TUM

INSTITUT FUR INFORMATIK

Work Products for Integrated Software
Development

Bernhard Deifel, Wolfgang Schwerin, Sascha Vogel

TUM-19921
Dezember 99

TECHNISCHE UNIVERSITAT MUNCHEN

TUM-INFO-12-19921-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©1999

Druck: Institut f ur Informatik der
Technischen Universit at Munchen

Work Products for Integrated Software Development®

Bernhard Deifel, Wolfgang Schwerin, Sascha Vogel

Institut fir Informatik
Technische Universitat Miinchen
Arcisstralle 21
80290 Miinchen, Germany
(deifel|schwerin|vogels)@in.tum.de

Abstract:

Integration of development processes for different kinds of systems, such as information and
embedded systems is an important topic when we build software systems for application domains that
are strongly integrated. Besides that, different project views, such as development and management
must also be well integrated in process models. In this paper we propose a work product oriented
basis for integrated process models. We define a model of work product, covering and integrating the
fields of requirements engineering, architectural design and project management.

Keywords. Process Modeling, Product Model, Requirements Engineering, Design, Project
Management

! This work is supported by the Bayerische Forschsiiftisng within the FORSOFT research consortium

1 INTRODUCTION

2 PRODUCT MODEL ELEMENTS
3 DECISION-ORIENTATION

4 REQUIREMENTSENGINEERING

5 MODEL ELEMENTSFOR REQUIREMENTSENGINEERING

5.1 SIAKEHOLDER

5.2 REQUIREMENT AND REFINEMENT

5.3 DoMAINMODEL

5.4 ASSIGNMENT, SELECTION AND REQUIREMENTSSPECIFICATION

6 ARCHITECTURAL DESIGN

7 MODEL ELEMENTSFOR ARCHITECTURAL DESIGN

7.1 ARCHITECTURALALTERNATIVE

7.2 ARCHITECTUREEVALUATIONS WITH RESPECT TONONFUNCTIONAL REQUIREMENTS
7.3 DESIGNRATIONALE

7.4 ARCHITECTURALSTYLE

7.5 SOFTWAREARCHITECTURE

7.6 ARCHITECTUREDESCRIPTION

8 PROJECT MANAGEMENT

9 MODEL ELEMENTSFOR PROJECT MANAGEMENT

9.1 THE PROJECTFRAME
9.2 SrSTEM- AND PROJECTDECOMPOSITION
9.3 SCHEDULING THE PROJECT

10 COMPREHENSIVE DEPENDENCIES
11 CONCLUSION AND OUTLOOK

12 REFERENCES

13
17

21

22

23
25
25
26
27
28

31

32

33
35
39

46

47

1 Introduction

With the increasing complexity of software systems and hence of developroeesses, modeling of
software development processes becomes more and more important afidsuedeiution similar to
the evolution of notations. Regarding for example the UML [RJB99] anstandardization by the
OMG, we recognize that strong efforts are made concerning #gramion of different complement-
ing notations. In the field of development processes integrationaguaily important issue. In gen-
eral and especially in the interdisciplinary FORSOFT research aiomewhich consists not only of
computer scientists and researchers from mechanical andagketrgineering, but also of economy
experts and practitioners from leading companies in each of thesdidtils, we observe that
software systems are increasingly applied in application domeliich strongly relate different
domain spaces. For example, nowadays enterprise logistics and accpanéadosely coupled with
software based control of production machines (PCL controls). Due to thisderteous character of
software systems, we have to integrate specific development proceds liedthe ones for business
software and of embedded systems.

Equally important is the integration of different parts of developgrpeocesses, for example the dif-
ferent management tasks such as project and configuration mamageintle development tasks,
such as requirements engineering and design.

Integration usually increases a model’'s complexity. In order to geatiee complexity of integrated
process models we separate the description of work products, #llainiermediate and end results
of the development process, from the description of development iastighd strategies. This
separation has for example been applied in [BLR+95, IABG97, LT96, JBR98, Kriui@gfe,
relationships and dependencies between work products are only coverieitlyniplthe description
of development activities. Compared to this, in further approachesJ4®B Jeus92, RRP99]
relationships and dependencies between work products are modeled gxgdieitbments of a model
for work products.

Models of work products which state product relationships and dependencies expimidgse com-
prehensibility by providing us an integrated view of development psesewithout having to con-
sider both, work products and development activities. Based on thisaiteggvork product view we
then can define development activities and strategies, whichctegpationships and dependencies
between work products.

Relationships and dependencies between work products are also importpracess integration,
because they allow us to relate work products from different alewint tasks and application do-
mains explicitly. For example, we can relate “results” fromgubmanagement with “requirements”
and “architectural elements” from requirements engineering and design tiedpec

In this paper, we propose a model of work products which provides theftwiaie integration of

development processes for different application areas and for égeation of different development
tasks. Thereby we consider topical questions, such as the relatibesigen functional and non-
functional requirements with design decisions, and the association nafgeraent views with re-
quirements and design views. This means, that we focus on requiraangirieering, architectural
design, and project management.

Regarding requirements engineering and architectural design, wiedi¢éz apply a decision-oriented
approach, covering negotiation and selection of requirements and atohitedternatives. Thereby
we related

ideas of refinement hierarchies from goal-based requirementseenigig [LW98, MCY99]
with a decision-oriented process view known for example from [RG®dlaamodel for cap-
turing agreement knowledge as presented in [Pohl96],

architectural styles [SG96] with decision-oriented design, and
project management not only with tasks and system architecture but also witarmesis.

We define the product model detailed and in a schematic way, st phatides directly a structure
for project participants in which they can write down and collecrimétion. Therefore, the product
model can serve for example as a metamodel for CASE tools.

We structure the rest of this paper as follows:

In Section 2 we introduce the building blocks of a product model in geffdranh, in Section 3 we
describe the principle of decision-orientation, which we apply in the prodogels for requirements
engineering and design. Within the subsequent three sections we explain aspects @noduotk of
requirements engineering, design, and project management, respeétitesivards we integrate the
three tasks and focus on comprehensive dependencies between thegrogoidts. The last section
concludes our work and gives an outlook on future work.

2 Product Model Elements

Before we introduce the product models for the three aforementiorkesg waes explain how we char-
acterize product models.

In general, a product model consists of a set of product types atidnstip types characterizing
relations between products and product types. With respect to relgti®rsttiveen products, we
distinguish association, aggregation, and dependency. Additionally, we petaluct types by a gen-
eralization/specialization relationship, so that we structuredhef product types hierarchically. The
definition of a product type covers its attributes, its parts andeipendencies. Each product type can
be identified by its unique name and shorthand. For each product type wdepitsvpurpose and
description.

In order to represent and structure the information covered by a preduobtproduct type defines
attributes. We model “elementary” product properties by untypedhatts. A certain product (in-

stance of a product type) and its state during the development pavedbs&n determined by the ac-
tual attribute values. An example of an attribute is the “stabfisi requirement, which is either
“under_negotiation” or “agreed”. A constraint for the “contract” produetld then demand that only
those requirements may be part of the contract whose status is agreed.

As already mentioned above, we define the following relationships between products:
association,
aggregation, and
dependency.

We use assaociations in the sense of relationships in Entityititelaip models. Hence, associations
represent a certain information on their own. We can ask questionsasughich products play a
certain role within a certain association. For simplicity, we argly binary associations. Furthermore,
we restrict ourselves to undirected associations because dedigssociations are often related with
the notion of navigability, which is not relevant in the context of oadpect model. An example of
an association is the relationship between stakeholder and requir@iisnassociation documents
information about which requirement is required by which stakeholders.

In addition to association, we use aggregation. With aggregati@pplg the principles of grouping
and hierarchical structuring of products. An aggregating product, whighwill also call a
“container” in the following, can serve us for introducing a ternt #tands for the group of
aggregated products, which we will also call “parts” in theofeihg. For example, we introduce the
term “domain model” standing for “domain data view” and “domain provess”. Note however
that we assume aggregation not to express mere grouping, buthigaiastructuring of products on
an instance level. Therefore aggregation implies a partial andethe instance level. This is an
important difference from association. In contrast to other approaalgeslo not relate lifetime
dependency, visibility restrictions or exclusivity with aggrematbecause of these aspects being not
of primary concern for our product model.

Besides aggregation and association, we define dependency relatidmstwpeen products. A de-
pendency relationship is always directed, either uni- or bidirechjoraldependency relationship
expresses the fact, that the state of a product, that isritaitgtvalues, is dependent on the state of
other products. This means, that when a product is dependent on another produtiatiges of the
latter can imply changes of the former. We use informal texthidescription ohow attribute val-
ues of products are (functionally) related. For example, we couls tsiat the priority of a require-
ment has to be the average of the priorities of the requiringlsiflders. Note that, whereas
instantiations of aggregations and associations generally varytiove and between product model
instances, by means of dependencies we define invariant propertes miist hold for all product
model instances.

Finally, we define a generalization/specialization hierarchy on pragoes. We use it in the sense of
an ,is-kind-of* relationship which implies, that a product type being $pecialization of other
product types, "inherits" the attributes from the more generas tgpavell as the roles the more gen-
eral types play in relationships.

By means of generalization relationships between work product wyeelsave the possibility to de-
fine and relate generic work products, which we can refine to dospeicific elements. Thereby,
integration on the generic level of abstraction is relevanalfadomain specific specializations. For
example, management is mainly based on an abstract nontechnicadfvéesystem's architecture,
consisting of hierarchically structured architectural eleméfftsether these elements are refined to
objects in an object-oriented sense or to pipes and filters (cBg$& not important from the
management point of view. Therefore, for an integrated view on reareag and architectural design
we relate work products for management, such as project resiilisthese generic, hierarchically
structured architectural elements. Thereby integration of mamageand architecture remains valid
for specific specializations of architectural elements.

For graphical illustration of product types and their relationshipsefes to the syntax of UML class
diagrams, exemplified in Figure 1.

{the priority of a requirement is equal to the
average of the priorities of the requesting stakehs}der

,F—————m——

v . t v
Stakeholder eques Requirement
T T ﬂOR_Refinement
SystemRequirement DevelopmentRequirement

Figure 1: Exemplary class diagram defining product types and rel ationships.

Besides graphical class diagrams we use schemata in artstyldafor detailed description of the
elements of a product model. These schemata are given below.

Product type The name of the product type.

Description Explanation of the information covered by instances of this product type.

Purpose Explanation of the methodological function and significance of the product
type.

Attributes Explanation of “elementary” product properties.

Aggregations Explanation of the aggregations in which instances oftyibé play the

aggregating role.

Dependencies

\" 1)

Explanation if and how attribute values of instances ofpotitierct types
depend on attribute values of this type’s instances.

Scheme for product types, including sections for aggregations and dependencies

Association type

The name of the association type.

Description Explanation of the information covered by an association of this type.

Purpose Explanation of the methodological function and significance of
association type.

Attributes Explanation of “elementary” association properties.

Scheme for association types

the

In order to support document and change management, and verion control,nedldefany product
and association type has the following attributes:

productname, i.e. the name of an instance, e.g. System1_RequirementsSpecification
id, that is a unique instance identifier

creator, i.e. the project participant who created the product

date_of_creation, i.e. when the product was created

change_log, i.e. which changes have been applied on the product

version_nr, i.e. identifier of the actual version

status, exemplary values are "existent" and "under_negotiation".

3 Decision-Orientation

When developing systems, we continuously have to take decisions.dRggeequirements engi-
neering, we have to decide which requirements of the set okdli@guirements are to be realized.
Besides that, when designing a systeanchitecture, we have to take decisions in the sense of sele
tion of adequate architectural alternatives. A decision-orientad oh the development process leads
us to work products which support taking and documentation of decisions.Hdbthis view on the
development process does not imply a timely order in the sense)ltldacisions have to be taken
before succeeding with development steps in which we produce resuoljsrélated with the deci-
sions. For example, requirements need not necessarily be selecsbefstart with architectural
design. The work products that we derived from the decision-orientedsgroiew merely provide us
with information structures to document decisions, independently from wWisse tdecisions are
taken in process enactment.

Generally decision-oriented approaches consist of the following basic elements:
Alternatives: For a given problem space different possible solutions are defined.

Decision criteria: The problem space has to be evaluated with respect to diféeitenta which pro-
vide objectives for the selection of one of these alternativesllysiua alternatives fulfill the criteria
in different levels. In order to be able to compare the alteesmtiith respect to the fulfillment of a
criterion some kind of metrics for each criterion has to be difilternatively the different alterna-
tives can be compared mutually with respect to the fulfillment of a criterion.

Classification with respect to decision criteria: Each alternative issifeed with respect to the ful-
fillment of the different criteria.

Rationale: The rationale for the selection of an optimal solution is definedtits purpose usually
the decision criteria are weighted mutually.

Solution: From the given alternatives the best one with respect tgivba rationale is selected. This
represents the decision solution.

In Sections 5 and 7 we assign concrete work product types to the basic elements mertianed a

4 Requirements Engineering

In requirements engineering we try to achieve a correct understanding of deketeads, so that we
can specify a validated, consistent and complete set of requie(@éntohl96, Dei98b]). Require-
ments refer to the software system that has to be developeddifieth, and to the development
process.

Usually different stakeholders with different viewpoints and diffié needs are involved in a project.
Moreover, we have to consider a variety of development methods, iprogrg techniques, software
platforms, available frameworks and components etc. in a developnuesiss. This leads us to the
elicitation of alternative requirements which have to be documented.

Multiple and possibly conflicting viewpoints as well as conflisttween needs and constraints force
us to strive for an acceptable rather than a maximal or opsiohafion. This means, that we have to
negotiate, prioritize and select (alternative) requirementsteldre, besides the documentation of
alternatives, the documentation and justification of decisions isnpaoriant task. Thereby we can

enhance traceability of requirements which in turn leads to ar hettierstanding of intentions and

supports change management, for example. It is here, where decision-orientatiomtoplay.

According to the fact that we usually elicit, negotiate, chamgkspecify requirements at different
stages of a development process, we consider requirementseegrdifevels of detail and more or
less structured. When we relate these different levels weagdierarchical structuring of
requirements. By that means we improve comprehensibility and traceability.

In a project, we must not only determine "what" we have to develomldmuthe way "how" we de-
velop it. Consequently, we must consider requirements for the systéen developed, as well as
requirements for the development process. System requiremerds retatired functional and
nonfunctional system properties. Development requirements concern @epérivork products and
development activities. Often requirements of these two kindslasely related. For example, high
safety requirements may require usage of formal methods and notations.

A software system is supposed to play a certain role in an apgficdomain, by providing certain
domain functionality. Examples for application domains are banking arocawrol. Explicit modeling
and documentation of domain knowledge helps us to get a good understandisysiainas domain
context and to describe domain specific requirements adequately. Bdsadewe can thereby de-
scribe how a system is embedded in its environment.

5 Model Elements for Requirements Engineering

With the product structure given below, we provide a basis to cbheexforementioned information.
The product structure enables us not only to document the final restdiguiiements engineering in
one document, usually called a requirements specification, but we docaiseimtermediate results
and taken decisions.

]

i Planning

] [
i ProjectGoal: [P SoftwareArchitecture!

h ! |

|

1

|

1

v v

Stakeholder
_Descnpnan_qlq_t Assi t
Reqle equwement ssignmen

f"""""""l
DomainView OR RjinemeM T T AND_refinement i ProjectContext!

|

| DevelopmemRequireme+

DomainReference.

SystemRequiremen

| FunctionaIRequiremen| | NonFunctionaIRequiremenF

Figure 2: Product structure for requirements engineering

In Figure 2 we describe the product structure for requirements enigigeyraphically. The product
typesWorkBreakDown, ProjectGoal andProjectContext are explained in detail in Section 9, product
type System Architecture is explained in Section 5. In Section 10 we treat the dependendgmnelat
shipsRealization andPlanning.

For requirements engineering we assume work products oPtgpectGoals andProjectContext (cf.
Section 9) to be given. Based on this information we identify ratestakeholders, gather knowledge
about related application domains and elicit requirements for the envisioned apstei@velopment.

5.1 Stakeholder

We elicit domain knowledge and requirements from identified stater®lStakeholders have needs
and constraints, that is they request requirements. Apart from teguesquirements they describe
requirements or certain aspects of them. For example, a poterdiamsuser can describe user-
system interaction for a functional requirement, which is requebtedanother stakeholder.
Stakeholders can agree or not with a certain requirement. Weholdsthis information for negotia-
tion and decision purposes.

Product type Stakeholder
Description A stakeholder stands for a person or organization or a group of
persons/organizations, who have some kind of justified interest in the
system to be developed.
Stakeholders can request, describe and agree with requirements.
Purpose Associating stakeholders with requirements (agreementiptiesc re-
guest) is a prerequisite for negotiation and validation of requirements.
Attributes Importance: informs us about how important it is to resphet
stakeholders point of view, for example when we select an alternative,
Aggregations -

Dependencies

5.2 Requirement and Refinement

A requirement expresses a certain quality or capability ofseesyor a development process. We
need the concepRequirement because requirements are the units of information which we define,
refine, negotiate and select in requirements engineering. Requoireargineering methods are based

on this concept.

We classify requirements accordingly to what they determine (cf. [KS98, LK95])

» System requirements determine what functionality a systentohpsovide (functional require-
ments) and qualities of how this functionality is to be provided (nonfunctional requiréments

» Development requirements do not determine what we develop but how elegéy that is the
development process.

We structure requirements hierarchically by means of OR- anD-#inement aggregations (cf.
[LW98, MCY99]). This allows us to express explicitly

alternatives and what they have in common (OR-refinement),

how different requirements contribute to a more general requirement (ANi2+rednt),

requirements at different levels of detail (AND-refinement).

OR-refinements represent points of negotiation and decision.

AND-refinements enhance comprehensibility and traceability batingl requirements at different
levels of detail and showing the parts of which composite requirements are made up.

Product type

Requirement

Description

During development we state requirements in a moes®retailed an
structured way. Especially in early stages of developmentguireenent

may cover and relate several kinds of requirements, e.g. regumtgicon;

cerning the envisioned system as well as the development process.

Example: Develop a safe and secure break control system arteuselL
[RIB99] for the design specification.

The product typdRequirement allows us to cover this integral kind of
formation which can be related with more detailed and structureesesp
tations (see AND- and OR-Refinement aggregations).

Purpose

A requirement can be the impetus for further refinementsta€enbility]
reasons we must be able to document such initial information.

By means of the OR- and AND-Refinement aggregatioReguirement

o

product helps us to structure requirements. We can base the negotiation

task on the aggregation of alternatives (OR-Refinement). TR®-A

Refinement allows us to state explicitly to which integral nemuents
certain sub-requirements contribute. Thereby we can support traiye

abili

and multiview-oriented requirement description. We can base congistenc

analysis on this aggregation.

Attributes

DescriptionStyle: Classification dimensions for the desongiyle are:

-operational vs. declarative

-exemplary vs. complete (e.g. a scenario can be interpretedeaf s

some or ofall possible actor interactions)

-positive vs. negative (e.g. scenario which has to be supported v
which has to be excluded)

-formal vs. informal (with respect to syntax and semantics).

Stability: Probability of change. Relevant e.g. for the desigh mispect t(
flexibility.

Priority: Importance, which can be relevant for or result of negotiation.

S. one

Aggregations AND_Refinement: Aggregation of all requirementd twntribute tg
satisfy the aggregating requirement. This means, that wethaagisfy all
sub-requirements to satisfy the whole. Aggregated requiremergs aoly
some aspects of the aggregating requirement.

OR_Refinement: Aggregation of alternative refinements. Tlaans, that
satisfying one of the refined requirements is sufficient forsttesfactiorn
of the superposed requirement. Nevertheless, multiple alternativebe
chosen to be realized. We may then distribute alternatives dferedt
versions of a system or provide possibilities for configuration.

If a requirement is refined, then it is either OR refined oDAMNfined, but
not both at a time.

We do not define any constraints on refinement with respect toabsifé!
cation hierarchy of requirements. However in some cases thist oy
justified, e.g. a functional requirement must not be refined by a nonfunc-

tional one.
Dependencies -
Product type SystemRequirement
Description A system requirement is a condition or capability gt be met or pos-

sessed by a system to satisfy stakeholder needs, a constaidard or a
specification. (cf. IEEE standard IEEE-610.12, 1991).

Similar to a general requirement, a system requirement mar and re
late several kinds of requirements, e.g. functional as well asimctidgnal
ones.

Example: The system requirement, that a system has to suppottasata
fers between remote branches in a secure and efficient wayinsofutac-
tional as well as nonfunctional information.

Purpose This product type allows us to document requirements on a sykiem,
comprise functional as well as nonfunctional aspects.

Attributes -

Aggregations -

Dependencies -

10

Product type FunctionalRequirement

Description A functional requirement describes a service, thaedsired by some
stakeholders to be provided by the system. Example: The systeto has
support data transfer between branches.
A functional requirement usually comprises information about which parts
of the domain world have to be represented in a system, which domain
processes must be supported by the system, and how user-system |intera
tion has to look like (including information about work sharing between
system and user).

Purpose Functional requirements determine the purpose of a system, thatas’ fw
a system has to do, and the relationship between the domain world and the
system.

Attributes -

Aggregations -

Dependencies -

Product type NonFunctionalRequirement

Description A nonfunctional requirement represents stakeholder needs, concerning the
system, which are qualities of the system in general or of icesther
requirements.
Examples:
The system has to be secure and safe.
The "look and feel" of GUI elements must meet a certain standard.

Purpose A nonfunctional requirement guides or constrains the architecture or the
implementation of a system. Thereby, it has influence on “how” system
functionality is realized.

11

Attributes

DescriptionStyle: A design constraint is either foatad in a constructive
or declarative style.

Constructive style means that a requirement defines a parsystam ar
chitecture or a system implementation, respectively. Consteuctiguire-

ments have therefore to be integrated (by composition) in a system

architecture or implementation. Example: Use a certain GUI ito¢ik

order to provide a standard compliant look and feel and to achieve ataxim

reuse within an enterprise).

Declarative requirements define nonfunctional qualities of a systdrowtit
already defining part of an architecture or implementation. Detlel
requirements have therefore not to be integrated in an architectime

plementation, but to be respected when taking design decisions. Examples:
“Provide a standard compliant GUI look and feel”. "Strive for high runtime

efficiency.” The former may influence the choice of a GUI tdplkhereas
the latter can be relevant for selecting an appropriate satgogithm, for
example.

Classification: Enumeration-type. Describes the different posgibbeili-
arities for a given nonfunctional requirement and their meaning. [aksi-¢
fication of a nonfunctional requirement is important for the evaluaifon
architectural alternatives and architectural styles.

Aggregations

Dependencies

12

Product type DevelopmentRequirement

Description A development requirement represents a guideline or constraint on “how” a
system is to be developed or described. A development requirement refers
either to development activities or work products.

Examples: Documentation guidelines and standards, development tech-
niques, engineering principles, time and cost constraints.

Example for a requirement on a work product:

In order to ensure properties of a requirements specification comgeie
representation of requirements, stakeholder agreement on requirements,
and completeness of the description of requirements, we could for example
define: Functional requirements contained in the requirements spé#oific
have to be formulated by means of UML activity, class and sequence dia-
grams (representation). All stakeholders, which have requestedaén cert

requirement must agree with chosen alternatives (agreemenégr&king
stakeholders that are also users must have defined an accordingelse ca
(completeness).

Example for a requirement on a development activity:

For coding, use a certain CASE-Tool and its code-generation facgifie
far as possible.

Purpose Development requirements determine characteristics of develo@ment
tivities and work products.

For example, assignment of development techniques, strategies and nota-
tions to activities and work products (cf. method allocation of the V-Modell
[IABG97]) can be expressed in terms of development requirements.

Attributes -

Aggregations -

Dependencies -

5.3 DomainModel

Besides and in combination with requirements we also elicit knowlatdgut a system’s application
domain from stakeholders. We abstract from unimportant details andl meldgant domain
knowledge explicitly. Usually we will describe a domain model frdifferent points of view, for
example a structure-oriented and a process- and information-flowentigigw. Languages, such as
the UML provide possible notations for the representation of these views.

We cover the fact, that requirements are related with eleneérda domain model by a dependency
relationship. For example. when a requirement expresses that ia dertzin process is to be sup-
ported by the system, then this requirement is dependent on the accndiam process, on user-
system-interaction descriptions for this process and on domain séisidieing relevant for this
process.

System requirements may not be requested directly by stakehdddederived from analysis of the

13

according application domain. For example, when a stakeholder wishes a certainfiog®ss to be

supported by a software system, this constitutes a functional negumiteA domain model may con-
tain time limits for the execution duration of this process, for @kamue to physical or contractual
demands. From this domain knowledge we then derive an appropriate perderrequirement. This
means, that on the one hand we derive functional as well as honfunctional sygteemrents from a

domain model. On the other hand we express system requirementsstermomain model. In any
way, system requirements are dependent on domain knowledge.

Product type

Domain Model

Description

A domain model is an abstraction of the real world covering do

main

knowledge that is relevant for system development. In a domain model we

state knowledge of an application domain explicitly. When we assig
main elements to a system, e.g. certain domain processes that lzef
supported by a system, we cover information about the environ
system border, too.

n do-
e
ment-

We model the domain world independently from aspects concerning their

technical implementation in a system.

Purpose

Explicit modeling of an application domain increases understanding f
domain context of a system.

Moreover, a domain model serves as a reference for the reprieseofa

or the

—t

domain elements, such as business processes and domain data, in a

software system.

Besides that, a domain model describes the work-partitioning between a

system and its environment (environment-system border).

Attributes

Aggregations

A domain model serves as a container for differ@mwswon an applicatio
domain. Examples for such views are static structure and process vie

=]

Dependencies

Dependency “DomainReference™

A DomainReference dependency describes which domain elements are

referenced in a given requirement and therefore determine aamguit's
properties. For example, when a domain process changes then the
ments for a system which supports this process change accordingly.

A DomainReference dependency makes the relationship between an ¢
cation domain and a system explicit. It serves as an explanatigosaifid

cation of required system properties. We can thereby trace chiantjes

application domain to system properties.

14

require-

appli-

Product type

Domain View

Description A domain view covers certain aspects of a domain model.

Purpose By means of domain views we can describe different aspects of @rdom
model separately. Thereby we can divide a complex whole, the model, into
less complex parts, the views. This helps us to increase comprelignsibi
of the whole domain model.

Attributes -

Aggregations -

Dependencies

In the following we give an example of how a domain model could be cochpblse composition of
a domain model is usually dependent on the according application domainssWfeeathe three
views, illustrated in Figure 3 , to be suitable for informatiortesys. They may have to be altered
and/or other views may have to be added when we want to modeVeeactibedded and real-time

systems.

DomainModel

B

DomainStructureView

Contributio

DomainProcessView

Figure 3: Exemplary composition of a domain model

15

Product type

DomainStructureView

Description

In a domain structure view we describe the static structure of amcappti

domain’s elements, and their static relationships. We do not cover behav-
ioral aspects. By elements we think of real world objects, e.g. a coin, or real
world concepts (virtual objects), e.g. a bank account, or actors, e.g. a bank

clerk or an ATM (automated teller machine).

Examples for static aspects are state space descriptionsnoénts, and
compositional (whole-part) as well as association relationshipsebat

elements.

A structure view may be represented by class diagrams (cf. [JBR98]).

Purpose

By abstraction from behavioral aspects, a domain structure view provides

us an overview about terms of an application domain, their stati¢usguc

and relationships.

Prerequisites for behavioral descriptions are defined here. For exaing
types of objects, which are changed when processes are enacted,
fined in a structure view.

Attributes

)
are de-

Aggregations

Dependencies

16

Product type

DomainProcessView

Description

A domain process view is a process-oriented view on the domain
Enactment of a process changes states of domain objects. Proares
enacted by optionally assigned actors. An actor is a person or a
taking an “active” part in the enactment of a domain process, e.g. @
customer in the process of a money transfer. The system to be devsl
a specific actor. Within a process model we also define thedfabjects
between processes, which introduces a (causal) order on processe
esses can be hierarchically decomposed.

Variants of domain process views differ with respect to further assum
on process properties, such as isolation and atomicity. Widely used g
views for business domains can for example be found in [VB96].

world.
5Ses
system
1 bank
oped

s. Proc

ptions
rocess

A process view may for example be represented by petri-nets wityacti

diagrams (cf. [JBR98]).

Purpose

A domain process view provides information about domain functionality.

When functional requirements require the support of a domain proces
system, the according domain process view has to be respected. The

has to represent related domain objects, and establish object filowewi

lated actors by means of adequate system-interfaces.

With assigning a system as an actor to certain domain processesfime:

one aspect of the system-environment border.

Attributes

Aggregations

Dependencies

Association type

Contribution

Description A Contribution association states which domain elements contribute
domain process, either as actors or input/output elements.

Purpose This kind of association contributes to the integration of structurepaod
Cess view.

Attributes -

5.4 Assignment, Selection and RequirementsSpecification

3S by a

D

system

to a

In order to express constraints on requirements, we assign requsetoenther requirements.
Thereby we can describe for example which nonfunctional requirementslavant for which func-

tional requirements.

The assignment relationship

is particularly important for theectieh from alternatives.

Requirements assigned to the root of alternatives represenieguetijuested from all alternatives.

17

Therefore these assigned requirements represent the critenibicn we base our selection of the
most suitable alternatives. We prioritize these criterimdétessary and evaluate all alternatives
mutually and with respect to them. For each selection we requasionale, which explains and
justifies this evaluation. In Table 1 we assigh model elememtsefjuirements engineering to the
basic elements of decision-orientation (cf. Section 3).

Decision Element Product Model Element

Alternatives OR-Refinement aggregation of work product type
Requirement

Decision criteria Association typ€riteria between work product
type Selection andRequirement

Classification contained in AttributRationale of work product
type Selection

Rationale Attribute Rationale of work product typeSelec-
tion

Solution AssociationSelRequ betweenSelection and Re-
quirement

Table 1: Decision elements and related model elements for requirements engineering

A requirements specification defines those requirements that tvdneemet by a system. Usually we
demand certain properties of a requirements specification, e.dutftdibnal requirements are for-
mulated in a certain style, and a certain degree of stakeledeement on the contained require-
ments. These properties are themselves requirements, namdbpdea requirements assigned to a
requirements specification product. We understand these propertied af tha criteria for the se-
lection of alternatives.

Association type Assignment

Description Requirements can express required qualities of other requirements. An
Assignment association expresses which requirements state qualities (role
Quality) of which other requirements (rolbjective).

Example: For some functional requirements high runtime efficien@/ is
requested quality, whereas for others it is storage efficiency.

Purpose An Assignment association covers important traceability information, sup-
porting change management.

By means of arssignment association, we can express relationships be-
tween different kinds of requirements, e.g. the assignment of nonfungtional
requirements to functional ones.

Attributes -

18

Product type Selection

Description A selection describes which alternatives (ORieefients) of a given re
guirement (SelectionSpace) are most suitable with respect rtaince
criteria. A rationale explains and justifies a selection.

D
]

A selection may comprise not only one but several alternativies. i3]
admissible and sensible especially in combination with the distibwti
alternatives over different variants or versions of a system.

Purpose Selections document decisions that we take. They thereby tesedudil-
ity.
Attributes Rationale: Explains and justifies the evaluation of SelectioeSpaments.

All regarded alternatives are evaluated with respect to the saewacrénd
relative to each other.

3%

Aggregations SelectionSpace: Requirement whose alternativesrefldDBments) we
consider.

Criteria: Covers those requirements, according to which allexlenof a
SelectionSpace are mutually evaluated. Criteria can be prioritized.

SelRequ: Covers those elements of a SelectionSpace, thanhrated tg
be the most suitable with respect to Criteria.

Dependencies The criteria on which we base our selection (Criéeedhe requirements
that are assigned to the requirement (SelectionSpace) from atese
tives we determine the selection, as well as development eatprits as-
signed to a requirements specification.

Dependency “Content”. Only selected requirements can be elemeats of
requirements specification.

19

Product type RequirementsSpecification

Description A requirements specification contains all and only those system eequir

ments, that have to be met by an envisioned system. This means, that all
and only those system requirements are contained, which are|either
choices of alternatives (OR-Refinement), or AND-refinementshafser
requirements, or requirements assigned to one of the former kind. Thereby,
a requirements specification represents the result of negotiatidn a

selection of requirements.

There exists only one requirements specification per project. Yesratt
versions of this product can exist.

Purpose As part of a contract, a requirements specification lays down ezgeitts
that have to be met by a system.

As part of a documentation, a requirements specification containe-the
guirements met by a system, from stakeholders point of view.

Consequently, the evaluation and selection of architectural alternadsres
well as the structuring of parts of a work break down are relatidtie
constituent requirements of a requirements specification.

Attributes -

Aggregations -

Dependencies Dependency “RSCriteria”; Development requiremerignessto a re
quirements specification define criteria for selections.

In the example illustrated in Figure 4 and represented as an dlggram (cf. [RIB99]), we show a
product structure documenting the selection of a requirement fromatites. In this example the
functional requirement, that the envisioned system has to be configusatgdfined by the require-
ments, that an according configuration logic and configuration inteff@se to be provided.
Stakeholders are administrator and end user, who both request diffeatities of the configuration
interface. The administrator wants remote configuration based iptsscr be supported, whereas the
end user puts emphasis on an intuitive and guided usage. Two alterf@titiee configuration inter-
face are a graphical or an ASCIl-based interface. Both would eet the requirements of adminis-
trator and end user. We defined a third alternative, requiringhtbaylstem must provide a graphical
interface per default and a ASCIl-based interface on demand. Mdnisative is selected because of
meeting both the administrators as well as the end users demands.

20

ConfigurableSystem:
FunctionalRequiremen

ANB\

Administrator:Stakeholder

medium priority

Request

Possibility of remote
configuration by means of
scripts:
NonFunctionalRequirement

ssignement

ConfigurationLogic:
FunctionalRequiremen

FunctionalRequirement

SystemConfigurationinterface

EndUser:Stakeholder

high priority

Request—

__—

Guided and intuitive Usage|
NonFuntionalRequirement

GUI as default interface|
textual input as ascii file

GUL:

FunctionalRequiremen

on demand :
FunctionalRequirement

Ascii-based textual Interface
FunctionalRequirement

Selection

SelectionSpace

Criteria

Criteria

InterfaceSelectiorSelection

4A GUI is more intuitive than
a textual interface, but does
not support configuration

by means of textual scripts.
The choice enables both and
respects the higher importance
of end users." : Rationale

Figure 4: Exemplary product structure documenting the selection from alternatives

6 Architectural Design

We now introduce the part of the product model which documents architetgsigns of a system.
As mentioned in Section 3 this product model basically underlies theigdd of decision oriented

design.

Usually the possible number of alternatives is very large.eftwe the possible optimum alternative

often cannot be found due to time and cost restrictions. However theuctiost of alternatives in a
decision-oriented approach is supported by some heuristicgui@eines, frameworks or templates.

These represent principles which in history lead to good decisionatltes and therefore also sup-
port the derivation of new alternatives. We add these elemetiie tzasic elements of decision-ori-

ented approaches of Section 3. In the following product model for archéedesign we define a

product type for each of the elements of decision-orientation. Talblewksshe mapping between the
elements and the product types. The product types themselves wiiplaned in the succeeding

subsections.

21

Decision Element Design Product
Alternatives Architectural Alternatives
Decision criteria Nonfunctional Requirements
Classification ArchNFR Evaluation
Rationale Design Rationale

Solution Software Architecture
Guidelines, frameworks or templates Architectural style

Table 2: Decision elements and related model elements for architectural design

In literature (cf. [SG96, IABG97, JGJ97]) the most common understanding of softwhiteeure is,
that it represents a hierarchical decomposition of a softwatersyinto subsystems. Each of these
subsystems defines some unit of the software system and isomtected via interfaces to other
components by predefined communication mechanisms. Despite this commoriamaitegsusually
these terms are used in very different contexts. A new approadiotteedefined a formal model
basing on FOCUS (cf. [BS]) to get a precise understanding of these technisa{defiBRS+99]).

Most commonly software architectures aim at the fulfillmenfuofctional requirements with respect
to certain nonfunctional requirements by using some general desigiplgsnior the decomposition
of the software system. In this context Boehm (cf. [SG96]) tab@ut an intermediate abstraction
between user needs and final system structure which helps us te thvédgap between user require-
ments and the software system. Others motivate the purposevadirgoétrchitectures by their support
for some pre-selected nonfunctional requirements (cf. [JGJ97])slikport development, mainte-
nance, reuse and evolution of a software system.

In our sense a software architecture consists of both the decompadithe system into its subsys-
tems as well as a mapping from applied design principles t@#udting subsystems. Design princi-
ples are described in our product model by architectural styleshwhicalso be described more
detailed in the succeeding section.

We should accentuate here that in our sense this mapping of an ditgavabstraction to the final
system structure is no sufficient motivation for the existen@esufftware architecture. For a decision
oriented design also the decision rationale and the corresponding deditgida, i.e. why a specific
design principle has been chosen, have to be documented as well.

7 Model Elements for Architectural Design

The architectural design part of the product model is shown in theadiagf Figure 5. Note that the
productsArchitectural Alternative, Software Architecture andArchitectural Style are software archi-

tectures in our sense and therefore can be described with ancauchigescription. However, they
are different in their role in the decision oriented design. Fdn eale different additional aggrega-
tions or associations are necessary for documenting the completentcarfit a product. To

demonstrate this difference we defined separate products.

22

Architectural Style

> > S
c
§e]
js!
S
3
e} Architectural Alternative
Q Q
o > par
14 %)
alternative

| ArchNFR Evaluation 7

&
IS
Iy
| Software Architecture) 'go
@
§
g
Q

al

| Architecture Description|

I

| Architecture Description Elemer{t

Figure 5: Product structure for architectural design

7.1 Architectural Alternative

The construction of architectural alternatives in the decisiomtededesign depends mainly on func-
tional requirements and experienced design principles like pattenmmynk algorithms etc.
Appropriate patterns for example are selected and instantiatedspétific requirements. Further
already existing system parts must be taken into account andyusadhice the possible space of
architectural alternatives. We assume that the final saétaarhitecture is a compaosition of architec-
tural alternatives.

Note that we do not assume that only requirements which have been nedtziedan be used for

the derivation of architectural alternatives. In a final solutfmwever, all functional requirements
that have been chosen to be realized in the requirements speexificaist also be realized in the
software architecture. The same applies to nonfunctional requirenheritis case, however, the
fulfillment of a requirement is not absolute. Different nonfunctioeguirements mutually influence
each other. Therefore in order to find a final design solution theaitf@onfunctional requirements
have to compromise.

23

Product

Architectural Alternative

Description

EachArchitectural Alternative describes an alternative for a part of a soft-

ware architecture which shall fulfill a subset of requiremegch funcs
tional requirement which shall be fulfilled by an architecturaraktive is

expressed by an association between the requirement and the ar@litectur

alternative.

For example communication between components can be fulfilled by dif-
ferent communication protocols. Each of these protocols represents|an ar

chitectural alternative. To indicate that the different protocgsasent the
same subset of requirements, they are aggregated eideamative-aggre-
gation to anArchitectural Alternative representing all requirements for
communication.

Purpose

Architectural Alternatives with their part- and alternative- aggregations
span a space of possible software architectures for a giveh fsetctional
requirements. EacArchitectural Alternative with aggregated alternatives
represents a part of the architecture where there is a podsdie. It sup
ports the selection of an optimal architecture with respectvendiunc-
tional and nonfunctional requirements.

Attributes

Aggregations

Instantiations of part- and alternative-aggregatiomsnutually exclusive.
An alternative cannot have alternative direct sons.

part: The actuafrchitectural Alternative is decomposed into several parts.
Functional requirements of the actdathitectural Alternative are distrib+
uted accordingly.

alternative: Each aggregat@dchitectural Alternative represents a possible
Architecture fulfilling the functional requirements of thactual

Architectural Alternative. The technical realization of the functional fre-
qguirements varies between the alternatives. Consequently also the

fulfillment of corresponding nonfunctional requirements is differently.

Architecture Description: describe the technical realization tloé
functional requirements.

ArchNFR Evaluation: aggregate&chNFR Evaluations with respect to
nonfunctional requirements which are relevant for the giweshitectural

Alternative. Relevant are all nonfunctional requirements which are general

to the whole software system and all requirements which aatedela
functional requirements which shall be realized within the givehitac-
tural alternative.

Dependencies

24

Association

ArchAltFunctionalReq

Description Describes the mapping of a functional requirement toAeshitectural
Alternative which shall realize it.

Purpose The association provides traceability of functional requirententheir
realization and backwards.

Attributes -

7.2 Architecture Evaluations with respect to Nonfunctional Requirements

To build an optimal software system functional as well as nonfunttieqairements have to be ful-
filled. Functional requirements can be implemented directly. Thédlght of pure nonfunctional
requirements, i.e. requirements which cannot be operationalized to fuhctiquaements, however,
has to be evaluated with respect to a given architecture. Thmwiftd product serves for
documenting this evaluation.

Product type ArchNFR Evaluation

Description The associated architecture is evaluated with respect toabsfiation of
the associateNonfunctional Requirement.

Purpose Provides a methodological and structured basis for documenting the (differ-
ences betweeArchitectural Alternatives.

Attributes Value: is undefined or a peculiarity of the clasdificain the associated
Nonfunctional Requirement. An undefined value means that the given
Architectural Alternative cannot be judged with respect to the given
nonfunctional requirement.

Aggregations -

Dependencies

Association type

ArchNFR

Description Maps arArchNFR Evaluation to aNonfunctional Reguirement.

Purpose The association shows whidtonfunctional Requirement has been evalu
ated by the giveArchNFR Evaluation.

Attributes -

7.3 Design Rationale

The design rationale is derived from combining nonfunctional requireraadtsveighting them with
respect to priorities of functional and nonfunctional requirements.

25

Product type Design Rationale
Description Describes the reasons for the selection ofSbfevare Architecture, why
this software architecture has been chosen. The design rationaeohage
prioritization of assigned functional and nonfunctional requirements.
Purpose The Design Rationale is especially important to document design decisions
to be able to assess impacts of future evolutions of the software system.
Attributes -
Aggregations -

Dependencies

Association type

DesignRatioNonfuncReq

Description Relates @esign Rationale to theNonfunctional Requirements which have
been taken into account for a specific architectural choice.

Purpose Assigns allNonfunctional Requirements to aDesign Rationale which have
been taken into account for an architectural decision.

Attributes -

Association type

DesignRatioFuncReq

Description Relates @esign Rationale to the functional requirements which have been
taken into account for a specific architectural choice.

Purpose Assigns allFunctional Requirements to a Design Rationale which have
been taken into account for an architectural decision.

Attributes -

7.4 Architectural Style

Architectural Styles represent experienced knowledge for goodtexithial design in history and
support the derivation of new architectures.

26

Product type

Architectural Style

Description

Description of a generic architecture, which is indepgnafea specifia
software system and of specific functional requirements. It septe ap
proved principles for architectural design. The parts ofAechitectural
Syle get specific roles. Each role fulfills a general taskamne predefine
general constraints within the design principle. Assigning the aflése

design principle to parts of the final software system can raakapping

between the final software system and an applied design principle.

=8

EachArchitectural Style can be pre-evaluated with respect to some general

nonfunctional requirementérchitectural Styles comprise different leve
of granularity starting at basic principles like modularizaijoh [Par72])
until to complex predefined application specific architectural framewor

For example the widely known Model-View-Controller-Style
[BMR+96]) consists of three predefined roles for parts of the softwthe
model, the view and the controller. In a final software systenrevtigs

style has been applied, parts can be identified which are contstdades

of these roles.

Purpose

Supports the construction ofrchitectural Alternatives and Software
Architectures. Holds experiences for a good design in an abstract de
tion.

Attributes

Informal Description: describes informally ideas andgipies which be
long to the given architectural style. Additionally, roles of cgpmnding
Architectural Description Elements are described.

Aggregations

Role: points tarchitectural Description Elements which are instances of

roles in the given style. Different style elements may Hdifferent roles
within the Architectural Style which may be described within the inforn
description of theéArchitectural Style. If an Architectural Style is used in &
concrete architecture a mapping must exist between all deyfeepts and
the Architectural Description Elements of the concrete architecture.

Style Description: describes the properties of the style elesnad an art

chitectural style

ArchNFR Evaluation: eachrchitectural Style can be judged with respe
to given general nonfunctional requirements. This shall support the
tion of architectural styles during the definition of the software architeq

S

ks.

cf.

scrip-

nal

&

ct
sele
tture

Dependencies

7.5 Software Archi

tecture

Product type Software Architecture

Description Concrete architecture of a software system. Represents the deicjg®n
of alternative architectures. Ti@ftware Architecture is the basis for a
further development steps.

Purpose Documents the complete concrete architecture and the rationale iehdt

27

to this decision.

Attributes

Aggregations

Consists of exactly oAechitecture Description and exactly ondesign
Rationale.

Architecture Description: description of tBeftware Architecture.
Design Rationale: rationale for tiseftware Architecture.

Architectural Alternative: selectedrchitectural Alternatives for the deri-
vation of a software architecture.

Dependencies

Association ArchFunctionalReq

Description Describes the mapping of &unctional Requirement to a Software
Architecture which shall realize it.

Purpose The association provides traceabilityrafictional Requirements to their
realization and backwards.

Attributes -

7.6 Architecture Description

Architectural alternatives, architectural styles and thd &ofiware architecture have to be described
in an appropriate way. For this purpose we defined the prodirctstecture Description and
Architectural Description Element. Architectural description elements may be refined in an adequate
way, like component, interface, connector, protocol, architectural style etc.

Our main purpose, in a first step however, is to describe only thedlationships between products
of requirements definition, project management and design. TherefuHiies to define only these

very general products.

Product type Architecture Description

Description The Architecture Description describes the constituents of a concrete
chitecture and their relationships.

Purpose Represents a typical description of a software architecture.

Attributes Informal description: describes the architecture informally.

Aggregations Consists of at least one aggregatekitectural Description Element.

2 ar-

Dependencies

28

Product type Architectural Description Element

Description Generic element of afrchitecture Description. Usually related to a great
variety of sub-types.

Purpose Describes a specific part of an architecture descriptionAshitectural
Description Element can be connected to project management activities

where units of work have to be defined for planning time and resources.
They are also the atomic units which may be assigned to roles defined
within the description of Architectural Styles.

Attributes -

Aggregations Depends on specific sub-type.

Dependencies -

Architectural Description Elemen

Component Connector Architectural Style Application

i ?
~
g

Interface

Comm Protocol

e

i Architectural Style i

Figure 6: Refinement of Architectural Description Elements

Figure 6 shows an example refinemenAothitectural Description Elements. We shortly sketch here
the basic ideas of these elements. The elements mainly base fommhal model for componentware
in [BRS+99]. The previously describefirchitectural Syle also is a subtype ofrchitectural
Description Elements.

Note that these refinements are only examplegifonitectural Description Elements. Depending on
the specific context subtypes can be added, deleted or exchanged.

29

Product type Component

Description Basic building blocks of a software architecture.

Purpose Provides the possibility to decompose software systems into separate
Attributes -

Aggregations part: €omponent can be decomposed in sub-components.

units.

interface: aComponent may have several interfaces which offer features to

their connected components.

Dependencies

Product type Interface

Description Describes functionality and features whichCamponent offers to other
Components.

Purpose To provide the information hiding principle, interfaces are used to separa
the internal technical implementation (glass-box) view from thermaite
feature (black-box view). The information hiding principle in general sup-
ports the independent development of different components of a software
system.

Attributes -

Aggregations -

Dependencies -

Product type Connector

Description A Connector connects twd&omponents via Interfaces. Especially it defines
in which way the components communicate.

Purpose A Connector provides every information which is needed to fully desgribe
the communication mechanism which underlies the communication be-
tween two interfaces.

Attributes Communication Parameters: defines parameters whickt adparameterj-
zable communication protocol.

Aggregations Communication Protocol: defines, which communication pro®aeded

Only oneCommunication Protocol can be aggregated to a connector.

Dependencies

30

Association type

InterfConn

the

Description Connects amnterface to a specificConnector. Interfaces may be connecte
to severalConnectors at once.

Purpose Interfaces can only be associated directlyGonnectors.

Attributes -

Product type Comm Protocol

Description A communication protocol describes a specific mechanism for
exchange of messages between communication partners.

Purpose To describe communication mechanisms independently from concrete con-
nections, communication protocols are described separately.

Attributes Protocol Description: Describes informally or formahg features of th
communication protocol.

Aggregations -

Dependencies

Product type Architectural Style Application

Description Maps Architectural Description Elements to Architectural Styles which
have been applied during the derivation of an architecture.

Purpose Documents the application &fchitectural Styles within an architecture. In
this way it enables traceability of applied principles for a deaighdocu
ments, how given nonfunctional design decisions have been fulfilled.

Attributes -

Aggregations Architectural Style: applied architectural styda Architectural Syle

Application can only be mapped to one architectural style.

Architectural Description Element: Assigns tAechitectural Description
Elements to the predefined roles of tiRechitectural Styles.

Dependencies

8 Project Management

This section describes the project management product model. Genprajéct management in-
cludes the activities project initialization, project planning, mtoontrolling and project ending.

This interpretation is increasingly insufficient, because the psagiew on project management is
not as flexible as needed especially for software developmenefbherwe suggest emphasizing on

31

the product model to determine only a project frame on which the process should be adapted.

Our project management product model covers all resulting produotggtiout the whole project.
We do not cover the prephase in which a customer selects thersofisveeloper or the phases after
the project such as maintenance. In this context, project managesmieft bases on the following
tasks:

e Considering the project frame: The project frame describes all restrictions and given fafcts
the project which can either not be influenced by the project respansiblehich have to be
negotiated with the customer and therefore are depending on his agreement. In Sectiomil9.1 we
illustrate which products determine the project frame.

» System and project decomposition: Complex software systems can be seen as a collection of
simpler units, i.e. subsystems, components or modules. Each of thessanries handled easier
than the whole system. Therefore it is important to graduallyleliend decompose the system
into smaller units until the overall project is getting manbtgeaGenerally, there are a lot of
methods for decomposition. However, we suggest a stepwise refinémngatatively provide
more detail. During this decomposition the producible elements canradietketo which finally
activities can be assigned. The result structure togethethwittelated activities defines the proj-
ect structure that is reflected within the work breakdown stractn Section 9.2 you will obtain
a detailed overview which products are needed to build up an adequate project structure.

» Scheduling the project: The project structure itself is not enough to plan and control thecproje
in order to reach all defined goals; it only simplifies the ptojdowever, to complete the project
within the given amount of time and resources it is indispensalgianoand schedule all neces-
sary activities and to estimate the needed effort, resoundesoats. Only by defining the activi-
ties realistically these conditions can be kept and the progttbe completed successfully.
Equally important is the strict compliance of the plan and schedtissis the responsibility of
the project manager. In Section 9.3 we describe all products andetflagions, which are neces-
sary to plan the project and thus enable a controlling and steering.

In the following we give an overview over all management prodwbish are required to success-
fully perform and complete the mentioned project tasks. In relatothis, we will continue
describing each product of the product structure according to the scheme introducedmzSecti

9 Model Elements for Project Management

In this section all project management products and their relatilussrated in Figure 7 are
described. According to the project management tasks mentionedgretheus section we describe
the products and their associations in detail in the following sections.

32

r-=—======== | D I
1 Project Goals% i Context !

_________ e e
< >
SN s
~ ’
~ i

A\ 4
_gl Statement Of Work |
- \

- \

e
| Work Breakdown Structure | | Project Developmerian _|

| Activity Schecule| | Resource Schedu|e| | Personnel deedule|

Result In % i <-------7 Development Reguirement
esults —t ctivities o, Lo Tl T T :
Decomposition Assignment| Decomposition

| Milestones andBaselines |

Figure 7: Description of all project management products and relations.

9.1 The Project Frame

Each project consists not only of influencable but also of given oriabpparts. Influencable parts
mean all project parameters which can be directly modified bgrtiject responsibles whereas nego-
tiable parts describe all results and activities which can lmaigodified if both the project responsi-
bles and the customer agree to them. Both parts strongly depend on thesprejant organizational
structure. In some cases for example people can be employed tesénttreamanpower whereas in
other cases this is a fix parameter for the project. Howesaeh, project should be aware of the static
parameters because they strongly influence the scope of actibis settion you will find all prod-
ucts which are connected to the project frame.

33

Product type

Project Goals

Description

This product shall define unambiguously the project goaly. i©rthis
way, it is achievable to reach a clearly defined end of thegirdjbe goa
definition results from the negotiation between the customer, the s
and the developer. We must take into account, that project goal$ohias
reachable, without conflicts, easy to examine, unambiguously and ad
to completely fulfill the customer’s requirements (cf. [Fib99]yojEct
goals can refer to contents, costs or schedules. An example of a proje
could be that the software system has to be developed according to a
process standard.

Purpose

Project goals are the criteria for evaluation of the success of & projeg

Attributes

External Responsible: The customer has to determinepanssble role

that can decide whether the project goals are adequate.

Aggregations

Dependencies

Statement of Work: The project goals are negotiatezehehe custome
the developer and the project management. They describe the ¢
agreement for the project end. These goals should be adequatedted:
and noted in the statement of work.

Product type

Project Context

Description

In this product all information concerning the project corigesummar

rized; that is all externally determined constraints for a ptojghese part
vary according to each specific project and company. Generallgrafect
context differs from nonfunctional requirements as it does not maefey
to issues concerning the system to be developed. Instead, it focuses

ganizational aspects to provide basic conditions which facilivetedalizar

tion of the project without conflicts.

An example could be the hardware infrastructure of a company. Wi
large project it is in most cases possible to directly inflaesrcadapt th

infrastructure to the project requirements. Especially in laaapanies

this can be done by shifting hardware units from one project to anoth
[ABD+99]). In opposite to this, the infrastructure is often a fix peater
for small companies where the budget is more restricted andtiagslais
described is not possible.

Purpose

The project context determines all unchangeable constrairfitavedd be

considered in order to adequately plan and perform the developmer
ect.

Attributes

Aggregations

Dependencies

Statement of Work: The project context determines she doaditions

such as available resources or the team composition. Thesetistf

ppli
e

equate

2ct goal
certain

r,
jeneral
>fle

[72)

r
> 0N

thin a

L]

D

t proj-

influence the general project scope. Therefore the binding resultacand

tivities in the statement of work have to be appropriately defiog

adapted.

34

Product type

Statement of Work

Description

The statement of work (SOW) describes the desvénd results required

by the customer and agreed to by the developer. The SOW is a formal
document which should be incorporated into the contract. The binding ver-

sion of the SOW is finalized during the contract negotiation. Thigiés
that there can be no binding work items that were informally uratetsor
agreed to verbally, which do not appear in the SOW. This condition id
tically prevents misunderstandings and disagreements later, after thet
begins.

An extract of a SOW could include the following results and ais:
requirements specification, architectural description, systemripiso,
software deliverables, training and testing, etc.

Generally, the structure and content of a SOW differs from ondage
ment project to another. For example not every project includes the dé
of hardware components, and not all projects require trainin
installation.

Purpose

The SOW is part of or at least the basis for the cobeteeen the cus
tomer and the developer. It describes all obliging main projentesits in
terms of results and activities that have to be performed oredsd, re-
spectively, to adequately fulfill the project goals.

Attributes

External Responsible: It is necessary for the custtondetermine a re
sponsible role who has the power to negotiate and to decide whichnte
activities have to be performed during project runtime.

Aggregation

Activities: The SOW aggregates a list of all bindintyidies.

Results: The SOW also aggregates a list of all binding results.

Dependency

Project Development Plan: All activities which hausetcarried out mu
be included and scheduled in the project development plan.

WBS: All results mentioned in the SOW must be included in the V
Note, this ensures that all results are adequately considerkd prdject
structure.

ealis
proj

e
clivery
g or

~

1"
1

D

2leva

VBS.

9.2 System- and Project Decomposition

One quality criterion of each project is the capability to orgaaizd structure work. This is done by
the work breakdown structure. The required results are derivedtifimroject context, —goals and
the SOW and they are gradually refined to a level of detail which nitagessible to define activities
which match and can be assigned to project roles and actors. The pestierts and their intercon-
nections are sketched in the following.

35

Product type Work Breakdown Structure

Description The work breakdown structure (WBS) is used to decompessoftware
project into its basic results and finally activities. Gengrahe system is
structured during the requirement analysis and the design phase from di
ferent point of views. Depending on the granularity and the progrdbe of
development new requirements or design elements arise or disdppear.
of these elements has to be represented within the WBS and ddsigate
least one activity to produce them. A WBS thus describeprtiject view
on thesystem.

Possible structuring elements are offered in the DOD standard BL67 f
example where the system is mainly divided into segments, conmgyster
tem configuration items, computer software components and finally [com-
puter software units. This order complies with the level of atisbra of
the associated elements. Reasonably, these elements should correspond t
the architectural description elements resulting from the system design.

Purpose The work breakdown structures the project into smaller adithas sim:
plifies it and makes it manageable. Additionally, the WBS dessriall
results and the associated activities which have to be perfénoeder tg
completely realize the system. Above all, it can be used a@iaolling
instrument as one can examine the overall prgjteé according to th
state of the incorporated results. For each element in the wakdomen
structure, the relationships with architectural description elesvaand sys
tem requirements are described; therefore this product offerspaeency
about the overall project.

D

The WBS is mainly used as a basis for project controlling as it givecom
plete overview of the overall project state by aggregatiegstate of eag
partial result to one whole system state. Furthermore it hag t@fined
and to be updated gradually according to the arising of new requirements
and new architectural description elements resulting from therelift
development phases.

=y

Attributes -

Aggregations Results: The WBS aggregates hierarchies oftseshich are used to
structure different project parts such as the requirements ispéoifi or
the architecture from a management point of view.

Dependencies -

Product type Results

Description Results are developed during the project and are producegdhtline per
formed activities. Existing results can then be used as preteguisi
other activities which can only be carried out if they arelabks, i.e. a
subsystem can only be integrated, if all components are present.

Generally, the coarse-grained results are defined during the eeguits
engineering and they are further refined during the design phaserd=ach
sult has a state-attribute which characterizes its adiai®l. 3n most cases,
it is helpful to standardize all results in order to ease opesatuch as the
evaluation of the overall project state.

36

U7

Often results and the related activities are assembled tk pawmkage
which are then be assigned to a specific role or actor.

Purpose Results are needed to hierarchically decompose the ovejedt @nd ta
assign the system building blocks to activities.

Attributes Description: This is a short description of the activity.

Type: This attribute enumerates the result type. Possible ogieseports
architectural elements, source code documents, system requirements, etc.

Responsibility: Here, the responsible role has to be assigned.

State: This attribute enumerates the state of a resultbRostates for an
architectural description element which is to be realized could be:

e initial

* in progress

* inreview and
e completed.

Based on these states, operations can be applied to calculatateéhef s
set of states or finally the overall project state.

Category: Each result should include a unit which allows the use of metrics.
In this case we suggest the specification of the followingimeategories
for effort estimation:

» Off-the-shelf: These results have already been developed a®fpart
previous projects.

* Full experience: Similar results have already been developelde|n t
past.

» Partial experience: These results are in part similar to pt®davuch
have already been developed in the past.

* New development: No experience how to develop this result is present.

Aggregation Decomposition: Results can be structured according tmgiaal
hierarchical relationship. We must be aware, that this loginadtsre doe
not necessarily coincide with the timely order in which the resuk to bé
produced.

Uy

Here decomposition means, that a hierarchically higher result is achigved, if
all its subresults are achieved. Moreover, the attribute valuas aggret
gating result are dependent on the according values of its subresults.

A decomposition hierarchy of results, which we related with system
guirements and architecture description elements, respectivelyp Hazes
consistent with the relationships between system requirementshand t
software architecture. For example, a result being related avitfiven
functional requirement is consistently decomposed by results beatgdiel
with the architecture description elements, that realize this requirement.

Dependency -

37

Association type

In

Description This association describes which activities reqh@eelated results. This
is important to avoid stagnation which could arise if an actirgtyuires
one or more immature results. An example could be an integratimityacti
which needs subsystems to integrate them to the overall system.

Purpose This association documents consistency conditions that enable tohepla
activity reasonably and consistently.

Attributes Activities: A set of activities to which this associationdanected.

Results: A set of results to which this association is connected.

Aggregation -

Dependency -

Association type Out

Description This association describes which results are produdde bglated activi-
ties. This is important to avoid stagnation which could materidiziee
output of one activity which is simultaneously the input of another ong has
delay.

Purpose Similar to the In-association, this association also docunwristency
conditions that enable to plan the activity reasonably and consistently

Attributes Activities: A set of activities to which this associationdanected.

Results: A set of results to which this association is connected.

Aggregation -

Dependency -

Directed Association | Result Content

type

Description This association relates “technical” informationcitres about a system
to be developed namely system requirements and architectureptiescri
elements with information structures being relevant for manageaotivi-
ties, namely results.

Thereby, we bridge the gap between information being structured from a
management point of view, and information, which is structured from de-
velopment points of view.

Purpose A result content association integrates technical developrf@mation
with management information explicitly, without having to structineseg
different kinds of information similarly.

Attributes -

Aggregation -

Dependency -

38

9.3 Scheduling the Project

A realistic project planing and scheduling is a critical sucdastor. According to [Dem82] most
managers are not able to adequately estimate the effort efaseftievelopment projects. [Rei93]
states that the average cost and time overrun is more thanc&htpéne important reason for these
overruns is a poor project planning and -estimation. Activitieplarened which are underestimated,
inconsistent or even wrong. Therefore it is important to provablealgfioducts which offer all in-
formation to reduce these failure potentials. Some possible produmtdeinto plan and schedule the
project adequately are offered in this section.

Product type

Project Development Plan

Description

The project development plan descriiveat activities have to be per-

formed andwvhen they have to be carried out. Contently, the project devel-

opment plan covers activities such as the timely provision of equipme
tools so that they are available to developers when needed. Alstheé
is the availability of staff to perform the development taskaccordanc
with the schedule. Furthermore, contingency plans must be provided
event that project risks materialize.

The project development plan is an important project document. It &

that the development of the project is well charted before thtedetievelt

opment activities are enacted. Whenever changes arise duripgojbet,
the project development plan has to be adapted to reflect the newiosit

nt and
SC

19%)

in the

ssure

This includes above all changes of the project's schedules whicim-are

cluded in the project plan.

One standard which describes the formal structure and the content of a

development plan is the IEEE standard 1058.1. There the project ge
consists of the traditional activities like project managememifiguration
management, quality management and software development. Addit

nerally

onally

security aspects, change management and customer supplier manageme

are also provided.

Purpose

The project plan is used to give all activities a sensiiler. The pla

n

should determine to do the right thing at the right time. Based on the project
plan the actugbrogress can be stated on which controlling activities can be

performed.

Attributes

Aggregations

Activity Schedule: Schedules activities.
Resource Schedule: Schedules resources.

Personnel Schedule: Schedules manpower.

Dependencies

Product type

Activity Schedule

Description

The activity schedule is a schedule of activities and thesipatéd time o
implementation.

39

f

The activity schedule lists all necessary activitiestime-ordered way t\o

d

people

ies.

e
dwa
ndors.

Purpose
know what to do anytime.

Attributes -

Aggregation Activities: Brings all project activities in a tempygrarder.

Dependency -

Product type Personnel Schedule

Description In the personnel schedule based on the activities thecégaposition an
the team skills are defined and assigned to the available antesictors.
This strongly depends on the required know-how, motivation and avajlabil-
ity. Note, availability means to ensure that each project memdnerbe
released according to the defined percentage. Particularly, imaseftle-
velopment projects scheduling people is an important competence as
are the most important resource and finally the largest casrd(cft.
[Boe80]).

Purpose In this product the team size and structure is defined tgsahase the
personal capacity to carry out the scheduled activities.

Attributes Communication: The communication relations between atl teambers
should be defined; especially if problems arise.
Directives: Especially in large projects, the authority tsués directive
should be defined to delimit responsibilities, and areas of responsibilit

Aggregation Activities: The personnel schedule aggregatesti@st and assigns attri
utes such as
* roles,
» skills and experiences,
» responsibilities and
o effort
to them.

Dependency -

Product type Resource Schedule

Description This product describes all necessary resources wiacheaded for th
performed activities. These resources not only include tools and hat
but also work space or external partners such as subcontractors or ve

Purpose The resource schedule makes sure that all needed resastaksiag the
overall project runtime even if critical situations arise.

Attributes -

40

Aggregation Activities: The resource schedule aggregatdw/it@s and assign
available resources to them such as
» adequate work space,
e tools,
e equipment as well as
» vendors and subcontractors
Dependency -

Association type

Activities

Description

An activity describes what has to be performed to reach a dejosdhat

is mentioned in the SOW. Activities correlate with the reseitiser since

they require or produce them. Guidance on how this must be d¢
offered by the development requirements. Furthermore, an int
characteristic is that activities have a strong timati@h as they descrik
the timely progression of the project.

Often, it is useful to standardize the activities to make them compaadi
to ease the calculation of effort and time. Therefore, defined amoust
be assigned to the activities, i.e. the activities should be dhadigom-
posed into units of one man month.

Similar to the results, activities can also be decomposed. Thénef
range from high level activities such as software developmantgemer;
or risk analysis to low level activities like coding or modtdsts. The ag

tivities should be decomposed until each activity can be assigradetast

one responsible role. A further refinement is not necessary forgmanest
tasks.

Purpose

For an adequate project planning, activities have to be defipeder to
reach all project goals within the defined time frame.

Attributes

Description: This is a short description of the activity.
Start Date: This refers to the date the activity is scheduled to begin.

Completion Date: This refers to the date the activity is dudeel to be
completed.

Dependencies: This refers to activities on which this activity is depend
Responsibility: This identifies the role which is responsible for this agt

Additionally, a “category” like described in the results caro dle specit

fied.

Aggregation

Decomposition: To create hierarchies of activities, thepe@omposed ¢
decomposed to alternatives or activities as parts of the whalgally,
there are two refinement alternatives: The system carther &inctionally
or object-oriented divided (cf. [Lit93]).

Dependency

Product type

Milestones and Baselines

n

D

ne is
nerent
e

le

D

— o~

ent.

Vit

41

Description

Milestones are always visible and comprehensiblecpragtivities. Note
that everytime it is possible to recognize whether they hase treated ar

not. Based on this, a founded reporting system can be established and the

project progress can be estimated for example by illustratirend analy:
sis. If the information has to be more coarse-grained, then thetomés

can be put together to milestone plans. These plans give the mamigem

sufficient information to control and steer the project.

Purpose

Milestones are important events during the project’s rurifiney. mark
the end of important project steps. They are also used as pointsrgay

and measurement of progress on the project and for determining baselines.

Baselines thus describe major milestones. The importance ofressedi
obvious as often the first project baseline is the approved systarire-

ments specification document as result of the completion of the eequir

ments activity phase; this is called the functional baseline.

Attributes

Milestone or Baseline ID: This is a meaningful idesation i.e. a string or
number.

Description: This is a short description of the milestone or baseline.

Completion Date: This refers to the date the milestone or hasgslsched
uled to be completed.

Dependencies: This refers to milestones or baselines on whiclort@is
dependent.

Responsibility: This identifies the person who is responsible fomtiles
stone or baseline.

Amount: This characterizes the overall amount which is connected with this

developed milestone or baseline.

Flag: This attribute describes whether the milestone or basslinem-
pleted or not.

Aggregation

Dependency

Association type

Assignment

Description Through this association some activities are assigned astangssand
baselines. Note, that one or even more activities can be assmmoe
milestone or baseline.

Purpose This association characterizes the milestones and basélinesievelop
ment project.

Attributes Activities: A set of related activities.

Milestones: The related milestone or baseline.

Aggregation -

Dependency -

42

f | 1
' PM i ! RE
i i Configurable i
: WBS 5 System i
i System i :
: in progress Re : i
i ’—Q b Content ontent; i | Configuration || Configuration :
! i Logic Interface i
! | Resource System ¢ ;unﬁ)nalReq :
i Plan Moduls A i
' | completed in progress ! . '
: s i ArchFunftionalReq i
] [Res T I o i
o Leentent | S T T TSI TI T JTOTITITITITITL
a OE |
: Conf. ; System 1
i Logic Interf. - Application System GUI

! in review initial ' ! LOgIC N I
: T e | 7 e
! X :
: L Configurable

: Xp?nlfibat Result GUI H Appli(?ation —1 GUI-

: Corr)np. - Component ¥ Component Component

! initial i ;
! in review] ;
! i !

...

Figure 8: Exemplary work breakdown structure

Finally, Figure 8 exemplifies an instance of a product structurthédevelopment of a configurable
computer system (cf. the example given in Section 5.4). In thisefigne can see the relationship
between requirements, architectural description elements andsresaltwork break down structure.
In our example the major requirement is to produce a system whiclniggurable. For the
realization of the configurable system, a configuration logic amdndiguration interface are the
identified requirements. For this realization the shown architeuteveloped. Thereby, two global
design elements are needed, namely the system applicationridgiteasystem GUI. Each of these is
further subdivided into a configurable application component in case sistem application logic
and a GUI component in case of the system GUI. Both are assowaiditethe requirements through
an ArchFunctionalReq association.

Additionally, this interconnected development information is linked with the neamexgt information
in the work break down structure. Results covered in the work bi@ak structure are related with
requirements and architectural description elements by means of ResetiGrssociations. Thereby,
we achieve an integrated management view on requirements duitectral elements by bringing
them in a hierarchical order and implicitly assigning states and respoieshiithem.

For example the architectural element ConfigurableApplicationCompasassociated with result
Conf.Applicat.Comp, which is a subresult of the result Conf.Logic. The latter resolt islated with
an architectural element, but with the functional requirement Coafigat.ogic which is supposed
to be realized by the component ConfigurableApplicationComponent. From @enasra point of
view this result hierarchy is sensible because of the statéoof.Logic, that is in how far the
requirement has already been realized, is dependent on thefstate resultConf.Applicat.Comp,
that is in how far the related component has already been specified and implemented.

43

Based on this information, we can manage system development adgeghatel that the product
structure does not enforce a timely order of building the architectlafining requirements, and
building the work breakdown structure. In any way we only must resipeatefined causal depend-
encies.

Now, we summarize some project management aspects arismgheitise of the described product
model:

First, the work breakdown structure is based on the high levetgesuhing from the requirements
analysis and the design. These elements are gradually put imBtBend in that way hierarchically
ordered. This promotes the integration of technical and organizatgsusi as well as a clear struc-
turing of the project which eases the manageability. Note, thattdgrated results do not have to be
reflected in every detail, instead it is sufficient to incluelults which can be assigned to at least one
responsible role or actor. In thiResultContent association the relationship between the management
results and the corresponding requirements and architectural descafgiments respectively is il-
lustrated.

Second, the described product model allows dynamical alteration ofstensand the project as
well. Based on the consistency conditions mainly described in theltseand “activities” products
and the “in”, “out” and “result content” association a flexible addind deleting of results is possi-
ble. This is especially useful for projects with changing requergsm— which is widely spread in
software development projects.

Third, the separation in results and activities and their repeggentin the WBS and the activity
schedule, respectively eases the planning and controlling of thetpktjeite the former focuses on
the project state, the latter focuses on the project’s progrbis.complies to two different views
which both must be regarded during a project’s lifecycle. If, for example, the magraggsoertains a
deviation between the planned and the actual progress, then it is notterdgting to find out which
activities are responsible for this delay, but also to recognize whitdnsysrts are concerned. Based
on this knowledge the management is able to perform some steeasyres in order to realign the
project. These measures could for example include a consistent aoiheuatcepted reduction of
functionality.

Fourth, as a result of the strongly coupled result hierarchy delsith requirements, architectural
elements and project management results, a common information basis ishestabliés is exempli-
fied in Figure 8 as there is a strong network of ArchFunctionalRetResultContent associations
between all development parts. Although, some results are not repess requirement or design
element, nevertheless, there are associations which show their relationships.

Fifth and last but not least, the WBS lists all results and thegrrelations in order to describe the
causal dependencies between the different results. This is fopkexaseful when the management
wants to estimate the remaining effort and therefore needs mtiomabout the result stream. For a
detailed analysis it is even possible to follow the links to technicalgléfahe management wants to
obtain a precise knowledge of specific and corresponding requirements or archisesyacts.

10 Comprehensive Dependencies

In the previous sections we already discussed relationships betleseents of the product models
for the three covered tasks. Here we want to emphasis on thpeeda@acies which couple the three
models tightly. These dependencies relate three key work productslyn@quirements specifica-
tion, software architecture and work break down structure. Essentially thedéepees define that all
requirements contained in the requirements specification mustlbetedfin the software architec-
ture, and that structuring a projsctvork from the management point of view must refer, at |gast

44

tially, only to requirements and architectural description elemeoisained in the requirements
specification and the software architecture, respectively.

RequirementsSpecificatior;

RequPlanning

-9 WorkBreakDownStructu re{_A_rghElquryp g_, SoftwareArchitecture < -

Figure 9: Dependencies between requirements specification, software architecture and work break
down structure

Below, the dependencies illustrated in Figure 9 are describedcimeana similar to the one for asso-
ciations. In order to admit top-down as well as bottom-up developmemtefiveed the dependencies
to be bi-directional.

Dependency type RequPlanning

Description Structuring a projects work in a work break down sirecis partially
based on requirements. For example, when a system’s architectoteyét
known, we can structure and plan future work on selected requirements.

A requirements specification and a work break down structurecaisse
tent, if all the system requirements to which a result of tbekvoreak
down is associated (by a ResultContent association) are contaitieel
requirements specification.

n

Note, that not all system requirements of a requirements sqadicifi need
to be associated with a result. For example, for planning purposes lilec
sufficient to only relate a given system requirement expli¢al a result
but not its sub-requirements (aggregated by an AND refinement).

Purpose This dependency defines a consistency condition between a work| break
down structure and a requirements specification. It ensures thatngdani
based only on those requirements, for which we decided that they have to
be realized by the envisioned system.

45

Dependency type Realization

Description A requirements specification and a software archree@re consistent
when all requirements contained in the requirements specificatior,| hav
been "realized" (functional) or "respected" (nonfunctional) in thhita
ture.

A functional requirement is "realized" by a software architegtif the
requirement is associated with the architecture viArghFunctional Requ
association. A nonfunctional requirement is "respected” by a softavare
chitecture, if the requirement is associated with the archregDesign
Rationale via aDesignRatioNonfuncReq association.

Purpose This consistency condition ensures, that finally all negotiated andeslec
requirements have been respected in the software architecture.

Dependency type ArchPlanning

Description Structuring a projects work in a work break down structure is pigrtial
based on the software architecture.

A software architecture and a work break down structure arestenisiif
all the architectural description elements to which a resuthefwork
break down structure is associated (by a ResultContent associatén)
contained in the software architecture.

Purpose This dependency defines a consistency condition between a work| break

only on those architectural description elements, for which we dedided t
they are part of the software architecture.

11 Conclusion and Outlook

In this paper we presented a model of work products for the requirgnaechitectural and project
management parts of software development. This provides a basisefgnating process models of
different application domains as well as different developmerkstds order to reach a clear
structure of the model we introduced firstly templates for woridpet types, associations,
aggregations and dependencies between them. Then we introduced theepoindgatision oriented

software development process and related general products.

By applying the templates for work products of requirements engiigeatesign and project man-
agement first we showed the applicability of the templatesh&uthe work product model defines
the basic skeleton for a development process model which intetirasesdifferent tasks. Further we
related requirements engineering and design work products to thealgprasfucts of the decision
oriented development process.

In the product structure for requirements engineering we definedwodkicts allowing us not only

to formulate the final result of requirements engineering tdmksalso to support taking and docu-
mentation of decisions. Furthermore, we sketched the relation betd@wain modeling and

specification of requirements. We classified requirements inap eing well suited for design
purposes.

46

down structure and a software architecture. It ensures that planning is based

The product structure for design firstly documents a decision oriedgemn process by work
products for supporting the derivation and definition of architecturairatives, evaluating alterna-
tives, documenting the rationale and the final result. Secondly itstem$ structures for describing
software architectures themselves.

For project management, we defined a model based on which we camglaandrol project enact-
ment and progress. We structure a projects work by means witiastiand results. We understand
certain results as management views on system requirenmeheschitectural description elements,
respectively. Thereby we achieve a close coupling of management and develofoneration.

The work products of requirements engineering and design are istkgnatwo ways. Functional

requirements within the requirements specification relate directly te wihtin the final architecture.

In contrast to this nonfunctional requirements relate to architéctacisions, i.e. depending on the
content and on the priority of the given nonfunctional requirements diffarehitectural alternatives

have to be selected.

We also integrated project management with the technical tagkgrements engineering and archi-
tecture. The main integration is done by using requirements s &dsis for planning activities of

the work breakdown structure. When a project proceeds and the sysietare becomes more de-
tailed the architectural elements are related to the results leadingote aetailed project structure.

The whole model for work products can directly be used for developmenttprdjsenain advantage
is that it not only defines clearly the information which has tgdtbered but also makes it possible
to check consistency and completeness of work products.

Currently we plan to evaluate the product model with examples fréfaratit application domains
within our research consortium FORSOFT. Directly related toishédso a refinement of the work
product model with respect to these application domains. A futuresdine iintegration of the work
product model with development activities to provide a full and flexyble software development
process model.

12 References

[ABD+99] D. Ansorge, K. Bergner, B. Deifel, N. Hawlitzky, C. Maier, B. Paech, A.
Rausch, M. Sihling, V. Thurner, S. Vogel: Managing Componentware
Development — Software Reuse and the V-Modell Process, CAISE, 1999.

[BDRS97] M. Broy, E. Denert, K. Renzel, M. Schmidt (Eds.): Software Architectures
and Design Patterns in Business Applications. Technischer Bericht TUM-
19746, Technische Universitat Minchen, 1997.

[Ben94] E. M. Bennatan, Software Project Management — A Practitioner’s approach,
McGraw-Hill Book Company, 1994.

[BLR+95] A. Brockers, C.M. Lott, H.D. Rombach, M. Verlage: MVP-L language report
version 2. Technical Report 265/95, Department of Computer Science,
University of Kaiserslautern, 67653 Kaiserslautern, Germany, 1995.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, "Pattern —
oriented Software Architecture — A System of Patterns”, Wiley, 1996.

[Boe80] Garry Bohm: Software Project Management. Addison Wesley, 1980.

47

[BRS+99]

[BS]

[Deig8b]

[Dem82]
[Fib99]
[JBR9S]

[JCJI+92]

[Jeus92]

[JGJ97]

[Kru98]
[KS98]

[Lit93]

[LK95]

[LT96]

[LW98]

[MBJ+90]

[MCY99]

[Pae98]

K. Bergner, A. Rausch, M. Sihling, A. Vilbig, M. Broy: A Formal Model for
Componentware. in Foundations of Component-based Systems, eds. M.
Sitaraman, G. Leavens, Cambridge University Press, to appear 1999.

M. Broy, K. Stglen, "FOCUS on System Development", to appear.

B. Deifel: Theoretische und praktische Ansétze im Requirements Emggee
fur Standardsoftware und Anlagenbau. Technischer Bericht TUM-19832,
Technische Universitat Minchen, 1998.

Tom De Marco: Software-Projektmanagement. Wolfram’s Fachyéi&g.
Projektmanagement Fibéltp://www.managementsoftware.d&999.

I. Jacobson, G. Booch, J. Rumbaugh: The Unified Software Development
Process. Addison Wesley Longman, 1998.

I. Jacobson, M. Christerson, P. Jonsson, G. Overgaard: Object-Oriented
Software Engineering. A Use Case Driven Approach. Addison Wesley, 1992.

M. A. Jeusfeld: Change Control in Deductive Object Bases. INFIX Pub, Bad
Honnef, Germany, 1992.

Jacobson 1., Griss M., Jonsson P., "Software Reuse", Addison Wesley
Longman, 1997.

Philippe Kruchten: The Rational Unified Process. Addison Wesley, 1998.

G. Kotonya, I. Sommerville: Requirements Engineering. John Wiley & Sons,
1998.

H.-D. Litke: Projektmanagement — Methoden Techniken und
Verhaltensweisen. Hanser Verlag, 1993.

P. Loucopoulos, V. Karakostas: System Requirements Engineering. McGraw-
Hill, 1995.

R.C. Linger, C.J. Trammell, Cleanroom Software Engineering Reference
Model. Technical Report, CMU / SEI-96-TR-022, Pittburgh, Pa.: Carnegie
Mellon University, Software Engineering Institute, November, 1996.

A. van Lamsweerde, L. Willement: Inferring Declarative Requirements
Specifications from Operational Scenarios. In IEEE Transactions on Software
Engineering, Vol. 24, No. 12, December 1998.

J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis: Telos: Representing
Knowledge about Information Systems. Transactions on Information Systems
8, 4 (1990), pp. 325-362.

J. Mylopoulos, L. Chung, E. Yu: From Object-Oriented to Goal-Oriented
Requirements Analysis. In Comm. of the ACM, Vol. 42, No. 1, January 1999.

B. Paech: The Four Levels of Use Case Description. in 4th Int. Workshop on
Requirements Engineering: Foundations for Software Quality, Pisa,
Junel998, E. Dubois, A. Opdahl, K. Pohl (eds.), 1998.

48

[Par72]

[PCW+93]

[Pohl96]

[Rei93]

[RGY4]

[RIB9I]

[RRP9O]

[SG96]

[VB96]

[IABGO7]

D.L. Parnas, "On the Criteria To Be Used in Decomposing Systems into
Modules”, Comm. ACM, Vol. 15, Num. 12, Dec. 1972.

M. Paul, M. Chrissis, C. Weber, S. Shrum: A Preview of the Software CMM
Version 2 http://www.sei.cmu.edu/pub/cmm/v2/cmm-v2-bridge, pdf
25.08.1999.

K. Pohl: Process-Centered Requirements Engineering. Research Steshes P
Ltd, JohnWiley & Sons Inc, New York,1996.

Donald J. Reifer: Software Management. IEEE Computer Society Press
1993.

C. Rolland, G. Grosz: A General Framework for Describing the Requirements
Engineering Process. In Proceedings of the Int, Conf. on Systems, Man and
Cybernetics, San Antonio, TX, October 1994. IEEE Computer Society Press,
1994,

J. Rumbaugh, I. Jacobson, G. Booch: The Unified Modeling Language
Reference Manual. Buch, The Addison-Wesley Object Technology Series,
Addison-Wesley, 1999.

J. Ralyté, C. Rolland, V. Plihon: Method Enhancement with Scenario Based
Techniques. Proceedings of the Conference on Advanced Information
Systems Engineering CAISEO, LNCS 1626, pp.103-118, 1999, Springer-
Verlag, 1999.

Shaw M., Garlan D., "Software Architecture — Perspectives on an emerging
discipline”, Prentice Hall, 1996.

Vossen G., Becker J.: Geschaftsprozel3modellierung und Workflow-
Management. Int. Thomson Publishing GmbH, 1996.

IABG: V-Modell 97. http://www.iabg.de 1999.

49

