
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Work Products for Integrated Software
Development

Bernhard Deifel, Wolfgang Schwerin, Sascha Vogel

ABCDEFGHIJKLMNO
TUM-I9921

Dezember 99

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-12-I9921-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c
1999

Druck: Institut f ür Informatik der
Technischen Universit ät M ünchen

Work Products for Integrated Software Development1

Bernhard Deifel, Wolfgang Schwerin, Sascha Vogel

Institut für Informatik
Technische Universität München

Arcisstraße 21
80290 München, Germany

(deifel|schwerin|vogels)@in.tum.de

Abstract:

Integration of development processes for different kinds of systems, such as information and
embedded systems is an important topic when we build software systems for application domains that
are strongly integrated. Besides that, different project views, such as development and management
must also be well integrated in process models. In this paper we propose a work product oriented
basis for integrated process models. We define a model of work product, covering and integrating the
fields of requirements engineering, architectural design and project management.

Keywords: Process Modeling, Product Model, Requirements Engineering, Design, Project
Management

1 This work is supported by the Bayerische Forschungsstiftung within the FORSOFT research consortium

1 INTRODUCTION 1

2 PRODUCT MODEL ELEMENTS 2

3 DECISION-ORIENTATION 5

4 REQUIREMENTS ENGINEERING 5

5 MODEL ELEMENTS FOR REQUIREMENTS ENGINEERING 6

5.1 STAKEHOLDER 7
5.2 REQUIREMENT AND REFINEMENT 8
5.3 DOMAINMODEL 13
5.4 ASSIGNMENT, SELECTION AND REQUIREMENTSSPECIFICATION 17

6 ARCHITECTURAL DESIGN 21

7 MODEL ELEMENTS FOR ARCHITECTURAL DESIGN 22

7.1 ARCHITECTURAL ALTERNATIVE 23
7.2 ARCHITECTURE EVALUATIONS WITH RESPECT TO NONFUNCTIONAL REQUIREMENTS 25
7.3 DESIGN RATIONALE 25
7.4 ARCHITECTURAL STYLE 26
7.5 SOFTWARE ARCHITECTURE 27
7.6 ARCHITECTURE DESCRIPTION 28

8 PROJECT MANAGEMENT 31

9 MODEL ELEMENTS FOR PROJECT MANAGEMENT 32

9.1 THE PROJECT FRAME 33
9.2 SYSTEM- AND PROJECT DECOMPOSITION 35
9.3 SCHEDULING THE PROJECT 39

10 COMPREHENSIVE DEPENDENCIES 44

11 CONCLUSION AND OUTLOOK 46

12 REFERENCES 47

1

1 Introduction
With the increasing complexity of software systems and hence of development processes, modeling of
software development processes becomes more and more important and underlies evolution similar to
the evolution of notations. Regarding for example the UML [RJB99] and its standardization by the
OMG, we recognize that strong efforts are made concerning the integration of different complement-
ing notations. In the field of development processes integration is an equally important issue. In gen-
eral and especially in the interdisciplinary FORSOFT research cooperative, which consists not only of
computer scientists and researchers from mechanical and electrical engineering, but also of economy
experts and practitioners from leading companies in each of these four fields, we observe that
software systems are increasingly applied in application domains which strongly relate different
domain spaces. For example, nowadays enterprise logistics and accountancy are closely coupled with
software based control of production machines (PCL controls). Due to this heterogeneous character of
software systems, we have to integrate specific development process models like the ones for business
software and of embedded systems.

Equally important is the integration of different parts of development processes, for example the dif-
ferent management tasks such as project and configuration management, with development tasks,
such as requirements engineering and design.

Integration usually increases a model’s complexity. In order to manage the complexity of integrated
process models we separate the description of work products, that is all intermediate and end results
of the development process, from the description of development activities and strategies. This
separation has for example been applied in [BLR+95, IABG97, LT96, JBR98, Kru98]. There,
relationships and dependencies between work products are only covered implicitly in the description
of development activities. Compared to this, in further approaches [MBJ+90, Jeus92, RRP99]
relationships and dependencies between work products are modeled explicitly as elements of a model
for work products.

Models of work products which state product relationships and dependencies explicitly, increase com-
prehensibility by providing us an integrated view of development processes without having to con-
sider both, work products and development activities. Based on this integrated work product view we
then can define development activities and strategies, which respect relationships and dependencies
between work products.

Relationships and dependencies between work products are also important for process integration,
because they allow us to relate work products from different development tasks and application do-
mains explicitly. For example, we can relate “results” from project management with “requirements”
and “architectural elements” from requirements engineering and design, respectively.

In this paper, we propose a model of work products which provides the basis for the integration of
development processes for different application areas and for the integration of different development
tasks. Thereby we consider topical questions, such as the relationship between functional and non-
functional requirements with design decisions, and the association of management views with re-
quirements and design views. This means, that we focus on requirements engineering, architectural
design, and project management.

Regarding requirements engineering and architectural design, we decided to apply a decision-oriented
approach, covering negotiation and selection of requirements and architectural alternatives. Thereby
we related

2

- ideas of refinement hierarchies from goal-based requirements engineering [LW98, MCY99]
with a decision-oriented process view known for example from [RG94] and a model for cap-
turing agreement knowledge as presented in [Pohl96],

- architectural styles [SG96] with decision-oriented design, and

- project management not only with tasks and system architecture but also with requirements.

We define the product model detailed and in a schematic way, so that it provides directly a structure
for project participants in which they can write down and collect information. Therefore, the product
model can serve for example as a metamodel for CASE tools.

We structure the rest of this paper as follows:

In Section 2 we introduce the building blocks of a product model in general. Then, in Section 3 we
describe the principle of decision-orientation, which we apply in the product models for requirements
engineering and design. Within the subsequent three sections we explain aspects and work products of
requirements engineering, design, and project management, respectively. Afterwards we integrate the
three tasks and focus on comprehensive dependencies between their work products. The last section
concludes our work and gives an outlook on future work.

2 Product Model Elements
Before we introduce the product models for the three aforementioned tasks, we explain how we char-
acterize product models.

In general, a product model consists of a set of product types and relationship types characterizing
relations between products and product types. With respect to relationships between products, we
distinguish association, aggregation, and dependency. Additionally, we relate product types by a gen-
eralization/specialization relationship, so that we structure the set of product types hierarchically. The
definition of a product type covers its attributes, its parts and its dependencies. Each product type can
be identified by its unique name and shorthand. For each product type we provide its purpose and
description.

In order to represent and structure the information covered by a product, each product type defines
attributes. We model “elementary” product properties by untyped attributes. A certain product (in-
stance of a product type) and its state during the development process are then determined by the ac-
tual attribute values. An example of an attribute is the “status” of a requirement, which is either
“under_negotiation” or “agreed”. A constraint for the “contract” product could then demand that only
those requirements may be part of the contract whose status is agreed.

As already mentioned above, we define the following relationships between products:

- association,

- aggregation, and

- dependency.

We use associations in the sense of relationships in Entity/Relationship models. Hence, associations
represent a certain information on their own. We can ask questions such as which products play a
certain role within a certain association. For simplicity, we use only binary associations. Furthermore,
we restrict ourselves to undirected associations because of directed associations are often related with
the notion of navigability, which is not relevant in the context of our product model. An example of
an association is the relationship between stakeholder and requirement. This association documents
information about which requirement is required by which stakeholders.

3

In addition to association, we use aggregation. With aggregation we apply the principles of grouping
and hierarchical structuring of products. An aggregating product, which we will also call a
“container” in the following, can serve us for introducing a term that stands for the group of
aggregated products, which we will also call “parts” in the following. For example, we introduce the
term “domain model” standing for “domain data view” and “domain process view”. Note however
that we assume aggregation not to express mere grouping, but hierarchical structuring of products on
an instance level. Therefore aggregation implies a partial order on the instance level. This is an
important difference from association. In contrast to other approaches, we do not relate lifetime
dependency, visibility restrictions or exclusivity with aggregation, because of these aspects being not
of primary concern for our product model.

Besides aggregation and association, we define dependency relationships between products. A de-
pendency relationship is always directed, either uni- or bidirectionally. A dependency relationship
expresses the fact, that the state of a product, that is its attribute values, is dependent on the state of
other products. This means, that when a product is dependent on another product, then changes of the
latter can imply changes of the former. We use informal text for the description of how attribute val-
ues of products are (functionally) related. For example, we could state that the priority of a require-
ment has to be the average of the priorities of the requiring stakeholders. Note that, whereas
instantiations of aggregations and associations generally vary over time and between product model
instances, by means of dependencies we define invariant properties which must hold for all product
model instances.

Finally, we define a generalization/specialization hierarchy on product types. We use it in the sense of
an „is-kind-of“ relationship which implies, that a product type being the specialization of other
product types, "inherits" the attributes from the more general types as well as the roles the more gen-
eral types play in relationships.

By means of generalization relationships between work product types, we have the possibility to de-
fine and relate generic work products, which we can refine to domain specific elements. Thereby,
integration on the generic level of abstraction is relevant for all domain specific specializations. For
example, management is mainly based on an abstract nontechnical view of a system's architecture,
consisting of hierarchically structured architectural elements. Whether these elements are refined to
objects in an object-oriented sense or to pipes and filters (cf. [SG96]) is not important from the
management point of view. Therefore, for an integrated view on management and architectural design
we relate work products for management, such as project results, with these generic, hierarchically
structured architectural elements. Thereby integration of management and architecture remains valid
for specific specializations of architectural elements.

For graphical illustration of product types and their relationships, we refer to the syntax of UML class
diagrams, exemplified in Figure 1.

4

RequirementStakeholder
Request

OR_Refinement

DevelopmentRequirementSystemRequirement

{the priority of a requirement is equal to the
average of the priorities of the requesting stakeholders}

Figure 1: Exemplary class diagram defining product types and relationships.

Besides graphical class diagrams we use schemata in a tabular style for detailed description of the
elements of a product model. These schemata are given below.

Product type The name of the product type.

Description Explanation of the information covered by instances of this product type.

Purpose Explanation of the methodological function and significance of the product
type.

Attributes Explanation of “elementary” product properties.

Aggregations Explanation of the aggregations in which instances of this type play the
aggregating role.

Dependencies Explanation if and how attribute values of instances of other product types
depend on attribute values of this type’s instances.

Scheme for product types, including sections for aggregations and dependencies

Association type The name of the association type.

Description Explanation of the information covered by an association of this type.

Purpose Explanation of the methodological function and significance of the
association type.

Attributes Explanation of “elementary” association properties.

Scheme for association types

In order to support document and change management, and verion control, we define that any product
and association type has the following attributes:

5

- productname, i.e. the name of an instance, e.g. System1_RequirementsSpecification

- id, that is a unique instance identifier

- creator, i.e. the project participant who created the product

- date_of_creation, i.e. when the product was created

- change_log, i.e. which changes have been applied on the product

- version_nr, i.e. identifier of the actual version

- status, exemplary values are "existent" and "under_negotiation".

3 Decision-Orientation
When developing systems, we continuously have to take decisions. Regarding requirements engi-
neering, we have to decide which requirements of the set of elicited requirements are to be realized.
Besides that, when designing a system’s architecture, we have to take decisions in the sense of selec-
tion of adequate architectural alternatives. A decision-oriented view on the development process leads
us to work products which support taking and documentation of decisions. Note that this view on the
development process does not imply a timely order in the sense, that all decisions have to be taken
before succeeding with development steps in which we produce results being related with the deci-
sions. For example, requirements need not necessarily be selected before we start with architectural
design. The work products that we derived from the decision-oriented process view merely provide us
with information structures to document decisions, independently from when these decisions are
taken in process enactment.

Generally decision-oriented approaches consist of the following basic elements:

Alternatives: For a given problem space different possible solutions are defined.

Decision criteria: The problem space has to be evaluated with respect to different criteria which pro-
vide objectives for the selection of one of these alternatives. Usually the alternatives fulfill the criteria
in different levels. In order to be able to compare the alternatives with respect to the fulfillment of a
criterion some kind of metrics for each criterion has to be defined. Alternatively the different alterna-
tives can be compared mutually with respect to the fulfillment of a criterion.

Classification with respect to decision criteria: Each alternative is classified with respect to the ful-
fillment of the different criteria.

Rationale: The rationale for the selection of an optimal solution is defined. For this purpose usually
the decision criteria are weighted mutually.

Solution: From the given alternatives the best one with respect to the given rationale is selected. This
represents the decision solution.

In Sections 5 and 7 we assign concrete work product types to the basic elements mentioned above.

4 Requirements Engineering
In requirements engineering we try to achieve a correct understanding of stakeholder needs, so that we
can specify a validated, consistent and complete set of requirements (cf. [Pohl96, Dei98b]). Require-
ments refer to the software system that has to be developed or modified, and to the development
process.

6

Usually different stakeholders with different viewpoints and different needs are involved in a project.
Moreover, we have to consider a variety of development methods, programming techniques, software
platforms, available frameworks and components etc. in a development process. This leads us to the
elicitation of alternative requirements which have to be documented.

Multiple and possibly conflicting viewpoints as well as conflicts between needs and constraints force
us to strive for an acceptable rather than a maximal or optimal solution. This means, that we have to
negotiate, prioritize and select (alternative) requirements. Therefore, besides the documentation of
alternatives, the documentation and justification of decisions is an important task. Thereby we can
enhance traceability of requirements which in turn leads to a better understanding of intentions and
supports change management, for example. It is here, where decision-orientation comes into play.

According to the fact that we usually elicit, negotiate, change and specify requirements at different
stages of a development process, we consider requirements at different levels of detail and more or
less structured. When we relate these different levels we get a hierarchical structuring of
requirements. By that means we improve comprehensibility and traceability.

In a project, we must not only determine "what" we have to develop, but also the way "how" we de-
velop it. Consequently, we must consider requirements for the system to be developed, as well as
requirements for the development process. System requirements state required functional and
nonfunctional system properties. Development requirements concern properties of work products and
development activities. Often requirements of these two kinds are closely related. For example, high
safety requirements may require usage of formal methods and notations.

A software system is supposed to play a certain role in an application domain, by providing certain
domain functionality. Examples for application domains are banking or car control. Explicit modeling
and documentation of domain knowledge helps us to get a good understanding of a system’s domain
context and to describe domain specific requirements adequately. Besides that, we can thereby de-
scribe how a system is embedded in its environment.

5 Model Elements for Requirements Engineering
With the product structure given below, we provide a basis to cover the aforementioned information.
The product structure enables us not only to document the final results of requirements engineering in
one document, usually called a requirements specification, but we document also intermediate results
and taken decisions.

7

Requirement

Selection

OR_Refinement AND_refinement

RequirementsSpecification

Assignment

FunctionalRequirement NonFunctionalRequirement

DevelopmentRequirement

DomainModel

ProjectGoal SoftwareArchitecture

Stakeholder

Request
Description

Agreement
Criteria

SystemRequirement

SelectionSpace
SelRequ

Content
RSCriteria

Derivation

DomainReference

ProjectContextDomainView

WorkBreakDown

Realization

Planning

Figure 2: Product structure for requirements engineering

In Figure 2 we describe the product structure for requirements engineering graphically. The product
types WorkBreakDown, ProjectGoal and ProjectContext are explained in detail in Section 9, product
type System Architecture is explained in Section 5. In Section 10 we treat the dependency relation-
ships Realization and Planning.

For requirements engineering we assume work products of type ProjectGoals and ProjectContext (cf.
Section 9) to be given. Based on this information we identify relevant stakeholders, gather knowledge
about related application domains and elicit requirements for the envisioned system and development.

5.1 Stakeholder

We elicit domain knowledge and requirements from identified stakeholders. Stakeholders have needs
and constraints, that is they request requirements. Apart from requesting requirements they describe
requirements or certain aspects of them. For example, a potential system user can describe user-
system interaction for a functional requirement, which is requested by another stakeholder.
Stakeholders can agree or not with a certain requirement. We must hold this information for negotia-
tion and decision purposes.

8

Product type Stakeholder

Description A stakeholder stands for a person or organization or a group of
persons/organizations, who have some kind of justified interest in the
system to be developed.

Stakeholders can request, describe and agree with requirements.

Purpose Associating stakeholders with requirements (agreement, description, re-
quest) is a prerequisite for negotiation and validation of requirements.

Attributes Importance: informs us about how important it is to respect the
stakeholder’s point of view, for example when we select an alternative.

Aggregations -

Dependencies -

5.2 Requirement and Refinement

A requirement expresses a certain quality or capability of a system or a development process. We
need the concept Requirement because requirements are the units of information which we define,
refine, negotiate and select in requirements engineering. Requirements engineering methods are based
on this concept.

We classify requirements accordingly to what they determine (cf. [KS98, LK95]):

• System requirements determine what functionality a system has to provide (functional require-
ments) and qualities of how this functionality is to be provided (nonfunctional requirements).

• Development requirements do not determine what we develop but how we develop it, that is the
development process.

We structure requirements hierarchically by means of OR- and AND-refinement aggregations (cf.
[LW98, MCY99]). This allows us to express explicitly

- alternatives and what they have in common (OR-refinement),

- how different requirements contribute to a more general requirement (AND-refinement),

- requirements at different levels of detail (AND-refinement).

OR-refinements represent points of negotiation and decision.

AND-refinements enhance comprehensibility and traceability by relating requirements at different
levels of detail and showing the parts of which composite requirements are made up.

9

Product type Requirement

Description During development we state requirements in a more or less detailed and
structured way. Especially in early stages of development, a requirement
may cover and relate several kinds of requirements, e.g. requirements con-
cerning the envisioned system as well as the development process.

Example: Develop a safe and secure break control system and use the UML
[RJB99] for the design specification.

The product type Requirement allows us to cover this integral kind of in-
formation which can be related with more detailed and structured represen-
tations (see AND- and OR-Refinement aggregations).

Purpose A requirement can be the impetus for further refinements. For traceability
reasons we must be able to document such initial information.

By means of the OR- and AND-Refinement aggregation, a Requirement
product helps us to structure requirements. We can base the negotiation
task on the aggregation of alternatives (OR-Refinement). The AND-
Refinement allows us to state explicitly to which integral requirements
certain sub-requirements contribute. Thereby we can support traceability
and multiview-oriented requirement description. We can base consistency
analysis on this aggregation.

Attributes DescriptionStyle: Classification dimensions for the description style are:

- operational vs. declarative

- exemplary vs. complete (e.g. a scenario can be interpreted as a set of
some or of all possible actor interactions)

- positive vs. negative (e.g. scenario which has to be supported vs. one
which has to be excluded)

- formal vs. informal (with respect to syntax and semantics).

Stability: Probability of change. Relevant e.g. for the design with respect to
flexibility.

Priority: Importance, which can be relevant for or result of negotiation.

10

Aggregations AND_Refinement: Aggregation of all requirements that contribute to
satisfy the aggregating requirement. This means, that we have to satisfy all
sub-requirements to satisfy the whole. Aggregated requirements cover only
some aspects of the aggregating requirement.

OR_Refinement: Aggregation of alternative refinements. This means, that
satisfying one of the refined requirements is sufficient for the satisfaction
of the superposed requirement. Nevertheless, multiple alternatives can be
chosen to be realized. We may then distribute alternatives over different
versions of a system or provide possibilities for configuration.

If a requirement is refined, then it is either OR refined or AND refined, but
not both at a time.

We do not define any constraints on refinement with respect to the classifi-
cation hierarchy of requirements. However in some cases this might be
justified, e.g. a functional requirement must not be refined by a nonfunc-
tional one.

Dependencies -

Product type SystemRequirement

Description A system requirement is a condition or capability that must be met or pos-
sessed by a system to satisfy stakeholder needs, a contract, a standard or a
specification. (cf. IEEE standard IEEE-610.12, 1991).

Similar to a general requirement, a system requirement may cover and re-
late several kinds of requirements, e.g. functional as well as nonfunctional
ones.

Example: The system requirement, that a system has to support data trans-
fers between remote branches in a secure and efficient way, contains func-
tional as well as nonfunctional information.

Purpose This product type allows us to document requirements on a system, which
comprise functional as well as nonfunctional aspects.

Attributes -

Aggregations -

Dependencies -

11

Product type FunctionalRequirement

Description A functional requirement describes a service, that is required by some
stakeholders to be provided by the system. Example: The system has to
support data transfer between branches.

A functional requirement usually comprises information about which parts
of the domain world have to be represented in a system, which domain
processes must be supported by the system, and how user-system interac-
tion has to look like (including information about work sharing between
system and user).

Purpose Functional requirements determine the purpose of a system, that is “what”
a system has to do, and the relationship between the domain world and the
system.

Attributes -

Aggregations -

Dependencies -

Product type NonFunctionalRequirement

Description A nonfunctional requirement represents stakeholder needs, concerning the
system, which are qualities of the system in general or of certain other
requirements.

Examples:

The system has to be secure and safe.

The "look and feel" of GUI elements must meet a certain standard.

Purpose A nonfunctional requirement guides or constrains the architecture or the
implementation of a system. Thereby, it has influence on “how” system
functionality is realized.

12

Attributes DescriptionStyle: A design constraint is either formulated in a constructive
or declarative style.

Constructive style means that a requirement defines a part of a system ar-
chitecture or a system implementation, respectively. Constructive require-
ments have therefore to be integrated (by composition) in a system
architecture or implementation. Example: Use a certain GUI toolkit (in
order to provide a standard compliant look and feel and to achieve maximal
reuse within an enterprise).

Declarative requirements define nonfunctional qualities of a system without
already defining part of an architecture or implementation. Declarative
requirements have therefore not to be integrated in an architecture or im-
plementation, but to be respected when taking design decisions. Examples:
“Provide a standard compliant GUI look and feel”. "Strive for high runtime
efficiency." The former may influence the choice of a GUI toolkit, whereas
the latter can be relevant for selecting an appropriate sorting algorithm, for
example.

Classification: Enumeration-type. Describes the different possible peculi-
arities for a given nonfunctional requirement and their meaning. The classi-
fication of a nonfunctional requirement is important for the evaluation of
architectural alternatives and architectural styles.

Aggregations -

Dependencies -

13

Product type DevelopmentRequirement

Description A development requirement represents a guideline or constraint on “how” a
system is to be developed or described. A development requirement refers
either to development activities or work products.

Examples: Documentation guidelines and standards, development tech-
niques, engineering principles, time and cost constraints.

Example for a requirement on a work product:

In order to ensure properties of a requirements specification concerning the
representation of requirements, stakeholder agreement on requirements,
and completeness of the description of requirements, we could for example
define: Functional requirements contained in the requirements specification
have to be formulated by means of UML activity, class and sequence dia-
grams (representation). All stakeholders, which have requested a certain
requirement must agree with chosen alternatives (agreement). All agreeing
stakeholders that are also users must have defined an according use case
(completeness).

Example for a requirement on a development activity:

For coding, use a certain CASE-Tool and its code-generation facilities as
far as possible.

Purpose Development requirements determine characteristics of development ac-
tivities and work products.

For example, assignment of development techniques, strategies and nota-
tions to activities and work products (cf. method allocation of the V-Modell
[IABG97]) can be expressed in terms of development requirements.

Attributes -

Aggregations -

Dependencies -

5.3 DomainModel

Besides and in combination with requirements we also elicit knowledge about a system’s application
domain from stakeholders. We abstract from unimportant details and model relevant domain
knowledge explicitly. Usually we will describe a domain model from different points of view, for
example a structure-oriented and a process- and information-flow-oriented view. Languages, such as
the UML provide possible notations for the representation of these views.

We cover the fact, that requirements are related with elements of a domain model by a dependency
relationship. For example. when a requirement expresses that a certain domain process is to be sup-
ported by the system, then this requirement is dependent on the according domain process, on user-
system-interaction descriptions for this process and on domain structures being relevant for this
process.

System requirements may not be requested directly by stakeholders, but derived from analysis of the

14

according application domain. For example, when a stakeholder wishes a certain domain process to be
supported by a software system, this constitutes a functional requirement. A domain model may con-
tain time limits for the execution duration of this process, for example due to physical or contractual
demands. From this domain knowledge we then derive an appropriate performance requirement. This
means, that on the one hand we derive functional as well as nonfunctional system requirements from a
domain model. On the other hand we express system requirements in terms of a domain model. In any
way, system requirements are dependent on domain knowledge.

Product type Domain Model

Description A domain model is an abstraction of the real world covering domain
knowledge that is relevant for system development. In a domain model we
state knowledge of an application domain explicitly. When we assign do-
main elements to a system, e.g. certain domain processes that are to be
supported by a system, we cover information about the environment-
system border, too.

We model the domain world independently from aspects concerning their
technical implementation in a system.

Purpose Explicit modeling of an application domain increases understanding for the
domain context of a system.

Moreover, a domain model serves as a reference for the representation of
domain elements, such as business processes and domain data, in a
software system.

Besides that, a domain model describes the work-partitioning between a
system and its environment (environment-system border).

Attributes -

Aggregations A domain model serves as a container for different views on an application
domain. Examples for such views are static structure and process view.

Dependencies Dependency “DomainReference”:

A DomainReference dependency describes which domain elements are
referenced in a given requirement and therefore determine a requirement’s
properties. For example, when a domain process changes then the require-
ments for a system which supports this process change accordingly.

A DomainReference dependency makes the relationship between an appli-
cation domain and a system explicit. It serves as an explanation and justifi-
cation of required system properties. We can thereby trace changes in the
application domain to system properties.

15

Product type Domain View

Description A domain view covers certain aspects of a domain model.

Purpose By means of domain views we can describe different aspects of a domain
model separately. Thereby we can divide a complex whole, the model, into
less complex parts, the views. This helps us to increase comprehensibility
of the whole domain model.

Attributes -

Aggregations -

Dependencies -

In the following we give an example of how a domain model could be composed. The composition of
a domain model is usually dependent on the according application domain. We assume the three
views, illustrated in Figure 3 , to be suitable for information systems. They may have to be altered
and/or other views may have to be added when we want to model reactive, embedded and real-time
systems.

DomainModel

DomainStructureView DomainProcessViewContribution

Figure 3: Exemplary composition of a domain model

16

Product type DomainStructureView

Description In a domain structure view we describe the static structure of an application
domain’s elements, and their static relationships. We do not cover behav-
ioral aspects. By elements we think of real world objects, e.g. a coin, or real
world concepts (virtual objects), e.g. a bank account, or actors, e.g. a bank
clerk or an ATM (automated teller machine).

Examples for static aspects are state space descriptions of elements, and
compositional (whole-part) as well as association relationships between
elements.

A structure view may be represented by class diagrams (cf. [JBR98]).

Purpose By abstraction from behavioral aspects, a domain structure view provides
us an overview about terms of an application domain, their static structure
and relationships.

Prerequisites for behavioral descriptions are defined here. For example, the
types of objects, which are changed when processes are enacted, are de-
fined in a structure view.

Attributes -

Aggregations -

Dependencies -

17

Product type DomainProcessView

Description A domain process view is a process-oriented view on the domain world.
Enactment of a process changes states of domain objects. Processes are
enacted by optionally assigned actors. An actor is a person or a system
taking an “active” part in the enactment of a domain process, e.g. a bank
customer in the process of a money transfer. The system to be developed is
a specific actor. Within a process model we also define the flow of objects
between processes, which introduces a (causal) order on processes. Proc-
esses can be hierarchically decomposed.

Variants of domain process views differ with respect to further assumptions
on process properties, such as isolation and atomicity. Widely used process
views for business domains can for example be found in [VB96].

A process view may for example be represented by petri-nets or activity
diagrams (cf. [JBR98]).

Purpose A domain process view provides information about domain functionality.

When functional requirements require the support of a domain process by a
system, the according domain process view has to be respected. The system
has to represent related domain objects, and establish object flow with re-
lated actors by means of adequate system-interfaces.

With assigning a system as an actor to certain domain processes, we define
one aspect of the system-environment border.

Attributes -

Aggregations -

Dependencies -

Association type Contribution

Description A Contribution association states which domain elements contribute to a
domain process, either as actors or input/output elements.

Purpose This kind of association contributes to the integration of structure and pro-
cess view.

Attributes -

5.4 Assignment, Selection and RequirementsSpecification

In order to express constraints on requirements, we assign requirements to other requirements.
Thereby we can describe for example which nonfunctional requirements are relevant for which func-
tional requirements.

The assignment relationship is particularly important for the selection from alternatives.
Requirements assigned to the root of alternatives represent qualities requested from all alternatives.

18

Therefore these assigned requirements represent the criteria on which we base our selection of the
most suitable alternatives. We prioritize these criteria if necessary and evaluate all alternatives
mutually and with respect to them. For each selection we request a rationale, which explains and
justifies this evaluation. In Table 1 we assign model elements for requirements engineering to the
basic elements of decision-orientation (cf. Section 3).

Decision Element Product Model Element

Alternatives OR-Refinement aggregation of work product type
Requirement

Decision criteria Association type Criteria between work product
type Selection and Requirement

Classification contained in Attribute Rationale of work product
type Selection

Rationale Attribute Rationale of work product type Selec-
tion

Solution Association SelRequ between Selection and Re-
quirement

Table 1: Decision elements and related model elements for requirements engineering

A requirements specification defines those requirements that have to be met by a system. Usually we
demand certain properties of a requirements specification, e.g. that functional requirements are for-
mulated in a certain style, and a certain degree of stakeholder agreement on the contained require-
ments. These properties are themselves requirements, namely development requirements assigned to a
requirements specification product. We understand these properties as part of the criteria for the se-
lection of alternatives.

Association type Assignment

Description Requirements can express required qualities of other requirements. An
Assignment association expresses which requirements state qualities (role
Quality) of which other requirements (role Objective).

Example: For some functional requirements high runtime efficiency is a
requested quality, whereas for others it is storage efficiency.

Purpose An Assignment association covers important traceability information, sup-
porting change management.

By means of an Assignment association, we can express relationships be-
tween different kinds of requirements, e.g. the assignment of nonfunctional
requirements to functional ones.

Attributes -

19

Product type Selection

Description A selection describes which alternatives (OR-refinements) of a given re-
quirement (SelectionSpace) are most suitable with respect to certain
criteria. A rationale explains and justifies a selection.

A selection may comprise not only one but several alternatives. This is
admissible and sensible especially in combination with the distribution of
alternatives over different variants or versions of a system.

Purpose Selections document decisions that we take. They thereby enable traceabil-
ity.

Attributes Rationale: Explains and justifies the evaluation of SelectionSpace elements.
All regarded alternatives are evaluated with respect to the same criteria, and
relative to each other.

Aggregations SelectionSpace: Requirement whose alternatives (OR-refinements) we
consider.

Criteria: Covers those requirements, according to which all elements of a
SelectionSpace are mutually evaluated. Criteria can be prioritized.

SelRequ: Covers those elements of a SelectionSpace, that are evaluated to
be the most suitable with respect to Criteria.

Dependencies The criteria on which we base our selection (Criteria) are the requirements
that are assigned to the requirement (SelectionSpace) from whose alterna-
tives we determine the selection, as well as development requirements as-
signed to a requirements specification.

Dependency “Content”: Only selected requirements can be elements of a
requirements specification.

20

Product type RequirementsSpecification

Description A requirements specification contains all and only those system require-
ments, that have to be met by an envisioned system. This means, that all
and only those system requirements are contained, which are either
choices of alternatives (OR-Refinement), or AND-refinements of chosen
requirements, or requirements assigned to one of the former kind. Thereby,
a requirements specification represents the result of negotiation and
selection of requirements.

There exists only one requirements specification per project. Yet, different
versions of this product can exist.

Purpose As part of a contract, a requirements specification lays down requirements
that have to be met by a system.

As part of a documentation, a requirements specification contains the re-
quirements met by a system, from stakeholders point of view.

Consequently, the evaluation and selection of architectural alternatives, as
well as the structuring of parts of a work break down are related with the
constituent requirements of a requirements specification.

Attributes -

Aggregations -

Dependencies Dependency “RSCriteria”: Development requirements assigned to a re-
quirements specification define criteria for selections.

In the example illustrated in Figure 4 and represented as an object diagram (cf. [RJB99]), we show a
product structure documenting the selection of a requirement from alternatives. In this example the
functional requirement, that the envisioned system has to be configurable is refined by the require-
ments, that an according configuration logic and configuration interface have to be provided.
Stakeholders are administrator and end user, who both request different qualities of the configuration
interface. The administrator wants remote configuration based on scripts to be supported, whereas the
end user puts emphasis on an intuitive and guided usage. Two alternatives for the configuration inter-
face are a graphical or an ASCII-based interface. Both would not meet the requirements of adminis-
trator and end user. We defined a third alternative, requiring that the system must provide a graphical
interface per default and a ASCII-based interface on demand. This alternative is selected because of
meeting both the administrators as well as the end users demands.

21

SystemConfigurationInterface:
FunctionalRequirement

Possibility of remote
configuration by means of
scripts:
NonFunctionalRequirement

Guided and intuitive Usage:
NonFuntionalRequirement

EndUser: Stakeholder

high priority

ConfigurableSystem:
FunctionalRequirement

Administrator: Stakeholder

medium priority

GUI:
FunctionalRequirement

Ascii-based textual Interface:
FunctionalRequirement

InterfaceSelection: Selection

„A GUI is more intuitive than
a textual interface, but does
not support configuration
by means of textual scripts.
The choice enables both and
respects the higher importance
of end users.“ : Rationale

GUI as default interface,
textual input as ascii file
on demand :
FunctionalRequirement

OR

SelectionSpace

Selection

Criteria

Assignement

Request

Request

AND

Criteria

ConfigurationLogic:
FunctionalRequirement

Figure 4: Exemplary product structure documenting the selection from alternatives

6 Architectural Design
We now introduce the part of the product model which documents architectural designs of a system.
As mentioned in Section 3 this product model basically underlies the principle of decision oriented
design.

Usually the possible number of alternatives is very large. Therefore the possible optimum alternative
often cannot be found due to time and cost restrictions. However the construction of alternatives in a
decision-oriented approach is supported by some heuristics like guidelines, frameworks or templates.
These represent principles which in history lead to good decision alternatives and therefore also sup-
port the derivation of new alternatives. We add these elements to the basic elements of decision-ori-
ented approaches of Section 3. In the following product model for architectural design we define a
product type for each of the elements of decision-orientation. Table 2 shows the mapping between the
elements and the product types. The product types themselves will be explained in the succeeding
subsections.

22

Decision Element Design Product

Alternatives Architectural Alternatives

Decision criteria Nonfunctional Requirements

Classification ArchNFR Evaluation

Rationale Design Rationale

Solution Software Architecture

Guidelines, frameworks or templates Architectural style

Table 2: Decision elements and related model elements for architectural design

In literature (cf. [SG96, IABG97, JGJ97]) the most common understanding of software architecture is,
that it represents a hierarchical decomposition of a software system into subsystems. Each of these
subsystems defines some unit of the software system and is interconnected via interfaces to other
components by predefined communication mechanisms. Despite this common understanding usually
these terms are used in very different contexts. A new approach therefore defined a formal model
basing on FOCUS (cf. [BS]) to get a precise understanding of these technical terms (cf. [BRS+99]).

Most commonly software architectures aim at the fulfillment of functional requirements with respect
to certain nonfunctional requirements by using some general design principles for the decomposition
of the software system. In this context Boehm (cf. [SG96]) talks about an intermediate abstraction
between user needs and final system structure which helps us to bridge the gap between user require-
ments and the software system. Others motivate the purpose of software architectures by their support
for some pre-selected nonfunctional requirements (cf. [JGJ97]) like support development, mainte-
nance, reuse and evolution of a software system.

In our sense a software architecture consists of both the decomposition of the system into its subsys-
tems as well as a mapping from applied design principles to the resulting subsystems. Design princi-
ples are described in our product model by architectural styles, which will also be described more
detailed in the succeeding section.

We should accentuate here that in our sense this mapping of an intermediate abstraction to the final
system structure is no sufficient motivation for the existence of a software architecture. For a decision
oriented design also the decision rationale and the corresponding decision criteria, i.e. why a specific
design principle has been chosen, have to be documented as well.

7 Model Elements for Architectural Design
The architectural design part of the product model is shown in the diagram of Figure 5. Note that the
products Architectural Alternative, Software Architecture and Architectural Style are software archi-
tectures in our sense and therefore can be described with an architecture description. However, they
are different in their role in the decision oriented design. For each role different additional aggrega-
tions or associations are necessary for documenting the complete content of a product. To
demonstrate this difference we defined separate products.

23

S
ty

le
 D

e
sc

ri
p

tio
n

Design Rationale

Architectural Style

Architecture Description

Architecture Description Element

Functional Requirement
R

o
le

ArchNFR Evaluation

ArchAltFunctionalReq

Architectural Alternative

part

alternative

Nonfunctional Requirement

D
es

ig
nR

at
io

N
on

fu
nc

Re
q

D
es

ig
nR

at
io

Fu
nc

R
eq

ArchNFR

Software Architecture

A
rc

hF
un

ct
io

na
lR

eq
Figure 5: Product structure for architectural design

7.1 Architectural Alternative

The construction of architectural alternatives in the decision oriented design depends mainly on func-
tional requirements and experienced design principles like patterns, known algorithms etc.
Appropriate patterns for example are selected and instantiated with specific requirements. Further
already existing system parts must be taken into account and usually reduce the possible space of
architectural alternatives. We assume that the final software architecture is a composition of architec-
tural alternatives.

Note that we do not assume that only requirements which have been negotiated finally can be used for
the derivation of architectural alternatives. In a final solution, however, all functional requirements
that have been chosen to be realized in the requirements specification must also be realized in the
software architecture. The same applies to nonfunctional requirements. In this case, however, the
fulfillment of a requirement is not absolute. Different nonfunctional requirements mutually influence
each other. Therefore in order to find a final design solution the different nonfunctional requirements
have to compromise.

24

Product Architectural Alternative

Description Each Architectural Alternative describes an alternative for a part of a soft-
ware architecture which shall fulfill a subset of requirements. Each func-
tional requirement which shall be fulfilled by an architectural alternative is
expressed by an association between the requirement and the architectural
alternative.

For example communication between components can be fulfilled by dif-
ferent communication protocols. Each of these protocols represents an ar-
chitectural alternative. To indicate that the different protocols represent the
same subset of requirements, they are aggregated via an alternative-aggre-
gation to an Architectural Alternative representing all requirements for
communication.

Purpose Architectural Alternatives with their part- and alternative- aggregations
span a space of possible software architectures for a given set of functional
requirements. Each Architectural Alternative with aggregated alternatives
represents a part of the architecture where there is a possible choice. It sup-
ports the selection of an optimal architecture with respect to given func-
tional and nonfunctional requirements.

Attributes -

Aggregations Instantiations of part- and alternative-aggregations are mutually exclusive.
An alternative cannot have alternative direct sons.

part: The actual Architectural Alternative is decomposed into several parts.
Functional requirements of the actual Architectural Alternative are distrib-
uted accordingly.

alternative: Each aggregated Architectural Alternative represents a possible
Architecture fulfilling the functional requirements of the actual
Architectural Alternative. The technical realization of the functional re-
quirements varies between the alternatives. Consequently also the
fulfillment of corresponding nonfunctional requirements is differently.

Architecture Description: describe the technical realization of the
functional requirements.

ArchNFR Evaluation: aggregates ArchNFR Evaluations with respect to
nonfunctional requirements which are relevant for the given Architectural
Alternative. Relevant are all nonfunctional requirements which are general
to the whole software system and all requirements which are related to
functional requirements which shall be realized within the given architec-
tural alternative.

Dependencies -

25

Association ArchAltFunctionalReq

Description Describes the mapping of a functional requirement to an Architectural
Alternative which shall realize it.

Purpose The association provides traceability of functional requirements to their
realization and backwards.

Attributes -

7.2 Architecture Evaluations with respect to Nonfunctional Requirements

To build an optimal software system functional as well as nonfunctional requirements have to be ful-
filled. Functional requirements can be implemented directly. The fulfillment of pure nonfunctional
requirements, i.e. requirements which cannot be operationalized to functional requirements, however,
has to be evaluated with respect to a given architecture. The following product serves for
documenting this evaluation.

Product type ArchNFR Evaluation

Description The associated architecture is evaluated with respect to the classification of
the associated Nonfunctional Requirement.

Purpose Provides a methodological and structured basis for documenting the differ-
ences between Architectural Alternatives.

Attributes Value: is undefined or a peculiarity of the classification in the associated
Nonfunctional Requirement. An undefined value means that the given
Architectural Alternative cannot be judged with respect to the given
nonfunctional requirement.

Aggregations -

Dependencies -

Association type ArchNFR

Description Maps an ArchNFR Evaluation to a Nonfunctional Requirement.

Purpose The association shows which Nonfunctional Requirement has been evalu-
ated by the given ArchNFR Evaluation.

Attributes -

7.3 Design Rationale

The design rationale is derived from combining nonfunctional requirements and weighting them with
respect to priorities of functional and nonfunctional requirements.

26

Product type Design Rationale

Description Describes the reasons for the selection of the Software Architecture, why
this software architecture has been chosen. The design rationale bases on a
prioritization of assigned functional and nonfunctional requirements.

Purpose The Design Rationale is especially important to document design decisions
to be able to assess impacts of future evolutions of the software system.

Attributes -

Aggregations -

Dependencies -

Association type DesignRatioNonfuncReq

Description Relates a Design Rationale to the Nonfunctional Requirements which have
been taken into account for a specific architectural choice.

Purpose Assigns all Nonfunctional Requirements to a Design Rationale which have
been taken into account for an architectural decision.

Attributes -

Association type DesignRatioFuncReq

Description Relates a Design Rationale to the functional requirements which have been
taken into account for a specific architectural choice.

Purpose Assigns all Functional Requirements to a Design Rationale which have
been taken into account for an architectural decision.

Attributes -

7.4 Architectural Style

Architectural Styles represent experienced knowledge for good architectural design in history and
support the derivation of new architectures.

27

Product type Architectural Style

Description Description of a generic architecture, which is independent of a specific
software system and of specific functional requirements. It represents ap-
proved principles for architectural design. The parts of an Architectural
Style get specific roles. Each role fulfills a general task or some predefined
general constraints within the design principle. Assigning the roles of the
design principle to parts of the final software system can make a mapping
between the final software system and an applied design principle.

Each Architectural Style can be pre-evaluated with respect to some general
nonfunctional requirements. Architectural Styles comprise different levels
of granularity starting at basic principles like modularization (cf. [Par72])
until to complex predefined application specific architectural frameworks.

For example the widely known Model-View-Controller-Style (cf.
[BMR+96]) consists of three predefined roles for parts of the software: the
model, the view and the controller. In a final software system where this
style has been applied, parts can be identified which are concrete instances
of these roles.

Purpose Supports the construction of Architectural Alternatives and Software
Architectures. Holds experiences for a good design in an abstract descrip-
tion.

Attributes Informal Description: describes informally ideas and principles which be-
long to the given architectural style. Additionally, roles of corresponding
Architectural Description Elements are described.

Aggregations Role: points to Architectural Description Elements which are instances of
roles in the given style. Different style elements may have different roles
within the Architectural Style which may be described within the informal
description of the Architectural Style. If an Architectural Style is used in a
concrete architecture a mapping must exist between all style elements and
the Architectural Description Elements of the concrete architecture.

Style Description: describes the properties of the style elements of an ar-
chitectural style

ArchNFR Evaluation: each Architectural Style can be judged with respect
to given general nonfunctional requirements. This shall support the selec-
tion of architectural styles during the definition of the software architecture.

Dependencies -

7.5 Software Architecture

Product type Software Architecture

Description Concrete architecture of a software system. Represents the unique decision
of alternative architectures. The Software Architecture is the basis for all
further development steps.

Purpose Documents the complete concrete architecture and the rationale which lead

28

to this decision.

Attributes

Aggregations Consists of exactly one Architecture Description and exactly one Design
Rationale.

Architecture Description: description of the Software Architecture.

Design Rationale: rationale for the Software Architecture.

Architectural Alternative: selected Architectural Alternatives for the deri-
vation of a software architecture.

Dependencies -

Association ArchFunctionalReq

Description Describes the mapping of a Functional Requirement to a Software
Architecture which shall realize it.

Purpose The association provides traceability of Functional Requirements to their
realization and backwards.

Attributes -

7.6 Architecture Description

Architectural alternatives, architectural styles and the final software architecture have to be described
in an appropriate way. For this purpose we defined the products Architecture Description and
Architectural Description Element. Architectural description elements may be refined in an adequate
way, like component, interface, connector, protocol, architectural style etc.

Our main purpose, in a first step however, is to describe only the interrelationships between products
of requirements definition, project management and design. Therefore it suffices to define only these
very general products.

Product type Architecture Description

Description The Architecture Description describes the constituents of a concrete ar-
chitecture and their relationships.

Purpose Represents a typical description of a software architecture.

Attributes Informal description: describes the architecture informally.

Aggregations Consists of at least one aggregated Architectural Description Element.

Dependencies -

29

Product type Architectural Description Element

Description Generic element of an Architecture Description. Usually related to a great
variety of sub-types.

Purpose Describes a specific part of an architecture description. An Architectural
Description Element can be connected to project management activities
where units of work have to be defined for planning time and resources.
They are also the atomic units which may be assigned to roles defined
within the description of Architectural Styles.

Attributes -

Aggregations Depends on specific sub-type.

Dependencies -

Architectural Description Element

Component

Comm Protocol

Connector

Interface
part

In
te

rf
C

on
n

Architectural Style

Architectural Style Application

Figure 6: Refinement of Architectural Description Elements

Figure 6 shows an example refinement of Architectural Description Elements. We shortly sketch here
the basic ideas of these elements. The elements mainly base on the formal model for componentware
in [BRS+99]. The previously described Architectural Style also is a subtype of Architectural
Description Elements.

Note that these refinements are only examples for Architectural Description Elements. Depending on
the specific context subtypes can be added, deleted or exchanged.

30

Product type Component

Description Basic building blocks of a software architecture.

Purpose Provides the possibility to decompose software systems into separate units.

Attributes -

Aggregations part: a Component can be decomposed in sub-components.

interface: a Component may have several interfaces which offer features to
their connected components.

Dependencies -

Product type Interface

Description Describes functionality and features which a Component offers to other
Components.

Purpose To provide the information hiding principle, interfaces are used to separate
the internal technical implementation (glass-box) view from the external
feature (black-box view). The information hiding principle in general sup-
ports the independent development of different components of a software
system.

Attributes -

Aggregations -

Dependencies -

Product type Connector

Description A Connector connects two Components via Interfaces. Especially it defines
in which way the components communicate.

Purpose A Connector provides every information which is needed to fully describe
the communication mechanism which underlies the communication be-
tween two interfaces.

Attributes Communication Parameters: defines parameters which adjust a parameteri-
zable communication protocol.

Aggregations Communication Protocol: defines, which communication protocol is used.
Only one Communication Protocol can be aggregated to a connector.

Dependencies -

31

Association type InterfConn

Description Connects an Interface to a specific Connector. Interfaces may be connected
to several Connectors at once.

Purpose Interfaces can only be associated directly to Connectors.

Attributes -

Product type Comm Protocol

Description A communication protocol describes a specific mechanism for the
exchange of messages between communication partners.

Purpose To describe communication mechanisms independently from concrete con-
nections, communication protocols are described separately.

Attributes Protocol Description: Describes informally or formally the features of the
communication protocol.

Aggregations -

Dependencies -

Product type Architectural Style Application

Description Maps Architectural Description Elements to Architectural Styles which
have been applied during the derivation of an architecture.

Purpose Documents the application of Architectural Styles within an architecture. In
this way it enables traceability of applied principles for a design and docu-
ments, how given nonfunctional design decisions have been fulfilled.

Attributes -

Aggregations Architectural Style: applied architectural style. An Architectural Style
Application can only be mapped to one architectural style.

Architectural Description Element: Assigns the Architectural Description
Elements to the predefined roles of the Architectural Styles.

Dependencies -

8 Project Management
This section describes the project management product model. Generally, project management in-
cludes the activities project initialization, project planning, project controlling and project ending.
This interpretation is increasingly insufficient, because the process-view on project management is
not as flexible as needed especially for software development. Therefore, we suggest emphasizing on

32

the product model to determine only a project frame on which the process should be adapted.

Our project management product model covers all resulting products throughout the whole project.
We do not cover the prephase in which a customer selects the software developer or the phases after
the project such as maintenance. In this context, project management mainly bases on the following
tasks:

• Considering the project frame: The project frame describes all restrictions and given facts of
the project which can either not be influenced by the project responsibles or which have to be
negotiated with the customer and therefore are depending on his agreement. In Section 9.1 we will
illustrate which products determine the project frame.

• System and project decomposition: Complex software systems can be seen as a collection of
simpler units, i.e. subsystems, components or modules. Each of these units can be handled easier
than the whole system. Therefore it is important to gradually divide and decompose the system
into smaller units until the overall project is getting manageable. Generally, there are a lot of
methods for decomposition. However, we suggest a stepwise refinement to iteratively provide
more detail. During this decomposition the producible elements can be identified to which finally
activities can be assigned. The result structure together with the related activities defines the proj-
ect structure that is reflected within the work breakdown structure. In Section 9.2 you will obtain
a detailed overview which products are needed to build up an adequate project structure.

• Scheduling the project: The project structure itself is not enough to plan and control the project
in order to reach all defined goals; it only simplifies the project. However, to complete the project
within the given amount of time and resources it is indispensable to plan and schedule all neces-
sary activities and to estimate the needed effort, resources and costs. Only by defining the activi-
ties realistically these conditions can be kept and the project can be completed successfully.
Equally important is the strict compliance of the plan and schedules; this is the responsibility of
the project manager. In Section 9.3 we describe all products and their relations, which are neces-
sary to plan the project and thus enable a controlling and steering.

In the following we give an overview over all management products which are required to success-
fully perform and complete the mentioned project tasks. In relation to this, we will continue
describing each product of the product structure according to the scheme introduced in Section 2.

9 Model Elements for Project Management
In this section all project management products and their relations illustrated in Figure 7 are
described. According to the project management tasks mentioned in the previous section we describe
the products and their associations in detail in the following sections.

33

Assignment

Result Content

Result Content

DecompositionDecomposition

Out

In

Context

Project Development Plan

Activity Schedule Resource Schedule Personnel Schedule

Work Breakdown Structure

Project Goals

Statement Of Work

Activities

System Requirements

Architectural Description Elements

Milestones and Baselines

Results
Development Requirement

Figure 7: Description of all project management products and relations.

9.1 The Project Frame

Each project consists not only of influencable but also of given or negotiable parts. Influencable parts
mean all project parameters which can be directly modified by the project responsibles whereas nego-
tiable parts describe all results and activities which can only be modified if both the project responsi-
bles and the customer agree to them. Both parts strongly depend on the project size and organizational
structure. In some cases for example people can be employed to increase the manpower whereas in
other cases this is a fix parameter for the project. However, each project should be aware of the static
parameters because they strongly influence the scope of action. In this section you will find all prod-
ucts which are connected to the project frame.

34

Product type Project Goals

Description This product shall define unambiguously the project goals. Only in this
way, it is achievable to reach a clearly defined end of the project. The goal
definition results from the negotiation between the customer, the supplier
and the developer. We must take into account, that project goals have to be
reachable, without conflicts, easy to examine, unambiguously and adequate
to completely fulfill the customer’s requirements (cf. [Fib99]). Project
goals can refer to contents, costs or schedules. An example of a project goal
could be that the software system has to be developed according to a certain
process standard.

Purpose Project goals are the criteria for evaluation of the success of a project.

Attributes External Responsible: The customer has to determine a responsible role
that can decide whether the project goals are adequate.

Aggregations -

Dependencies Statement of Work: The project goals are negotiated between the customer,
the developer and the project management. They describe the general
agreement for the project end. These goals should be adequately reflected
and noted in the statement of work.

Product type Project Context

Description In this product all information concerning the project context is summa-
rized; that is all externally determined constraints for a project. These parts
vary according to each specific project and company. Generally, the project
context differs from nonfunctional requirements as it does not mainly refer
to issues concerning the system to be developed. Instead, it focuses on or-
ganizational aspects to provide basic conditions which facilitate the realiza-
tion of the project without conflicts.

An example could be the hardware infrastructure of a company. Within a
large project it is in most cases possible to directly influence or adapt the
infrastructure to the project requirements. Especially in large companies
this can be done by shifting hardware units from one project to another (cf.
[ABD+99]). In opposite to this, the infrastructure is often a fix parameter
for small companies where the budget is more restricted and a shifting as
described is not possible.

Purpose The project context determines all unchangeable constraints that have to be
considered in order to adequately plan and perform the development proj-
ect.

Attributes -

Aggregations -

Dependencies Statement of Work: The project context determines the basic conditions
such as available resources or the team composition. These restrictions
influence the general project scope. Therefore the binding results and ac-
tivities in the statement of work have to be appropriately defined or
adapted.

35

Product type Statement of Work

Description The statement of work (SOW) describes the activities and results required
by the customer and agreed to by the developer. The SOW is a formal
document which should be incorporated into the contract. The binding ver-
sion of the SOW is finalized during the contract negotiation. This implies
that there can be no binding work items that were informally understood, or
agreed to verbally, which do not appear in the SOW. This condition idealis-
tically prevents misunderstandings and disagreements later, after the project
begins.

An extract of a SOW could include the following results and activities:
requirements specification, architectural description, system description,
software deliverables, training and testing, etc.

Generally, the structure and content of a SOW differs from one develop-
ment project to another. For example not every project includes the delivery
of hardware components, and not all projects require training or
installation.

Purpose The SOW is part of or at least the basis for the contract between the cus-
tomer and the developer. It describes all obliging main project elements in
terms of results and activities that have to be performed or delivered, re-
spectively, to adequately fulfill the project goals.

Attributes External Responsible: It is necessary for the customer to determine a re-
sponsible role who has the power to negotiate and to decide which relevant
activities have to be performed during project runtime.

Aggregation Activities: The SOW aggregates a list of all binding activities.

Results: The SOW also aggregates a list of all binding results.

Dependency Project Development Plan: All activities which have to be carried out must
be included and scheduled in the project development plan.

WBS: All results mentioned in the SOW must be included in the WBS.
Note, this ensures that all results are adequately considered in the project
structure.

9.2 System- and Project Decomposition

One quality criterion of each project is the capability to organize and structure work. This is done by
the work breakdown structure. The required results are derived from the project context, –goals and
the SOW and they are gradually refined to a level of detail which makes it possible to define activities
which match and can be assigned to project roles and actors. The needed products and their intercon-
nections are sketched in the following.

36

Product type Work Breakdown Structure

Description The work breakdown structure (WBS) is used to decompose the software
project into its basic results and finally activities. Generally, the system is
structured during the requirement analysis and the design phase from dif-
ferent point of views. Depending on the granularity and the progress of the
development new requirements or design elements arise or disappear. Each
of these elements has to be represented within the WBS and assigned to at
least one activity to produce them. A WBS thus describes the project view
on the system.

Possible structuring elements are offered in the DOD standard 2167 for
example where the system is mainly divided into segments, computer sys-
tem configuration items, computer software components and finally com-
puter software units. This order complies with the level of abstraction of
the associated elements. Reasonably, these elements should correspond to
the architectural description elements resulting from the system design.

Purpose The work breakdown structures the project into smaller units and thus sim-
plifies it and makes it manageable. Additionally, the WBS describes all
results and the associated activities which have to be performed in order to
completely realize the system. Above all, it can be used as a controlling
instrument as one can examine the overall project state according to the
state of the incorporated results. For each element in the work breakdown
structure, the relationships with architectural description elements and sys-
tem requirements are described; therefore this product offers transparency
about the overall project.

The WBS is mainly used as a basis for project controlling as it gives a com-
plete overview of the overall project state by aggregating the state of each
partial result to one whole system state. Furthermore it has to be refined
and to be updated gradually according to the arising of new requirements
and new architectural description elements resulting from the different
development phases.

Attributes -

Aggregations Results: The WBS aggregates hierarchies of results which are used to
structure different project parts such as the requirements specification or
the architecture from a management point of view.

Dependencies -

Product type Results

Description Results are developed during the project and are produced through the per-
formed activities. Existing results can then be used as prerequisites for
other activities which can only be carried out if they are available, i.e. a
subsystem can only be integrated, if all components are present.

Generally, the coarse-grained results are defined during the requirements
engineering and they are further refined during the design phase. Each re-
sult has a state-attribute which characterizes its actual state. In most cases,
it is helpful to standardize all results in order to ease operations such as the
evaluation of the overall project state.

37

Often results and the related activities are assembled to work packages
which are then be assigned to a specific role or actor.

Purpose Results are needed to hierarchically decompose the overall project and to
assign the system building blocks to activities.

Attributes Description: This is a short description of the activity.

Type: This attribute enumerates the result type. Possible ones are: reports,
architectural elements, source code documents, system requirements, etc.

Responsibility: Here, the responsible role has to be assigned.

State: This attribute enumerates the state of a result. Possible states for an
architectural description element which is to be realized could be:

• initial

• in progress

• in review and

• completed.

Based on these states, operations can be applied to calculate the state of a
set of states or finally the overall project state.

Category: Each result should include a unit which allows the use of metrics.
In this case we suggest the specification of the following metric categories
for effort estimation:

• Off-the-shelf: These results have already been developed as part of
previous projects.

• Full experience: Similar results have already been developed in the
past.

• Partial experience: These results are in part similar to products which
have already been developed in the past.

• New development: No experience how to develop this result is present.

Aggregation Decomposition: Results can be structured according to a logical
hierarchical relationship. We must be aware, that this logical structure does
not necessarily coincide with the timely order in which the results are to be
produced.

Here decomposition means, that a hierarchically higher result is achieved, if
all its subresults are achieved. Moreover, the attribute values of an aggre-
gating result are dependent on the according values of its subresults.

A decomposition hierarchy of results, which we related with system re-
quirements and architecture description elements, respectively, has to be
consistent with the relationships between system requirements and the
software architecture. For example, a result being related with a given
functional requirement is consistently decomposed by results being related
with the architecture description elements, that realize this requirement.

Dependency -

38

Association type In

Description This association describes which activities require the related results. This
is important to avoid stagnation which could arise if an activity requires
one or more immature results. An example could be an integration activity
which needs subsystems to integrate them to the overall system.

Purpose This association documents consistency conditions that enable to plan the
activity reasonably and consistently.

Attributes Activities: A set of activities to which this association is connected.

Results: A set of results to which this association is connected.

Aggregation -

Dependency -

Association type Out

Description This association describes which results are produced by the related activi-
ties. This is important to avoid stagnation which could materialize if the
output of one activity which is simultaneously the input of another one has
delay.

Purpose Similar to the In-association, this association also documents consistency
conditions that enable to plan the activity reasonably and consistently.

Attributes Activities: A set of activities to which this association is connected.

Results: A set of results to which this association is connected.

Aggregation -

Dependency -

Directed Association
type

Result Content

Description This association relates “technical” information structures about a system
to be developed namely system requirements and architecture description
elements with information structures being relevant for management activi-
ties, namely results.

Thereby, we bridge the gap between information being structured from a
management point of view, and information, which is structured from de-
velopment points of view.

Purpose A result content association integrates technical development information
with management information explicitly, without having to structure these
different kinds of information similarly.

Attributes -

Aggregation -

Dependency -

39

9.3 Scheduling the Project

A realistic project planing and scheduling is a critical success factor. According to [Dem82] most
managers are not able to adequately estimate the effort of software development projects. [Rei93]
states that the average cost and time overrun is more than 35 percent. One important reason for these
overruns is a poor project planning and -estimation. Activities are planned which are underestimated,
inconsistent or even wrong. Therefore it is important to provable define products which offer all in-
formation to reduce these failure potentials. Some possible products in order to plan and schedule the
project adequately are offered in this section.

Product type Project Development Plan

Description The project development plan describes what activities have to be per-
formed and when they have to be carried out. Contently, the project devel-
opment plan covers activities such as the timely provision of equipment and
tools so that they are available to developers when needed. Also described
is the availability of staff to perform the development tasks in accordance
with the schedule. Furthermore, contingency plans must be provided in the
event that project risks materialize.

The project development plan is an important project document. It assures
that the development of the project is well charted before the related devel-
opment activities are enacted. Whenever changes arise during the project,
the project development plan has to be adapted to reflect the new situation.
This includes above all changes of the project’s schedules which are in-
cluded in the project plan.

One standard which describes the formal structure and the content of a
development plan is the IEEE standard 1058.1. There the project generally
consists of the traditional activities like project management, configuration
management, quality management and software development. Additionally
security aspects, change management and customer supplier management
are also provided.

Purpose The project plan is used to give all activities a sensible order. The plan
should determine to do the right thing at the right time. Based on the project
plan the actual progress can be stated on which controlling activities can be
performed.

Attributes -

Aggregations Activity Schedule: Schedules activities.

Resource Schedule: Schedules resources.

Personnel Schedule: Schedules manpower.

Dependencies -

Product type Activity Schedule

Description The activity schedule is a schedule of activities and their anticipated time of
implementation.

40

Purpose The activity schedule lists all necessary activities in a time-ordered way to
know what to do anytime.

Attributes -

Aggregation Activities: Brings all project activities in a temporary order.

Dependency -

Product type Personnel Schedule

Description In the personnel schedule based on the activities the team composition and
the team skills are defined and assigned to the available roles and actors.
This strongly depends on the required know-how, motivation and availabil-
ity. Note, availability means to ensure that each project member can be
released according to the defined percentage. Particularly, in software de-
velopment projects scheduling people is an important competence as people
are the most important resource and finally the largest cost-driver (cf.
[Boe80]).

Purpose In this product the team size and structure is defined to always have the
personal capacity to carry out the scheduled activities.

Attributes Communication: The communication relations between all team members
should be defined; especially if problems arise.

Directives: Especially in large projects, the authority to issue directives
should be defined to delimit responsibilities, and areas of responsibilities.

Aggregation Activities: The personnel schedule aggregates activities and assigns attrib-
utes such as

• roles,

• skills and experiences,

• responsibilities and

• effort

to them.

Dependency -

Product type Resource Schedule

Description This product describes all necessary resources which are needed for the
performed activities. These resources not only include tools and hardware
but also work space or external partners such as subcontractors or vendors.

Purpose The resource schedule makes sure that all needed resources exist during the
overall project runtime even if critical situations arise.

Attributes -

41

Aggregation Activities: The resource schedule aggregates activities and assigns
available resources to them such as

• adequate work space,

• tools,

• equipment as well as

• vendors and subcontractors

Dependency -

Association type Activities

Description An activity describes what has to be performed to reach a defined goal that
is mentioned in the SOW. Activities correlate with the results either since
they require or produce them. Guidance on how this must be done is
offered by the development requirements. Furthermore, an inherent
characteristic is that activities have a strong time relation as they describe
the timely progression of the project.

Often, it is useful to standardize the activities to make them comparable and
to ease the calculation of effort and time. Therefore, defined amounts must
be assigned to the activities, i.e. the activities should be gradually decom-
posed into units of one man month.

Similar to the results, activities can also be decomposed. Thereby they
range from high level activities such as software development management
or risk analysis to low level activities like coding or module tests. The ac-
tivities should be decomposed until each activity can be assigned to at least
one responsible role. A further refinement is not necessary for management
tasks.

Purpose For an adequate project planning, activities have to be defined in order to
reach all project goals within the defined time frame.

Attributes Description: This is a short description of the activity.

Start Date: This refers to the date the activity is scheduled to begin.

Completion Date: This refers to the date the activity is scheduled to be
completed.

Dependencies: This refers to activities on which this activity is dependent.

Responsibility: This identifies the role which is responsible for this activity.

Additionally, a “category” like described in the results can also be speci-
fied.

Aggregation Decomposition: To create hierarchies of activities, they can be composed or
decomposed to alternatives or activities as parts of the whole. Usually,
there are two refinement alternatives: The system can be either functionally
or object-oriented divided (cf. [Lit93]).

Dependency -

Product type Milestones and Baselines

42

Description Milestones are always visible and comprehensible project activities. Note
that everytime it is possible to recognize whether they have been created or
not. Based on this, a founded reporting system can be established and the
project progress can be estimated for example by illustrating a trend analy-
sis. If the information has to be more coarse-grained, then the milestones
can be put together to milestone plans. These plans give the management
sufficient information to control and steer the project.

Purpose Milestones are important events during the project’s runtime. They mark
the end of important project steps. They are also used as points of payment
and measurement of progress on the project and for determining baselines.

Baselines thus describe major milestones. The importance of baselines is
obvious as often the first project baseline is the approved system require-
ments specification document as result of the completion of the require-
ments activity phase; this is called the functional baseline.

Attributes Milestone or Baseline ID: This is a meaningful identification i.e. a string or
number.

Description: This is a short description of the milestone or baseline.

Completion Date: This refers to the date the milestone or baseline is sched-
uled to be completed.

Dependencies: This refers to milestones or baselines on which this one
dependent.

Responsibility: This identifies the person who is responsible for this mile-
stone or baseline.

Amount: This characterizes the overall amount which is connected with this
developed milestone or baseline.

Flag: This attribute describes whether the milestone or baseline is com-
pleted or not.

Aggregation -

Dependency -

Association type Assignment

Description Through this association some activities are assigned as milestones and
baselines. Note, that one or even more activities can be assigned to one
milestone or baseline.

Purpose This association characterizes the milestones and baselines of the develop-
ment project.

Attributes Activities: A set of related activities.

Milestones: The related milestone or baseline.

Aggregation -

Dependency -

43

System
Application
Logic

Configurable
System

System GUI

GUI-
Component

Configuration
Logic

Configuration
Interface

Configurable
Application
Component

WBS
System

in progress

System
Moduls
in progress

Conf.
Applicat..
Comp.

in review

Conf.
Logic

in review

Result GUI
Component

initial

ArchFunctionalReq

RE

DE

PM

Config.
Interf.

initial

Resource
Plan
completed

Result
Content

Result
Content

Result
Content

Result
Content

Result
Content

Result
Content

ArchFunctionalReq

Figure 8: Exemplary work breakdown structure

Finally, Figure 8 exemplifies an instance of a product structure for the development of a configurable
computer system (cf. the example given in Section 5.4). In this figure one can see the relationship
between requirements, architectural description elements and results of a work break down structure.
In our example the major requirement is to produce a system which is configurable. For the
realization of the configurable system, a configuration logic and a configuration interface are the
identified requirements. For this realization the shown architecture is developed. Thereby, two global
design elements are needed, namely the system application logic and the system GUI. Each of these is
further subdivided into a configurable application component in case of the system application logic
and a GUI component in case of the system GUI. Both are associated with the requirements through
an ArchFunctionalReq association.

Additionally, this interconnected development information is linked with the management information
in the work break down structure. Results covered in the work break down structure are related with
requirements and architectural description elements by means of ResultContent associations. Thereby,
we achieve an integrated management view on requirements and architectural elements by bringing
them in a hierarchical order and implicitly assigning states and responsibilities to them.

For example the architectural element ConfigurableApplicationComponent is associated with result
Conf.Applicat.Comp, which is a subresult of the result Conf.Logic. The latter result is not related with
an architectural element, but with the functional requirement ConfigurationLogic which is supposed
to be realized by the component ConfigurableApplicationComponent. From a management point of
view this result hierarchy is sensible because of the state of Conf.Logic, that is in how far the
requirement has already been realized, is dependent on the state of the result Conf.Applicat.Comp,
that is in how far the related component has already been specified and implemented.

44

Based on this information, we can manage system development adequately. Note that the product
structure does not enforce a timely order of building the architecture, defining requirements, and
building the work breakdown structure. In any way we only must respect the defined causal depend-
encies.

Now, we summarize some project management aspects arising with the use of the described product
model:

First, the work breakdown structure is based on the high level results coming from the requirements
analysis and the design. These elements are gradually put into the WBS and in that way hierarchically
ordered. This promotes the integration of technical and organizational issues as well as a clear struc-
turing of the project which eases the manageability. Note, that the integrated results do not have to be
reflected in every detail, instead it is sufficient to include results which can be assigned to at least one
responsible role or actor. In this ResultContent association the relationship between the management
results and the corresponding requirements and architectural description elements respectively is il-
lustrated.

Second, the described product model allows dynamical alteration of the system and the project as
well. Based on the consistency conditions mainly described in the “results” and “activities” products
and the “in”, “out” and “result content” association a flexible adding and deleting of results is possi-
ble. This is especially useful for projects with changing requirements – which is widely spread in
software development projects.

Third, the separation in results and activities and their representation in the WBS and the activity
schedule, respectively eases the planning and controlling of the project. While the former focuses on
the project state, the latter focuses on the project’s progress. This complies to two different views
which both must be regarded during a project’s lifecycle. If, for example, the management ascertains a
deviation between the planned and the actual progress, then it is not only interesting to find out which
activities are responsible for this delay, but also to recognize which system parts are concerned. Based
on this knowledge the management is able to perform some steering measures in order to realign the
project. These measures could for example include a consistent and customer accepted reduction of
functionality.

Fourth, as a result of the strongly coupled result hierarchy related with requirements, architectural
elements and project management results, a common information basis is established. This is exempli-
fied in Figure 8 as there is a strong network of ArchFunctionalReq and ResultContent associations
between all development parts. Although, some results are not represented as requirement or design
element, nevertheless, there are associations which show their relationships.

Fifth and last but not least, the WBS lists all results and their interrelations in order to describe the
causal dependencies between the different results. This is for example useful when the management
wants to estimate the remaining effort and therefore needs information about the result stream. For a
detailed analysis it is even possible to follow the links to technical details, if the management wants to
obtain a precise knowledge of specific and corresponding requirements or architectural aspects.

10 Comprehensive Dependencies
In the previous sections we already discussed relationships between elements of the product models
for the three covered tasks. Here we want to emphasis on three dependencies which couple the three
models tightly. These dependencies relate three key work products, namely requirements specifica-
tion, software architecture and work break down structure. Essentially the dependencies define that all
requirements contained in the requirements specification must be reflected in the software architec-
ture, and that structuring a project's work from the management point of view must refer, at least par-

45

tially, only to requirements and architectural description elements contained in the requirements
specification and the software architecture, respectively.

RequirementsSpecification

RealizationRequPlanning

SoftwareArchitectureWorkBreakDownStructure
ArchPlanning

Figure 9: Dependencies between requirements specification, software architecture and work break
down structure

Below, the dependencies illustrated in Figure 9 are described in a schema similar to the one for asso-
ciations. In order to admit top-down as well as bottom-up development, we defined the dependencies
to be bi-directional.

Dependency type RequPlanning

Description Structuring a project’s work in a work break down structure is partially
based on requirements. For example, when a system’s architecture is not yet
known, we can structure and plan future work on selected requirements.

A requirements specification and a work break down structure are consis-
tent, if all the system requirements to which a result of the work break
down is associated (by a ResultContent association) are contained in the
requirements specification.

Note, that not all system requirements of a requirements specification need
to be associated with a result. For example, for planning purposes it can be
sufficient to only relate a given system requirement explicitly to a result,
but not its sub-requirements (aggregated by an AND refinement).

Purpose This dependency defines a consistency condition between a work break
down structure and a requirements specification. It ensures that planning is
based only on those requirements, for which we decided that they have to
be realized by the envisioned system.

46

Dependency type Realization

Description A requirements specification and a software architecture are consistent,
when all requirements contained in the requirements specification, have
been "realized" (functional) or "respected" (nonfunctional) in the architec-
ture.

A functional requirement is "realized" by a software architecture, if the
requirement is associated with the architecture via an ArchFunctionalRequ
association. A nonfunctional requirement is "respected" by a software ar-
chitecture, if the requirement is associated with the architecture’s Design
Rationale via a DesignRatioNonfuncReq association.

Purpose This consistency condition ensures, that finally all negotiated and selected
requirements have been respected in the software architecture.

Dependency type ArchPlanning

Description Structuring a project’s work in a work break down structure is partially
based on the software architecture.

A software architecture and a work break down structure are consistent, if
all the architectural description elements to which a result of the work
break down structure is associated (by a ResultContent association) are
contained in the software architecture.

Purpose This dependency defines a consistency condition between a work break
down structure and a software architecture. It ensures that planning is based
only on those architectural description elements, for which we decided that
they are part of the software architecture.

11 Conclusion and Outlook
In this paper we presented a model of work products for the requirements, architectural and project
management parts of software development. This provides a basis for integrating process models of
different application domains as well as different development tasks. In order to reach a clear
structure of the model we introduced firstly templates for work product types, associations,
aggregations and dependencies between them. Then we introduced the principle of decision oriented
software development process and related general products.

By applying the templates for work products of requirements engineering, design and project man-
agement first we showed the applicability of the templates. Further the work product model defines
the basic skeleton for a development process model which integrates these different tasks. Further we
related requirements engineering and design work products to the general products of the decision
oriented development process.

In the product structure for requirements engineering we defined work products allowing us not only
to formulate the final result of requirements engineering tasks, but also to support taking and docu-
mentation of decisions. Furthermore, we sketched the relation between domain modeling and
specification of requirements. We classified requirements in a way being well suited for design
purposes.

47

The product structure for design firstly documents a decision oriented design process by work
products for supporting the derivation and definition of architectural alternatives, evaluating alterna-
tives, documenting the rationale and the final result. Secondly it consists of structures for describing
software architectures themselves.

For project management, we defined a model based on which we can plan and control project enact-
ment and progress. We structure a project’s work by means of activities and results. We understand
certain results as management views on system requirements and architectural description elements,
respectively. Thereby we achieve a close coupling of management and development information.

The work products of requirements engineering and design are integrated in two ways. Functional
requirements within the requirements specification relate directly to parts within the final architecture.
In contrast to this nonfunctional requirements relate to architectural decisions, i.e. depending on the
content and on the priority of the given nonfunctional requirements different architectural alternatives
have to be selected.

We also integrated project management with the technical tasks requirements engineering and archi-
tecture. The main integration is done by using requirements as a first basis for planning activities of
the work breakdown structure. When a project proceeds and the system structure becomes more de-
tailed the architectural elements are related to the results leading to a more detailed project structure.

The whole model for work products can directly be used for development projects. Its main advantage
is that it not only defines clearly the information which has to be gathered but also makes it possible
to check consistency and completeness of work products.

Currently we plan to evaluate the product model with examples from different application domains
within our research consortium FORSOFT. Directly related to this is also a refinement of the work
product model with respect to these application domains. A future aim is the integration of the work
product model with development activities to provide a full and very flexible software development
process model.

12 References

[ABD+99] D. Ansorge, K. Bergner, B. Deifel, N. Hawlitzky, C. Maier, B. Paech, A.
Rausch, M. Sihling, V. Thurner, S. Vogel: Managing Componentware
Development – Software Reuse and the V-Modell Process, CAISE, 1999.

[BDRS97] M. Broy, E. Denert, K. Renzel, M. Schmidt (Eds.): Software Architectures
and Design Patterns in Business Applications. Technischer Bericht TUM-
I9746, Technische Universität München, 1997.

[Ben94] E. M. Bennatan, Software Project Management – A Practitioner’s approach,
McGraw-Hill Book Company, 1994.

[BLR+95] A. Bröckers, C.M. Lott, H.D. Rombach, M. Verlage: MVP-L language report
version 2. Technical Report 265/95, Department of Computer Science,
University of Kaiserslautern, 67653 Kaiserslautern, Germany, 1995.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, "Pattern –
oriented Software Architecture – A System of Patterns", Wiley, 1996.

[Boe80] Garry Böhm: Software Project Management. Addison Wesley, 1980.

48

[BRS+99] K. Bergner, A. Rausch, M. Sihling, A. Vilbig, M. Broy: A Formal Model for
Componentware. in Foundations of Component-based Systems, eds. M.
Sitaraman, G. Leavens, Cambridge University Press, to appear 1999.

[BS] M. Broy, K. Stølen, "FOCUS on System Development", to appear.

[Dei98b] B. Deifel: Theoretische und praktische Ansätze im Requirements Engineering
für Standardsoftware und Anlagenbau. Technischer Bericht TUM-I9832,
Technische Universität München, 1998.

[Dem82] Tom De Marco: Software-Projektmanagement. Wolfram’s Fachverlag, 1982.

[Fib99] Projektmanagement Fibel, http://www.managementsoftware.de/, 1999.

[JBR98] I. Jacobson, G. Booch, J. Rumbaugh: The Unified Software Development
Process. Addison Wesley Longman, 1998.

[JCJ+92] I. Jacobson, M. Christerson, P. Jonsson, G. Övergaard: Object-Oriented
Software Engineering. A Use Case Driven Approach. Addison Wesley, 1992.

[Jeus92] M. A. Jeusfeld: Change Control in Deductive Object Bases. INFIX Pub, Bad
Honnef, Germany, 1992.

[JGJ97] Jacobson I., Griss M., Jonsson P., "Software Reuse", Addison Wesley
Longman, 1997.

[Kru98] Philippe Kruchten: The Rational Unified Process. Addison Wesley, 1998.

[KS98] G. Kotonya, I. Sommerville: Requirements Engineering. John Wiley & Sons,
1998.

[Lit93] H.-D. Litke: Projektmanagement – Methoden Techniken und
Verhaltensweisen. Hanser Verlag, 1993.

[LK95] P. Loucopoulos, V. Karakostas: System Requirements Engineering. McGraw-
Hill, 1995.

[LT96] R.C. Linger, C.J. Trammell, Cleanroom Software Engineering Reference
Model. Technical Report, CMU / SEI-96-TR-022, Pittburgh, Pa.: Carnegie
Mellon University, Software Engineering Institute, November, 1996.

[LW98] A. van Lamsweerde, L. Willement: Inferring Declarative Requirements
Specifications from Operational Scenarios. In IEEE Transactions on Software
Engineering, Vol. 24, No. 12, December 1998.

[MBJ+90] J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis: Telos: Representing
Knowledge about Information Systems. Transactions on Information Systems
8, 4 (1990), pp. 325-362.

[MCY99] J. Mylopoulos, L. Chung, E. Yu: From Object-Oriented to Goal-Oriented
Requirements Analysis. In Comm. of the ACM, Vol. 42, No. 1, January 1999.

[Pae98] B. Paech: The Four Levels of Use Case Description. in 4th Int. Workshop on
Requirements Engineering: Foundations for Software Quality, Pisa,
June1998, E. Dubois, A. Opdahl, K. Pohl (eds.), 1998.

49

[Par72] D.L. Parnas, "On the Criteria To Be Used in Decomposing Systems into
Modules", Comm. ACM, Vol. 15, Num. 12, Dec. 1972.

[PCW+93] M. Paul, M. Chrissis, C. Weber, S. Shrum: A Preview of the Software CMM
Version 2, http://www.sei.cmu.edu/pub/cmm/v2/cmm-v2-bridge.pdf,
25.08.1999.

[Pohl96] K. Pohl: Process-Centered Requirements Engineering. Research Studies Press
Ltd, JohnWiley & Sons Inc, New York,1996.

[Rei93] Donald J. Reifer: Software Management. IEEE Computer Society Press,
1993.

[RG94] C. Rolland, G. Grosz: A General Framework for Describing the Requirements
Engineering Process. In Proceedings of the Int, Conf. on Systems, Man and
Cybernetics, San Antonio, TX, October 1994. IEEE Computer Society Press,
1994.

[RJB99] J. Rumbaugh, I. Jacobson, G. Booch: The Unified Modeling Language
Reference Manual. Buch, The Addison-Wesley Object Technology Series,
Addison-Wesley, 1999.

[RRP99] J. Ralyté, C. Rolland, V. Plihon: Method Enhancement with Scenario Based
Techniques. Proceedings of the Conference on Advanced Information
Systems Engineering CAiSE'99, LNCS 1626, pp.103-118, 1999, Springer-
Verlag, 1999.

[SG96] Shaw M., Garlan D., "Software Architecture – Perspectives on an emerging
discipline", Prentice Hall, 1996.

[VB96] Vossen G., Becker J.: Geschäftsprozeßmodellierung und Workflow-
Management. Int. Thomson Publishing GmbH, 1996.

[IABG97] IABG: V-Modell 97. http://www.iabg.de, 1999.

