Partizan Games in Isabelle/HOLZF

Steven Obua*

Technische Universitat Miinchen
D-85748 Garching, Boltzmannstr. 3, Germany
e-mail: obua@in.tum.de, url: http://www4.in.tum.de/ obua

Abstract. Partizan Games (PGs) have been invented by John H. Con-
way and are described in his book On Numbers and Games. We formalize
PGs in Higher Order Logic extended with ZF axioms (HOLZF) using Is-
abelle, a mechanical proof assistant. We show that PGs can be defined
as the unique fixpoint of a function that arises naturally from Conway’s
original definition. While the construction of PGs in HOLZF relies heav-
ily on the ZF axioms, operations on PGs are defined on a game type
that hides its set theoretic origins. A polymorphic type of sets that are
not bigger than ZF sets facilitates this. We formalize the induction prin-
ciple that Conway uses throughout his proofs about games, and prove
its correctness. For these purposes we examine how the notions of well-
foundedness in HOL and ZF are related in HOLZF. Finally, games (mod-
ulo equality) are added to Isabelle’s numeric types by showing that they
are an instance of the axiomatic type class of partially ordered abelian
groups.

1 Introduction

Partizan Games are extensively and beautifully described in Conway’s book
ONAG [1]. In this paper, we will instead focus on the issues that arise when rep-
resenting and reasoning about PGs in the mechanical theorem proving assistant
Isabelle!'. For PGs we improve on the methods of Mamane, who has formalized
PGs and surreal numbers, which are a special kind of PGs, in Coq [2]. Especially,
our constructions and proofs are in direct relation to the ones found in ONAG
and therefore short. The proofs in [2] often deviate from the original proofs and
are (much) longer. This difference has two major reasons:

1. We use a logic / axiom system, HOLZF, that is very suitable to formalize
set-theoretic notions but still offers the advantages of Higher Order Logic,
so that we can define our own type of games. Mamane uses the Calculus of
Inductive Constructions (CIC).

2. We have formalized the induction principle that Conway uses, and proved
its correctness once and for all. Actual inductions in the proofs about games
are simple instantiations of this general induction principle.

* Supported by the Ph.D. program “Logik in der Informatik” of the “Deutsche
Forschungsgemeinschaft.”
! the theory files can be downloaded from [14]

Mamane has identified this induction principle and calls it permuting induc-
tion (and so will we) but has neither proven nor formalized it [2]. We show
that also Conway’s transitivity proof is perfectly correct according to this
principle, contrary to what Mamane [2] states. On the other hand we have
discovered a true flaw in one of Conway’s proofs.

This paper can be seen from two points of view. One is that this paper is about
formalizing PGs, and in order to achieve this, we will introduce Isabelle/HOLZF
and some properties of it. The other point of view is that it really is about
Isabelle/HOLZF, a logic that extends both Higher Order Logic (HOL) and
Zermelo-Frankel set theory (ZF), and about the first application of it, namely
formalizing games, that neither Isabelle/HOL nor Isabelle/ZF is suitable for.

2 Which Axiom System Suits Partizan Games?

Conway defines Partizan Games inductively:

If L and R are any two sets of games, there is a game G = {L | R}. All
games are constructed this way. The left options of G are the elements
of L, and R is the set of right options of G. Two games G and H are
called identical if they have the same left and right options.

Underlying this definition is the idea that every game has certain positions and
is played by two players, Left and Right. Every position is characterized by the
moves that either of both players could make if it was his turn. Each such move
leads to a new position. In a given position G a move is identified with the
position it leads to. The moves of Left are called the left options of G, the moves
of Right are called the right options of G. Identifying a game with its starting
position we arrive at the above definition of games.

There is a restriction on PGs that Conway demands: There is no infinite
sequence of games (G;);en such that G;11 is an option (left or right) of G;. This
restriction is contained in the definition of PGs if set is understood in the sense
of Zermelo-Frankel set theory.

Isabelle is a generic theorem prover [8]. Its meta logic is intuitionistic higher
order logic, on top of which other logics can be built by asserting axioms and
declaring types. Two such extensions of pure Isabelle are in more widespread use
and we argue that neither of them is suitable for mechanizing Partizan Games:

Isabelle/HOL [8] is the Isabelle implementation of Higher Order Logic. It
features packages for defining datatypes and general recursive functions. We
might be tempted to use the datatype package to define the game type:

datatype game = Game (game set) (game set). (1)

If admissible, this statement would define a new type game that has one
constructor Game that takes as arguments a game set, the left options of
the game, and a further game set, the right options. But this statement is not

admissible because Game L needs to be an injective function for any fixed
L but cannot be; as a consequence of the Schroeder-Bernstein theorem one
can prove in HOL that no function of type ‘a set = ’a is possibly injective.

Isabelle/ZF [6,7] is based on classical first-order logic and the axioms of ZF set
theory. Here we might try to use the provided facilities to define fixpoints;
let us define a function h by

hA={(L R |LCANRC A} (2)

Any set G that fulfills the fixpoint equation h G = G would be a good
candidate for a set of Partizan Games. But obviously we have |h A| > |4]
for all sets A and therefore there is no such candidate. Therefore, Partizan
Games do not form a set but rather a proper class.

In Isabelle/HOLZF we can solve all these problems; the next section introduces
and describes Isabelle/HOLZF.

3 HOLZF = HOL + ZF

We obtain Isabelle/HOLZF by starting from Isabelle/HOL and introducing a
new type ZF and a relation Elem of type ZF = ZF = bool on it; we then make
this type into the universe of ZF sets by postulating the ZF axioms.

That something like Isabelle/HOLZF could be possible was suspected by
Tjark Weber and the author when they tried to formalize the semantics of the
A-calculus in Isabelle/HOL (and failed). The actual viability and how-to of the
approach was brought to the attention of the author by Bob Solovay who outlined
HOLZF on the Isabelle mailing list and claimed that “for certain reasons he
needed such a monster”, opposing Larry Paulson’s remark that HOLZF might be
“too much of a good thing”. Bob Solovay also provided a proof of the consistency
of HOLZF relative to the consistency of ZFC + ’there is an inaccessible cardinal’.
Mike Gordon has worked on HOLZF already ten years ago [3]. He uses the
name HOL-ST instead of HOLZF. Also, Sten Agerholm has used HOL-ST to
formalize the inverse limit construction of domain theory to build a model of the
A-calculus [4].

We use the same axioms as Gordon in [3] with one exception; his axiom of
separation is superfluous if one is willing to apply the axiom of choice which
HOL provides via the Hilbert choice operator.

We first declare the new type ZF and introduce six new constants denoting
the empty set (Empty), the element relation (Elem), the sum or union operator
(Sum), the power set operator (Power), the replacement operator (Repl) and
an infinite set (Inf):

typedecl ZF
consts

Empty :: ZF
FElem :: ZF = ZF = bool

Sum :: ZF = ZF

Power :: ZF = ZF

Repl :: ZF = (ZF = ZF) = ZF

Inf == ZF
Standard constructions like unordered pairs (Upair), the singleton set (Single-
ton) and the union of two sets (union) are defined in terms of the new constants.
We also need the function SucNat which just encodes the successor of a natural
number as a set in the standard way.

Our seven axioms can now be expressed as follows:

axioms
Empty: = (Elem © Empty)
Ext: (x = y) = (V2. Elem z x = Elem z y)
Sum: Elem z (Sum z) = (3y. Elem zy A Elem y x)
Power: Elem y (Power z) = (Vz. Elem zy — Elem z x)
Repl: Elem b (Repl A f) = (3a. Elema AN b= fa)
Regularity: A # Empty — (3z. Elem z A A (Vy. Elem y © — — (Elem y A)))
Infinity: Elem Empty Inf A (Yx. Elem x Inf — Elem (SucNat z) Inf)

As mentioned, separation (Sep) can be defined in terms of replacement and does
not need an extra axiom.

constdefs
Sep 2 ZF = (ZF = bool) = ZF
Sep Ap=(if Vz. Elemxz A — — (p z)) then Empty else
(let z = (ex. Elemz A A p x) in
let f = X z. (if p z then z else z) in Repl A f))

We also define ordered pairs (Opair):

constdefs
Opair :: ZF = ZF = ZF
Opair a b = Upair (Upair a a) (Upair a b)
Fst .2 ZF = ZF
Fstq=¢x.y. q = Opairz y
Snd :: ZF = ZF
Snd q = ey. dz. ¢ = Opair z y

The reasoning about these constants is easy if one can prove an equation for
the constant that is characteristic for it and has the form of a simple logical
equivalence so that the constant does not appear any more on the right hand
side. In that way the actual work can be delegated to the classical reasoner
and to the simplifier of Isabelle/HOL. The characteristic equations for Upair,
Singleton, union, Sep, Opair, Fst and Snd are:

Elem z (Upair a b) r=aVz=0,

Elem z (Singleton y) = z =y,

Elem z (union A B) = FElem x AV Elem z B,
Elem b (Sep A p) = Elem b AN p b,
Opair a b = Opaircd = a=c N b=d,

Fst (Opair x y) = 1z,

Snd (Opair z y) = y.

e

The development of set theory proceeds along the same lines as in Isabelle/ZF [6].
We have not developed the whole theory but at least the pieces that are necessary
to later construct Partizan Games. Paulson goes on building up an infrastructure
for inductive definition and recursion within set theory [7]. This machinery is not
sufficient in order to deal with Partizan Games as we have seen before. But this is
no problem anyway because we can rely on the machinery of fixpoints, primitive
and well-founded recursion that already exists in HOL instead of replicating the
mechanisms of ZF! Before delving into that let us first construct Partizan Games
in HOLZF.

4 Constructing Partizan Games

Partizan Games do not form a ZF set but, if they exist at all, only a proper
class as we have motivated earlier. Intuitively, a proper class is a collection of
elements that is too ‘big’ to form a ZF set but which is rather defined by a
property which all elements of the class, and only those, share. In HOL we have
the polymorphic type of sets at our disposal which is just an abbreviation for a
predicate / property:

a set = a = bool. (3)

Therefore we call an object of type ZF set a class. When we discuss well-
foundedness we will see that this is the right intuition. An object of type ZF
is referred to as set. If we are talking about an object of type a set and we do
not have necessarily « = ZF then we use the expression HOL set.

For each set there is a corresponding class which we obtain by applying the
ezxplode function to the set.

constdefs
explode :: ZF = ZF set
explode z = { z. Elem z z }
implode :: ZF set = ZF
implode = inv explode

Obviously we have the characteristic equations
(z € explode X) = Elem z X, implode (explode z) = . (4)
The empty set corresponds to the empty class (:
explode Empty = 0. (5)

What about the universal class UNTV ? Russell’s Paradox allows us to prove that
there is no set which corresponds to the universal class:

explode z # UNIV. (6)

Classes without a corresponding set are called proper.
We are now able to fix (2) by defining the function whose fixpoint we are
interested in not on sets but on classes:

constdefs
fizgames :: ZF set = ZF set
fizgames A = { Opair I r | I r. explode | C A A explode r C A}

It is easy to see that fixgames is a monotone function,
mono fizgames, (7)
where mono is defined by
mono f =VAB. A<B— fA<fB. (8)

Note that for HOL sets < is just C. The Knaster-Tarski theorem is already
available in Isabelle/HOL for the complete lattice of HOL sets:

mono f == Ifp f = f (ifp f), mono f = gfp f=f (9fp f) 9)

where [fp is the least and gfp the greatest fixpoint operator. Therefore we know
that fizgames has a fixpoint. Every such fixpoint would be acceptable as a sen-
sible definition for Partizan Games so we pick the least and the greatest.

constdefs
games-lfp :: ZF set

games-lfp = lfp fixgames
games-gfp : ZF set

games-gfp = gfp firgames

From (9) we deduce
games-lfp = fixrgames games-lfp, games-gfp = firgames games-gfp. (10)
Every fixpoint G of fizgames is bounded by games-Ifp and games-gfp:
G = fixgames G = games-lifp € G N G C games-gfp. (11)

So it seems that we can choose among several, maybe infinitely many definitions
for Partizan Games! Fortunately, there is only one fixpoint of fizgames:

games-lfp = games-gfp. (12)
To see why, we first define the options of a game.

constdefs
left-option :: ZF = ZF = bool
left-option g opt = (Elem opt (Fst g))
right-option :: ZF = ZF = bool
right-option g opt = (Elem opt (Snd g))
is-option-of :: (ZF x ZF) set
is-option-of = {(opt, g) . g € games-gfp N (left-option g opt V right-option g opt)}

We prove
g € games-gfp — g € games-lfp (13)

by induction over g.

Proof. Let us assume that (13) holds for all options of g, that is for all opt such
that (opt, g) € is-option-of. Let us further assume g € games-gfp. Because of
games-gfp = fixgames games-gfp there are L and R such that

g = Opair L R, explode L C games-gfp, explode R C games-gfp. (14)

All elements of explode L and ezplode R are options of g. Applying the induction
hypothesis yields explode L C games-lfp and explode R C games-Ifp. Because of
fixzgames games-lfp = games-lfp we deduce g € games-Ifp. a

Therefore (12) holds.

The alert reader might not be entirely convinced. And rightly so! Above proof
only holds up if is-option-of is a well-founded relation. So it is time now to turn
to well-founded relations in HOLZF.

5 Well-foundedness and Induction in HOLZF

In Isabelle/HOL a relation is called well-founded (wf) if it comes with an induc-
tion principle:

wfr=VP. Vz. Vy. (y,z) €r — Py) — Pz) — (Yz. Pz). (15)

The predicate wf has type (o x «) set = bool. Equivalent to (15) is that every
non-empty HOL set has a minimal element with respect to the relation:

wfr=VQuz.z€ Q — (32€Q.Vy. (y,2) Er — y ¢ Q)). (16)

In order to complete our above proof that fixgames has a unique fixpoint we
have to show:
wf is-option-of. (17)

But is-option-of is already a fairly complicated relation; we have to consider
both left and right options. Looking around we discover a more basic relation:

constdefs
is-Elem-of :: (ZF x ZF') set
is-Elem-of = {(a,b) . Elem a b}

Because of the way we constructed ordered pairs we can derive

Jz. Elem x z A Elem y z A Elem z (Opair z y). (18)

Now assume (opt, g) € is-option-of. This implies g € games-gfp = fizgames
games-gfp and therefore we know that there exist sets L and R such that g =
Opair L R and Elem opt L VV Elem opt R. Together with (18) follows

(opt, g) € is-option-of = Fu v. Elem opt u A Elem u v A Elem v g, (19)

and further
is-option-of C is-Elem-of . (20)

Here rt denotes the transitive closure of the relation r which is of course well-
founded if r is. Therefore we are left with the proof obligation

wf is-Elem-of. (21)

It is not exaggerated to call (21) the main theorem of well-foundedness in
HOLZF. Despite that, to the author’s knowledge it has neither been considered
nor proven in previous work on HOLZF/HOL-ST.

Of course the Elem relation is well-founded on every set P; for every nonempty
subset K of P there is a such that Elem a K and Vz. Elem x a — — Elem z K
hold. This is a direct consequence of the axiom of regularity. Considering (16),
what (21) says is that Elem is also well-founded on every class P!

Once this is understood, standard literature on set theory tells us how to
proceed [10, ch. 6]. We introduce the notion of ZF-well-foundedness (wfzf):

constdefs
Ext :: (la x 'B) set = '3 = 'a set
Ext Ry ={z . (z, y) € R}
reqular :: (ZF x ZF) set = bool
reqular R = Y A. A # Empty —
(3z. Elemz AN Vy. (y, z) € R — — (Elem y A)))

implodeable-Ext :: (ZF x ZF) set = bool
implodeable-Ext R = Vy. 3z. Ext R y = explode z

wfzf = (ZF x ZF) set = bool
wfzf R = regular R N implodeable-Ext R

A ZF-well-founded relation is therefore a relation R that is

1. regular, that is it is well-founded on every set, and for which
2. for any x the class Ext R z of all predecessors of z actually is a set.

Because of the axiom of regularity we have regular is-Elem-of. Obviously
Ext is-Elem-of = explode (22)
holds, therefore we also know implodeable-Ext is-Elem-of. Finally we deduce
wfzf is-Elem-of. (23)
Thus the main theorem (21) can be reformulated as
wfzf R = wf R. (24)
The proof of (24) is quite involved, at least if one needs to build all the tools from

scratch. We refer the reader who is interested in the details to the set theory
literature [10, ch. 6] or the Isabelle theory files themselves [14].

6 The Type of Games

So there is a unique class of Partizan Games. If we carefully listen to Conway’s
‘cry for a Mathematician’s liberation movement’, also known as Appendix to
Part Zero of ONAG, we might hear that it is desirable to package this class as a
type so that we can forget about its set-theoretic origin. Software engineers call
this approach data abstraction.

Defining the type is easy enough:

typedef game = games-Ifp

The next item on our wish list is to have a function Game that takes the left
and right options of a game as arguments and constructs a game out of them.
But what type should the left and right options have, maybe game set? We have
seen earlier that this does not work; we would want Game to be injective, but
there is no injective function of type

Game :: (game set) = (game set) = game. (25)

A solution to this problem would be not only to introduce the type of games,
but also the type gameset of sets of games.

But this would entail the dreary definition of element relation, union operator
and so on just for this one type.

There is a better solution; we still introduce a new type and we still have
to define a third suit of operators on ‘sets’, but we do it in a general way. This
new type is a natural addition to the types already available in HOL which is
definable only in HOLZF":

typedef ‘o zet = {A :: ‘a set . If 2. inj-on f AN f A C explode 2}

We define a polymorphic type zet of ‘sets’ that are ‘not bigger’ than some set
of type ZF. We need a new name for them in order to not confuse them with
our other notions class, set and HOL set. We will call them zets. A zet of type
a zet corresponds to an HOL set A of type « set such that there is a set z and
a mapping f from « to ZF such that the image of A under f is contained in the
class that corresponds to z. We ensure that f preserves the size of A by requiring
f to be injective on A.

We then define operators on zets that mimic those available on sets. We will
not bother the reader with details here; we just state the names of the functions
that are used frequently and also their characteristic property:

name :: type [characteristic property
zin o = « zet = bool
zempty 1 o zet - zin x zempty
zimage . . _ . _
s (0= B) = azet = B zet ziny (zimage f A) = (3x. zinz A Ny = f 1)
zunion :: « zet = o zet = « zet zin x (zunion a b) = (zin z a V zin x b)

Now we are equipped with the tools to introduce the left and right options of a
game; we also introduce the Game constructor we wanted all along.

consts
left-options :: game = game zet
right-options :: game = game zet
options :: game = game zet
option-of :: (game X game) set
Game :: game zet = game zet = game

Again, we do not give definitions here; the curious reader is referred to the
Isabelle theory file. All that matters are the characteristic properties which have
been proven from the definitions:

(Game L1 R1 = Game L2 R2) = (L1 = L2 AN R1 = R2), (26)
g = Game (left-options g) (right-options g), (27)
zin opt (left-options g) = zin opt (options g), (28)
zin opt (right-options g) = zin opt (options g), (29)
((opt, g) € option-of) = zin opt (options g). (30)
The construction of our game type is completed by proving
wf option-of. (31)

This is an immediate consequence of the well-foundedness of is-option-of and
gives us an induction principle for games.

7 The Partially Ordered Group Pg

In this section we formalize comparison, equality, addition and negation of games
and show that they form a partially ordered group when considered modulo
equality. We will not give any intuition behind these operations; ONAG provides
plenty of intuition.

Easiest to define is the negation of games:

consts
neg-game :: game = game
recdef neg-game option-of
neg-game g = Game (zimage neg-game (right-options g))
(ztmage neg-game (left-options g))

The above statements define neg-game via well-founded recursion over option-of.

lemma neg-game (neg-game g) = g
apply (induct g rule: neg-game.induct)

The short proof (8 lines) of above lemma is by induction over g using the auto-
matically generated and pre-proven induction rule neg-game.induct:

(/\g. (V. zin x (left-options g) — P x)
= (Vz. zin = (right-options g) — P z)
= Pygy) = Pz (32)

10

Next comes comparison of games:

consts
ge-game :: (game X game) = bool
recdef ge-game (gprod-2-1 option-of)
ge-game (G, H) =
(Vz. if zin z (right-options G) then (
if zin z (left-options H) then — (ge-game (H, z) V (ge-game (z, G)))
else = (ge-game (H, z)))
else (if zin © (left-options H) then — (ge-game (z, G)) else True))

The above definition uses the if-operator to give recdef the necessary hints for
proving termination. A better definition can easily be derived:

ge-game (G, H) = (V. (zin z (right-options G) — — ge-game (H, 1))
A (zin = (left-options H) — — ge-game (z, G))).

Because ge-game is essentially a function of two arguments which swaps the
order of its arguments when calling itself recursively it is important to provide
the right termination relation, gprod-2-1 option-of, where

gprod-2-1 R = {((a, b), (¢, d)) |a=d A (b,c) € RVb=cA(a,d) €R.

It seems clear that wf (gprod-2-1 R) should follow from wf R; we need to prove
this, otherwise recdef will reject above definition of ge-game. Actually, gprod-2-1
is only a special case of a more general well-founded relation that crops up in
most definitions and proofs dealing with games. Mamane calls the induction
principle that this relation induces permuting induction [2, p. 41, p. 95]. He was
not able to formalize the principle in CIC but only instances of it like gprod-2-1.
We have a problem at this point, too; our general relation should not only deal
with pairs of games, but with n-tuples of games for arbitrary n. So for n = 2
our relation should have type

((game x game) X (game x game)) set (33)
but for n = 3 it must have type
((game x game X game) X (game X game X game)) set (34)

and so on. We have no dependent types available in HOL, but there is a solution;
we define our relation not on tuples, but inductively on lists.

consts
Iprod :: ('a x 'a) set = (‘a list x '« list) set
inductive Ilprod R
intros
(a, b) € R = ([a], [b]) € lprod R
(ah@at, bhQbL) € lprod R = (a,b) € RV a=b
=—> (ah@a#tat, bhQb#bt) € Iprod R

11

Here zs@ys denotes the concatenation of two lists zs and ys, z#xs denotes the
consing of z to the list xs; Iprod R is really a generalized version of gprod-2-1 R:

gprod-2-1 R C inv-image (Iprod R) (A(a, b). [a, b]). (35)

The inverse image inv-image R f of a relation R under a map f is well-founded
if R is. Therefore all we have to show is the well-foundedness of Iprod R which
then proves the well-foundedness of gprod-2-1 R and similar relations. Using
induction one shows

Iprod R C inv-image (mult (R")) multiset-of, (36)

that is we reduce the well-foundedness of Iprod R to the well-foundedness of the
multiset order mult (R™). The function multiset-of takes a list as its argument
and returns the corresponding multiset. See [9, ch. 2.5] for more information on
multisets and the multiset order. Luckily, multisets have already been formal-
ized in Isabelle and the well-foundedness of mult (R™) is available as a lemma.
Therefore we show easily

wf R = wf (lprod R). (37)
When showing that ge-game is a partial order, one has to show transitivity:
ge-game T y => ge-game y z = ge-game x 2. (38)

The proof of (38) that Conway gives in ONAG is particularly short and elegant.
Mamane gives a much longer CIC proof [2, pp. 49-53]. We have a short proof
(44 lines in Isar) that is in direct correspondence to the proof of Conway. The
trick is to convert a statement of the form P z y z where in this case we set

Pzyz= ge-game (z, y) N ge-game (y, z2) — ge-game (z, z), (39)

into a statement of the form YV y z. gs = [z, y, 2] — P z y z and prove this
by well-founded induction over gs with respect to lprod option-of. This ensures
that when trying to prove P x y z we can use the induction hypothesis P a b ¢
for all a, b and ¢ that fulfill

([a, b, ¢], [z, y, 2]) € Iprod option-of. (40)

Currently one has to show manually that (40) holds for particular instances,
typically involving proofs of two or three lines using the introduction rules for
Iprod. Of course this could be automated.

Equality (eg-game) is defined in terms of ge-game. Addition (plus-game) is
defined recursively; there are no technical differences to the definition of ge-game.
We also introduce the zero game (zero-game).

constdefs
eq-game :: game = game = bool
eq-game G H = ge-game (G, H) N ge-game (H, G)

12

zero-game :: game
zero-game = Game zempty zempty

consts
plus-game :: game X game = game
recdef plus-game gprod-2-2 option-of
plus-game (G, H) = Game
(zunion (zimage (X g. plus-game (g, H)) (left-options G))
(zimage (A h. plus-game (G, h)) (left-options H)))
(zunion (zimage (X g. plus-game (g, H)) (right-options G))
(zimage (X h. plus-game (G, h)) (right-options H)))

Most properties of addition and comparison are straightforward to prove; just
copy the proofs that Conway gives and apply above reformulation technique.
There is one proof though where this does not work because the proof that
Conway gives is flawed. The proof is supposed to verify the theorem

ge-game (y, z) = ge-game (plus-game (z, y), plus-game (z, z)). (41)

The error is on page 18 of ONAG in the proof of theorem 5. Conway claims that
the truth of

flry<ztzvaeotryf<octrzvaoty<zlizvaety<adtl, 42
assuming furthermore y > z, implies the truth of
lty<az+y Vao+yi<az+yVvat+z<zl4+zvae+z<a+2t, (43)
obviously taking for granted

y>z=zx+z2<z+y. (44)

But this is just what he is trying to prove!
We can fix this error quickly; two of the assumptions in (42) lead immediately
to a contradiction by applying the induction hypothesis:

syt <z+z=yf<z<y, z+y<z+l=z<y<t (45)

The other two assumptions yield a contradiction by first unfolding the definition

of < and then applying the induction hypothesis:
Byy<zrtz=o-@R4+2<2f+y)= 24y, (46)
r+y<altz=-@l+z<sb +y) =24y (47)

Note that we were able to apply the induction hypothesis in several different dis-

guises because all of [z, z,y%], [z, 2L, y], [2F,y,2] and [2F,y, 2] are predecessors

of [x,y, z] with respect to Iprod option-of.

Does the type game form a group with respect to the defined operations?
No, it does not! We only have the theorem

eq-game (plus-game (z, neg-game x)) zero-game (48)

13

not the stronger, but false statement
plus-game (z, neg-game) = zero-game. (49)

The equality relation eg-game is compatible with the other operations. Further-
more eg-game is an equivalence relation, that is transitive, reflexive and sym-
metric. Therefore we can define a new type Pg of Partizan Games that consists
of the equivalence classes of game with respect to eg-game.

typedef Pg = UNIV // { (p, q) . eq-game p q }

Using the techniques described in [12] we then lift the theorems we have shown
about games to theorems about Pgs. The icing on the cake is the isabelle meta-
theorem

instance Pg :: pordered-ab-group-add

that states that Pg is an instance of the axiomatic type class of partially ordered
groups pordered-ab-group-add.

8 Conclusion

We have presented a formalization of Conway’s Partizan Games. Our work can
be split into two parts.

One part consists of the development of HOLZF in Isabelle and provides in-
frastructure for this logic. The main result in this context is to identify a notion
of well-foundedness particularly suited to the ZF part of HOLZF and to connect
this notion with the common notion of well-foundedness in HOL via (24). This
allows us to use all of the HOL machinery when dealing with recursion. Further-
more we argue that HOLZF is not only theoretically stronger than both ZFC
and HOL but that this difference is also of practical importance, as the example
of Partizan Games shows. Interesting is that we have now available a new type
of ‘set’ called zet which might be a valuable addition to the datatype package of
Isabelle/HOL. For example, it might then be possible to define Partizan Games
directly by

datatype game = Game (game zet) (game zet)

Also part of the developed infrastructure is the lprod-relation that allows defining
of and reasoning about recursive functions of several arguments of the same type.

The second part of our work can be seen as an application of Isabelle/HOLZF.
Knowing wf is-Elem-of it was easy to show that there is a unique fixpoint of
Partizan Games. We have shown that Conway’s proofs withstand uttermost
scrutiny with the exception of the slip in the proof of (41).

Altogether we have written about 2200 lines of theory text?. About 60% is
infrastructure development, about 40% specific to Partizan Games. This is not
too much text; actually the total time of proving that Partizan Games form a

? which can be downloaded from [14]

14

partially ordered group was not more than a couple of days after the type game
had been constructed and an induction principle for it had been established.

Acknowledgments. Stefan Berghofer told the author why (1) cannot work and
caused him to look into the multiset order. Clemens Ballarin helped to prove the
properties of the zunion operator. Norbert Schirmer taught the author how to
feed congruence rules to the recdef-package. Thanks to Bob Solovay for providing
the initial idea and consistency proof of HOLZF, and to Tobias Nipkow for
providing references to Mike Gordon’s work.

References

12.

13.

14.

John H. Conway. On Numbers And Games, 2nd ed., A K Peters Ltd., 2001.
Lionel E. Mamane. Surreal Numbers in Coq. TYPES 2004, LNCS 3839, Springer
2005, pp. 170-185.

Mike J.C. Gordon. Set Theory, Higher Order Logic or Both. Theorem Proving
in Higher Order Logics, 9th International Conference, TPHOLs’96, LNCS 1125,
Springer 1996, pp. 190-201.

Sten Agerholm. Formalising a Model of the A-Calculus in HOL-ST. Technical Re-
port 354, University of Cambridge Computer Laboratory, 1994.

Sten Agerholm, Mike J.C. Gordon. Experiments with ZF Set Theory in HOL and
Isabelle. Technical Report RS-95-37, BRICS 1995.

Lawrence C. Paulson. Set theory for verification: I. From foundations to functions.
J. Automated Reasoning 11 (1993), 353-389.

Lawrence C. Paulson. Set theory for verification: II. Induction and Recursion. J.
Automated Reasoning 15 (1995), 167-215.

Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel. Isabelle/HOL: A Proof As-
sistant for Higher-Order Logic, Springer 2002.

. F. Baader, T. Nipkow. Term Rewriting and All That, Cambridge U.P. 1998.
10.
11.

Thomas Jech. Set Theory, 3rd rev. ed., Springer 2003.

Lawrence C. Paulson. Organizing Numerical Theories Using Axiomatic Type
Classes. Journal of Automated Reasoning, 2004, Vol. 33, No. 1, pages 29-49.
Lawrence C. Paulson. Defining Functions on Equivalence Classes. ACM Transac-
tions on Computational Logic, in press.

Steven Obua. Proving Bounds for Real Linear Programs in Isabelle/HOL. TPHOLs
2005, LNCS 3683, Springer 2005, pp. 227-244.

Steven Obua. Partizan Games in Isabelle/HOLZF.
http://www4.in.tum.de/~obua/partizan.

15

http://www4.in.tum.de/~obua/partizan

	Partizan Games in Isabelle/HOLZF
	Steven Obua

