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Lossy Counter MachinesRichard Mayr�
AbstractWe consider lossy counter machines, i.e. counter machines with coun-ters whose contents can spontaneously decrease at any time. They arenot Turing-powerful, since reachability is decidable for them, but theystill have interesting undecidable properties: For a lossy counter ma-chine it is undecidable if there exists an initial con�guration s.t. thereis an in�nite run.Lossy counter machines can be used as a general tool to showthe undecidability of many problems for lossy and non-lossy systems,e.g. veri�cation of lossy FIFO-channel systems, model checking lossyPetri nets, problems for reset and transfer Petri nets, and parametricproblems like fairness of broadcast communication protocols.1 IntroductionLossy systems were introduced to model communication through unreliablechannels. The main example are lossy FIFO-channel systems. These are sys-tems of �nite-state processes who communicate through lossy FIFO-channels(bu�ers) of unbounded length. These lossy FIFO-channels are unreliable,because they can spontaneously loose messages. Since normal (non-lossy)FIFO-channel systems are Turing-powerful, automatic analysis of them isrestricted to special cases [4]. Lossy FIFO-channel systems are not Turing-powerful, since reachability and some safety-properties are decidable for them[2, 6, 1]. However, some liveness-properties like the so-called `recurrent-stateproblem' are undecidable even for lossy FIFO-channel systems [3].Here we generalize these negative results by introducing lossy counter ma-chines (LCM). These are counter machines where the numbers in the counters�Institut f�ur Informatik, TU-M�unchen, D-80290 M�unchen, Germany,mayrri@informatik.tu-muenchen.de, www7.informatik.tu-muenchen.de/�mayrri1



can spontaneously become smaller at any time. We show that it is undecid-able for an LCM if there is an initial con�guration s.t. it has an in�nite run.The result does not depend on the notion of lossiness. For example one cande�ne that a counter can only spontaneously decrease by 1, or only be setto zero, or become any smaller value. This result subsumes the result onlossy FIFO-channel systems in [3], since lossy counter machines are a weakermodel (at least as far as in�nite runs are concerned). Moreover, our proof ismuch shorter and simpler.Lossy counter machines can be used as a general tool to show the undecidabil-ity of many problems. This is because there are many systems who cannotsimulate counter machines, but who can simulate lossy counter machines.In Section 2 we de�ne lossy counter machines. In Section 3 we brie
y citesome positive decidability results for LCM, while in Section 4 we show themain negative decidability result for LCM. In Section 5 we apply this resultto show the undecidability of several veri�cation problems and in Section 6we draw some general conclusions.2 Lossy Counter MachinesDe�nition 2.1 A n-counter machine M is described by a �nite set of statesQ, an initial state q0 2 Q, an accepting state accept 2 Q, a rejecting statereject 2 Q, n counters c1; : : : ; cn and a �nite set of instructions of the form(q : ci := ci+1; goto q0) or (q : If ci = 0 then goto q0 else ci := ci�1; goto q00)where i 2 f1; : : : ; ng and q; q0; q00 2 Q.A con�guration of M is described by a tuple (q;m1; : : : ; mn) where q 2 Qand mi 2 IN is the content of the counter ci for 1 � i � n. The size of acon�guration is de�ned bysize((q;m1; : : : ; mn)) := nXi=1miThe possible computation steps are de�ned as follows:1. (q;m1; : : : ; mn)! (q0; m1; : : : ; mi+1; : : : ; mn) if there is an instruction(q : ci := ci + 1; goto q0).2. (q;m1; : : : ; mn)! (q0; m1; : : : ; mn) if there is an instruction(q : If ci = 0 then goto q0 else ci := ci � 1; goto q00) and mi = 0.3. (q;m1; : : : ; mn)! (q00; m1; : : : ; mi�1; : : : ; mn) if there is an instruction(q : If ci = 0 then goto q0 else ci := ci � 1; goto q00) and mi > 0.2



A run of a counter machine is a (possibly in�nite) sequence of con�gurationss0; s1; s2; : : : with s0 ! s1 ! s2 ! s3 ! : : :.Now we de�ne `lossiness relations', which describe spontaneous changes inthe con�gurations of lossy counter machines.De�nition 2.2 Let s! (for `sum') be a relation on con�gurations of n-counter machines which is de�ned as follows.(q;m1; : : : ; mn) s! (q0; m01; : : : ; m0n) :, (q;m1; : : : ; mn) = (q0; m01; : : : ; m0n)_ q = q0 ^ nXi=1mi > nXi=1m0i!This relation means that either nothing is changed or the sum of all countersstrictly decreases. Let id be the identity relation. A relation l! is a lossinessrelation i� id � l! � s!A lossy counter machine (LCM) is given by a counter machine M and alossiness relation l!. Let ! be the normal transition relation of M . Thelossy transition relation =) of the lossy counter machine is de�ned bys1 =) s2 :, 9s01s02: s1 l! s01 ! s02 l! s2An arbitrary lossy counter machine is a lossy counter machine with an arbi-trary (unspeci�ed) lossiness relation.The following relations are lossiness relations:Perfect The relation id is a lossiness relation. Thus arbitrary lossy countermachines subsume normal counter machines.Classic Lossiness The classic lossiness relation cl! is de�ned by(q;m1; : : : ; mn) cl! (q0; m01; : : : ; m0n) :, q = q0 ^ 8i:mi � m0iHere the contents of the counters can become smaller in any possibleway, but the state q cannot change. A relation l! is called a subclassiclossiness relation i� id � l! � cl!.Bounded Lossiness A counter can loose at most x 2 IN before and afterevery computation step. Here the lossiness relation l(x)! is de�ned by(q;m1; : : : ; mn) l(x)! (q0; m01; : : : ; m0n) :, q=q0 ^8i:mi� m0i� maxf0; mi�xgNote that l(x)! is a subclassic lossiness relation.3



Reset Lossiness If a counter is to be tested for zero, then it can sud-denly become zero. The lossiness relation rl! is de�ned as follows:(q;m1; : : : ; mn) rl! (q0; m01; : : : ; m0n) i� q = q0 and for all i eithermi = m0ior m0i = 0 and there is an instruction (q : If ci = 0 then goto q0 elseci := ci � 1; goto q00). Note that rl! is a subclassic lossiness relation.The de�nition of these lossiness relations carries over to other models likePetri nets. There, places are considered instead of counters and the control-states q are ignored.De�nition 2.3 For any arbitrary lossy n-counter machine and any con�gu-ration s let runs(s) be the set of runs that start at con�guration s. (Therecan be more than one run if the counter machine is nondeterministic or lossy.)Let runs!(s) be the set of in�nite runs that start at con�guration s. A runr = f(qi; mi1; : : : ; min)g1i=0 2 runs!(s) is space-bounded i�9c 2 IN: 8i: nXj=1mij � cLet runs!b (s) be the space-bounded in�nite runs that start at s. An arbitrarylossy n-counter machine M isinput-bounded i� in every run from any con�guration the size of everyreached con�guration is bounded by the size of the input.8s: 8r 2 runs(s): 8s0 2 r: size(s0) � size(s)strongly-cyclic i� every in�nite run from any con�guration visits the initialstate q0 in�nitely often.8q 2 Q;m1; : : : ; mn 2 IN: 8r 2 runs!((q;m1; : : : ; mn)):9m01; : : : ; m0n: (q0; m01; : : : ; m0n) 2 rbounded-strongly-cyclic i� every space-bounded in�nite run from anycon�guration visits the initial state q0 in�nitely often.8q 2 Q;m1; : : : ; mn 2 IN: 8r 2 runs!b ((q;m1; : : : ; mn)):9m01; : : : ; m0n: (q0; m01; : : : ; m0n) 2 rIf M is strongly-cyclic then it is also bounded-strongly-cyclic. If M is input-bounded and bounded-strongly-cyclic then it is also strongly-cyclic.4



3 Decidable PropertiesSince arbitrary LCM subsume normal counter machines, nothing is decidablefor them. However, some problems are decidable for classic LCM. Theyare not Turing-powerful. The following results are special cases of positivedecidability results in [5, 6, 2].Lemma 3.1 Let M be a classic LCM and s a con�guration of M . The setpre�(s) := fs0 j s0 =)� sg of predecessors of s is e�ectively constructible.Proof Since M is a classic LCM, the set pre�(s) is upward closed and canthus be characterized by �nitely many minimal elements. These minimalelements can be e�ectively constructed by Dickson's Lemma (see [5]).Theorem 3.2 Reachability is decidable for classic LCM.Proof Directly from Lemma 3.1.Theorem 3.3 Let M be a classic LCM with initial con�guration s0. It isdecidable if there is an in�nite run that starts at s0.Proof Check for all runs if it terminates or it reaches a con�guration ss.t. there is a previous con�guration s0 with s � s0. There is an in�nite cyclicrun from s0 to s0 in the latter case, because M is classical lossy. These checksare e�ective, because of Dickson's Lemma.4 The Undecidability ResultIn this section we show that the following problem is undecidable for everylossiness relation.9(�; q)LCM!Instance: A strongly-cyclic, input-bounded LCMM with �ve counters andinitial state q0.Question: Do there exist m1; : : : ; m5 2 IN and a state q 2 Q s.t. there is anin�nite run that starts at (q;m1; : : : ; m5) ?The proof proceeds in three steps:1. We consider a normal 2-counter machine M . It is undecidable if thereexists an n 2 IN s.t. M accepts the input (n; 0), i.e. if the computationfrom the con�guration (q0; n; 0) is accepting.5



2. We reduce this problem to the problem 9�BSC-CM!b . This problemis for a bounded-strongly-cyclic 4-counter machine M 0, if there ex-ist m1; : : : ; m4 2 IN s.t. there is an in�nite space-bounded run from(q0; m1; : : : ; m4).3. We reduce 9�BSC-CM!b to 9(�; q)LCM! for every lossiness relation.9nCMInstance: A 2-counter machine M with initial state q0.Question: Does there exist an n 2 IN s.t. M accepts (q0; n; 0) ?Lemma 4.1 9nCM is undecidable.Proof By a simple reduction from the problem if a 2-counter machineaccepts any input.9�BSC-CM!bInstance: A bounded-strongly-cyclic 4-counter machineM with initial stateq0.Question: Do there exist m1; : : : ; m4 2 IN s.t. M has an in�nite space-bounded run that starts at (q0; m1; m2; m3; m4) ?Lemma 4.2 9�BSC-CM!b is undecidable.Proof We reduce 9nCM to 9�BSC-CM!b . Let M be a 2-counter machinewith initial state q0. We construct a 3-counter machine M 0 that does thesame as M , except that after every instruction it increases the third counterc3 by 1. Every instruction of M of the form (q : ci := ci + 1; goto q0) with(1 � i � 2) is replaced byq : ci := ci + 1; goto q2q2 : c3 := c3 + 1; goto q0where q2 is a new state. Every instruction of the form(q : If ci = 0 then goto q0 else ci := ci � 1; goto q00)with (1 � i � 2) is replaced byq : If ci = 0 then goto q2 else ci := ci � 1; goto q3q2 : c3 := c3 + 1; goto q0q3 : c3 := c3 + 1; goto q006



where q2; q3 are new states. Then we construct a 4-counter machine M 00with initial state q000 as follows: First copy c4 to c1 and set c2 and c3 to zero.(c1 := c4; c2 := 0; c3 := 0;) Then do the same as M 0. Finally, we replacethe accepting state accept of M;M 0 by q000 , i.e. we replace every instruction(goto accept) by (goto q000). M 00 is bounded-strongly-cyclic, because c3 isincreased after every instruction and only set to zero at the initial state q000 .) If M is a positive instance of 9nCM then there exists an n 2 IN s.t. Mhas an accepting run from (q0; n; 0). This run has �nite length andis therefore space-bounded. Then M 00 has an in�nite space-boundedcyclic run that starts at (q000 ; 0; 0; 0; n) (or (q000 ; m1; m2; m3; n) for anym1; m2; m3 2 IN) and thus M 00 is a positive instance of 9�BSC-CM!b .( IfM 00 is a positive instance of 9�BSC-CM!b then there exist m1; : : : ; m4 2IN s.t. M 00 has an in�nite space-bounded run that starts at the con�g-uration (q000 ; m1; : : : ; m4). By the construction of M 00 it also has anin�nite space-bounded run that starts at (q000 ; 0; 0; 0; m4). Since M 00is bounded-strongly-cyclic this run must visit q000 again. By the con-struction of M 00 this is only possible if the included computation of Mreaches the accepting state. Then M has an accepting run that startsat (q0; m4; 0), and thus M is a positive instance of 9nCM.The result follows from Lemma 4.1.Now we can prove the main result.Theorem 4.3 9(�; q)LCM! is undecidable for every lossiness relation.Proof We reduce 9�BSC-CM!b to 9(�; q)LCM! with any lossiness rela-tion l!. For any bounded-strongly-cyclic 4-counter machine M we constructa strongly-cyclic, input-bounded lossy 5-counter machine M 0 with lossinessrelation l! as follows: The �fth counter c5 holds the `capacity'. In everyoperation it is changed in a way s.t. the sum of all counters never increases.(More exactly, the sum of all counters can increase by 1, but only if it wasdecreased by 1 in the previous step.) Every instruction of M of the form(q : ci := ci + 1; goto q0) with (1 � i � 4) is replaced byq : If c5 = 0 then goto halt else c5 := c5 � 1; goto q2q2 : ci := ci + 1; goto q0where halt is a �nal state and q2 is a new state. Every instruction of theform (q : If ci = 0 then goto q0 else ci := ci � 1; goto q00) with (1 � i � 4) is7



replaced by q : If ci = 0 then goto q0 else ci := ci � 1; goto q2q2 : c5 := c5 + 1; goto q00where q2 is a new state.M 0 is bounded-strongly-cyclic, because M is bounded-strongly-cyclic. M 0is input-bounded, because every run from a con�guration (q;m1; : : : ; m5) isspace-bounded by m1+m2+m3+m4+m5. Thus M 0 is also strongly-cyclic.) IfM is a positive instance of 9�BSC-CM!b then there existm1; : : : ; m4; c 2IN s.t. there is an in�nite run that starts at (q0; m1; : : : ; m4), visits q0in�nitely often and always satis�es c1 + c2 + c3 + c4 � c. Since id � l!,there is also an in�nite run of M 0 that starts at (q0; m1; m2; m3; m4; c�m1 � m2 � m3 � m4), visits q0 in�nitely often and always satis�esc1+c2+c3+c4+c5 � c. ThusM 0 is a positive instance of 9(�; q)LCM!.( If M 0 is a positive instance of 9(�; q)LCM! then there exist m1; : : : ; m5 2IN and q 2 Q s.t. there is an in�nite run that starts at the con�guration(q;m1; m2; m3; m4; m5). This run is space-bounded, because it alwayssatis�es c1 + c2 + c3 + c4 + c5 � m1 + m2 + m3 + m4 + m5. By theconstruction of M 0, the sum of all counters can only increase by 1if it was decreased by 1 in the previous step. By the de�nition oflossiness (see Def. 2.2) we get the following: If lossiness occurs (whenthe contents of the counters spontaneously change) then this strictlyand permanently decreases the sum of all counters. It follows thatlossiness can only occur at most m1+m2+m3+m4+m5 times in thisin�nite run and the sum of all counters is bounded by c := m1 +m2 +m3+m4+m5. Thus there is an in�nite su�x of this run where lossinessdoes not occur. Thus there exist q0 2 Q, m01; : : : ; m05 2 IN s.t. anin�nite su�x of this run without lossiness starts at (q0; m01; : : : ; m05). Itfollows that there is an in�nite space-bounded run of M that startsat (q0; m01; : : : ; m04). Since M is bounded-strongly-cyclic, this run musteventually visit q0. Thus there exist m001; : : : ; m004 2 IN s.t. there is anin�nite space-bounded run of M that starts at (q0; m001; : : : ; m004). ThusM is a positive instance of 9�BSC-CM!b .It follows from Lemma 4.2 that 9(�; q)LCM! is undecidable.It is interesting to note that the undecidability result does not depend on thelossiness relation. It holds for any lossiness relation. Another variant of thisproblem is the following: 8



9�LCM!Instance: A strongly-cyclic, input-bounded LCMM with �ve counters andinitial state q0.Question: Do there exist m1; : : : ; m5 2 IN s.t. there is an in�nite run thatstarts at (q0; m1; : : : ; m5) ?Theorem 4.4 9�LCM! is undecidable for every lossiness relation.Proof Directly from Theorem 4.3, because the LCM is strongly-cyclic.Another variant is the following.9nLCM!Instance: An input-bounded nondeterministic lossy counter machine Mwith �ve counters and initial state q0.Question: Does there exist a number n 2 IN s.t. there is an in�nite run thatstarts at (q0; n; 0; 0; 0; 0) ?Theorem 4.5 9nLCM! is undecidable for every lossiness relation.Proof We reduce 9�LCM! to 9nLCM!. Let M with initial state q0 be aninstance of 9�LCM!. We construct a new LCM M 0 with initial state q00 asfollows. It starts at (q00; n; 0; 0; 0; 0). and can (nondeterministically) go to anynew con�guration (q0; m1; m2; m3; m4; m5) withm1+m2+m3+m4+m5 � n.Then it behaves just like M . It follows that M is a positive instance of9�LCM! i� M 0 is a positive instance of 9nLCM!.5 ApplicationsWe show how lossy counter machines can be used to prove the undecidabilityof several problems.5.1 Lossy FIFO-Channel SystemsIn [3] it was shown that it is undecidable if there exists an initial con�gurationof a lossy FIFO-channel system s.t. it has an in�nite run. The lossinessrelation in [3] was classic lossiness, i.e. the contents of a FIFO-channel canchange to any substring at any time. The results in Section 4 subsumethis result, since lossy counter machines are weaker than lossy FIFO-channelsystems. A lossy FIFO-channel system can simulate a LCM (with additional9



deadlocks) in the following way: Every lossy FIFO-channel contains a stringin X� (for some symbol X) and is used as a lossy counter. The only problemis the test for zero. We test the emptiness of a channel by adding a specialsymbol Y and removing it in the very next step. If it can be done then thechannel is empty (or has become empty by lossiness). If this cannot be done,then the channel was not empty or the symbol Y was lost. In this case we geta deadlock. These additional deadlocks do not a�ect the existence of in�niteruns, and thus the results of Section 4 carry over.5.2 Model Checking Lossy BPPBasic Parallel Processes (BPP) [7] correspond to communication-free nets,the subclass of labeled Petri nets where every transition has exactly oneplace in its preset. The branching-time temporal logics EF, EG and EG!are de�ned as extensions of Hennessy-Milner Logic by the operators EF , EGand EG!, respectively. s j= EF' i� there exists an s0 s.t. s �! s0 and s0 j= '.s0 j= EG!' i� there exists an in�nite run s0 ! s1 ! s2 ! : : : s.t. 8i: si j= '.EG is similar, except that it also includes �nite runs that end in a deadlock.Model checking Petri nets with EF is undecidable, but model checking BPPwith EF is PSPACE -complete [11]. Model checking BPP with EG is undecid-able [10]. It is di�erent for lossy systems: By induction on the nesting-depthof the operators EF , EG and EG!, and constructions similar to the ones inLemma 3.1 and Theorem 3.3, it can be shown that model checking classicLCM with the logics EF, EG and EG! is decidable. Thus it is also decidablefor classical lossy Petri nets and classical lossy BPP (see also [5]). How-ever, model checking lossy BPP with nested EF and EG operators is stillundecidable for every subclassic lossiness relation.Theorem 5.1 Model checking lossy BPP (with any subclassic lossiness re-lation) with formulae of the form EFEG!�, where � is a Hennessy-MilnerLogic formula, is undecidable.Proof Esparza and Kiehn showed in [10] that for every counter machine M(with all counters initially 0) a BPP P and a Hennessy-Milner Logic formula' can be constructed s.t. M does not halt i� P j= EG!'. The constructioncarries over to subclassic LCM and subclassic lossy BPP. The control-statesof the counter machine are modeled by special places of the BPP. In everyin�nite run that satis�es ' exactly one of these places is marked at any time.We reduce 9nLCM! to the model checking problem. Let M be a subclassicLCM. Let P be the corresponding BPP as in [10] and let ' be the correspond-ing Hennessy-Milner Logic formula as in [10]. We use the same subclassic10



lossiness relation on M and on P . P stores the contents of the �rst counterin a place Y . Thus PkY n corresponds to the con�guration of M with nin the �rst counter (and 0 in the others). We de�ne a new initial state Xand transitions X a! XkY and X b! P , where a and b do not occur inP . Let � := ' ^ :hbitrue . Then M is a positive instance of 9nLCM! i�X j= EFEG!�. The result follows from Theorem 4.5.This result is quite surprising, since lossy BPP is an extremely weak modelfor concurrent systems. The same model checking problem was shown to beundecidable for classical lossy FIFO-channel systems by Abdulla and Jonssonin [3]. Theorem 5.1 subsumes this result, since classical lossy BPP are aweaker model than classical lossy FIFO-channel systems.Corollary 5.2 Model checking lossy Petri nets with CTL is undecidable forevery subclassic lossiness relation.Proof Directly from Theorem 5.1, because BPP is a subclass of Petri netsand EFEG!' can be expressed in CTL.Remark 5.3 For Petri nets and BPP, the meaning of Hennessy-MilnerLogic formulae can be expressed by boolean combinations of constraints ofthe form p � k, which mean that there are at least k tokens on place p.Thus Theorem 5.1 and Corollary 5.2 also hold if boolean combinations ofsuch constraints are used instead of Hennessy-Milner Logic formulae.5.3 Reset/Transfer Petri NetsIt was shown in [8] that termination is decidable for `Reset Post G-nets',an extension of Petri nets that subsumes reset nets and transfer nets. Fornormal Petri nets termination is EXPSPACE -complete [12]. Now we considerstructural termination, i.e. the problem if the net terminates for every initialmarking. The negation of this problem is the question if there exists an initialmarking s.t. there is an in�nite run. Structural termination is decidable inpolynomial time for normal Petri nets. (Just check if there is a positive linearcombination of e�ects of transitions.) However, we show that structuraltermination is undecidable for reset nets and transfer nets.Theorem 5.4 Structural termination is undecidable for lossy reset nets andtransfer nets for every subclassic lossiness relation.11



Proof We want to simulate a lossy counter machine by a lossy reset net.Let l! be the subclassic lossiness relation for the reset net. Since the control-states of the counter machine will be simulated by special places of the resetnet we consider a new lossiness relation l0! on the counter machine that doesthe same as l! on the reset net. Then we use the lossiness relation l0! [ rl!(with rl! from De�nition 2.2) as the lossiness relation for counter machines.We reduce 9(�; q)LCM! (with l0! [ rl!) to the structural termination problemfor lossy reset nets (with l!). For every LCM M we construct a reset net Nin the following way. Let there be places c1; c2; c3; c4; c5 that hold the contentsof the counters and a place q for every state q 2 Q of the �nite control ofM . For every instruction of M of the form (q : ci := ci + 1; goto q0) with(1 � i � 5) there is a transition that takes one token from q, puts one tokenon ci, puts one token on q0 and resets all places except q0; c1; : : : ; c5. For everyinstruction ofM of the form (q : If ci = 0 then goto q0 else ci := ci�1; goto q00)with (1 � i � 5) there are two transitions: The �rst transition takes a tokenfrom q, puts a token on q0 and resets ci and all places except q00; c1; : : : ; c5.The second transition takes one token from q and one from ci, puts one tokenon q00 and resets all places except q00; c1; : : : ; c5. A run of this net is a faithfulsimulation of the lossy counter machine M , because the lossiness relation ofM includes rl!. (Instead of testing for zero we can reset a place/counter tozero.)) If M is a positive instance of 9(�; q)LCM! then there are q 2 Q andmi 2 IN for 1 � i � 5 s.t. an in�nite run ofM starts at (q;m1; : : : ; m5).Thus an in�nite run of N starts at the marking that has mi tokens onplace ci (for 1 � i � 5), one token on q and zero tokens on any otherplace q0. Thus N is not structurally terminating.( If N is not structurally terminating then there exists an initial marking �with an in�nite run. The �rst transition of this run takes a token fromexactly one of the places q that correspond to the states of the �nitecontrol of M . Let mi := �(ci) for 1 � i � 5. Then M has an in�niterun that starts at (q;m1; : : : ; m5) and thus M is a positive instance of9(�; q)LCM!.The proof for transfer nets is similar. Instead of resetting places to zero, thetokens are moved to a special dead place. Theorem 4.3 yields the result.Petri nets reset/transfer netsTermination EXPSPACE -complete decidableStructural termination 2 P undecidable12



Now we consider structural boundedness and structural place-boundedness.This is the problem if the whole net or a certain place p is bounded for everyinitial marking. For normal Petri nets this is decidable. Just check if there isa linear combination of the e�ects of transitions that is > 0 on some place/onplace p. This does not hold for reset nets and transfer nets.Theorem 5.5 Structural boundedness and structural place-boundedness isundecidable for lossy reset nets and transfer nets for every subclassic lossinessrelation.Proof Like in Theorem 5.4 we consider the subclassic lossiness relation l!for the reset net, and l0! [ rl! for the LCM. For every LCM M we constructthe reset net N as in Theorem 5.4. Then we add a new place P and arcsfrom every transition to P . Let the new net be N 0.) If M is a positive instance of 9(�; q)LCM! (with l0! [ rl!) then thereis an initial marking of N 0 s.t. there is an in�nite run in which P isunbounded. (Choose a run where nothing is lost from P . This ispossible, because id � l!.) Thus P is not structurally bounded andthus N 0 is not structurally bounded.( If N 0 is not structurally bounded (on place P or any other place), thenthere exists an initial marking of N 0 s.t. there is an in�nite run. SinceN 0 is a faithful simulation of M there is also an initial con�guration ofM with an in�nite run. Thus M is a positive instance of 9(�; q)LCM!.The result follows from Theorem 4.3. The proof for transfer nets is similar.5.4 Parametric ProblemsWe consider veri�cation problems for systems whose de�nition includes aparameter n 2 IN. Intuitively, n can be seen as the size of the system.Examples are� Systems of n communicating �nite-state processes.� Systems of communicating pushdown automata with n-bounded stack.� Systems of (a �xed number of) processes who communicate through(lossy) bu�ers or queues of size n.13



Let P (n) be such a system with parameter n. For every �xed n, P (n) is a�nite-state system and thus every veri�cation problem is decidable for it. Sothe problem P (n) j= � is decidable for any temporal logic formula �. Theparametric veri�cation problem is if a property holds independently of theparameter n, i.e. for any size. Formally, the question is if for given P and� we have 8n 2 IN: P (n) j= � (or :9n 2 IN: P (n) j= :�). Many of theseparametric problems are undecidable by the following meta-theorem.Theorem 5.6 A parametric veri�cation problem is undecidable if it satis�esthe following conditions:1. It can encode an n-space-bounded nondeterministic lossy counter ma-chine (for some lossiness relation) in such a way that P (n) correspondsto the initial con�guration with n in the �rst counter and 0 in the oth-ers.2. It can check for the existence of an in�nite run.Proof By a reduction of 9nLCM! and Theorem 4.5.The technique of Theorem 5.6 is used in [9] to show the undecidability of themodel checking problem for linear-time temporal logic (LTL) and broadcastcommunication protocols. These are systems of n communicating processeswhere a `broadcast' by one process can a�ect all other n� 1 processes. Sucha broadcast can be used to set a simulated counter to zero. However, thereis no test for zero. One reduces 9nLCM! with lossiness relation rl! to themodel checking problem.6 ConclusionWhile the addition of lossiness to systems makes some veri�cation problemsdecidable, this extends not very far. Some only slightly more complex veri-�cation problems are still undecidable even for lossy systems (see especiallySubsection 5.2).Lossy counter machines can be used as a general tool to show the undecid-ability of many veri�cation problems for lossy and non-lossy systems. Wesuspect that many more problems can be shown to be undecidable with thehelp of lossy counter machines, especially in the area of parametric problems(see Subsection 5.4).Acknowledgment: Many thanks to Javier Esparza for fruitful discussions.14
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