Conservative Overloading in Higher-Order Logic

Steven Obua (obua@in.tum.de) *
Technische Universitat Miunchen, D-85748 Garching, Boltzmannstr. 3, Germany

Abstract. Overloading in the context of higher-order logic has been used for some
time now. Isabelle is the only proof-assistant that actually implements overloading
within the logic instead of merely instrumenting the pretty-printing machinery on
top of the logic.

So far there existed no satisfying theory that could explain why it is safe to add
a mechanism of certain kinds of possibly overloaded constant definitions to ordinary
higher-order logic. This is not only of theoretical interest but also of practical im-
portance; until now it was easy to introduce inconsistencies in Isabelle by abusing
overloaded definitions.

This paper addresses both the theoretical and the practical aspects of adding
overloading to higher-order logic. We first define what we mean by Higher-Order
Logic with Conservative Overloading (HOLCO). HOLCO captures how overloading
is actually applied by the users of Isabelle; for example it allows to freely mix type
definitions with overloaded constant definitions. We then show the consistency of
HOLCO by reducing it to ordinary higher-order logic with only type definitions and
no constant definitions.

Having so established our playground we show that this playground is too big for
any proof-assistant implementing HOLCO; checking if definitions obey the rules of
HOLCO is not even semi-decidable. We prove this by connecting this problem with
the problem of deciding the termination of certain kinds of term rewriting systems
(TRSs) which we call overloading TRSs and showing that Post’s Correspondence
Problem for Prefix Morphisms can be reduced to it.

The undecidability proof reveals strong ties between our problem and the de-
pendency pair method by Arts and Giesl for proving termination of TRSs. The
dependency graph of overloaded TRSs can be computed exactly (for general TRSs
it is not computable and must be approximated). We exploit this by providing an
algorithm that checks the conservativity of definitions based on the dependency pair
method and a restricted form of linear polynomial interpretation; the algorithm also
uses the strategy of Hirokawa and Middeldorp of recursively calculating the strongly
connected components of the dependency graph. Of course the algorithm cannot
successfully check all valid conservative definitions; but it is sufficiently powerful
to deal with all overloaded definitions that the author has encountered so far in
practice. An implementation of this algorithm is available as part of a package that
adds conservative overloading to Isabelle. This package also allows to delegate the
conservativity check to external tools like the Tyrolean Termination Tool or the
Automated Program Verification Environment.

* Supported by the Ph.D. program “Logik in der Informatik” of the “Deutsche
Forschungsgemeinschaft.”

overloading.tex; 8/01/2006; 16:29; p.1

1. Introduction and Motivation

Higher-order logic (HOL) is widely used in the mechanical theorem
proving community. There are several implementations of it available,
among them HOL 4 [9], HOL-light [10] and Isabelle/HOL [3].

HOL has a theory extension mechanism that allows to define new
constants in terms of already known ones. The name of the new, to be
defined constant must be different from the names of all already defined
constants. In that way it is ensured that you can do in principle without
any constant definitions by just unfolding all definitions.

Isabelle/HOL inherits from its meta logic [1] two additional fea-
tures, axiomatic type classes and overloaded constant definitions, both
of which have been introduced in [2]. Overloading is not very useful in
the absence of axiomatic type classes or a similar mechanism (and the
other way around) but it is an orthogonal feature that can be studied
separately. We therefore will focus on overloading alone.

1.1. WHY OVERLOADING?

So what is overloading and why is it useful? We answer these questions
by giving a well-known example. Addition and the operation of forming
the inverse of a given element with respect to addition are useful for
different types of elements like reals (real) or integers (int). Both
reals and integers are numerical types; in Isabelle/HOL these types
are organized using axiomatic type classes and overloading [11]. We
would like to refer to the addition of reals by the same constant name
(add) that we use for talking about the addition of integers; similarly
the inverse is denoted by uminus for both reals and integers. Actually,
there may be even more types for which addition and inverse makes
sense; in Isabelle we can declare polymorphic constants by

consts
add . a—a—«
uminus @ @ — «
Zero i

Addition of reals is then referred to by add :: real — real — real
while addition of integers is denoted by add :: int — int — int. Often
we do not need to write down the full type as we just did; type inference
will often deduce the type of the constants automatically. Despite of
real and integer addition sharing the same name, the definition of
addition can of course be very different for reals and integers. The
same statements also hold for the operation of forming the inverse of
an element. Note that we also added a declaration for 0 (zero).

overloading.tex; 8/01/2006; 16:29; p.2

Subtraction is easily defined using addition and negation:

consts

minus @ @ — o — «

defs

minus a b = add a (uminus b)

Now imagine we have defined a type of matrices o matrix with entries
of type « [14, sect. 3 (Finite Matrices)]. Matrices are represented as
functions f :: nat — nat — « such that f ji # zero for only finitely
many pairs (j,7). Such a type definition could look like this:

typedef o matrix =
{f :nat — nat — «|finite{(j,4)|fji # zero}} .

The functions rep and abs convert between abstract matrices and their
concrete representations as functions. The zero matrix and addition and
negation of matrices are defined by

defs
zero : « matrix = abs(Aji.zero)
uminus (a :: amatrix) = abs (Aj4.uminus (repaji))

add (a:: amatrix) b = abs(\ji.add(repaji)(repbji))

Note that addition etc. has been defined for the types int matrix,
real matrix, o matrix matrix and so on as well!

Overloading makes inventing new names like add_real, add_int,
add_real matrix and add_int_matrix superfluous and helps to keep
the number of declarations small. The example also illustrates that
at the same time the number of definitions is reduced. This is not so
much a matter of less typing; in tandem with axiomatic type classes for
example we could prove that o matrix forms a group if a does. Thus
overloading is a way to achieve modular and extensible reasoning.

Declarations, constant definitions and type definitions are theory
extensions. It is instructive to observe the order of theory extensions
in our example:

1. Declaration (of add, uminus, zero),

2. Definition (of add, uminus, zero for real and int),
3. Declaration and Definition (of minus),

4. Type definition (of o matrix),

5. Definition (of add, uminus, zero for a matrix).

overloading.tex; 8/01/2006; 16:29; p.3

4

Obviously one cannot assume that all definitions for a single overloaded
constant are done at once; the definitions in (2.) are separated from the
definitions in (5.) by (3.) and (4.), that is another constant definition
and a type definition. The type definition again depends on the declara-
tion of zero in (1.). The definition in (3.) depends on the definitions in
(2.) and also on the definitions in (5.). The theory extensions of [2]
cannot handle such a situation; in this paper we present a theory
extension mechanism that can.

1.2. Is OVERLOADING SAFE?

The discussion so far should have convinced the reader that overloading
is useful (see also [15], [11], [14]). But is it also safe? Not necessarily.
In order to enable overloading we cannot make the assumption that
when defining a new constant the name of the constant has never been
used before, especially not on the right hand side of the definition.
Proof-assistants like HOL 4 or HOL-light make this assumption. With
it, it is easy to see that constant definitions cannot possibly endanger
the consistency of a theory; all the constants can be eliminated by just
unfolding the definitions of these constants [9]. Without it, we are in
trouble as the following example shows:

consts

b :: bool
defs
b=-Db .

The definition of b leads to an inconsistent theory. Therefore we need
restrictions of some kind in order to enjoy safe overloading. A first
attempt might be to not allow any constant (including its type) on
the right hand side of a definition to unify (without renaming) with
the constant to be defined. This restriction would render the above
definition illegal because b :: bool unifies with b :: bool while still
allowing for example the definition of addition for matrices because
add :: a matrix does not unify with add :: «.
But this restriction is not strong enough; consider

consts

A a— bool

defs

A (z:alist x @) = A(sndz #fstx)
A (z:alist) = -A(tlz, hdx) .

There are two definitions for A. The two definitions do not overlap,
that is A :: alist X & — bool and A :: Flist — bool do not unify.
Our restriction applies to neither the first definition nor the second

overloading.tex; 8/01/2006; 16:29; p.4

5

definition because av1list X o and alist cannot be unified. Therefore
we would call these definitions legal; but they lead to an inconsistent
theory via

Alz] = A(z,[]) = —Afz].

Note that the latter example is accepted by Isabelle 2005!
Thus we need a different criterium for legal definitions. The one we
will introduce in the next section is composed of two restrictions:

1. Two definitions may not overlap, that is the defined constants
(including their respective types) do not unify (after renaming).

2. The process of unfolding definitions always terminates.

Under these two conditions overloading is safe. This will be made
precise in the next section under the notion conservative overloading.

The rest of the paper is organized as follows: in the next section we
define rigorously what we mean by conservative overloading and prove
that it is safe. In the third section we discuss if and how conservative
overloading can be implemented by a proof-assistant for higher-order
logic, both in principle and in practice. We conclude by summarizing
the results of this paper.

2. Higher-Order Logic with Conservative Overloading

Sections 2.1-2.3 introduce notation for notions in the domain of higher-
order logic that are familiar to readers working in higher-order logic.
Therefore the reader should feel free to skim over these sections; later on
in the text the reader might want to consult these sections for reference.

From Section 2.4 on it gets interesting. After describing the different
ways of extending a higher-order logic theory we explain why and in
what sense these extensions can be considered safe.

2.1. TYPES

Let us first fix four mutually disjoint, infinite sets of names:
— K from which the assistant draws the names of type constructors,
— C which is used to name constants,
— A which contains the names of type variables,

— X which provides the names of term wvariables.

overloading.tex; 8/01/2006; 16:29; p.5

6

Furthermore we fix a function ¢ from K to IN where ¢ (c) denotes the
arity of the type constructor c. Given K’ C K we can then inductively
define the set 7 (K') of all types with constructor names in K’ and the
type variables tvars (1) that appear in a type 7:

acA Ty, € T (K') ceKk’ tc)=mn
aeT (K c(ry,...,m) € T(K)
aecA T=c(m,...,7) €T (K
tvars (o) = {a} tvars (1) = tvars(11) U... U tvars (7).

A type substitution o is a map from A to 7 (K) such that o« # «
holds only for finitely many o € K. Applying o to a type 7 means to
simultaneously replace any type variable a occurring in 7 by o a. For
two types 7 and 7 we write 7/ < 7 if there is a type substitution o
such that 7 = o 7.

2.2. SIGNATURES AND TERMS

A signature S is a triple (Kg,Cg, ctypeg) where Kg and Cg are finite
subsets of K and C, respectively; the third component ctypeg is a
function from Cg to 7 (Kg). Note that usually the arity ¢ that we have
fixed once and for all is part of the signature; this is only a minor detail
and does not matter. Furthermore we demand that Kg contains the
constructors for the type of proposition prop and the type of functions
—. The arities of these constructors are ¢ (prop) = 0 and ¢(—) = 2.
We also demand {=, rep,abs} C Cg with

— ctypeg(=) = a — (a — prop),

— and ctypeg(rep) = ctypeg(abs) =a —

for some o, 8 € A and a # 3. Of course we wrote in the above and will
continue to write a — b instead of — (a,b).

overloading.tex; 8/01/2006; 16:29; p.6

Table I. Functions on terms

H T [CurT [f-g [Az T.b
tvars (+) tvars (1) | tvars(r) tvars (f) U tvars(g) tvars (1) U tvars (b)
vars (-) {z 7} [} vars (f) U vars(g) vars (b) \ {z = 7}
consts (+) [} {C::7} | consts(f) U consts(g) consts (b)
o- TnoT CioT of-og Ax:oT.0b

Given a signature S we define the set of its terms Term (S) and the
type X (t) of a term t by

rekX €T (Ks)
x 71 € Term (S) Y(uT)=17

ceCs TeT (Ks) T < ctypeg(C)
C: 7€ Term(S) YXCur)=r1

fig€Term(S) X(f)=X(g9) >
f-g € Term(S) X(f-9)=r71

reX Te€T(Kg) b € Term (S)
Az T.be Term(S5) YAz ur.b)=7—-X(b).

Again we prefer infix notation and write v = v instead of

(=5 T (u) — (£ (u) — prop))- u)-v.

We call a term t a proposition iff ¥ (t) = prop; therefore every
equation u = v is a proposition. For the set of propositions we write
Prop (5).

In the following we need several functions on terms: the type vari-
ables of a term, the free variables of a term, the constants appearing
in a term and the application of a type substitution o to a term; see
their definition in Table I.

A term substitution f is a map from X x T (Kg) to Term (S) such
that f (z,7) # x :: 7 for only finitely many (z,7) and X (f (z,7)) =7
for all (z, 7). It is extended in the obvious way to a map on terms that
replaces every free variable x :: 7 € vars(t) in a term ¢ by the term
f (@,7).

A type definition is a triple (c,[a1,...,an],p) such that ¢ € Kg,
n=uc, a; # o for i # j, p € Term(S), ¥ (p) = 7 — prop for some
type 7, vars(p) = () and tvars(p) C {a1,...,an} C A.

overloading.tex; 8/01/2006; 16:29; p.7

A constant definition is a triple (C,7,u) such that C € Cg, u €
Term (S), vars(u) =0, 7 € T (Kg), tvars(u) = tvars(7) and X (u) =
T < ctypeg (C).

2.3. THEORIES, THEOREMS AND INFERENCE RULES

A theory ¥ is a quadruple (S, Axiomsy, Axiomsy, Axiomsp) consisting
of a signature S, a set of axioms Axiomsy C Prop(S), a set of type
definitions Axiomsy and a set of constant definitions Axiomsp.

A constant name C is called overloaded if there are two types 7, and
To, T1 # T2, such that there are u; and ug with (C, 7, u;) € Axiomsp
and also (C, 2, u2) € Axiomsp.

A theorem is a triple (¥,T',t) written I' < ¢ such that the proposi-
tion t € Prop (S) can be deduced in the theory ¥ from the finitely many
assumptions in I' C Prop (.5) by the inference rules of higher-order logic.
We will use the shorter notation k¢ t for () k¢ t.

An inference rule R can be thought of as a partial function from a
theory together with a finite list of parameters, among them terms and
already proven theorems, to a new theorem:

R(Z,p1,...,pn) =T kg t.
Among the inference rules we have the following ones:
— AxioMm (%,p) = kg p for p € Axiomsp;
— REPABS(%,c,aq,...,ap,p,x = T) =
{p-(x7)} Fx (reput)-((abst7y)-(x 7)) =x =T
and ABSREP (%, c,a1,...,ap,p,z 7)) =

e (abs:7y) - ((rep) (z 7)) =2 7/,

for (c,[aa,...,an],p) € Axiomsy and x € X, where
Y(p)=7—prop, 7 =clay,...,an), Tr =T =T, Ta =7 — T';
— DEer(%,C,7,u) = FgCur=wu for (C,7,u) € Axiomsp;
— REFL(%Z,u) = Fgu=u foruéec Term(S);
— INSTTYPE (Z,{h1,...,hn} Fx D1, 71, ., Quny T) =

{ohi,...,0h,} F< op,

where o is the type substitution that maps o; € A to 1; € 7 (Kg)
provided «; # «; for i # j;

overloading.tex; 8/01/2006; 16:29; p.8

— INST(K;{hlV..,hn} FQ’p,$1,Tbt1V..,$mJTm,un) =
{fhb?fhn} l_‘f fpa

where f is the term substitution given bei f(z;,7;) = t; for i =
1,...,m, provided (z;, 7;) # (x;, 1) for i # j.

There are more inference rules that deal for example with implication
and quantification ([1],[9],[10]). These do not interest us very much;
we only need a certain property that we will state in Section 2.6. This
property holds for all inference rules we have not mentioned here.

2.4. THEORY EXTENSIONS

Starting from an initial theory, new axioms, type and constant defini-
tions are added to the theory. This is where it gets interesting for us:
how do we for example ensure that the definition of possibly overloaded
constants does not endanger the consistency of our theory?

A theory ¥’ is called an extension of a theory ¥’ if there is a series
of theory extension commands F; such that

S = Epy(Bp1 (oo (Bo(Ty.)y)se).

A walid theory is a theory that is an extension of the initial theory
(see Section 2.4.1).

A theory extension command E can be thought of as a partial func-
tion from a theory together with a finite list of parameters, among them
terms and theorems (but no theories), to the extended theory:

E(ZT,p1,....pn) = 7.

There are five such extension commands: DECLARE, DEFINE, TYPE-
DEecL, TYPEDEF and ASSERTAXIOM. In the following, the original the-
ory is always T = (S, Axiomsy, Axiomsy, Axiomsp) while the extended
one is denoted ¥’ = (S, Axioms|), Axioms',, Axioms/,).

2.4.1. The initial theory

The initial theory contains at least the constant =, and at least the
types prop and —. There are more constants in the initial theory,
like the constants for implication (=) and quantification (V); which
there are exactly is a design choice which has been made differently for
example in Isabelle or HOL-light. Furthermore we demand Axiomsr =
() and Axiomsp = 0.

2.4.2. Ezxtending a theory by declaring a new constant

We split the process of defining a new constant into two steps, in-
troducing the new constant by declaring it, and defining the declared

overloading.tex; 8/01/2006; 16:29; p.9

10

constant. This allows the second step to be executed more than once for
the same constant (name) which is crucial for overloading the constant.
The extension command that corresponds to the first step is

DECLARE (%,C,7) =%/

for 7 € T (S) and C € C but C ¢ Cg. The axioms do not change, but
the signature does:

S = (Kgs,Cs U{C}, ctypeg/).
The function ctypegs results from ctypeg by defining its value at C:

ctypeq (C' if c £,
CtypeS/ (C,) = { Typ S() T ?:é C/_

The resulting theory is ¥’ = (5', Axiomsy, Axiomsr, Axiomsp).

2.4.3. Eztending a theory by defining a constant
Once a constant has been declared, it can be defined. We say two types
71 and T do overlap if there is a type 7 such that 7 < 7 and 7 <
T9; otherwise we call them non-overlapping. We extend this notion to
constants: two constants C; :: 71 and Cs :: 79 are called non-overlapping
if C; # Cy or 71 and 79 are non-overlapping.

The extension command for defining a constant is

DEFINE (T,C, 7, u) = T

where (C, 7,u) is a constant definition (see Section 2.2). Let the set Crit
be defined by

Crit; = {=: a — (o — prop),...},

Crito = |J{consts(p)|p € Axiomsy},

Critp = {C: 7|3, (C,7,u) € Axiomsp},

Crity = {rep: a — [3,abs :: o — (3},

Crit = Crity U Critg U Critp U Crity.
In the above we have a, 8 € A and a # (. The set Crit; contains all
the constants that play a role in any of the inference rules of the logic.
In addition to = these might be =, V, and so on.

For the DEFINE command to complete successfully, two conditions
must be met:

1. C:: 7 and C' :: 7/ are non-overlapping for all ¢’ :: 7/ € Crit;

overloading.tex; 8/01/2006; 16:29; p.10

11

2. the reduction system (see Section 2.5) induced by the set of constant
definitions
Axioms, = Axiomsp U {(C,7,u)}

is terminating.

Then we have ¥’ = (S, Axiomsy, Axiomsy, Axioms),).

2.4.4. FEzxtending a theory by declaring a new type
For the declaration of a new type the command

TyPEDECL (%,¢c) = ¥

is available. The assumptions for this command to succeed are ¢ € K
and ¢ ¢ Kg. The axioms of the theory are left untouched, only the
signature changes:

S = (KsU{c},Cs, ctypeg).
The resulting theory is therefore

T = (9, Axiomsy, Axiomsy, Axiomsp).

2.4.5. FExtending a theory by defining a type
The command for extending a theory by a new type is

TYPEDEF (T, c,1,...,an,Fx p-t) = T

The side conditions are: ¢ € Kg, there must be no I, p’ with (c,l’,p’) €
Axiomsr, and (c,|[aq,...,q,],p) must be a type definition (see Sec-
tion 2.2).

The resulting theory is

T = (S, Axiomsy, Axiomsy U {(c, [a1, - . ., an],p)}, Axiomsp).

2.4.6. FEztending a theory by asserting an azxiom

Asserting an axiom can destroy all sorts of properties of a theory, for
example its consistency. There is nothing we can do about this; people
should be very careful when asserting axioms. So the basic advice is not
to assert axioms at all but to rely on the axioms in the initial theory.
But if someone really wants to assert an axiom, then we can make sure
that this axiom does not interfere with the constant definitions so far.

The command for extending a theory by asserting an axiom is

ASSERTAXIOM (%, p),

overloading.tex; 8/01/2006; 16:29; p.11

12
where p € Prop (S). Forming again the set Critp by
Critp = {C:: 7|3, (C,7,u) € Axiomsp},

we demand that C :: 7 and C’ :: 7/ are non-overlapping for all C :: 7 €
consts (p) and all ¢’ :: 7/ € Critp.
The resulting theory is ¥’ = (S, Axiomsy U {p}, Axiomsy, Axiomsp).

2.5. THE REDUCTION SYSTEM INDUCED BY A SET OF DEFINITIONS

Let us first concern ourselves with those sets that from a purely syn-
tactic point of view could be subsets of Axiomsp for some valid theory
%. To clarify what this actually means we inductively define Defs(S),
the set of definitions associated with a signature S

— (€ Defs (S);

— let us assume D € Defs(S); let us further assume that (C,7,u) is
a constant definition with respect to S as defined in Section 2.2;
if ¢':: 7/ and C :: 7 are non-overlapping for all (C',7/,u’) € D then
we conclude

DuU{(C,T,u)} € Defs(S5).

For the set Axioms}, and signature S from Section 2.4.3 we have
by construction Axioms;, € Defs(S). For any signature S and any
D € Defs(S) we define the abstract reduction system [4] RS (D) =
(Term (S),—p) by

thereisd = (C,7,u) € D and a type substitution
(pd) ,; .x o such that C :: o7 occurs in ¢t at position p
t——pt iff ,
and t’ can be obtained by replacing this specific
occurrence in t with o u.

We just write ¢t —p ¢’ if (p,d) is of no importance to us.
The reduction system is terminating iff there is no infinite chain

t—pt —pt' —p....

The reduction system is (semi-)confluent iff for t —p ¢ and t —7%, t”
we can always find s with ¢ —7, s and t” —7, s. As usual, —7%, denotes
the reflexive and transitive hull of —p.

THEOREM 1. RS (D) is confluent for any D € Defs(S).
Proof. Assume

d
t(pv)Dt/

overloading.tex; 8/01/2006; 16:29; p.12

13

and

¢ (q1,e1) 5 tlll (g2, e2) b t,2, (gn,en) 5 tg.

Ifp ¢ {q,...,q} then the reduction (p, d) is independent of the other
reductions; therefore both

) n; En ,d
o ((1161)D“_ (g e)DS and ¢" (p)DS

for some s. On the other hand, assume ¢ is the least index such that p =
gi- Then d = e; follows because otherwise we would have found z (the
constant in ¢ at position p) such that z < (C,7) and z < (C',7") where
(C,7,u) =d and (C',7/,u") = e; for certain u, v/, which contradicts the
assumption that C :: 7 and C' :: 7/ are non-overlapping for d # e;. Thus

" (q1,e1) o (gi—1,€i-1) (qi+1,€it1) o (gn,en) "
D D D Uy

"
D ti

Therefore every terminating RS (D) is convergent and hence
Np(t) =s iff t =7 s and there is no s’ such that s —p s’

is a total and uniquely defined function on Term (S).
Note that Np is type preserving, that is

X (Np(t) =5 (1)

holds for all ¢ € Term (S).
For a given valid theory T = (S, Axiomsy, Axiomsy, Axiomsp) we
know by the very definition of validness

1. Axiomsp € Defs(S),
2. RS(Axiomsp) is terminating.

Therefore Naxioms,, is well-defined; we use the shorter notation N for
this function.

2.6. OVERLOADING IS CONSERVATIVE

We are now in a position to show that adding overloading to higher-
order logic as described in the previous sections is conservative in the
sense that every valid theory

T = (S, Axiomsy, Axiomsr, Axiomsp)
can be reduced to a valid theory

T = (S, Axiomsy, Axioms, ().

overloading.tex; 8/01/2006; 16:29; p.13

14

The theory T~ does not contain any constant definitions, and therefore
no overloaded constant names; it can be considered a theory of ordinary
higher-order logic without overloading.

We achieve this reduction by setting

Axiomsy, = {(c,l, Nz (p)) | (c,l,p) € Axiomsr} .
More generally, let & = (5’,...) be an extension of T. We define
T = (9, Axiomsy, Axioms;.®, 1),
Axioms;® = {(c,l,Ne (p)) | (c,1,p) € Axiomsr} .
The latter construction is obviously a generalization of the first:
T =3

Corollary 1 proves that overloading is conservative. The corollary
can be split in two parts that are proved separately, the first part by
induction over the inference rules, the second one by induction over the
theory extension commands.

THEOREM 2. If G is an extension of the valid theory ¥ then
{hi,...,hp} Fx t,
implies
{N(hl)vaN(hn)} l_T*G N(t)a

where N = Ns.
Proof. We set ¥ = T=S. For each theorem I' k¢ ¢ we show that
N (T) ke N (t) is a valid theorem by rule induction:

— kst =Fgt = AxIOM (%,1) :
Then it follows that ¢ € Axiomsp, and this implies N (t) = t.
Therefore we conclude

AxioMm (T't) =kgx t =Fo N (b).
— I' b t = REPABS(%,c,aq,...,apn,p,x = T) :
Thus the hypotheses and the conclusion are I' = {p- (z :: 7)} and

t = (rep :: 1) ((abs :: 74) - (z :: 7)) = x == 7. Applying N to ¢
yields A (t) = t, applying N to T results in

NI)=N{p-(z=7)}) ={N(p) (x:7)}
The obvious conclusion is

N () b N (t) = REPABS (T, c,aq,...,an, N (p),z :: 7).

overloading.tex; 8/01/2006; 16:29; p.14

15

Because we assume REPABS (¥, ¢, a1, ..., an,p,x :: T) to be a valid
theorem, we know (c,[aq,...,qy),p) € Axiomsr which implies
(c,[o1,...,an], N (p)) € Axioms; which implies that

REPABS (T, c,a1,...,an,N (p),x :: T)
is a valid theorem, too.

I' bz t = ABSREP (%, c,aq,...,apn,p,x 2 T) :
This case is handled similarly as the previous case.

kgt =Fg Ci7=u = DEF(%,C,7,u):
Applying N to the conclusion of the theorem yields

NCur=u)=N(C:7)=N(u)).

Because we assume DEF(%,C, 7,u) to be a valid theorem, we have
(C,7,u) € Axiomsp (%) C Axiomsp(&). This again implies

Cur — Axiomsp (&) U-

This means that applying NV to C :: 7 and u yields the same result:
N (C::7) =N (u). We conclude:

Fo N(CuT7=u) =Fg N(u) =N (u) = REFL(T,N (u)).

I' b t =Fg u=u= REFL(%,u):
This is an easy one:

F‘I’ N(u = u) = F‘I’ N(’U,) = N(u) = REFL ({ZI,N(’U,))

I' F¢ ¢t = INSTTYPE (%, {h1,..., hn} Fx D, 1,71, .o, Qmy Tin) -
Let o be the type substitution given by the a;’s and 7;’s. We have
I'={ohi,...,0h,} and t = o p. By induction we know that

{o NV (h)),.... 0 (N (ha))} b o (N (p))
is a theorem in the theory ¥’. From this we must deduce that
{N(ohi),...,N(chn)} Fzr N (op)
is also a theorem in the theory ¥’. In general the inequality
o (N (1) #N (at)
holds for a term ¢ € Term (S) but we can repair this because

N(e N (1) =N(ot)

overloading.tex; 8/01/2006; 16:29; p.15

16

holds. Look at those constants C :: « € consts (o (N (t))) for which
N (C ::) # C :: « holds. Such a constant can be treated as
a variable because it is guaranteed not to interfere with any of
the axioms in ¥'; given any theorem ¢ of ¥’ replacing in ¢ all
occurrences of C :: a by x :: a for some fresh variable name =z €
X yields again a theorem ¢’ of ¥'. Having done so, we can then
instantiate this variable with N (C ::) via the INST-rule.

— kg t=INST (%, 0,21, T1,t1, s Ty Ty bn)

N () Fo N (#)
= INST (T/,N((ﬁ),xl,ﬁ,/\/(tl),. . .,Jim,Tm,N(tm)).

— kg t= RULE({Z,pl,...,pn,Sl,...,Sm,rl Fg t1,...,1 Fg tr):
We have already mentioned in Section 2.3 that higher-order logic
has more inference rules than the five rules we handled until now.
One way to complete the rule induction would be to state all these
rules explicitly and treat them in separate cases. But we have
handled already all the interesting cases; the cases we have not
treated yet proceed all along the same line. Therefore we choose
another way to complete the proof: we just give a recipe on how
to proceed in the remaining cases.

We have separated the parameter list of the rule into different
classes. How this separation is done is obvious for each rule; the
aim of this separation is to show

N(T) b N(t) =
RULE (T,pl, ces P N (81)y -0 N (8m)5
NT) b N(t),....N(Iy) b= N ().

If this has been achieved, the left hand side must be a valid theo-
rem, because by induction the right hand side is a valid theorem.
As in the previous cases, the key is to simplify A/ (t-s) to t- N (s)
if t is an operator of the logic (that is, contained in Crity) like =
or =.

The proof steps for REFL and INST serve as examples of how to
prove the remaining rules. The reader is invited to prove additional
cases as an excercise, for example the case of modus ponens.

THEOREM 3. Assume ¥ is a valid theory. Then T~ is also valid.

overloading.tex; 8/01/2006; 16:29; p.16

17
Proof. During this proof we write A > B if
A = (S, Axiomsy, Axiomsr,()), B = (S', Axioms,, Axiomsr, (),

S can be obtained from S’ by declaring constants and types, and
Axioms, C Axiomsy. It is clear that if B is a valid theory, then so
is A.

Assume ¥ is a valid theory. Then there must be a sequence of valid

theories
Ty oo, T =%

such that for all § =0,...,n — 1 the theory T, is an extension of
T, = TYPEDEF (%, i, i1, - -+, iy by Di-bi)
and the type definitions in ;1 are the same as the ones in T:
Axiomsr(To) =0, Axiomsy(%;11) = Axiomsr(T}).
We show by induction that ‘Zi_i is a valid theory for ¢ = 0,..., n.

— In the base case we have to show that T *is a valid theory. Because
of
TE > %

this is immediate.

— For the induction step we consider S;fl. Because of

T > (T

we only need to show that (¥)~% is a valid theory provided ¥;*
is one. Let us set N'= Nz. We know that the theorem

Fg, pi-ti
holds, and by Theorem 2 we deduce
Fgff N(pz)-/v(tz)
This allows us to conclude
(T)~% = TYPEDEF (T; %, ¢j, i1, - - s Qis P N (93) - N (&)
We have shown that
T =T =1
is a valid theory. O

overloading.tex; 8/01/2006; 16:29; p.17

18

COROLLARY 1. Assume that ¥ is a valid theory. Then so is T~ and
if
{h1,...,hn} b= t,

then also
{Nf(hl)vaN‘I(hn)} }_gf Nf‘g(t).

Proof. The proof is immediate from Theorems 2 and 3. a

How does the above corollary relate to consistency preservation?
Let us assume that our logic contains a constant False :: prop €
Crit; U Crity with the usual meaning so that inconsistency of ¥ means
that

¢ False :: prop

can be derived. Corollary 1 tells us that F<— Nz (False :: prop) is then
derivable, too, and because of Nz (False :: prop) = False :: prop this
implies the derivability of

F<- False :: prop.

This means that consistency of €~ implies consistency of X: overloading
does not endanger consistency.

Note that conservativity in the sense of Corollary 1 is different
from syntactical conservativity which has been proposed in [2] as a
mandatory property of theory extensions. Our theory extensions actu-
ally violate this property which demands that if & is an extension of
T =(5,...)and Fg p and p € Prop (S), then also ¢ p. This violation
is a natural consequence of the fact that declaration and definition of
both constants and types are done separately (DECLARE vs. DEFINE,
TypEDECL vs. TYPEDEF).

3. Proving Termination

3.1. CONSTANT DEPENDENCIES

For any D € Defs(S) we have defined the reduction system RS (D) so
that ¢ can be reduced to t' iff ¢’ results from ¢ by unfolding definitions
in D. We are interested in the termination of RS (D); termination does
not depend on the structure of u in a definition (C, 7,u) € D but only on
what constants appear in u. We therefore define the set D’ of constant
dependencies associated with a set D € Defs(S) by

D' ={(c,1,¢) | 3u(C,7,u) € D Ac € consts (u)}

overloading.tex; 8/01/2006; 16:29; p.18

19

and collect all these sets in
Depsges (S) = {D' | D € Defs(S)} .

Although not necessarily D' € Defs(S), we can still associate the re-
duction system RS (D’) with it. The definition we gave in Section 2.5
also applies here. We restrict its domain, though; RS (D) is the pair
(Term (S),—p), but RS(D') is the pair (Consts(S), —p/) where

Consts(S)={C=7|CeCAC:T€ Term(S)}

is the set of constants with respect to the signature S. This is a little
bit ambiguous but should do no harm because it will be clear from the
context if we are talking about A € Defs(S) or A € Depsge (5).

For D' € Depsyet (S) the reduction system RS (D’) is not necessarily
confluent but is interesting to us because of the following theorem:

THEOREM 4. For all D € Defs(S) we have that RS (D) is termi-
nating iff RS(D') is terminating, where D' € Depsg,;(S) is the set of
constant dependencies associated with D.

Proof. We show this claim by translating infinite chains in one
reduction system to infinite chains in the other.

Given an infinite chain in RS (D’), say

C1 =D C2 7D/ C3 77D vy
we get an infinite chain in RS (D)
€1 =D Ul =D U2 =D ...

such that co € consts(u1), c3 € consts(uz) and so on by performing
the next reduction in the residue of the previous reduction.
On the other hand, if we are given an infinite chain

Ul —p Uz —p U3 —D ...
in RS (D), then the construction of an infinite chain
Cl —p' C2 —pr C3 —pD/ ...

in RS (D’) is a repeated application of the Pigeon-Hole Principle: there
are infinitely many reductions taking place in u; but there are only
finitely many constants in u;. Therefore there must be a constant
c1 in which infinitely many reductions take place. By repeating this
argument we obtain cz, and so on.

We have defined Depsgy. (S) building on the definition of Defs (S).
We would also like to have an independent description. To this end, we
define Deps (S) by

overloading.tex; 8/01/2006; 16:29; p.19

20
— 0 € Deps(S);

— assume d = (Cy,71,Co :: T2) where C1 :: 71,Cq :: 7o € Consts(S)
and tvars (m2) C tvars(71); assume furthermore D € Deps(S) and
for all d = (C3,73,Cyq :: 74) € D either C; :: 7y and Cg :: 73 are
non-overlapping or otherwise C; :: 71 = C3 :: 73; then

D U {d} € Deps(S).
An immediate conclusion is Depsyer (S) C Deps (S). We do not nec-
essarily have Deps (S) C Depsges (S), though; but for any D € Deps (S)
we can easily construct E' and S’ such that E' € Depsge (S’) and

RS (D) terminates iff RS(E’) terminates. Let us define the signature
S’ by

S" = (Ks,Cg, ctypéy),
Cs =Cs U{P},

ctypeg (C) if C # @,
types (C) =
ctypes (C) {a—>ﬁ ifC = .

In the above ® is a new constant name (that is, ® € C\Cg), and o, § € A
and a # (. We first construct E € Defs(S). We can divide D into
equivalence classes D1, ..., D, such that

— D is the union of the D;’s,

— for ¢ # j, any (C1,71,¢1) € D; and any (Ca,72,c2) € D;, we have
that C; :: m; and Cy :: 7o are non-overlapping,

— and such that we can write

D; = {(Cia Ti7Ci,1 - Ti,l))) (Cia Tivci,mi - Ti,mi)} .

Each such D; corresponds to one definition d; € F via

di = (Cl7 Tis Ui),

w; = (.- (((<I) 7)) (Cin::min)) - (Cig Ti,g))) (Ciymy = Tioma),
T =Ti1— (Tig = (Tim; = 7))

We obtain E’ € Depsye; (S’) by setting F = {d1,...,d,} € Defs(5’).

THEOREM 5. RS(FE’) terminates iff RS (D) terminates.

overloading.tex; 8/01/2006; 16:29; p.20

21

Proof. Obviously E' = D U{d},...,d,} where d; = (Ci, 7, ® :: 7).
Therefore any infinite chain in RS (D) is an infinite chain in RS (E’).
On the other hand any chain in RS (E’) involving a reduction step —
cannot be infinite but ends with this step because the constant ® we
introduced has no dependencies and cannot be reduced. Therefore any

infinite chain in RS (E’) is also an infinite chain in RS (D). O

COROLLARY 2. We can decide termination of RS (D) for any signa-
ture S and any D € Defs(S) iff we can decide termination of RS (D)
for any signature S and any D € Deps(S).

Proof. This is a direct consequence of Theorems 4 and 5 and the
fact that Depsges (S) C Deps (S). O

Therefore we can focus now on how to prove termination of RS (D) for
D € Deps(95).

3.2. THE TRS INDUCED BY A SET OF CONSTANT DEPENDENCIES

A first-order term rewriting system (TRS) is a pair (F, R) where F is
the signature of the term rewriting system and R is the set of rules (see
[4], [5]). The signature of a term rewriting system is a set of function
symbols with an arity associated with each symbol. A rule is a pair of
first-order terms over the signature F', written

t=1t,

such that ¢ is no variable and all variables of ¢ appear also in t.
Given a signature S (in the sense of Section 2.2) and D € Deps (S)
we define the term rewriting system TRS (D) induced by D:

F=CsUKg,
) v(f) if fek,
t =
arity (f) {1 iffec
R = {C(T) = ()] (c,r,¢ 7)€ D}.
Note that the variables of TRS (D) are from A.
TRS (D) is of special shape. Let us be more precise: we say that a

TRS is an overloading TRS if all its rules r;, ¢ = 1,...,n, have the
form

it fila;) = g:(b;)
such that

1. neither f; nor g; appears in any of the terms a1, by, ..., ay, by,

overloading.tex; 8/01/2006; 16:29; p.21

22

2. if there are substitutions o, 9 such that o a; = ¥ a; then a; = a; or

fi # fj

Because of their origin we call the f;’s and g;’s term symbols and all
the other symbols in F' type symbols.

THEOREM 6. T is an overloading TRS iff there exists a signature S
and D € Deps(S) with T = TRS (D).
Proof. It D € Deps(S) then obviously TRS (D) is overloading.
Assume on the other hand that we are given an overloading TRS
T = (F,{r1,...,r}). After suitably choosing K etc., and fixing o € A,

S = (Ks,Cs, ctypeg),
CS ::{fh--.,fﬁ,g1r..,gn},
Ks = F\Cs,
ctypes(C) = a,
D =A{(fi,ai,gi::b;) | i=1,...,n}

delivers D such that D € Deps(S) and T'= TRS (D). O

Every TRS can be considered a reduction system on the first-order
terms over its signature. For this reduction relation we also write =,
for its reflexive and transitive hull we write ="

It is not difficult to show directly that given D € Deps(S), RS (D)
terminates iff TRS (D) terminates. But we gain more insight by using
a result that has been established in [6] about the connection between
dependency pairs and termination of term rewriting systems. This in-
sight is later on put to further good use when we tackle the question
of how to practically prove termination of an overloading TRS.

So assume T' = (F, R) is an overloading TRS. We call f € F' defined
if there is a rule f(...) = ... € R, otherwise we call f a constructor.
Let us further assume that there is an injective map from the set of
defined symbols to the set of constructors which preserves the arity, so
that a defined C € F is assigned a constructor C which appears in none
of the rules. This is no restriction since we could just add new symbols
to F.

We call (C1 (1), C2 (12)) a dependency pair if C; (11) = C2 (12) € R
and Co is defined. For an overloading TRS this notion of dependency
pair actually coincides with the notion found in [6] or [5].

A chain is a (finite or infinite) sequence

<817 t1>7 <52, t2>, .

overloading.tex; 8/01/2006; 16:29; p.22

23

of dependency pairs such that there are substitutions (with respect to
F) g; with

oiti =" 0i41 8i41
for all ¢ = 1,2,.... The following theorem has been stated and proven
in [6, Theorem 6:

THEOREM 7. A TRS is terminating iff no infinite chain of depen-
dency pairs exists.

In general it is not decidable to check whether even only two depen-
dency pairs form a chain; the next theorem teaches that in the case
of an overloading TRS this check is just mere syntactic unification. In
order to formulate the theorem, we need an auxiliary definition. We fix
a variable 0 of the TRS and for any first-order term ¢ of the TRS and
also for any substitution we define the function cap (t) by

Cap (O[) = Oé,
cap (f(t1 t)) = p if f is a term symbol,
o f(cap(t1),...,cap(tn)) if f is a constructor,

cap (o) a = cap (o «).
THEOREM 8. A simple chain is a sequence
(s1, t1), (s2, ta), ...
of dependency pairs such that there are substitutions o; with
oiti =0iy1541 and cap(o;) = 0;.
In an overloading TRS, the notions chain and simple chain coincide.

This is a consequence of:

THEOREM 9. In an overloading TRS, if ot =* ¥ s for two substi-
tutions 0,9 and terms t, s such that cap (t) =t and cap(s) = s, then
also cap (o)t = cap (9) s.

Proof. Because our TRS is overloading, the only reductions that can
take place in ot are the ones that take place in those regions of the
term that have been replaced by [in cap (o t). Let us call these regions
t1,...,tn. Furthermore we denote the regions in ¥ s that have been
replaced by g in cap(¥s) by si,...,8n,. Because reductions cannot
“escape” regions, and also cannot “create” or “move” regions, we have
n = m and t; reduces to s;. Replacing all regions by 3 makes these
reductions unnecessary, and we have

cap(ot) = cap(Vs).

overloading.tex; 8/01/2006; 16:29; p.23

24
Neither t nor s contain term symbols; therefore
cap (ot) =cap(o)t, cap(¥s)= cap(V)s,

which finishes our argument. a

Proof of Theorem 8. It is clear that a simple chain is also a chain.
Now assume that we are given a chain. We need to show that it actually
is a simple chain. We know o; t; =" 0411 S;+1. Theorem 9 tells us that

cap (0;) t; = cap (0it1) Sit1,
because for any dependency pair (s;, t;) we have
cap(s;) =s; and cap(t;) = t;.
O

COROLLARY 3. Assume D € Deps(S). Then we have that RS (D) =
(Consts (S), —p) is terminating iff TRS (D) is terminating.

Proof. An infinite reduction sequence in RS (D) is just a simple chain
in TRS (D) together with the substitutions which prove the simple-
chain property. Theorems 8 and 7 then prove our claim.

3.3. UNDECIDABILITY OF PROVING TERMINATION

In the first part of this paper we have explained how overloading can
be added safely to ordinary higher-order logic as it is implemented in
proof-assistants like Isabelle, HOL 4 or HOL-light.

But is this enriched logic also implementable by proof-assistants?
That is, if the user gives his possibly overloaded definitions D to the
proof-assistant, can it decide whether to accept or reject them solely
based on if the definitions play by the rules of HOLCO? The answer is
no; as we will show now, one cannot decide if RS (D) is terminating.
Corollaries 2 and 3 tell us that this decision problem is equivalent to
the problem of deciding if an overloading TRS is terminating.

Therefore we can show the undecidability by reducing Post’s Corre-
spondence Problem for Prefit Morphisms (PCPP) to the termination
problem for overloading TRS’s. An instance of the PCPP is the fol-
lowing problem: Given pairs (aj,b1),. .., (an,by) of non-empty finite
words over the alphabet {0, 1} such that for ¢ # j neither a; is a prefix
of a; nor b; is a prefix of b;, decide if there is a solution, that is a finite
sequence i1, ..., %, with

Ajp Qg - . . Gy

L =Dbibiy ... b,

overloading.tex; 8/01/2006; 16:29; p.24

25

The PCPP is undecidable [8].

For the above instance of the PCPP, we construct an overloading
TRS. The construction is basically the one that is used in [5] for re-
ducing Post’s Correspondence Problem, which is the PCPP without
demanding that the a;’s and b;’s cannot be prefixes of each other, to
the termination problem of a general TRS.

Our TRS has five function symbols: a nullary symbol 0O, three unary
symbols 0, 1, C, and one ternary symbol c. For a binary word p =
192 - - - qn (that is ¢1,...,¢, € {0,1}) we define the term

p(t) = q(g(- (g())...))-
For each pair (a;, b;) of the PCPP instance the TRS has a rule

C(c(ai(a),bi (B),7)) = C(c (@ 5,7)),

furthermore it has the rules

ro: C(c(0,0,0(a))) = C(c(0(a),0(a),0(a))),
ri: C(c(0,0,1(e))) = C(c(1l(a),1(),1(v))).

THEOREM 10. The TRS we just constructed is an overloading TRS,
and it is terminating iff the corresponding PCPP instance has no solu-
tion.

Proof. The left hand sides of no two rules unify, because for a; («)
and a;(a’) to unify, a; would need to be a prefix of a; or the other way
around. Therefore the TRS is overloading.

If the PCPP instance has a solution 41, ...,%,, then

C(c(s(m),s(0),5(0)))

for s = a;, ...a;, starts a cyclic and therefore infinite reduction se-
quence.

If the TRS is not terminating, then there exists an infinite simple
chain. Because all the other rules reduce the size of the term, there
must be two dependency pairs in this chain that correspond to g or
r1. The dependency pairs between these two pairs form a solution of the
PCPP instance, after throwing away those pairs that correspond to rq
or 1. That the solution is not empty is ensured because directly after
ro or r1 have been applied, neither of them can be applied again. O

Note that we also have shown that it is undecidable if an overloading
TRS admits cyclic reductions.

COROLLARY 4. It is undecidable if an overloading TRS is terminat-
ing. Actually, it is not even semi-decidable.

overloading.tex; 8/01/2006; 16:29; p.25

26

Proof. It is semi-decidable if any given PCPP instance has a solution.
Considering that the PCPP is undecidable [8], Theorem 10 tells us that
the termination of an overloading TRS cannot be semi-decidable. O

3.4. PRACTICALLY PROVING TERMINATION

Corollary 4 shows that any check a proof-assistant might employ for
deciding if a set of definitions is associated with a reduction system
that terminates will be incomplete: there will always be definitions
that should pass but won’t pass.

On the other hand overloading has proven to be a very useful tech-
nique which is regularly taken advantage of by users of the proof-
assistant Isabelle. Until now the use of overloading in Isabelle was an
act of faith; experienced users “knew” how to use overloading only in a
sound way. Therefore it is worthwhile to examine how to devise a check
that can give definitive and reliable answers on almost all overloaded
definitions an experienced user would issue.

We have developed an add-on to the proof-assistant Isabelle that
provides functionality for checking if RS (D) terminates for the set D of
definitions of an Isabelle theory. The check can either be done by using
external TRS termination provers, or by using a built-in termination
prover [16].

3.4.1. FExternal Provers and the Dependency Pair Method
There are now several tools available that can prove the termination of
a wide range of term rewriting systems, among them A ProVFE [12] and
the Tyrolean Termination Tool [13]. We have shown that checking def-
initions can be done by checking if an overloading TRS is terminating.
Therefore we can just give this overloading TRS to one of these tools.
We have tested the viability of this approach by checking four for-
malizations in Isabelle/HOL, all of which make use of overloading:

Main the starting point for Isabelle/HOL users,

Bali which has been concerned with the formalization of various as-
pects of the programming language Java [17],

Mat a formalization of checking the bounds of real linear programs
employing matrices [14],

Nom and the implementation of nominal techniques for Isabelle [15].

Our add-on extracts the overloading TRS that corresponds to the defi-
nitions of the corresponding Isabelle theories. Note that all definitions

overloading.tex; 8/01/2006; 16:29; p.26

27

of a theory are collected for this purpose; this also recursively includes
the definitions of the parent theories of the theory.

Giving the four generated TRSs directly to either AProVE or TTT
fails with a time-out after several minutes. Can we somehow preprocess
the TRS to provide the checkers with easier input?

Both checkers use the dependency pair method invented in [6]. The
basic idea there is to calculate a dependency graph. This graph has
the dependency pairs of the TRS as its nodes and there is an edge
from (a, b) to (c, d) if {(a, b) (¢, d) is a chain. Therefore in general the
dependency graph is not computable and it is necessary to use an
approximation of the dependency graph. This approximation has an
edge from (a, b) to (¢, d) if there are substitutions o, such that

o (lin(cap (b)) = Ve,

see for example [5, p. 252]; lin is a function that replaces all occurrences
of variables by fresh variables.

We can do better for overloading TRSs. Chains are simple chains
and therefore we can compute the exact dependency graph which has
an edge from (a, b) to (c, d) iff there are substitutions o, such that

ocb=1c.

In general the exact dependency graph has less edges than the approx-
imated dependency graph. Take for example

b=C(a —a), c=C(real — int).

Then the approximated graph has an edge from (a, b) to (¢, d) because
0 — v and real — int unify, but the exact dependency graph has no
such edge.

An overloading TRS is not terminating iff it admits an infinite simple
chain of dependency pairs. Mapping this infinite chain to the exact
dependency graph yields an infinite path p in the graph. We call a non-
empty set N of nodes such that for n,m € N, there are non-empty
paths from n to m and from m to n a cyclic component of the graph.
Each cyclic component is a strongly connected component. If there is an
infinite path p then there also must be an infinite path p’ with all of its
nodes belonging to the same cyclic component, because the dependency
graph is finite.

Each cyclic component of the dependency graph is a set of depen-
dency pairs, and can therefore be considered a subset of the rules of
the overloading TRS. The overloading TRS is terminating iff all TRSs
that correspond to a cyclic component are terminating.

overloading.tex; 8/01/2006; 16:29; p.27

28

Table II. Dependency Graph Statistics (on a 1.7GHz Pentium IV Mobile)
|| Main | Bali | Mat | Nom

Number of nodes of DG 1684 | 5726 | 2311 1765
Construction time of DG 06s | 7.3s 1s 0.6 s
Number of nodes of root-cyclic DG 0 12 6 8
Construction time of root-cyclic DG 0ls | 05s | 02s | 01s
Number of cyclic components 0 5 6 1
Maximum number of nodes per component - 4 1 8

Therefore we have found a method to break up our big overloading
TRS into a couple of (much) smaller overloading TRSs whose depen-
dency graphs consist of exactly one cyclic component. AProVE can
automatically solve all of these systems; TTT time-outs for several of
them in automatic mode but manages to solve all of them in semi-
automatic mode with polynomial interpretations switched on. Both
checkers only need a fraction of a second for all of the smaller term
rewriting systems combined.

The dominating factor in our examples is constructing the depen-
dency graph (DG) and calculating the cyclic components of the graph;
the exact timings are listed in Table II. The construction of the depen-
dency graph for Bali takes over seven seconds although discrimination
nets ([21], [22]) are used to speed up the calculation. But we actu-
ally don’t need the whole DG in order to prove termination; we only
need those nodes of the DG that belong to a cyclic component. In-
stead we construct (without constructing the DG first) what we call
the root-cyclic DG; this is the biggest subgraph of the DG such that
all nodes are root-cyclic. The root-cyclic DG is usually much smaller
than the DG. In order to determine which dependency pairs d; =
(C; (1), D (05)), i = 1,...,n, are root-cyclic we construct a graph with
nodes {C1,Dq,...,Cp, Dy} and edges from C; to D;. We call d; root-cyclic
if C; and D; belong to the same cyclic component of that graph.

Table IT shows that this simple optimization has a big impact;
we only need half a second to construct the root-cyclic DG for Bali
compared to over seven seconds for the full DG.

3.4.2. An Algorithm For Proving Termination

For a proof-assistant it is somewhat unsatisfying and clumsy to have
to rely on external TRS termination provers. Therefore we present an
algorithm for proving termination of an overloading TRS that is easy
to implement and powerful: it can handle all of our examples, that is
Bali, Mat and Nom (Main is dealt with trivially). It is a variant of the

overloading.tex; 8/01/2006; 16:29; p.28

29

dependency pair method [6] and uses the recursive calculation of cyclic
components from [7].

Let us look at a cyclic component of the (root-cyclic) DG and assume
that the component consists of the dependency pairs di, ..., dy where
d; = (s;, t;). If we can find relations =, > C T x T, where T is the set
of first-order terms that do not contain any term symbols, such that
for all ,y,z € T and substitutions o with o = cap (o)

— > is well-founded, that is there is no infinite chain

Ug > U1 > U > ...,

— x>y and y = z implies z > z,

— x>y and y > z implies x > z,

— x>y impliesozx > oy,

— xz>=yimpliesoxr >=oy,

and such that

— si=tifori=1,...,M, where 1 < M < N,
— sj=tifort=M+1,...,N,

then we can drop the nodes di,...,dys and start all over again by
calculating the cyclic components of this reduced graph.

THEOREM 11. If we can continue this process until we have arrived
at the empty graph then we have successfully shown termination.

Proof. The whole overloading TRS terminates if each of its cyclic
components corresponds to a terminating overloading TRS. The TRS
that corresponds to the cyclic component we picked is not terminating
iff there exists an infinite simple chain of dependency pairs

<u17 Ul>, <U2, U2>,

where (u;, v;) € {di,...,dny} for all i, which means that there are
substitutions o; with o; = cap (o;) and

o1Ul D1 O01V] = 02Uy D9 OV = -+ .

In the above 1; is either > or >, depending on if j < M or j > M,
respectively, where (u;, v;) = d;. Here we have used the property of >
and > to be closed under substitutions.

If any of the d;’s for j < M is equal to u; > v; for infinitely many 4
then >; is equal to > for infinitely many ¢. This allows us to construct

overloading.tex; 8/01/2006; 16:29; p.29

30

an infinite descending chain with respect to > by using the transitivity-
like properties of > and >. But this contradicts the property of > to
be well-founded.

Therefore there exists an infinite simple chain of dependency pairs
in {d1,...,dn} iff there exists an infinite simple chain of dependency
pairs in {dp41,...,dN}. O

Which relations > and > should we choose? This depends on the
cyclic component we are currently examining. We use a restricted form
of linear polynomial interpretation to find these relations which is a
special case of the method described in [20]. Note that the full method
of [20] could be applied; it could even be improved because our relations
need not have the subterm property (which is nevertheless fulfilled for
the polynomial interpretation we describe here). We do not use this
more general method because finding the relations becomes much more
costly in terms of runtime.

Terms are interpreted as those linear polynomials that can be viewed
as functions from R4 x --- x IR; to IRy. The set IR, denotes the set
of non-negative real numbers.

To each (type) symbol f of the overloading TRS we assign a real
constant ¢y > 0, and to each variable o of the TRS we assign a real
variable ;). The function i converts variables into indices and is
injective. A term ¢ is interpreted as © (t):

For € > 0 we define the relation >. on functions from IR? to IR, by

pP>eq <
p(x1y...,xn) > e+ q(x1,...,zy) forall zq,...,z, € Ry.

This relation is well-founded for € > 0. We pull back this relation to
the set of terms and define

u-cv <= 0O(u) > 0(v).

We write > instead of >g. Can we choose ¢ > 0 such that by setting >
to . we obtain the pair of relations we are searching for?

Obviously >, and > would have almost all of the desired properties
we need in order to apply Theorem 11. In order to get rid of the “al-
most” we have to show that (after possibly reordering the dependency
pairs) we have s; >=. t; for i = 1,...,M and M > 1 and also s; > t;
fori=M+1,...,N.

For two terms u and v the relation u >, v holds iff

overloading.tex; 8/01/2006; 16:29; p.30

31
1. diff (u,v) = © ()0, ...,0) — © (v)(0,...,0) > ¢,

2. and for all z1,...,2, € IRy and all ¢ = 1,...,n the inequality
8%1-(@ (u)(z1,...,2n) — O (v)(x1,...,2y,)) > 0 holds.

The second condition just means that for all a the inequality
varcount (u,) > varcount (v, «)

holds; varcount (t, «) denotes the number of occurrences of the variable
« in the term t. The first condition is also easy to check; the expression
diff (u,v) does not contain any variables any more.

If assignments f +— c; and € > 0 exist such that ~. and > fulfill
all the requirements of Theorem 11 then we can actually calculate
them automatically. For this we view the c;’s not any longer as fixed
constants but treat them as variables. The expressions D; = diff (s;, t;)
are then linear homogeneous polynomials in these variables. We restate
our problem as a linear program:

maximize D = Di+---+ Dy
subject to Dy >0

Dy >0

Dy > 0

It is understood that all variables of the linear program carry non-
negativity constraints. See [18] and [19] for background information on
linear programming.

THEOREM 12. There exist assignments f +— c; and € > 0 such
that =c and = fulfill the conditions of Theorem 11 (modulo a possible
reordering of the dependency pairs) iff

1. foralla andi=1,...,N,

varcount (s;, «) > varcount (t;, a),

2. the above real linear program is unbounded.

In that case those dependency pairs d; can be dropped from the depen-
dency graph for which diff (s;,t;) > 0 holds.

Proof. The linear program is either feasible with D assuming a
maximum Dy, = 0, or feasible with D being unbounded: it cannot be
infeasible because the zero vector is a feasible solution, and it cannot
be feasible and bounded with D assuming a maximum oo > Dpyax > 0

overloading.tex; 8/01/2006; 16:29; p.31

32

Table III. Built-In Termination Check (on a 1.7GHz Pentium IV Mobile)
| Bali | Mat | Nom

Runtime (in milli seconds) 2ms | 9ms | 12 ms
Average number of dependency pairs dropped 1.2 1 1.33

because then one could just multiply the solution vector with a constant
k > 1 which would lead to an objective value k& Dyax > Diax-
Assume Dpax = 0. Then also D; = 0 for all feasible solutions and
alli=1,..., N, so our method cannot be applied.
Assume Dy, = 00. Then there must be a feasible solution with
D; > 0 for at least one 7. For this solution define

e =min{D;|D; >0,i=1,...,N}.

Together with our previous explanations this concludes the proof. O

Note that the simplex method together with a non-cycling pivoting
rule like Bland’s rule is well-suited to deal with the above linear pro-
gram. The dictionary can be obtained directly from our formulation by
introducing NN slack variables. The normally necessary first phase for
discovering a feasible solution can be dropped because the zero vector
is an obvious feasible solution. Confidence in the result can be obtained
by calculating with exact fractions instead of floating point numbers.

Table IIT shows the runtimes of the above algorithm for the exam-
ples Bali, Mat and Nom. The average number of dropped dependency
pairs can probably be improved by looking more carefully at the final
dictionary; for our measurements we use Bland’s rule and take the first
discovered feasible ray on which the objective function is unbounded.

Important to note is that in all three examples no pivoting is nec-
essary at all; the starting dictionary already gives away the feasible
ray. That means that an even more easily implementable method could
be used that works by simply counting variables and constants. For
the purpose of counting constants we let constcount (t, f) denote the
number of occurrences of the (type) symbol f in the term ¢.

COROLLARY 5. There exist assignments f — cy and € > 0 such
that =c and > fulfill the conditions of Theorem 11 (modulo a possible
reordering of the dependency pairs) if

1. foralla andi=1,...,N,

varcount (s;, «) > varcount (t;, «),

overloading.tex; 8/01/2006; 16:29; p.32

33

2. there are M > 1 (type) symbols fi,..., far such that for all j =
1,....Mandi=1,...,N,

constcount (s;, fj) > constcount (t;, f;),

3. furthermore there exist indices 1 < i1, ...,ip < N such that for all
j=1,....M,

constcount (s;;, fj) > constcount (t;,, f;).

In that case all dependency pairs d; can be dropped from the dependency
graph for which there exists j with

constcount (s;, fj) > constcount (t;, f;).

In particular, d;,, ..., d;,, can be dropped.

Proof. Observe that constcount (t, f) is the coefficient of ¢y in the
linear polynomial O (¢). Then it is clear that a feasible solution of the
linear program with D > 0 is obtained by setting ¢y, = 1 for j =
1,...,M and ¢y = 0 for all other f’s. The statement then follows from
Theorem 11. O

Basing the termination check on Corollary 5 already yields a pow-
erful method that can deal with the examples Bali, Mat and Nom
automatically. Note that the Tyrolean Termination Tool [13] cannot
handle Bali in automatic mode but only in semi-automatic mode with
the hint that polynomial interpretation should be used.

Nevertheless, Corollary 5 yields a strictly weaker method than The-
orem 12. To understand why, look at the definitions

consts
Dummy :: o — (3
A«
defs
A: alist = Dummy (A :: avector)
A:: avectorvector = Dummy (A :: alist) .

The dependency graph for these definitions has one cyclic component
consisting of the two (root-cyclic) dependency pairs

di = (A(alist), A(avector)) ,

dy = (A(avectorvector), A(alist)) .

The corresponding linear program reads

maximize D = Cyector
subject to Dy = st — Cvector = 0
Dy = —crist + 2¢yector = 0 .

overloading.tex; 8/01/2006; 16:29; p.33

34

Corollary 5 does not help us here because both c¢1is¢ and cyector ap-
pear with negative coefficients in the constraints. But c1is¢ = 2 and
Cvector = 1 18 a feasible solution of the linear program with D = 1
which means that {(2r,r)|r > 0} is the feasible ray (on which the
objective function is unbounded) we were looking for in order to apply
Theorem 12! Evaluating D1 =2—1=1>0and Dy = -2+42-1=02>0
tells us that we can drop d;. This leaves us with the cyclic component
consisting only of ds and the linear program

maximize D' = —c1is¢ + 2cvector
subject to Di = —Cust T 2Cvector = 0 .

Now Corollary 5 is applicable: cyector Only appears with strictly positive
coefficients in the constraints, therefore cyector = 1 and ci1is¢ = 0 is
the feasible solution we were looking for. Dropping also dy leaves us
the empty graph, which proves termination according to Theorem 11.
Note that picking c1isy = 3 and cyector = 2 in the first place would
have saved us the second round; because of D1 =3 -2 =1 > 0 and
Dy =-3+4+2-2=1> 0 we could have dropped both dependency pairs
dy and ds at once.

4. Conclusion

We have presented the first theory extension mechanism that can cope
with overloading in higher-order logic as it is actually used in the proof-
assistant Isabelle and shown that this mechanism is safe.

Checking if overloaded definitions play by the rules of our mechanism
is not even semi-decidable. We have proven this by revealing the ties of
our problem with the problem of checking the termination of a certain
kind of term rewriting system.

Fortunately, most practical uses of overloaded definitions can be
checked by a simple algorithm. This algorithm incorporates several
ideas of recent research on termination of first-order term rewriting
systems and has been implemented as an add-on [16] to the proof-
assistant Isabelle. Furthermore this add-on is able to export the check
in form of several TRSs to external termination provers as TTT or
AProVE.

It is now possible to use overloading as just another tool when
working in higher-order logic, without any doubts about its safety.

overloading.tex; 8/01/2006; 16:29; p.34

35

Acknowledgments

Special thanks to Markus Wenzel for pointing out to me the delicate
points of overloading in connection with the HOL type system and in
general, and to both Tobias Nipkow and Markus Wenzel for adding
axiomatic type classes and overloading to the Isabelle proof assistant.
Furthermore I thank Tjark Weber for several heated discussions at
the opera and elsewhere concerning the dependency graph that en-
abled me to see the connection of overloading to the method of Arts
and Giesl. Jirgen Giesl helped me understand several points about
the dependency pair method. Stefan Berghofer referred me to [5] for
background information about TRSs. Thanks to Alexander Krauss,
Tjark Weber and Markus Wenzel for reading this paper and suggesting
several important improvements and corrections, and also to Clemens
Ballarin for reminding me not to skip too many proofs. Finally I would
like to express my gratitude to Tobias Nipkow for giving me the time
to work on this topic and for providing excellent working conditions.

References

1. Lawrence C. Paulson. The Foundation of a Generic Theorem Prover. Journal
of Automated Reasoning, Vol. 5, No. 3, 1989, pages 363-397.

2. Markus Wenzel. Type Classes and Overloading in Higher-Order Logic. Theorem
Proving in Higher Order Logics, 10th International Conference, TPHOLs 97,
LNCS 1275, Springer 1997, pages 307-322.

3. Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, Springer 2002

4. Franz Baader, Tobias Nipkow. Term Rewriting and All That, Cambridge
University Press 1998.

5. Terese. Term Rewriting Systems, Cambridge University Press 2003.

6. Thomas Arts, Jiirgen Giesl. Termination of term rewriting using dependency
pairs. Theoretical Computer Science, 2000, Vol. 236, pages 133-178.

7. Nao Hirokawa and Aart Middeldorp. Automating the dependency pair method.
Automated Deduction, 19th International Conference, CADE-19, LNAI 2741,
Springer 2003, pages 32-46.

8. Keijo Ruohonen. Reversible Machines and Post’s Correspondence Problem for
Biprefix Morphisms. Journal of Information Processing and Cybernetics, 1985,
Vol. 21 (12), pages 579-595.

9. The HOL System Description. http://hol.sourceforge.net/

10. John Harrison. The HOL Light theorem prover.
http://www.cl.cam.ac.uk/~jrh/hol-light/

11. Lawrence C. Paulson. Organizing Numerical Theories Using Axiomatic Type
Classes. Journal of Automated Reasoning, 2004, Vol. 33, No. 1, pages 29-49.

12. AProVE - Automated Program Verification Environment.
http://www-1i2.informatik.rwth-aachen.de/AProVE/

13. TTT - Tyrolean Termination Tool.
http://cl2-informatik.uibk.ac.at/ttt/

overloading.tex; 8/01/2006; 16:29; p.35

36

14.

15.

16.

17.
18.

19.

20.

21.

22.

Steven Obua. Proving Bounds for Real Linear Programs in Isabelle/HOL. The-
orem Proving in Higher Order Logics, 18th International Conference, TPHOLs
05, LNCS 3603, Springer 2005, pages 227-244.

Christian Urban. Nominal Techniques in Isabelle/HOL. Automated Deduction,
20th International Conference, CADE-20, LNAI 3632, Springer 2005, pages
38-53.

Steven Obua. How To Check Overloaded Definitions in Isabelle.
http://www4.in.tum.de/"obua/checkdefs

Project Bali. http://isabelle.in.tum.de/Bali

Robert J. Vanderbei. Linear Programming: Foundations and Extensions, 2nd
ed., Springer 2001.

Alexander Schrijver. Theory of Linear and Integer Programming, Wiley 1986.
Jirgen Giesl. Generating Polynomial Orderings for Termination Proofs.
Rewriting Techniques and Applications, 6th International Conference, RTA-95,
LNCS 914, Springer 1995, pages 426-431.

Jim Christian. Flatterms, Discrimination Nets, and Fast Term Rewriting.
Journal of Automated Reasoning, 1993, Vol. 10, No. 1, pages 95-113.

Eugene Charniak, Christopher K. Riesbeck, Drew V. McDermott. Artificial
Intelligence Programming., Lawrence Erlbaum Associates 1980.

overloading.tex; 8/01/2006; 16:29; p.36

