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Verifying Determinism of Concurrent SystemsWhich Use Unbounded Arrays(Extended Abstract)Ranko Lazi�c�y Bill RoscoezTo be presented at INFINITY '98(Revised version. July 7, 1998.)AbstractOur main result says that determinism of a concurrent system which uses unbounded arrays (i.e.memories) can be veri�ed by considering an appropriate �nite array size.That is made possible by restricting the ways in which array indices and values can be used within thesystem. The restrictions are those of data independence: the system must not perform any operationson the indices and values, but it is only allowed to input them, store them, and output them. Equalitytests between indices are also allowed.The restrictions are satis�ed by many concurrent systems which use arrays to model memories ordatabases. As a case study, we have veri�ed that a database system which allows users to lock, readand write records at multiple security levels is secure.1 The Parameterised Veri�cation ProblemConcurrent systems are frequently in�nite-state because they have parameters that can vary unboundedly.For example, a memory cache is likely to be parameterised by the data types of addresses and values, aprotocol for fault-tolerance is likely to be parameterised by the number of nodes in the network, etc. Givensuch a system, we typically want to be able to consider all possible instantiations of its parameters, ratherthan having to restrict our attention to one instantiation at a time. Thus we come to the ParameterisedVeri�cation Problem:PVP. Given a parameterised concurrent system P and a condition C, does P satisfy C for all instantiationsof the parameters? �There has recently been much research on the PVP. It is undecidable in general [AK86], and so moste�ort has been put into either �nding decision procedures for restricted versions of it (see e.g. [Wol86,JP93, ID96a, HB95, HDB97, GS92, YJL96, EN96]), or providing automated techniques whose terminationis unpredictable or which require user involvement (see e.g. [HL95, HGD95, CZ+97, HIB97, CGJ95, ID96b,KM+97]).The main result of this paper, Theorem 1, says that in order to verify that a concurrent system P whichuses unbounded arrays (i.e. memories) is deterministic for all array sizes (�nite or in�nite), it su�ces toconsider a single appropriate �nite size. In other words, the theorem provides a decision procedure for thefollowing restricted version of PVP: the parameters are data types of array indices and values, and the�Oxford University Computing Laboratory, U.K. and Mathematical Institute, Belgrade University, Yugoslavia. Supportedby a Junior Research Fellowship at Christ Church (Oxford), and previously by a Domus and Harmsworth Senior Scholarshipat Merton College (Oxford) and by a scholarship from Hajrija & Boris Vukobrat and Copechim France S.A.yThe contact author. Address: Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX13QD, U.K. Tel: +44 1865 273 838. Fax: +44 1865 273 839. E-mail: rsl@comlab.ox.ac.uk.zOxford University Computing Laboratory, U.K. Supported by grants from the U.S. O�ce of Naval Research.1



condition C is the property of being deterministic. The procedure is guaranteed to terminate whenever thedata types sizes which it su�ces to consider can be computed in a �nite time and the resulting instantiationof P is �nite-state (which are both issues that are orthogonal to the parameterisation).Since checking whether the appropriate instantiation of P is deterministic can be done by a single runof a model checker,1 the paper contributes to turning model checkers into practical tools for veri�cation,rather than primarily refutation [Rus97].Before we present Theorem 1 in Section 4, we shall explain what we mean by arrays whose index andvalue types are parameters, and review determinism, a condition with very important applications in the�eld of computer security. In the remaining two sections, we shall outline the database system case study,and point towards future work.In the space available, we could not a�ord to go into technical details. The technical report [LR98a]contains the full paper, including a sketch of the proof of Theorem 1.2 Unbounded ArraysThe main novelty in the paper is that we consider concurrent systems which can use arrays whose indicesand values come from variable types, i.e. data types that are parameters of the system. Such an arrayis unbounded because its size is the size of the type of its indices, and we allow type parameters to varyunboundedly.Our main result, Theorem 1, is made possible by restricting the ways in which array indices and valuescan be used within the system. More precisely, the system is required to be data independent with respectto the types of indices and values: it must not apply any operations to elements of those types, but it isonly allowed to input them, store them, and output them. Equality tests between indices are also allowed.From another point of view, we have shown that it is possible to relax the data independence conditionsby allowing arrays and still obtain �nite instantiations which su�ce for veri�cation. (A precise de�nitionof data independence can be found in [Laz98b], and approximate de�nitions in [Ros98, LR98a].)Many systems which use arrays to model memories or databases satisfy the data independence conditionson indices and values. A typical example is a memory cache which uses an array to model the main memorythat it is interacting with, and whose replacement policy does not involve calculation. Indeed, the onlyoperation such a cache needs to perform on indices or values is equality tests between indices.Theorem 1 is also made possible by having the indices and values belong to di�erent data types, so thatfor example nested indexing is not allowed.For simplicity, we shall be considering a single variable type X of indices and a single variable type Y ofvalues. Let Array(X, Y) denote the type of all arrays with indices from X and values from Y. Such arrayscan also be thought of as maps from X into Y. For creating and using them, we allow only the followingoperations, whose meanings are self-explanatory:init(X) :: Y -> Array(X, Y)getval :: (Array(X, Y), X) -> Yupdate :: (Array(X, Y), X, Y) -> Array(X, Y)In addition to allowing arrays whose indices and values come from variable types, Theorem 1 allowsuninterpreted many-valued predicates on variable types which are not types of array values, and unin-terpreted constants of variable types. Here by \many-valued predicates" we mean functions into �xed�nite types, and by \uninterpreted" we mean that the predicates and constants are just symbols and thatthe veri�cation should establish that the condition (in this case determinism) is satis�ed for all possibleinterpretations. Such predicates and constants will be needed in the database system case study (seeSection 5).1Determinism checking is supported directly in the model checker FDR2 [Ros98, FS97]. In other model checkers, somepreliminary transformations may be necessary: for example, the condition of being deterministic can be expressed in a lineartemporal logic on a product of the labelled transition system of P with itself.
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3 DeterminismA concurrent system P is said to be deterministic if, from the point of view of its environment, it cannotexhibit any nondeterminism. More precisely, there must not exist an execution of a sequence t of com-munications after which P can accept some communication a and a possibly di�erent execution of t afterwhich P can refuse a. In the process algebra CSP [Hoa85, Ros98], it is appropriate to also require livelock(i.e. divergence) freedom, so that the condition of being deterministic can be formalised as:� (t̂ hai; fg) 2 failures?(P) ) (t; fag) 62 failures?(P), and� divergences(P) = fg.Determinism has been studied most extensively in CSP. Apart from its great signi�cance in the theory,it has found very important applications in the �eld of computer security. Namely, it has been established[RWW96, Ros95, Wul97, Ros98] that the key to specifying that there is no information 
ow across aconcurrent system from a high security user to a low security user is the determinism of a suitably formedabstraction: what the system looks like to the low user when the actions of the high user are turned intointernal nondeterminism.4 The TheoremFor concreteness and practical applicability, we have stated and proved Theorem 1 in terms of CSPM[Sca98, Ros98], the machine-readable version of CSP which is the language used in the model checkerFDR2 [Ros98, FS97].The following quantities, de�ned for a concurrent system P and a variable data type X, will be used inthe theorem to compute the su�cient size for the type of indices:W PX is the maximum number of elements of type X that P ever has to store for future use. Here it iscrucial that we do not need to count elements which are stored only because they are indices ofarray components that have previously been assigned to or read from. This enables W PX , and hencethe su�cient size for X in the theorem, to be �nite even when P may during its execution access anunbounded number of di�erent array components.LP?;X is the maximum number of elements of type X that can be input in a single communication of P.LP?;X is the maximum number of elements of type X that can be input in a single communication of Pwithout being recorded in it. (This quantity can be made nonzero only by renamings which omitinputs from communications.)LPu;X is the maximum number of elements of type X that can be chosen in a single internal nondeterministicchoice in P.The quantity W PX virtually always dominates the calculations. In fact, in most practical examples,including the case study in the next section, the remaining three quantities have values 1, 0, 0 or 1, 0, 1respectively.For simplicity, we state the theorem with only one uninterpreted many-valued predicate and only oneuninterpreted constant.Theorem 1 Suppose P is a concurrent system with two variable types X and Y with respect to which it isdata independent, except that it can use:� arrays of type Array(X, Y), i.e. arrays with indices from X and values from Y,� an uninterpreted K-valued predicate r on X, and� an uninterpreted constant c of type Y. 3



Suppose also that P does not use any equality tests between elements of type Y, and that no state of Phas two possible communications that di�er only in outputs of type Y. (Two mild regularity conditions arealso needed: see [LR98a].)Let B = 2�W PX +max(LP?;X + LP?;X; LPu;X).Then P is deterministic for all instantiations of X, Y, r and c (with �nite or in�nite X and Y), providedit is deterministic for the following instantiation:� X is de�ned to be any type with exactly (B + 2)�K elements,� Y is de�ned to be any type with exactly 2 elements, say {0, 1},� r is de�ned to map exactly B + 2 elements of X to each of the K elements in its range, and� c is de�ned to have any �xed value from Y, say 0.Proof. The proof uses symbolic labelled transition systems [HL95, LR98b] and factoring out of sym-metry [CE+96, ES96, ID96a, Jen96], and involves much additional development to be able to deal witharrays and with the stated de�nition of W PX .A sketch can be found in [LR98a]; the full proof will appear in [Laz98a]. �It is not impossible for B to be in�nite, in which case the theorem is unlikely to be useful in practice.(As we have said, the question of whether B is in�nite is orthogonal to the parameterisation by X and Y.)When P does not use an uninterpreted predicate, the theorem can be applied with K = 1.4.1 Decision ProceduresThe theorem immediately gives us a decision procedure for our restricted version of the PVP: computeB and then check whether the resulting instantiation of P is deterministic. As we have remarked, thisprocedure terminates provided B is computable in a �nite time and the instantiation of P is �nite-state.The e�ciency of the determinism checking phase can be considerably improved by automatically fac-toring out the symmetry associated with the type X and by allowing at most one input of type Y to havethe value 1 in any execution. Moreover, by performing a suitable symbolic check, the computation of Bcan e�ectively be done lazily during the check itself, resulting in greater accuracy.It is also possible to automatically check whether the assumptions of the theorem, or at least theirsuitable stronger versions, are satis�ed.At the time of writing, extensions to the model checker FDR2 to fully support the obtained decisionprocedures are being planned.4.2 Related WorkWe are not aware of any general results in the literature enabling systems that can access unboundedlymany di�erent array components (i.e. memory locations) during their execution to be veri�ed by reductionto �nite instantiations (as required by most model checkers). Such systems were typically veri�ed by oneof the following methods:� applying existing data independence theorems together with special-case observations or arguments,as in [HM+95, ID96a, LR96, Ros98];� symbolic execution which is not guaranteed to always terminate, or which relies on the number ofarray accesses being bounded, as in [VBJ97, HIB97];� special-case abstractions, as in [Gra94].We also cannot point to previous results facilitating reduction to �nite instantiations when uninterpretedpredicates on variable types are present, although it is substantially easier to extend the known methodsto accomodate them than it is for unbounded arrays.4



5 A Case StudyWith the help of Theorem 1, we have veri�ed that a database system which allows users to lock, read andwrite records at multiple security levels is secure. The system has similar functionality to one of the casestudies in [Wul97].2As usual in this sort of analysis, it su�ces to look at only two security levels of user, on the groundsthat more complex security policies can be partitioned into multiple binary analyses: see [RWW96, Ros95,Wul97, Ros98] for details. The system thus works with two user identities: a high security user Hugh anda low security user Lois.Without going into details, the system consists of a manager process DBM and a disk process Diskwhich stores the current values of all records. It has two variable types, RECORDS and DATA, and it usesan array with indices from RECORDS and values from DATA to model the contents of the disk. It alsouses an uninterpreted 2-valued predicate rlevel :: RECORDS -> {0, 1} which provides the security levelassociated with each record, and an uninterpreted constant inval :: DATA for the initial value of all therecords.That the system is secure is understood to mean that there can be no information 
ow from Hughto Lois across it. As we have remarked in Section 3, this can be veri�ed by verifying that a suitableabstraction of the system, namely what it looks like to Lois when Hugh's actions are turned into internalnondeterminism, is deterministic [RWW96, Ros95, Wul97, Ros98].Let us call this abstraction P. It turns out that P satis�es all the assumptions of Theorem 1 with X, Y,r and c now being called RECORDS, DATA, rlevel and inval respectively, and thatB = 2� (limit(Hugh) + limit(Lois)) + 1where limit(Hugh) and limit(Lois) are limits of how many records the users can have open or locked atany one time. Thus Theorem 1 has successfully reduced the problem of verifying that the system is securefor each instantiation of RECORDS, DATA, rlevel and inval to verifying that it is secure for a single �niteinstantiation.For a few small values of limit(Hugh) and limit(Lois), we have veri�ed on the model checker FDR2that the reduced instantiation of P is indeed deterministic. It remains an open problem, outside the scopeof the present paper, to by an automated veri�cation establish determinism for any limit(Hugh) andlimit(Lois) and when one or both of those limits are removed.A complete CSPM script with the case study can be found at:http://www.comlab.ox.ac.uk/oucl/publications/books/concurrency/examples/security/6 Further WorkWe should stress that the techniques we have developed are not restricted to verifying determinism. Indeed,we hope to obtain similar theorems for verifying arbitrary conditions. In CSP, that means for verifyingthat a concurrent system which uses unbounded arrays re�nes [Hoa85, Ros98] a given speci�cation.3AcknowledgementsWe are very grateful to Stephen Brookes, Michael Goldsmith, Ramin Hojati, Dominic Hughes, MartinHyland, Norris Ip, Gavin Lowe, Oege de Moor, Kedar Namjoshi, Peter O'Hearn, Luke Ong, Irfan Zakiuddinand others for helpful discussions, and to Lars Wulf for basing the functionality of our case study on a casestudy in his thesis.2[Wul97] is concerned with abstractions and using them to reason about information 
ow and computer security; it doesnot deal with the Parameterised Veri�cation Problem.3Some such re�nement checks have been included in the script for the case study obtainable from the Web.
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Modelling and Veri�cation ofUnbounded Length Systolic Arrays in M2L(Str)Tiziana Margaria, Michael Mendler, Claudia GsottbergerLehrstuhl f�ur ProgrammiersystemeUniversit�at PassauInnstr. 33, D-94032 Passau (Germany)tel: +49 851 509.3096 fax: +49 851 509.3092ftiziana,mendler,gsottberg@fmi.uni-passau.deAbstractFormal veri�cation of hardware circuits requires both a reliable formal description systemand an adequate veri�cation tool. This paper proposes a new method for the automaticveri�cation of a class of systolic systems, based on the use of monadic second orderlogic (over strings) as a modeling language. The method is applied to a case study fromthe literature, which illustrates the modelling, synthesis, and veri�cation features on aclass of iterative, parametric, linear systolic arrays. It also presents a �rst performancecomparison between the veri�cation tools Mona and Mosel for this logic.Keywords: Modelling Languages, Programming and Veri�cation Tools, Design of EmbeddedEnvironments, Monadic Second-Order Logic, (Synchronous) Hardware DescriptionLanguages, Systolic Systems.Corresponding Author: Tiziana Margaria (tiziana@fmi.uni-passau.de)1 Introduction and BackgroundSystolic arrays [SuMe77, KuLe79] are intensively used e.g. in the implementation of hardware accel-erators1 and of encoders/decoders for security purposes. Systolic systems can be seen as synchronousnetworks of parallel processors. They have nice properties from both an engineering and a mathemat-ical point of view, by combining multiprocessing and pipelining techniques with the more theoreticalconcepts of cellular automata and algorithms. Such systems exhibit a regular behavior both over timeand over structure. Traditionally, this behavior has been formalized for veri�cation purposes by meansof recursion, and it has led to induction-based proofs. Unfortunately neither recursive modeling norinduction-based reasoning are familiar to hardware designers, which accounts in part for the scarcerole played so far by formal methods in the common practice of circuit design. The modeling language1I.e., devices capable of performing the same functions of, for example, typical Abstract Data Type objects, like e.g.the priority queue of [CaMP89]. 1



M2L(Str) (Monadic Second-Order Logic over Strings) proposed in this paper avoids recursion andthus is much closer to the modeling practice of hardware designers. As usual for hardware descrip-tion languages, parameterization is used to capture the structure contained in a systolic array. Inparticular,� Parameterization over time permits capturing the sequential behavior of a single processor inthe form of di�erence equations.� Parameterization over structure is particularly suited for VLSI implementations where the samebasic cell is often instantiated many times to yield a regular structure.Together with the fully automated tool support for M2L(Str), this yields modular de�nition of circuitsand hierarchical veri�cation, as required in industrial practice.M2L(Str)is equivalent to B�uchi's weak successor arithmetic WS1S [B�uch60] (see [Thom90, Thom97]).Though the logic and its decision procedure are known since long they have not received much at-tention for practical applications, mainly because of their staggering non-elementary complexity. Yet,hardware technology has made some progress since the 60ies and relevant practical problems areusually far better behaved than the worst-case complexity would suggest.Recently, second-order monadic theories such as M2L(Str) have been rediscovered for applicationsshowing their practical potential as natural high-level description languages that combine the fullautomation of the model-oriented with the expressiveness of the logic-oriented methods [HJJK95,ABBS95]. In the software area M2L(Str) has been used for the RPC-Memory speci�cation case study[KNS96], a variant of the problem of the dining philosophers [HJJK95], or in a controller case study fordistributed systems [MaMe97] with attention to codesign aspects. In the hardware area M2L(Str) hasbeen applied to gate level circuits [BaKl95], hardware controllers [MaMe96], and sequential circuitswith parametric data-paths [Marg96].To our knowledge only a few implementations of monadic second-order theories are available or underconstruction at the moment. In �Arhus theMona [HJJK95] andMona++ packages implement interpre-tations over strings and trees respectively, and in Kiel the AMoRE system [Matz95] o�ers a decisionprocedure for the logic over trees. At Passau we developed the Mosel [KMMG97, KMMG97a] syn-thesis and veri�cation toolset. It is available also as part of MetaFrame [SMCB96], an environmentfor the analysis, veri�cation and construction of complex systems, which provides e.g. the graphicfacilities for automata display. Decision procedures for monadic second-order theories are also soonto be integrated into STeP [BBCC96]. A decision procedure for a restricted fragment of S1S, the�rst-order formulas with a single outermost second-order quanti�er, has recently been presented in[SchWe97].Though tools are still at the stage of prototypes, concrete experiences and performance results arealready available for the Mona [HJJK95] and Mosel [KMMG97] tools. In this paper we use linear,i.e., one-dimensional, systolic arrays as a case study to give a �rst comparison of the two systems.The structure of such iterative systems, called iterative networks, is illustrated in Fig. 1: arrays areconstructed as a linear chain of interconnected instances C1 to Cn of the same basic cell C. Each cellCi communicates with the environment via local inputs yi and x1i to xpi (which are the primary inputsand outputs of the systolic array and which are externally controllable). Additionally, there are uni-or bidirectional communication channels between adjacent cells. The inputs coming from the extremeleft and right model the communication with the host, and are called boundary conditions. An iterativesystem is the class of all iterative networks having the same basic cell and boundary conditions, anda di�erent number of cells. The iterative system is also characterizable as an iterative network withunknown (parameterized) number of cells. 2
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...Figure 1: Structure of Iterative Linear Systolic Arrayst ::= 0 | $ | p | t +o i | 0 + iT ::= all | P | compl(T) | T1 inter T2 | T + iF ::= true | t1 = t2 | t1 < t2 | T1 = T2 | t in T |~F | F1 & F2 | All p: F | All P: FFigure 2: A basic syntax for M2L(Str)We deal with the general case, namely sequential2 iterative systems of the unilateral, bilateral, orcircular kind3. The problems we are going to attack involve, therefore, parameterization over time,due to the sequential behavior of the basic cells, and parameterization over structure, since we considerarrays with arbitrary number of cells.The internal structure of the basic cells of such systems is usually speci�ed as a �nite state machine(FSM) and implemented in hardware at the gate-level. In particular, at this granularity we will regardeach cell as a \slice" of the overall array.After presenting our speci�cation language in Section 2 we describe the two considered veri�cationsetups in Section 3. Section 4 presents fully automatic veri�cation of pipeline properties for an examplefrom the literature [RhSo93]. Finally, Section 5 summarizes the lessons learned so far concerning thepractice of designing tools for M2L(Str) and presents �rst performance results.2 The Speci�cation LanguageThe M2L(Str) syntax described here is common to the Mona and the Mosel tools (see Sect. 3). Thebasic operators are reported in Figure 2, where we distinguish �rst-order terms t denoting positions,string expressions T, and formulas F. To understand the modeling of iterative systolic arrays, we needto be familiar with the interpretation of the logic over time on the one, and over structure on the otherhand.M2L(Str) for waveforms The interpretation of the logic over waveforms is needed to model andreason about the sequential circuit implementing the basic cell. Here,� First-order terms t describe discrete time points or clock cycles. 0 is the start cycle and $ the�nal cycle of the considered time interval. The operators + and +o denote (with slight di�erences)2Sequential (resp. combinational) networks have sequential (resp. combinational) circuits as basic cells. Sequentialiterative networks correspond to two-dimensional combinational iterative networks.3An iterative network is unilateral if the communication channels carry information only in one direction, otherwiseit is bilateral. It is circular if its cells are connected in a ring.3



addition modulo the interval length, where i ranges over natural numbers. Finally, p rangesover �rst-order variables.� Second-order terms T denote Boolean signals over the considered time interval, represented asthe set of cycle times in which the signal is set to 1. all is the constant 1 signal, inter is thepointwise 'and' of two signals, compl(T) denotes the pointwise complement of T, and + is theoperator which shifts T right by i steps, thus corresponding to the i-clock delay operator onsignals. Finally, P ranges over signals.� Formulas F specify the behavior of a circuit over all observation intervals. The atomic formulasare equations t1 = t2 and inequations t1 < t2 of clock cycles, equations on signals T1 = T2,and the construct t in T, which is true if signal T has value 1 in cycle t. Negation ~ andconjunction & are as usual. Finally, we can quantify over cycles and signals, All p: F, All P: F.M2L(Str) for bit-sliced structures Here �rst-order terms are taken to represent bit-slice indices,and second-order terms represent bit-vectors of generic length. The formula t in T then means \thebit with index t is set to 1 in vector T." Interpreted in the domain of iterative systolic systems, singlebit-slices correspond to single cells, while a bit-vector ranges over the whole iterative system. In thissetting,� First-order expressions t describe positions of cells in an array. Since the operator +o whichdenotes position shift modulo the string length, the logic is adequate for modeling circularsystems too.� Second-order expressions T range over entire linear arrays.Derived M2L(Str) operators Many of the connectives given here, like e.g. position variables andtheir connectives, are only included for convenience since they may be encoded within the logic usingsecond-order variables (see e.g. [Thom90]). Similarly, dual connectives like, e.g., false, the emptystring empty, bitwise union, implication =>, equivalence <=>, existential quanti�cation Ex on stringsare available, as well as a short form for Boolean (propositional) variables, represented as @p, overwhich quanti�cation is possible too. Predicate de�nitions are equalities terminated by semicolons, andcomments are introduced by the symbol #.Semantic models are constructed by converting formulas to automata as sketched in [HJJK95] and[KMMG97]. For any formula F that is not a tautology, a minimal length counter-example can beextracted from the corresponding automaton. This feature is exploited for fault detection, diagnosisand testing (see [Marg96, MaMe96]).3 The Analysis, Synthesis, and Veri�cation EnvironmentWe tested two quite di�erent system setups:� one based on Mona [HJJK95], a tool for a second-order monadic logic implemented in ML,illustrated in Figure 3, and� one based onMosel [KMMG97] (see Figure 4), a new toolset for the same logic, realized withinMetaFrame [SMCB96] and implemented in C/C++.4
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Figure 4: The Scenario with MoselIn both cases, circuit descriptions given in a hardware description language have to be �rst translatedinto the target logic, along the lines introduced in [Evek90, Marg93]4. Synthesis and veri�cation proofscan then be carried out fully automatically at the logic level by means of Mona or Mosel. Results,in form of an automaton or of a minimal counter-example, can be visualized as a graph within theMetaFrame environment.Though di�ering for many important design aspects, as will be explained in detail in Sect. 5, inboth systems predicates are de�ned as logic formulas and automatically transformed into minimalautomata. BDD techniques are used in order to store the automata's transitions. Semantic modelsare automata, visualized as graphs: Figures 8 and 9 show some automata generated by both tools forthe case study of Sect. 4.4In these approaches the semantics of Register-Transfer and gate level descriptions was expressed in terms of �rst-orderlogic formulas. 5



Users can also investigate properties of the graphs by means of hypertext inspectors for nodes andedges: in addition to their label, nodes have in fact attributes like e.g. start, accepting, non-accepting.Some of the properties shown in the inspector windows are also indicated by coloring of the nodes/edgesin the graph.Currently, MetaFrame provides graphic and hypertext facilities for the display of the results deliveredby Mona, whose shallow integration level restricts its use to an input/output compatible externaltool. In contrast, Mosel is part of the Tool Repository, thus additionally the entire tool management(veri�cation and input/output format conversions) happens within MetaFrame.4 Case Study: the Example of [RhSo93] RevisitedThis section illustrates, by way of an example, the use of M2L(Str) as a powerful, elegant, and concisedescription language, which allows an easy description of VLSI devices with regular structure in a verycompact form. Entire classes of systolic circuits are captured by a single parameterized description.The parameter can be interpreted as indicating the \length" of the device in terms of the numberof cells. Speci�c instances can be modeled by simply specifying the actual value of the structuralparameter.
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Basic  Cell 1 Basic Cell 2Figure 5: Automata of the Two Di�erent Basic Cells4.1 The ProblemThe example chosen by Somenzi and Rho investigates a case where two iterative systems are equivalentwhile their basic cells are not. Fig. 5 shows two simple FSMs that are not equivalent. Nevertheless, wewant to verify that two iterative systems with those FSMs as basic cells are equivalent. Note that thisis not a case of di�erent encodings of the same machine, since we start with two minimal deterministicFSMs which have di�erent numbers of states. Fig. 6 shows the gate-level implementation of thebasic cell reported in [RhSo93]. Here the X input is considered to be local, and Y0 a communicationinput. There are no local outputs, and a single communication output Y1. For the veri�cation of thesequential iterative systems generated by these basic cells, the boundary condition of the �rst cell isset to 0. Accordingly, the following two veri�cation problems will be addressed:� Problem 1: Verify that the sequential circuits implementing the basic cells are notequivalent.� Problem 2: Verify that the iterative systems generated by the basic cells and underthe given boundary condition are equivalent.6
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Figure 6: Original Implementation of the Basic Cells: Circuits rhso1 and rhso24.2 The Gate-level LibraryThe following relations model the behavior of the elementary gates in our logic.# circuit constructors as relationsnot(@a,@b) = (~(@a) <=> @b);and(@a,@b,@c) = ((@a & @b) <=> @c);or(@a,@b,@c) = ((@a | @b) <=> @c); ...# D-type flip-flopdff(D,Q) = (All t: (t < $) => (t +o 1 in Q <=> t in D) & (0 notin Q));Note that we use relations instead of functions. This means that we are not primarily interested inmodelling the signal 
ow in a circuit, distinguishing causes (variations on the inputs) and e�ects (theinduced variations on the outputs), but rather consistency conditions. This more abstract view payso� when dealing with bidirectional signal 
ows. This way it is immediately possible to model bilateralcommunication in systolic systems with no additional cost.4.3 Problem 1: Synthesis of The Basic CellsAfter some reverse engineering in order to reconstruct the state assignments used in [RhSo93], wesynthesize the basic cells from this state assignment by means of two-level techniques. We obtainthe circuits our-cell1 and our-cell2 shown in Fig. 7. Since they di�er from the original ones, anadditional proof obligation arises:� Problem 1A: Verify that each pair of sequential circuits implementing the samebasic cell is equivalent, i.e. rhso1 () our-cell1 and rhso2 () our-cell2.The gate-level implementations of the original basic cells are given in the usual structural fashion,as netlists of gate-level components. The predicates rhso1 and rhso2 describe the basic cells as acollection of single gates with the appropriate connections. The body of each predicate is a conjunctionof calls to predicates of the gate-level library, where the parameter-passing mechanism is used toestablish the desired wiring. Internal connections (called nets) are hidden by means of existentialquanti�cation.# Basic Cell 1rhso1(X,Y0,Y1) = (Ex D: Ex Y: All t:nand(t in X,t in Y0,t in D) &7
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circuit our-cell2Figure 7: Re-implemented Basic Cells: Circuits our-cell1 and our-cell2dff(D,Y) &not(t in Y,t in Y1));# Basic Cell 2rhso2(X,Y0,Y1) = (Ex D1: Ex D2: Ex W: Ex Z1: Ex Z2: All t:nand3(t in X,t in Y0,t in D1,t in D2) &dff(D2,Z2) &not(t in Z2,t in Y1) &and(t in Y0,t in Y1,t in W) &or(t in W,t in Z1,t in D1) &dff(D1,Z1));The circuits of Figure 7 are described similarly with netlist descriptions our-cell1 and our-cell2.The combinational parts of rhso2 and our-cell2will be referred to as rhso2comb and our-cell2comb,respectively. These predicates will be used to show di�erent forms of equivalence.4.4 Veri�cation 1: Behaviour of the Single CellsThe Automata of the Original Cells It is possible to generate automatically the automatoncorresponding to each predicate, which amounts to solving a synthesis problem. Considering theoriginal cells, the following commandsrhso1(X,Y0,Y1)rhso2(X,Y0,Y1)cause the computation of the minimal automata corresponding to the predicates describing the originalimplementations of the basic cells.The output o�ered by the tools consists of a listing of transitions presented in textual form. Avisualization inMetaFrame of the same automata is shown in Fig. 8. They coincide with the automataof Fig. 5, our initial behavioral speci�cation.Equivalence of the two Original Basic Cells For the two original implementations of the basiccells, rhso1 and rhso2 to possess the same behavior over time, independently of the assignment tothe free variables, the formularhso1(X,Y0,Y1) <=> rhso2(X,Y0,Y1) (1)must be checked. This statement is refuted, as expected, since the corresponding minimal deterministic8



Figure 8: MetaFrame's minimized automataautomata (i.e. the two automata of Figures 5, or equivalently the two of Figure 8) are di�erent. Notethat the same input X is fed to both circuits and that we expect to observe the same output sequencesY0, Y1 at each pair of corresponding outputs.4.5 Veri�cation 1A: The Re-implemented Basic CellsOur goal is to prove that each pair of circuits (rhso1, our-cell1) and (rhso2, our-cell2), im-plementing the same basic cell is equivalent. To this end, several approaches may be possible, ingeneral.Complete Veri�cation. The straightforward approach is to prove the equivalence of each pair ofcircuits by solving a complete problem of sequential circuits veri�cation, along the lines of the previoussection. In the case of Basic Cell 2, this leads to the following formulation:Basic Cell 2: rhso2(X,Y0,Y1) <=> our-cell2(X,Y0,Y1) (2)In fact, this is a theorem. This result was expected, since both implementations have been derivedfrom the same behavioural speci�cation.Note that the veri�cation method used here is synthesis-based: �rst the automata corresponding toeach of the single circuits are generated (synthesis phase), and subsequently their isomorphism ischecked (veri�cation phase).Partial Veri�cation Techniques. Additional information at hand can help to reduce the veri�ca-tion problem to its essential portion. In our case, 9



1. From the Karnaugh maps we see that the output functions of each pair are identical. Moreover,the output portion of each circuit pair is indeed topologically identical. The equivalence of eachpair of circuits can thus be reduced to a proof of equivalence of the state transition portionsas sequential circuits: if the circuits are in equivalent states, we already know that they haveequivalent outputs.2. We additionally know that the state encodings used for each pair of circuits are identical, there-fore the veri�cation of the combinational circuit determining the next state su�ces.This leads to the following simpler problem:Basic Cell 2:rhso2comb(X,Y1,Y2,Z1,Z2,D1,D2) <=> our-cell2comb(X,Y1,Y2,Z1,Z2,D1,D2) (3)which is a theorem too.4.6 Problem 2: The Iterative Linear ArraysThe implementation of the arrays generated by the pairs of basic cells described is obtained by appro-priately connecting neighbouring instances of the basic cells along the communication channels. Weintend to characterize the behaviour of the array as experienced by a signal entering the leftmost cellat time 0, following its propagation along the array. To this aim, we de�ne a second order variable UY,which describes what happens at each observation point between two adjacent cells: for both arrays,the Y1 output of the �rst cell is fed into the Y0 input of the adjacent one. The boundary condition forthe �rst cell is enforced by stipulating that the initial value of the communication input Y0 is low, 0notin UY (position 0 is not contained in the UY set). This connection scheme leads to the followingdescriptions:# Systolic Array 1array1(X,Y) = (Ex UY: (0 notin UY) &All t: ((t > 0) => (t in UY <=> t in Y)) &rhso1(X,UY,Y));# Systolic Array 2array2(X,Y) = (Ex UY: (0 notin UY) &All t: ((t > 0) => (t in UY <=> t in Y)) &rhso2(X,UY,Y));This description can be interpreted as following one wave of computation through the array, which isthe usual setting in systolic design. This means, for the initial computation we are \riding throughthe array" at the speed of the signals, entering the �rst cell at the initial time, and moving at eachclock cycle to the right neighbour. The subsequent computations follow the same pattern, but the Y0input of the �rst cell is no longer 0. Leaving the local inputs as free variables, we are able to captureall possible executions of the systolic array, under the following two operating conditions:1. the pipeline (i.e., the set of chained storage elements) is in its initialization state when reachedby the �rst computation front, and2. we observe and compare outputs only when they are signi�cant, i.e. after the latency time ofthe systolic arrays. 10



Figure 9: Veri�cation results for the two arraysThese are the standard conditions for systolic systems. Note that the equivalence property consid-ered in [RhSo93] is more restrictive than the standard conditions, since the outputs must be equivalentat any time, thus also during the latency time, and it disregards completely the �rst initialization con-dition. This modelling is indeed quite unusual for systolic systems.4.7 Veri�cation 2: Behavioural Equivalence of the ArraysThe equivalence theorem is easily stated by the following M2L(Str) formula:array1(X,Y) <=> array2(X,Y) (4)The minimized automaton corresponding to each predicate encountered during the expansion of theformula is constructed on-the-
y, which also contains solving two problem of automatic synthesis ofiterative systems with parametric length.The �nal result is the trivial automaton reported in Fig. 9 (left). It shows that the formula is indeeda tautology, since for any input the computation stays in the only existing state, which is accepting.4.8 Veri�cation of Abstract PropertiesIn addition to the veri�cation of alternative implementations or of a speci�cation/ implementationrelation between two circuit descriptions, we can formulate and automatically verify relevant abstractproperties of the systems under consideration. This feature is particularly interesting when handlingcomplex parametric systems, like the iterative sequential systems we are studying.A relevant property of iterative systolic arrays is e.g. the satis�ability of the formulas expressing theirbehaviour. The property is easily formulated as follows:array1(X,Y) => false (5)11



array2(X,Y) => false (6)Here we prove satis�ability of a formula by computing a counterexample for its negation, a techniquelargely used in theorem proving and resolution-based provers.The result is obtained automatically by Mona in less than 1s CPU. Neither formula is true, since bothlead to the minimal automaton of Fig. 9 (right): the only accepting state, marked by the arrow inthe picture (which would be red on the screen), is only reachable through non-accepting states. Thisproves that the behaviour of the arrays is indeed satis�able.5 Evaluation and PerformancesModelling Hardware in this Logic. The expressive power of M2L(Str) captures only one-dimensionalstructures (linearly or circularly arranged). This is due to the interpretation of the logic over strings.Since strings may be taken to assume di�erent meanings (here and in [MaMe96] sampled waveforms,in [Marg96] the bitwidth of a datapath) some degree of freedom is left to the designer. However, ingeneral one needs to reason about behaviours of classes of circuits over time, which calls for genericityalong both time and spatial dimensions. In some cases it is possible to some extent to `cut' along oneof the two axes: here we have renounced to model the whole array at all times, and have chosen tomodel one (however generic) pipeline computation. Here this choice still su�ces to capture the wholebehaviour, but this is not true in general.Mona's Shortcomings. In its current versionMona is still a research prototype. It su�ces to demon-strate on several interesting case studies, spanning diverse application �elds, that practical examplesare indeed in general much better behaved than the staggering theoretical worst case complexity.However, in our experience during the last two years, in which the tool was also used actively bystudents in a graduate course on Formal Methods for System Design, the following weaknesses wereobserved:� The intuitive de�nition ofMona's implemented constructs found in [HJJK95] has omissions (e.g.,it misses predicate de�nitions), inconsistencies, and leaves unclear the correspondence betweenthe published and the implemented versions of the logic, for instance concerning empty strings.Distinguishing between primitive and derived constructs, with explicitly documented encodings,and a proof of the correctness of the semantics, would have avoided those problems.� The rigid user interface of the tool, which is in pure textual form. Mona accepts only M2L(Str)formulas and delivers automata and counter examples only as list of transitions. Not even theoutput format for automata descriptions can be read again by the tool.� The shallow integratability of the tool in larger environments. Embedding ofMona intoMetaFrameis limited by the rigid interface of the former, which forces a one-directional cooperation: sinceMona has to run inside the ML interpreter, it was not possible to launch it from MetaFrame.Thus we could not use Mona as originally planned.Design Principles for Mosel. The following system requirements and main design principles toMosel arose exactly from these points, which, to our knowledge, are not addressed by any otherrelated project. 12
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Figure 10: Layered Logics in Mosel1. De�nition of a formal semantics for a minimal subset of the logic in terms of �nite-stateautomata.2. Layered approach to the logic. We introduce a hierarchy of logic layers, with increasinglypowerful constructs, related by either direct embedding or more elaborate encodings as shownin Fig. 10.� The minimal logic contains a minimal set of primitives, for which the semantics is formallyde�ned in terms of corresponding automata. This set constitutes the reference languagefor proofs involving semantics.� The kernel logic extends the minimal logic by additional (derived) constructs and coincideswith the set of constructs actually implemented as primitives in the semantic decisionprocedure. The design of this extension is guided by considerations of e�ciency of thecomputations required in the decision procedure.� A set of generic user logics correspond to an application-independent layer. They extendthe kernel logic by derived operators which do not have a direct implementation, but arecomfortable for generic applications. User logics may be rather di�erent from the kernellogic and need not be a simple syntactic extension. The syntax of Mona Version 0.2 usedin this paper is one of Mosel's user logics.� A number of application-speci�c logics, each containing additional admissible predicatesand constructs tailored to speci�c application domains. This paper has shown an examplefrom the domain of hardware veri�cation, but other application domains are possible.The semantic coherence of richer logics with the minimal logic is ensured by implementing outerlayers of the logic through successive encodings and de�nitional extensions to the unique minimallogic, and by making these explicit. The coherence of the kernel wrt. the minimal logic has alsobeen proved to some extent automatically in Mosel, as reported in [KMMG97].3. Modular design. While Mona is a single large component, Mosel is a collection of mod-ules which can be combined or exchanged at need. Following the concept of a repository-basedlibrary of components, Mosel supports 
exible adaptation and extension to new input or out-put formalisms, as well as the interchange of some of its internal components (e.g., users mayreplace the BDD package used in the decision procedure, or the automata minimization and13



formula Mona (s) Mosel (s) speedup1 rhso1(X,Y0,Y1) , rhso2(X,Y0,Y1) 8 5.05 37%2 rhso1(X,Y0,Y1) , our-cell1(X,Y0,Y1) 4 2.02 49%3 rhso2comb(X,Y1,Y2,Z1,Z2,D1,D2), our-cell2comb(X,Y1,Y2,Z1,Z2,D1,D2) 44 32.79 25%4 array1(X,Y) , array2(X,Y) 8 5.15 35%5 array1(X,Y) ) false 1 0.70 30%6 array2(X,Y) ) false 8 4.60 42%Table 1: Performance comparison between the two M2L(Str) tools on the case study.determinization algorithms). The aim is that the best-�tting incarnation of the tool may be puttogether at need, on an application-driven basis, from the collection of existing components.4. Integrability in a heterogeneous analysis and veri�cation environment likeMetaFrame.The design and the concrete architecture of Mosel have been described in [KMMG97], where wehave explained in detail the realization of these system requirements, starting with the introductionof the logic layers and their semantics, followed by a description of the implementation principles and�nally by the integration within MetaFrame.Interesting is the fact that, once compared on the same level of granularity for the logic (the kernellogic), Mosel also performs 25% to 49% better than Mona, as shown in Table 1. On the otherhand, we observed that Mosel is slower at the level of Mona syntax. This suggests that in thefurther development of Mosel the focus can shift from the basic decision procedures to improvingthe compilation algorithms. We are currently extending our measurements to the whole library ofhardware circuits already veri�ed by means of Mona in order to characterize better the performancepro�les of both tools.References[ABBS95] A. Aziz, F. Balarin, R. Brayton, A. Sangiovanni-Vincentelli: \Sequential synthesis using S1S," Proc.ICCAD'95, pp.612{617.[BaKl95] D. Basin, N. Klarlund: \Hardware veri�cation using monadic second-order logic," Proc. CAV '95,Li�ege (B), July 1995, LNCS N. 939, Springer Verlag, pp. 31-41.[BBCC96] N. Bj�rner, A. Browne, E. Chang, M. Colon, A. Kapur, Z. Manna, H. Sipma, T. Uribe: \STeP:Deductive-algorithmic veri�cation of reactive and real-time systems," Proc. CAV'96, New Brunswick,NJ (USA), Aug. 1996, LNCS 1102, Springer Verlag, pp. 415-418.[B�uch60] J.R. B�uchi: \Weak second-order arithmetic and �nite automata," Z. Math. Logik Grundl. Math.,Vol. 6, 1960, pp. 66-92.[CaMP89] P. Camurati, T. Margaria, P. Prinetto \Systolic array description in F2," Microprocessing andMicroprogramming, The Euromicro Journal, Vol. 27, n. 1-5, Sept. 1989, pp. 171-178.[Evek90] H. Eveking: \Axiomatizing hardware description languages," Int. Journal of VLSI Design, 2(3), pp.263-280, 1990. 14
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The Regular Viewpoint on PA-ProcessesD. Lugiez1 and Ph. Schnoebelen21 Lab. d'Informatique de Marseille, Univ. Aix-Marseille & CNRS URA 1787,39, r. Joliot-Curie, 13453 Marseille Cedex 13 Franceemail: lugiez@lim.univ-mrs.fr2 Lab. Sp�eci�cation & V�eri�cation, ENS de Cachan & CNRS URA 2236,61, av. Pdt. Wilson, 94235 Cachan Cedex Franceemail: phs@lsv.ens-cachan.frAbstract. PA is the process algebra allowing non-determinism, sequen-tial and parallel compositions, and recursion. We suggest a view of PA-processes as tree languages.Our main result is that the set of (iterated) predecessors of a regular setof PA-processes is a regular tree language, and similarly for (iterated)successors. Furthermore, the corresponding tree-automata can be builte�ectively in polynomial-time. This has many immediate applicationsto veri�cation problems for PA-processes, among which a simple andgeneral model-checking algorithm.IntroductionVeri�cation of In�nite State Processes is a very active �eld of research today inthe concurrency-theory community. Of course, there has always been an activePetri-nets community, but researchers involved in process algebra and model-checking really became interested into in�nite state processes after the proof thatbisimulation was decidable for normed BPA-processes [BBK87]. This promptedseveral researchers to investigate decidability issues for BPP and BPA (withor without the normedness condition) (see [CHM94,Mol96,BE97] for a partialsurvey).From BPA and BPP to PA: BPA is the \non-determinism + sequential compo-sition + recursion" fragment of process algebra. BPP is the \non-determinism +parallel composition + recursion" fragment. PA (from [BEH95]) combines bothand is much less tractable. A few years ago, while more and more decidabilityresults for BPP and BPA were presented, PA was still beyond the reach of thecurrent techniques. Then R. Mayr showed the decidability of reachability for PAprocesses [May97c], and extended this into decidability of model-checking for PAw.r.t. the EF fragment of CTL [May97b]. This was an important breakthrough,allowing Mayr to successfully attack more powerful process algebras [May97a]while other decidability results for PA were presented by him and other re-searchers (e.g. [Ku�c96,Ku�c97,JKM98,HJ98]).



A �eld asking for new insights: The decidability proofs from [May97b] (and thefollowing papers) are certainly not trivial. The constructions are quite complexand hard to check. It is not easy to see in which directions the results and/orthe proofs could be adapted or generalized without too much trouble. Probably,this complexity cannot be avoided with the techniques currently available in the�eld. We believe we are at a point where it is more important to look for newinsights, concepts and techniques that will simplify the �eld, rather than tryingto further extend already existing results.Our contribution: In this paper, we show how tree-automata techniquesgreatly help dealing with PA. Our main results are two Regularity Theorems,stating that Post�(L) and Pre�(L), the set of con�gurations reachable from(resp. allowing to reach) a con�guration in L, is a regular tree language when Lis, and giving simple polynomial-time constructions for the associated automata.Many important consequences follow directly, including a simple algorithm formodel-checking PA-processes.Why does it work ? The regularity of Post�(L) and Pre�(L) could only beobtained after we had the combination of two main insights:1. the tree-automata techniques that have been proved very powerful in several�elds (see [CKSV97]) are useful for the process-algebraic community as well.After all, PA is just a simple term-rewrite system with a special context-sensitive rewriting strategy, not unlike head-rewriting, in presence of thesequential composition operator.2. the syntactic congruences used to simplify notations in simple process alge-bras help one get closer to the intended semantics of processes, but theybreak the regularity of the behavior. The decidability results are much sim-pler when one only introduces syntactic congruences at a later stage. (Be-sides, this is a more general approach.)Plan of the paper: We start with our de�nition of the PA algebra (x 1). Thenwe recall what are tree automata and how sets of PA processes can be seenas tree languages (x 2). This allows proving that Post�(L) and Pre�(L) areregular when L is a regular set of PA terms (x 3). We then extend these re-sults by taking labels of transitions into account (x 4) and showing how tran-sitions \modulo structural congruence" are handled (x 5). Finally we considerthe important applications in model-checking (x 6). Several proofs are omitedfor lack of space. They can be found in the longer version of this paper athttp://www.lsv.ens-cachan.fr/Publis/RAPPORTS LSV.Related work: The set of all reachable con�gurations of a pushdown automa-ton form a regular (word) language. This was proven in [B�uc64] and extendedin [Cau92]. Applications to the model-checking of pushdown automata have beenproposed in [FWW97,BEM97].�! over PA terms is similar to the transitive closure of relations de�nedby ground rewrite systems. Because the sequential composition operator in PA



implies a certain form of pre�x rewriting, the ground tree transducers of Dauchetand Tison [DT90] cannot recognize �!. It turns out that �! can be seen as arational tree relation as de�ned by Raoult [Rao97].Regarding the applications we develop for our regularity theorems, most havebeen suggested by Mayr's work on PA [May97c,May97b] and/or our earlier workon RPPS [KS97a,KS97b].1 The PA process algebra1.1 SyntaxAct = fa; b; c; : : :g is a set of action names.Var = fX;Y; Z; : : :g is a set of process variables.EPA = ft; u; : : :g is the set of PA-terms, given by the following abstract syntaxt; u ::= 0 j X j t:u j t k uwhere X is any process variable from Var . Given t 2 EPA, we write Var(t) theset of process variables occurring in t and Subterms(t) the set of all subterms oft (t included).A guarded PA declaration is a �nite set � = fXi ai! ti j i = 1; : : : ; ng ofprocess rewrite rules. Note that the Xi's need not be distinct.We write Subterms(�) for the union of all Subterms(t) for t a right- or a left-hand side of a rule in �, and let Var(�) denotes Var \ Subterms(�), the set ofprocess variables occurring in�.�a(X) denotes ft j there is a rule \X a! t" in �gand �(X) is Sa2Act �a(X). Var? def= fX 2 Var j �(X) = ?g is the set of vari-ables for which � provides no rewrite.In the following, we assume a �xed Var and �.1.2 SemanticsA PA declaration � de�nes a labeled transition relation!�� EPA�Act�EPA.We always omit the � subscript when no confusion is possible, and use thestandard notations and abbreviations: t w! t0 with w 2 Act�, t k! t0 with k 2 N,t �! t0, t!, : : : !� is inductively de�ned via the following SOS rules:t1 a! t01t1 k t2 a! t01 k t2 t1 a! t01t1:t2 a! t01:t2 X a! t (X a! t) 2 �t2 a! t02t1 k t2 a! t1 k t02 t2 a! t02t1:t2 a! t1:t02 IsNil(t1)The second SOS rule for sequential composition is peculiar: it uses a syntacticpredicate, \IsNil(t1)", as a side condition checking that t1 cannot evolve any-more, i.e. that t1 is terminated. Indeed, our intention is that the t2 part in t1:t2only evolves once t1 is terminated.



The IsNil(: : : ) predicate is inductively de�ned byIsNil(t1 k t2) def= IsNil(t1) ^ IsNil(t2); IsNil(0) def= true;IsNil(t1:t2) def= IsNil(t1) ^ IsNil(t2); IsNil(X) def= � true if �(X) = ?,false otherwise.It is indeed a syntactic test for termination, and we haveLemma 1. The following three properties are equivalent:1. IsNil(t) = true,2. t 6! (i.e. t is terminated),3. Var(t) � Var?.1.3 Structural equivalence of PA termsSeveral works on PA and related algebras only consider processes up-to somestructural congruence. PA itself usually assumes an equivalence � de�ned bythe following equations:(Ck) t k t0 � t0 k t(Ak) (t k t0) k t00 � t k (t0 k t00)(A:) (t:t0):t00 � t:(t0:t00) (N1) t:0 � t(N2) 0:t � t (N3) t k 0 � t(N4) 0 k t � t� respects the behaviour of process terms. However, we do not want to identifyPA terms related by � !Our approach clearly separates the behavior of EPA (the ! relation) andstructural equivalence between terms (the � relation). We get simple proofsof results which are hard to get in the other approach because the transitionrelation and the equivalence relation interact at each step.In the following, we study �rst the! relation. Later (x 5) we combine! andstructural equivalence and show how it is possible to reason about \PA-termsmodulo �". In e�ect, this shows that our approach is also more general since wecan de�ne the \modulo �" approach in our framework.2 Tree languages and PAWe shall use tree automata to recognize sets of terms from EPA.2.1 Regular tree languages and tree automataWe recall some basic facts on tree automata and regular tree languages. For moredetails, the reader is referred to any classical source (e.g. [CDG+97,GS97]).A ranked alphabet is a �nite set of symbols F together with an arity function� : F ! N. This partitions F according to arities: F = F0 [ F1 [ F2 [ � � � . We



write T (F) the set of terms over F and call them �nite trees or just trees. A treelanguage over F is any subset of T (F).A (�nite, bottom-up) tree automaton (a \TA") is a tuple A = hF ; Q; F;Riwhere F is a ranked alphabet, Q = fq; q0; : : :g is a �nite set of states, F � Qis the subset of �nal states, and R is a �nite set of transition rules of the formf(q1; : : : ; qn) 7�! q where n � 0 is the arity �(f) of symbol f 2 F . TA's with"-rules also allow some transition rules of the form q 7�! q0.The transition rules de�ne a rewrite relation on terms built on F [Q (seeingstates from Q as nullary symbols). This works bottom-up. We write t A7�! qwhen t 2 T (F) can be rewritten (using any number of steps) to q 2 Q and say tis accepted by A if it can be rewritten into a �nal state of A. We write L(A) forthe set of all terms accepted by A. Any tree language which coincide with L(A)for some A is a regular tree language. Regular tree languages are closed undercomplementation, union, etc.An example: Let F be given by F0 = fa; bg, F1 = fgg and F2 = ffg. There is aTA, Aeven g, accepting the set of all t 2 T (F) where g occurs an even number oftimes in t. Aeven g is given by Q def= fq0; q1g, R def= fa 7�! q0; b 7�! q0; g(q0) 7�!q1; g(q1) 7�! q0; f(q0; q0) 7�! q0; f(q0; q1) 7�! q1; f(q1; q0) 7�! q1; f(q1; q1) 7�!q0g and F def= fq0g. Let t be g(f(g(a); b)). Aeven g rewrites t (deterministically)as follows:g(f(g(a); b)) 7�! g(f(g(q0); q0)) 7�! g(f(q1; q0)) 7�! g(q1) 7�! q0:Hence t 7�! q0 2 F so that t 2 L(Aeven g).The size of a TA A, denoted by jAj, is the number of states of A augmentedby the size of the rules of A where a rule f(q1; : : : ; qn) 7�! q has size n + 2.Notice that, for a �xed F where the largest arity is m, jAj is in O(jQjm+1).A TA is deterministic if all transition rules have distinct left-hand sides (andthere are no "-rule). Our earlier Aeven g example was deterministic. Given a non-deterministic TA, the classical subset construction yields a deterministic TAaccepting the same language (this construction involves a potential exponentialblow-up in size).Telling whether L(A) is empty for some TA A can be done in time O(jAj).Telling whether a given tree t is accepted by a given A can be done in timepolynomial in jAj+ jtj.A TA is completely speci�ed (also complete) if for each f 2 Fn and q1; : : : ; qn 2Q, there is a rule f(q1; : : : ; qn)! q. By adding a sink state and the obvious rules,any A can be extended into a complete TA accepting the same language.2.2 Some regular subsets of EPAEPA, the set of PA-terms, can be seen as a set of trees, i.e. as T (F) for F givenby F0 = f0; X; Y; : : :g (= f0g [Var) and F2 = f:; kg.We begin with one of the simplest languages in EPA:



Proposition 2. For any t, the singleton tree language ftg is regular, and a TAfor ftg needs only have jtj states.The set of terminated processes is also a tree language. Write L? for ft 2 EPA jIsNil(t)g. An immediate consequence of Lemma 1 isProposition 3. L? is a regular tree language, and a TA for L? needs only haveone state.3 Regularity of Post �(L) and Pre�(L) for a regularlanguage LGiven a set L � EPA of PA-terms, we let Pre(L) def= ft j 9t0 2 L; t ! t0g andPost(L) def= ft j 9t0 2 L; t0 ! tg denotes the set of (immediate) predecessors (resp.successors) of terms in L. Pre+(L) def= Pre(L)[Pre(Pre(L))[� � � and Post+(L) def=Post(L)[Post(Post(L))[� � � contain the iterated predecessors (resp. successors).Similarly,Pre�(L) denotes L[Pre+(L) and Post�(L) is L[Post+(L), also calledthe reachability set.In this section we prove the regularity of Pre�(L) and Post�(L) for a regularlanguage L. Pre�(L) and Post�(L) do not take into account the labels accom-panying PA transitions, but these will be considered in section 4.For notational simplicity, given two states q; q0 of a TA A, we denote by�k(q; q0) (resp. �:(q; q0) any state q00 such that q k q0 A7�! q00 (resp. q:q0 A7�! q00),possibly using "-rules.3.1 Regularity of Post�(L)First, we give some intuition which helps understanding the construction of aTA APost� accepting Post�(L).Let us assume � contains X ! r1 and Y ! r2, and that r1 is terminated.Starting from t1 = X:Y , there exists the transition sequence t1 ! t2 ! t3illustrated in �gure 1. r1 r1 r2Y:X Y: :t1 t2 t3Fig. 1. An example sequence: X:Y ! r1:Y ! r1:r2



We want to build APost� , a TA that reads t3 (i.e. r1:r2) bottom-up and seesthat it belongs to Post�(L). For this, the TA has to recognize that t3 comes fromt1 (i.e. X:Y ) and check that t1 is in L.1. APost� must recognize that r1 (resp. r2) is the right-hand side of a rule X !r1 (resp. Y ! r2). Therefore we need an automaton A� which recognizessuch right-hand sides.2. The automaton APost� works on t3 but must check that t1 is in L. Thereforewe need an automaton AL accepting L. APost� mimicks AL but it has ad-ditional rules simulating rewrite steps: once r1 has been recognized (by theA� part), the computation may continue as if X were in place of r1. Thesame holds for r2 and Y .3. The transition between t2 and t3 is allowed only if r1 is terminated. Thereforewe need an automaton A? to check whether a term is terminated.4. A non-terminated term is allowed to the left of a \:" when no transition hasbeen performed to the right. Therefore we use a boolean value to indicatewhether rewrite steps have been done or not.These remarks lead to the following construction.Ingredients for APost� : Assume AL is an automaton recognizing L � EPA.APost� is a new automaton combining several ingredients:{ A? is a completely speci�ed automaton accepting terminated processes (seeProposition 3).{ AL is a completely speci�ed automaton accepting L.{ A� is a completely speci�ed automaton recognizing the subterms of �. Ithas all states qs for s 2 Subterms(�). We ensure \t A�7�! qs i� s = t"by taking as transition rules 0 7�! q0 if 0 2 Subterms(�), X 7�! qX ifX 2 Subterms(�), qs k qs0 7�! qsks0 (resp. qs:qs0 7�! qs:s0) if s k s0 (resp.s:s0) belongs to Subterms(�). In addition, the automaton has a sink state q?and the obvious transitions so that it is a completely speci�ed automaton.{ The boolean b records whether rewrite steps have occurred.States of APost� : The states of APost� are 4-uples (q? 2 QA? ; qL 2 QAL; q� 2QA�; b 2 ftrue; falseg) where Q::: denotes the set of states of the relevant au-tomaton.Transition rules of APost� : The transition rules are:type 0: all rules of the form 0 7�! (q?; qL; q�; false) s.t. 0 A?7�! q?, 0 AL7�! qL and0 A�7�! q�.type 1: all rules of the form X 7�! (q?; qL; q�; false) s.t. X A?7�! q?, X AL7�! qL,and X A�7�! q�.type 2: all "-rules of the form (q?; q0L; qs; b0) 7�! (q?; qL; qX ; true) s.t. X ! sis a rule in � and X AL7�! qL.



type 3: all rules of the form(q?; qL; q�; b) k (q0?; q0L; q0�; b0) 7�! (�k(q?; q0?); �k(qL; q0L); �k(q�; q0�); b _ b0)type 4a: all rules of the form(q?; qL; q�; b):(q0?; q0L; q0�; false) 7�! (�:(q?; q0?); �:(qL; q0L); �:(q�; q0�); b).type 4b: all rules of the form(q?; qL; q�; b):(q0?; q0L; q0�; b0) 7�! (�:(q?; q0?); �:(qL; q0L); �:(q�; q0�); b _ b0) s.t.q? is a �nal state of A?.This construction ensures the following lemma, whose complete proof is givenin the full version of this paper.Lemma 4. For any t 2 EPA, t APost�7�! (q?; qL; q�; b) i� there is some u 2 EPAand some p 2 N such that u p! t, u AL7�! qL, u A�7�! q�, (b = false i� p = 0) andt A?7�! q?.If we now let the �nal states of APost� be all states (q?; qL; q�; b) s.t. qL is a�nal state of AL, then APost� accepts a term t i� u �! t for some u accepted byAL i� t belongs to Post�(L). We get our �rst main result:Theorem 5. (Regularity of Post�(L))(1) If L is a regular subset of EPA, then Post�(L) is regular.(2) Furthermore, from a TA AL recognizing L, is it possible to construct (inpolynomial time) a TA APost� recognizing Post�(L). If AL has k states, thenAPost� needs only have O(k:j�j) states.Notice that a TA for Post+(L) can be obtained just by requiring that the �nalstates have b = true as their fourth component.3.2 Regularity of Pre�(L)Assume we have a TA APre� recognizing Pre�(L). If we consider the same se-quence t1 ! t2 ! t3 from Fig. 1, we want APre� to accept t1 if t3 is in L.The TA must then read t1, imitating the behaviour of AL. When APre� sees avariable (say, X), it may move to any state q of AL that could be reached bysome t 2 Post�(X). This accounts for transitions fromX, and of course we mustkeep track of the actual occurences of transitions so that they do not occur inthe right-hand side of a \:" when the left-hand side is not terminated.This leads to the following construction:Ingredients for APre� : Assume AL is an automaton recognizing L � EPA.APre� is a new automaton combining several ingredients:{ A? is a completely speci�ed automaton accepting terminated processes (seeProposition 3).{ AL is the automaton accepting L.{ The boolean b records whether some rewriting steps have been done.



States of APre� : A state of APre� is a 3-tuple (q? 2 QA? ; qL 2 QAL; b 2ftrue; falseg) where Q::: denotes the set of states of the relevant automaton.Transition rules of APre� : The transition rules of APre� are de�ned as follows:type 0: all rules of the form 0 7�! (q?; qL; false) s.t. 0 A?7�! q? and 0 AL7�! qL.type 1a: all rules of the form X 7�! (q?; qL; true) s.t. there exists some u 2Post+(X) with u A?7�! q? and u AL7�! qL.type 1b: all rules of the formX 7�! (q?; qL; false) s.t. X A?7�! q? and X AL7�! qL.type 2: all rules of the form (q?; qL; b) k (q0?; q0L; b0) 7�! (�k(q?; q0?); �k(qL; q0L); b_b0).type 3a: all rules of the form (q?; qL; b):(q0?; q0L; b0) 7�! (�:(q?; q0?); �:(qL; q0L); b_b0) s.t. q? is a �nal state of A?.type 3b: all rules of the form (q?; qL; b):(q0?; q0L; false) 7�! (�:(q?; q0?); �:(qL; q0L); b).This construction allows the following lemma, whose complete proof is given inthe full version of this paper.Lemma 6. For any t 2 EPA, t APre�7�! (q?; qL; b) i� there is some u 2 EPA andsome p 2 N such that t p! u, u A?7�! q?, u AL7�! qL and (b = false i� p = 0).If we now let the �nal states of APre� be all states (q?; qL; b) s.t. qL is a�nal state of AL, then t �! u for some u accepted by AL i� APre� accepts t(this is where we use the assumption that A? is completely speci�ed). This issummarized by the next theorem.Theorem 7. (Regularity of Pre�(L))(1) If L is a regular subset of EPA, then Pre�(L) is regular.(2) Furthermore, from an automaton AL recognizing L, is it possible to construct(in polynomial time) an automaton APre� recognizing Pre�(L). If AL has kstates, then APre� needs only have 4k states.Proof. (1) is an immediate consequence of Lemma6. Observe that the regularityresult does not need the �niteness of � (but Var(�) must be �nite).(2) Building APre� e�ectively requires an e�ective way of listing the type1a rules. This can be done by computing a product of AX , an automatonfor Post+(X), with A? and AL. Then there exists some u 2 Post+(X) withu A?7�! q? and u AL7�! qL i� the the language accepted by the �nal statesf(qX ; q?; qL) j qX a �nal state of AXg is not-empty. This gives us the pairsq?; qL we need for type 1a rules. Observe that we need the �niteness of � tobuild the AX 's. �Actually, the �! relation between PA-terms is a rational tree relation in thesense of [Rao97]. This entails that Pre�(L) and Post�(L) are regular tree lan-guages when L is. Raoult's approach is more powerful than our elementary con-structions but it relies on complex new tools (much more powerful than usual



TA's) and does not provide the straightforward complexity analysis we o�er.Moreover, the extensions we discuss in section 4 would be more di�cult to ob-tain in his framework.3.3 ApplicationsTheorems 5 and 7 already give us simple solutions to veri�cation problems overPA: the reachability problem asks, given t, u (and�), whether t �! u. The bound-edness problem asks whether Post�(t) is �nite. They can be solved in polynomialtime just by looking at the TA for Post�(t). Variant problems such as \can wereach terms with arbitrarily many occurences of X in parallel ?" can be solvedequally easily.4 Reachability under constraintsIn this section, we consider reachability under constraints, that is, reachabilitywhere the labels of transitions must respect some criterion. Let C � Act� bea (word) language over action names. We write t C! t0 when t w! t0 for somew 2 C, and we say that t0 can be reached from t under the constraint C. Weextend our notations and write Pre�[C](L), Post�[C](L), : : : with the obviousmeaning.Observe that, in general, the problem of telling whether t C! (i.e. whetherPost�[C](t) is not empty) is undecidable for the PA algebra even if we assumeregularity of C 1. In this section we give su�cient conditions over C so thatthe problem becomes decidable (and so that we can compute the C-constrainedPre� and Post� of a regular tree language).Recall that the shu�e w k w0 of two �nite words is the set of all words onecan obtain by interleaving w and w0 in an arbitary way.De�nition 8. f(C1; C01); : : : ; (Cm; C0m)g is a (�nite) seq-decomposition of C i�for all w;w0 2 Act� we havew:w0 2 C i� (w 2 Ci; w0 2 C0i for some 1 � i � m):f(C1; C02); : : : ; (Cm; C0m)g is a (�nite) paral-decomposition of C i� for all w;w0 2Act� we haveC \ (w k w0) 6= ? i� (w 2 Ci; w0 2 C0i for some 1 � i � m):1 E.g. by using two copies a; a of every letter a in some �, and by using the regularconstraint C def= (a1:a1 + � � � + an:an)�#:#, we can state with \(t1 k t2) C! ?" thatt1 and t2 share a common trace ending with #. This can be used to encode the(undecidable) empty-intersection problem for context-free grammars.



The crucial point of the de�nition is that a seq-decomposition of C must apply toall possible ways of splitting any word in C. It even applies to a decompositionw:w0 with w = " (or w0 = ") so that one of the Ci's (and one of the C0i's)contains ". Observe that the formal di�erence between seq-decomposition andparal-decomposition comes from the fact that w k w0, the set of all shu�es of wand w0 may contain several elements.De�nition 9. A family C = fC1; : : : ; Cng of languages over Act is a �nitedecomposition system i� every C 2 C admits a seq-decomposition and a paral-decomposition only using Ci's from C . A language C is decomposable if it appearsin a �nite decomposition system.Not all C � Act� are decomposable, e.g. (ab)� is not. It is known thatdecomposable languages are regular and that all commutative regular languagesare decomposable. (Write w � w0 when w0 is a permutation of w. A commutativelanguage is a language C closed w.r.t. �). Simple examples of commutativelanguages are obtained by considering the number of occurrences (rather thanthe positions) of given letters: for any positive weight function � given by �(w) def=Pi nijwjai with ni 2 N, the set C of allw s.t. �(w) = k (or �(w) < k, or �(w) > k,or �(w) = k mod k0) is a commutative regular language, hence is decomposable.However, a decomposable language needs not be commutative: �nite lan-guages are decomposable, and decomposable languages are closed by union, con-catenation and shu�e.Theorem 10. (Regularity)For any regular L � EPA and any decomposable C, Pre�[C](L) and Post�[C](L)are regular tree languages.Proof.The construction is similar to the constructions forPre�(L) and Post�(L).See the full version of the paper. �5 Handling structural equivalence of PA-termsIn this section we show how to take into account the axioms (A:); (Ck); (Ak) and(N1) to (N4) (from section 1.3) de�ning the structural equivalence on EPA terms.Some de�nitions of PA consider PA-terms modulo�. This viewpoint assumesthat a PA-term t really denotes an equivalence class [t]�, and that transitions arede�ned between such equivalence classes, coinciding with a transition relationwe would de�ne by[t]� a! [u]� def, 9t0 2 [t]�; u0 2 [u]� s.t. t0 a! u0: (1)This yields a new process algebra: PA�.



In our framework, we can de�ne a new transition relation between PA-terms:t a) t0 i� t � u a! u0 � t0 for some u; u0, i.e. [t]� a! [u]�. We adopt the usualabbreviations �), k) for k 2 N, etc.Seeing terms modulo � does not modify the observable behaviour becauseof the following standard result:Proposition 11. � has the transfer property, i.e. it is a bisimulation relation,i.e. for all t � t0 and t a! u there is a t0 a! u0 with u � u0 (and vice versa).Proof. Check this for each equation, then deal with the general case by usingcongruence property of � and structural induction over terms, transitivity of� and induction over the number of equational replacements needed to relate tand t0. Observe that IsNil is compatible with �. �Proposition 12. t k) u i� t k! u0 for some u0 � u.The reachability problem solved by Mayr actually coincides with \reacha-bility modulo �" or \reachability through �)". Our tree automata method candeal with this, as we now show.5.1 Structural equivalence and regularity(A:), (Ck) and (Ak) are the associativity-commutativity axioms satis�ed by :and k. We call them the permutative axioms and write t =P u when t and u arepermutatively equivalent.(N1) to (N4) are the axioms de�ning 0 as the neutral element of : and k. Wecall them the simpli�cation axioms and write t & u when u is a simpli�cationof t, i.e. u can be obtained by applying the simpli�cation axioms from left toright at some positions in t. Note that& is a (well-founded) partial ordering. Wewrite. for (&)�1. The simpli�cation normal form of t, written t#, is the uniqueu one obtains by simplifying t as much as possible (no permutation allowed).Such axioms are classical in rewriting and have been extensively studied [BN98].� coincide with (=P [ & [ .)�. Now, because the permutative axioms com-mute with the simpli�cation axioms, we havet � t0 i� t& u =P u0 . t0 for some u; u0 i� t# =P t0#: (2)Lemma 13. For any t, the set [t]=P def= fu j t =P ug is a regular tree language,and an automaton for [t]=P needs only have m:(m=2)! states if jtj = m.Note that for a regular L, [L]=P (and [L]�) are not necessarily regular.The simpli�cation axioms do not have the nice property that they only allow�nitely many combinations, but they behave better w.r.t. regularity. Write [L]&for fu j t& u for some t 2 Lg, [L]. for fu j u& t for some t 2 Lg, and [L]# forft# j t 2 Lg.



Lemma 14. For any regular L, the sets [L]&, [L]., and [L]# are regular treelanguages. From an automaton A recognizing L, we can build automata for thesethree languages in polynomial time.Corollary 15. \Boundedness modulo �" of the reachability set is decidable inpolynomial-time.Proof. Because the permutative axioms only allow �nitely many variants of anygiven term, Post�(L) contains a �nite number of non-� processes i� [Post�(L)]#is �nite. �We can also combine (2) and lemmas 13 and 14 and haveProposition 16. For any t, the set [t]� is a regular tree language, and an au-tomaton for [t]� needs only have m:(m=2)! states if jtj = m.Now it is easy to prove decidability of the reachability problem modulo �: t �) ui� Post�(t)\ [u]� 6= ?. Recall that [u]� and Post�(t) are regular tree-languagesone can build e�ectively. Hence it is decidable whether they have a non-emptyintersection.This gives us a simple algorithm using exponential time (because of the sizeof [u]�). Actually we can have a better result 2:Theorem 17. The reachability problem in PA�, \given t and u, do we havet �) u ?", is NP-complete.Proof. NP-hardness of reachability for BPP's is proved in [Esp97] and the proofidea can be reused in our framework (see long version).NP-easiness is straightforward in the automata framework. We have t �) u i�t �! u0 for some u0 s.t. u0# =P u#. Write u00 for u0# and note that ju00j � juj.A simple NP algorithm is to compute u#, then guess non-deterministically apermutation u00, then build automata A1 for [u00]& and A2 for Post�(t). Theseautomata have polynomial-size. There remains to checks whether A1 and A2have a non-empty intersection to know whether the required u0 exists. �6 Model-checking PA processesIn this section we show a simple approach to the model-checking problem whichis an immediate application of our main regularity theorems. We do not con-sider the structural equivalence � until section 6.3, where we show that thedecidability results are a simple consequence of our previous results.2 First proved in [May97c]



6.1 Model-checking in EPAWe consider a set Prop = fP1; P2; : : :g of atomic propositions. For P 2 Prop,Let Mod (P ) denotes the set of PA processes for which P holds. We only con-sider propositions P such that Mod(P ) is a regular tree-language. Thus P couldbe \t can make an a-labeled step right now", \there is at least two occurencesofX inside t", \there is exactly one occurence ofX in a non-frozen position", : : :The logic EF has the following syntax:' ::= P j :' j ' ^ '0 j EX' j EF'and semanticst j= P def, t 2Mod (P );t j= :' def, t 6j= ';t j= ' ^ '0 def, t j= ' and t j= '0; t j= EX' def, t0 j= ' for some t! t0;t j= EF' def, t0 j= ' for some t �! t0:Thus EX' reads \it is possible to reach in one step a state s.t. '" and EF' reads\it is possible to reach (via some sequence of steps) a state s.t. '".De�nition 18. The model-checking problem for EF over PA has as inputs: agiven �, a given t in EPA, a given ' in EF. The answer is yes i� t j= '.We now extend the de�nition of Mod to the whole of EF: Mod (') def= ft 2 EPA jt j= 'g, we haveMod (:') = EPA �Mod (') Mod (EX') = Pre+(Mod (')Mod(' ^ '0) = Mod (') \Mod('0) Mod (EF') = Pre�(Mod (') (3)Theorem 19. (1) For any EF formula ', Mod (') is a regular tree language.(2) If we are given tree-automata AP 's recognizing the regular sets Mod(P ), thena tree-automaton A' recognizing Mod (') can be built e�ectively.This gives us a decision procedure for the model-checking problem: build anautomaton for Mod(') and check whether it accepts t. Observe that computinga representation of Mod (') is more general than just telling whether a givent belongs to it. Observe also that our results allow model-checking approchesbased on combinations of forward and backward methods (while Theorem 19only relies on the standard backward approach.)The above procedure is non-elementary since every nesting level of nega-tions potentially induces an exponential blowup. Actually, negations in ' can bepushed towards the leaves and only stop at the EF's, so that really the tower ofexponentials depend on the maximal number of alternations between negationsand EF's in '. The procedure described in [May97b] is non-elementary and todaythe known lower bound is PSPACE-hard.



6.2 Model-checking with constraintsWe can also use the constraints introduced in section 4 to de�ne an extended EFlogic where we now allow all hCi' formulas for decomposable C. The meaning isgiven byMod (hCi') def= Pre�[C](Mod(')). This is quite general and immediatelyinclude the extensions proposed in [May97b].6.3 Model-checking modulo �The model-checking problem solved in [May97b] considers the EF logic overPA�.In this framework, the semantics of EF-formulas is de�ned over equivalenceclasses, or equivalently, using the a) relation and only considering atomic propo-sitions P s.t. Mod (P ) is closed under �.But if the Mod(P )'s are closed under �, then t j= ' in PA i� t j= ' inPA� (a consequence of Proposition refprop-equiv-transfer), so that our earliertree-automata algorithm can be used to solve the model-checking problem forPA�. We can also easily allow constraints like in the previous section.ConclusionIn this paper we showed how tree-automata techniques are a powerful tool for theanalysis of the PA process algebra. Our main results are two general RegularityTheorems with numerous immediate applications, including model-checking ofPA with an extended EF logic.The tree-automata viewpoint has many advantages. It gives simpler and moregeneral proofs. It helps understand why some problems can be solved in P-time,some others in NP-time, etc. It is quite versatile and we believe that manyvariants of PA can be attacked with the same approach.We certainly did not list all possible applications of the tree-automata ap-proach for veri�cation problems in PA. Future work should aim at better under-standing which problems can bene�t from our TA viewpoint and techniques.Acknowledgments We thank H. Comon and R. Mayr for their numerous sugges-tions, remarks and questions about this work.References[BBK87] J. C. M. Baeten, J. A. Bergstra, and J.W. Klop. Decidability of bisimulationequivalence for processes generating context-free languages. In Proc. Paral-lel Architectures and Languages Europe (PARLE'87), Eindhoven, NL, June1987, vol. II: Parallel Languages, volume 259 of Lecture Notes in ComputerScience, pages 94{111. Springer-Verlag, 1987.
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A String�rewriting Characterization of Context�freeGraphsHugues Calbrix1 and Teodor Knapik21 College Jean Lecanuet, BP 102476171 Rouen Cedex, Francee-mail: HugCalbrix@aol.com2 IREMIA, Université de la Réunion, BP 7151,97715 Saint Denis Messageries Cedex 9, Réunione-mail: knapik@univ�reunion.frAbstract. This paper introduces Thue speci�cations, an approach for string�rewriting de-scription of in�nite graphs. It is shown that strongly reduction�bounded and unitary reduction�bounded rational Thue speci�cations have the same expressive power and both characterizethe context�free graphs of Muller and Schupp. The problem of strong reduction�boundednessfor rational Thue speci�cations is shown to be undecidable but the class of unitary reduction�bounded rational Thue speci�cations, that is a proper subclass of strongly reduction�boundedrational Thue speci�cations, is shown to be recursive.Keywords: string�rewriting, in�nite graphs, automata.1 IntroductionSince countable graphs or, more precisely, transition systems can model anysoftware or digital hardware system, the study of in�nite graphs is, in authorsopinion, an important task. Obviously, dealing with in�nite graphs requires a�nite description. With this aim in view, several formalisms have arisen in graphrewriting [8]. In this paper another approach is introduced. The idea comesfrom the categorist's way of expressing equations between words (of the monoidgenerated by the arrows of a category) by means of commutative diagrams.1By orienting them, equations between words are turned into string�rewriterules. String rewriting systems were introduced early in this century by AxelThue [14] in his investigations about the word problem and are also knownas semi�Thue systems. Later, semi�Thue systems became useful in formal lan-guages theory (see [12] for an overview) and, as pointed out in this paper, arealso of interest as �nite descriptions of in�nite graphs. Other approaches relat-ing semi�Thue systems to in�nite graphs may be found in [13] and [3]. In thelatter paper, the class of context�free graphs is characterized by means of pre�xrewriting using labeled rewrite rules.The link between in�nite graphs and semi�Thue systems introduced in thispaper raises the following question. Which classes of graphs may be describedby semi�Thue systems ? As a �rst element of the answer, a string�rewritingcharacterization of context�free graphs of Muller and Schupp [9] is providedas follows. Sect. 2 is devoted to basic de�nitions. Thue speci�cations and their1 The idea underlying the de�nition of the Cayley graph associated to a group presentationleads to a similar result.



2graphs are de�ned in Sect. 3. Two classes of Thue speci�cations are describedin Sect. 4 and the main result is established in Sect. 5. In Sect. 6 the authorsinvestigate whether these classes are recursive. Several conclusions close thepaper.2 PreliminariesAssuming a smattering of string�rewriting and formal languages several basicde�nitions and facts are reminded in this section. An introductory material onabove topics may be found in e.g. [2] and [11].Words Given a �nite set A called alphabet, the elements of which are calledletters, A� stands for the free monoid over A. The elements of A� are all wordsover A, including the empty word, written ". A subset of A� is a language overA. Each word u is mapped to its length, written juj via the unique monoidhomomorphism from A� onto (IN; 0;+) that maps each letter of A to 1. Whenu = xy for some words x and y then y is called a su�x of u. The set ofsu�xes of u is written su�(u). This notation is extended to sets in the usualway: su�(L) = Su2L su�(u) for any language L.Semi-Thue systems A semi�Thue system S (an sts for short) over A is asubset of A� �A�. A pair (l; r) of S is called (rewrite) rule, the word l (resp. r)is its lefthand (resp. righthand) side. As any binary relation, S has its domain(resp.range) written Dom(S) (resp.Ran(S)). Throughout this paper, only �nitesemi�Thue systems are considered.The single-step reduction relation induced by S on A�, is the binary relation!S = f(xly; xry) j x; y 2 A�; (l; r) 2 Sg. A word u reduces into a word v,written u!�S v, if there exist words u0; : : : uk such that u0 = u, uk = v andui!S ui+1 for each i = 0; : : : ; k � 1. The integer k is then the length of thereduction under consideration.A word v is irreducible with respect to (w.r.t. for short) S when v does notbelong to Dom(!S). Otherwise v is reducible w.r.t. S. It is easy to see that theset of all irreducible words w.r.t.S, written Irr(S), is rational whenever Dom(S)is, since Dom(!S) = A�(Dom(S))A�. A word v is a normal form of a word u,when v is irreducible and u!�S v.Graphs Given an alphabet A, a simple directed edge�labeled graph G over Ais a set of edges, viz a subset of D �A�D where D is an arbitrary set. Givend; d0 2 D, an edge from d to d0 labeled by a 2 A is written d a! d0. A (�nite) pathin G from some d 2 D to some d0 2 D is a sequence of edges of the followingform: d0 a1! d1; : : : ; dn�1 an! dn, such that d0 = d and dn = d0.For the purpose of this paper, isolated vertices need not to be considered.Moreover, the interests lies basically in graphs, the vertices of which are allaccessible from some distinguished vertex. Thus, a graph G � D�A�D is saidto be rooted on a vertex e 2 D if there exists a path from e to each vertex of G.The following assumption is made for the sequel. Whenever in a de�nition of agraph a vertex e is distinguished as root, then the maximal subgraph rooted one is understood.



3Pushdown Machines and Context-free Graphs An important class ofgraphs with decidable monadic second�order theory is characterized in [9]. Thegraphs of this class are called context�free by Muller and Schupp and may bede�ned by means of pushdown machines.A pushdown machine over A (a pdm for short) is a triple P = (Q;Z; T )where Q is the set of states, Z is the stack alphabet and T is a �nite subset ofA [ f"g � Q � Z � Z� � Q, called the set of transition rules. A is the inputalphabet. A pdm P is realtime when T is a �nite subset of A�Q�Z�Z��Q.An internal con�guration of a pdm P is a pair (q; h) 2 Q � Z�. To anypdm P together with an internal con�guration �, one may associate an edge-labeled oriented graph G(P; �) de�ned as follows. The vertices of the graph areall internal con�gurations accessible from the con�guration �. The latter one isthe root of the graph. There is an edge labeled by a 2 A [ f"g from (q1; h1) to(q2; h2) whenever there exists a letter z 2 Z and two words g1; g2 2 Z� suchthat h1 = g1z, h2 = g1g2 and (a; q1; z; g2; q2) 2 T .It may be useful to note that the context�free graphs are exactly all equa-tional (in the sense of Courcelle [5]) graphs of �nite degree. The equationalgraphs are also called regular by Caucal [3]. Finally, since any pdm over A isa realtime pdm over A [ f"g, realtime pdm's are as powerful as pdm's for de-scribing graphs. In other words, the graphs of realtime pdm's form a completeset of representatives of context�free graphs.3 Thue Speci�cations and Their GraphsThe key ideas of this paper are introduced in the present section.De�nition 3.1. An (oriented) Thue speci�cation (an ots for short) over analphabet A is a triple hS; L; ui where S is a semi�Thue system over A, L is asubset of Irr(S) and u is a word of L. An ots is rational if L is so.The reader may notice that, according to the de�nition below, the models oforiented Thue speci�cations have a �avour of the Cayley graphs.De�nition 3.2. The model of an ots hS; L; ui is the graph, written G(S; L; u),de�ned as follows. The vertices of the graph are all words of L that are accessiblevia edges from the root u of the graph. The edges of G(S; L; u) are labeled bythe letters of A. There is an edge labeled by a from w to v whenever v is anormal form of wa.It should be noted that termination of S is not required in this de�nition. Thusa vertex w of G(S; L; u) has no outgoing edge labeled by a if and only if wa hasno normal form or no normal form of wa belong to L.Example 3.3. Over the alphabet A1 = fa; bg, consider a single-rule sts S1 =f(ba; ab)g. The set of irreducible words is a�b�. The graph G(S1; Irr(S1); ") (seeFig. 1) is isomorphic to ! � !.
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Fig. 1. Graph G(S1; Irr(S1); ")Example 3.4. Over the alphabet A2 = fa; b; a; bg consider the following sts:S2 = f(aa; "); (aa; "), (bb; "); (bb; ")g. The set of irreducible words w.r.t.S2 is theset of all reduced words representing the elements of the free group generatedby fa; bg. The graph2 G(S2; Irr(S2); ") (see Fig. 2) is isomorphic to the Cayleygraph of the two-generator free group.4 Two equivalent conditionsThis section introduces two notions that help characterizing Thue speci�cationsthat generate context�free graphs.An sts S over A is strongly reduction�bounded on a subset L of Irr(S) whenthere exists a positive integer k such that for each word u of L and each a in A,the length of any reduction of ua is less than k. The integer k is then called areduction bound of S (on L).An sts S is unitary reduction�bounded on a subset L of Irr(S) when it isstrongly reduction�bounded on L and 1 is a reduction bound of S.2 For each edge, there is the opposite edge (not depicted) corresponding to the formal inverseof the label.
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Fig. 2. Graph G(S2; Irr(S2); ")A Thue speci�cation hS; L; ui is strongly reduction�bounded (resp. unitaryreduction�bounded) is S is strongly reduction�bounded (resp.unitary reduction�bounded) on L.The system S1 from Example 3.3 is not strongly reduction�bounded onIrr(S). Indeed, the word bn is irreducible and n is the length of the reduc-tion of the word bna into its normal form abn. Since n is an arbitrary positiveinteger, S1 has no reduction bound.On the contrary, the sts S2 from Example 3.4 is unitary reduction�boundedon Irr(S2). As a matter of fact, given a nonempty word w = uc of Irr(S2) withc 2 A2, for any d 2 A2 the normal form of wd is u if c = d or d = c, and wdotherwise. In both cases the length of the corresponding reduction is not greaterthan 1. It may be observed that G(S2; Irr(S2); ") is a tree.The next proposition and the subsequent comment establish inclusions be-tween some familiar classes of semi�Thue systems (see e.g. [2] and [12] for def-



6initions of these classes) on one hand, and strongly (resp. unitary) reduction�bounded semi�Thue systems on the other hand.Proposition 4.1. For all �nite semi�Thue systems S the following holds.1. If S is special then S is unitary reduction�bounded.2. If Ran(S) � Irr(S) and no word of Ran(S) is strictly overlapped on left bya word of Dom(S) then S is unitary reduction�bounded.3. If S is terminating left-basic then S is strongly reduction�bounded.Proof. Both (1) and (2) are obvious. Let then S be a �nite terminating left-basicsemi�Thue system over A. Let w 2 Irr(S) and a 2 A. Consider the longest su�xv of w such that va 2 Dom(S). Observe that, since S is left-basic, each reductionof wa concerns only va. Let therefore k be the maximum of the lengths of allreductions of the words of Dom(S). Obviously, k is a reduction bound of S. 2It may be noted that no converse of statements (1), (2) or (3) of the aboveproposition holds. Indeed, the semi�Thue system faa ! ag over fag is unitaryreduction�bounded but is not special; a is strictly overlapped on left by aahence the system is not left-basic. On the other hand, Proposition 4.1 cannot bestrengthened to the case of monadic semi�Thue systems. The semi�Thue systemfab! bg over fa; bg is monadic without being strongly reduction�bounded.The following result demonstrates that the strongly reduction�bounded ra-tional ots and unitary reduction�bounded rational ots have the same expressivepower for describing graphs.Proposition 4.2. Given any strongly reduction�bounded rational ots hS; R; ui,one may construct a unitary reduction�bounded rational ots hS 0; R0; u0i such thatthe graphs G(S; R; u) and G(S 0; R0; u0) are isomorphic.Proof. Let k be a reduction bound of S and m = maxl2Dom(S) jlj be the maxi-mum length of the lefthand sides of S. Consider any reduction of length n of aword wa such that w 2 R and a 2 A. If jwaj > mn, then only a strict su�x ofwa is reduced. The length of the reduced su�x cannot exceed mn. Since n � k,for any reduction, the length of the reduced su�x cannot exceed mk.Let S 0 = S 0# [ S 0A be an sts over A [ f#g, where # =2 A, de�ned as follows:S 0# = f(#wa;#v) j a 2 A; w 2 R ; v 2 Irr(S); wa �!S v and jwaj < mkg;S 0A = f(wa; v) j a 2 A; w 2 su�(R) ; v 2 Irr(S); wa �!S v and jwaj = mkgand let R0 = #R.Unit reduction�boundedness of S 0 on R0 is established as follows. Let w 2 R0and a 2 A0. If a = # then wa =2 R0. Assume then that a 2 A. Observe �rstthat, if wa!S0# x for some x 2 (A0)� then x 2 Irr(S 0). Assume therefore bycontradiction that there is a reduction wa!S0A x!S0 y for some x; y 2 (A0)�.Let w1 be the longest pre�x of w this reduction is not concerned with and letw2 be the remaining su�x, viz w = w1w2. Now, either w2 2 su�(R) (when



7x!S0A y) and jw2j > mk or w2 = #w02 (when x!S0# y) for some w02 2 R suchthat jw02j > mk. Hence, there exists a reduction of w2a (resp. w02a) w.r.t. S thelength of which exceeds k. This contradicts the assumption that k is a reductionbound of S on R.Observe that for all w 2 R, v 2 Irr(S) and a 2 A, v is a normal form of waw.r.t.S if and only if #v is a normal form of #wa w.r.t.S 0. Hence, the mappingw 7! #w restricted to vertices of G(S; R; u) extends to a graph isomorphismbetween G(S; R; u) and G(S 0; R0; u0) where u0 = #u. 25 Main resultProposition 4.2 together with the statements of this section lead to the mainresult of this paper.Proposition 5.1. Given any realtime pdm P over A and an internal con�g-uration � of P, one may construct a unitary reduction�bounded rational otshS; R; ui such that the graphs G(P; �) and G(S; R; u) are isomorphic.Proof. Let P = (Q;Z; T ) be a pdm over A and let � = (q0; h0) be an internalcon�guration of P. Without loss of generality A, Q and Z may be assumedpairwise disjoint. Set A0 = A [Q [ Z. De�ne an sts S over A0 as followsS = f(zqb; hq0) j (b; q; z; h; q0) 2 Tgand let u = h0q0. It is well known that the pushdown store language of a pdmis rational. The following language is therefore rational:R = fhq j (q; h) is an internal con�guration of P accessible from �g :Moreover R � Irr(S).Observe that S is unitary reduction�bounded on R. Indeed, let v 2 R anda 2 A0. For va to be reducible, there must exist w 2 Irr(S) and a rewriterule (zqa; hq0) such that v = wzqa. Consequently, va!S whq0. But no word ofDom(S) may overlap hq0 on left. Since w is irreducible, so is whq0.The fact that is G(P; �) and G(S; R; u) are isomorphic is readily establishedby induction on the distance of vertex from the root, using the following one toone mapping of the vertices of G(P; �) onto the vertices of G(S; R; u): (q; h) 7!hq. 2In order to establish the converse, the following lemma is useful.Lemma 5.2. Given a pdm P = (Q;Z; T ) over A, an internal con�guration �of P and a rational subset R of Z�Q, one may construct a pdm P 0 togetherwith �0 such that the graph G(P 0; �0) is isomorphic to the restriction of G(P; �),rooted on �, to the following set of vertices: f(q; h) 2 Q�Z� j hq 2 Rg. MoreoverP 0 is realtime if P is so.



8Proof. Let A = (D; d0; �; F ) be a �nite deterministic and complete automatonover A that accepts R. Here D is the set of states of A , d0 2 D is the initialstate, �:D � A ! D is the transition function and F � D is the set of �nalstates of A .A is the input alphabet ofP 0 and the stack alphabet is Z 0 = D�Z. Considera map �:D � Z� ! (D � Z)� de�ned as follows�(d; ") = "; for all d 2 D,�(d; zg) = hd; zi�(�(d; z); g); for all hd; zi 2 D � Z and g 2 Z�.Let �0 = (d0; �(d0; h0)). On the whole P 0 = (Q;Z 0; T 0) whereT 0 = f(a; q; hd; zi; �(d; h); q0) j (a; q; z; h; q0) 2 T; d 2 D; �(d; zq) 2 F;�(d; hq0) 2 Fg :Observe that an edge (q; gz) a!(q0; gh) is in the restriction of G(P; �) to f(q; h) jhq 2 Rg rooted on � if and only if the vertex (q; gz) is in this restriction and�(d0; gz) = Hhd; zi for some H 2 (Z 0)� and some d 2 D;�(d; zq) 2 F; �(d; hq0) 2 F and(a; q; z; h; q0) 2 T :Hence equivalently, there is an edge (q; �(d0; g)hd; zi) a!(q0; �(d0; g)�(d; h)) inG(P 0; �0). Since �0 = (d0; �(d0; h0)), the result follows by induction from theabove. 2The converse of Proposition 5.1 is stated in the following.Proposition 5.3. Given any unitary reduction�bounded rational ots hS; R; uiover A, one may construct a realtime pdm P and an internal con�guration � ofP such that the graphs G(S; R; u) and G(P; �) are isomorphic.Proof. A pushdown machine P 0 = (Q0; Z 0; T 0) is de�ned �rst together with aninternal con�guration �0 so that G(P 0; �0) is isomorphic to G(S; Irr(S); u). Setm = maxl2Dom(S) jlj. De�ne a pdm P 0 as follows. The set Q of the states isindexed by irreducible words, the length of which is strictly less than m vizQ = fqw j w 2 Irr(S) and jwj < mg. The stack alphabet Z 0 = Z 00 [ fz0g hasthe bottom symbol z0 =2 Z 00 and Z 00 is an arbitrary set that is in one to onecorrespondence f with the set of irreducible words of length m,f : fw 2 Irr(S) j jwj = mg ! Z 00 :The set T 0 of transition rules of P 0 is constructed as follows.� For any a 2 A, any qw 2 Q and any z 2 Z 00, one has1. (a; qw; z; z; qwa) 2 T when f�1(z)wa 2 Irr(S) and jwaj < m,2. (a; qw; z; zf(wa); q") 2 T when f�1(z)wa 2 Irr(S) and jwaj = m,3. (a; qw; z; "; qvr) 2 T when f�1(z)wa = vl for some v 2 Irr(S) and (l; r) 2S such that jvrj < m,



94. (a; qw; z; f(x1) : : : f(xn); qy) 2 T when f�1(z)wa = vl for some v 2Irr(S) and (l; r) 2 S such that vr = x1 : : : xny, where x1; : : : ; xn; y 2Irr(S) are such that jx1j = � � � = jxnj = m and jyj < m.� For any a 2 A and any qw 2 Q, one has1. (a; qw; z0; z0; qwa) 2 T when wa 2 Irr(S) and jwaj < m,2. (a; qw; z0; z0f(wa); q") 2 T when wa 2 Irr(S) and jwaj = m,3. (a; qw; z0; z0; qvr) 2 T when wa = vl for some v 2 Irr(S) and (l; r) 2 Ssuch that jvrj < m,4. (a; qw; z0; z0f(x1) : : : f(xn); qy) 2 T when wa = vl for some v 2 Irr(S)and (l; r) 2 S such that vr = x1 : : : xny, where x1; : : : ; xn; y 2 Irr(S) aresuch that jx1j = � � � = jxnj = m and jyj < m.De�ne now the internal con�guration �0 of P 0 corresponding to the root of thegraph G(S; Irr(S); u) as follows. If juj < m, set �0 = (qu; z0). Otherwise one hasu = x1 : : : xny for some x1; : : : ; xn; y 2 Irr(S) such that jx1j = � � � = jxnj = mand jyj < m. Set then �0 = (qy; z0f(x1) : : : f(xn)).It is easy to check that the one to one mapping (qw; z0h) 7! f�1(h)w ofthe vertices of G(P 0; �0) onto the vertices of G(S; Irr(S); u) extends to a graphisomorphism. Moreover P 0 is realtime.Obviously, G(S; R; u) is a restriction (on vertices) of G(S; Irr(S); u) to Rrooted on u. De�ne CR0 = f(qw; z0h) j h 2 (Z 00)�; qw 2 Q0; f(h)w 2 Rgand R0 = fz0hqw j (qw; z0h) 2 CR0g. Observe that R0 is rational. Moreover,the restriction of G(P 0; �0) to CR0 rooted on �0 is isomorphic to G(S; R; u). Now,according Lemma 5.2, one may construct a pdmP and an internal con�guration� of P such that the graph G(P; �) is isomorphic to G(S; R; u). 2In view of the results established so far, it is straightforward to concludethis section as follows. Both strongly reduction�bounded and unitary reduction�bounded rational Thue speci�cations characterize the class context�free graphs.6 Decision ProblemsThe criterion of strong reduction�boundedness de�nes a class of Thue speci�-cations, the graphs of which have decidable monadic second�order theory dueto the result of Muller and Schupp [9]. It may be asked whether the class ofstrongly reduction�bounded rational ots is recursive. The answer is positive forthe subclass of unitary reduction�bounded rational ots.Proposition 6.1. There is an algorithm to solve the following problem.Instance: A �nite semi�Thue system S and a rational subset R ofIrr(S).Question: Is S unitary reduction�bounded on R ?Proof. Let S be a �nite sts over A. For each rule (r; l) and each a 2 A setR(l;r);a = ((Ra)l�1)r. Observe that[(l;r)2Sa2A R(l;r);a = fv j 9u 2 R;9 a 2 A s.t. ua!S vg :



10Thus, S is unitary reduction�bounded if and only if R(l;r);a � Irr(S) for each(l; r) 2 S and a 2 A. Since both S and A are �nite, there is a �nite number ofinclusions to test, all between rational languages. 2It is not surprising that the above result may be extended as follows.Proposition 6.1bis. There is an algorithm to solve the following problem.Instance: A �nite semi�Thue system S, a rational subset R of Irr(S)and a positive integer k.Question: Is k a reduction bound of S on R ?Proof. The proof is similar to the one of Proposition 6.1. One has to test theinclusion in Irr(S) of the languages of the form ((� � � (((Ra)l�11 )r1) : : : l�1k )rk) foreach sequence (l1; r1) : : : (lk; rk) over S of length k and each a 2 A. 2As established above, one may decide whether an integer is a reductionbound of a semi�Thue system. However the decision procedure sketched in theproof does not allow, in general, to establish the existence of a reduction bound.The problem, whether a reduction bound exists, may be addressed in the contextof the strong boundedness problem for Turing machines.As de�ned in [10], a Turing machine T is strongly bounded if there existsan integer k such that, for each �nite con�guration C, T halts after at mostk steps when starting in con�guration C. The strong boundedness problem forTuring machines is the following decision problem.Instance: A single�tape Turing machine T .Question: Is T strongly bounded ?It is an easy exercise to e�ectively encode an arbitrary deterministic single�tape Turing machine T into a semi�Thue system S over an appropriate alphabetA and to de�ne an e�ective encoding � of the con�gurations of T into wordsof Irr(S)A that satisfy the following property.Starting from C, T halts after k steps if and only if any reduction of�(C) into an irreducible word is of length k.Now, the strong boundedness problem is undecidable for 2�symbol single�tape Turing machines (cf. Proposition 14 of [10]). This gives the following un-decidability result.Proposition 6.2. There exists a rational set R for which the following problemis undecidable.Instance: A �nite semi�Thue system S.Question: Is S strongly reduction�bounded on R ?7 ConclusionThue speci�cations and their graphs have been introduced and two classes ofThue speci�cations have been de�ned: strongly reduction�bounded and unitary



11reduction�bounded ots. It has been established that both unitary and stronglyreduction�bounded rational Thue speci�cations characterize the context�freegraphs. Moreover, the membership problem for the class of strongly reduction�bounded rational ots has been shown to be undecidable whereas, for its propersubclass of unitary reduction�bounded rational ots, this problem has been es-tablished as being decidable.An important property of context�free graphs is the decidability of theirmonadic second�order theory. However the class of context�free graphs is not theonly well�known class of graphs with decidable monadic second�order theory.More general classes of such graphs are described in e.g. [1,4,6,7]. How Thuespeci�cations are linked via their graphs to these classes, is considered for furtherinvestigations.References1. K. Barthelmann. On equational simple graphs. Technical Report 9/97, Johannes Guten-berg Universität, Mainz, 1997.2. R. V. Book and F. Otto. String-Rewriting Systems. Texts and Monographs in ComputerScience. Springer-Verlag, 1993.3. D. Caucal. On the regular structure of pre�x rewriting. Theoretical Comput. Sci., 106:61�86, 1992.4. D. Caucal. On in�nite transition graphs having a decidable monadic second-order theory.In F. M. auf der Heide and B. Monien, editors, 23th International Colloquium on AutomataLanguages and Programming, LNCS 1099, pages 194�205, 1996.5. B. Courcelle. The monadic second�order logic of graphs, II: In�nite graphs of boundedwidth. Mathematical System Theory, 21:187�221, 1989.6. B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van Leeuwen,editor, Formal Models and Semantics, volume B of Handbook of Theoretical ComputerScience, pages 193�242. Elsevier, 1990.7. B. Courcelle. The monadic second-order theory of graphs IX: Machines and their be-haviours. Theoretical Comput. Sci., 151:125�162, 1995.8. J. Engelfriet. Contex�free graph grammars. In G. Rozenberg and A. Salomaa, editors,Beyond Words, volume 3 of Handbook of Formal Languages, pages 125�213. Springer-Verlag, 1997.9. D. E. Muller and P. E. Schupp. The theory of ends, pushdown automata and second-orderlogic. Theoretical Comput. Sci., 37:51�75, 1985.10. F. Otto. On the property of preserving regularity for string-rewriting systems. InH. Comon, editor, Rewriting Techniques and Applications, LNCS 1232, pages 83�97, 1987.11. G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, volume 1.Springer-Verlag, 1997.12. G. Sénizergues. Formal languages and word rewriting. In Term Rewriting: French SpringSchool of Theoretical Computer Science, LNCS 909, pages 75�94, Font-Romeu, May 1993.13. C. C. Squier, F. Otto, and Y. Kobayashi. A �niteness condition for rewriting systems.Theoretical Comput. Sci., 131(2):271�294, 1994.14. A. Thue. Probleme über veränderungen von zeichenreihen nach gegebenen regeln. Skr.Vid. Kristiania, I Mat. Natuv. Klasse, 10:34 pp, 1914.



Reachability is Decidable for GroundAC Rewrite SystemsRichard MayrInstitut f�ur InformatikTechnische Universit�at M�unchenArcisstr. 21, D-80290 M�unchenGermanymayrri@informatik.tu-muenchen.de Micha�el RusinowitchLORIA and INRIA-Lorraine615, rue du Jardin Botanique, BP 10154602 Villers-L�es-Nancy CEDEXFrancerusi@loria.frAbstractThe reachability problem for ground associative-commutative (AC)rewrite systems is decidable. We show that ground AC rewrite sys-tems are equivalent to Process Rewrite Systems (PRS) for which reach-ability is decidable [4]. However, the decidability proofs for PRS arecumbersome and thus we present a simpler and more readable proofin the framework of ground AC rewrite systems. Moreover, we showdecidability of reachability of states with certain properties and de-cidability of the boundedness problem.1 IntroductionGround AC systems are obtained by combining ground rewrite systems (i.e.rewrite systems without substitution) with the associative and commutativelaws for a symbol denoted by +. These laws are applied as symmetric rewriterules, i.e. from right to left and vice-versa.The reachability problem for ground AC systems has already been consideredby A. Deruyver and R. Gilleron in [2] who proved that it is decidable undersome restrictions: the + symbols can occur only at the root of any side of arule; if + occurs at the root of the right-hand side then it has to occur at theroot of the left-hand side too. This last condition forbids introducing new +symbols in a term. 1



We show that ground AC rewrite systems are equivalent to Process RewriteSystems (PRS) that were introduced by R. Mayr [4] as an extension of Petrinets with subroutines. This observation was surprising at �rst, since thetwo formalisms have di�erent origins. Ground AC systems were de�nedas an extension of ground rewrite systems by associative and commutativeoperators like `+' or `�'. PRS were introduced as a process model that extendsPetri nets by subroutines.It has been shown in [4] that reachability for PRS is decidable. Here, byfollowing a similar technique, we present a simpler and more readable proof ofthis result in the framework of ground AC rewrite systems. Previous knowndecidability results about ground AC systems (with several AC symbols)concern the word problem (symmetric reachability) [5] and the uni�abilityproblem [6]. The latter was also obtained by splitting the rewrite systems inorder to get homogeneous subsystems.We also consider the problem if there is a reachable state that satis�es certainproperties that are described by state formulae. We show that this \reachableproperty problem" is decidable for ground AC systems. Finally, we show thatthe problems of termination and boundedness are decidable, too.2 Ground AC Systems vs. PRSGround AC rewrite systems are de�ned as ground rewrite systems (i.e. rewritesystems without substitution) that operate on the set of terms T (F ) over asignature F which contains an associative and commutative operator +. Notethat F can contain function symbols with any arity, like f(x1; : : : ; xk). Fora detailed survey on term rewriting the reader may consult [1].Process Rewrite Systems (PRS) [4] are de�ned as pre�x-rewrite systemsthat operate on process terms. These process terms are built from atomicprocesses by the operators `:' for sequential- and `k' for parallel composition.The operator for sequential composition is associative and the operator forparallel composition is associative and commutative.Now we show that the two formalisms are equivalent. For both PRS andground AC systems it is possible to construct equivalent systems where eachrule contains only one operator. (These new systems can simulate the be-havior of the original systems modulo a uniformly bounded number of silentactions.) We show the equivalence only for systems where rules contain onlyone operator. Monadic ground AC systems are ground AC systems whereall function symbols have arity one. In a �rst step we show that PRS andmonadic ground AC systems are equivalent.2



From PRS to monadic ground AC: For each symbol X in the PRS we in-troduce a 1-ary function symbol X(: : :). We use a special symbol � for theempty term. For every PRS-rule there is a corresponding ground AC rule:PRS Ground ACX:Y ! Z Y (X(�))! Z(�)X ! Y:Z X(�)! Z(Y (�))X ! Y X(�)! Y (�)X ! Y kZ X(�)! Y (�) + Z(�)XkY ! Z X(�) + Y (�)! Z(�)From ground AC to PRS: For every function or constant symbol f in theground AC system we use a symbol f in the PRS. For every ground AC-rulethere is a corresponding PRS rule:Ground AC PRSf(c)! d c:f ! dc! f(d) c! d:fc! d c! dc! d+ e c! dkec+ d! e ckd! eThis shows that PRS and monadic ground AC rewrite systems are equivalent.In a second step we show that monadic ground AC and general ground ACare equivalent. One direction is trivial. Now we show how to encode a generalground AC system in a monadic ground AC system. Let f be a k-ary functionsymbol. Then we introduce k new 1-ary function symbols f1; : : : ; fk. In allrewrite rules we replace every term of the form f(c1; : : : ; ck) byf(f1(c1) + : : :+ fk(ck))This new system is monadic, by contains more than one operator in a rule.This can be transformed into an equivalent one (modulo silent actions) withonly one operator in each rule.Thus we have that Ground AC = monadic ground AC = PRS. In PRS therewrite rules are labeled with atomic actions, while this is not customarilydone in ground AC systems. However, it can done in ground AC systemsjust as well.3 Reachability for Ground AC SystemsWe consider �nite sets of ground rewrite rules �. For terms t1; t2 we de�nethat t1 �� t2 i� t1 can be transformed into t2 by applying the rules in �.The reachability problem is to decide if t1 �� t2 for given t1, t2 and �.3



3.1 Splitting the RulesLet � be a �nite set of rules on F . A term or a rule is homogeneous if itcontains at most one occurrence of a non-constant operator.Lemma 1 For every �nite ground AC system � a �nite set of homogeneousrules �0 can be e�ectively constructed such that for all terms t1; t2 2 T (F ),t1 �� t2 i� t1 ��0 t2Proof We derive �0 by applying to � the following abstraction rules asmuch as possible: Abstract 1: a! b ` ajp ! g; a[g]p! bwhere ajp is a maximal homogeneous non-constant strict subterm of the terma at a position p and g is a new constant.Abstract 2: a! b ` a! b[g]p; g ! bjpwhere bjp is a maximal homogeneous non-constant strict subterm of b at aposition p and g is a new constant.Abstract 3: a! b ` a! g; g ! bwhere a; b are homogeneous, non-constants, with di�erent root symbols andg is a new constant.The application of these transformations terminates since: Abstract 3 de-creases the number of rules with di�erent non-constant operators at the rootof each side; every application of Abstract 1 or Abstract 2 decrease the multi-set of depths of the rule sides and do not create rules that can be transformedby Abstract 3. Every rewrite step by � can be simulated by rewrite stepswith �0. The other direction follows from the fact that the symbols g arenew constants.3.2 Deciding Reachability by CompletionIn this section rules of the form c ! d where c and d are constants will becalled simple rules. The following completion algorithm adds simple rulesc! d to a set of rules R, whenever c �R d.4



Lemma 2 Let R1 and R2 be two homogeneous rewrite systems s.t. the sets ofoperators used in the rules of R1 and R2 are disjoint and R1 and R2 containthe same simple rules. Let R = R1 [ R2. If there is a pair of constants(u; v) s.t. u �R v and (u ! v) =2 R then there is a pair of constants (u0; v0)s.t. (u0 ! v0) =2 R, but u0 �R1 v0 or u0 �R2 v0.Proof Choose a pair of constants u0; v0 s.t. (u0 ! v0) =2 R, but u0 �! v0 where� is a sequence of rule applications of minimal length. More precisely thelength of � is minimal over the choice of u0, v0 and �. By our preconditionsthis must exist.We will assume that � must contain non-simple rules from both R1 and R2and derive a contradiction. W.r. we assume that the �rst non-simple rule in� is from R1. By our assumption there must be a non-simple rule from R2 in�. The �rst such rule must have the form u00 ! t, where u00 is a constant andt is not a constant, because the sets of operators in R1 and R2 are disjoint.The operator in t must disappear later, because the sequence � ends withthe constant v. This can only be done if the term t is rewritten to a constantlater in the sequence �. Thus there must a constant v00 and a subsequence�0 of � s.t. u00 �0! v00. This is a contradiction to the minimality of the lengthof �.Thus we have that the non-simple rules in � are either all from R1 or all fromR2. Since R1 and R2 contain the same simple rules we can assume that �contains only rules from R1 or only rules from R2. Thus we have u0 �R1 v0or u0 �R2 v0.Lemma 3 Let R1 and R2 be two homogeneous rewrite systems s.t.1. The sets of operators used in the rules of R1 and R2 are disjoint.2. The relations �R1 and �R2 are decidable.3. If one adds rules of the form u ! v to R1 or R2, where u and v areconstants, then the new relations �R01 and �R02 are also decidable.Let R = R1 [R2. Given two constants x; y, it is decidable whether x �R y.Proof To prove the lemma it is su�cient to give an algorithm for generatingall couples of constants u; v such that u �R v, and check if (x; y) is generated.First we add all rules in R1 of the form c! d, where c and d are constantsto R2 and vice versa. By the third precondition this does not change thedecidability. By precondition 1 we can apply Lemma 2. Thus if there is a5



pair of constants (u; v) which satis�es u �R v, but is not in R1 or R2, thenthere is another pair (u0; v0) that is also not in R1 or R2, but satis�es u0 �R1 v0or u0 �R2 v0. By precondition 2 this pair can be found. Then we add thispair u0 ! v0 to R1 and R2 and get R01 and R02. By precondition 3 this doesnot change the decidability. We repeat this procedure with the new R01 andR02 until no new pair can be added. It terminates, because there are only�nitely many di�erent constants in R. By Lemma 2 we have then added allpairs (u; v) s.t. u �R v. Let ~R1 and ~R2 be the �nal results of this process. Itthen holds that x �R y () (x! y) 2 ~R1 [ ~R2.Theorem 1 The reachability problem is decidable for ground rewrite systemswith an associative-commutative operator.Proof Consider an instance of the reachability problem for a set of rules �and terms t0; t. The question is if t0 �� t. We introduce two new constantsx; y and de�ne �0 := � [ fx ! t0; t ! yg. Thus we have t0 �� t ()x ��0 y. By Lemma 1 a system of homogeneous rules �00 can be constructeds.t. x ��0 y () x ��00 y. �00 can be partitioned into R1 and R2 s.t. R1are all the rules that contain the commutative operator + and R2 is therest. Thus the �rst precondition of Lemma 3 is satis�ed. The relation �R1corresponds to Petri net reachability, which is decidable [3]. The relation�R2 is the reachability relation for a normal ground rewrite system and isalso decidable [2]. Adding simple rules to R1 and R2 does not change this.Thus the other preconditions of Lemma 3 are satis�ed. Thus it can be usedto decide x ��00 y, which is equivalent to t0 �� t.Remark: Note that the algorithm of Lemma 3 uses only polynomially manyinstances of Petri net reachability, each of which is smaller than the input.The same techniques can be applied to show the decidability of the reach-ability problem for ground rewrite systems with arbitrarily many di�erentassociative and commutative operators.4 The Reachable Property ProblemHere we use the notations from [4], Section 6. The rewrite rules in � areassigned labels, which can be interpreted as atomic actions. These labelsthen form atomic propositions in state-formulae. For example let ai be alabel. The term t satis�es the state-formula ai (denoted t j= ai) if a rule withlabel ai can be applied to t. A general state-formula is a boolean combinationof atomic propositions. We give a method that decides the problem t0 j= 3�,6



i.e. the problem if there is a reachable state that satis�es the state formula�. It su�ces to consider the case where � is a1 ^ : : : ^ ak ^ :b1 ^ : : : ^ :bl.We will abbreviate :b1 ^ : : : ^ :bl by B, a1 ^ : : : ^ ak by A and Vi2I ai byAI. (A; = true). We also de�ne K = f1; : : : ; kg.We solve the problem for systems � in transitive normal form. To simplifythe problem we assume that rules of the form f(c1; : : : ; ck)! d do not carryany label. This is no restriction since every system can be transformed tosatisfy this condition in the following way: For every term f(c1; : : : ; ck) thatoccurs on the left side of a rule determine the set A of actions that are enabledby f(c1; : : : ; ck). Then add a new constant and e and the rule f(c1; : : : ; ck)!e. Then for every action a 2 A add a rule e a! e. Then transform the systeminto transitive normal form. This new system is equivalent to the old one asfar as the reachable property problem is concerned.For simplicity we also assume that there are only two non-constant symbols:+ and : where + is AC. (The generalization to arbitrary symbols is straight-forward.) We can assume w.r. that the initial state t0 is a constant t0, sinceotherwise we just add another rule c0 ! t0. �par (resp. �seq) contains allrules without `:' (resp. `+'). The rules in �par are called par-rules and therules in �seq are called seq-rules. Let C = fc1; : : : ; cmg be the set of constantsin the system. A monomial is a sum of constants. We denote by f	 the for-mula of LN stating that a monomial satis�es a formula 	. For instance fB istrue for monomials that are not reducible by rules with a label in fb1; : : : ; blg.Given a subset C 0 of C, we denote by hC0 the formula of LN stating that theset of constants in a monomial is C 0. For instance hfc1;c1;c3g(c1+ c1+ c3+ c3)evaluates to true. Terms will always be 
attened using associativity of +.Hence (a+ b) + c = a+ b+ c and the depth of this term is 1.The following result is a direct consequence of a result for Petri nets due toP. Jan�car [8]:Lemma 4 It is decidable whether c0 j= 3�, if � only contains par-rules.If � is one of the shortest sequences such that t0 �! t and t j= � there is nosubderivation of t0 �� t such that c �� t0 �� c0. Otherwise by replacingthis subderivation with c! c0 (since � is in transitive normal form) we canobtain a shorter string �0 such that t0 �0! t. Hence we can assume that bycommuting rules applications we can build another string � with the sameproperties as � which additionally has a special structure: � = �0�1 : : : �dwhere all rules applications corresponding to �i are applied at the same leveli of terms. 7



4.1 A special caseIn this section we solve the problem for the special case of k = 0. We computethe subset CN of all c 2 C such that c j= 3B. If no rule in B applies to cthen obviously c 2 CN . Otherwise let � be a shortest derivation from c to at such that t j= B.Using the same decomposition as above �0�1 is the maximal pre�x of � suchthat c �0�1! v and all intermediate terms between c and v (including v) are oflevel � 1.i. Let us assume �rst that these terms are (non trivial) sums of constants.Then v = U + U 0 where U;U 0 are possibly empty sums and:1. U j= B2. for all c0 2 U 0 we have c0 �� tc0 and tc0 j= BBy minimality of the derivation we can assume that c 62 U 0.ii. Now if the root symbol of v is `:' then either v is not reducible by a rulefrom B or one of its leaves is in CN and is di�erent from c by minimality.(recall that all rules have depth 1).More generally by minimality of � it will never contain a subderivation c0 ��s[c0] �� s[t0]. Otherwise pumping allows to �nd a shorter one. This showsalso that the depth of t is bounded by m = jCj.Hence a simple recursive algorithm solves the problem. Let Nreach(c; n)be true i� c rewrites to a term of depth n not reducible by rules from B.Nreach(c; 0) is easy to check, by Lemma 4, since � is in transitive normalform. We also introduce the auxiliary procedure Ncheck (c; C 0). Given c 2 Cand C 0 � C, Ncheck tests whether there exists a monomial v such thatc ��par v , v = U + U 0 and fB(U) ^ hC0(U 0) is true. Note that this test ise�ective thanks to the result of Jan�car [8].1 Nreach(c; n)2 for C 0 � C do3 if Ncheck (c; C 0) then4 if ^c02C0 Nreach(c0; n� 1) then true; exit5 for a; b 2 C do6 if c! a:b ^ (Nreach(a; n� 1) ^ Nreach(b; n� 1)) then true; exit7 Nreach(c; n) = falseBy computing fc 2 C;Nreach(c;m) = trueg we get the set CN .8



4.2 The general caseNow we study the general case. Let us analyze the structure of the term t1such that c0 �0�1! t1. Assume that the root symbol of t1 is + (the other case issimple). Hence the derivation contains only rules applications from �par. Weshall sort the constants in t1 according to the property3(AP^B) they satisfy,P ranging over the subsets of K = f1; : : : ; kg. Then t1 = U + �P2P(K)U 0Pwhere U;U 0P are possibly empty sums of constants and:1. U j= AI ^B2. for all c 2 U 0P we have c �� tc and tc j= AP ^B3. I [ fP 2 P(K);U 0P is not emptyg = KThe pumping argument is now slightly more complex than in the base case:a subderivation starting from a constant c00: c00 �� s[c00] �� s[t00] (where s[t00]is not reduced anymore in �) can be shortened if t00 and s[t00] satisfy the sameAI's. Hence the length of any branch of t is bounded by (k + 1)m.Let Reach(c; n; J) be true i� c rewrites to a term of depth n satisfying AJ^B.We have that Reach(c; 0; J) is decidable by Lemma 4, since � is in transitivenormal form. Note that Reach(c; n; ;) = Nreach(c; n).For the algorithm that decides Reach(c; n; J) we need an auxiliary functionCheck . Let c 2 C be a constant, j : 2K 7�! 2C a mapping and I � K. ThenCheck (c; j; I) is true i� there exists a v such that: c ��par v and(v = U + �P22KU 0P ) ^ fI^B(U) ^ ( ^P22K hj(P )(U 0P ))Check is e�ective by the result of Jan�car [8]. The algorithm for Reach is asfollows:1 Reach(c; n;K)2 for every mapping j : 2K 7�! 2C and every I � K3 if I [ fP 2 P(K); j(P ) is not emptyg = K then4 if Check(c; j; I) then5 if ^P2P(K)( ^c02j(P )Reach(c0; n� 1; P )) then true; exit6 for a; b 2 C do7 if c! a:b then 9



8 for everyK1;K2 s.t. K1 [K2 = K9 if (Reach(a; n� 1;K1) ^ Reach(b; n� 1;K2)) then true; exit10 Reach(c; n;K) = falseNow the Reachable property problem can be tested by computingReach(c0; (k + 1)m;K)5 Termination ProblemsIn this section we investigate termination properties of ground AC systems.We consider the case where the systems are in transitive normal form.Lemma 5 It is decidable whether there exists an in�nite derivation from aconstant c.Proof For every term t we de�ne depth(t) as the maximal nesting-depth offunction symbols in t. For example depth(a+ f(b+ c+ g(a; b))) = 2.Assume that there is an in�nite run that starts at c s.t. in this run a constantc0 is reduced to a larger non-constant term t and t is later again contractedto another constant c00. Since we consider systems in transitive normal formwe have the rule c0 ! c00 and can do this in one step. Thus if there is anyin�nite run then there is also an in�nite run in which the depth of the termsnever decreases. In other words, no seq-rules of the form f(c1; : : : ; ck) ! dare used, but only seq-rules of the form c! f(d1; : : : ; dk).Hence only the following situations can occur:1. In the in�nite sequence the depth of the terms is bounded. Then theremust be a constant c0 that occurs in some term in this sequence s.t.there is an in�nite derivation from c0 using only ��par .2. If the depth of the terms is not bounded then after some steps by thepigeon hole principle there is a long internal path in some term suchthat two identical symbols on it have been generated by the same rulec0 ! t where c0 is a constant.Hence there is an in�nite derivation from c i� c rewrites to a term containinga constant c0 such that1. either there is an in�nite derivation from c0 using par-rules only.10



2. c0 rewrites to a term containing c0.Case 1. amounts to check the existence of an in�nite path for a Petri net,which can be done by constructing the coverability tree.Case 2. can be decided using the results of the previous section. For anyconstant c0 consider the system �d = � [ fc0 �! c0g. Let t1; : : : ; tk be theterms that can be reached from c0 in one step. Checking 2. amounts tochecking whether tk j= 3� for some tk. Once we have collected the set ofconstants c0 for which the test is positive, we can test whether c can reach aterm containing one of them using the same technique.Thus the existence of an in�nite run from some constant c is decidable. Todecide this for a general term t we use a new constant c, add a rule c ! t tothe system, transform this new system into transitive normal form and checkthe existence of an in�nite run from c.A system terminates if there is no in�nite run. We get the following theorem.Theorem 2 The termination property is decidable for ground AC systems.In a similar way we can decide the boundedness problem. There is a runfrom a constant c where the sizes of the terms are unbounded if from c onecan reach a term containing c0 s.t.1. either there is an unbounded derivation from c0 using par-rules only.This can be decided by the coverability graph.2. c0 rewrites to a term t containing c0, but t 6= c0. This can be checkedin the following way. Every rule whose right side contains c0, but isnot equal to c0 is labeled with the action � . Then it su�ces to checkwhether c0 j= 3� .Theorem 3 Boundedness is decidable for ground AC systems.References[1] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Van Leeuwen,editor, Handbook of Theoretical Computer Science. North Holland, 1990.[2] A. Deruyver and R. Gilleron. The Reachability Problem for GroundTRS and some Extensions, In Proceedings of the International JointConference on Theory and Practice of Software Development : Vol. 1.Volume 351 of LNCS, Springer Verlag, pp 227{243, 1989.11



[3] E. W. Mayr. An algorithm for the general Petri net reachability problem.SIAM Journal of Computing, 13:441-460,1984.[4] R. Mayr. Process Rewrite Systems. Electronic Notes in TheoreticalComputer Science, volume 7. Proceedings of the Workshop "Expres-siveness in Concurrency" (EXPRESS'97), 1997.[5] P. Narendran and M. Rusinowitch. Any ground associative-commutativetheory has a �nite canonical system. Proceedings of RTA, LNCS 488,Springer-Verlag, 1991.[6] P. Narendran and M. Rusinowitch. The uni�ability problem in groundAC Theories. IEEE Symposium on Logic in Computer Science. Montreal(Canada), 1993.[7] M. Oyamaguchi The Church-Rosser Property for Ground Term Rewrit-ing Systems is Decidable", 1987, Theoretical Computer Science, Volume49(1), pp 43{79.[8] P. Jan�car. Decidability of a temporal logic problem for Petri nets. The-oretical Comuter Science, 74:71{93, 1990.
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Proving the Bounded Retransmission Protocol in the �-calculusTh�er�ese Hardin and Brahim MammassLaboratoire d'Informatique de Paris 6Tour 45-55, 4 Place Jussieu 75252 Paris Cedex 05, Francee-mail: Therese.Hardin@lip6.fr, Brahim.Mammass@lip6.frAbstract. The aim of this paper is twofold. We �rst present a correctness proof of the BoundedRetransmission Protocol (BRP) done quite straightforwardly by bisimulation in the �-calculus. To ourknowledge, it is the biggest proof realized in this framework. Then, we compare in depth several workson this protocol, focusing on how the used formalism in
uences implementation choices and prooftechniques.1 IntroductionThe development of communication networks requires more and more sophisticated communication protocolswhich must be reliable [13]. Traditional veri�cation methods use model checking techniques, but they cannotdeal with in�nite state systems and more generally with mobility.Our aim is to elaborate some methodologic guides for designing and proving communication protocolsusing theorem provers. We choose the BRP as a case study because it is simple but, since it is parameterized,model checking cannot be directly applied. We choose the �-calculus [24] as a formal framework. It is anextension of the process algebra CCS [22] with mobility while keeping its algebraic properties. It is moreexpressive than CCS because it provides possibilities for coding data types, �-calculus and higher orderprocesses and possibilities for expressing mobility between processes by means of name passing.So, on one hand, we present a proof of the BRP using �-calculus bisimulations. On the other hand,we study some related works [1, 7, 9, 10, 14, 15] in order to compare di�erent approaches. Essentially, in[1, 7, 10, 15] the BRP is designed and proved using a top-down approach, that is the system speci�cationis re�ned until an implementation is met. In opposition, it is the bottom-up approach which is adoptedin [9, 14]: starting from the system implementation, a system abstraction is deduced. Moreover, the usedformalism in [7] provides explicit time whereas in [1, 9, 10, 14, 15] it does not. The comparison between theseworks focuses on how the used formalism in
uences implementation choices and proof techniques.The paper is organized as follows: section 2 presents the informal description of the BRP. Before for-malizing this description, we complete it by making some choices. Section 3 gives an abstract view of theBRP in the �-calculus. Section 4 gives the protocol implementation in the �-calculus. Section 5 presents ourcorrectness proof method which proceeds by bisimulation and its application to the BRP. Finally, in section6, we present the studied papers and compare them in detail to our work.2 The Bounded Retransmission ProtocolThe BRP [14] is a communication protocol, developed at Philips Research Laboratory, that communicatesmessages from a producer to a consumer over an unreliable physical medium that can lose messages.2.1 The usual descriptionThe protocol (�gure 1) consists of a sender program at the producer side, a receiver program at the consumerside, and two channels (one-place bu�ers): a message channel K and an acknowledgment channel L. Bothchannels are unreliable in that they can lose messages or acknowledgments; but, messages are neither garbled,nor received out of order. Two timers are used.The sender sends each message over the channelK, sets timer1, and then waits for an acknowledgment overthe channel L. The timer1 is used to detect the loss of a message or an acknowledgment. If an acknowledgment



comes back within this time, the timer is cleared, and the next message is sent. If the transmission has beencompleted, the sender transmits a con�rmation ok to the producer to signal a successful transmission. Ifthere is no acknowledgment, a timeout occurs whereupon the message is retransmitted, and the timer setagain. There is a �xed upper bound on the number of such retransmissions (max). When this retransmissionbound has been reached, the sender aborts transmission and con�rms that the transmission failed. Eitherit con�rms Conf(notok) if the abort occurred during the transmission of an intermediate message or itcon�rms Conf(dtkw) if the last message in the �le was not acknowledged but might have been received bythe consumer.
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ConsumerFig. 1. The BRP protocolThe receiver waits for messages over the channel K. If the alternating bit of the received message is equalto that of the previous message, the receiver retransmits an acknowledgment over the channel L. Otherwise, itdelivers the message to the consumer, changes its alternating bit, sets timer2, and sends an acknowledgmentover the channel L. In both cases, it waits for the subsequent message. The time associated with timer2 mustexceed the required time to transmit max times a message (i.e, timer2 � max � timer1). If timer2 expires,i.e., no new message is received, the receiver sends an Inderr signal to the consumer.2.2 Completing the descriptionThe above description has an important lack of precision. So, before formalizing the protocol, some choiceshave to be stated. First, we assume that the �le may contain zero, one or more messages. But if it containsone message, this �rst message must be considered as the last one. Moreover, if the transfer is aborted duringthe transmission of this message, a con�rmation dtkw must be sent to the producer.As timer2 � max � timer1, the sender is the �rst to detect a transmission abort. The sender may thenreceive a new request to transfer a �le and send its �rst message while the receiver does not yet detect theabort (i.e., timer2 has not expired). The receiver may consider this message as the next message (or as aduplication of the current message) of the previous �le, that is incorrect. So, it the sender must wait untilthe receiver detects the abort. Moreover, both the sender and the receiver must reinitialize their alternatingbit before the beginning of the next transfer. For uniformity, we decide to do this reinitialization also whenthe transfer has been completed.After a successful transmission, either the sender receives no new request before expiration of timer2,so the receiver may do a misleading abort. Or it receives a new request and sends the �rst message. Thereceiver may consider this �rst message as a duplication of the last message of the previous �le because itcannot know the new alternating bit value. So, the sender must signal the end of a transfer to the receiverbefore it begins the next one. The receiver can then anticipate the expiration of timer2, then both the senderand the receiver reinitialize their alternating bit.



Finally, note that an Inderr signal is sent by the receiver to the consumer if timer2 expires and the lastmessage in the �le is not yet received.3 The BRP abstract view in the �-calculusStarting from the descritpion of 2:1, we consider the system as a black box. We de�ne its abstract view asthe observable behaviour on the external channels Req, Ind, Inderr, and Conf. We formalize this abstractview in the polyadic �-calculus [23] which is our formal framework. Its syntax and informal semantics arerecalled below.3.1 Syntax and informal semantics of the polyadic �-calculusLet x; y; z; u; v; : : : range over N , a set of channel names. Let A;B; : : : range over a set of agent identi�ers;each identi�er has a nonnegative arity. We note by ~x the tuple < x1; x2; : : : ; xn >. Let P;Q; : : : range overagents (i.e. processes) which are de�ned as follows:{ 0, an agent which can do nothing.{ yex:P , an agent which outputs the tuple ex on channel y; thereafter it behaves as P . In this action, y isthe subject, ex is the object, and both ex and y are free.{ y(ex):P , an agent which receives a tuple on channel y; thereafter it behaves as P but with the newlyreceived names in place of xi. In this action, y is the subject, ex is bound, and y is free.{ �:P , an agent which performs the silent action � ; thereafter it behaves as P .{ P + Q, an agent which behaves like either P or Q.{ P j Q, an agent representing the parallel composition of P and Q. This agent can do anything that P orQ can do, and moreover if P = yeu:P 0 and Q = y(ex):Q0, then P j Q �! :(P 0 j Q0feu=exg) where Q0feu=exg isthe substitution of each occurrence of xi by ui in Q0.{ (� x)P , an agent which behaves like P where the name x is local but P can export x.{ [x = y]P , an agent which behaves like P if x and y are the same name; otherwise it does nothing.{ A(y1; : : : ; yn) is an agent if A is an identi�er of arity n; for any such identi�er there is a de�ning equationwritten A(x1; : : : ; xn) def= P , where the names x1, . . . , xn are distinct and are the only names which mayoccur free in P . The agent A(y1; : : : ; yn) behaves like P where yi is substituted for xi for all i = 1; : : : ; n.Agent identi�ers provide recursion since the de�ning equation of A may contain A itself.We note (� x1 : : : xn)P instead of (� x1) : : : (� xn)P .3.2 The abstract viewThe BRP abstract view is pictured in �gure 2 and is expressed by three recursive equations. The �le ismodeled by a list of messages and we use the usual functions cons, hd and tl on lists.
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ConsumerProducer Fig. 2. The BRP abstract viewIn the initial state S0, the system waits for a �le f on the channel Req. If f is empty ([f = Nil]) itcon�rms the transfer and returns to S0, else it processes the �rst message h in the state S1.



S0 def= Req(f):([f = Nil]:Conf ok:S0 + [f = cons(h; t)]:S1(f)In the states S1 and S2, the � actions indicate that the choice between the delivery or loss of a messageor an acknowledgment is decided by the internal actions. The �rst two lines correspond to the case where themessage is always lost. The two following lines correspond to the case where the message is received but theacknowledgment is always lost. The last ones correspond to the case of a successful message transmission.For each of these cases, we distinguish in S1 two subcases: either the current message is the last one inthe �le, or it is the �rst one.S1(f) def= �:Conf dtkw:Inderr:S0+ �:Conf notok:Inderr:S0+ �:Ind < hd(f); last > :Conf dtkw:S0+ �:Ind < hd(f); first > :Conf notok:Inderr:S0+ �:Ind < hd(f); last > :Conf ok:S0+ �:Ind < hd(f); first > :S2(tl(f))In the state S2, the system handles the remaining messages of the list. The same cases as in S1 areanalysed but for each of these cases, we distinguish two subcases: either the current message is the last onein the �le, or it is an intermediate one.S2(f) def= �:Conf dtkw:Inderr:S0+ �:Conf notok:Inderr:S0+ �:Ind < hd(f); last > :Conf dtkw:S0+ �:Ind < hd(f); inc > :Conf notok:Inderr:S0+ �:Ind < hd(f); last > :Conf ok:S0+ �:Ind < hd(f); inc > :S2(tl(f))4 The BRP implementation in the �-calculusWe start from the complete speci�cation of section 2. To encode the protocol, we need the types integer,boolean and list which are encoded in the �-calculus [24].We model the external channels Req, Conf, Ind, and Inderr as constant names because they are neverbound during the execution of the protocol. We model timer1 by the agent T1 which repeatedly waits for asignal over the channel time1, then sends a signal over the channel timeout1. The timer2 is modeled in thesame way.T1 def= time1:timeout1:T1T2 def= time2:timeout2:T2We use the channel abort (resp. restart) to solve the synchronization problems between the sender andthe receiver after a transmission abort (resp. after a successful transfer). These channels are not physicalones and should be implemented by means of timers. Introducing these two channels allows us to separatecleanly the two situations.Every message transmitted by the sender S is a tuple < first; last; tag; data >. If first (resp. last) equalsTrue, then the current message is the �rst (resp. last) one. The variable tag contains the alternating bit, anddata is a �le data. In the initial state, the sender initializes its variables, waits for a request on the channelReq, then starts the �le transfer. The variable rn contains the retransmissions number.S(K; L; abort; restart) def= Req(f):T ransfer(K; L; abort; restart; f; T rue; False; T rue; 0)If the �le is empty, the sender sends a con�rmation ok to the producer, makes a rendez-vous over thechannel restart with the receiver and then returns to its initial state. Otherwise, it transmits the �rst message,sets timer1, increments rn, and waits for an acknowledgment over the channel L.



Transfer(K; L; abort; restart; f; first; last; tag; rn) def=[f = Nil] Conf ok:restart:S(K; L; abort; restart)+ [f = cons(head; tail)] last [tail = Nil]: K < first; last; tag; head > :time1:Wait ack(K; L; abort; restart; head; tail; first; last; tag; rn+ 1)If an acknowledgment is received, the sender resets timer1, reinitializes rn, complements tag, puts Falsein first and transmits the next message in the �le. If no acknowledgment is received, timer1 expires and thesender retransmits the message.Wait ack(K; L; abort; restart; head; tail; first; last; tag; rn) def=L:timeout1:T ransfer(K; L; abort; restart; tail; False; last;Not(tag); 0)+ timeout1:Retrans(K; L; abort; restart; cons(head; tail); first; last; tag; rn)If the retransmissions bound is not exceeded, the message is retransmitted. Otherwise, the transfer isaborted. The sender sends a con�rmation dtkw (for the last message) or notok (for an intermediatemessage) to the producer. Then, it makes a rendez-vous with the receiver over the channel abort before itbegins a new transfer.Retrans(K; L;abort; restart; f; first; last; tag; rn) def=If rn = max then([last = True] Conf dtkw:abort:S(K; L; abort; restart)+[last = False] Conf notok:abort:S(K; L; abort; restart))else Transfer(K; L; abort; restart; f; first; last; tag; rn)The receiver R is described in the same way. The variable rtag contains the alternating bit of the previousmessage. The variable end is set to True when the last message in the �le is received. The variable t2on isset to True when timer2 is enabled.R(K; L; abort; restart) def= Wait msg(K; L; abort; restart; False; False; False)Wait msg(K; L;abort; restart; rtag; end; t2on) def=K(first last tag m):T reat(K; L; abort; restart; first; last; tag;m; rtag; end; t2on)+ abort:If t2on = True then timeout2:Abort(K; L; abort; restart; end)else Abort(K; L; abort; restart; end)+ restart:If t2on = True then timeout2:R(K; L; abort; restart)else R(K; L; abort; restart)Treat(K; L;abort; restart; first; last; tag;m; rtag; end; t2on) def=If tag = rtag thenL:Wait msg(K; L; abort; restart; rtag; end; t2on)else If first = True then Indicate(K; L; abort; restart; first; last;m; tag; end; t2on)else timeout2:Indicate(K; L; abort; restart; first; last;m; tag; end; t2on)Indicate(K; L; abort; restart; first; last;m; rtag; end; t2on) def=If last = True thenInd < m; last > :L:time2:Wait msg(K; L; abort; restart; rtag; T rue; T rue)else If first = True thenInd < m; first > :L:time2:Wait msg(K; L; abort; restart; rtag; end; T rue)else Ind < m; inc > :L:time2:Wait msg(K; L; abort; restart; rtag; end; T rue)Abort(K;L; abort; restart; end) def= If end = True then R(K; L; abort; restart)else Inderr:R(K; L; abort; restart)
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Fig. 3. The BRP implementation in the �-calculusThe sender and its timer constitute the component P of the system. They communicate via their privatechannels time1 and timeout1. The receiver and its timer constitute the component Q of the system. Theycommunicate via their private channels time2 and timeout2. These two components communicate via thesender and the receiver which are linked by the channels K, L, abort, and restart. These channels are modeledby restricted names since they are private to the protocol. This global view is pictured in �gure 3.P (K; L; abort; restart) def= (� time1 timeout1) (S(K; L; abort; restart) j T1)Q(K; L; abort; restart) def= (� time2 timeout2) (R(K; L; abort; restart) j T2)The external event corresponding to the loss of a message (resp. loss of an acknowledgment) is modeled bythe agent loss msg (resp. loss ack) which can intercept the message (resp. the acknowledgment) and returnto its initial state. These two events can happen at any moment.loss msg(K) def= K(first last tag m):loss msg(K)loss ack(L) def= L:loss ack(L)Hence, the system is completely described by the parallel composition of the components P and Q, andthe external events loss msg and loss ack.System def= (� K L abort restart)(P (K; L; abort; restart) j Q(K; L; abort; restart) j loss msg(K) j loss ack(L))Note that the con�guration of the system does not change during the execution of the protocol: the linksare static. However, the mobility would be easily expressed in the �-calculus.



5 The correctness proof of the BRPThe procedure is to prove formally that the system implementation and its abstract view have equivalentbehaviours. This allows us to deduce some system properties, for example the deadlock-freeness. In the �-calculus, the notion of behavioural equivalence is made mathematically precise by using bisimulations [24].In our proof, we use some algebraic laws of these bisimulations, so we recall them in appendix A.5.1 The proof methodOur method is inspired by Orava's and Parrow's method [25]. The proof follows these steps:1. Analyze the system implementation by applying repeatedly the expansion law (E) in order to determineits intermediate states by using strong ground equivalence _�. For example, the system (xy:P j x(u):Q)is expanded to (xy:P +x(u):Q+ �:(P j Qfy=ug)), then we iterate the expansion on the new states xy:P ,x(u):Q and �:(P j Qfy=ug). This step leads to a set R0 of mutual recursive equations.2. Build the �x-point of R0. This results in a new set R1 of mutual recursive equations.3. Simplify R1 by using the � -laws, by identifying and substituting in the equations equivalent expressionsup to weak bisimulation ', and by eliminating � -loops from equations using the law (L) in order toobtain guarded equations. This step leads to a new reduced set R2 of guarded and mutual recursiveequations.4. Build the �x-point ABS of the equations de�ning the abstract view.5. Finally, prove that R2 is a solution of ABS. Then, by applying the law (U1), conclude that R2 and ABSare equivalent.5.2 Applying the method to the BRPStarting from the BRP implementation (System), the step 1 is �rst applied separately to the componentsP and Q, then it is applied to the parallel composition of their expansion with the external events loss msgand loss ack. This technique has a great advantage: it is modular in that we never have to analyze the wholesystem implementation at once.Because of lack of space, we cannot give the complete proof. The step 1 results in twenty four equationsparameterized by the �le to be transferred. The step 3 leads to a system of three equations which is provedequivalent to the abstract view. The complete proof [19] is done manually and requires about three man-months.As a �rst conclusion, our method provides a clear distinction between the implementation and the ab-straction of the system, proving their equivalence. Someone who wants to use the protocol as a componentof a more complex system has just to use its abstract view which is simple and provides exactly the sameobservable behaviour.6 Related worksWe study in depth some related papers [1, 7, 9, 10, 14, 15] in order to compare di�erent approaches. Whilein [1, 7, 10, 15], the BRP is developed and proved using a top-down approach, in [9, 14] it is the bottom-upapproach which is adopted. The comparison tackles the following questions. Do the authors start from thesame description? How are the protocol entities modeled? What is exactly proved? What are the di�cultiesencountered in doing the proofs? Are they due to the used formalism or to implementation choices? Is the�-calculus a well-suited framework?The �rst important remark is that apart from some little and irrelevant variations, all the papers startfrom the same protocol description.



6.1 Groote and Van De PolIn [10], Groote and Van De Pol use as a formal support �CRL [11], a combination of process algebra andabstract data types, to prove the correctness of the BRP. Like us, the formalism does not provide explicittime. So, the timers just have to expire, and the authors only care about scheduling of actions.In this work, the BRP abstract view is de�ned by four recursive equations written in �CRL.The BRP implementation is de�ned in �CRL as the parallel composition of its components, as we havedone. The synchronization between the sender and the receiver, done via the channels abort and restartin our case, is enforced by two extra signals lost and ready. To avoid that a message arrives after timer1expires, the channels K and L send a signal lost to timer1 indicating that a timeout may occur. When anabort occurs, the sender sends a signal ready to the receiver asking it to stop timer2. Then, the receiverreturns a signal ready to the sender allowing it to transfer a new list. Since there is a strong connectionbetween the sender, the receiver, timer1 and timer2, the resulting implementation is not modular.The authors use the branching bisimulation, a strong variant of weak bisimulation, which is a model of�CRL theory [12]. They prove manually the equivalence between the protocol and its abstract view. But intheir case, the protocol can start transmission of a list in two distinct modes: either the receiver knows thenext alternating bit (after a successful transmission), or it does not know (after a transmission abort). Forthis reason, an intermediate system is de�ned by eight equations considering these two modes. In our case,this system is simply the abstract view and is de�ned by three equations, so our proof is facilitated.Their proof is mechanized in the proof-assistant Coq [6]. The authors encode the syntax, axioms andrules of �CRL in Coq. Their BRP implementation in �CRL is compact and formal, but the proof in Coqrequired a detailed encoding so that the resulting Coq speci�cation is fairly large.6.2 Helmik, Sellink and VandraagerIn [15], Helmink, Sellink and Vaandrager analyze the BRP in the setting of I/O automata [18]. The timersare represented by timer events. For example, the loss of a message or an acknowledgment causes a timeoutaction of timer1.The authors specify the abstract view by an I/O automaton which has the same input and output actionsas the protocol but no internal actions. As channels are modeled by shared variables, their access managingis part of the abstract view and is described by means of preconditions.The authors specify each component of the protocol (the sender, the receiver, and channels K and L) byan I/O automaton. Then, they de�ne the full protocol as the parallel composition of these I/O automata.After an abort, the sender starts a new timer called timer3. When timer2 expires, the receiver generates atimeout action for timer3 so that the sender can proceed and handle the next request. This solution requiresthat timer3 � timer2 and can be hardly reused if time constraints have to be changed. Moreover, the modelforces them to specify, for all possible states, what happens if an input action occurs. This leads to theexplosion of the I/O automata.The main advantage of this work is the correctness criteria of the protocol that is a re�nement argumentshowing that the BRP I/O automata implement the abstract view I/O automaton. The authors provethat the BRP is deadlock-free. Moreover, a number of protocol invariants is presented. However, the mostdi�culties with I/O automata veri�cations is �nding the appropriate automata, the re�nement relation andthe invariants.The safety part of the proofs is mechanically checked using Coq. But, the notions from I/O automatatheory are encoded directly for the BRP. So, it is di�cult to reuse this encoding for other applications.6.3 AbrialIn [1], Abrial designs the BRP by successive re�nements in the proof-assistant B [2]. The timers are repre-sented by timer events.The abstract view states in the B language that the �le received by the consumer is a pre�x of the �letransmitted by the producer. The �le is supposed to be transmitted instantaneously.The author builds formally the protocol by extending gradually the implicit time in the abstract view toobtain the implementation. Each re�nement step is proved to satisfy the properties expressed in the previous



one. This construction approach required seven re�nements which deal with gradual distribution of variousaspects of the protocol that are global in the abstract view. However, a loss of the last acknowledgment causesa misleading abort of the sender. In fact, the receiver considers that the transfer is already completed, soany retransmission done by the sender will not be acknowledged. Furthermore, the retransmissions numberis still shared by the sender and the receiver in the last re�nement.The deadlock-freeness property is proved provided the protocol is performed in a fully sequential way.Moreover, the termination of the protocol is proved by determining a sequence of natural number expressionsthat decrease lexicographically after each protocol action. But, the most di�culty of this work is to �nd theappropriate re�nements; there is no systematic method.6.4 D'Argenio, Katoen, Ruys and TretmansIn [7], D'Argenio, Katoen, Ruys and Tretmans analyze the BRP in the setting of timed automata [3]. Atimed automaton is a classical �nite state automaton equipped with clock variables and state invariantswhich constrain the amount of time the system may idle in a state.The abstract view is provided as a �le transfer service (FTS) described by logical relations between inputsand outputs.The BRP is modeled by a network of timed automata. Channels K and L are modeled as queues ofunbounded capacity. After an abort, an additional delay SY NC (equivalent to timer3 of [15] is set to thesender to ensure that it does not start transmitting a new �le before the receiver has properly reacted to theabort.The authors verify the protocol correctness in UPPAAL [5] which reduces the veri�cation problem tosolving a set of constraints on clock variables. The great advantage is that they obtain tight constraints onthe amount of the timers. However, as UPPAAL is sensible to the number of states and transitions, datais restricted to clocks and integers. Moreover, value passing at synchronization is not supported. For thesereasons, the data was removed from the transmitted message. So, properties of the FTS concerning thetransmitted data are not checked. Value passing was modeled by shared variables assignments, this requiredto split some transitions. Channels K and L were reduced from unbounded queues to one-place bu�ers. So,to avoid explosion of states and transitions, the protocol is only checked for small values of the �le lengthand the number of retransmissions.6.5 Havelund and ShankarNow, we discuss the opposed approach taken in [14] which starts from an implementation to deduce anabstract view. Havelund and Shankar combine model checking and theorem proving techniques to prove thecorrectness of the BRP. The modeling of time and synchronization between the sender and the receiver isthe same as [15]. So, the previous remarks apply here.The authors �rst analyze a scaled-down version (i.e, �nite state system) of the BRP using Mur� [21],a state exploration tool, as a debugging aid. Then, they translate the Mur� description into PVS [26] andmodify manually a few of the PVS declarations to obtain the in�nite state implementation. This yields twoPVS theories. The �rst one contains the protocol itself. It is modeled by a predicate that holds for a sequenceof reachable states. The implementation in PVS is too detailed and not so formal. The second theory containsthe correctness criteria which is de�ned by an invariant. This invariant needs to be greatly strengthened inorder to be provable, and this invariant strengthening is the real challenge of the proof.Finally, from the complete implementation in PVS, they deduce a �nite state abstraction which boundthe resources of unboundedness in the state space that are the message data, the number of retransmissionsand the �le length. They show that the mapping between the implementation and the abstract view preservesthe initialization predicate, the next-state relation and the properties. They used the model checkers SMV[20], Mur� and an extension of PVS with the modal �-calculus [16] for the �nal model checking. However,the most di�culty of Havelund's and Shanker's approach is to �nd the protocol abstraction: no technique isprovided to mechanize the abstraction research. For example, to �nd the abstraction of the sliding windowprotocol is a real challenge.



6.6 Graf and SaidiIn [9], the BRP is �rst described in terms of guarded assignments. Then, by using abstract interpretationtechniques (i.e, by giving a partition of the state space induced by a set of predicates on the system variables;19 predicates for the BRP), the authors generate automatically an abstract state graph using PVS. Theobtained graph for the BRP has 475 states and 685 transitions.The correctness of the BRP is expressed by two temporal logic formulas. The �rst one indicate that thesequences of received messages and of sent messages are consistent. The second one indicate that for each�le, the indication delivered to the consumer and the con�rmation delivered to the producer are consistent.The main advantage of this work is that the system properties are veri�ed automatically on the abstractgraph using the Ald�ebaran tool [8]. However, the veri�cation is sensible to states explosion. For this reason,the �rst property of the BRP is veri�ed on a weaker abstraction where only predicates concerning thetransmission of a single message are considered relevant.7 ConclusionsHaving compared with other works, the �-calculus appears as a really convenient framework for encoding andanalyzing communication protocols. The major advantages of our approach are the following. The descriptionof the protocol is compact and entirely formal. Moreover, the exhaustive analysis of all possible cases givesa good understanding of the protocol; it allows us to detect several implementation errors. The approachis modular since we never have to handle the whole protocol description at once. So, the implementationcan be reused easily if speci�cation changes occur. Finally, the �-calculus laws are simple and the proof bybisimulation is purely procedural. So, large parts of the proof can be mechanized.However, without the help of a prover, the exhaustive analysis of all possible cases is a tedious work.So, one objective is to mechanize at least parts of the proof in a theorem prover. Actually, we are formal-izing the �-calculus in the theorem prover PVS. Another objective is to reduce the proof e�ort. Since ourimplementation is modular, we are investigating a compositional proof of the BRP by using the relativizedbisimulation [17]. As a future work, we want to extend the methodology in order to prove mobile protocolsand liveness properties.References1. Abrial, J-R.: Speci�cation and Design of a Transmission Protocol by Successive Re�nements using B, unpublishednote, 1997.2. Abrial, J-R.: The B-Book. Cambridge University Press, 1996.3. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science, 126 (1994) p183{235.4. Alur, R., Henzinger, T., Sontag, E.D.: Hybrid Systems III. LNCS 1066, Springer-Verlag, 1996.5. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: UPPAAL { A tool suite for the automaticveri�cation of real-time systems. In [4], p232{243.6. Cornes, C., Courant, J., Filliatre, J.C., Huet, G., Manoury, P., Paulin-Mohring, C., Munoz, C., Murthy, C.,Parent, C., Saibi, A., Werner, B.: The Coq Proof Assistant Reference Manual version 5.10. Technical Report,INRIA Rocquencourt, France, February 1995.7. D'Argenio, P.R., Katoen, J.P., Ruys, T.C., Tretmans, J.: The Bounded Retransmission Protocol must be on Time!.TACAS'97.8. Fernandez, J.C., Garavel, H., Kerbrat, A., Mateescu, R., Mounier, L., Sighireanu, M.: CADP (Caesar/Ald�ebaranDevelopment Package): A protocol validation and veri�cation tool box, CAV'96, LNCS 1102, 1996. TACAS'97.9. Graf, S., Saidi, H.: Construction of Abstract State Graphs with PVS. CAV'97, LNCS 1254, Haifa, Israel, 1997.10. Groote, J.F., Van de Pol, J.: A Bounded Retransmission Protocol for Large Data Packets. CAV'96, LNCS 1101,1996.11. Groote, J.F., Ponse, A.: The syntax and semantics of �CRL. Technical report CS-R9076, CWI, Amsterdam,December 1990.12. Groote, J.F., Ponse, A.: Proof theory for �CRL: a language for processes with data. In Andrews, D.J., Groote,J.F., and Middelburg, C.A., editors, Proc. of the Int. Workshop on Semantics of Speci�cation Languages, p232{251.Workshops in Computing, Springer Verlag, 1994.
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1. �i is xu and �j is x(v); then Rij is Pi j Qjfu=vg2. �i is x(u) and �j is x(v); then Rij is (� w)(Pifw=ug j Qjfw=vg) (where w is not free in (� u)Pi orin (� v)Qj)3. the two others are the converse.The weak ground equivalence _' is strictly weaker that strong ground equivalence _� and also satis�es thelaws described above. In addition, it satis�es the well known � -laws [22], these are:{ (T0) �:�:P _' �:P{ (T1) P + �:P _' �:P{ (T2) �:(P + �:Q) + �:Q _' �:(P + �:Q).In order to eliminate � -loops from recursively de�ned agents (see [22]):{ (L) If A = P + �:A and B = �:P then A _' BWe de�ne strong (non-ground) equivalence � as strong ground equivalence under all substitutions � ofnon-constant names, i.e., P � Q i� P� _� Q�, for all substitutions � from non-constant names to names.We de�ne weak (non-ground) equivalence ' in a similar way.The main use of the non-ground equivalences is in the laws for recursively de�ned agents which we adoptfrom [24]. To formulate them, we need some additional notations. Let E, F , . . . represent agent expressions;these are like agents with \holes" where agents or agent identi�ers can be inserted. Let E(P1; : : : ; Pn) be theagent which is the result of inserting P1; : : : ; Pn intoE. Two agent expressions E and F are (strongly/weakly)equivalent if E( eP ) is (strongly/weakly) equivalent to F ( eP ) for all P1; : : : ; Pn.The �rst law for recursion (U0) means that if the right hand sides of de�nitions are transformed, respectingequivalence, then the agent de�ned is the same up to equivalence. This law holds for strong and weak non-ground equivalence (but fails for the ground equivalences).(U0) Suppose that E1; : : : ; En and F1; : : : ; Fn are expressions and A1; : : : ; An and B1; : : : ; Bn identi�erssuch that for all i: Ei = Fi and Ai( exi) = Ei(A1; : : : ; An) and Bi( exi) = Fi(B1; : : : ; Bn) Then Ai( exi) = Bi( exi)for all i.The second law (U1) means that if two agents satisfy the same set of recursive equations, then the agentsare equivalent. This law holds for strong non-ground equivalence provided E1; : : : ; En are weakly guarded(i.e., all occurrences of Pj in Ei(P1; : : : ; Pn) are within a pre�x operator). Furthermore, it holds for weaknon-ground equivalence provided E1; : : : ; En are guarded (i.e., all occurrences of Pj in Ei(P1; : : : ; Pn) arewithin an output or input pre�x operator), and sequential (i.e., no Ei contains a parallel composition).(U1) Suppose that E1; : : : ; En are expressions and P1; : : : ; Pn and Q1; : : : ; Qn are agents such that for alli: Pi = Ei(P1; : : : ; Pn) and Qi = Ei(Q1; : : : ; Qn) Then Pi = Qi for all i.
This article was processed using the LATEX macro package with LLNCS style


