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Veritying Determinism of Concurrent Systems
Which Use Unbounded Arrays
(Extended Abstract)

Ranko Lazié¢*t Bill Roscoe?

To be presented at INFINITY 98
(Revised version. July 7, 1998.)

Abstract

Our main result says that determinism of a concurrent system which uses unbounded arrays (i.e.
memories) can be verified by considering an appropriate finite array size.

That is made possible by restricting the ways in which array indices and values can be used within the
system. The restrictions are those of data independence: the system must not perform any operations
on the indices and values, but it is only allowed to input them, store them, and output them. Equality
tests between indices are also allowed.

The restrictions are satisfied by many concurrent systems which use arrays to model memories or
databases. As a case study, we have verified that a database system which allows users to lock, read
and write records at multiple security levels is secure.

1 The Parameterised Verification Problem

Concurrent systems are frequently infinite-state because they have parameters that can vary unboundedly.
For example, a memory cache is likely to be parameterised by the data types of addresses and values, a
protocol for fault-tolerance is likely to be parameterised by the number of nodes in the network, etc. Given
such a system, we typically want to be able to consider all possible instantiations of its parameters, rather
than having to restrict our attention to one instantiation at a time. Thus we come to the Parameterised
Verification Problem:

PVP. Given a parameterised concurrent system P and a condition C, does P satisfy C for all instantiations
of the parameters? W

There has recently been much research on the PVP. It is undecidable in general [AK86], and so most
effort has been put into either finding decision procedures for restricted versions of it (see e.g. [Wol86,
JP93, ID96a, HB95, HDB97, GS92, YJL96, EN96]), or providing automated techniques whose termination
is unpredictable or which require user involvement (see e.g. [HL95, HGD95, CZ+97, HIB97, CGJ95, ID96b,
KM+97]).

The main result of this paper, Theorem 1, says that in order to verify that a concurrent system P which
uses unbounded arrays (i.e. memories) is deterministic for all array sizes (finite or infinite), it suffices to
consider a single appropriate finite size. In other words, the theorem provides a decision procedure for the
following restricted version of PVP: the parameters are data types of array indices and values, and the
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condition C is the property of being deterministic. The procedure is guaranteed to terminate whenever the
data types sizes which it suffices to consider can be computed in a finite time and the resulting instantiation
of P is finite-state (which are both issues that are orthogonal to the parameterisation).

Since checking whether the appropriate instantiation of P is deterministic can be done by a single run
of a model checker,' the paper contributes to turning model checkers into practical tools for verification,
rather than primarily refutation [Rus97].

Before we present Theorem 1 in Section 4, we shall explain what we mean by arrays whose index and
value types are parameters, and review determinism, a condition with very important applications in the
field of computer security. In the remaining two sections, we shall outline the database system case study,
and point towards future work.

In the space available, we could not afford to go into technical details. The technical report [LR98a]
contains the full paper, including a sketch of the proof of Theorem 1.

2 Unbounded Arrays

The main novelty in the paper is that we consider concurrent systems which can use arrays whose indices
and values come from variable types, i.e. data types that are parameters of the system. Such an array
is unbounded because its size is the size of the type of its indices, and we allow type parameters to vary
unboundedly.

Our main result, Theorem 1, is made possible by restricting the ways in which array indices and values
can be used within the system. More precisely, the system is required to be data independent with respect
to the types of indices and values: it must not apply any operations to elements of those types, but it is
only allowed to input them, store them, and output them. Equality tests between indices are also allowed.
From another point of view, we have shown that it is possible to relax the data independence conditions
by allowing arrays and still obtain finite instantiations which suffice for verification. (A precise definition
of data independence can be found in [Laz98b], and approximate definitions in [Ros98, LR98a].)

Many systems which use arrays to model memories or databases satisfy the data independence conditions
on indices and values. A typical example is a memory cache which uses an array to model the main memory
that it is interacting with, and whose replacement policy does not involve calculation. Indeed, the only
operation such a cache needs to perform on indices or values is equality tests between indices.

Theorem 1 is also made possible by having the indices and values belong to different data types, so that
for example nested indexing is not allowed.

For simplicity, we shall be considering a single variable type X of indices and a single variable type Y of
values. Let Array (X, Y) denote the type of all arrays with indices from X and values from Y. Such arrays
can also be thought of as maps from X into Y. For creating and using them, we allow only the following
operations, whose meanings are self-explanatory:

init(X) :: Y -> Array(X, Y)
getval :: (Array(X, Y), X) -> Y
update :: (Array(X, Y), X, Y) -> Array(X, Y)

In addition to allowing arrays whose indices and values come from variable types, Theorem 1 allows
uninterpreted many-valued predicates on variable types which are not types of array values, and unin-
terpreted constants of variable types. Here by “many-valued predicates” we mean functions into fixed
finite types, and by “uninterpreted” we mean that the predicates and constants are just symbols and that
the verification should establish that the condition (in this case determinism) is satisfied for all possible
interpretations. Such predicates and constants will be needed in the database system case study (see
Section 5).

IDeterminism checking is supported directly in the model checker FDR2 [Ro0s98, FS97]. In other model checkers, some
preliminary transformations may be necessary: for example, the condition of being deterministic can be expressed in a linear
temporal logic on a product of the labelled transition system of P with itself.



3 Determinism

A concurrent system P is said to be deterministic if, from the point of view of its environment, it cannot
exhibit any nondeterminism. More precisely, there must not exist an execution of a sequence ¢t of com-
munications after which P can accept some communication a and a possibly different execution of ¢ after
which P can refuse a. In the process algebra CSP [Hoa85, Ros98], it is appropriate to also require livelock
(i.e. divergence) freedom, so that the condition of being deterministic can be formalised as:

o (t(a),{}) € failures | (P) = (t,{a}) & failures | (P), and
e divergences(P) = {}.

Determinism has been studied most extensively in CSP. Apart from its great significance in the theory,
it has found very important applications in the field of computer security. Namely, it has been established
[RWW96, Ros95, Wul97, Ros98] that the key to specifying that there is no information flow across a
concurrent system from a high security user to a low security user is the determinism of a suitably formed
abstraction: what the system looks like to the low user when the actions of the high user are turned into
internal nondeterminism.

4 The Theorem

For concreteness and practical applicability, we have stated and proved Theorem 1 in terms of CSPy,
[Sca98, Ros98], the machine-readable version of CSP which is the language used in the model checker
FDR2 [Ros98, FS97].

The following quantities, defined for a concurrent system P and a variable data type X, will be used in
the theorem to compute the sufficient size for the type of indices:

W3 is the maximum number of elements of type X that P ever has to store for future use. Here it is
crucial that we do not need to count elements which are stored only because they are indices of
array components that have previously been assigned to or read from. This enables W¢, and hence
the sufficient size for X in the theorem, to be finite even when P may during its execution access an
unbounded number of different array components.

L%y is the maximum number of elements of type X that can be input in a single communication of P.

Lgx is the maximum number of elements of type X that can be input in a single communication of P

without being recorded in it. (This quantity can be made nonzero only by renamings which omit
inputs from communications.)

L}, x is the maximum number of elements of type X that can be chosen in a single internal nondeterministic
choice in P.

The quantity W{ virtually always dominates the calculations. In fact, in most practical examples,
including the case study in the next section, the remaining three quantities have values 1, 0, 0 or 1, 0, 1
respectively.

For simplicity, we state the theorem with only one uninterpreted many-valued predicate and only one
uninterpreted constant.

Theorem 1 Suppose P is a concurrent system with two variable types X and Y with respect to which it is
data independent, except that it can use:

e arrays of type Array (X, Y), i.e. arrays with indices from X and values from Y,
e an uninterpreted K -valued predicate r on X, and

e an uninterpreted constant c of type Y.



Suppose also that P does not use any equality tests between elements of type Y, and that no state of P
has two possible communications that differ only in outputs of type Y. (Two mild regularity conditions are
also needed: see [LR98a].)

Let B =2 x Wy +max(L} x + L%X,L%’X).

Then P is deterministic for all instantiations of X, Y, r and c (with finite or infinite X and Y), provided
it is deterministic for the following instantiation:

e X is defined to be any type with exactly (B + 2) x K elements,
e Y is defined to be any type with exactly 2 elements, say {0, 1},
e r is defined to map exactly B + 2 elements of X to each of the K elements in its range, and

e c is defined to have any fized value from Y, say O.

Proof. The proof uses symbolic labelled transition systems [HL95, LR98b] and factoring out of sym-
metry [CE+96, ES96, ID96a, Jen96], and involves much additional development to be able to deal with
arrays and with the stated definition of W¥.

A sketch can be found in [LR98a]; the full proof will appear in [Laz98a]. W

It is not impossible for B to be infinite, in which case the theorem is unlikely to be useful in practice.
(As we have said, the question of whether B is infinite is orthogonal to the parameterisation by X and Y.)
When P does not use an uninterpreted predicate, the theorem can be applied with K = 1.

4.1 Decision Procedures

The theorem immediately gives us a decision procedure for our restricted version of the PVP: compute
B and then check whether the resulting instantiation of P is deterministic. As we have remarked, this
procedure terminates provided B is computable in a finite time and the instantiation of P is finite-state.

The efficiency of the determinism checking phase can be considerably improved by automatically fac-
toring out the symmetry associated with the type X and by allowing at most one input of type Y to have
the value 1 in any execution. Moreover, by performing a suitable symbolic check, the computation of B
can effectively be done lazily during the check itself, resulting in greater accuracy.

It is also possible to automatically check whether the assumptions of the theorem, or at least their
suitable stronger versions, are satisfied.

At the time of writing, extensions to the model checker FDR2 to fully support the obtained decision
procedures are being planned.

4.2 Related Work

We are not aware of any general results in the literature enabling systems that can access unboundedly
many different array components (i.e. memory locations) during their execution to be verified by reduction
to finite instantiations (as required by most model checkers). Such systems were typically verified by one
of the following methods:

e applying existing data independence theorems together with special-case observations or arguments,
as in [HM+95, ID96a, LR96, Ros98];

e symbolic execution which is not guaranteed to always terminate, or which relies on the number of
array accesses being bounded, as in [VBJ97, HIB97];

e special-case abstractions, as in [Gra94].

We also cannot point to previous results facilitating reduction to finite instantiations when uninterpreted
predicates on variable types are present, although it is substantially easier to extend the known methods
to accomodate them than it is for unbounded arrays.



5 A Case Study

With the help of Theorem 1, we have verified that a database system which allows users to lock, read and
write records at multiple security levels is secure. The system has similar functionality to one of the case
studies in [Wul97].?

As usual in this sort of analysis, it suffices to look at only two security levels of user, on the grounds
that more complex security policies can be partitioned into multiple binary analyses: see [RWW96, Ros95,
Wul97, Ros98] for details. The system thus works with two user identities: a high security user Hugh and
a low security user Lois.

Without going into details, the system consists of a manager process DBM and a disk process Disk
which stores the current values of all records. It has two variable types, RECORDS and DATA, and it uses
an array with indices from RECORDS and values from DATA to model the contents of the disk. It also

uses an uninterpreted 2-valued predicate rlevel :: RECORDS -> {0, 1} which provides the security level
associated with each record, and an uninterpreted constant inval :: DATA for the initial value of all the
records.

That the system is secure is understood to mean that there can be no information flow from Hugh
to Lois across it. As we have remarked in Section 3, this can be verified by verifying that a suitable
abstraction of the system, namely what it looks like to Lois when Hugh’s actions are turned into internal
nondeterminism, is deterministic [RWW96, Ros95, Wul97, Ros98].

Let us call this abstraction P. It turns out that P satisfies all the assumptions of Theorem 1 with X, Y,
r and c now being called RECORDS, DATA, rlevel and inval respectively, and that

B =2 x (1imit(Hugh) + limit(Lois)) + 1

where 1imit (Hugh) and 1imit(Lois) are limits of how many records the users can have open or locked at
any one time. Thus Theorem 1 has successfully reduced the problem of verifying that the system is secure
for each instantiation of RECORDS, DATA, rlevel and inval to verifying that it is secure for a single finite
instantiation.

For a few small values of 1imit (Hugh) and limit(Lois), we have verified on the model checker FDR2
that the reduced instantiation of P is indeed deterministic. It remains an open problem, outside the scope
of the present paper, to by an automated verification establish determinism for any limit(Hugh) and
limit(Lois) and when one or both of those limits are removed.

A complete CSPj; script with the case study can be found at:

http://www.comlab.ox.ac.uk/oucl/publications/books/concurrency/examples/security/

6 Further Work

We should stress that the techniques we have developed are not restricted to verifying determinism. Indeed,
we hope to obtain similar theorems for verifying arbitrary conditions. In CSP, that means for verifying
that a concurrent system which uses unbounded arrays refines [Hoa85, Ros98] a given specification.?
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Abstract

Formal verification of hardware circuits requires both a reliable formal description system
and an adequate verification tool. This paper proposes a new method for the automatic
verification of a class of systolic systems, based on the use of monadic second order
logic (over strings) as a modeling language. The method is applied to a case study from
the literature, which illustrates the modelling, synthesis, and verification features on a
class of iterative, parametric, linear systolic arrays. It also presents a first performance
comparison between the verification tools Mona and MOSEL for this logic.

Keywords: Modelling Languages, Programming and Verification Tools, Design of Embedded
Environments, Monadic Second-Order Logic, (Synchronous) Hardware Description
Languages, Systolic Systems.
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1 Introduction and Background

Systolic arrays [SuMe77, KuLe79] are intensively used e.g. in the implementation of hardware accel-
erators' and of encoders/decoders for security purposes. Systolic systems can be seen as synchronous
networks of parallel processors. They have nice properties from both an engineering and a mathemat-
ical point of view, by combining multiprocessing and pipelining techniques with the more theoretical
concepts of cellular automata and algorithms. Such systems exhibit a regular behavior both over ¢ime
and over structure. Traditionally, this behavior has been formalized for verification purposes by means
of recursion, and it has led to induction-based proofs. Unfortunately neither recursive modeling nor
induction-based reasoning are familiar to hardware designers, which accounts in part for the scarce
role played so far by formal methods in the common practice of circuit design. The modeling language

1.e., devices capable of performing the same functions of, for example, typical Abstract Data Type objects, like e.g.
the priority queue of [CaMP89].



M2L(Str) (Monadic Second-Order Logic over Strings) proposed in this paper avoids recursion and
thus is much closer to the modeling practice of hardware designers. As usual for hardware descrip-
tion languages, parameterization is used to capture the structure contained in a systolic array. In
particular,

e Parameterization over time permits capturing the sequential behavior of a single processor in
the form of difference equations.

e Parameterization over structure is particularly suited for VLSI implementations where the same
basic cell is often instantiated many times to yield a regular structure.

Together with the fully automated tool support for M2L(Str), this yields modular definition of circuits
and hierarchical verification, as required in industrial practice.

M2L(Str)is equivalent to Biichi’s weak successor arithmetic WS1S [Biich60] (see [Thom90, Thom97]).
Though the logic and its decision procedure are known since long they have not received much at-
tention for practical applications, mainly because of their staggering non-elementary complexity. Yet,
hardware technology has made some progress since the 60ies and relevant practical problems are
usually far better behaved than the worst-case complexity would suggest.

Recently, second-order monadic theories such as M2L(Str) have been rediscovered for applications
showing their practical potential as natural high-level description languages that combine the full
automation of the model-oriented with the ezpressiveness of the logic-oriented methods [HJJK95,
ABBS95]. In the software area M2L(Str) has been used for the RPC-Memory specification case study
[KNS96], a variant of the problem of the dining philosophers [HJJK95], or in a controller case study for
distributed systems [MaMe97] with attention to codesign aspects. In the hardware area M2L(Str) has
been applied to gate level circuits [BaK195], hardware controllers [MaMe96], and sequential circuits
with parametric data-paths [Marg96].

To our knowledge only a few implementations of monadic second-order theories are available or under
construction at the moment. In Arhus the Mona [HJJK95] and Mona++ packages implement interpre-
tations over strings and trees respectively, and in Kiel the AMoRE system [Matz95] offers a decision
procedure for the logic over trees. At Passau we developed the MoSEL [KMMG97, KMMG97a] syn-
thesis and verification toolset. It is available also as part of METAFrame [SMCB96], an environment
for the analysis, verification and construction of complex systems, which provides e.g. the graphic
facilities for automata display. Decision procedures for monadic second-order theories are also soon
to be integrated into STeP [BBCC96]. A decision procedure for a restricted fragment of S1S, the
first-order formulas with a single outermost second-order quantifier, has recently been presented in
[SchWe97].

Though tools are still at the stage of prototypes, concrete experiences and performance results are
already available for the Mona [HJJK95] and MoSEL [KMMG97] tools. In this paper we use linear,
i.e., one-dimensional, systolic arrays as a case study to give a first comparison of the two systems.
The structure of such iterative systems, called iterative networks, is illustrated in Fig. 1: arrays are
constructed as a linear chain of interconnected instances Cy to C,, of the same basic cell C. Each cell
C,; communicates with the environment via local inputs y; and z} to z¥ (which are the primary inputs
and outputs of the systolic array and which are externally controllable). Additionally, there are uni-
or bidirectional communication channels between adjacent cells. The inputs coming from the extreme
left and right model the communication with the host, and are called boundary conditions. An iterative
system is the class of all iterative networks having the same basic cell and boundary conditions, and
a different number of cells. The iterative system is also characterizable as an iterative network with
unknown (parameterized) number of cells.



Figure 1: Structure of Iterative Linear Systolic Arrays

t::= 0 | $ | p | t 4o i ] 0+ 1

T ::= all | P | compl(T) | T1 dinter T2 | T + i

F::= true | t1 = t2 | t1<t2 | T1 = T2 | tin T |
“F | F1&F2 | All p: F | AllP:F

Figure 2: A basic syntax for M2L(Str)

We deal with the general case, namely sequential® iterative systems of the unilateral, bilateral, or
circular kind®. The problems we are going to attack involve, therefore, parameterization over time,
due to the sequential behavior of the basic cells, and parameterization over structure, since we consider
arrays with arbitrary number of cells.

The internal structure of the basic cells of such systems is usually specified as a finite state machine
(FSM) and implemented in hardware at the gate-level. In particular, at this granularity we will regard
each cell as a “slice” of the overall array.

After presenting our specification language in Section 2 we describe the two considered verification
setups in Section 3. Section 4 presents fully automatic verification of pipeline properties for an example
from the literature [RhS093]. Finally, Section 5 summarizes the lessons learned so far concerning the
practice of designing tools for M2L(Str) and presents first performance results.

2 The Specification Language

The M2L(Str) syntax described here is common to the Mona and the MOSEL tools (see Sect. 3). The
basic operators are reported in Figure 2, where we distinguish first-order terms t denoting positions,
string expressions T, and formulas F. To understand the modeling of iterative systolic arrays, we need

to be familiar with the interpretation of the logic over ¢ime on the one, and over structure on the other
hand.

M2L(Str) for waveforms The interpretation of the logic over waveforms is needed to model and
reason about the sequential circuit implementing the basic cell. Here,

o First-order terms t describe discrete time points or clock cycles. 0 is the start cycle and $ the
final cycle of the considered time interval. The operators + and +o denote (with slight differences)

2Sequential (resp. combinational) networks have sequential (resp. combinational) circuits as basic cells. Sequential
iterative networks correspond to two-dimensional combinational iterative networks.

3 An iterative network is unilateral if the communication channels carry information only in one direction, otherwise
it is bilateral. It is circular if its cells are connected in a ring.



addition modulo the interval length, where i ranges over natural numbers. Finally, p ranges
over first-order variables.

e Second-order terms T denote Boolean signals over the considered time interval, represented as
the set of cycle times in which the signal is set to 1. all is the constant 1 signal, inter is the
pointwise ’and’ of two signals, compl(T) denotes the pointwise complement of T, and + is the
operator which shifts T right by i steps, thus corresponding to the i-clock delay operator on
signals. Finally, P ranges over signals.

e Formulas F specify the behavior of a circuit over all observation intervals. The atomic formulas
are equations t1 = t2 and inequations t1 < t2 of clock cycles, equations on signals T1 = T2,
and the construct t in T, which is true if signal T has value 1 in cycle t. Negation ~ and
conjunction & are as usual. Finally, we can quantify over cycles and signals, A11 p: F, A11 P: F.

M2L(Str) for bit-sliced structures Here first-order terms are taken to represent bit-slice indices,
and second-order terms represent bit-vectors of generic length. The formula t in T then means “the
bit with index t is set to 1 in vector T.” Interpreted in the domain of iterative systolic systems, single
bit-slices correspond to single cells, while a bit-vector ranges over the whole iterative system. In this
setting,

e First-order expressions t describe positions of cells in an array. Since the operator +o which
denotes position shift modulo the string length, the logic is adequate for modeling circular
systems too.

e Second-order expressions T range over entire linear arrays.

Derived M2L(Str) operators Many of the connectives given here, like e.g. position variables and
their connectives, are only included for convenience since they may be encoded within the logic using
second-order variables (see e.g. [Thom90]). Similarly, dual connectives like, e.g., false, the empty
string empty, bitwise union, implication =>, equivalence <=>, existential quantification Ex on strings
are available, as well as a short form for Boolean (propositional) variables, represented as @p, over
which quantification is possible too. Predicate definitions are equalities terminated by semicolons, and
comments are introduced by the symbol #.

Semantic models are constructed by converting formulas to automata as sketched in [HJJK95] and
[KMMG97]. For any formula F that is not a tautology, a minimal length counter-example can be
extracted from the corresponding automaton. This feature is exploited for fault detection, diagnosis
and testing (see [Marg96, MaMe96]).

3 The Analysis, Synthesis, and Verification Environment

We tested two quite different system setups:

e one based on Mona [HJJK95], a tool for a second-order monadic logic implemented in ML,
illustrated in Figure 3, and

e one based on MOSEL [KMMG97] (see Figure 4), a new toolset for the same logic, realized within
METAFrame [SMCB96] and implemented in C/C++.
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In both cases, circuit descriptions given in a hardware description language have to be first translated
into the target logic, along the lines introduced in [Evek90, Marg93]*. Synthesis and verification proofs
can then be carried out fully automatically at the logic level by means of Mona or MOSEL. Results,
in form of an automaton or of a minimal counter-example, can be visualized as a graph within the
METAFrame environment.

Though differing for many important design aspects, as will be explained in detail in Sect. 5, in
both systems predicates are defined as logic formulas and automatically transformed into minimal
automata. BDD techniques are used in order to store the automata’s transitions. Semantic models
are automata, visualized as graphs: Figures 8 and 9 show some automata generated by both tools for
the case study of Sect. 4.

“In these approaches the semantics of Register-Transfer and gate level descriptions was expressed in terms of first-order
logic formulas.



Users can also investigate properties of the graphs by means of hypertext inspectors for nodes and
edges: in addition to their label, nodes have in fact attributes like e.g. start, accepting, non-accepting.
Some of the properties shown in the inspector windows are also indicated by coloring of the nodes/edges
in the graph.

Currently, METAFrame provides graphic and hypertext facilities for the display of the results delivered
by Mona, whose shallow integration level restricts its use to an input/output compatible external
tool. In contrast, MOSEL is part of the Tool Repository, thus additionally the entire tool management
(verification and input/output format conversions) happens within METAFrame.

4 Case Study: the Example of [RhS093] Revisited

This section illustrates, by way of an example, the use of M2L(Str) as a powerful, elegant, and concise
description language, which allows an easy description of VLSI devices with regular structure in a very
compact form. Entire classes of systolic circuits are captured by a single parameterized description.
The parameter can be interpreted as indicating the “length” of the device in terms of the number
of cells. Specific instances can be modeled by simply specifying the actual value of the structural
parameter.

. 1171
o o1
11/0 (@ 101 Lo 011
-0,01/0
Basic Cell 1 Basic Cell 2

Figure 5: Automata of the Two Different Basic Cells

4.1 The Problem

The example chosen by Somenzi and Rho investigates a case where two iterative systems are equivalent
while their basic cells are not. Fig. 5 shows two simple FSMs that are not equivalent. Nevertheless, we
want to verify that two iterative systems with those FSMs as basic cells are equivalent. Note that this
is not a case of different encodings of the same machine, since we start with two minimal deterministic
FSMs which have different numbers of states. Fig. 6 shows the gate-level implementation of the
basic cell reported in [RhS093]. Here the X input is considered to be local, and YO a communication
input. There are no local outputs, and a single communication output Y1. For the verification of the
sequential iterative systems generated by these basic cells, the boundary condition of the first cell is
set to 0. Accordingly, the following two verification problems will be addressed:

e Problem 1: Verify that the sequential circuits implementing the basic cells are not
equivalent.

e Problem 2: Verify that the iterative systems generated by the basic cells and under
the given boundary condition are equivalent.
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Figure 6: Original Implementation of the Basic Cells: Circuits rhsol and rhso2

4.2 The Gate-level Library

The following relations model the behavior of the elementary gates in our logic.

# circuit constructors as relations
not(@a,@b) = (7 (@a) <=> @b);
and(@a,@b,0@c) = ((@a & @b) <=> Qc);
or(@a,@b,0c) = ((@a | @b) <=> @c);

# D-type flip-flop
dff(D,Q) = (A11 t: (t < $§) => (t +o 1 in Q <=> t in D) & (0 notin Q));

Note that we use relations instead of functions. This means that we are not primarily interested in
modelling the signal flow in a circuit, distinguishing causes (variations on the inputs) and effects (the
induced variations on the outputs), but rather consistency conditions. This more abstract view pays
off when dealing with bidirectional signal flows. This way it is immediately possible to model bilateral
communication in systolic systems with no additional cost.

4.3 Problem 1: Synthesis of The Basic Cells

After some reverse engineering in order to reconstruct the state assignments used in [RhS093], we
synthesize the basic cells from this state assignment by means of two-level techniques. We obtain
the circuits our-celll and our-cell2 shown in Fig. 7. Since they differ from the original ones, an
additional proof obligation arises:

e Problem 1A: Verify that each pair of sequential circuits implementing the same
basic cell is equivalent, i.e. rhsol <= our-celll and rhso2 <= our-cell2.

The gate-level implementations of the original basic cells are given in the usual structural fashion,
as netlists of gate-level components. The predicates rhsol and rhso2 describe the basic cells as a
collection of single gates with the appropriate connections. The body of each predicate is a conjunction
of calls to predicates of the gate-level library, where the parameter-passing mechanism is used to
establish the desired wiring. Internal connections (called nets) are hidden by means of existential
quantification.

# Basic Cell 1
rhsol1(X,Y0,Y1) = (Ex D: Ex Y: All t:
nand(t in X,t in YO,t in D) &
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Figure 7: Re-implemented Basic Cells: Circuits our-celll and our-cell2

dff(D,Y) &
not(t in Y,t in Y1));
# Basic Cell 2

rhso2(X,Y0,Y1) = (Ex D1: Ex D2: Ex W: Ex Z1: Ex Z2: All t:
nand3(t in X,t in YO,t in D1,t in D2) &
dff(D2,72) &
not(t in Z2,t in Y1) &
and(t in Y0,t in Y1,t in W) &
or(t in W,t in Z1,t in D1) &
aff (D1,Z1));

The circuits of Figure 7 are described similarly with netlist descriptions our-celll and our-cell?2.
The combinational parts of rhso2 and our-cel12 will be referred to as rhso2comb and our-cell2comb,
respectively. These predicates will be used to show different forms of equivalence.

4.4 Verification 1: Behaviour of the Single Cells

The Automata of the Original Cells It is possible to generate automatically the automaton
corresponding to each predicate, which amounts to solving a synthesis problem. Considering the
original cells, the following commands

rhsol1(X,Y0,Y1)
rhso2(X,Y0,Y1)

cause the computation of the minimal automata corresponding to the predicates describing the original
implementations of the basic cells.

The output offered by the tools consists of a listing of transitions presented in textual form. A
visualization in METAFrame of the same automata is shown in Fig. 8. They coincide with the automata
of Fig. 5, our initial behavioral specification.

Equivalence of the two Original Basic Cells For the two original implementations of the basic
cells, rhsol and rhso2 to possess the same behavior over time, independently of the assignment to
the free variables, the formula

rhso1(X,Y0,Y1) <=> rhso2(X,Y0,Y1) (1)

must be checked. This statement is refuted, as expected, since the corresponding minimal deterministic
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Figure 8: METAFrame’s minimized automata

automata (i.e. the two automata of Figures 5, or equivalently the two of Figure 8) are different. Note
that the same input X is fed to both circuits and that we expect to observe the same output sequences
Y0, Y1 at each pair of corresponding outputs.

4.5 Verification 1A: The Re-implemented Basic Cells

Our goal is to prove that each pair of circuits (rhsol, our-celll) and (rhso2, our-cell2), im-
plementing the same basic cell is equivalent. To this end, several approaches may be possible, in
general.

Complete Verification. The straightforward approach is to prove the equivalence of each pair of
circuits by solving a complete problem of sequential circuits verification, along the lines of the previous
section. In the case of Basic Cell 2, this leads to the following formulation:

Basic Cell 2: rhso2(X,Y0,Y1) <=> our-cell2(X,Y0,Y1) (2)

In fact, this is a theorem. This result was expected, since both implementations have been derived
from the same behavioural specification.

Note that the verification method used here is synthesis-based: first the automata corresponding to
each of the single circuits are generated (synthesis phase), and subsequently their isomorphism is
checked (verification phase).

Partial Verification Techniques. Additional information at hand can help to reduce the verifica-
tion problem to its essential portion. In our case,



1. From the Karnaugh maps we see that the output functions of each pair are identical. Moreover,
the output portion of each circuit pair is indeed topologically identical. The equivalence of each
pair of circuits can thus be reduced to a proof of equivalence of the state transition portions
as sequential circuits: if the circuits are in equivalent states, we already know that they have
equivalent outputs.

2. We additionally know that the state encodings used for each pair of circuits are identical, there-
fore the verification of the combinational circuit determining the next state suffices.

This leads to the following simpler problem:

Basic Cell 2:
rhso2comb(X,Y1,Y2,Z1,Z2,D1,D2) <=> our-cell2comb(X,Y1,Y2,Z1,Z2,D1,D2) (3)

which is a theorem too.

4.6 Problem 2: The Iterative Linear Arrays

The implementation of the arrays generated by the pairs of basic cells described is obtained by appro-
priately connecting neighbouring instances of the basic cells along the communication channels. We
intend to characterize the behaviour of the array as experienced by a signal entering the leftmost cell
at time 0, following its propagation along the array. To this aim, we define a second order variable UY,
which describes what happens at each observation point between two adjacent cells: for both arrays,
the Y1 output of the first cell is fed into the YO input of the adjacent one. The boundary condition for
the first cell is enforced by stipulating that the initial value of the communication input YO is low, O
notin UY (position 0 is not contained in the UY set). This connection scheme leads to the following
descriptions:

# Systolic Array 1
arrayl(X,Y) = (Ex UY: (O notin UY) &
All t: ((t > 0) => (¢t in UY <=> t in Y)) &
rhsol(X,UY,Y));

# Systolic Array 2
array2(X,Y) = (Ex UY: (O notin UY) &
A1l t: ((£t > 0) => (t in UY <=> t in Y)) &
rhso2(X,UY,Y));

This description can be interpreted as following one wave of computation through the array, which is
the usual setting in systolic design. This means, for the initial computation we are “riding through
the array” at the speed of the signals, entering the first cell at the initial time, and moving at each
clock cycle to the right neighbour. The subsequent computations follow the same pattern, but the YO
input of the first cell is no longer 0. Leaving the local inputs as free variables, we are able to capture
all possible executions of the systolic array, under the following two operating conditions:

1. the pipeline (i.e., the set of chained storage elements) is in its initialization state when reached
by the first computation front, and

2. we observe and compare outputs only when they are significant, i.e. after the latency time of
the systolic arrays.

10
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Figure 9: Verification results for the two arrays

These are the standard conditions for systolic systems. Note that the equivalence property consid-
ered in [RhS093] is more restrictive than the standard conditions, since the outputs must be equivalent
at any time, thus also during the latency time, and it disregards completely the first initialization con-
dition. This modelling is indeed quite unusual for systolic systems.

4.7 Verification 2: Behavioural Equivalence of the Arrays

The equivalence theorem is easily stated by the following M2L(Str) formula:
arrayl(X,Y) <=> array2(X,Y) (4)

The minimized automaton corresponding to each predicate encountered during the expansion of the
formula is constructed on-the-fly, which also contains solving two problem of automatic synthesis of
iterative systems with parametric length.

The final result is the trivial automaton reported in Fig. 9 (left). It shows that the formula is indeed
a tautology, since for any input the computation stays in the only existing state, which is accepting.

4.8 Verification of Abstract Properties

In addition to the verification of alternative implementations or of a specification/ implementation
relation between two circuit descriptions, we can formulate and automatically verify relevant abstract
properties of the systems under consideration. This feature is particularly interesting when handling
complex parametric systems, like the iterative sequential systems we are studying.

A relevant property of iterative systolic arrays is e.g. the satisfiability of the formulas expressing their
behaviour. The property is easily formulated as follows:

arrayl(X,Y) => false (5)



array2(X,Y) => false (6)

Here we prove satisfiability of a formula by computing a counterexample for its negation, a technique
largely used in theorem proving and resolution-based provers.

The result is obtained automatically by Mona in less than 1s CPU. Neither formula is true, since both
lead to the minimal automaton of Fig. 9 (right): the only accepting state, marked by the arrow in
the picture (which would be red on the screen), is only reachable through non-accepting states. This
proves that the behaviour of the arrays is indeed satisfiable.

5 Evaluation and Performances

Modelling Hardware in this Logic. The expressive power of M2L(Str) captures only one-dimensional
structures (linearly or circularly arranged). This is due to the interpretation of the logic over strings.
Since strings may be taken to assume different meanings (here and in [MaMe96] sampled waveforms,

in [Marg96] the bitwidth of a datapath) some degree of freedom is left to the designer. However, in
general one needs to reason about behaviours of classes of circuits over time, which calls for genericity
along both time and spatial dimensions. In some cases it is possible to some extent to ‘cut’ along one

of the two axes: here we have renounced to model the whole array at all times, and have chosen to
model one (however generic) pipeline computation. Here this choice still suffices to capture the whole
behaviour, but this is not true in general.

Mona’s Shortcomings. In its current version Mona is still a research prototype. It suffices to demon-
strate on several interesting case studies, spanning diverse application fields, that practical examples
are indeed in general much better behaved than the staggering theoretical worst case complexity.
However, in our experience during the last two years, in which the tool was also used actively by
students in a graduate course on Formal Methods for System Design, the following weaknesses were
observed:

e The intuitive definition of Mona’s implemented constructs found in [HJJK95] has omissions (e.g.,
it misses predicate definitions), inconsistencies, and leaves unclear the correspondence between
the published and the implemented versions of the logic, for instance concerning empty strings.
Distinguishing between primitive and derived constructs, with explicitly documented encodings,
and a proof of the correctness of the semantics, would have avoided those problems.

e The rigid user interface of the tool, which is in pure textual form. Mona accepts only M2L(Str)
formulas and delivers automata and counter examples only as list of transitions. Not even the
output format for automata descriptions can be read again by the tool.

e The shallow integratability of the tool in larger environments. Embedding of Mona into METAFrame
is limited by the rigid interface of the former, which forces a one-directional cooperation: since
Mona has to run inside the ML interpreter, it was not possible to launch it from METAFrame.
Thus we could not use Mona as originally planned.

Design Principles for MOSEL. The following system requirements and main design principles to
MOSEL arose exactly from these points, which, to our knowledge, are not addressed by any other
related project.

12
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1. Definition of a formal semantics for a minimal subset of the logic in terms of finite-state
automata.

2. Layered approach to the logic. We introduce a hierarchy of logic layers, with increasingly
powerful constructs, related by either direct embedding or more elaborate encodings as shown
in Fig. 10.

e The minimal logic contains a minimal set of primitives, for which the semantics is formally
defined in terms of corresponding automata. This set constitutes the reference language
for proofs involving semantics.

e The kernel logic extends the minimal logic by additional (derived) constructs and coincides
with the set of constructs actually implemented as primitives in the semantic decision
procedure. The design of this extension is guided by considerations of efficiency of the
computations required in the decision procedure.

e A set of generic user logics correspond to an application-independent layer. They extend
the kernel logic by derived operators which do not have a direct implementation, but are
comfortable for generic applications. User logics may be rather different from the kernel
logic and need not be a simple syntactic extension. The syntax of Mona Version 0.2 used
in this paper is one of MOSEL’s user logics.

e A number of application-specific logics, each containing additional admissible predicates
and constructs tailored to specific application domains. This paper has shown an example
from the domain of hardware verification, but other application domains are possible.

The semantic coherence of richer logics with the minimal logic is ensured by implementing outer
layers of the logic through successive encodings and definitional extensions to the unique minimal
logic, and by making these explicit. The coherence of the kernel wrt. the minimal logic has also
been proved to some extent automatically in MOSEL, as reported in [KMMG97].

3. Modular design. While Mona is a single large component, MOSEL is a collection of mod-
ules which can be combined or exchanged at need. Following the concept of a repository-based
library of components, MOSEL supports flexible adaptation and extension to new input or out-
put formalisms, as well as the interchange of some of its internal components (e.g., users may
replace the BDD package used in the decision procedure, or the automata minimization and
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‘ ‘ formula ‘ Mona (s) ‘ Mosel (s) ‘ speedup ‘

1 | rhsol1(X,Y0,Y1) < rhso2(X,Y0,Y1) 8 5.05 37%
rhsol1(X,Y0,Y1) < our-celll(X,Y0,Y1) 4 2.02 49%
3 | thso2comb(X,Y1,Y2,71,22,D1,D2)
& our-cell2comb(X,Y1,Y2,71,72,D1,D2) 44 32.79 25%
4 | arrayl(X,Y) < array2(X,Y) 8 5.15 35%
5 | arrayl(X,Y) = false 1 0.70 30%
6 | array2(X,Y) = false 8 4.60 42%

Table 1: Performance comparison between the two M2L(Str) tools on the case study.

determinization algorithms). The aim is that the best-fitting incarnation of the tool may be put
together at need, on an application-driven basis, from the collection of existing components.

4. Integrability in a heterogeneous analysis and verification environment Ilike
METAFrame.

The design and the concrete architecture of MOSEL have been described in [KMMG97], where we
have explained in detail the realization of these system requirements, starting with the introduction
of the logic layers and their semantics, followed by a description of the implementation principles and
finally by the integration within METAFrame.

Interesting is the fact that, once compared on the same level of granularity for the logic (the kernel
logic), MOSEL also performs 25% to 49% better than Mona, as shown in Table 1. On the other
hand, we observed that MOSEL is slower at the level of Mona syntax. This suggests that in the
further development of MOSEL the focus can shift from the basic decision procedures to improving
the compilation algorithms. We are currently extending our measurements to the whole library of
hardware circuits already verified by means of Mona in order to characterize better the performance
profiles of both tools.
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Abstract. PA is the process algebra allowing non-determinism, sequen-
tial and parallel compositions, and recursion. We suggest a view of PA-
processes as tree languages.

Our main result is that the set of (iterated) predecessors of a regular set
of PA-processes is a regular tree language, and similarly for (iterated)
successors. Furthermore, the corresponding tree-automata can be built
effectively in polynomial-time. This has many immediate applications
to verification problems for PA-processes, among which a simple and
general model-checking algorithm.

Introduction

Verification of Infinite State Processes is a very active field of research today in
the concurrency-theory community. Of course, there has always been an active
Petri-nets community, but researchers involved in process algebra and model-
checking really became interested into infinite state processes after the proof that
bisimulation was decidable for normed BPA-processes [BBK87]. This prompted
several researchers to investigate decidability issues for BPP and BPA (with
or without the normedness condition) (see [CHM94,Mol96,BE97] for a partial
survey).

From BPA and BPP to PA: BPA is the “non-determinism + sequential compo-
sition 4 recursion” fragment of process algebra. BPP is the “non-determinism +
parallel composition + recursion” fragment. PA (from [BEH95]) combines both
and is much less tractable. A few years ago, while more and more decidability
results for BPP and BPA were presented, PA was still beyond the reach of the
current techniques. Then R. Mayr showed the decidability of reachability for PA
processes [May97c|, and extended this into decidability of model-checking for PA
w.r.t. the EF fragment of CTL [May97b]. This was an important breakthrough,
allowing Mayr to successfully attack more powerful process algebras [May97a]
while other decidability results for PA were presented by him and other re-
searchers (e.g. [Kuc¢96,Kuc97 JKM9I8,HI9E]).



A field asking for new insights: The decidability proofs from [May97b] (and the
following papers) are certainly not trivial. The constructions are quite complex
and hard to check. Tt is not easy to see in which directions the results and/or
the proofs could be adapted or generalized without too much trouble. Probably,
this complexity cannot be avoided with the techniques currently available in the
field. We believe we are at a point where i1t is more important to look for new
insights, concepts and techniques that will simplify the field, rather than trying
to further extend already existing results.

Our contribution: In this paper, we show how tree-automata techniques
greatly help dealing with PA. Our main results are two Regularity Theorems,
stating that Post™(L) and Pre*(L), the set of configurations reachable from
(resp. allowing to reach) a configuration in L, is a regular tree language when L
18, and giving simple polynomial-time constructions for the associated automata.
Many important consequences follow directly, including a simple algorithm for
model-checking PA-processes.

Why does it work ? The regularity of Post™(L) and Pre*(L) could only be
obtained after we had the combination of two main insights:

1. the tree-automata techniques that have been proved very powerful in several
fields (see [CKSV97]) are useful for the process-algebraic community as well.
After all, PA is just a simple term-rewrite system with a special context-
sensitive rewriting strategy, not unlike head-rewriting, in presence of the
sequential composition operator.

2. the syntactic congruences used to simplify notations in simple process alge-
bras help one get closer to the intended semantics of processes, but they
break the regularity of the behavior. The decidability results are much sim-
pler when one only introduces syntactic congruences at a later stage. (Be-
sides, this is a more general approach.)

Plan of the paper: We start with our definition of the PA algebra (§ 1). Then
we recall what are tree automata and how sets of PA processes can be seen
as tree languages (§ 2). This allows proving that Post™(L) and Pre*(L) are
regular when L is a regular set of PA terms (§ 3). We then extend these re-
sults by taking labels of transitions into account (§ 4) and showing how tran-
sitions “modulo structural congruence” are handled (§ 5). Finally we consider
the important applications in model-checking (§ 6). Several proofs are omited
for lack of space. They can be found in the longer version of this paper at
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS LSV.

Related work: The set of all reachable configurations of a pushdown automa-
ton form a regular (word) language. This was proven in [Biic64] and extended
in [Cau92]. Applications to the model-checking of pushdown automata have been
proposed in [FWW97 BEM97].

% over PA terms is similar to the transitive closure of relations defined
by ground rewrite systems. Because the sequential composition operator in PA



implies a certain form of prefix rewriting, the ground tree transducers of Dauchet
and Tison [DT90] cannot recognize —. It turns out that = can be seen as a
rational tree relation as defined by Raoult [Rao97].

Regarding the applications we develop for our regularity theorems, most have
been suggested by Mayr’s work on PA [May97c,May97b] and/or our earlier work
on RPPS [KS97a,KS97b].

1 The PA process algebra

1.1 Syntax

Act ={a,b,c,...} is a set of action names.
Var = {X,)Y, Z,...} is a set of process variables.
Epa = {t,u,...} is the set of PA-terms, given by the following abstract syntax

tbus=0|X |tul|t]| u

where X is any process variable from Var. Given t € Epy, we write Var(t) the
set of process variables occurring in ¢ and Subterms(t) the set of all subterms of
t (¢ included).

A guarded PA declaration is a finite set A = {X; B ¢; | i =1,...,n} of
process rewrite rules. Note that the X;’s need not be distinct.

We write Subterms(A) for the union of all Subterms(t) for ¢ a right- or a left-
hand side of a rule in A, and let Var(A) denotes Var N Subterms(A), the set of
process variables occurring in A. A, (X) denotes {t | there is a rule “X % ¢” in A}

and A(X) is Uy aer Aa(X). Varg = (X € Var | A(X) = @} is the set of vari-

ables for which A provides no rewrite.
In the following, we assume a fixed Var and A.

1.2 Semantics

A PA declaration A defines a labeled transition relation —AC FEpa X Act X Epp.
We always omit the A subscript when no confusion is possible, and use the

standard notations and abbreviations: t = ¢/ with w € Act*, t Kt with k € N,

t 5S¢, t—, ... —a isinductively defined via the following SOS rules:
t St t St
— L7 L —(X31nea
2] ||t2—>t/1 ||t2 tl.t2—>t/1.t2 X >t
ty 5t ty 5t ,
2 ~ 2 2 ~ 2 IsNil(ty)
2] ||t2—>t1 ||t/2 tl.t2—>t1.t/2

The second SOS rule for sequential composition is peculiar: it uses a syntactic
predicate, “IsNil(t1)”, as a side condition checking that ¢; cannot evolve any-
more, i.e. that ¢; 1s terminated. Indeed, our intention is that the ¢, part in t;.t5
only evolves once t; is terminated.



The IsNil(...) predicate is inductively defined by
IsNil(ty || ta) = IsNil(t1) A IsNil(ts),  IsNil(0) = true,

true if A(X) = @,
false otherwise.

IsNil(t1.t2) = IsNil(t1) A IsNil(to), IsNil(X) = {

It is indeed a syntactic test for termination, and we have

Lemma 1. The following three properties are equivalent:
1. IsNil(t) = true,

2.1 h (i.e t is terminated),

3. Var(t) C Varg.

1.3 Structural equivalence of PA terms

Several works on PA and related algebras only consider processes up-to some
structural congruence. PA itself usually assumes an equivalence = defined by
the following equations:

@) t||t'=t ||t
(A @)= @ |17)
(A (tt) 4" = t.(t' ")

(N)) t0=t  (Ns) t]0o=t
(N)  0t=t  (Na) Oft=t

= respects the behaviour of process terms. However, we do not want to identify
PA terms related by = !

Our approach clearly separates the behavior of Epa (the — relation) and
structural equivalence between terms (the = relation). We get simple proofs
of results which are hard to get in the other approach because the transition
relation and the equivalence relation interact at each step.

In the following, we study first the — relation. Later (§ 5) we combine — and
structural equivalence and show how it is possible to reason about “PA-terms
modulo =”. In effect, this shows that our approach is also more general since we

—

can define the “modulo =” approach in our framework.

2 Tree languages and PA

We shall use tree automata to recognize sets of terms from Epa.

2.1 Regular tree languages and tree automata

We recall some basic facts on tree automata and regular tree languages. For more
details, the reader is referred to any classical source (e.g. [CDG197,GS97]).

A ranked alphabet is a finite set of symbols F together with an arity function
n : F — N. This partitions F according to arities: F = Fo U F U F U ---. We



write 7 (F) the set of terms over F and call them finite trees or just trees. A tree
language over F is any subset of T (F).

A (finite, bottom-up) tree automaton (a “TA”) is a tuple A = (F,Q, F, R)
where F is a ranked alphabet, @ = {q¢,q’,...} is a finite set of states, F C @
is the subset of final states, and R is a finite set of transition rules of the form
flg1,---,qn) —> ¢ where n > 0 is the arity n(f) of symbol f € F. TA’s with
¢-rules also allow some transition rules of the form ¢ — ¢'.

The transition rules define a rewrite relation on terms built on F U Q (seeing

states from @ as nullary symbols). This works bottom-up. We write ¢ Ay q
when ¢ € T(F) can be rewritten (using any number of steps) to ¢ € @ and say ¢
is accepted by A if it can be rewritten into a final state of .A. We write L(A) for
the set of all terms accepted by .A. Any tree language which coincide with L(.A)
for some A is a regular tree language. Regular tree languages are closed under
complementation, union, etc.

An example: Let F be given by Fy = {a, b}, F1 = {g} and Fo = {f}. Thereis a
TA| Acyen ¢, accepting the set of all ¢ € 7 (F) where g occurs an even number of
times in ¢. Aeven 4 is given by Q@ = {go,q1}, R = {a — qo,b — q0,9(q0) —
1, 9(q1) = qo, f(q0,90) = qo, f(q0, 1) = q1, f(q1,90) — @1, f(q1, q1) —
go} and F = {qo}. Let ¢ be g(f(g(a),b)). Acven g rewrites ¢t (deterministically)
as follows:

g(f(g(a),b)) — g(f(9(q0),90)) — 9(f(q1,90)) — 9(q1) — qo.

Hence t — ¢y € F so that t € L(Acveng)-

The size of a TA A, denoted by |A|, is the number of states of A augmented
by the size of the rules of A where a rule f(¢1,...,¢n) — ¢ has size n + 2.
Notice that, for a fixed F where the largest arity is m, |.A| is in O(|Q["").

A TA is deterministic if all transition rules have distinct left-hand sides (and
there are no e-rule). Our earlier Aeyen 4 example was deterministic. Given a non-
deterministic TA, the classical subset construction yields a deterministic TA
accepting the same language (this construction involves a potential exponential
blow-up in size).

Telling whether L(A) is empty for some TA A can be done in time O(|A|).
Telling whether a given tree ¢ is accepted by a given A can be done in time
polynomial in |A| + |¢].

A TA is completely specified (also complete) if foreach f € F, and q1, ..., qn €
Q, thereisarule f(q1,...,qn) — ¢. By adding a sink state and the obvious rules,
any A can be extended into a complete TA accepting the same language.

2.2 Some regular subsets of Epa

Epa, the set of PA-terms, can be seen as a set of trees, i.e. as T(F) for F given
by Fo ={0,X,Y,...} (={0}U Var) and F2 = {..||}.
We begin with one of the simplest languages in Epa:



Proposition 2. For any t, the singleton tree language {t} is regular, and a TA
for {t} needs only have |t| states.

The set of terminated processes is also a tree language. Write L for { € Fpa |
IsNil(t)}. An immediate consequence of Lemma 1 is

Proposition 3. L? is a reqular tree language, and a TA for L2 needs only have
one state.

3 Regularity of Post*(L) and Pre*(L) for a regular
language L

Given a set [ C Epa of PA-terms, we let Pre(L) = {t | 3’ € L,t — '} and
Post(L) = {t | 3’ € L,t' — t} denotes the set of (immediate) predecessors (resp.
successors) of terms in L. Pre™ (L) = Pre(L)UPre(Pre(L))U- - - and Postt (L) =
Post(L)UPost(Post(L))U- - - contain the iterated predecessors (resp. successors).
Similarly, Pre* (L) denotes LU Pre* (L) and Post™(L) is LU Post™* (L), also called
the reachability set.

In this section we prove the regularity of Pre* (L) and Post* (L) for a regular
language L. Pre*(L) and Post*(L) do not take into account the labels accom-
panying PA transitions, but these will be considered in section 4.

For notational simplicity, given two states ¢,¢" of a TA A, we denote by
9(q,q") (resp. d.(q,q") any state ¢ such that ¢ || ¢ Ay q" (resp. ¢.¢' Ay q",
possibly using e-rules.

3.1 Regularity of Post™(L)

First, we give some intuition which helps understanding the construction of a
TA Aposi+ accepting Post™(L).

Let us assume A contains X — ry and Y — 79, and that rq is terminated.
Starting from ¢; = X.Y, there exists the transition sequence t; — t» — {3
illustrated in figure 1.

ty ts t3

' /\
AT A

Fig. 1. An example sequence: X.Y — r1.Y — ri.rp



We want to build Apysr, a TA that reads 3 (i.e. r1.72) bottom-up and sees
that it belongs to Post™(L). For this, the TA has to recognize that {3 comes from
t; (i.e. X.Y) and check that ¢; is in L.

1. Apyse» must recognize that ry (resp. r2) is the right-hand side of a rule X —
71 (resp. Y — r3). Therefore we need an automaton .Aa which recognizes
such right-hand sides.

2. The automaton Ap,s+ works on t3 but must check that ¢; is in L. Therefore
we need an automaton Ay accepting L. Ap,s+ mimicks Ap but it has ad-
ditional rules simulating rewrite steps: once r; has been recognized (by the
Aa part), the computation may continue as if X were in place of r1. The
same holds for r5 and Y.

3. The transition between ¢ and ¢3 is allowed only if 1 is terminated. Therefore
we need an automaton Ag to check whether a term 1s terminated.

4. A non-terminated term is allowed to the left of a “.” when no transition has
been performed to the right. Therefore we use a boolean value to indicate
whether rewrite steps have been done or not.

These remarks lead to the following construction.

Ingredients for Ap,+: Assume Aj is an automaton recognizing L C Epa.
Apostr 18 a new automaton combining several ingredients:

— Ag is a completely specified automaton accepting terminated processes (see
Proposition 3).

— Ap is a completely specified automaton accepting L.

— Apa is a completely specified automaton recognizing the subterms of A. It
has all states ¢, for s € Subterms(A). We ensure “ Aa gs iff s = 7
by taking as transition rules 0 — ¢¢ if 0 € Subterms(A), X — ¢x if
X € Subterms(4), ¢s || g5 — qs)|sr (resp. qs.qsr — qs.50) if s || 8" (resp.
s.s") belongs to Subterms(A). In addition, the automaton has a sink state ¢
and the obvious transitions so that it is a completely specified automaton.

— The boolean b records whether rewrite steps have occurred.

States of Ap,+: The states of Apysr are 4-uples (¢ € Qa,, 90 € Qa,, 94 €
QA b € {true, false}) where @) denotes the set of states of the relevant au-
tomaton.

Transition rules of Ap,,+: The transition rules are:

Ag
type 0: all rules of the form 0 — (¢o, 1, 9a, false) s.t. 0 — ¢4, 0 Az, qr, and
0 lg qdA.
Ag
type 1: all rules of the form X —— (¢o,q1, 94, false) s.t. X — ¢, X »ﬂ> qz,

and X 224 JA.
type 2: all e-rules of the form (¢z,q7,9s,0") — (9o, 41, ¢x, true) s.t. X — s

is a rule in A and X 2% qr-



type 3: all rules of the form

(qga qr,4qA4, b) || (qlga q/La q/Aa b/) — (6” ((]ra, qlg)a 6” (qLa q/L)a 6” (qAa q/A)a bv b/)
type 4a: all rules of the form

(92, 41,94,b) (45, 47, @'a, false) — (0. (45, 4%),0. (91, 47),0.(44, ds), D).
type 4b: all rules of the form

(q@a qr,44, b)(qlga q/La q/Aa b/) — ((5(QQ, qlg)a (5,(QL, q/L)a 6.(QAa q/A)a b \ b/) s.t.

¢z 1s a final state of Ag.

This construction ensures the following lemma, whose complete proof is given
in the full version of this paper.

Lemma 4. For anyt € Epa, t ity (92,4qL,94,b) iff there is some u € Epa

and some p € N such that u 2, u ALy qr, u Aa qa, (b= false iff p =0) and

Agp
i — G-

If we now let the final states of Ap,s+ be all states (¢o,qr,qa,b) s.t. qr is a

final state of Ap, then Ap,s+ accepts a term ¢ iff u 5 ¢ for some u accepted by
Ay iff ¢ belongs to Post™(L). We get our first main result:

Theorem 5. (Regularity of Post™(L))

(1) If L is a regular subset of Epa, then Post™(L) is regular.

(2) Furthermore, from a TA Ap recognizing L, is it possible to construct (in
polynomial time) a TA Apos» recognizing Post™(L). If Ap has k states, then
Aposer needs only have O(k.|A|) states.

Notice that a TA for Post+(L) can be obtained just by requiring that the final
states have b = true as their fourth component.

3.2 Regularity of Pre*(L)

Assume we have a TA Ap .+ recognizing Pre”(L). If we consider the same se-
quence t; — ts — t3 from Fig. 1, we want Ap.+ to accept ty if {3 is in L.
The TA must then read t;, imitating the behaviour of Ap. When Ap,.+ sees a
variable (say, X), it may move to any state q of Ap that could be reached by
some ¢ € Post™(X). This accounts for transitions from X, and of course we must
keep track of the actual occurences of transitions so that they do not occur in
the right-hand side of a “.” when the left-hand side is not terminated.
This leads to the following construction:

Ingredients for Ap,.+«: Assume Ay is an automaton recognizing L C Epy.
Apre+ 1s a new automaton combining several ingredients:

— Ag is a completely specified automaton accepting terminated processes (see
Proposition 3).

— Ay is the automaton accepting L.

— The boolean b records whether some rewriting steps have been done.



States of App+: A state of App+ is a 3-tuple (¢o € Qa,, 90 € Qa,,b €
{true, false}) where (). denotes the set of states of the relevant automaton.

Transition rules of Ap,.+: The transition rules of Ap,.+ are defined as follows:

Ag
type 0: all rules of the form 0 — (¢4, ¢z, false) s.t. 0 — g5 and 0 Ay qr.
type la: all rules of the form X — (qo,qr, true) s.t. there exists some u €

. Ag
Postt(X) with u > ¢z and u Ay qr.

type 1b: all rules of the form X — (qg, q1, false) s.t. X bA—Z> ¢ and X Ay qr.

type 2: allrules of the form (g2, ¢, 8) || (95,97, b") — (9 (92, 9%), 9 (qr, 4% ), bV
b).

type 3a: allrules of the form (¢s, ¢1.,8).(¢%, ¢7., V") — (0 (90, ¢%),0 (91, 47 ), bV
b') s.t. qo is a final state of Ag.

type 3b: allrules of the form (¢4, 1, b).(¢%, 47, false) — (0 (42, 4%),9.(q1., 47), b).

This construction allows the following lemma, whose complete proof is given in
the full version of this paper.

Lemma 6. For anyt € Epa, t Ay (42,91, b) iff there is some u € Epp and
Ag .
some p € N such that t 5 u, u ™ qo, u Ary qr and (b= false iff p=10).

If we now let the final states of Apn+ be all states (¢o,qr,0) s.t. ¢z is a
final state of Ay, then ¢ 2 u for some u accepted by Ay il Apq+ accepts t
(this is where we use the assumption that A4 is completely specified). This is
summarized by the next theorem.

Theorem 7. (Regularity of Pre™(L))

(1) If L is a reqular subset of Fpa, then Pre*(L) is regular.

(2) Furthermore, from an automaton Ay, recognizing L, is it possible to construct
in polynomial time) an automaton Apy.~ recognizing Pre*(L). If Ar has k
(in poly gnizing

states, then Apre+ needs only have 4k states.

Proof. (1) is an immediate consequence of Lemma 6. Observe that the regularity
result does not need the finiteness of A (but Var(A) must be finite).

(2) Building Apy- effectively requires an effective way of listing the type
la rules. This can be done by computing a product of Ax, an automaton
for Post+(X), with Ay and Aj;. Then there exists some u € Post+(X) with

U lg gz and wu Ary gy, iff the the language accepted by the final states
{(¢x,492,91) | ¢x a final state of Ax} is not-empty. This gives us the pairs
gz, qr we need for type la rules. Observe that we need the finiteness of A to
build the Ax’s. a

Actually, the = relation between PA-terms is a rational tree relation in the
sense of [Rao97]. This entails that Pre*(L) and Post™(L) are regular tree lan-
guages when L is. Raoult’s approach is more powerful than our elementary con-
structions but it relies on complex new tools (much more powerful than usual



TA’s) and does not provide the straightforward complexity analysis we offer.
Moreover, the extensions we discuss in section 4 would be more difficult to ob-
tain in his framework.

3.3 Applications

Theorems 5 and 7 already give us simple solutions to verification problems over
PA: the reachability problem asks, given t, u (and A), whether ¢ % w. The bound-
edness problem asks whether Post*(¢) is finite. They can be solved in polynomial
time just by looking at the TA for Post*(¢). Variant problems such as “can we
reach terms with arbitrarily many occurences of X in parallel 27 can be solved
equally easily.

4 Reachability under constraints

In this section, we consider reachability under constraints, that is, reachability
where the labels of transitions must respect some criterion. Let C' C Act™ be
a (word) language over action names. We write ¢ S ¢ when t %% ¢ for some
w € C, and we say that ¢’ can be reached from ¢ under the constraint C'. We
extend our notations and write Pre*[C](L), Post*[C](L), ... with the obvious
meaning.

Observe that, in general, the problem of telling whether ¢ S (i.e. whether
Post™[C](t) is not empty) is undecidable for the PA algebra even if we assume
regularity of C' 1. In this section we give sufficient conditions over C' so that
the problem becomes decidable (and so that we can compute the C-constrained
Pre® and Post™ of a regular tree language).

Recall that the shuffle w || w' of two finite words is the set of all words one
can obtain by interleaving w and w’ in an arbitary way.

Definition 8. {(Cy,C1),...,(Cn,CL)} is a (finite) seg-decomposition of C' iff
for all w, w’ € Act® we have

ww €C it (we C;,w' € Cf for some 1 <i<m).

{(C1,CY), ..., (Cm,C})} is a (finite) paral-decomposition of C iff for all w, w' €
Act” we have

Cnwl|w)#o iff (weC;,w e for some 1< i< m).

! E.g. by using two copies a,a of every letter a in some ¥, and by using the regular
constraint ¢ = (arar + -+ a_n.ﬂ)*ﬁ.g, we can state with “(¢1 || %2) & 27 that
t1 and ¢ share a common trace ending with #. This can be used to encode the
(undecidable) empty-intersection problem for context-free grammars.



The crucial point of the definition is that a seq-decomposition of C' must apply to
all possible ways of splitting any word in C'. It even applies to a decomposition
w.w' with w = ¢ (or w' = ¢) so that one of the C;’s (and one of the C/’s)
contains €. Observe that the formal difference between seq-decomposition and
paral-decomposition comes from the fact that w || w’, the set of all shuffles of w
and w’ may contain several elements.

Definition 9. A family C = {C4,...,C,} of languages over Act is a finite
decomposition system iff every C' € C admits a seq-decomposition and a paral-
decomposition only using C;’s from C. A language C'is decomposable if it appears
in a finite decomposition system.

Not all ¢ C Act™ are decomposable, e.g. (ab)* is not. It is known that
decomposable languages are regular and that all commutative regular languages
are decomposable. (Write w ~ w’ when w’ is a permutation of w. A commutative
language is a language C closed w.r.t. ~). Simple examples of commutative
languages are obtained by considering the number of occurrences (rather than

the positions) of given letters: for any positive weight function é given by #(w) =

> nifwl,, with n; € N, the set C' of all w s.t. 0(w) = k (or 6(w) < k, or O(w) > k,
or f(w) = k mod k') is a commutative regular language, hence is decomposable.

However, a decomposable language needs not be commutative: finite lan-
guages are decomposable, and decomposable languages are closed by union, con-
catenation and shuffle.

Theorem 10. (Regularity)
For any regular L C Epa and any decomposable C, Pre*[C](L) and Post™[C(L)
are reqular tree languages.

Proof. The construction is similar to the constructions for Pre*(L) and Post™ (L).
See the full version of the paper. a

5 Handling structural equivalence of PA-terms

In this section we show how to take into account the axioms (A.), (C)), (4)) and
(N71) to (Ny4) (from section 1.3) defining the structural equivalence on Epp terms.

Some definitions of PA consider PA-terms modulo =. This viewpoint assumes
that a PA-term ¢ really denotes an equivalence class [t]=, and that transitions are
defined between such equivalence classes, coinciding with a transition relation
we would define by

def

Mz Sz € FH ez, v €u)zst. t! S (1)

This yields a new process algebra: PA=.



In our framework, we can define a new transition relation between PA-terms:
tS 1 ifft = u > u =t for some u, ', ie. [t]= — [u]=. We adopt the usual
abbreviations =, L for ke N, etc.

Seeing terms modulo = does not modify the observable behaviour because
of the following standard result:

Proposition 11. = has the transfer property, i.e. it is a bisimulation relation,
ie. forallt =t and t = u there is a t' = u' with w = v’ (and vice versa).

Proof. Check this for each equation, then deal with the general case by using
congruence property of = and structural induction over terms, transitivity of
= and induction over the number of equational replacements needed to relate t
and t'. Observe that IsNil is compatible with =. a

Proposition 12. t Ly iff t B for some u' = u.

The reachability problem solved by Mayr actually coincides with “reacha-

bility modulo =” or “reachability through =7 Our tree automata method can
deal with this, as we now show.

5.1 Structural equivalence and regularity

(A), (C)) and (4)) are the associativity-commutativity axioms satisfied by .
and ||. We call them the permutative arioms and write t =p « when ¢ and u are
permutatively equivalent.

(N1) to (N4) are the axioms defining 0 as the neutral element of . and ||. We
call them the simplification azioms and write ¢ \, v when u is a simplification
of ¢, i.e. u can be obtained by applying the simplification axioms from left to
right at some positions in ¢. Note that Y\ is a (well-founded) partial ordering. We
write / for (\,)™'. The simplification normal form of ¢, written ¢/, is the unique
u one obtains by simplifying ¢ as much as possible (no permutation allowed).

Such axioms are classical in rewriting and have been extensively studied [BN98].
= coincide with (=p U N\, U /)*. Now, because the permutative axioms com-
mute with the simplification axioms, we have

t=¢ it tNu=pu St forsomeu,u’ I tl=p¥l. (2)

Lemma 13. For any t, the set [t]=, = {u |t =p u} is a regular tree language,

and an automaton for [t]=, needs only have m.(m/2)! states if |t| = m.

Note that for a regular L, [L]=, (and [L]=) are not necessarily regular.

The simplification axioms do not have the nice property that they only allow
finitely many combinations, but they behave better w.r.t. regularity. Write [L]\,
for {u |ty u for some t € L}, [L] for {v | u \ t for some ¢t € L}, and [L]] for
{t} |t e L}.



Lemma 14. For any regular L, the sets [L]\,, [L], and [L]] are regular tree
languages. From an automaton A recognizing L, we can build automata for these
three languages in polynomial time.

Corollary 15. “Boundedness modulo =” of the reachability set is decidable in
polynomial-time.

Proof. Because the permutative axioms only allow finitely many variants of any
given term, Post™(L) contains a finite number of non-= processes iff [Post™(L)]|
is finite. d

We can also combine (2) and lemmas 13 and 14 and have

Proposition 16. For any t, the set [t]= is a regular tree language, and an au-
tomaton for [tz needs only have m.(m/2)! states if |t| = m.

Now it is easy to prove decidability of the reachability problem modulo =: ¢ = u
iff Post™(t) N [u]z # @. Recall that [u]=z and Post*(t) are regular tree-languages
one can build effectively. Hence it 1s decidable whether they have a non-empty
intersection.

This gives us a simple algorithm using exponential time (because of the size
of [u]=). Actually we can have a better result %:

Theorem 17. The reachability problem in PA=, “given t and u, do we have
t = u ?7, is NP-complete.

Proof. NP-hardness of reachability for BPP’s is proved in [Esp97] and the proof
idea can be reused in our framework (see long version).

NP-easiness is straightforward in the automata framework. We have t = u iff
t 5 ' for some w s.t. w') =p ul. Write «” for u'] and note that |u”| < |ul.
A simple NP algorithm is to compute ul, then guess non-deterministically a
permutation «”, then build automata A; for [u”]\, and A, for Post™(t). These
automata have polynomial-size. There remains to checks whether A4; and A,
have a non-empty intersection to know whether the required u' exists. a

6 Model-checking PA processes

In this section we show a simple approach to the model-checking problem which
is an immediate application of our main regularity theorems. We do not con-
sider the structural equivalence = until section 6.3, where we show that the
decidability results are a simple consequence of our previous results.

2 First proved in [May97c]



6.1 Model-checking in Epp

We consider a set Prop = {Py, Py, ...} of atomic propositions. For P € Prop,
Let Mod(P) denotes the set of PA processes for which P holds. We only con-
sider propositions P such that Mod(P) is a regular tree-language. Thus P could
be “t can make an a-labeled step right now”, “there is at least two occurences
of X inside t”, “there is exactly one occurence of X in a non-frozen position”, ...

The logic EF has the following syntax:
pu=Ploe|ene |EXe | EFp

and semantics

def

1 PE e Mod(P),
tE-p &tk
tEene BitEpandt ¢,

tEEXe Bt = ¢ for some t — 1/,
t EEFp ¢ = o for some t 5t/

Thus EXy reads “it is possible to reach in one step a state s.t. ¢” and EFy reads
“it is possible to reach (via some sequence of steps) a state s.t. ¢”.

Definition 18. The model-checking problem for EF over PA has as inputs: a
given A, a given ¢ in Epa, a given ¢ in EF. The answer is yes iff { = .

We now extend the definition of Mod to the whole of EF: Mod(p) = {t € Epa |
t = ¢}, we have

Mod(—¢) = Epa — Mod(y) Mod(EXg) = Pret (Mod () 3)
Mod(p A ¢') = Mod() N Mod(¢') Mod (EFp) = Pre™ (Mod(y)

Theorem 19. (1) For any EF formula ¢, Mod(y) is a regular tree language.
(2) If we are given tree-automata Ap’s recognizing the regular sets Mod(P), then
a tree-automaton A, recognizing Mod(p) can be built effectively.

This gives us a decision procedure for the model-checking problem: build an
automaton for Mod(p) and check whether it accepts ¢. Observe that computing
a representation of Mod(y) is more general than just telling whether a given
t belongs to it. Observe also that our results allow model-checking approches
based on combinations of forward and backward methods (while Theorem 19
only relies on the standard backward approach.)

The above procedure is non-elementary since every nesting level of nega-
tions potentially induces an exponential blowup. Actually, negations in ¢ can be
pushed towards the leaves and only stop at the EF’s, so that really the tower of
exponentials depend on the maximal number of alternations between negations
and EF’s in . The procedure described in [May97b] is non-elementary and today
the known lower bound is PSPACE-hard.



6.2 Model-checking with constraints

We can also use the constraints introduced in section 4 to define an extended EF
logic where we now allow all {C)¢ formulas for decomposable C'. The meaning is
given by Mod((C)p) = Pre*[C](Mod()). This is quite general and immediately
include the extensions proposed in [May97b].

6.3 Model-checking modulo =

The model-checking problem solved in [May97b] considers the EF logic over
PA-.

In this framework, the semantics of EF-formulas is defined over equivalence
classes, or equivalently, using the = relation and only considering atomic propo-
sitions P s.t. Mod(P) is closed under =.

But if the Mod(P)’s are closed under =, then ¢t = ¢ in PA iff t | ¢ in
PA= (a consequence of Proposition refprop-equiv-transfer), so that our earlier
tree-automata algorithm can be used to solve the model-checking problem for
PA=. We can also easily allow constraints like in the previous section.

Conclusion

In this paper we showed how tree-automata techniques are a powerful tool for the
analysis of the PA process algebra. Our main results are two general Regularity
Theorems with numerous immediate applications, including model-checking of
PA with an extended EF logic.

The tree-automata viewpoint has many advantages. It gives simpler and more
general proofs. It helps understand why some problems can be solved in P-time,
some others in NP-time, etc. It 1s quite versatile and we believe that many
variants of PA can be attacked with the same approach.

We certainly did not list all possible applications of the tree-automata ap-
proach for verification problems in PA. Future work should aim at better under-
standing which problems can benefit from our TA viewpoint and techniques.
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References

[BBK&7] J.C. M. Baeten, J. A. Bergstra, and J. W. Klop. Decidability of bisimulation
equivalence for processes generating context-free languages. In Proc. Paral-
lel Architectures and Languages Europe (PARLE’87), Eindhoven, NL, June
1987, vol. II: Parallel Languages, volume 259 of Lecture Notes in Computer
Science, pages 94-111. Springer-Verlag, 1987.



[BE97]

[BEHO5]

[BEMO97]

[BNOS]

[Blic64]

[Cau92]

O. Burkart and J. Esparza. More infinite results. In Proc. 1st Int. Workshop
on Verification of Infinite State Systems (INFINITY 96), Pisa, Italy, Aug.
80-31, 1996, volume 5 of FElectronic Notes in Theor. Comp. Sci. Elsevier,
1997.

A. Bouajjani, R. Echahed, and P. Habermehl. Verifying infinite state
processes with sequential and parallel composition. In Proc. 22nd ACM
Symp. Principles of Programming Languages (POPL’95), San Francisco,
CA, USA, Jan. 1995, pages 95-106, 1995.

A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown
automata: Application to model-checking. In Proc. 8th Int. Conf. Concur-
rency Theory (CONCUR’97), Warsaw, Poland, Jul. 1997, volume 1243 of
Lecture Notes in Computer Science, pages 135-150. Springer-Verlag, 1997.
F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Uni-
versity Press, 1998.

J. R. Biichi. Regular canonical systems. Arch. Math. Logik Grundlag.,
6:91-111, 1964.

D. Caucal. On the regular structure of prefix rewriting. Theoretical Com-
puter Science, 106(1):61-86, 1992.

[CDGY97] H. Comon, M. Dauchet, R. Gilleron, D. Lugiez, S. Tison, and M. Tommasi.

[CHMO94]

[CKSV97]

[DT90]

[Esp97]

[FWW97]

[GS97]

[[LJ9g]

[JKMOS]

[KS97a]

Tree automata and their application, 1997. A preliminary version of this (yet
unpublished) book is available at http://13ux02.univ-1ille3.fr/tata.
S. Christensen, Y. Hirshfeld, and F. Moller. Decidable subsets of CCS. The
Computer Journal, 37(4):233-242, 1994.

H. Comon, D. Kozen, H. Seidl, and M. Y. Vardi, editors. Applications of
Tree Automata in Rewriting, Logic and Programming, Dagstuhl-Seminar-
Report number 193. Schloff Dagstuhl, Germany, 1997.

M. Dauchet and S. Tison. The theory of ground rewrite systems is de-
cidable. In Proc. 5th IEEE Symp. Logic in Computer Science (LICS’90),
Philadelphia, PA, USA, June 1990, pages 242—-248, 1990.

J. Esparza. Petri nets, commutative context-free grammars, and basic par-
allel processes. Fundamenta Informaticae, 31(1):13-25, 1997.

A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model
checking pushdown systems (extended abstract). In Proc. 2nd Int. Work-
shop on Verification of Infinite State Systems (INFINITY’97), Bologna,
Ttaly, July 11-12, 1997, volume 9 of Electronic Notes in Theor. Comp. Scu.
Elsevier, 1997.

F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 3, chapter 1, pages 1-68.
Springer-Verlag, 1997.

Y. Hirshfeld and M. Jerrum. Bisimulation equivalence is decidable for
normed Process Algebra. Research Report ECS-LFCS-98-386, Lab. for
Foundations of Computer Science, Edinburgh, May 1998.

P. Jancar, A. Kucera, and R. Mayr. Deciding bisimulation-like equiva-
lences with finite-state processes. Tech. Report TUM-I9805, Institut fiir
Informatik, TUM, Munich, Germany, February 1998. To appear in Proc.
ICALP’98, Aalborg, DK, July 1998.

O. Kouchnarenko and Ph. Schnoebelen. A model for recursive-parallel pro-
grams. In Proc. 1st Int. Workshop on Verification of Infinite State Systems
(INFINITY’96), Pisa, Italy, Aug. 1996, volume 5 of Electronic Notes in
Theor. Comp. Sct. Elsevier, 1997.



[KS97b]

[Kuc96]

[Kuc97]

[May97a]

[May97b]

[May97c]

[Mol96]

[Ra097]

O. Kushnarenko and Ph. Schnoebelen. A formal framework for the analysis
of recursive-parallel programs. In Proc. 4th Int. Conf. Parallel Comput-
ing Technologies (PaCT’97), Yaroslavl, Russia, Sep. 1997, volume 1277 of
Lecture Notes in Computer Science, pages 45-59. Springer-Verlag, 1997.

A. Kucera. Regularity is decidable for normed PA processes in polynomial
time. In Proc. 16th Conf. Found. of Software Technology and Theor. Comp.
Sci. (FSTETCS96), Hyderabad, India, Dec. 1996, volume 1180 of Lecture
Notes in Computer Science, pages 111-122. Springer-Verlag, 1996.

A. Kucera. How to parallelize sequential processes. In Proc. 8th Int. Conf.
Concurrency Theory (CONCUR’97), Warsaw, Poland, Jul. 1997, volume
1243 of Lecture Notes in Computer Science, pages 302-316. Springer-Verlag,
1997.

R. Mayr. Combining Petri nets and PA-processes. In Proc. 4th Int. Symp.
Theoretical Aspects Computer Software (TACS’97), Sendai, Japan, Sep.
1997, volume 1281 of Lecture Notes in Computer Science, pages 547-561.
Springer-Verlag, 1997.

R. Mayr. Model checking PA-processes. In Proc. 8th Int. Conf. Concurrency
Theory (CONCUR’97), Warsaw, Poland, Jul. 1997, volume 1243 of Lecture
Notes in Computer Science, pages 332—-346. Springer-Verlag, 1997.

R. Mayr. Tableaux methods for PA-processes. In Proc. Int. Conf. Automated
Reasoning with Analytical Tableauz and Related Methods (TABLEAUX’97),
Pont-a-Mousson, France, May 1997, volume 1227 of Lecture Notes in Arti-
ficial Intelligence, pages 276-290. Springer-Verlag, 1997.

F. Moller. Infinite results. In Proc. 7th Int. Conf. Concurrency Theory
(CONCUR’96), Pisa, Italy, Aug. 1996, volume 1119 of Lecture Notes in
Computer Science, pages 195-216. Springer-Verlag, 1996.

J.-C. Raoult. Rational tree relations. Bull. Belg. Math. Soc., 4:149-176,
1997.



A String-rewriting Characterization of Context—free
Graphs

Hugues Calbrix! and Teodor Knapik?

! College Jean Lecanuet, BP 1024
76171 RoUuEN Cedex, France
e-mail: HugCalbrix@aol.com

2 IREMIA, Université de la Réunion, BP 7151,
97715 SAINT DENIs Messageries Cedex 9, Réunion
e-mail: knapik@univ—reunion.fr

Abstract. This paper introduces Thue specifications, an approach for string-rewriting de-
scription of infinite graphs. It is shown that strongly reduction—bounded and unitary reduction—
bounded rational Thue specifications have the same expressive power and both characterize
the context—free graphs of Muller and Schupp. The problem of strong reduction—boundedness
for rational Thue specifications is shown to be undecidable but the class of unitary reduction—
bounded rational Thue specifications, that is a proper subclass of strongly reduction—bounded
rational Thue specifications, is shown to be recursive.
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1 Introduction

Since countable graphs or, more precisely, transition systems can model any
software or digital hardware system, the study of infinite graphs is, in authors
opinion, an important task. Obviously, dealing with infinite graphs requires a
finite description. With this aim in view, several formalisms have arisen in graph
rewriting [8]. In this paper another approach is introduced. The idea comes
from the categorist’s way of expressing equations between words (of the monoid
generated by the arrows of a category) by means of commutative diagrams.

By orienting them, equations between words are turned into string-rewrite
rules. String rewriting systems were introduced early in this century by Axel
Thue [14] in his investigations about the word problem and are also known
as semi—Thue systems. Later, semi—Thue systems became useful in formal lan-
guages theory (see [12] for an overview) and, as pointed out in this paper, are
also of interest as finite descriptions of infinite graphs. Other approaches relat-
ing semi-Thue systems to infinite graphs may be found in [13] and [3]. In the
latter paper, the class of context—free graphs is characterized by means of prefix
rewriting using labeled rewrite rules.

The link between infinite graphs and semi—Thue systems introduced in this
paper raises the following question. Which classes of graphs may be described
by semi—Thue systems 7 As a first element of the answer, a string—rewriting
characterization of context—free graphs of Muller and Schupp [9] is provided
as follows. Sect. 2 is devoted to basic definitions. Thue specifications and their

! The idea underlying the definition of the Cayley graph associated to a group presentation
leads to a similar result.



graphs are defined in Sect. 3. Two classes of Thue specifications are described
in Sect. 4 and the main result is established in Sect. 5. In Sect. 6 the authors
investigate whether these classes are recursive. Several conclusions close the

paper.

2 Preliminaries

Assuming a smattering of string—rewriting and formal languages several basic
definitions and facts are reminded in this section. An introductory material on
above topics may be found in e.g. [2] and [11].

Words Given a finite set A called alphabet, the elements of which are called
letters, A* stands for the free monoid over A. The elements of A* are all words
over A, including the empty word, written €. A subset of A* is a language over
A. Each word u is mapped to its length, written |u| via the unique monoid
homomorphism from A* onto (IN,0,+) that maps each letter of A to 1. When
u = zy for some words z and y then y is called a suffix of u. The set of
suffixes of u is written suff(u). This notation is extended to sets in the usual
way: suff (L) = (J,, suff(u) for any language L.

Semi-Thue systems A semi-Thue system S (an sts for short) over A is a
subset of A* x A*. A pair (I,r) of S is called (rewrite) rule, the word [ (resp. r)
is its lefthand (resp. righthand) side. As any binary relation, S has its domain
(resp.range) written Dom(S) (resp.Ran(S)). Throughout this paper, only finite
semi—Thue systems are considered.

The single-step reduction relation induced by S on A*, is the binary relation
—s = {(zly,zry) | z,y € A*, (I,r) € S}. A word u reduces into a word v,
written u—%wv, if there exist words wo,...u; such that ug = u, up = v and
u; —s u;q1 for each ¢ = 0,...,k — 1. The integer k is then the length of the
reduction under consideration.

A word v is irreducible with respect to (w.r.t. for short) S when v does not
belong to Dom(—s). Otherwise v is reducible w.r.t.S. It is easy to see that the
set of all irreducible words w.r.t.S, written Jrr(S), is rational whenever Dom(S)
is, since Dom(—s) = A*(Dom(S))A*. A word v is a normal form of a word u,
when v is irreducible and u —%v.

Graphs Given an alphabet A, a simple directed edge—labeled graph G over A
is a set of edges, viz a subset of D x A x D where D is an arbitrary set. Given
d,d' € D, an edge from d to d' labeled by a € A is written d % d’. A (finite) path
in G from some d € D to some d € D is a sequence of edges of the following
form: dy 3 dy, ... ,dp_1 2 d,, such that dy = d and d,, = d'.

For the purpose of this paper, isolated vertices need not to be considered.
Moreover, the interests lies basically in graphs, the vertices of which are all
accessible from some distinguished vertex. Thus, a graph G C D x A x D is said
to be rooted on a vertex e € D if there exists a path from e to each vertex of G.
The following assumption is made for the sequel. Whenever in a definition of a
graph a vertex e is distinguished as root, then the maximal subgraph rooted on
e is understood.



Pushdown Machines and Context-free Graphs An important class of
graphs with decidable monadic second—order theory is characterized in |9]. The
graphs of this class are called contexrt—free by Muller and Schupp and may be
defined by means of pushdown machines.

A pushdown machine over A (a pdm for short) is a triple & = (Q, Z,T)
where () is the set of states, Z is the stack alphabet and T is a finite subset of
AU{e} x Q X Z x Z* x @, called the set of transition rules. A is the input
alphabet. A pdm & is realtime when T is a finite subset of A X Q X Z X Z* X Q).

An internal configuration of a pdm & is a pair (¢,h) € Q x Z*. To any
pdm & together with an internal configuration ¢, one may associate an edge-
labeled oriented graph G(Z7 1) defined as follows. The vertices of the graph are
all internal configurations accessible from the configuration ¢. The latter one is
the root of the graph. There is an edge labeled by a € AU {e} from (g1, h1) to
(g2, h2) whenever there exists a letter z € Z and two words g1,g2 € Z* such
that h1 = g1z, ha = g192 and (a,q1,2,92,q2) € T

It may be useful to note that the context—free graphs are exactly all equa-
tional (in the sense of Courcelle [5]) graphs of finite degree. The equational
graphs are also called regular by Caucal [3]. Finally, since any pdm over A is
a realtime pdm over A U {e}, realtime pdm’s are as powerful as pdm’s for de-
scribing graphs. In other words, the graphs of realtime pdm’s form a complete
set of representatives of context—free graphs.

3 Thue Specifications and Their Graphs

The key ideas of this paper are introduced in the present section.

Definition 3.1. An (oriented) Thue specification (an ots for short) over an
alphabet A is a triple (S, L,u) where S is a semi-Thue system over A, L is a
subset of Jrr(S) and w is a word of L. An ots is rational if L is so.

The reader may notice that, according to the definition below, the models of
oriented Thue specifications have a flavour of the Cayley graphs.

Definition 3.2. The model of an ots (S, L,u) is the graph, written §(S, L, u),
defined as follows. The vertices of the graph are all words of L that are accessible
via edges from the root u of the graph. The edges of G(S, L, u) are labeled by
the letters of A. There is an edge labeled by « from w to v whenever v is a
normal form of wa.

It should be noted that termination of S is not required in this definition. Thus
a vertex w of §(S, L, u) has no outgoing edge labeled by a if and only if wa has
no normal form or no normal form of wa belong to L.

Ezample 3.3. Over the alphabet A; = {a,b}, consider a single-rule sts §; =
{(ba, ab)}. The set of irreducible words is a*b*. The graph G(S1,Irr(S1),¢€) (see
Fig. 1) is isomorphic to w X w.
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Fig. 1. Graph §(S1,Irr(S1),¢)

Ezample 3.4. Over the alphabet A = {a,b,@, b} consider the following sts:
Sy = {(a@,¢), (@a, ), (bb,€), (bb,e)}. The set of irreducible words w.r.t.Ss is the
set of all reduced words representing the elements of the free group generated
by {a,b}. The graph? G(Ss,Jrr(Ss),¢) (see Fig. 2) is isomorphic to the Cayley
graph of the two-generator free group.

4 Two equivalent conditions

This section introduces two notions that help characterizing Thue specifications
that generate context—free graphs.

An sts S over A is strongly reduction—bounded on a subset L of Jrr(S) when
there exists a positive integer k such that for each word u of L and each a in A,
the length of any reduction of ua is less than k. The integer k is then called a
reduction bound of S (on L).

An sts S is wnitary reduction-bounded on a subset L of Jrr(S) when it is
strongly reduction—bounded on L and 1 is a reduction bound of S.

2 For each edge, there is the opposite edge (not depicted) corresponding to the formal inverse
of the label.



Fig. 2. Graph (82, Jrr(S2),¢)

A Thue specification (S, L,u) is strongly reduction-bounded (resp. unitary
reduction—bounded) is S is strongly reduction—bounded (resp.unitary reduction—
bounded) on L.

The system &7 from Example 3.3 is not strongly reduction-bounded on
Irr(S). Indeed, the word b" is irreducible and n is the length of the reduc-
tion of the word b"a into its normal form ab™. Since n is an arbitrary positive
integer, S1 has no reduction bound.

On the contrary, the sts So from Example 3.4 is unitary reduction—bounded
on Jrr(Sy). As a matter of fact, given a nonempty word w = uc of Jrr(Sz) with
c € Ay, for any d € A, the normal form of wd is u if ¢ = d or d = €, and wd
otherwise. In both cases the length of the corresponding reduction is not greater
than 1. It may be observed that §(Ss,Irr(S2),¢) is a tree.

The next proposition and the subsequent comment establish inclusions be-
tween some familiar classes of semi-Thue systems (see e.g. [2| and [12] for def-



initions of these classes) on one hand, and strongly (resp. unitary) reduction—
bounded semi—Thue systems on the other hand.

Proposition 4.1. For all finite semi—Thue systems S the following holds.

1. If § is special then S is unitary reduction—bounded.

2. If Ran(S) C Irr(S) and no word of Ran(S) is strictly overlapped on left by
a word of Dom(S) then S is unitary reduction—bounded.

3. If § s terminating left-basic then S is strongly reduction—bounded.

Proof. Both (1) and (2) are obvious. Let then S be a finite terminating left-basic
semi-Thue system over A. Let w € Jrr(S) and a € A. Consider the longest suffix
v of w such that va € Dom(S). Observe that, since S is left-basic, each reduction
of wa concerns only va. Let therefore & be the maximum of the lengths of all
reductions of the words of Dom(S). Obviously, k is a reduction bound of S. O

It may be noted that no converse of statements (1), (2) or (3) of the above
proposition holds. Indeed, the semi-Thue system {aa — a} over {a} is unitary
reduction-bounded but is not special; a is strictly overlapped on left by aa
hence the system is not left-basic. On the other hand, Proposition 4.1 cannot be
strengthened to the case of monadic semi—Thue systems. The semi—-Thue system
{ab — b} over {a,b} is monadic without being strongly reduction—bounded.

The following result demonstrates that the strongly reduction-bounded ra-
tional ots and unitary reduction—bounded rational ots have the same expressive
power for describing graphs.

Proposition 4.2. Given any strongly reduction—bounded rational ots (S, R, u),
one may construct a unitary reduction—bounded rational ots (S', R',u') such that
the graphs §(S, R,u) and §(S', R',u) are isomorphic.

Proof. Let k be a reduction bound of § and m = max;cpom(s) |I| be the maxi-
mum length of the lefthand sides of S. Consider any reduction of length n of a
word wa such that w € R and a € A. If |wa| > mn, then only a strict suffix of
wa is reduced. The length of the reduced suffix cannot exceed mn. Since n < k,
for any reduction, the length of the reduced suffix cannot exceed mk.

Let 8’ = S;é U S’ be an sts over AU {#}, where # ¢ A, defined as follows:

Sy = {(#wa,#v) |a€ A, w e R,v € Irx(S), wa%)v and |wa| < mk},
Sy ={(wa,v) | a € A, w € suff(R) ,v € Jrr(S), wa%)v and |wa| = mk}

and let R' = #R.

Unit reduction-boundedness of S’ on R’ is established as follows. Let w € R’
and a € A'. If a = # then wa ¢ R'. Assume then that a € A. Observe first
that, if wa s, T for some z € (A’)* then z € Jrr(S’). Assume therefore by
contradiction that there is a reduction wa —g, ¢ =gy for some z,y € (A"~
Let w; be the longest prefix of w this reduction is not concerned with and let
wy be the remaining suffix, viz w = wiwy. Now, either wy € suff(R) (when
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T g, y) and |wo| > mk or wy = #wj (when TS, y) for some w) € R such
that |w)| > mk. Hence, there exists a reduction of wea (resp. wha) w.r.t. S the

length of which exceeds k. This contradicts the assumption that & is a reduction
bound of § on R.

Observe that for all w € R, v € IJrr(S) and a € A, v is a normal form of wa
w.r.t.S if and only if #v is a normal form of #wa w.r.t.S’. Hence, the mapping
w — #w restricted to vertices of G(S, R,u) extends to a graph isomorphism
between §(S, R,u) and §(S', R',u') where u' = #u. |

5 Main result

Proposition 4.2 together with the statements of this section lead to the main
result of this paper.

Proposition 5.1. Given any realtime pdm &2 over A and an internal config-
wration ¢ of &, one may construct a unitary reduction—bounded rational ots

(S, R,u) such that the graphs S(2,1) and S(S, R,u) are isomorphic.

Proof. Let & = (Q,Z,T) be a pdm over A and let ¢ = (qo, hg) be an internal
configuration of &2. Without loss of generality A, () and Z may be assumed
pairwise disjoint. Set A’ = AU Q U Z. Define an sts S over A’ as follows

S ={(zgb,hq") | (b,q,2,h,¢') € T}

and let u = hgqo. It is well known that the pushdown store language of a pdm
is rational. The following language is therefore rational:

R = {hq | (g, h) is an internal configuration of & accessible from ¢} .

Moreover R C Jrr(S).

Observe that S is unitary reduction—bounded on R. Indeed, let v € R and
a € A'. For va to be reducible, there must exist w € Jrr(S) and a rewrite
rule (zqa, hq') such that v = wzqa. Consequently, va — s whq'. But no word of
Dom(8) may overlap hq' on left. Since w is irreducible, so is whq'.

The fact that is §(Z,¢) and G(S, R, u) are isomorphic is readily established
by induction on the distance of vertex from the root, using the following one to
one mapping of the vertices of §(Z, 1) onto the vertices of §(S, R,u): (q,h) —
hgq. O

In order to establish the converse, the following lemma is useful.

Lemma 5.2. Given a pdm & = (Q,Z,T) over A, an internal configuration ¢
of & and a rational subset R of Z*Q, one may construct a pdm &' together
with o' such that the graph G(Z', (") is isomorphic to the restriction of §(Z,1),
rooted on v, to the following set of vertices: {(q,h) € Qx Z* | hg € R}. Moreover
P is realtime if P is so.
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Proof. Let &7 = (D,dy,d, F') be a finite deterministic and complete automaton
over A that accepts R. Here D is the set of states of &7, dy € D is the initial
state, : D x A — D is the transition function and F' C D is the set of final
states of o

A is the input alphabet of 2’ and the stack alphabet is Z’ = D x Z. Consider
amap k: D X Z* — (D x Z)* defined as follows

k(d,e) = ¢, for all d € D,
k(d, zg) = (d,2)k(0(d, z),g), forall (d,z) € D x Z and g € Z*.

Let o/ = (do, k(dp, ho)). On the whole &' = (Q, Z',T") where

T'={(a,q,{d, 2),5(d, h),q') | (a,¢,2,h,q') €T, d € D, §(d,zq) € F,
d(d,hq') € F} .

Observe that an edge (¢, gz) (¢, gh) is in the restriction of §(2 1) to {(q,h) |
hq € R} rooted on ¢ if and only if the vertex (g,¢z) is in this restriction and

k(do,g92z) = H(d,z) for some H € (Z')* and some d € D,
d(d,zq) € F, §(d,hq') € F and
(a7q7z7h7ql) E T *

Hence equivalently, there is an edge (¢, x(dg, 9)(d, 2z)) (¢, x(do, g)k(d,R)) in
G(<£',/). Since ' = (do, k(dy, hg)), the result follows by induction from the
above. O

The converse of Proposition 5.1 is stated in the following.

Proposition 5.3. Given any unitary reduction—bounded rational ots (S, R, u)
over A, one may construct a realtime pdm & and an internal configuration v of

P such that the graphs G(S, R,u) and G(Z, 1) are isomorphic.

Proof. A pushdown machine &' = (Q', Z',T") is defined first together with an
internal configuration ¢/ so that §(£? /) is isomorphic to §(S,Irr(S),u). Set
m = maxjepom(s) || Define a pdm &' as follows. The set @ of the states is
indexed by irreducible words, the length of which is strictly less than m viz
Q = {quw | w € Irr(S) and |w| < m}. The stack alphabet Z' = Z" U {2y} has
the bottom symbol zy ¢ Z” and Z” is an arbitrary set that is in one to one
correspondence f with the set of irreducible words of length m,

fi{w € Ix(S) | |lw| =m} = Z" .
The set T" of transition rules of &' is constructed as follows.

— For any a € A, any ¢, € Q and any z € Z”, one has
1. (a, qu, 2, 2, qwa) € T when f~1(2)wa € Jrr(S) and |wa| < m,
2. (a,qu,2,2f(wa),q.) € T when f~(2)wa € Jrr(S) and |wa| = m,
3. (a,qu,2,€,qur) € T when f~1(2)wa = vl for some v € Jrr(S) and (I,7) €
S such that |vr| < m,
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4. (a,qu, 2, f(z1) ... f(zn),qy) € T when fl(z)wa = vl for some v €
Irr(S) and (I,r) € S such that vr = zy...z,y, where z1,...,2,,y €
Jrr(S) are such that |z1| =--- = |z,| = m and |y| < m.

— For any a € A and any ¢, € @, one has

1. (@, qw, 20, 20, Qwa) € T when wa € IJrr(S) and |wa| < m,
2. (a,qu, 20, 20f(wa),q:) € T when wa € Jrr(S) and |wa| = m,
3. (a, quw, 20, 20, Gur) € T when wa = vl for some v € Jrr(S) and (I,7) € S

such that |ur| < m,

4. (a, qu, 20, 20f(x1) ... f(zn),qy) € T when wa = vl for some v € Jrr(S)
and (I,r) € S such that vr = z; ... z,y, where z1,...,2,,y € Jrr(S) are
such that |z1| =+ = |z,] = m and |y| < m.

Define now the internal configuration ' of &' corresponding to the root of the
graph §(S,Irr(S),u) as follows. If |u] < m, set /' = (qu, 20). Otherwise one has
u = Ty ...zpy for some z1,..., 2,y € Irr(S) such that |z1| = -+ = |z,| =m
and |y| < m. Set then o/ = (gy,z0f(z1) ... f(zn)).

It is easy to check that the one to one mapping (qu,zoh) — f '(h)w of
the vertices of §(27,1') onto the vertices of §(S,Irr(S),u) extends to a graph
isomorphism. Moreover &’ is realtime.

Obviously, §(S, R,u) is a restriction (on vertices) of §(S,Jrr(S),u) to R
rooted on u. Define Crr = {(qu,20h) | h € (Z")*, qv € @', f(h)w € R}
and R' = {z0hqy | (qu,z0h) € Cg}. Observe that R’ is rational. Moreover,
the restriction of §(2?,1') to Cr rooted on ¢/ is isomorphic to §(S, R, u). Now,
according Lemma 5.2, one may construct a pdm & and an internal configuration
v of & such that the graph §(Z, ) is isomorphic to (S, R, u). O

In view of the results established so far, it is straightforward to conclude
this section as follows. Both strongly reduction—bounded and unitary reduction—
bounded rational Thue specifications characterize the class context—free graphs.

6 Decision Problems

The criterion of strong reduction—boundedness defines a class of Thue specifi-
cations, the graphs of which have decidable monadic second—order theory due
to the result of Muller and Schupp [9]. It may be asked whether the class of
strongly reduction-bounded rational ots is recursive. The answer is positive for
the subclass of unitary reduction—bounded rational ots.

Proposition 6.1. There is an algorithm to solve the following problem.

Instance: A finite semi—-Thue system S and a rational subset R of
Irr(S).
Question: Is § unitary reduction—bounded on R ?

Proof. Let S be a finite sts over A. For each rule (r,l) and each a € A set
Ripye = ((Ra)l=1)r. Observe that

U Ripy,e=1{v|3ue R, Ja€ Ast. ua?v} .

(I,r)es
acA
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Thus, S is unitary reduction-bounded if and only if R ;) , C Jrr(S) for each

(I,7) € S and a € A. Since both S and A are finite, there is a finite number of
inclusions to test, all between rational languages. a

It is not surprising that the above result may be extended as follows.

Proposition 6.1bis. There is an algorithm to solve the following problem.

Instance: A finite semi-Thue system S, a rational subset R of Irr(S)
and a positive integer k.
Question: Is k a reduction bound of S on R ?

Proof. The proof is similar to the one of Proposition 6.1. One has to test the
inclusion in Jrr(S) of the languages of the form ((--- (((Ra)l; *)r1) ... 1, )rg) for
each sequence (I1,71) ... (lg, ;) over S of length k and each a € A. O

As established above, one may decide whether an integer is a reduction
bound of a semi—-Thue system. However the decision procedure sketched in the
proof does not allow, in general, to establish the existence of a reduction bound.
The problem, whether a reduction bound exists, may be addressed in the context
of the strong boundedness problem for Turing machines.

As defined in [10], a Turing machine .7 is strongly bounded if there exists
an integer k such that, for each finite configuration C, 7 halts after at most
k steps when starting in configuration C. The strong boundedness problem for
Turing machines is the following decision problem.

Instance: A single-tape Turing machine .7.
Question: Is 7 strongly bounded 7

It is an easy exercise to effectively encode an arbitrary deterministic single—
tape Turing machine .7 into a semi-Thue system S over an appropriate alphabet
A and to define an effective encoding x of the configurations of .7 into words
of Jrr(S) A that satisfy the following property.

Starting from C, .7 halts after k steps if and only if any reduction of
x(C) into an irreducible word is of length k.

Now, the strong boundedness problem is undecidable for 2—symbol single—
tape Turing machines (cf. Proposition 14 of [10]). This gives the following un-
decidability result.

Proposition 6.2. There exists a rational set R for which the following problem

1s undecidable.
Instance: A finite semi—Thue system S.

Question: Is S strongly reduction—bounded on R ?

7 Conclusion

Thue specifications and their graphs have been introduced and two classes of
Thue specifications have been defined: strongly reduction-bounded and unitary
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reduction-bounded ots. It has been established that both unitary and strongly
reduction—bounded rational Thue specifications characterize the context—free
graphs. Moreover, the membership problem for the class of strongly reduction—
bounded rational ots has been shown to be undecidable whereas, for its proper
subclass of unitary reduction—bounded rational ots, this problem has been es-
tablished as being decidable.

An important property of context—free graphs is the decidability of their
monadic second—order theory. However the class of context—free graphs is not the
only well-known class of graphs with decidable monadic second—order theory.
More general classes of such graphs are described in e.g. [1,4,6,7]. How Thue
specifications are linked via their graphs to these classes, is considered for further
investigations.
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Abstract

The reachability problem for ground associative-commutative (AC)
rewrite systems is decidable. We show that ground AC rewrite sys-
tems are equivalent to Process Rewrite Systems (PRS) for which reach-
ability is decidable [4]. However, the decidability proofs for PRS are
cumbersome and thus we present a simpler and more readable proof
in the framework of ground AC rewrite systems. Moreover, we show
decidability of reachability of states with certain properties and de-
cidability of the boundedness problem.

Introduction

Ground AC systems are obtained by combining ground rewrite systems (i.e.
rewrite systems without substitution) with the associative and commutative
laws for a symbol denoted by 4. These laws are applied as symmetric rewrite
rules, i.e. from right to left and vice-versa.

The reachability problem for ground AC systems has already been considered
by A. Deruyver and R. Gilleron in [2] who proved that it is decidable under
some restrictions: the 4+ symbols can occur only at the root of any side of a
rule; if 4+ occurs at the root of the right-hand side then it has to occur at the
root of the left-hand side too. This last condition forbids introducing new +
symbols in a term.



We show that ground AC rewrite systems are equivalent to Process Rewrite
Systems (PRS) that were introduced by R. Mayr [4] as an extension of Petri
nets with subroutines. This observation was surprising at first, since the
two formalisms have different origins. Ground AC systems were defined
as an extension of ground rewrite systems by associative and commutative
operators like “+” or “+’. PRS were introduced as a process model that extends
Petri nets by subroutines.

It has been shown in [4] that reachability for PRS is decidable. Here, by
following a similar technique, we present a simpler and more readable proof of
this result in the framework of ground AC rewrite systems. Previous known
decidability results about ground AC systems (with several AC symbols)
concern the word problem (symmetric reachability) [5] and the unifiability
problem [6]. The latter was also obtained by splitting the rewrite systems in
order to get homogeneous subsystems.

We also consider the problem if there is a reachable state that satisfies certain
properties that are described by state formulae. We show that this “reachable
property problem” is decidable for ground AC systems. Finally, we show that
the problems of termination and boundedness are decidable, too.

2 Ground AC Systems vs. PRS

Ground AC rewrite systems are defined as ground rewrite systems (i.e. rewrite
systems without substitution) that operate on the set of terms T'(F') over a
signature F' which contains an associative and commutative operator +. Note
that F' can contain function symbols with any arity, like f(xy,...,xx). For
a detailed survey on term rewriting the reader may consult [1].

Process Rewrite Systems (PRS) [4] are defined as prefix-rewrite systems
that operate on process terms. These process terms are built from atomic
processes by the operators “.” for sequential- and ‘||” for parallel composition.
The operator for sequential composition is associative and the operator for
parallel composition is associative and commutative.

Now we show that the two formalisms are equivalent. For both PRS and
ground AC systems it is possible to construct equivalent systems where each
rule contains only one operator. (These new systems can simulate the be-
havior of the original systems modulo a uniformly bounded number of silent
actions.) We show the equivalence only for systems where rules contain only
one operator. Monadic ground AC systems are ground AC systems where
all function symbols have arity one. In a first step we show that PRS and
monadic ground AC systems are equivalent.



From PRS to monadic ground AC: For each symbol X in the PRS we in-
troduce a l-ary function symbol X(...). We use a special symbol ¢ for the
empty term. For every PRS-rule there is a corresponding ground AC rule:
PRS Ground AC
XY -7 Y(X(€)) — Z(e)

) = Z(Y(€))

X —-Y/7 X(e

X =Y X(e) = Y(e)

X =Yz X(e) = Y(e)+ Z(e)
XY =2  X(e)+Y(e) = Z(e)

From ground AC to PRS: For every function or constant symbol f in the
ground AC system we use a symbol f in the PRS. For every ground AC-rule
there is a corresponding PRS rule:

Ground AC PRS

fle) = d c.f —d
c— f(d) c—d.f
c—d c—d

c—d+e c— dlle
c+d—e c|ld — e

This shows that PRS and monadic ground AC rewrite systems are equivalent.
In a second step we show that monadic ground AC and general ground AC
are equivalent. One direction is trivial. Now we show how to encode a general
ground AC system in a monadic ground AC system. Let f be a k-ary function
symbol. Then we introduce k& new l-ary function symbols fi,..., fr. In all
rewrite rules we replace every term of the form f(eq,...,¢) by

f(filer) + oo+ frler))

This new system is monadic, by contains more than one operator in a rule.
This can be transformed into an equivalent one (modulo silent actions) with
only one operator in each rule.

Thus we have that Ground AC = monadic ground AC = PRS. In PRS the
rewrite rules are labeled with atomic actions, while this is not customarily
done in ground AC systems. However, it can done in ground AC systems
just as well.

3 Reachability for Ground AC Systems

We consider finite sets of ground rewrite rules A. For terms 1,75 we define
that t; =2 t, iff t; can be transformed into #, by applying the rules in A.
The reachability problem is to decide if #; =2 ¢, for given #;, t; and A.

3



3.1 Splitting the Rules

Let A be a finite set of rules on F. A term or a rule is homogeneous if it
contains at most one occurrence of a non-constant operator.

Lemma 1 For every finite ground AC system A a finite set of homogeneous
rules A" can be effectively constructed such that for all terms t1,ty € T(F),
to =2ty iff =2 1

Proof We derive A’ by applying to A the following abstraction rules as
much as possible:

Abstract 1: a — bF a), — g,a[g], — b

where a, is a maximal homogeneous non-constant strict subterm of the term
a at a position p and ¢ is a new constant.

Abstract 2: a — bt a — blgl,,9 — b,

where b, is a maximal homogeneous non-constant strict subterm of b at a
position p and ¢ is a new constant.

Abstract 3: a - bt a—g, g — b

where a, b are homogeneous, non-constants, with different root symbols and
g 1s a new constant.

The application of these transformations terminates since: Abstract 3 de-
creases the number of rules with different non-constant operators at the root
of each side; every application of Abstract 1 or Abstract 2 decrease the multi-
set of depths of the rule sides and do not create rules that can be transformed
by Abstract 3. Every rewrite step by A can be simulated by rewrite steps
with A’. The other direction follows from the fact that the symbols ¢ are
new constants. [ |

3.2 Deciding Reachability by Completion

In this section rules of the form ¢ — d where ¢ and d are constants will be
called simple rules. The following completion algorithm adds simple rules
¢ — d to a set of rules R, whenever ¢ = d.



Lemma 2 Let Ry and Ry be two homogeneous rewrite systems s.t. the sets of
operators used in the rules of Ry and Ry are disjoint and Ry and Ry contain
the same simple rules. Let R = Ry U Ry. If there is a pair of constants
(u,v) s.t. u = v and (u — v) & R then there is a pair of constants (u',v")
st (W — ') & R, but v/ =T o or v’ =T 0,

Proof Choose a pair of constants u’, v’ s.t. (v’ — v') ¢ R, but v’ = v’ where
o is a sequence of rule applications of minimal length. More precisely the
length of o is minimal over the choice of v/, v’ and o. By our preconditions
this must exist.

We will assume that ¢ must contain non-simple rules from both R; and R,
and derive a contradiction. W.r. we assume that the first non-simple rule in
o is from Ry. By our assumption there must be a non-simple rule from R; in
o. The first such rule must have the form u” — ¢, where u” is a constant and
t is not a constant, because the sets of operators in Ry and R; are disjoint.
The operator in ¢t must disappear later, because the sequence o ends with
the constant v. This can only be done if the term ¢ is rewritten to a constant
later in the sequence o. Thus there must a constant v” and a subsequence

o' of o s.t. u” T v”. This is a contradiction to the minimality of the length
of 0.

Thus we have that the non-simple rules in o are either all from R; or all from
Ry. Since R; and R; contain the same simple rules we can assume that o
contains only rules from R, or only rules from R;. Thus we have u/ = o/
or u' =12 v, |

Lemma 3 Let Ry and Ry be two homogeneous rewrite systems s.t.

1. The sets of operators used in the rules of Ry and Ry are disjoint.
2. The relations = and =2 are decidable.

3. If one adds rules of the form u — v to Ry or Ry, where u and v are
constants, then the new relations =™ and =" are also decidable.

Let R = Ry U R,. Gliven two constants x,y, it is decidable whether x =% y.

Proof To prove the lemma it is sufficient to give an algorithm for generating
all couples of constants u, v such that u = v, and check if (x,y) is generated.

First we add all rules in Ry of the form ¢ — d, where ¢ and d are constants
to Ry and vice versa. By the third precondition this does not change the
decidability. By precondition 1 we can apply Lemma 2. Thus if there is a



pair of constants (u,v) which satisfies u = v, but is not in R, or R,, then
there is another pair (v, v’) that is also not in R, or Ry, but satisfies v’ =1 v’
or u' = v, By precondition 2 this pair can be found. Then we add this
pair v’ — v’ to Ry and R, and get R} and R). By precondition 3 this does
not change the decidability. We repeat this procedure with the new R| and
R, until no new pair can be added. It terminates, because there are only
finitely many different constants in B. By Lemma 2 we have then added all
pairs (u,v) s.t. u =% v. Let Ry and R, be the final results of this process. It
then holds that z =%y <= (z—y)e€ Ry U Ry, |

Theorem 1 The reachability problem is decidable for ground rewrite systems
with an associative-commutative operator.

Proof Consider an instance of the reachability problem for a set of rules A
and terms to,t. The question is if 5 =2 ¢. We introduce two new constants
z,y and define A’ := AU {x — t5,t — y}. Thus we have t; =2 t <=
x =2"y. By Lemma 1 a system of homogeneous rules A” can be constructed
st.a =2y < 2 =2"y. A” can be partitioned into R; and R s.t. Ry
are all the rules that contain the commutative operator + and R, is the
rest. Thus the first precondition of Lemma 3 is satisfied. The relation >
corresponds to Petri net reachability, which is decidable [3]. The relation
=12 is the reachability relation for a normal ground rewrite system and is
also decidable [2]. Adding simple rules to R; and Ry does not change this.
Thus the other preconditions of Lemma 3 are satisfied. Thus it can be used
to decide & =2" y, which is equivalent to to =2 . [

Remark: Note that the algorithm of Lemma 3 uses only polynomially many
instances of Petri net reachability, each of which is smaller than the input.
The same techniques can be applied to show the decidability of the reach-
ability problem for ground rewrite systems with arbitrarily many different
associative and commutative operators.

4 The Reachable Property Problem

Here we use the notations from [4], Section 6. The rewrite rules in A are
assigned labels, which can be interpreted as atomic actions. These labels
then form atomic propositions in state-formulae. For example let a; be a
label. The term ¢ satisfies the state-formula a; (denoted t |= a;) if a rule with
label a; can be applied to t. A general state-formula is a boolean combination
of atomic propositions. We give a method that decides the problem tq = O®,



i.e. the problem if there is a reachable state that satisfies the state formula
®. It suffices to consider the case where ® is a; A ... Aaiy A —by A ...\ =b.
We will abbreviate =by A ... A =b by B, a;y A... Nay by A and A._;a; by
Ay (Ag = true). We also define K = {1,..., k}.

We solve the problem for systems A in transitive normal form. To simplify
the problem we assume that rules of the form f(ey,...,¢x) — d do not carry

el

any label. This is no restriction since every system can be transformed to
satisfy this condition in the following way: For every term f(cq,...,¢x) that
occurs on the left side of a rule determine the set A of actions that are enabled
by f(c1,...,¢k). Then add a new constant and e and the rule f(¢q,...,¢;) —
e. Then for every action ¢ € A add a rule e = e. Then transform the system
into transitive normal form. This new system is equivalent to the old one as
far as the reachable property problem is concerned.

For simplicity we also assume that there are only two non-constant symbols:
+ and . where + is AC. (The generalization to arbitrary symbols is straight-
forward.) We can assume w.r. that the initial state ¢y is a constant o, since
otherwise we just add another rule ¢g — to. A,y (resp. Age,) contains all
rules without “.” (resp. ‘+’). The rules in A,,, are called par-rules and the
rules in Ay, are called seq-rules. Let C' = {cq,...,¢n} be the set of constants
in the system. A monomial is a sum of constants. We denote by fy the for-
mula of Ly stating that a monomial satisfies a formula W. For instance fg is
true for monomials that are not reducible by rules with a label in {bq,...,b;}.
Given a subset C” of (', we denote by h¢s the formula of Ly stating that the
set of constants in a monomial is C’. For instance h{chch%}(cl +c1 43+ es)
evaluates to true. Terms will always be flattened using associativity of +.

Hence (a 4+ b) + ¢ = a+ b+ ¢ and the depth of this term is 1.

The following result is a direct consequence of a result for Petri nets due to

P. Janc¢ar [8]:
Lemma 4 [t is decidable whether ¢ = O®, if A only contains par-rules.

If & is one of the shortest sequences such that to ¢ and t = ® there is no
subderivation of #, = t such that ¢ =2 # =2 ¢. Otherwise by replacing
this subderivation with ¢ — ¢ (since A is in transitive normal form) we can

obtain a shorter string o’ such that ¢4 7. t. Hence we can assume that by
commuting rules applications we can build another string n with the same
properties as o which additionally has a special structure: n = nony...174
where all rules applications corresponding to n; are applied at the same level
¢ of terms.



4.1 A special case

In this section we solve the problem for the special case of £ = 0. We compute
the subset Cy of all ¢ € C such that ¢ | ¢B. If no rule in B applies to ¢
then obviously ¢ € Cy. Otherwise let u be a shortest derivation from ¢ to a
t such that t = B.

Using the same decomposition as above popy is the maximal prefix of p such
that ¢ “®5" v and all intermediate terms between ¢ and v (including v) are of
level < 1.

i. Let us assume first that these terms are (non trivial) sums of constants.
Then v = U 4+ U’ where U, U’ are possibly empty sums and:

. UEB
2. for all ¢ € U’ we have ¢ =2 tu and to |= B

By minimality of the derivation we can assume that ¢ ¢ U’.
1. Now if the root symbol of v is “.” then either v is not reducible by a rule

from B or one of its leaves is in Cy and is different from ¢ by minimality.
(recall that all rules have depth 1).

More generally by minimality of s it will never contain a subderivation ¢/ =2
s[¢'] =2 s[t']. Otherwise pumping allows to find a shorter one. This shows
also that the depth of ¢ is bounded by m = |C/|.

Hence a simple recursive algorithm solves the problem. Let Nreach(c,n)
be true iff ¢ rewrites to a term of depth n not reducible by rules from B.
Nreach(e,0) is easy to check, by Lemma 4, since A is in transitive normal
form. We also introduce the auxiliary procedure Ncheck(e,C”). Given ¢ € C
and C" C (', Ncheck tests whether there exists a monomial v such that
c =2y v =U4U"and fg(U) A hai(U') is true. Note that this test is
effective thanks to the result of Jancar [8].

1 Nreach(c,n)

2 for C" C C do
3 if Ncheck(c,C") then
4 if /\ Nreach(c',n — 1) then true; exit
cec
5 for a,b € C do
6 if ¢ = a.b A (Nreach(a,n — 1) A Nreach(b,n — 1)) then true; exit

BN

Nreach(e,n) = false

By computing {c¢ € C; Nreach(c,m) = true} we get the set Cy.

8



4.2 The general case

Now we study the general case. Let us analyze the structure of the term ¢,
such that co 2" #;. Assume that the root symbol of #; is + (the other case is
simple). Hence the derivation contains only rules applications from A,,,.. We
shall sort the constants in t; according to the property G(ApAB) they satisfy,
P ranging over the subsets of K = {1,...,k}. Then {; = U + Ypcp)U'p

where U, U'p are possibly empty sums of constants and:
. UEAANB
2. for all ¢ € U'p we have ¢ =2 t. and t. = Ap A B

3. TU{P € P(K);U'p is not empty} = K

The pumping argument is now slightly more complex than in the base case:
a subderivation starting from a constant ¢”: ¢ =2 s[¢”] =2 s[t"] (where s[t"]
is not reduced anymore in p) can be shortened if t” and s[t"] satisfy the same
Ar’s. Hence the length of any branch of ¢ is bounded by (k + 1)m.

Let Reach(c,n,J) be true iff ¢ rewrites to a term of depth n satisfying A;AB.
We have that Reach(c,0,.J) is decidable by Lemma 4, since A is in transitive
normal form. Note that Reach(c,n,0) = Nreach(c,n).

For the algorithm that decides Reach(e¢,n,.J) we need an auxiliary function
Check. Let ¢ € C be a constant, j : 2% —— 2° a mapping and I C K. Then
Check(c, 7, 1) is true iff there exists a v such that: ¢ =27 v and

(0= U+ Speael’e) A fias(U) A (N iy (Up))

Pe2k

Check is effective by the result of Jancar [8]. The algorithm for Reach is as
follows:

1 Reach(c,n, K)

2 for every mapping j : 2% — 29 and every I C K

3 if TU{P € P(K);j(P) is not empty} = K then

4 if Check(c,j, 1) then

5 if /\ ( /\ Reach(c',n — 1, P)) then true; exit
PEP(K) '€j(P)

for a,b € C do

7 if ¢ — a.bthen

jep)



8 for every Ky, Ky s.t. K1 UKy, = K
9 if (Reach(a,n —1,K) A Reach(b,n — 1, K,)) then true; exit
10 Reach(c,n, K) = false

Now the Reachable property problem can be tested by computing

Reach(co, (k+ 1)m, K)

5 Termination Problems

In this section we investigate termination properties of ground AC systems.
We consider the case where the systems are in transitive normal form.

Lemma 5 [t is decidable whether there exists an infinite derivation from a
constant c.

Proof For every term ¢ we define depth(t) as the maximal nesting-depth of
function symbols in t. For example depth(a 4+ f(b+ ¢+ g(a,b))) = 2.

Assume that there is an infinite run that starts at ¢ s.t. in this run a constant
¢ is reduced to a larger non-constant term ¢ and ¢ is later again contracted
to another constant ¢”. Since we consider systems in transitive normal form
we have the rule ¢ — ¢” and can do this in one step. Thus if there is any
infinite run then there is also an infinite run in which the depth of the terms
never decreases. In other words, no seq-rules of the form f(er,...,¢p) — d
are used, but only seq-rules of the form ¢ — f(dy,...,dy).

Hence only the following situations can occur:

1. In the infinite sequence the depth of the terms is bounded. Then there
must be a constant ¢ that occurs in some term in this sequence s.t.
there is an infinite derivation from ¢ using only =2ver.

2. If the depth of the terms is not bounded then after some steps by the
pigeon hole principle there is a long internal path in some term such
that two identical symbols on it have been generated by the same rule
¢ — t where ¢’ is a constant.

Hence there is an infinite derivation from ¢ iff ¢ rewrites to a term containing
a constant ¢ such that

1. either there is an infinite derivation from ¢’ using par-rules only.

10



2. ¢ rewrites to a term containing ¢'.

Case 1. amounts to check the existence of an infinite path for a Petri net,
which can be done by constructing the coverability tree.

Case 2. can be decided using the results of the previous section. For any
constant ¢ consider the system Ay = AU {¢ 5 ¢/}. Let ty,...,1 be the
terms that can be reached from ¢ in one step. Checking 2. amounts to
checking whether ¢, = O7 for some ¢, Once we have collected the set of
constants ¢’ for which the test is positive, we can test whether ¢ can reach a

term containing one of them using the same technique.

Thus the existence of an infinite run from some constant ¢ is decidable. To
decide this for a general term ¢ we use a new constant ¢, add a rule ¢ — ¢ to
the system, transform this new system into transitive normal form and check
the existence of an infinite run from c.

A system terminates if there is no infinite run. We get the following theorem.
Theorem 2 The termination property is decidable for ground AC systems.

In a similar way we can decide the boundedness problem. There is a run
from a constant ¢ where the sizes of the terms are unbounded if from ¢ one
can reach a term containing ¢ s.t.

1. either there is an unbounded derivation from ¢ using par-rules only.
This can be decided by the coverability graph.

2. ¢ rewrites to a term ¢ containing ¢/, but ¢ # ¢’. This can be checked
in the following way. Every rule whose right side contains ¢/, but is
not equal to ¢ is labeled with the action 7. Then it suffices to check
whether ¢ = O7.

Theorem 3 Boundedness is decidable for ground AC systems.
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Abstract. The aim of this paper is twofold. We first present a correctness proof of the Bounded
Retransmission Protocol (BRP) done quite straightforwardly by bisimulation in the w-calculus. To our
knowledge, it is the biggest proof realized in this framework. Then, we compare in depth several works
on this protocol, focusing on how the used formalism influences implementation choices and proof
techniques.

1 Introduction

The development of communication networks requires more and more sophisticated communication protocols
which must be reliable [13]. Traditional verification methods use model checking techniques, but they cannot
deal with infinite state systems and more generally with mobility.

Our aim is to elaborate some methodologic guides for designing and proving communication protocols
using theorem provers. We choose the BRP as a case study because 1t is simple but, since it is parameterized,
model checking cannot be directly applied. We choose the w-calculus [24] as a formal framework. It is an
extension of the process algebra CCS [22] with mobility while keeping its algebraic properties. It is more
expressive than CCS because 1t provides possibilities for coding data types, A-calculus and higher order
processes and possibilities for expressing mobility between processes by means of name passing.

So, on one hand, we present a proof of the BRP using w-calculus bisimulations. On the other hand,
we study some related works [1, 7, 9, 10, 14, 15] in order to compare different approaches. Essentially, in
[1, 7, 10, 15] the BRP is designed and proved using a top-down approach, that is the system specification
is refined until an implementation is met. In opposition, it is the bottom-up approach which is adopted
in [9, 14]: starting from the system implementation, a system abstraction is deduced. Moreover, the used
formalism in [7] provides explicit time whereas in [1, 9, 10, 14, 15] it does not. The comparison between these
works focuses on how the used formalism influences implementation choices and proof techniques.

The paper is organized as follows: section 2 presents the informal description of the BRP. Before for-
malizing this description, we complete it by making some choices. Section 3 gives an abstract view of the
BRP in the w-calculus. Section 4 gives the protocol implementation in the m-calculus. Section 5 presents our
correctness proof method which proceeds by bisimulation and its application to the BRP. Finally, in section
6, we present the studied papers and compare them in detail to our work.

2 The Bounded Retransmission Protocol

The BRP [14] is a communication protocol, developed at Philips Research Laboratory, that communicates
messages from a producer to a consumer over an unreliable physical medium that can lose messages.

2.1 The usual description

The protocol (figure 1) consists of a sender program at the producer side, a receiver program at the consumer
side, and two channels (one-place buffers): a message channel K and an acknowledgment channel L. Both
channels are unreliable in that they can lose messages or acknowledgments; but, messages are neither garbled,
nor received out of order. Two timers are used.

The sender sends each message over the channel K| sets timery, and then waits for an acknowledgment over
the channel L. The timer; 1s used to detect the loss of a message or an acknowledgment. If an acknowledgment



comes back within this time, the timer is cleared, and the next message is sent. If the transmission has been
completed, the sender transmits a confirmation OK to the producer to signal a successful transmission. If
there is no acknowledgment, a timeout occurs whereupon the message is retransmitted, and the timer set
again. There is a fixed upper bound on the number of such retransmissions (MAX). When this retransmission
bound has been reached, the sender aborts transmission and confirms that the transmission failed. Either
it confirms Conf(NOTOK) if the abort occurred during the transmission of an intermediate message or it
confirms ConfiDTKW) if the last message in the file was not acknowledged but might have been received by
the consumer.

s ™
-FIRST
K -LAST
-INC
Req(f) Ind(m,i)
—
Producer Sender Receiver Consumer
—
Conf(c) Inderr
-OK
-DONTKNOW
N J

Fig. 1. The BRP protocol

The receiver waits for messages over the channel K. If the alternating bit of the received message is equal
to that of the previous message, the receiver retransmits an acknowledgment over the channel L. Otherwise, it
delivers the message to the consumer, changes its alternating bit, sets timery, and sends an acknowledgment
over the channel L. In both cases, it waits for the subsequent message. The time associated with timer; must
exceed the required time to transmit MAX times a message (i.e, timers > MAX X timery). If timer; expires,
l.e., no new message is received, the receiver sends an Inderr signal to the consumer.

2.2 Completing the description

The above description has an important lack of precision. So, before formalizing the protocol, some choices
have to be stated. First, we assume that the file may contain zero, one or more messages. But if it contains
one message, this first message must be considered as the last one. Moreover, if the transfer is aborted during
the transmission of this message, a confirmation DTKW must be sent to the producer.

As timer, > MAX X timerp, the sender is the first to detect a transmission abort. The sender may then
receive a new request to transfer a file and send its first message while the receiver does not yet detect the
abort (i.e., timery has not expired). The receiver may consider this message as the next message (or as a
duplication of the current message) of the previous file, that is incorrect. So, it the sender must wait until
the receiver detects the abort. Moreover, both the sender and the recetver must reinitialize their alternating
bit before the beginning of the next transfer. For uniformity, we decide to do this reinitialization also when
the transfer has been completed.

After a successful transmission, either the sender receives no new request before expiration of timer,,
so the receiver may do a misleading abort. Or it receives a new request and sends the first message. The
receiver may consider this first message as a duplication of the last message of the previous file because it
cannot know the new alternating bit value. So, the sender must signal the end of a transfer to the receiver
before it begins the next one. The receiver can then anticipate the expiration of timery, then both the sender
and the receiver reinitialize their alternating bit.



Finally, note that an Inderr signal is sent by the receiver to the consumer if timers expires and the last
message in the file is not yet received.

3 The BRP abstract view in the w-calculus

Starting from the descritpion of 2.1, we consider the system as a black box. We define its abstract view as
the observable behaviour on the external channels Req, Ind, Inderr, and Conf. We formalize this abstract
view in the polyadic w-calculus [23] which is our formal framework. Tts syntax and informal semantics are
recalled below.

3.1 Symntax and informal semantics of the polyadic w-calculus

Let z,y,z,u,v,... range over N, a set of channel names. Let A, B, ... range over a set of agent identifiers;
each identifier has a nonnegative arity. We note by z the tuple < z1,z2,..., 2, >. Let P, @, ... range over
agents (i.e. processes) which are defined as follows:

— 0, an agent which can do nothing.

— yz.P, an agent which outputs the tuple @ on channel y; thereafter it behaves as P. In this action, y is
the subject, T is the object, and both ¥ and y are free.

— y(#).P, an agent which receives a tuple on channel y; thereafter it behaves as P but with the newly
received names in place of ;. In this action, y is the subject, Z is bound, and y is free.

— 1.P, an agent which performs the silent action 7; thereafter it behaves as P.

— P4 @, an agent which behaves like either P or Q.

— P | @, an agent representing the parallel composition of P and ). This agent can do anything that P or
@ can do, and moreover if P = 5. P’ and Q = y(¥).Q’, then P | Q = (P’ | Q'{u/%}) where Q'{u/F} is
the substitution of each occurrence of x; by u; in @Q’.

— (v x)P, an agent which behaves like P where the name x is local but P can export .

— [ = y] P, an agent which behaves like P if  and y are the same name; otherwise it does nothing.

— A(y1,...,yn) is an agent if A is an identifier of arity n; for any such identifier there is a defining equation

written A(zq,...,2,) = P, where the names 1, ..., @, are distinct and are the only names which may
occur free in P. The agent A(yy,...,yn) behaves like P where y; is substituted for #; for allé =1,...,n.
Agent identifiers provide recursion since the defining equation of A may contain A itself.

We note (v @1 ...2,)P instead of (v x1)...(v x,)P.

3.2 The abstract view

The BRP abstract view is pictured in figure 2 and is expressed by three recursive equations. The file is
modeled by a list of messages and we use the usual functions cons, hd and ¢l on lists.

Req(f)_[ ) Indgm,iz
Producer Consumer
%
Conf(c) Inder

Fig. 2. The BRP abstract view

In the initial state Sy, the system waits for a file f on the channel Req. If f is empty ([f = Nil]) it
confirms the transfer and returns to Sy, else it processes the first message h in the state S;.



So 2 Req(f).([f = Nil].Conf ok.Sy + [f = cons(h,)].51(f)

In the states S and Sy, the 7 actions indicate that the choice between the delivery or loss of a message
or an acknowledgment is decided by the internal actions. The first two lines correspond to the case where the
message is always lost. The two following lines correspond to the case where the message is received but the
acknowledgment is always lost. The last ones correspond to the case of a successful message transmission.

For each of these cases, we distinguish in S; two subcases: either the current message is the last one in
the file, or 1t is the first one.

S1(f) e Tont DTKW.Inderr.Sy

7.Conf NOTOK.Inderr.S)

r.Ind < hd(f),LAST > .Conf DTKW.Sp

r.Ind < hd(f), FIRST > .Conf NoTOK.Inderr.Sp
r.Ind < hd(f),LAST > .Conf OK.S

r.Ind < hd(f),FIRST > .So(tl(f))

++ 4+ A+

In the state S, the system handles the remaining messages of the list. The same cases as in 57 are
analysed but for each of these cases, we distinguish two subcases: either the current message is the last one
in the file, or it 1s an intermediate one.

d
Sa(f) “f rConZ DTKW.Inderr.Sy

7.Conf NOTOK.Inderr.Sp

r.Ind < hd(f),LAST > .Conf DTKW.Sp

r.Ind < hd(f), 1N¢ > .Conf NoTOK.Inderr.Sp
7.Ind < hd(f),LaST > .Conf OK.Sp

r.Ind < hd(f), 1n¢ > .S (tI(f))

++ 4+ +

4 The BRP implementation in the w-calculus

We start from the complete specification of section 2. To encode the protocol, we need the types integer,
boolean and list which are encoded in the 7-calculus [24].

We model the external channels Req, Conf, Ind, and Inderr as constant names because they are never
bound during the execution of the protocol. We model timer; by the agent T1 which repeatedly waits for a
signal over the channel timel, then sends a signal over the channel timeoutl. The timers is modeled in the
same way.

d -
T1 éf timel.timeoutl.T1

12 Y time2 Timeout2. T2

We use the channel abort (resp. restart) to solve the synchronization problems between the sender and
the receiver after a transmission abort (resp. after a successful transfer). These channels are not physical
ones and should be implemented by means of timers. Introducing these two channels allows us to separate
cleanly the two situations.

Every message transmitted by the sender S'is a tuple < first, last, tag, data >. If first (vesp. last) equals
True, then the current message is the first (resp. last) one. The variable tag contains the alternating bit, and
data is a file data. In the initial state, the sender initializes its variables, waits for a request on the channel
Req, then starts the file transfer. The variable rn contains the retransmissions number.

d
S(K, L, abort, restart) f Req(f).Transfer(K,L, abort, restart, f, True, False, True,0)

If the file 1s empty, the sender sends a confirmation 0K to the producer, makes a rendez-vous over the
channel restart with the receiver and then returns to its initial state. Otherwise, it transmits the first message,
sets timery, increments rn, and waits for an acknowledgment over the channel L.



. d
Transfer(K,L, abort, restart, f, first,last, tag,rn) f

[f = Nil] Conf ok.restart.S(K, L, abort, restart)
+ [f = cons(head, tail)] last — [tail = Nil]. K < first,last,tag, head > .timel.
Wait_ack(K, L, abort, restart, head, tail, first, last, tag,rn+ 1)

If an acknowledgment is received, the sender resets timer, reinitializes rn, complements tag, puts False
in first and transmits the next message in the file. If no acknowledgment is received, timer; expires and the
sender retransmits the message.

Wait_ack(K, L, abort, restart, head, tail, first,last, tag, rn) =

L.timeoutl.Transfer(K, L, abort, restart, tail, False, last, Not(tag),0)

+ timeoutl.Retrans(K,L, abort, restart, cons(head, tail), first,last,tag, rn)

If the retransmissions bound is not exceeded, the message is retransmitted. Otherwise, the transfer is
aborted. The sender sends a confirmation DTKW (for the last message) or NOoTOK (for an intermediate
message) to the producer. Then, it makes a rendez-vous with the receiver over the channel abort before it
begins a new transfer.

. d
Retrans(K, L,abort, restart, f, first,last, tag, rn) o]

If rn = uax then
([last = True] Conf DTKW.abort.S(K, L, abort, restart)
+[last = False] Conf NOTOK.abort.S(K, L, abort, restart))
else Transfer(K,L, abort, restart, f, first,last,tag,rn)

The receiver R is described in the same way. The variable rtag contains the alternating bit of the previous
message. The variable end is set to T'rue when the last message in the file i1s received. The variable {20n is
set to T'rue when timers 1s enabled.

d .
R(K,L, abort, restart) ef Wait_msg(K, L, abort, restart, False, False, False)

. d
Wait_msg(K, L,abort, restart, rtag, end,t2on) o]

K(first last tag m).Treat(K, L, abort, restart, first,last,tag, m, rtag, end,t2on)
+ abort.If t2on = True then timeout2. Abort(K, L, abort, restart, end)

else Abort(K,L, abort, restart, end)
+ restart.]f t2on = True then timeout2.R(K,L,abort, restart)

else R(K,L,abort, restart)

. d
Treat(K, Labort, restart, first, last, tag, m, rtag, end, t2on) f

If tag = rtag then
L.Wait_msg(K, L, abort, restart, rtag, end, t2on)
else Tf first = True then Indicate(K, L, abort, restart, first,last, m,tag, end, t2on)
else timeout2.Indicate(K, L, abort, restart, first,last, m,tag, end,t20n)

. . d
Indicate(K, L, abort, restart, first,last, m,rtag, end,t2on) f

If last = True then
Ind < m,LAST > .L.time2.Wait_msg(K, L, abort, restart, rtag, True, True)
else 1f first = True then
Ind < m,FIRST > .L.time2.Wait_msg(K, L, abort, restart, rtag, end, True)
else Ind < m, INC > .L.time2.Wait_msg(K, L, abort, restart, rtag, end, True)

d
Abort(K,L, abort, restart, end) o] If end = True then R(K,L,abort,restart)
else Inderr.R(K,L, abort, restart)
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Fig. 3. The BRP implementation in the 7-calculus

The sender and its timer constitute the component P of the system. They communicate via their private
channels timel and timeoutl. The receiver and its timer constitute the component @) of the system. They
communicate via their private channels time2 and timeout2. These two components communicate via the
sender and the receiver which are linked by the channels K, L, abort, and restart. These channels are modeled
by restricted names since they are private to the protocol. This global view is pictured in figure 3.

P(K, L, abort, restart) = (v timel timeoutl) (S(K,L,abort,restart) | Tl)

Q(K, L, abort, restart) = (v time2 timeout?) (R(K,L,abort,restart) | T2)

The external event corresponding to the loss of a message (resp. loss of an acknowledgment) is modeled by
the agent loss_msg (resp. loss_ack) which can intercept the message (resp. the acknowledgment) and return
to 1ts initial state. These two events can happen at any moment.

loss msg(K) 24 K(first last tag m).loss msg(K)

loss_ack(L) def L.loss_ack(L)

Hence, the system is completely described by the parallel composition of the components P and @, and
the external events loss_msg and loss_ack.

System e (v K L abort restart)
(P(K, L, abort, restart) | Q(K, L, abort, restart) | lossmsg(K) | loss_ack(L))

Note that the configuration of the system does not change during the execution of the protocol: the links
are static. However, the mobility would be easily expressed in the w-calculus.



5 The correctness proof of the BRP

The procedure is to prove formally that the system implementation and its abstract view have equivalent
behaviours. This allows us to deduce some system properties, for example the deadlock-freeness. In the w-
calculus, the notion of behavioural equivalence is made mathematically precise by using bisimulations [24].
In our proof, we use some algebraic laws of these bisimulations, so we recall them in appendix A.

5.1 The proof method

Our method is inspired by Orava’s and Parrow’s method [25]. The proof follows these steps:

1. Analyze the system implementation by applying repeatedly the expansion law (E) in order to determine
its intermediate states by using strong ground equivalence ~. For example, the system (Fy.P | z(u).Q)
is expanded to (Ty.P + 2(u).Q+ 7.(P | Q{y/u})), then we iterate the expansion on the new states Ty.P,
2(u).Q and 7.(P | @{y/u}). This step leads to a set Ry of mutual recursive equations.

2. Build the fix-point of Ry. This results in a new set R; of mutual recursive equations.

3. Simplify R; by using the 7-laws, by identifying and substituting in the equations equivalent expressions
up to weak bisimulation ~, and by eliminating r-loops from equations using the law (L) in order to
obtain guarded equations. This step leads to a new reduced set Ra of guarded and mutual recursive
equations.

4. Build the fix-point ABS of the equations defining the abstract view.

5. Finally, prove that Rs is a solution of ABS. Then, by applying the law (U1), conclude that Ry and ABS
are equivalent.

5.2 Applying the method to the BRP

Starting from the BRP implementation (System), the step 1 is first applied separately to the components
P and @), then it is applied to the parallel composition of their expansion with the external events loss_msg
and loss_ack. This technique has a great advantage: it is modular in that we never have to analyze the whole
system implementation at once.

Because of lack of space, we cannot give the complete proof. The step 1 results in twenty four equations
parameterized by the file to be transferred. The step 3 leads to a system of three equations which is proved
equivalent to the abstract view. The complete proof [19] is done manually and requires about three man-
months.

As a first conclusion, our method provides a clear distinction between the implementation and the ab-
straction of the system, proving their equivalence. Someone who wants to use the protocol as a component
of a more complex system has just to use its abstract view which is simple and provides exactly the same
observable behaviour.

6 Related works

We study in depth some related papers [1, 7, 9, 10, 14, 15] in order to compare different approaches. While
in [1, 7, 10, 15], the BRP is developed and proved using a top-down approach, in [9, 14] it is the bottom-up
approach which is adopted. The comparison tackles the following questions. Do the authors start from the
same description? How are the protocol entities modeled? What is exactly proved? What are the difficulties
encountered in doing the proofs? Are they due to the used formalism or to implementation choices? Is the
m-calculus a well-suited framework?

The first important remark is that apart from some little and irrelevant variations, all the papers start
from the same protocol description.



6.1 Groote and Van De Pol

n [10], Groote and Van De Pol use as a formal support pCRL [11], a combination of process algebra and
abstract data types, to prove the correctness of the BRP. Like us, the formalism does not provide explicit
time. So, the timers just have to expire, and the authors only care about scheduling of actions.

In this work, the BRP abstract view is defined by four recursive equations written in pCRL.

The BRP implementation is defined in puCRL as the parallel composition of its components, as we have
done. The synchronization between the sender and the receiver, done via the channels abort and restart
in our case, is enforced by two extra signals lost and ready. To avoid that a message arrives after timer;
expires, the channels K and L send a signal lost to timer; indicating that a timeout may occur. When an
abort occurs, the sender sends a signal ready to the receiver asking it to stop timers. Then, the receiver
returns a signal ready to the sender allowing it to transfer a new list. Since there is a strong connection
between the sender, the receiver, timer; and timers, the resulting implementation is not modular.

The authors use the branching bisimulation, a strong variant of weak bisimulation, which i1s a model of
nCRL theory [12]. They prove manually the equivalence between the protocol and its abstract view. But in
their case, the protocol can start transmission of a list in two distinct modes: either the receiver knows the
next alternating bit (after a successful transmission), or it does not know (after a transmission abort). For
this reason, an intermediate system is defined by eight equations considering these two modes. In our case,
this system is simply the abstract view and is defined by three equations, so our proof is facilitated.

Their proof is mechanized in the proof-assistant Coq [6]. The authors encode the syntax, axioms and
rules of puCRL in Coq. Their BRP implementation in pCRL is compact and formal, but the proof in Coq
required a detailed encoding so that the resulting Coq specification is fairly large.

6.2 Helmik, Sellink and Vandraager

In [15], Helmink, Sellink and Vaandrager analyze the BRP in the setting of I/O automata [18]. The timers
are represented by timer events. For example, the loss of a message or an acknowledgment causes a timeout
action of timer;.

The authors specify the abstract view by an I/O automaton which has the same input and output actions
as the protocol but no internal actions. As channels are modeled by shared variables, their access managing
is part of the abstract view and is described by means of preconditions.

The authors specify each component of the protocol (the sender, the receiver, and channels K and L) by
an I/O automaton. Then, they define the full protocol as the parallel composition of these /O automata.
After an abort, the sender starts a new timer called timers. When timer, expires, the receiver generates a
timeout action for timers so that the sender can proceed and handle the next request. This solution requires
that timers > timers and can be hardly reused if time constraints have to be changed. Moreover, the model
forces them to specify, for all possible states, what happens if an input action occurs. This leads to the
explosion of the I/O automata.

The main advantage of this work is the correctness criteria of the protocol that is a refinement argument
showing that the BRP I/O automata implement the abstract view I/O automaton. The authors prove
that the BRP is deadlock-free. Moreover, a number of protocol invariants is presented. However, the most
difficulties with I/O automata verifications is finding the appropriate automata, the refinement relation and
the invariants.

The safety part of the proofs is mechanically checked using Coq. But, the notions from I/O automata
theory are encoded directly for the BRP. So, it is difficult to reuse this encoding for other applications.

6.3 Abrial

In [1], Abrial designs the BRP by successive refinements in the proof-assistant B [2]. The timers are repre-
sented by timer events.

The abstract view states in the B language that the file received by the consumer 1s a prefix of the file
transmitted by the producer. The file is supposed to be transmitted instantaneously.

The author builds formally the protocol by extending gradually the implicit time in the abstract view to
obtain the implementation. Each refinement step is proved to satisfy the properties expressed in the previous



one. This construction approach required seven refinements which deal with gradual distribution of various
aspects of the protocol that are global in the abstract view. However, a loss of the last acknowledgment causes
a misleading abort of the sender. In fact, the receiver considers that the transfer is already completed, so
any retransmission done by the sender will not be acknowledged. Furthermore, the retransmissions number
is still shared by the sender and the receiver in the last refinement.

The deadlock-freeness property is proved provided the protocol is performed in a fully sequential way.
Moreover, the termination of the protocol is proved by determining a sequence of natural number expressions
that decrease lexicographically after each protocol action. But, the most difficulty of this work is to find the
appropriate refinements; there 1s no systematic method.

6.4 D’Argenio, Katoen, Ruys and Tretmans

In [7], D’Argenio, Katoen, Ruys and Tretmans analyze the BRP in the setting of timed automata [3]. A
timed automaton is a classical finite state automaton equipped with clock variables and state invariants
which constrain the amount of time the system may idle in a state.

The abstract view is provided as a file transfer service (FTS) described by logical relations between inputs
and outputs.

The BRP is modeled by a network of timed automata. Channels K and L are modeled as queues of
unbounded capacity. After an abort, an additional delay SY NC' (equivalent to timers of [15] is set to the
sender to ensure that it does not start transmitting a new file before the receiver has properly reacted to the
abort.

The authors verify the protocol correctness in UPPAAL [5] which reduces the verification problem to
solving a set of constraints on clock variables. The great advantage is that they obtain tight constraints on
the amount of the timers. However, as UPPAAL is sensible to the number of states and transitions, data
is restricted to clocks and integers. Moreover, value passing at synchronization is not supported. For these
reasons, the data was removed from the transmitted message. So, properties of the FTS concerning the
transmitted data are not checked. Value passing was modeled by shared variables assignments, this required
to split some transitions. Channels K and L were reduced from unbounded queues to one-place buffers. So,
to avoid explosion of states and transitions, the protocol is only checked for small values of the file length
and the number of retransmissions.

6.5 Havelund and Shankar

Now, we discuss the opposed approach taken in [14] which starts from an implementation to deduce an
abstract view. Havelund and Shankar combine model checking and theorem proving techniques to prove the
correctness of the BRP. The modeling of time and synchronization between the sender and the receiver is
the same as [15]. So, the previous remarks apply here.

The authors first analyze a scaled-down version (i.e, finite state system) of the BRP using Mur¢ [21],
a state exploration tool, as a debugging aid. Then, they translate the Murg description into PVS [26] and
modify manually a few of the PVS declarations to obtain the infinite state implementation. This yields two
PVS theories. The first one contains the protocol itself. It is modeled by a predicate that holds for a sequence
of reachable states. The implementation in PVS is too detailed and not so formal. The second theory contains
the correctness criteria which is defined by an invariant. This invariant needs to be greatly strengthened in
order to be provable, and this invariant strengthening is the real challenge of the proof.

Finally, from the complete implementation in PVS, they deduce a finite state abstraction which bound
the resources of unboundedness in the state space that are the message data, the number of retransmissions
and the file length. They show that the mapping between the implementation and the abstract view preserves
the initialization predicate, the next-state relation and the properties. They used the model checkers SMV
[20], Mur¢ and an extension of PVS with the modal g-calculus [16] for the final model checking. However,
the most difficulty of Havelund’s and Shanker’s approach is to find the protocol abstraction: no technique is
provided to mechanize the abstraction research. For example, to find the abstraction of the sliding window
protocol is a real challenge.



6.6 Graf and Saidi

In [9], the BRP is first described in terms of guarded assignments. Then, by using abstract interpretation
techniques (i.e, by giving a partition of the state space induced by a set of predicates on the system variables;
19 predicates for the BRP), the authors generate automatically an abstract state graph using PVS. The
obtained graph for the BRP has 475 states and 685 transitions.

The correctness of the BRP is expressed by two temporal logic formulas. The first one indicate that the
sequences of received messages and of sent messages are consistent. The second one indicate that for each
file, the indication delivered to the consumer and the confirmation delivered to the producer are consistent.

The main advantage of this work is that the system properties are verified automatically on the abstract
graph using the Aldébaran tool [8]. However, the verification is sensible to states explosion. For this reason,
the first property of the BRP is verified on a weaker abstraction where only predicates concerning the
transmission of a single message are considered relevant.

7 Conclusions

Having compared with other works, the w-calculus appears as a really convenient framework for encoding and
analyzing communication protocols. The major advantages of our approach are the following. The description
of the protocol is compact and entirely formal. Moreover, the exhaustive analysis of all possible cases gives
a good understanding of the protocol; it allows us to detect several implementation errors. The approach
i1s modular since we never have to handle the whole protocol description at once. So, the implementation
can be reused easily if specification changes occur. Finally, the m-calculus laws are simple and the proof by
bisimulation is purely procedural. So, large parts of the proof can be mechanized.

However, without the help of a prover, the exhaustive analysis of all possible cases i1s a tedious work.
So, one objective is to mechanize at least parts of the proof in a theorem prover. Actually, we are formal-
izing the w-calculus in the theorem prover PVS. Another objective is to reduce the proof effort. Since our
implementation is modular, we are investigating a compositional proof of the BRP by using the relativized
bisimulation [17]. As a future work, we want to extend the methodology in order to prove mobile protocols
and liveness properties.
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A mw-calculus algebraic theory

The strong ground equivalence ~ corresponds to behavioural a equivalence where the precise amount of
internal actions 7 is significant. For example, we distinguish the agent 7.7.0 from the agent 7.0. In contrast,
the weak ground equivalence ~ identifies this two agents; the internal actions 7 are significant only insofar
as they preempt other actions.

The algebraic laws for strong ground equivalence ~ as stated in [24], are described below. To state them
in a compact way, we define the derived prefix Z(y).P to mean (v §)Ty.P when # # y, and let «, 7 range
over ordinary and derived prefixes. Let fn(P) (resp. bn(P)) be the set of free (resp. bound) names in P.
Hereafter, = is used instead of ~ to allow different interpretations of the laws.

- (A) P=QF P =Q (a-conversion)

- COHP=QFTP=1Q, P+ R=Q+R, (va)P=(vx)Q
Ty.P =7y.Q, P|R=Q|R, [z =y]P =[x =y]Q

= (C1) 2(y).P = 2(y).Q iff P{z/y} = Q{z/y},V =

— 0 is a zero for +, and + is idempotent, commutative and associative.

~ (RO) (v 2)P = P (i # ¢ fo(P))
(R1) (v 2)(v )P = (v 9)(v )P
(1) (v 2)(P+Q) = ()P + (v 10
(R3) (v 2)ae.P = (v )P (if @ is not in «)
(R4) (v x)a.P = 0 (if & is the subject of &)

- M) [z=ylP=0ifz#y, M) [zx=2]P=P

) A@) = PLF/3} if AF) “hp

a zero for |, and | is commutative and associative.

3) (va)(P Q)= P|(va)Q (ifz ¢ fn(P))

JLet P =357 ;. 5, Q = 5. B;.Q; where bn(a;) N fn(Q) = 0V iand bn(B;) N frn(P)=0V j. Then
| Q = Zz aZ(PZ | Q) + Z] 6](P | Q]) + Za,compﬁj TRZ]

where the relation «; comp §; («; complements ;) holds in the following four cases, which also define

RZ']'Z

[N
w0

GG



1. «; is Tu and §; is «(v); then R;; is Py | Q;{u/v}
2. o is F(u) and f; is x(v); then R;; is (v w)(Pi{w/u} | Q;j{w/v}) (where w is not free in (v u)P; or
in (v v)Q;)

3. the two others are the converse.

The weak ground equivalence ~ is strictly weaker that strong ground equivalence ~ and also satisfies the
laws described above. In addition, it satisfies the well known r-laws [22], these are:

- (T0) a.7.P = . P
~ (T)) P+ r.P%7P
~(T2) a.(P+7.Q)+ a.Q = a(P+1.Q).

In order to eliminate 7-loops from recursively defined agents (see [22]):
- (L)IfA=P+r.Aand B=7.Pthen A~ B

We define strong (non-ground) equivalence ~ as strong ground equivalence under all substitutions ¢ of
non-constant names, i.e., P ~ @ iff Po ~ o, for all substitutions ¢ from non-constant names to names.
We define weak (non-ground) equivalence ~ in a similar way.

The main use of the non-ground equivalences is in the laws for recursively defined agents which we adopt
from [24]. To formulate them, we need some additional notations. Let F, F', ...represent agent expressions;
these are like agents with “holes” where agents or agent identifiers can be inserted. Let E(Py, ..., P,) be the
agent which is the result of inserting Py, ..., P, into E. Two agent expressions F and F' are (strongly/weakly)
equivalent if E(ﬁ) is (strongly/weakly) equivalent to F(ﬁ) forall Pp,..., P,.

The first law for recursion (UQ) means that if the right hand sides of definitions are transformed, respecting
equivalence, then the agent defined is the same up to equivalence. This law holds for strong and weak non-
ground equivalence (but fails for the ground equivalences).

(U0) Suppose that By, ..., E, and Fy, ..., F, are expressions and Ay,..., A, and By, ..., B, identifiers
such that for all i: £; = F; and A;(#;) = Fi(Ay, ..., Ay) and Bi(#;) = Fi(B1, ..., By) Then A;(%;) = B;(#)

for all 1.

The second law (U1) means that if two agents satisfy the same set of recursive equations, then the agents

are equivalent. This law holds for strong non-ground equivalence provided E1,..., E, are weakly guarded
(i.e., all occurrences of P; in E;( Py, ..., P,) are within a prefix operator). Furthermore, it holds for weak
non-ground equivalence provided Ei,..., E, are guarded (i.e., all occurrences of P; in E;(Pi,..., P,) are

within an output or input prefix operator), and sequential (i.e., no F; contains a parallel composition).

(U1) Suppose that Fy,..., F, are expressions and Py, ..., P, and @1,...,Q, are agents such that for all
i: P, =FEi{(P1,...,Py) and @; = F;(Q1,...,Qpn) Then P; = Q; for all i.
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