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Towards a Formalization of theUni�ed Modeling Language�Ruth Breu, Ursula Hinkel, Christoph Hofmann, Cornel Klein,Barbara Paech, Bernhard Rumpe, Veronika ThurnerInstitut f�ur InformatikTechnische Universit�at M�unchenD-80290 M�unchenhttp://www4.informatik.tu-muenchen.de/April 24, 1997AbstractThe Uni�ed Modeling Language UML is a language for specifying, visualizing anddocumenting object-oriented systems. UML combines the concepts of OOA/OOD,OMT and OOSE and is intended as a standard in the domain of object-orientedanalysis and design. Due to the missing formal, mathematical foundation of UMLthe syntax and the semantics of a number of UML constructs are not precisely de�ned.This paper outlines a proposal for the formal foundation of UML that is based on amathematical system model. It also compares UML with the method SLM developedin the SysLab project. In the design of SLM special care has been given to themathematical foundation.
�This paper partly originates from a cooperation of the DFG project Bellevue and the SysLab project,which is supported by the DFG under the Leibniz program, by Siemens-Nixdorf and Siemens CorporateResearch. 1
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1 IntroductionThe Uni�ed Modeling Language [2] is a set of description techniques suited for specifying,visualizing and documenting object-oriented systems. The language has been developedby G. Booch, J. Rumbaugh and I. Jacobson since October 1994 and combines the conceptsof OOA/OOD [1], OMT [25], and OOSE [17], as well as a number of ideas from othermethods and description techniques like Harel's statecharts [14].In January 1997 UML has been submitted to OMG as a proposal for a standard notationof object-oriented analysis and design techniques [2]. Currently, UML focuses only onnotation. Method and process issues are outlined, but not dealt with in detail. However,it is stated that the process is to be use-case driven, architecture centric, iterative andincremental (Summary of [2], p. 7). In our work, we refer to the most recent UML version1.0.Like other software engineering methods UML provides a set of \intuitive" graphical andtextual description techniques that are supposed to be easily understandable for bothsystem developers and expert users working in the application domain. However, oftenthe exact meaning of such description techniques is not clearly de�ned. As a consequence,the usage of those techniques and, correspondingly, the interpretation of models developedmay di�er considerably. Furthermore, without exact semantics, checks for completenessand consistency cannot be precisely de�ned, let alone supported by a tool. Quite often, themodels emerging during system development have severe shortcomings, which inevitablylead to erroneous software systems. Therefore, the high e�ort spent on modeling not alwaysyields software systems of high quality.In order to ensure the correct usage of description techniques in modeling, and to enabletool supported consistency checks, the de�nition of a precise semantics of the notationsinvolved is crucial. The semantics de�nes the exact meaning of description techniques inan unambiguous way. Furthermore, the formal framework serves as a basis for de�ning theinterconnections between di�erent notational concepts and di�erent stages of design. Lastbut not least a semantic foundation checks the soundness of the description technique andthus may lead to an improvement of the description technique itself.Having recognized the importance of a formal foundation, the UML developers alreadyhave made �rst attempts at a formal semantics de�nition. In the language documentation ametamodel for UML concepts is presented. The metamodel itself is given in UML notationby a class diagram and annotations in prose. This approach to a formal semantics of UMLbrings about several di�culties.First, the semantics of class diagrams is not precisely de�ned itself. For example, the usageof aggregation is a frequently discussed topic. Consequently, class diagrams provide a veryweak basis for de�ning a formal semantics.Second, the use of class diagrams limits the semantics de�nition to a description of static3



relationships between UML concepts. As a documentation of the structure of diagrams,the UML metamodel contains valuable information for tool developers who have to handlestorage and retrieval of diagrams. However, there exists no interpretation that models thedynamic aspects of system behavior in an appropriate way. Thus, the metamodel is notsu�cient as a formal semantics de�nition of UML concepts. As far as we know, also thenovel approaches to a semantics de�nition pursued by the UML developers [20] do notovercome this de�ciency.Our approach to the formal foundation of UML is based on the well-studied and establishedmathematical theory of streams and stream processing functions [5]. Streams have provedto be an adequate setting for the formalization of the semantics of concurrent systems.In order to model the static and dynamic properties of an object-oriented system in astructured way, we augment the mathematical framework by the notion of system model.A system model characterizes an abstract view of the systems under development. It bothdescribes the static structure of objects and their behavior over time. The idea of a systemmodel is advantageous for several reasons.First, a system model provides an integrated view of a system. This is particularly impor-tant as the UML description techniques allow us to de�ne only partial views of a system.The semantic mapping of partial syntactical system views to an overall mathematical sys-tem view has the advantage that relationships between di�erent description techniques canbe studied in a homogeneous setting.Second, the concept of system models establishes an auxiliary layer on top of the basicmathematical theory. In this semantic layer object-oriented notions like objects, objectidentities and object states have a direct correspondence to mathematical concepts in thesystem model. Thus, the use of a system model helps us to increase the readability andunderstandability of the semantics de�nition considerably.For the semantics de�nition we employ our experience gained during the SysLab project.In SysLab the formally founded analysis and design method SLM has been developedcovering description techniques similar to those of UML [18, 13, 12, 15, 22, 30].Thus on the one hand we outline the basic ideas and the overall structure of the formalfoundation of UML. This foundation revealed several language features which are not yetfully clear. We discuss some of these aspects in the respective sections.On the other hand we compare the description techniques of SLM and UML. This com-parison yields several similarities. However, it also shows the stronger coherence of SLMdue to the emphasis on the formal foundation.The paper is organized as follows: In Section 2 we give a short overview of the basicmodeling concepts of UML. In Section 3 we present a proposal for the formal foundationof UML. The subsections of Section 3 focus on the overall mathematical system view andon the di�erent description techniques UML o�ers. The comparison with SLM is given inSection 4. Section 5 contains a summary and our conclusions.4



2 A Short Overview of UMLIn the following we give a short sketch of the basic UML description techniques:� class and object diagrams,� use case diagrams,� sequence diagrams,� collaboration diagrams,� state diagrams and� activity diagrams.Note that we concentrate on those models and description techniques that are relevant fordescribing the structure and behavior of systems. Therefore, we omit the implementationdiagrams (component and deployment diagrams), which are helpful for modeling the phys-ical structure of a system only. Furthermore, we focus on basic concepts, but omit somemore advanced modeling features which are beyond the scope of this work. For a detaileddescription of UML we refer to [2].Class and object diagrams: A class diagram describes the static structure of a system,consisting of a number of classes and their relationships. A class is a description of a set ofobjects and contains attributes and operations. An object diagram is a graph of instances.A static object diagram shows the detailed state of a system at a certain point in time,whereas a dynamic object diagram, also called collaboration diagram, models the state ofa system over some period of time.Structural relationships between objects of di�erent classes are represented by associa-tions (the instances of associations are called links). The de�nition of associations may beenhanced by attributes, association classes, role names and cardinality (multiplicity). Gen-eralization represents the relationship between superclasses and subclasses, i.e. between amore general class and a more speci�c class. Thus, the speci�c class is fully consistentwith the superclass and adds additional information. Aggregation, which is a conceptof OMT, is a special form of binary association representing the whole-part relationship.Composition is a form of aggregation for n-ary associations, which implies strong ownershipand coincident lifetime of a part with the whole. For structuring complex systems, classpackages are introduced, which are groupings of class model elements and may be nested.The use case diagram captures Jacobson's use cases. A use case diagram shows acollection of use cases and external actors that interact with the system. A use casedescribes the interactions and the behavior of a system during an entire transaction thatinvolves several objects and actors. Within a use case model, relationships between use5



cases can be modeled, i.e. a use case can include other use cases as part of its behaviordescription. The speci�cation of the external behaviour of a use case may be given bya state diagram. The implementation of a use case can be described by a collaborationdiagram.Since the use case diagram is strongly connected with the development process, we omit itin the current stage of our semantics de�nition.Sequence diagrams, called interaction diagrams in OOSE, show patterns of interactions(i.e. the sending of messages) among a set of objects in a temporal order. In addition, asequence diagram may show the lifelines of the objects involved in the interactions.Collaboration diagrams are similar to object diagrams in OOA/OOD and describe thecollaboration between objects. Collaboration diagrams depict objects and links betweenthem. Links visualize the message 
ow between the corresponding objects. Messages mayhave an argument list and a return value. Message ordering in the overall transactionis described by a modi�ed Dewey decimal numbering, specifying the sequential positionof a message within its corresponding thread. A composite object is an instance of acomposite class which implies the composition aggregation betweeen the class and its part.Parameterized collaborations represent design patterns that can be used repeatedly indi�erent designs.State diagrams, based on the statecharts by Harel [14], are similar to the state-machinediagrams used in OOA/OOD and OMT. They describe the reaction of an object, in replyto events received, in form of responses and actions. State diagrams basically consist ofstates and state transitions. A state represents a condition during the existence of anobject in which it waits for an event to be received, performs some action or sati�es somecondition.An event is an occurrence that may trigger a state transition. Examples for events arethe receipt of an explicit signal, and the call upon an object's method. State transitionsdescribe which events an object can receive in a particular state and which state the objectadopts after the reception of the event. The sending of events to other objects is part ofthe transition.An additional concept in state diagrams are atomic and non-interruptible actions, whichare connected to a transition. An action is executed when the corresponding transition�res. It is also possible to invoke internal \do" actions that are carried out within a stateand take time to complete. An internal action is initiated when the state is entered andcan be interrupted by an event that triggers a state transition.Timing conditions on the behavior of an object can be introduced by transition times thatare associated with a transition to specify the time at which the transition is to �re. Like6



in statecharts, nesting of states is speci�ed by introducing concurrent or mutually exclusivedisjoint substates.Activity diagrams are a special case of state diagrams that are to be used in situationswhere most of the events represent the completion of internally-generated actions. Thus,the behavior is dominated by internal processing. In contrast, state diagrams are to beused for situations where mainly asynchronous events occur.An essential feature of UML is the concept of stereotypes. Stereotypes are used forclassifying modeling elements, thus allowing the user of UML to extend the semantics ofthe metamodel and to adapt the prede�ned notational concepts of UML to speci�c needs.For the evolution of a design the re�nement relationship associates two descriptions ofthe same thing at di�erent levels of abstraction. Re�nement includes, among others, therelation between an analysis class and a design class.3 A Proposal for the Formal Foundation of UMLThis section represents a proposal for a formal foundation of UML. First, we describeour approach to a formalization and introduce the mathematical system model that isused to give an integrated underlying formal semantics for all description techniques ofUML. Then, we describe how the semantics of the description techniques of UML can beformalized with respect to the system model.3.1 Roadmap to FormalizationIn the introduction we have motivated, why a formalization of UML description techniquesis useful. We argued that a precise semantics is important not only for the developer, butalso for tool vendors, methodologists (people that create the method) and method experts(people that use the method and know it in detail).Thus, we get the following requirements for a formalization:1. A formalization must be complete, but as abstract and understandable as possible.2. The formalization of a heterogeneous set of description techniques has to be inte-grated to allow the de�nition of dependencies between them.This does not mean that every syntactical statement must have a formal meaning. Anno-tations or descriptions in prose are always necessary for documentation, although they donot have a formal translation. They may eventually be translated into a formal descriptionor even into code during software development when the system model is further re�ned.7



To manage the complexity of formalization, a layer between syntactic description tech-niques and pure mathematics is introduced, as depicted in Figure 1. The pure mathematicsis only used to de�ne the system model. This system model is then used as an integratedunderlying semantics for all description techniques.As a further advantage, the system model explicitly de�nes notions of software systems interms of mathematical concepts, e.g. object identi�ers and messages. In contrast to themore implicit semantics of many other approaches, this leads to a better understanding ofthe developed systems.
System ModelClass diagrams

Sequence diagrams Class descriptions
State diagrams

Mathematics
endclassclass Account ;owner :: string;open(o::string, a::Int);credit(a::Int, rec::Account);amount :: Int;debit(a::Int, d::Account);

Formal FoundationFigure 1: Layered formalization of description techniques
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The system model formally de�nes a notion of a system that obeys the properties de�nedin Section 3.2. A document of a given description technique is de�ned by relating itssyntactic elements to elements of a system, such as the existing set of classes, or otherstructural or behavioral entities. The semantics of a document is then given by a subsetof the system model. This subset of the system model consists exactly of all systems thatare correct implementations of the document.To use a set of systems and not a single one as the basis of the proposed semantics hasseveral advantages. For example, re�nement of documents corresponds to set inclusion.Furthermore, we get the meaning of di�erent documents modeling di�erent aspects of thesystem by intersection of their respective semantics. But the main reason is that, in contrastto fully executable programming languages, description techniques allow underspeci�cationof system properties in many di�erent ways. A proper semantics thus cannot be capturedby a single system. For the same reason, it is not possible to give an operational semanticsin the sense that a document speci�es a single abstract machine that \executes" it.3.2 System ModelThe system model described below is a re�nement of the SysLab system model as pre-sented in [18], [28] and [11]. Each document, for instance an object diagram, is regarded asa constraint on the system model. The system model provides a common basis to de�ne anintegrated semantics of all description techniques. On this basis, notions like consistencyand re�nement of documents can be precisely de�ned.The system model introduced below is especially adapted to the formalization of UML.Thus, relevant aspects of UML like classes, objects, states, messages etc. are explicitlyincluded. A precise formalization of our UML system model is currently under developmentin [16].Formally, the system model is a set of systems. A system is formally described by a tupleof elements that describe various aspects of the system, such as the structure and thebehavior of its components as well as their interaction. In the following, we describe themost important elements of a system with identi�er sys.The structure of a system is, according to object-orientation, given by a set of objects, eachwith a unique identi�er. Therefore, we regard the enumerable set ID of object identi�ersas an element of the tuple sys.In the system model objects interact by means of asynchronous message passing. Asyn-chronous exchange of messages between the components of a system means that a messagecan be sent independently of the actual state of the receiver. Asynchronous system modelsprovide the most abstract system models for systems with message exchange, since dead-lock problems as in synchronous systems do not occur. Note that synchronous messagepassing can be modeled by using two asynchronous messages, a \call" and a \return". To9



model communication between objects we use the theory of timed communication historiesas given in [6]. The notion of explicit time in the system model allows us to deal with realtime, as proposed in UML.We regard our objects as spatially or logically distributed and as interacting in parallel.As described in UML, sequential systems are just a special case, where always exactly oneobject is \active".
Object Object

Object Object
Message

Messagecommunication medium System sysFigure 2: Objects in the UML system modelInteraction between objects occurs through the exchange of messages, as shown in Figure2. Let MSG be an element of sys, denoting the set of all possible messages in a system.Each object with identi�er id 2 ID has a unique set of messages it accepts. Its inputinterface is de�ned bymsgid � MSGThe behavior of an object is the relationship between the sequences of messages it receivesand the sequences of messages it emits as a reaction to incoming messages. We allow ourobjects to be nondeterministic, such that more than one reaction to an input sequence ispossible.According to [5, 9], the set of timed communication histories over M is denoted by M!.Each communication history contains as information the time unit in which a messageoccurs, as well as a linear order on the messages it contains. A communication historythus models the observable sequence of incoming or outgoing messages of one object. Thebehavior of a nondeterministic object id is then given by the mapping of its input streamto the set of possible ouput streams. Thus, the behavior of an object id is given by therelation between its input and output streamsbehaviorid � msg!id �MSG!Objects encapsulate data as well as processes. Encapsulation of data means that the stateof an object is not directly visible to the environment, but can be accessed using explicitcommunication. Encapsulation of process means that the exchange of a message does not10



(necessarily) imply the exchange of control: each object can be regarded as a separateprocess. Given the set of possible states STATE of objects in a system, the function statesassigns a subset of possible states to every object:statesid � STATEFurthermore, a state transition system is associated with each object, modeling the con-nection between the behavior and the internal state of an object. We use a special kind ofautomata [13] for this purpose.Such an automaton of an object id consists of a set of input messages msgid, a set of outputmessages MSG, a set of states statesid, and a set of initial states states0id � statesid. Thenondeterministic transition relation �id de�nes the behavior of the automaton. From thestate-box behavior, given for the automaton in terms of state transitions, the black-boxbehavior in terms of the behavior-relation can be derived (cf. [13]).Messages are delivered by a communication medium, which is an abstraction of messagepassing as it is done in real systems by the runtime system of the programming languageor by the operating system. The communication medium bu�ers messages as long asnecessary. Each message contains the receiver's identi�er, so that the communicationmedium is essentially composed of a set of message bu�ers, one for each object. The orderof messages between two particular objects is always preserved by the communicationmedium. The contents of messages are not modi�ed. Messages cannot be duplicated orlost. No new messages are generated by the communication medium. This is formalizedin [11].Objects are grouped into classes. We assume that each system owns a set CN of classnames. CN may, for instance, be derived from UML class diagrams. In object-orientedsystems, each object identi�er denotes an object that belongs to exactly one class. This isrepresented by the functionclass : ID! CN:Classes are structured by an inheritance relation, which we denote by : v : (read: \subclassof"). The inheritance relation is transitive, antisymmetric and re
exive, as usual. Withevery class c 2 CN a signature �c is associated, containing all attributes and methodstogether with their argument and result types. The signature induces a set of input mes-sages for each object of the class. One impact of inheritance is that signatures are onlyextended: c v d) �d � �c.Another distinguishing feature of object-orientation is the dynamic creation of objects.Deletion need not be modeled, as we assume that our objects are garbage collected in theusual way. However, we may de�ne a special �nalize()-method that may be used to cleanup objects, as, for instance, in Java. Initially, a �nite subset of objects (usually containingone element) exists and is active. We regard objects to be created and to be active afterhaving received a �rst message. Thus, the creation of a new object essentially consists ofa message transmission from the creator to the created object. To allow this, each object11



is equipped with a su�ciently large (usually in�nite) set of object identi�ers denoting theset of all object identi�ers the object may create:creatables : ID! P(ID)To prevent multiple creation, these sets of identi�ers have to be pairwise disjoint, andobjects that are initially active are not creatable at all.3.3 Class and Object ModelClass and object diagrams describe the static structure of a system. The origin of classdiagrams are E/R diagrams, which have been successfully applied for years in databasedesign. Although class diagrams are widely accepted in practice, the straightforward adap-tation of E/R diagrams to an object-oriented context (through the correspondence entity= object) leads to deep semantic problems, since a number of features in E/R diagramshave no exact interpretation in the object-oriented setting. Below, the main concepts andproblems of class and object diagrams in UML are summarized, and their mapping to thesystem model is sketched.Classes and ObjectsIntuitively, a class c in an UML class diagram describes a set of objects. This is re
ectedin our system model by three aspects. First, the methods and attributes of class c describethe syntactical interface of all objects belonging to that class. This syntactical interfacede�nes the signature �c as given in the system model. Second, the state space of theobjects of class c is determined. The state of an object is structurally determined by theattributes of the class and may contain both basic values (like integers or strings) andidenti�ers of other objects. The set of all states of objects of class c is denoted by statesid.Third, a subset IDc of the set ID of all identi�ers is de�ned, although only implicitly bystating jIDcj = ; for abstract classes, resp. jIDcj =1 for others. The set IDc is the set ofall identi�ers of objects of class c, subclasses not included.A class diagram describes the object structure of the system to be developed. In thisrespect, the semantics of the whole class diagram is the set of possible system states. Asystem state consists of the state of all objects that exist at some point in time. Formally,we describe a system state by an indexed family fsid : id 2 ID; sid 2 statesidg.AssociationsAssociations between classes in UML are supported in various other object-oriented analy-sis methods and originally come from the notion of relationship types in the entity/relation-ship approach. 12



The system view of E/R modeling is based on a global system state and global transactionson the system state. In this setting, relationship types are modeled by entities (set theoreticrelations or tables) with the property of bidirectionality and symmetry.It is obvious that in the object-oriented framework associations have to be interpreted ina di�erent way: both dynamic behavior and states are localized in the objects. There areseveral alternatives to interpret associations and links in the context of classes and objects.In order to clarify these alternatives, we use the simple example of Figure 3, where wemodel the distributed structure of a warehouse by two classes Branch and Central O�ceconnected by an association coordinates. Branchcoordinates1 *Central O�ceFigure 3: A class diagram modeling a distributed warehouse� One possibility is to interpret an association as a set of data links. In the examplethis means that a central o�ce object \knows about" branch objects and vice versa.Associations therefore pose additional requirements on the object states. Inherently,associations in this interpretation are not bidirectional relations but correspond totwo (semantically independent) unidirectional relations. See for example [26]. Theconsistency of the two relations is an integrity constraint imposed on linked objects.Another feature related with associations, the speci�cation of their multiplicity, isalso an integrity constraint between linked objects and is discussed below.� A second possibility is to model any association by a separate class, a so-calledassociation class. At �rst sight, this solution seems to be close to the interpretationof relationship types in the E/R approach. However, the paradigm of local objectstates requires every tuple of linked objects to be connected via an object of theassociation class. Thus, in this interpretation bidirectionality has to be modeledexplicitly and the consistency problem sketched above remains. Thus, this modelingalternative is less abstract in the object-oriented setting than the �rst alternativeand should be limited to the case in which associations are equipped with additionalattributes.� A third solution is to interpret associations as communication links. In the examplethe association coordinates then means that a central o�ce object is able to com-municate with branch objects and vice versa. Communication links in most casesinduce data links, since a prerequisite for communication with other objects is toknow about their existence.In the sense of underspeci�cation, we de�ne the semantics of an association as one of thesesolutions. The actual choice is left to the developer, e.g. when it becomes clear whichobjects will send messages along the association. However, in this paper we only talkabout the �rst and simplest solution. In our system model, an association between twoclasses is modeled within the set of states of the respective objects.13



Object DiagramsConceptually, an object icon in an object diagram depicts a single object at a certain pointof time (with �xed attribute values). An object diagram thus describes a snapshot of thesystem and corresponds to a set of system states in our system model. However, the useof an object icon together with class icons usually means that an appropriate object ispresent in all system states, from beginning to termination. This is formalized by addingan appropriate identi�er to the set of initially active objects in the system model.UML allows some relaxations and extensions of the notations of objects. Among theseextensions are the de�nition of anonymous objects (i.e. objects speci�ed solely by theirclass without an object identi�er), objects without associated attribute values and thestack icon denoting multiple objects.Anonymous objects stand for \an object" of the given class. Rather than single systemstates, object diagrams with anonymous objects describe structural properties of systemstates in a similar way as class diagrams do.Aggregation and CompositesUML supports two kinds of aggregation: Shared aggregation and composite aggregation(composition). In a composition, the lifetime of the parts is closely related with the lifetimeof the whole. Therefore, \the multiplicity of the aggregate may not exceed 1" ([2], NotationGuide, p. 47), i.e. the parts are not shared among several aggregates. In contrast,shared aggregation puts less constraints on the association, since it allows for sharing, anddecouples the lifetimes of the parts from the lifetime of the whole.This di�erentiates the current version of UML from Version 0.91, where both conceptshave been inconsistently mixed into one. Like constraints, aggregations and compositionsare conditions on the system state, and, therefore, can easily be mapped into the systemmodel.ConstraintsConstraints are conditions on the system state. Constraints can refer to single objects(e.g. for specifying dependencies between attributes) or to several (linked) objects. InUML, constraints are speci�ed as informal text. In order to enable a formal modeling weconsider constraints to be predicates over the system states consisting of objects. As alreadydiscussed, further types of constraints are induced by other features of class diagrams, e.g.by the multiplicity indicators and by dependencies between associations.Because there are a lot of di�erent kinds of constraints, a general solution for constraintformalization is not possible. However, the de�nition of new types of precisely expressible14



constraints would considerably improve UML. This would allow design decisions regardingstatic properties of a system to be captured in a more precise and compact way.GeneralizationInheritance is the generalization relation between classes. In our system model, inheritanceis modeled by : v : and induces the following three relations:� Subclasses extend the interface of their superclasses. In our system model this meansthat the signature of the superclass is a subset of the signature of any of its subclasses.� A second relation relates the state spaces of super- and subclasses. This structuralrelation models the property that objects of subclasses have the attributes of theirsuperclasses and participate in associations belonging to their superclasses.� A third e�ect of inheritance concerns the sets of object identi�ers. For a given classc, the set of associated objects is given by fid 2 ID j class(id) v cg. The inheritancerelation induces a subset relation between the sets of object identi�ers associated withthe subclass and the superclass. This subset relation models (subtype) polymorphism,i.e. the property that each object of a subtype is also an object of the supertype.The above relations describe the static properties of super- and subclasses. In the UMLdocumentation nothing is stated about the dynamic properties of inheritance, i.e. how thebehaviors of super- and subclasses are related. In fact, inheritance of dynamic behavior isan issue that has been neglected in object-oriented analysis methods so far.Behavioral inheritance is a well-studied notion at the level of formal speci�cations (sub-classes inherit the abstract properties of their superclasses, see for example [19], [23]) andat the level of programming languages (subclasses may inherit the code of methods of theirsuperclasses). In contrast, only �rst attempts have been made to relate state diagramsof superclasses and state diagrams of subclasses. One approach to this problem has beenpresented in [26] and [27].Class PackagesClass packages group parts of a class diagram. They de�ne a syntactical name space and,therefore, need no semantic counterpart in the system model.Class packages may contain classes of other packages that are assumed to be imported.The dependency between class packages can be interpreted as the visualization of such animport of classes. Aggregation of class packages can be seen as the alternative presentationof hierarchically nested packages.
15



3.4 Sequence and Collaboration DiagramsIn contrast to state diagrams, which describe local behavior of objects, sequence dia-grams describe global behavior, i.e. interaction sequences between objects. However, themethodological use of sequence diagrams has to be precisely investigated, because sequencediagrams do not provide a complete speci�cation of behavior, but only describe exemplaryscenarios. Since collaboration diagrams and sequence diagrams express similar informa-tion, but show it in di�erent ways, all propositions made about sequence diagrams in thissection apply to collaboration diagrams as well (see [2], Notation Guide, p. 66).Exemplary BehaviorThe goal of sequence diagrams is to model typical interaction sequences between a set ofobjects. In Figure 4 a sequence diagram, similar to the one in the UML Notation Guide,is given. The sequence diagram depicts a typical scenario of interaction between the threeobjects named Caller, Exchange and Receiver.Callercaller lifts receiverdial tone beginsdial(9)dial tone endsdial(1)dial(1)ringing tonetone stops phone ringsanswer phoneringing stops

Exchange Receiver

Figure 4: A sequence diagram modeling a phone callWhile the concentration on standard cases leads to an easy-to-use notation that is under-standable by both software engineers and application experts, it has to be stressed that asequence diagram does not describe a necessary, but only a possible (or exemplary) inter-action sequence between the involved objects. This leads to a semantic problem if sequencediagrams should be considered as a speci�cation technique.16



In particular, a sequence diagram does not specify in which states the objects have tobe in order for the described interaction sequence to occur. For instance, in the aboveexample the phone would not ring if the receiver was busy. Moreover, even if these stateshad been speci�ed (for instance by giving an interaction sequence leading to the state),the sequence diagram would still leave open whether the described interaction sequence isthe only possible one to occur or whether there are other possible interaction sequences.Therefore, from a strictly formal point of view, a sequence diagram not really makes aproposition about the executions of a system.Note that this is a principal problem that stems from the fact that the objective of se-quence diagrams is to describe exemplary behavior. This problem can be relaxed by usingadditional language constructs such as repetition and choice, thus providing a means forthe description of complete sets of alternative sequence diagrams.We are currently developing a method for a seamless transition from exemplary behaviordescriptions that can be expressed, for instance, using sequence diagrams, to completespeci�cations using state diagrams.FormalizationWe formalize sequence diagrams by adopting a state box view. For each vertical line ina sequence diagram that corresponds to an object an abstract state automaton is de�nedalong the lines of [12]. State automata consist of a set of states, an initial state, and a setof transitions. In our case, a transition is either labeled by an input event or by an outputevent. State automata can easily be translated into state transition systems of the systemmodel [12], but this is not exploited here.In contrast to the concrete state transition systems that are given by the state diagrams ofthe involved objects and that describe the complete behavior of the objects, the abstractstate automata, which are derived from the sequence diagram, only describe part of thebehavior of the objects. These state automata can be derived from the sequence diagramas follows:� Between any two interactions, and before the �rst and after the last interaction, astate is introduced. Each abstract state sai of the state automaton corresponds to theset of concrete states Sci , which is a subset of the state space statesid of the object.Note that the state sets corresponding to di�erent abstract states do not have to bedisjoint.� With each interaction of the object in the sequence diagram, denoted by the itharrow ending or beginning at the vertical line, an abstract transition between thestates sai and sai+1 is associated. This abstract transition corresponds to a nonemptyset of concrete transitions of �id, i.e. of the transition relation of the state transitionsystem of the object (see Section 3.5).17



Callercaller lifts receiverdial tone beginsdial(9)dial tone endsdial(1)dial(1)ringing tonetone stops phone ringsanswer phoneringing stops

lift receiverget dialtone receiver liftedstart dialtone... ...
Exchange Receiver

Figure 5: Sequence diagram with abstract state automataThe idea of using states between interactions is taken from [29]. In [29] \extended eventtraces" (EETs) are formalized. EETs are a notation similar to sequence diagrams; they areused with the objective to give a complete behavior description. Moreover, [8] shows howEETs can be used for describing complete interaction behavior in software architectures.By using a state box view, our formalization makes it more apparent what is missing insequence diagrams in order to be a speci�cation technique:� They leave completely open the relationship between abstract states in the sequencediagram and concrete states in the state diagrams of the involved objects.� They only describe which concrete transitions may occur, but they do not forbidother concrete transitions.To sum up, a sequence diagram describes the behavior of an object only partially, becauseit corresponds only to a subset of all paths in the state diagram of the object, and becauseit does not make this correspondence explicit. In contrast, a state diagram describes allpaths, and, therefore, the complete behavior of the object.3.5 State DiagramsState diagrams serve as the connection between the structure of an object-oriented systemand its behavior. Thus, state diagrams play a central role in the development of object-oriented systems. UML state diagrams look similar to Harel's statecharts [14]. However,18



several modi�cations and extensions make it di�cult to de�ne a precise semantics. In thefollowing we sketch a semantic foundation based on the system model. The formalizationis based on a semantic de�nition of similar state diagrams, which can be found in [12].A state diagram can be attached either to a class or to the implementation of an operation([2], Notation Guide, p.89). Their semantics di�ers accordingly. First we treat the seman-tics of class state diagrams. Class state diagrams are associated with the class names inCN and describe the lifecycles as well as the behavior of objects. The description is basedon the actual state, which changes during the lifecycle.3.5.1 Class State DiagramsIn the following, we discuss the semantics of a state diagram associated with a class c 2 CNby transforming it into a state transition system (see Section 3.2).StatesA class state diagram c consists of a �nite set STDStatesc of possibly nested diagram statesand a �nite set STDTransc of diagram transitions. Diagram states are (optionally) labeledby names that are taken from the set STDNamesc. A diagram state denotes an equivalenceclass of object states statesid of the corresponding object. The semantics of elementarydiagram states is, therefore, given by a function st associating with each diagram stateS 2 STDStatesc and each object identi�er id 2 IDc a corresponding set of object statesst(S; id) � statesid.The above requirement that each diagram state denotes exactly one equivalence class ofobject states can easily be achieved by assuming the name of the diagram state as anadditional attribute of class c (and introducing internal names for anonymous states).The semantics of compound diagram states is de�ned as follows:� The semantics of a composite diagram state (a so-called \OR-state") is given by theunion of the state sets denoted by the subdiagram states.� The semantics of a concurrently nested diagram state (a so-called \AND-state") isgiven by building the Cartesian product of its component diagram states.Note that, although AND-states give a notion of concurrency, they can also be used to givea modular description of independent behavioral units of one sequential object. We do notallow feedback-composition of statecharts in order to simplify the semantic de�nition ofstate diagrams, as well as their understandability by the UML user. A similar commentwas made in ([3], Metamodel, p.12).
19



As described above, the states of a state diagram are mapped to the states statesid of thestate transition system, which is already given by the semantics of a class diagram. Thesubset of initial states states0c(id) is given by the states reachable by the initial event.Events\An event is a signi�cant occurrence. It has a location in time and space ..." ([2], Glossary,p.7). Therefore, we model events as simple transmissions of messages, occurring at somepoint in time. Each event ev gives rise to a set of messages msg(ev). Input events of classc are modeled by the set msg(ev) � msgc of accepted messages. Similarly, output eventsare given as a subset of MSG.UML distinguishes four di�erent cases of events: receipt of a signal, receipt of an operationcall, satisfaction of a condition and passage of a period of time ([2], Notation Guide, p.94).The �rst three are modeled as transitions, which are described in the next section. Thesemantics of the last is explained in [7] and not treated here.Transitions\A ... transition is a relationship between two states ... when a speci�ed event occurs ..."([2], Notation Guide, p.96).Each transition (s; d; ev; out; C) 2 STDTransc in the state diagram consists of a sourcediagram state s, a destination diagram state d, an input event-signature ev, a possibly emptyoutput send-clause out and a guard conditionC. UML also allows action-expressions, whichare \... written in terms of operations, attributes, and links of the owning object ..." and\... must be an atomic operation." ([2], Notation Guide, p. 96). If the action expressiondoes not contain calls or signals to other objects, it just restricts the resulting object states(and is, in this respect, similar to postconditions as allowed in Syntropy [10]). This canbe easily incorporated into the semantics given below. However, when other objects areinvolved within an atomic action expression, communication with other objects is hidden inthe action expression. As discussed below, in Section 3.5.2 on operation state diagrams, ina concurrent setting the semantics of communications not shown in the class state diagramsis not clear.A transition in the diagram (s; d; ev; out; C) is mapped to a set of transitions in the statetransition system of the system model. Each transition in this set ful�lls the followingconditions:� The transition starts in some state of the equivalence class stc(s) of the source diagramstate and ends in some state of the equivalence class stc(d) of the destination diagramstate.� It is labeled with an input message from the set msg(ev). This set may be empty.20



� In addition, it is labeled with the set of output messages msg(out). This set may beempty.� It ful�lls condition C.The transition relation �c(id) of a state transition system of an object id of class c containsall transitions of these sets for all transitions in the state diagram.UML distinguishes between simple transitions, complex transitions and transitions tonested states. We do not consider these details here, since composite states can always beexpanded to simple states. We assume that the semantics of transitions is determined onlyafter this expansion.In addition to transitions, behavior can also be speci�ed in UML state diagrams as internalactivity, in particular entry, exit, and do actions. The latter can be treated similarly togeneral action expressions.\If an event does not trigger any transitions, it is simply ignored." ([2], Notation Guide,p. 96). This is modeled by an extension of �c(id) with default transitions that leave thestate unchanged. We remark, however, that another possibility is to model such events aschaotic behavior in the sense of underspeci�cation. This allows for a re�nement calculuson state diagrams as given in [27].3.5.2 Operation State DiagramsIt is di�cult to de�ne the semantics of a state diagram \... attached to a method (operationimplementation) ..." ([2], Notation Guide, pp. 89), since none of the examples and onlyvery little text in the UML documentation are devoted to this use. There are two majorpossiblities of how to associate a notion of state to an operation: either only the states ofone object are shown such that the operation state diagram only describes the e�ect of theoperation on one object, or the state covers several objects. In the latter case the diagramstates must refer to a combination of the participating objects' states, thus modeling the\... condition during ... an interaction" ([2], Notation Guide, pp.90) this method is involvedin. Furthermore, interactions between the participating objects are internal activities withrespect to this operation state diagram.In both cases the question arises, how several operation state diagrams and class diagramsshould be combined and integrated. In a concurrent setting operation execution may beintertwined, such that not all states of each operation are visible in the object behavior. Forexample, the e�ect of a transfer operation between two bank accounts might not be visiblein the object state after execution of the transfer operation, since concurrent deposits andwithdrawals might have changed the accounts already.Therefore, the simplest solution of combining class and operation state diagrams, namely,to view the operation state diagram just as as a complex action expression attached to the21



operation calls in the class state diagrams, is not always adequate. As an action expression,execution of operation state diagrams must be atomic (non-interruptible), which is nottrue for the transfer example above. In [4] a solution is discussed that attaches virtualobjects to operation state diagrams, which can be called concurrently. This requires explicitsynchronization of the access of the virtual operation objects to the object state. In [24]a solution is discussed that determines the semantics as the interleaving of the operationstate diagrams based on a stack handling the operation calls. A thorough discussion of thedi�erent solutions is outside the scope of the paper. We just conclude that the combinationof object behavior descriptions and operation behavior descriptions is an unsolved problemin the area of object-oriented modeling methods.3.5.3 General Remarks on State DiagramsIn the following, we suggest some improvements for state diagrams:� In addition to guard conditions, postconditions should also be allowed. As mentionedabove, this is a more abstract way of expressing the local e�ect of action expressions.� There are several object-oriented approaches that implicitly use pattern matching, asused in functional programming languages, to relate input events and their argumentvalues to the event triggers and their expressions. The use of these pattern matchingtechniques should be stated explicitly as a description mechanism in UML and bede�ned more precisely.3.6 Activity DiagramsActivity diagrams are a special case of state diagrams where all states have an internalaction and no transition has an input event. They can be \... attached ... to a class or tothe implementation of an operation and to a use case" ([2], Notation Guide, p.106). The�rst two cases have already been discussed for state diagrams in general (see section 3.5).In this section we discuss activity diagrams with swimlanes and action-object 
ow. Thesefeatures seem to be particularly relevant for use case description. Another possible usewould be to specify some operation of a composed object.In the presence of swimlanes, the semantics of activity diagrams needs to be changedconsiderably. The main reason is that now several objects are involved and operate ontheir own object state. Thus, there is no notion of global state within one activity diagramand the transitions explicitly depict data and object 
ow between single activities. Hence,it is not adequate to give activity diagrams a semantics in terms of one state transitionsystem.As mentioned in ([2], Notation Guide, p.111), in some cases activity diagrams with action-object 
ow should be substituted by sequence diagrams. Also in our view, activity diagrams22



with swimlanes are more similar to sequence diagrams than to state diagrams. However, itis not clear from the UML documentation, whether they should only be used as a notationalvariant of sequence diagrams (where, for instance, action states correspond to named partsof the object lifeline) or whether some semantic di�erences are intended. Since they havenot been included in earlier versions of UML [3], it seems likely that a more detailedexplanation will be given in the next version.4 A Comparison of UML and SLMIn this section we sketch the description techniques of the SysLab method (SLM) andcompare them with UML. SLM does not cover many detailed features of the UML de-scription techniques, since the main emphasis in SLM is on the mathematical foundation.Features of UML which are missing in SML, but may be di�cult to formalize, will behighlighted.4.1 A short overview of SysLabThe SysLab project aims at giving a formal foundation to software engineering methodsfor distributed systems [21]. SLM o�ers a set of description techniques for di�erent viewson the system integrated and formalized through a mathematical system model [28, 18]which is similar to the one discussed for UML.ViewsSLM covers the following views:Data On one hand we use the algebraic speci�cation language MINISPECTRUM[15] forthe speci�cation of data types. It has been especially designed for ease use andpracticability. For complex data types also entity/relationship diagrams can be usedwhich can be schematically transformed into MINISPECTRUM speci�cations. Enti-ties give ries to typ de�nitions with selector functions for attributes and relationshipsgive rise to predicates.State Description of component (or system) state is a special case of data description.Therefore, again ERD are used. Because of the translation into MINISPECTRUMone can also de�ne state functions and axioms for integrity constraints.State-oriented Behavior Description State transition diagrams describe componentbehavior in terms of transition patterns between state classes. This is similar to UMLstate diagrams. As recommended in section 3.5 we employ pre- and postcondition,23



pattern matching and underspeci�cation [12]. State transition diagrams can also beused to de�ne service behavior (see below).Component-oriented Structure and Behavior Description Behavior can also be de-scribed based on data 
ow. For each component the black-box behavior is charac-terised. Using a description of the communication channels between components thecomposed behavior is derived. The black-box behavior of the components can bederived from state-oriented behavior or task-oriented behavior.Task-oriented Behavior Similar to object-oriented methods the behavior of a compo-nent can be structured through services. In addition, SLM uses roles such thata component acquires di�erent orthogonal roles during its lifetime[22]. Services ofdi�erent roles are executed in parallel. Based on roles component classes are de�ned.Task-oriented Processes For complex systems it is important to be able to concentrateon typical behavior. This can be done with processes [30] consisting of activities.Activities are associated with roles such that a process describes a complex course ofactivities distributed over several roles. These processes are used during requirementsanalysis to determine the services of components. From the set of activities associatedwith a role its services are derived [22].Interaction-oriented Processes If the services are known already, typical interactionbetween components are described with interaction diagrams similar to sequencediagrams in UML.These views can be used to describe software systems as well as the application (where thecomponents are humans or technical devices, and the roles describe work situations). InSLM, �rst a model of the application is developed mainly using task-oriented processes.Then the services and data of the software system are determined and interaction sequencesare used to describe the detailed user interface interactions. Starting from this interfacedescription, the service execution is distributed on di�erent roles, where again �rst pro-cesses are used to determine the activities of the roles and then the services and data ofthe roles are derived. Finally, the roles are associated with the components.4.2 SLM and UMLIn the following we discuss similarities and di�erences between the two methods.Class and Object DiagramClasses of UML correspond to either component classes or data sorts in SLM. This is dueto a distinction between elements with state (roles) and without (data elements). ERDused for component (role) states resemble class diagrams of UML. Similar to parameterized24



classes in UML, the sorts for entity types may be polymorphic. SLM does not o�er the classelements for detailed design and coding, but instead formal constraints and functions onthe state space can be formulated. These functional behavior speci�cations are importantfor high-level service description. However, the precise connection between such functionalbehavior descriptions and behavior description in terms of interactions (like processes, STDand activities) still has to be worked out.SLM does not allow generalization so far. However, component classes are derived fromroles. This covers a typical use of inheritance (from abstract classes). The encapsulationof entity types within actor states expresses composition. A further nesting of entity types(corresponding to aggregation) is so far not allowed in SLM. There will be a notation fornesting of component classes which is not yet �xed. There is no notion corresponding toclass packages.Use Case ModelSLM processes involving the system and its environment correspond to use cases. SLMo�ers data
ow diagrams to show the system (or more generally component) services andthe communication paths. Thus, a use case diagram may be depicted in SLM by a data
owdiagram. Services may be nested (corresponding to use case inclusion). Instead of showingthe external actors the roles of the external partners are given. As in UML, there is avariety of description techniques for the behavior of services.Sequence DiagramSLM will include something similar to sequence diagrams. Their formal foundation (in-cluding the timing marks and control) is not considered to be di�cult. However, themethodical use of sequence diagrams as a speci�cation technique is an open question (seeSection 3.4).Collaboration DiagramSLM does not include collaboration diagrams. However, it o�ers several description tech-niques covering the di�erent uses of collaboration diagrams.� To describe the data 
ow in reaction to a particular input, in SLM processes are used.They describe the data 
ow between activities (and their roles), but not betweencomponents.� The communication relationships between di�erent components within a speci�c con-text are speci�ed in SLM in the role description.25



� The design of services is speci�ed with STDs.In contrast to UML concurrency between components is the default which does not needa special notation.State DiagramsSLM state transition diagrams correspond to UML state diagrams. Activities are notassociated with states in SLM. However, the semantics of component execution in SLM alsodistinguishes between atomic state changes (transaction services ) and ongoing activities(interaction service). A service call in a transition is treated as an output event in SLM.Concurrent substates are described through role composition in SLM. An extension of SLMwith composite STD states (including the history feature) is planned. Component creationis also modeled as a special input. In general it seems that SLM behavior description withactivities and STDs is as powerful as UML STDs.Activity DiagramsAs discussed in the section 3.6, the semantics of activity diagrams in UML is not clear.Operation description using activity diagrams in UML corresponds to service decriptionusing processes in SLM. The presence of swimlanes is mirrored in SLM by di�erent roles.Component and Deployment DiagramAs SLM focuses on the requirement analysis and design there are no equivalents to compo-nent and deployment diagrams. Concerning the deployment diagrams, in SLM componentsare considered as ideal processors carrying out the associated activities without any restric-tions on the ressources.SummaryThere are three major di�erences between SLM and ULM.First, SLM is more adequate for speci�cation purposes allowing for high-level data descrip-tion through algebraic data types and using axioms to express pre- and postconditions,integrity constraints and the like. Also, the semantics of SLM description techniques ischosen to allow for underspeci�cation which is the basis of incremental development. Onthe contrary, ULM allows more �ne grained class descriptions tuned for design and codingpurposes. 26



Second, SLM employs process descriptions based on activities. They allow a functionalbehavior description in contrast to the interaction based sequence diagrams. It seems thatactivity diagrams of UML have been introduced exactly for that reason, but the semanticsof activity diagrams in the presence of swimlanes is not clear.Third, SLM in its current version is not tuned to object-orientation, but allows for thedescription of any distributed system. We think that the concept of roles is more 
exibelthan generalization during the earlier phases.Altogether, we are happy to see that the work on the formal foundation of SLM translatesquite easily to ULM. Thus, there is some hope that the bene�ts of formal foundation willbe made use of in standardized case tools.5 ConclusionIn the preceding sections we have presented a proposal for the formal foundation of theUni�ed Modeling Language. As a direct result of our work, we detected a number ofconcepts that are not precisely de�ned, like the meaning of constraints in a concurrentsetting of objects or the way how operations are speci�ed and integrated in the overallobject behavior. We also suggested enhancements of the UML descriptions, and we haveargued that it is possible to map the UML language constructs to a coherent and soundsemantic model.Based on the formal foundation, we have compared SLM and UML. We discovered quite afew similarities, but also some major di�erences which are summarized in the last section.A main idea of the semantics is to represent an overall system view in the semantic do-main. This overall system view has been called system model. A system model describesboth static and dynamic behavior of objects, including, for instance, dynamic object cre-ation, concurrent behavior of objects with asynchronous message sending and inheritancerelations.The semantic domain of streams, on which our approach is based, has proved to be powerfulenough to model speci�c properties of application domains like real-time systems andinformation systems. This is important, since UML claims to be an application independentanalysis and design language.There is still a lot of work to be done. Besides the precise elaboration of the semantics,there are several directions for future work.A �rst main direction focuses on the bene�ts of the system model. As stated in the intro-duction, a formal semantics is the prerequisite for studying re�nement steps, relationshipsbetween di�erent description techniques, and for giving conditions that ensure the consis-tency of a system speci�cation. In a second step, such properties have to be studied in the27



semantic domain, and, what is crucial, have to be formulated at the syntactical level. Onlyif, for instance, consistency conditions can be formulated at the level of the descriptiontechniques, they can be integrated into a tool and support a sound system development.First work in this area has been presented, for instance in [27], where re�nement steps forstate diagrams are elaborated.A second main direction for future work concerns aspects of the design process. Like UMLitself, our semantic framework has been de�ned independently of a design methodology.Issues that still have to be addressed in more detail are, for instance, operation speci�-cations and use case speci�cations. In the current stage of development, it is not clearwhat techniques e�ectively support the designer to specify operations and use cases andhow they are integrated in the system speci�cation. A �rst approach clarifying the re-lationships between the notions of messages, events and methods (operations) has beenpresented in [4]. These studies provide guidelines and schemes for integrating partial viewsof a system (like operation behavior) into an overall system view and assist the developerto gain a structured and sound system speci�cation.AcknowledgmentsWe thank Grady Booch, Ivar Jacobson and Gunnar �Overgaard for interesting discussionsregarding UML. We also thank Manfred Broy and Ingolf Kr�uger for stimulating discussionsand comments on earlier versions of this paper.References[1] G. Booch. Object-Oriented Analysis and Design with Applications. Benjamin Cum-mings, 1994.[2] G. Booch, J. Rumbaugh, and I. Jacobson. The Uni�ed Modeling Language for Object-Oriented Development, Version 1.0, 1996.[3] G. Booch, J. Rumbaugh, and I. Jacobson. The Uni�ed Modeling Language for Object-Oriented Development, Version 0.9, 1996.[4] R. Breu and R. Grosu. Modeling the dynamic behaviour of objects - about events,messages and methods. submitted to publication, 1997.[5] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. F. Gritzner, and R. Weber. TheDesign of Distributed Systems | An Introduction to focus { revised version {. SFB-Bericht 342/2-2/92 A, Technische Universit�at M�unchen, January 1993.[6] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T.F. Gritzner, and R. Weber. TheDesign of Distributed Systems - An Introduction to FOCUS. Technical Report SFB28
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