢)LCMY for every lossiness relation.

dnCM

Instance: A 2-counter machine M with initial state ¢.
Question: Does there exist an n € IN s.t. M accepts (go,n,0) 7

Lemma 4.1 InCM is undecidable.

Proof By a simple reduction from the problem if a 2-counter machine

accepts any input. [ |

JaBSC-CMY

Instance: A bounded-strongly-cyclic 4-counter machine M with initial state
qo-

Question: Do there exist mq,...,msy € N s.t. M has an infinite space-

bounded run that starts at (qo, my, ma, mg, my) 7

Lemma 4.2 JaBSC-CMy is undecidable.

Proof We reduce 3nCM to JaBSC-CMy. Let M be a 2-counter machine
with initial state gy. We construct a 3-counter machine M’ that does the
same as M, except that after every instruction it increases the third counter
c3 by 1. Every instruction of M of the form (¢ : ¢; := ¢; + 1; goto ¢') with
(1 <i < 2) is replaced by

q: ¢ :=c;+1; goto g
Go: c3:=c3+1; goto ¢

where ¢ is a new state. Every instruction of the form
(q: If ¢; =0 then goto ¢' else ¢; :== ¢; — 1; goto ¢")
with (1 <4 < 2) is replaced by

q: If ¢; =0 then goto ¢, else ¢; := ¢; — 1; goto ¢3
G2 : c3:=c3+1; goto ¢
g3 : c3:=c3+1; goto ¢”

6



where ¢o, g3 are new states. Then we construct a 4-counter machine M"
with initial state ¢{ as follows: First copy ¢4 to ¢; and set ¢o and ¢3 to zero.
(1 = c45¢9 := 0;¢3 := 0;) Then do the same as M'. Finally, we replace
the accepting state accept of M, M' by ¢, i.e. we replace every instruction
(goto accept) by (goto qj). M" is bounded-strongly-cyclic, because c3 is
increased after every instruction and only set to zero at the initial state ¢f.

= If M is a positive instance of A3nCM then there exists an n € IN s.t. M
has an accepting run from (go,n,0). This run has finite length and
is therefore space-bounded. Then M" has an infinite space-bounded
cyclic run that starts at (gg,0,0,0,n) (or (g, mi, ms, ms,n) for any
my, mg, mg € IN) and thus M" is a positive instance of JaBSC-CMY.

< If M" is a positive instance of 3aBSC-CMy then there exist my,...,my €
IN s.t. M" has an infinite space-bounded run that starts at the config-
uration (g, mi,...,my). By the construction of M" it also has an
infinite space-bounded run that starts at (g, 0,0,0,m4). Since M"
is bounded-strongly-cyclic this run must visit ¢ again. By the con-
struction of M" this is only possible if the included computation of M
reaches the accepting state. Then M has an accepting run that starts
at (qo, m4,0), and thus M is a positive instance of InCM.

The result follows from Lemma 4.1. [ |
Now we can prove the main result.

Theorem 4.3 3(a, q) LCMY is undecidable for every lossiness relation.

Proof We reduce 3aBSC-CMY to I(a,q)LCM* with any lossiness rela-

tion . For any bounded-strongly-cyclic 4-counter machine M we construct
a strongly-cyclic, input-bounded lossy 5-counter machine M’ with lossiness
relation - as follows: The fifth counter ¢; holds the ‘capacity’. In every
operation it is changed in a way s.t. the sum of all counters never increases.
(More exactly, the sum of all counters can increase by 1, but only if it was
decreased by 1 in the previous step.) Every instruction of M of the form
(¢: ¢i:=¢;+1; goto ¢') with (1 <i < 4) is replaced by

q: If c¢5 =0 then goto halt else c5 := ¢5 — 1; goto ¢
Go: ¢;:=c¢;+1; goto ¢

where halt is a final state and ¢, is a new state. Every instruction of the
form (¢ : If ¢; = 0 then goto ¢’ else ¢; := ¢; — 1;goto ¢") with (1 < i < 4)is
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replaced by

qg: If ¢; =0 then goto ¢ else ¢; := ¢; — 1; goto ¢
G2 : ¢5:=c5+ 1; goto ¢”

where ¢, is a new state.

M' is bounded-strongly-cyclic, because M is bounded-strongly-cyclic. M’
is input-bounded, because every run from a configuration (g, my, ..., ms) is
space-bounded by m; + mgy + mg+ my4 +ms. Thus M’ is also strongly-cyclic.

= If M is a positive instance of JaBSC-CM} then there exist my,...,my,c €
N s.t. there is an infinite run that starts at (go, mq,...,my), visits qo

infinitely often and always satisfies ¢; + ¢3 + ¢35 + ¢4 < ¢. Since id g—%,
there is also an infinite run of M’ that starts at (qo, my, ma, ms, my, c —
my — my — m3 — my), visits ¢ infinitely often and always satisfies
c1+ca+c3+cg+c; < e. Thus M’ is a positive instance of 3(a, ¢) LCM¥.

< If M’ is a positive instance of 3(«, ¢)LCM¥ then there exist my,...,ms €
IN and ¢ € @ s.t. there is an infinite run that starts at the configuration
(g, my, mg, m3, my, ms). This run is space-bounded, because it always
satisfies ¢ + ¢o + ¢35 + ¢4 + ¢5 < my + mo + m3 + my + ms. By the
construction of M’, the sum of all counters can only increase by 1
if it was decreased by 1 in the previous step. By the definition of
lossiness (see Def. 2.2) we get the following: If lossiness occurs (when
the contents of the counters spontaneously change) then this strictly
and permanently decreases the sum of all counters. It follows that
lossiness can only occur at most my + mso 4+ ms + m4 + ms times in this
infinite run and the sum of all counters is bounded by ¢ := my + mq +
ms-+my+ms. Thus there is an infinite suffix of this run where lossiness
does not occur. Thus there exist ¢ € @, m),...,m, € IN s.t. an
infinite suffix of this run without lossiness starts at (¢, m/,...,my). It
follows that there is an infinite space-bounded run of M that starts
at (¢',mf,...,m}). Since M is bounded-strongly-cyclic, this run must
eventually visit go. Thus there exist mY,...,m] € N s.t. there is an
infinite space-bounded run of M that starts at (g, mY,...,m}). Thus
M is a positive instance of JaBSC-CMy.

It follows from Lemma 4.2 that (o, ¢)LCM* is undecidable. |

It is interesting to note that the undecidability result does not depend on the
lossiness relation. It holds for any lossiness relation. Another variant of this
problem is the following:



JaLCM¥

Instance: A strongly-cyclic, input-bounded LCM M with five counters and
initial state qq.

Question: Do there exist mq,...,ms € IN s.t. there is an infinite run that
starts at (qo, my,...,ms) ?

Theorem 4.4 JaLCM" is undecidable for every lossiness relation.

Proof Directly from Theorem 4.3, because the LCM is strongly-cyclic. m

Another variant is the following.
InLLCMY¥

Instance: An input-bounded nondeterministic lossy counter machine M
with five counters and initial state gqq.

Question: Does there exist a number n € IN s.t. there is an infinite run that
starts at (go,n,0,0,0,0) ?

Theorem 4.5 InLCM" is undecidable for every lossiness relation.

Proof We reduce daLCM¥ to InLCMY. Let M with initial state ¢, be an
instance of 3JaLCM®“. We construct a new LCM M’ with initial state ¢j as
follows. It starts at (gg, n,0,0,0,0). and can (nondeterministically) go to any
new configuration (g, my, mg, ms, my, ms) with m; +my+ms+my+ms < n.
Then it behaves just like M. It follows that M is a positive instance of
JaLCMY iff M’ is a positive instance of InLCM*. [

5 Applications

We show how lossy counter machines can be used to prove the undecidability
of several problems.

5.1 Lossy FIFO-Channel Systems

In [3] it was shown that it is undecidable if there exists an initial configuration
of a lossy FIFO-channel system s.t. it has an infinite run. The lossiness
relation in [3] was classic lossiness, i.e. the contents of a FIFO-channel can
change to any substring at any time. The results in Section 4 subsume
this result, since lossy counter machines are weaker than lossy FIFO-channel
systems. A lossy FIFO-channel system can simulate a LCM (with additional

9



deadlocks) in the following way: Every lossy FIFO-channel contains a string
in X* (for some symbol X') and is used as a lossy counter. The only problem
is the test for zero. We test the emptiness of a channel by adding a special
symbol Y and removing it in the very next step. If it can be done then the
channel is empty (or has become empty by lossiness). If this cannot be done,
then the channel was not empty or the symbol Y was lost. In this case we get
a deadlock. These additional deadlocks do not affect the existence of infinite
runs, and thus the results of Section 4 carry over.

5.2 Model Checking Lossy BPP

Basic Parallel Processes (BPP) [7] correspond to communication-free nets,
the subclass of labeled Petri nets where every transition has exactly one
place in its preset. The branching-time temporal logics EF, EG and EG,
are defined as extensions of Hennessy-Milner Logic by the operators EF, EG
and EG, respectively. s = EF o iff there exists an s’ s.t. s — s’ and s' = .
so = EG,p iff there exists an infinite run so — $1 — s9 — ... s.t. Vi. s; = .
EG is similar, except that it also includes finite runs that end in a deadlock.

Model checking Petri nets with EF is undecidable, but model checking BPP
with EF is PSPACE-complete [11]. Model checking BPP with EG is undecid-
able [10]. It is different for lossy systems: By induction on the nesting-depth
of the operators FF', EG and EG,, and constructions similar to the ones in
Lemma 3.1 and Theorem 3.3, it can be shown that model checking classic
LCM with the logics EF, EG and EG,, is decidable. Thus it is also decidable
for classical lossy Petri nets and classical lossy BPP (see also [5]). How-
ever, model checking lossy BPP with nested FF' and EG operators is still
undecidable for every subclassic lossiness relation.

Theorem 5.1 Model checking lossy BPP (with any subclassic lossiness re-
lation) with formulae of the form EF EG,®, where ® is a Hennessy-Milner
Logic formula, is undecidable.

Proof Esparza and Kiehn showed in [10] that for every counter machine M
(with all counters initially 0) a BPP P and a Hennessy-Milner Logic formula
¢ can be constructed s.t. M does not halt iff P = EG,p. The construction
carries over to subclassic LCM and subclassic lossy BPP. The control-states
of the counter machine are modeled by special places of the BPP. In every
infinite run that satisfies ¢ exactly one of these places is marked at any time.
We reduce dnLCM* to the model checking problem. Let M be a subclassic
LCM. Let P be the corresponding BPP as in [10] and let ¢ be the correspond-
ing Hennessy-Milner Logic formula as in [10]. We use the same subclassic

10



lossiness relation on M and on P. P stores the contents of the first counter
in a place Y. Thus P||Y"™ corresponds to the configuration of M with n
in the first counter (and 0 in the others). We define a new initial state X

and transitions X = X||Y and X 2 P, where a and b do not occur in
P. Let ® := ¢ A —(bytrue. Then M is a positive instance of InLCM* iff
X = EFEG,®. The result follows from Theorem 4.5. |

This result is quite surprising, since lossy BPP is an extremely weak model
for concurrent systems. The same model checking problem was shown to be
undecidable for classical lossy FIFO-channel systems by Abdulla and Jonsson
in [3]. Theorem 5.1 subsumes this result, since classical lossy BPP are a
weaker model than classical lossy FIFO-channel systems.

Corollary 5.2 Model checking lossy Petri nets with C'TL is undecidable for
every subclassic lossiness relation.

Proof Directly from Theorem 5.1, because BPP is a subclass of Petri nets
and EFEG ,p can be expressed in CTL. [

Remark 5.3 For Petri nets and BPP, the meaning of Hennessy-Milner
Logic formulae can be expressed by boolean combinations of constraints of
the form p > k, which mean that there are at least k tokens on place p.
Thus Theorem 5.1 and Corollary 5.2 also hold if boolean combinations of
such constraints are used instead of Hennessy-Milner Logic formulae.

5.3 Reset/Transfer Petri Nets

It was shown in [8] that termination is decidable for ‘Reset Post G-nets’,
an extension of Petri nets that subsumes reset nets and transfer nets. For
normal Petri nets termination is EXPSPACFE-complete [12]. Now we consider
structural termination, i.e. the problem if the net terminates for every initial
marking. The negation of this problem is the question if there exists an initial
marking s.t. there is an infinite run. Structural termination is decidable in
polynomial time for normal Petri nets. (Just check if there is a positive linear
combination of effects of transitions.) However, we show that structural
termination is undecidable for reset nets and transfer nets.

Theorem 5.4 Structural termination is undecidable for lossy reset nets and
transfer nets for every subclassic lossiness relation.

11



Proof We want to simulate a lossy counter machine by a lossy reset net.

Let - be the subclassic lossiness relation for the reset net. Since the control-
states of the counter machine will be simulated by special places of the reset

. . . 4 .
net we consider a new lossiness relation — on the counter machine th@t does
l . . l [
the same as — on the reset net. Then we use the lossiness relation — U =
(with 2% from Definition 2.2) as the lossiness relation for counter machines.

We reduce 3(«, ¢) LCM¥ (with LNy L) to the structural termination problem

for lossy reset nets (with —l>) For every LCM M we construct a reset net N
in the following way. Let there be places ¢y, ¢, ¢3, ¢4, ¢5 that hold the contents
of the counters and a place ¢ for every state ¢ € ) of the finite control of
M. For every instruction of M of the form (¢ : ¢ := ¢; + 1; goto ¢') with
(1 <i < 5) there is a transition that takes one token from ¢, puts one token
on ¢;, puts one token on ¢' and resets all places except ¢', ¢y, ..., c5. For every
instruction of M of the form (¢ : If ¢; = 0 then goto ¢’ else ¢; := ¢;—1; goto ¢")
with (1 <4 <5) there are two transitions: The first transition takes a token
from ¢, puts a token on ¢' and resets ¢; and all places except ¢”,cq,...,cs.
The second transition takes one token from ¢ and one from ¢;, puts one token
on ¢" and resets all places except ¢”, ¢y, ...,cs. A run of this net is a faithful
simulation of the lossy counter machine M, because the lossiness relation of
M includes 7. (Instead of testing for zero we can reset a place/counter to
Z€10.)

= If M is a positive instance of I(«,¢)LCM*“ then there are ¢ € ) and
m; € IN for 1 < i < 5 s.t. an infinite run of M starts at (g, mq, ..., ms).
Thus an infinite run of N starts at the marking that has m; tokens on
place ¢; (for 1 < i <5), one token on ¢ and zero tokens on any other
place ¢’. Thus N is not structurally terminating.

< If N is not structurally terminating then there exists an initial marking >
with an infinite run. The first transition of this run takes a token from
exactly one of the places ¢ that correspond to the states of the finite
control of M. Let m; := X(¢;) for 1 < i < 5. Then M has an infinite
run that starts at (¢, mq,...,ms) and thus M is a positive instance of
(e, ¢)LCM¥.

The proof for transfer nets is similar. Instead of resetting places to zero, the
tokens are moved to a special dead place. Theorem 4.3 yields the result. m

‘ H Petri nets ‘ reset /transfer nets ‘
Termination EXPSPACE-complete | decidable
Structural termination | € P undecidable

12



Now we consider structural boundedness and structural place-boundedness.
This is the problem if the whole net or a certain place p is bounded for every
initial marking. For normal Petri nets this is decidable. Just check if there is
a linear combination of the effects of transitions that is > 0 on some place/on
place p. This does not hold for reset nets and transfer nets.

Theorem 5.5 Structural boundedness and structural place-boundedness is
undecidable for lossy reset nets and transfer nets for every subclassic lossiness
relation.

Proof Like in Theorem 5.4 we consider the subclassic lossiness relation —
for the reset net, and LU for the LOM. For every LCM M we construct
the reset net N as in Theorem 5.4. Then we add a new place P and arcs
from every transition to P. Let the new net be N'.

= If M is a positive instance of 3(a, ¢)LCM“ (with LY L) then there
is an initial marking of N’ s.t. there is an infinite run in which P is
unbounded. (Choose a run where nothing is lost from P. This is

possible, because id g—%) Thus P is not structurally bounded and
thus N’ is not structurally bounded.

< If N’ is not structurally bounded (on place P or any other place), then
there exists an initial marking of N’ s.t. there is an infinite run. Since
N' is a faithful simulation of M there is also an initial configuration of
M with an infinite run. Thus M is a positive instance of 3(a, ¢) LCM¥.

The result follows from Theorem 4.3. The proof for transfer nets is similar.
|

5.4 Parametric Problems

We consider verification problems for systems whose definition includes a
parameter n € IN. Intuitively, n can be seen as the size of the system.
Examples are

e Systems of n communicating finite-state processes.
e Systems of communicating pushdown automata with n-bounded stack.

e Systems of (a fixed number of) processes who communicate through
(lossy) buffers or queues of size n.
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Let P(n) be such a system with parameter n. For every fixed n, P(n) is a
finite-state system and thus every verification problem is decidable for it. So
the problem P(n) = ® is decidable for any temporal logic formula ®. The
parametric verification problem is if a property holds independently of the
parameter n, i.e. for any size. Formally, the question is if for given P and
® we have Yn € N.P(n) = @ (or =3n € N. P(n) = —~®). Many of these
parametric problems are undecidable by the following meta-theorem.

Theorem 5.6 A parametric verification problem is undecidable if it satisfies
the following conditions:

1. It can encode an n-space-bounded nondeterministic lossy counter ma-
chine (for some lossiness relation) in such a way that P(n) corresponds
to the initial configuration with n in the first counter and 0 in the oth-
ers.

2. It can check for the existence of an infinite run.

Proof By a reduction of nLCM®“ and Theorem 4.5. [

The technique of Theorem 5.6 is used in [9] to show the undecidability of the
model checking problem for linear-time temporal logic (LTL) and broadcast
communication protocols. These are systems of n communicating processes
where a ‘broadcast’ by one process can affect all other n — 1 processes. Such
a broadcast can be used to set a simulated counter to zero. However, there
is no test for zero. One reduces InLCM® with lossiness relation -5 to the
model checking problem.

6 Conclusion

While the addition of lossiness to systems makes some verification problems
decidable, this extends not very far. Some only slightly more complex veri-
fication problems are still undecidable even for lossy systems (see especially
Subsection 5.2).

Lossy counter machines can be used as a general tool to show the undecid-
ability of many verification problems for lossy and non-lossy systems. We
suspect that many more problems can be shown to be undecidable with the

help of lossy counter machines, especially in the area of parametric problems
(see Subsection 5.4).

Acknowledgment: Many thanks to Javier Esparza for fruitful discussions.
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