TUM

INSTITUT FURINFORMATIK

The Complexity of the Equivalence Problem
for Commutative Semigroups

Ulla Koppenhagen
Ernst W. Mayr

TUM | 9603
Januar 1996

TECHNISCHEUNIVERSITAT MUNCHEN



TUM | NFO 01- 1996-19603- 350/ 1. - FI
Al l e Rechte vorbehal ten
Nachdruck auch auszugswei se verbot en

©1996 MATHEMATI SCHES | NSTI TUT UND
| NSTI TUT FUR | NFORMATI K
TECHNI SCHE UNI VERSI TAT MUNCHEN

Typescript: ---

Dr uck: Mat henati sches I nstitut und
Institut fur Infornati k der
Techni schen Uni versitat Minchen



1

Commutative semi-Thue systems, or equivalently, vector addition systems (VAS),
and Petri nets, their equivalent graphical representation, are well-known models for
parallel processes. Much effort has been devoted to the study of the mathematical
properties of these models. In particular, decidability and complexity questions of
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Abstract

In this paper, optimal decision procedures for the equivalence, subword,
and finite enumeration problems for commutative semigroups are obtained.
These procedures require at most space 2°”, where n is the size of the problem
instance, and ¢ is some problem independent constant. Furthermore, we show
that this space requirement is inevitable: any decision procedure for these
problems requires at least exponential space in the worst case, the equivalence,
subword, and finite enumeration problems for commutative semigroups are
exponential space complete.

For the equivalence problem, our results close the gap between the 2¢ 7legn
space upper bound shown by Huynh and the exponential space lower bound
resulting from the corresponding bound for the uniform word problem estab-
lished by Mayr and Meyer.

Introduction

decision problems for these models have received much attention.

one considers an important subclass of commutative semi-Thue systems, the class of
commutative Thue systems, or commutative semigroups (or equivalently, reversible

In this paper we focus on the equivalence problem. This is the problem of deter-
mining for any two given commutative semi-Thue systems, or equivalently, VAS, or
Petri nets whether the reachability set of the first is equal to the other. In [Hac76]
this problem was shown to be undecidable. The situation changes, however, when

VAS, or reversible Petri nets) [Bir67, Emi63, Mar47, Tai68].



The equivalence (containment) problem for commutative semigroups, or equiva-
lently, reversible Petri nets is the problem of deciding for any two given congruence
classes [u]p, [v]g, where P, Q are two commutative semigroup presentations over
some alphabet X, and u, v are two words in X*, whether [u]p is equal to (is contained
in) [v]g. In [Huy85] Huynh exhibited a decision algorithm for the equivalence prob-
lem for commutative semigroups which operates in space 2¢size(wv,P,Q) log(size(u,0.7,Q))
where d > 0 is some constant independent of u, v, P and Q. The arguments for
this upper bound are based on the 2%"#1°8% space upper bound for the coverability
and selfcoverability problems for general Petri nets obtained by Rackoff in [Rac78],
where s is the size of the problem instance.

We are able to show a 2¢52¢(47.Q) space upper bound for deciding the equiva-
lence problem for commutative semigroups, with ¢ > 0 some constant independent
of u, v, P and Q.

In Section 3 we present efficient decision procedures for the subword and finite
enumeration problems which operate in exponential space. The proofs are based on
an algorithm for generating the reduced Grobner basis of a binomial ideal using at
most exponential space. Furthermore, we show that the exponential space require-
ment is inevitable: any decision procedure for the subword and finite enumeration
problems requires at least exponential space. The proof of this lower bound on the
complexity of the problems is based on reducing the uniform word problem resp., a
special form of the uniform word problem, which is exponential space complete (see
[MMS82]), to the subword resp., finite enumeration problem.

In Section 4, these complexity results are applied to obtain the exponential space
upper bound for the equivalence problem for commutative semigroups. Thus, the
gap between the 2¢size(wv,P,Q) log(size(u,v,P.Q)) space upper bound and the exponential
space lower bound resulting from the exponential space completeness of the uniform
word problem is closed, and the exponential space completeness of the equivalence
problem for commutative semigroups is established.

2 Basic Definitions and Notations

In this section we review some definitions and notations used in this work.

2.1 Semigroups, Thue Systems, and Semigroup Presenta-
tions

A semigroup (H,o0) is a set H with a binary operation o which is associative. If
additionally o is commutative we have a commutative semigroup, and a semigroup
with a unit element is called a monoid. For simplicity, we write ab instead of a o b.

A commutative monoid M is said to be finitely generated by a finite subset

X ={xy,...,2x} C M if!

M=Aulu=ay...0129...29...25... 2, ¢, € NJa; € X}.
——— —— —— ———

€1 €2 €k

N denotes the set of nonnegative integers, Z the set of integers, (Q the set of rationals, and R
the set of reals.



Each element of M can then be represented as a k-dimensional vector in N¥, i.e.,
there is a surjection ¢ : N* — M such that

U=T1...01 8. .. Ty . Too T <= @(€1,...,€65) = u.
It ¢ is also injective, and hence bijective, then every element of M has a unique
representation in N¥, and M is said to be free.

For a finite alphabet X = {x1,..., 2}, X* denotes the free commutative monoid
generated by X.

Let ® =46 0! : X* — NF be the inverse of ¢, the so-called Parikh mapping,
i.e., (®(u)); (also written ®(u,x;)) indicates, for every u € X* and ¢ € {1,...,k},
the number of occurrences of z; € X in w.

For an element u of X*, called a (commutative) word, the order of the sym-
bols is immaterial, and we shall in the sequel use an exponent notation: u =

. .ark, where e, = ®(u,2;) € Nfor ¢ = 1,..., k. For instance, we may denote
T1 7171737379 by w33, interchangeably with, say, x3zsz v3zs.

Notice that power products in Q[xq,...,xx] (monomials with coefficient 1) may
be regarded as elements of {x,..., x;}*.

A commutative semi-Thue system over X is given by a finite set P of productions
l; — r;, where [;, r;, € X*. A word v € X~ is derived in one step from u € X~
(written u — v(P)) by application of the production (I; — r;) € P iff, for some
w € X*, we have u = wl; and v = wr;. The word u derives v iff u = v(P), where
2 is the reflexive transitive closure of —. More precisely we write u -5 v(P), where
= is the transitive closure of —, if u = v(P) with u # v. A sequence (ug,...,u,)
of words u; € X* with u; — w41 (P) for i = 0,...,n — 1 is called a derivation (of
length n) of u, from ug in P.

A commutative Thue system is a symmetric commutative semi-Thue system P,
i.e.,

(l—=r)eP=(r—10)eP.

Derivability in a semigroup establishes a congruence =p on X* by the rule
u=vmod P Sqer u — v(P).

For semigroups, we also use the notation [ = r mod P to denote the pair of
productions (I — r) and (r — [) in P.

It it is understood that P is a commutative Thue system the commutativity
productions are not explicitly mentioned in P nor is their application within a
derivation in P counted as a step.

A commutative Thue system P is also called a presentation of the quotient semi-
group X*/ =p.

We remark that commutative semi-Thue systems appear in the literature in two
additional equivalent formulations: vector addition systems (see next section) and
Petri nets. Finitely presented commutative semigroups are equivalent to reversible
vector addition systems or Petri nets. A reader more familiar with reversible Petri
nets may want to think of a vector in N* as a marking.



2.2 Exponential Space

In this section we briefly review the few necessary technical definitions from com-
plexity theory.

Complexity is usually measured relative to the size of a problem instance. Note
that we use exponential notation in representing words over X. For example, a
word consisting of 805 z’s has size 4 because it has a representation in exponential
notation of 4 symbols, namely, 8%, Thus, a word, or equivalently, a term v € X*
with size(u) = n has degree O (2") resp., a term u € X* with deg(u) = d has size
O(log d).

Let X, X; be finite alphabets. A function f : X7 — XJ reduces a set A C X7
to a set B C XJ in case
a €A+ fla)eB

for all & € X7. If f is computable by a Turing machine which visits at most log, n
work tape squares during its computation on any word o € X7 of length n > 1,
then A is said to be log-space reducible to B. (We assume the Turing machine has
a read-only input tape and a write-only output tape separate from its work tape.)

If in addition the length of f(«) is O(length(«)), then A is log-lin reducible to B.

The set B C X is said to be decidable in space g : N — N if there is a Turing
machine which accepts B and visits at most ¢g(n) work tape squares during its
computation on any word 3 € X3 of length n.

B is decidable in exponential space if it is decidable in space g, where g(n) < ¢"

for some ¢ > 1.
B is exponential space complete with respect to log-lin reducibility if
(i) it is decidable in exponential space, and
(ii) every set which is decidable in exponential space is log-lin reducible to B.

If B satisfies condition (ii) only, it is said to be exponential space hard.

2.3 Polynomials and Ideals

Let X denote the finite set {x1,..., 2%}, and Q[X] the (commutative) ring of poly-
nomials with indeterminates 1, ...,z and rational coefficients. An ideal in Q[X]
is any subset [ of Q[X] satisfying the following conditions:

(1) p,gel = p+qel;
(12) reQX],pel = r-pel.

For fi,....fn € Q[X], (fi,...,fn) € Q[X] denotes the ideal generated by
{fi,..., fn}, that is?

h
(fi,ooos fn) = {Z:pifi; pi € Q[X] for 7 € ]h}-

Zfor n € N, I,, denotes the set {1,...,n}



r={_.... 0, {fi,..., fu} is called a basis of I.

A term tin xq,...,x is a product of the form
t=a5 22
I ¢ 2 ko

with € = (e1, €, ...,ex) € N¥ the degree vector of .

By the degree deg(t) of a term ¢ we shall mean the integer e; + ex + ... + ¢
(which is > 0).

Each polynomial f(xy,...,2;) € Q[X] is a finite sum

f(xlv"'vxk): Z ai'tia

1<i<n

with a; € Q — {0} the coeflicient of the ith term ¢; of f. The product m; = a; - ¢;
is called the tth monomial of the polynomial f. The degree of a polynomial is the
maximum of the degrees of its terms.

An admissible term ordering < on Q[X] is given by any admissible order on N,
i.e., any total order < on N¥ satisfying the following two conditions:

(T1)  e>(0,...,0) for all e € N* — {(0,...,0)};
(T2) a<b = a+c<b4cforall a,b,ce N,

If (dy,...,dy) > (eq,...,ex), we say that any monomial ay - ! ---:L‘Zk, a, €
Q—{0}, is greater in the term ordering than any monomial az-27* - - - 2%, ay € Q—{0}
(written ay - 2 - 2 = ay - 25 - 1),

For a polynomial f(x1,...25) = Y01y a; - t; we always assume that t; = 15 >
... = t,. For any such nonzero polynomial f € Q[X]| we define the leading term
LT(f) :=t.

For the sake of constructiveness, we assume that the term order is given as part
of the input by a k x k integral matrix T such that a; - 2 :L'ik —ag - xteak
iff, for the corresponding degree vectors d and e, T'd is lexicographically greater than

Te [Rob85, Wei8T].

Let I be an ideal in Q[X], and let some admissible term ordering < on Q[X] be
given. A finite set {¢1,...,9,} of polynomials from Q[X] is called a Grébner basis
of I (w.r.t. <), if

(G1)  {g1,...,9-} is a basis of I;
(G2)  {LT(¢1),...,LT(g,)} is a basis of the leading term ideal of I, which is the

smallest ideal containing the leading terms of all f € I, or equivalently: if
f €1, then
LT(f) S <LT(91)7 ttty LT(gT)> '

Grobner bases have been introduced in [Hi64, Hi64a] and [Buc65].

A basis is called minimal if it does not strictly contain some other basis of the
same ideal. A Grobner basis is called reduced if no monomial in any one of its
polynomials is divisible by the leading term of some other polynomial in the basis.
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Now let P = {l;, = r;; ¢ € I} be any (finite) commutative semigroup presenta-
tion with [;, r; € X* for ¢ € [),. Weidentify any u € X* (resp., the corresponding vec-

tor u = (®(u,z1),...,0(u,z;)) € N¥) with the term u = xf)(u’xl) . :ch(u’xz)) e xf(u’xk)

and vice versa any term u = x7' - 25 - - - x* € Q[X] with the word
U=21...09T9...T9...0%...0 € X",
e e N’ ——

€1 €2 €k

Then I(P) denotes the Q[X]-ideal generated by {l; — ry,..., [y —rp}, i.e.,

I(P):= {Z:pz(lz —1); pi € Q[X] for ¢ € ]h} )

We call such an ideal a binomial ideal, i.e., each polynomial in the basis is the
difference of two terms. By looking at Buchberger’s algorithm [Buc65] it is not
hard to see that the reduced Grobner basis of a binomial ideal still consists only of
binomials.

The following proposition shows the connection between the uniform word prob-
lem for commutative semigroups and the membership problem for ideals in Q[.X].
The wniform word problem for commutative semigroups is the problem of decid-
ing for a commutative Thue system P over X and two words u,v € X* whether
u = v mod P. The polynomial ideal membership problem is the problem of deciding

for given polynomials f, f1,..., fn € Q[X] whether f € (f1,..., fa)-
In [MMS82], Mayr and Meyer proved:

Proposition 1 [MMS82] Let X = {ay,... 2}, P =l =ry L,r; € X510 € I},
and u, v € X*. Then the following are equivalent:

(i) There exist p,...,p, € Q[X] such that
h
v—u = Zpi(li —r).
=1

(it) There is a derivation u = — v — ... = v, = v (P) of v from u such that
for g el,
length(v;) < max{deg(l;p;), deg(rip;); i € I,}.

(i) u =v mod P.

In the fundamental paper [Her26], G. Hermann gave a doubly exponential degree
bound for the polynomial ideal membership problem:

Proposition 2 [Her26] Let X = {xy,...,2x}; ¢, g1,---,9n € Q[X]; and d :=
max{deg(¢;); ¢ € I}. If g € (g1,...9n), then there exist p1,...,pn € Q[X] such
that

(i) g =", gipis



(ii) (Vi € I1) [deg(pi) < deg(g) + (hd)*"].

These two propositions yield an exponential space upper bound for the uniform
word problem for commutative semigroups.

Proposition 3 [MMS82] Let X = {ay,...,2x} and P = {l; = ry; l;,;r; € X* 0 €
I} Then there is a (deterministic) Turing machine M and some constant ¢ > 0
independent of P, such that M decides for any two words u, v € X* whether u =
v mod P using at most space (size(u,v, P)) - 2°F,

For the proofs in Sections 3 and 4 we need the following three theorems. The
first shows that in each binomial of the reduced Grébner basis GG of I(P) the smaller
term (w.r.t. <) is the minimal element of the congruence class of the leading term.

Theorem 1 [KM96] Let X = {ay,...,ax}, P={l; =r; li,r; € X*,1 € I,}, and
G ={h1—ma,...,h, —m,} the reduced Grébner basis of the ideal I(P) w.r.t. some
admissible term ordering < (m; < h;). Then m; is the minimal element (w.r.t. <)
of the congruence class [hi]p, 1 € I,.

The next theorem gives a characterization of the leading terms of the polynomials

in I(P).

Theorem 2 [KM96] Let X = {ay,...,ax}, P={l; =r; li,r; € X*,0 € I},}, and
G ={h1—ma,...,h, —m,} the reduced Grébner basis of the ideal I(P) w.r.t. some
admissible term ordering < (m; < h;). Then LT(I(P)) (the set of the leading terms
of I(P)) is the set of all terms with nontrivial congruence class and which are NOT
the minimal element in their congruence class w.r.t. <. H = {hy,... h,} is the set

of the minimal elements of LT(1(P)) w.r.t. divisibility.
Finally, we need the following complexity result.

Theorem 3 [KM96] Let X = {ay,...,ax}, P={l; =r; li,r; € X*,1 € I,}, and
< be some admissible term ordering. Then there is an algorithm which generates
the reduced Grébner basis G = {hy —mq,..., h, —m,} of the binomial ideal I(P)
using at most space (size(P))?* - 20k < 9esiee(P) wwhere ¢,¢ > 0 are some constants
independent of P.

For a proof of these Theorems see [KM96].

3 The Basic Problems and Their Complexity

In this section we are going to prove the exponential space completeness of the sub-
word and finite enumeration problems for commutative semigroups. These results
will then be applied in Section 4 to provide a space optimal decision procedure for
the equivalence problem for commutative semigroups.



3.1 The Subword Problem for Commutative Semigroups

Let X = {x1,...,2;} be a finite alphabet, and P = {l; = r;; l,r; € X*,0 € I} a
finite commutative semigroup presentation. The subword problem for commutative
semigroups is to decide, for any two words u, v; € X*, whether there is a vy € [u]p
such that vy = vy - w for some w € X* which contains no variable occuring in vy.
Le., if such a word vy exists, then w.l.o.g. the variables can be renamed such that

€l
1)2:1';1 xlel . xl++11 xzk7

U1 w

for some eq,...,¢; € N— {0} and ¢;51,...,¢x € N.

We denote by X, = {x1,...,2;} (I <k) the set of variables occuring in vy, and
if I <k by Xor = {2141,...,2x} the set of variables not occuring in v;.

Let Y be the subset {zy,..., 2} of X with Iy > 1 (if {; > l; then Y = §).
Similarly, Z is the subset {x,,..., 2} of X with l; < 3, and Z = () if I3 > k.
Then, for the case [} < [ < [y < [3 we get the following picture:
X, Xor
Llyeo ey X—1y Llyge ey Xy Tig1ye o9 Llyy Tlg4lyev s Ll3—1y Ligy.- . Lk

———

Y Z

With this notation we define the subword , word, and coverability problems for
commutative semigroups as follows. Note that the definition of the subword problem
extends the definition given at the beginning of this section.

e The Subword Problem: Given X, P, u, vy, Y, and Z, decide whether there is

a vy € [u]p such that vy = vy - @y, -+ 2y, - w for some w € (Y U Z)*.

e The Word Problem: Given X, P, u, vy, decide whether vy € [u]p. In [MMS&2]

this problem is shown to be exponential space complete.

e The Coverability Problem: Given X, P, u, vy, decide whether there is a
vy € [u]p such that vy is a subword of vy, i.e., vy = vy - w for some w € X*. In
[KM95] we showed that this problem is exponential space complete.

We see that the word problem and the coverability problem are special cases of
the subword problem. If Y and Z are the empty set, then the subword problem is
equivalent to the word problem. If Y is the empty set and Z = X, then the subword
problem is equivalent to the coverability problem.

If Y is the empty set and Z = X, t.e., s =+ 1, we get the former definition.
Then the subword problem is to decide whether there is a vy € [u]p such that
vy = vy - w for some w € X .

Theorem 4 Let X = {xq,...,21}, and P = {l;, = ry; Lir; € X* 0 € I} be
a commutative semigroup presentation over X. Then there is an algorithm which
decides for any two words u, vy € X*, and sets Y, Z C X defined as above whether
there is a vy € [u]p such that vy = vi-v-w, where w € (YUZ)*, and v = xy, -+ -2y, if



Y ={a1,...,7,} resp.,v =¢ > if Y = ), using at most space (size(u, vy, P))*-2°F <
2csize(wo,P) for some constants €, ¢ > 0 independent of u, vy and P.

Proof: We show that if there is a v) € [u]p as described in the Theorem, then there
is a vy € [ulp with the same properties as v} and vy can be determined in space
(size(u, vy, P))? - 2¢°F,

In addition to xy,...,x; we introduce three new variables s, s, and t. Let
X; = X U{s,s,t}. Given P and the two words u, v; € X*, we construct a new
commutative semigroup presentation P; over X; as follows: For every congruence
[; = r; in P, P; contains the congruence

t- ZZ = {7
Then we add to P, the congruences
s= {-u,
and
t-v1-v= s.

To be able to argue by the degree bounds in Grobner bases we need an admissible
term ordering <. We use a lexicographic order which is defined by the following
order on the variables:

s=t>= X, —YUZ) - Xe—-YUZ) =5 =Y = Z,

where the variables in the sets are ordered arbitrarily.

By Theorem 2, s € LT(I(P;)), and, since s is minimal in LT (I(P;)) w.r.t. divis-
ibility, s € Hy, where H, is the set of the minimal elements of LT (I(P;)) w.r.t. divis-
ibility. By Theorem 1 and Theorem 2, s —m, € (G, where (i is the reduced Grobner
basis of I(P;), and mg is the minimal element of [s]p, w.r.t. <.

Because we assume that there is a v} € [u]p such that v} = vy - v - @' for some
w' € (YUZ)*, it follows that -v1-v-w'" € [t-u]p,. Sincet-v1-v-w' = 5-w' mod Py, it is
s-w' € [t-u]p,. For mgis the minimal element of [s]p, = [t-u]p, it must be my < 5-w',
or mg = §-w'. In particular, the variables s, ¢, and the variables in X,, — (Y U Z),
Xor — (Y U Z) do not occur in my. In Lemma 1 we will see that ®(m,, s) =1, i.e.,
ms = § - w for some w € (Y U Z)* with w < w', or w = w'. Since s —my € GG, by
Theorem 3, m, = 5 - w can be determined in space (size(u, vy, P;))? - 2% for some
constant d > 0 independent of u, vy and P;.

In the following it will be shown that in a repetition-free derivation in P; leading
from s to my the variables s and s only occur in the words s and m,. Furthermore,
we will see that any word except of s and my in a repetition-free derivation of m;
from s in P; has the form ¢ -z with x € X*. So there is a derivation of v; - v- w from
uin P.

In P, the variable s as well as the variable s occurs in exactly one congruence,
namely s =t - u resp., t - vy - v = 5. In the remaining congruences in P; each side
has the form ¢ -y with y € X*. Thus the only congruence in P; that can be applied
to sis s =t - u, and any derivation in P; starting at s first leads from s to ¢ - u, .e.,
s —t-u(Py). Generally from the structure of Py it follows:

3¢ denotes the empty word



Lemma 1 Fvery word v in a derivation in Py starting at s satisfies:

(i) ®(v,3), ®(7,3), ®(v,t) € {0,1}, and

(i) ®(~,s) + P(7,3) + (v,1) = 1, i.e., exactly one of the variables s, s, and t
occurs exactly once in every word v of any derivation in Py starting at s.

It some word ~;, 2 € N, 2 > 1, in a derivation s — ¢ -u — vy — ... = Y1 — ¥
(P;) contains the variable s, then the only way to continue is to apply the congruence
s =t - u. Since this is the only congruence of P; in which s occurs, this congruence
must be the congruence that derived 7; from ~;_1. Thus the resulting derivation is
not repetition free.

Similarly, if some word 7 in a derivation of m, from s in P; contains the variable s,
then either v = my and we are finished, or there is exactly one applicable congruence,
namely the congruence applied last, which causes a repetition in the derivation.

Hence, the words 4; in a repetition-free derivation

st u=q0 =7 = = Yao1 = Yo — M (Pr),

n € N, do not contain s or 5. So the only congruences applied to~;,7 € {0,...,n—1}
are the congruences ¢t - [; =t -r; and thus any repetition-free derivation of mg from
s in P; has the form

s—tu—t-by—...=t-0,=1-v1-0v-w— 35 w=my(Py)

withn € N, and t-6;, =~;, 1 € [,,.
We obtain the following derivation in P leading from u to v = vy - v - w :

U—6— ... =0, =v1-v-w=0y(P).

By Theorem 3 m, = 5-w can be determined in space (size(u, vy, P))? - 2¢%, and
thus v, can be determined using at most space (size(u, vy, P))? - 2, O

Theorem 5 The subword problem for reversible Petri nets and commutative semi-
groups is exponential space complete with respect to log-lin reducibility.

Proof: From the results in [MM82] we know that the word problem for commutative
semigroups is exponential space complete with respect to log-lin reducibility. Since
the word problem is a special case of the subword problem, and because of Theorem 4
we conclude the assertion. O

3.2 The Finite Enumeration Problem for Commutative
Semigroups

Let P be a finite commutative semigroup presentation over some alphabet X, and
u € X* a word such that the congruence class of u is bounded. Then the finite
enumeration problem for reversible Petri nets and commutative semigroups is the
problem of generating a complete list of all the elements of [u]p. We give a procedure
for the solution of this problem which needs at most exponential work space.

10



Theorem 6 Let X = {zq,...,21}, P ={l; = ri; li,r; € X*,i € I} be a finile
commutative semigroup presentation over X, and u € X* a word such that the
congruence class of u is bounded. Then there is an algorithm which generates the
elements of [u]p using at most space (size(u, P))? - 25F < 2¢512e(WP) yhere €, ¢ > 0
are some constants independent of u and P.

Proof: In addition to xy,. .., z; we introduce 2k+3 new variables m, s, ¢, y1,..., Yz,
and zq1,...,25. Let X' = X U{m,s,t,y1,...,yx, 21,--.,2k}. Given P and the word
u € X*, we construct a new commutative semigroup presentation P’ over X' as
follows: P’ contains the congruences

s-x; = s-yj-z, for g=1,...k, (1)
s-y(u) = 1, (2)
s-u = m, (3)

and, for every congruence [; = r; in P, the congruences

s-y(l;) = s-y(r), and (4)
t-z(l) = t-z(r), (5)

where y (resp., z) are the homomorphisms replacing x; by y; (resp., z;) for j € I}.
Let < be a lexicographic term ordering satisfying

m=<a=<s=<b forall a&{zy,....x1}, b€ {tiy1,. ., Yr, 21, ., 2k}

In the following we prove that v € [u]p iff the term s - v occurs in a binomial of
(i, where (i is the reduced Grobner basis of the ideal I(P’) w.r.t. <. Then, by
Theorem 3, the elements of [u]p can be generated using at most space (size(u, P’))?-
29k < (size(u, P))? - 2%%, where d’, d > 0 are some constants independent of u and

P’ (resp., P).

First we establish some technical details.
Lemma 2 Fvery word w € [s - ulp: satisfies the following conditions:
(i) ®(w,s), ®(w,t), B(w,m) e {0,1};
(i) ®(w,s)+ ®(w,t) + P(w,m) = 1;

(iii) if ®(w,s) =1, then x?(w7w1)+@(w7y1).xg(wyxz)-l-@(w,yz)‘ . ,xf(w7xk)+<1>(w7yk) € [ulp,

O (w,z1)+@(w,z1)  P(w,z2)+P(w,22) O (w,zk)+P(w,zx)

T Ty ceexy € [u]p;
if (w,t) =1, then ®(w,x1) = P(w,22) = ... = ®(w, ;) =0,

O(w,y1) = ®(w,y2) = ... = B(w, yx) =0,

0300, ¢

Proof: Let w be any word in [s - u]p/, then there is a repetition-free derivation in
P’ leading from s - u to w. If w = m, then w is derived in one step from s - u by
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congruence (3) and w trivially satisfies the conditions (i) - (iii). Note that if in a
derivation starting at s-u congruence (3) is applied, then this derivation can only be
continued by again using congruence (3) what causes a repetition. If w # m, then
in any repetition-free derivation starting at s - u leading to w only the congruences
in (1) and (4) can be applied until the word s - y(u) - z(u) is reached and changed to
t-z(u) by congruence (2). Since [u]p is bounded, there is no v’ € {y1,...,yx}* with
s-u'-z(u) € [s-ulpr, v’ # y(u), and y(u) divides u’. Therefore, any word w occuring
in this derivation of s - y(u) - z(u) from s - u satisfies the conditions (i) - (iii):
(i) & (ii): P(w,s) =1, ¢(w,t) =0, P(w,m) =0,

(111) x?(w79€1)+@(w7y1) . xf(w79€2)+@(w7y2) . xf(wwk)-l-@(%yk) c [U]P7 and

x;b(wvxl)-l_q)(wvzl) . x;D(wvx2)+q>(wvz2) . wg(w7xk)+q>(w7zk) = u.

Then, as long as congruence (2) is not applied, by the congruences in (5) words
t-z(v) with v € [u]p can be derived from ¢ - z(u). Note, that for all such words
t-z(v) with v € [u]lp ®(t- z(v),s) = 0, (¢ - 2(v),t) = 1, and condition (iii) is
satisfied. Congruence (2) changes t-z(v) to s-y(u)- z(v) and again the congruences
in (1) and (4) can be applied. As above the words w in the resulting sub-derivation
starting at s - y(u) - z(v) satisfy (i), (ii), and (iii) with
x?(wvl’l)-l-@(wvzl) . x;b(w,xQ)—I—CI)(w,ZQ) . xf(w,xk)-l-@(w,zw — 0.

By the congruences in (4) from s - y(u)- z(v) any word s - y(v') - z(v) with v’ € [ulp
can be derived. Congruence (2) can only be applied to the word s-y(u)-z(v) causing
a repetition. Thus, the conditions (i) - (iii) are satisfied within the whole derivation.

DLemma 2

For the derivation of some word s- v € [s - u]p, with v € X* from s-u in P’ we
conclude from Lemma 2 and its proof:

Lemma 3 Let s-v € [s-ulp withv € X*, v u, andlet s-u=v =y — ... =
Yn = S - v be any repetition-free derivation in P’ leading from s-u to s-v. Then,
there is exactly one v € I,_q with v, = s-y(u)-z(u), yig1 =t - 2(u), and exactly one
JE L1, 7 >0, with~yj=1-2(v), yi41 = s - y(u) - z(v).

Thus, we have:
Lemma 4 Let v be some word in X*, then
vEulp <= s-veEls-ulp

Proof: By Lemma 2 and Lemma 3 a repetition-free derivation in P’ leading from
s-u to s-v with v € X* has the following form:

sou S-y(u)-z(u)—>t-z(u)Lt-z(v)ﬁs-y(u)-z(v) =+, 50,

(1), (4) (2) (5) (2) (1), (4)
where % denotes some repetition-free derivation only applying the congruences

given in (.) . Within the sub-derivations 5 the values O(w, z;) + P(w, z;) are

)
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constant for all 7 € [, i.e., the word x?(w’xl)—l_q)(w’Zl)-xg(w’x2)+q>(w’z2) e xg(w’xk)—l_q)(w’zk)

remains the same within  —— . Furthermore, all the words occuring in the above

)

derivation satisfy Lemma 2. Olemma 4
Lemma 5 [s - u]p/ is bounded.

Proof: Since [u]p is bounded, it follows from the definition of P’ and Lemma 2 that
[s - u|p: is also bounded. ULemma 5

Lemma 6 Let v be some word in X* with v & [u]p, and v divides some u’ € [u]p.
Then s - v is the minimal element of its congruence class [s - v]p: w.r.t. <.

Proof: If v € X* with v & [u]p, and v divides some u’ € [u]p, then there is some
v € X* —{e} with v/ = v-v" € [u]p. Because of the boundedness of [u]p there
is no v € [v]p with v = u-u for u € X*. If there would be such a v € [v]p, then
w=v-v"=0-v"mod P, v-v =u-u-v' € [ulp, i.e., [u]p is not bounded. Thus, in
any derivation starting at s-v the congruences (2) and (3) can not be applied. Only
the congruences in (1) and (4) can possibly be used. Since y; = x; (resp., z; = x;)
for all ¢ € Iy, s - v is the minimal element of [s - v]p: w.r.t. <. OLemma 6

Since [s-u]p: is bounded, it follows from Dickson’s Lemma that each w € [s-u]p/
is minimal in [s - u]ps w.r.t. divisibility, i.e., if w € [s- u]ps there is no w’ € [s- u]p,
w' # w such that v’ divides w. Thus, by Lemma 6, if w € [s - u]ps, and w is

not the minimal element ms,., = m of [s - ulps w.rt. <, then w € H, where H
denotes the set of the minimal elements of LT(/(P")) w.r.t. divisibility, and hence
GO{w—m|wé€[s- u]p, w+#m} (see Theorems 1 and 2). 0

Theorem 7 The finite enumeration problem for reversible Petri nets and commu-
tative semigroups is exponential space complete with respect to log-lin reducibility.

From the work in [MM82] we know that the uniform word problem for com-
mutative semigroups is exponential space complete. Actually, the construction in
[MMS82] proves the following, slightly stronger statement, which we will use for the
proof of Theorem 7:

Proposition 4 [MMS82] Let P be a finite commutative semigroup presentation over
X, v a word in X*, and v € X* a word such that [u]p is bounded. Fven with
this restriction, the uniform word problem, i.e., the problem of deciding whether
u =v mod P, is exponential space complete with respect to log-lin reducibility.

Proof of Theorem 7: Let P be the commutative semigroup presentation, and
u, v € X* the two words of Proposition 4. Then, v = v mod P, i.e., v € [u]p iff
v is contained in the list of elements of [u]p generated by the enumeration algo-
rithm of Theorem 6. Thus, an exponential space complete word problem reduces to
the enumeration problem for commutative semigroups, which together with Theo-
rem 6 establishes the exponential space completeness of the enumeration problem
for reversible Petri nets and commutative semigroups. O
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In the following we are going to show that Theorem 6 also provides an exponential
space upper bound for the finite containment problem (FCP) (and the finite equality
problem (FEP)) for reversible Petri nets and commutative semigroups.

The finite containment problem (the finite equality problem) for general (not
necessary reversible) Petri nets is the problem of determining for any two given
Petri nets with finite reachability sets whether the reachability set of the first is
contained in (is equal to) the other. A result by Karp and Miller in [KaMi69] shows
that FCP (FEP) for Petri nets is decidable, but in [MM81] Mayr and Meyer proved
that the complexity of each decision procedure for FCP (FEP) for general Petri nets
exceeds any primitive recursive function infinitely often. For reversible Petri nets,
or equivalently, commutative semigroups the situation changes.

Corollary 1 Let X = {aq,..., 23}, and P, Q be two finite commutative semigroup
presentations over X. Then there is an algorithm which decides for any two words
u, v € X* with bounded congruence classes [u]p, [v]g whether [ulp C [v]g using at
most space (max{size(u, P),size(v, Q)})* - 2°F < 2osie(wvP.Q) “yhere ¢, ¢ > 0 are
some constants independent of u, v, P and Q.

Proof: By Theorem 6 a complete list of all the elements of [u]p can be gener-
ated using at most space (size(u,P))? - 2% for some constant ¢ > 0 indepen-
dent of w and P. For every w € [u]p, by Proposition 1 and Proposition 2,
it can be decided whether w = v mod Q, i.e., w € [v]g, using at most space

(max{size(u, P),size(v, Q)})* - 25K O

From Proposition 4 we can derive that FCP for commutative semigroups, or
equivalently, reversible Petri nets is exponential space hard. Thus, we establish the
exponential space completeness of the finite containment problem (the finite equality
problem) for reversible Petri nets and commutative semigroups.

Theorem 8 The finite containment problem (the finite equality problem) for re-
versible Petri nets and commutative semigroups is exponential space complete with
respect to log-lin reducibility.

Proof: Let P be the commutative semigroup presentation, and u, v € X* the two
words of Proposition 4, and Q = ) the empty commutative semigroup presentation.

Then
[vjg={v} Clulp <= v=umodP.

Thus, an exponential space complete word problem reduces to FCP for commuta-
tive semigroups, which together with Corollary 1 establishes the exponential space
completeness of FCP (FEP) for reversible Petri nets and commutative semigroups.

O

4 The Equivalence Problem for Commutative
Semigroups

The equivalence problem for commutative semigroups, or equivalently, reversible
Petri nets is the problem of deciding for any two given congruence classes [ulp, [v]o,
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where P, Q are two commutative semigroup presentations over some alphabet X,
and u, v are two words in X*, whether [u]p is equal to [v]o.

Using the results of the previous section we are able to prove an exponential
work space upper bound for the equivalence problem.

Theorem 9 Let P, Q be two finite commutative semigroup presentations over
X = A{a1,...,21}, and u, v two words in X*. Then there is an algorithm which
decides whether [u]p is equal to [v]o using at most space 2emax{size(wP)size(v,Q)} <
gesize(wv,P.Q) “where ¢ is some constant independent of u, v, P and Q.

For the proof of this Theorem we note that X* is isomorphic to N¥ and that the
congruence classes in N¥ are uniformly semilinear sets (see [ES69]), i.e.,

13
[ulp = U {aj+2nib(i);ni € Nfor: = 1,...,t}

1 =1

for some vectors a;, b, ... b € NF j = 1,...,n. Thus, the congruence class
[u]p is completely determined by its minimal elements (w.r.t. divisibility) «; and its
minimal periods (w.r.t. divisibility) 5%). The proof of Theorem 9 follows from the
next theorem.

Theorem 10 Let X = {a1,...,zx}, P ={l; = ri li,r; € X*,0 € I} be a finile
commutative semigroup presentation over X, and u € X*. Then there is an algo-
rithm which generates a closed representation of [u]p using at most space 2¢%7¢(P)

where ¢ > 0 is some constant independent of u and P.

Proof: If [u]p is bounded, then, by Theorem 6, there is an algorithm which generates
the elements of [u]p using at most space (size(u,P))? - 2%, where ¢ > 0 is some
constant independent of v and P. In the following we assume that [u]p is unbounded,
i.e. the set of periods P, = {Zi_; n:60;n; € N} of the congruence class [u]p is
not the empty set.

First we show that the minimal periods (") of the uniformly semilinear set [u]p
can be determined using at most space 2°17¢(“%) where ¢; > 0 is some constant
independent of u and P. Then we show a 222} space bound for the minimal
elements a; of [u]p, where ¢; > 0 is some constant independent of v and P.

The bound for the minimal periods ) of [u]p can be derived from the bound for
the subword problem in Theorem 4. To see this we briefly review a useful property
of subtractive submonoids in N¥.

A submonoid P of N is said to be subtractive (see [ES69]), if p, p+ ¢ € P with
q € N¥ implies ¢ € P. Note that the set of periods Py, of [ulp in N* is a subtractive
submonoid of N*. The set of the nonzero minimal elements of P w.r.t. the canonical
partial ordering of N¥ is denoted by Min(P). From the work in [Huy85] and [SW70]

we know the following:

Proposition 5 [Huy85], [SW70] Let P C N* be a sublractive submonoid, and let
T be the set of all minimal subsets I C I}, such that Min(P) N {p = (p1,...,px) €
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N¥ | p; > 0 forj €I, pj =0 for j & I} contains exactly one clement p'. Let
U= {p!|I€T}. Then every p € Min(P) — U can be written as

pZZQuU, 0, €QT, 0<p, < 1.
uelU

We call the elements p’ of U extreme minimal periods.
Let p! = (p{,...,pl) be some extreme minimal period of Fj,. Since [u]p is

a uniformly semilinear set and p’ is a period of [u]p, i.e., p' € P,, the word
I I
v = u-a)' - 2% is an element of [u]p. From Theorem 4 it follows that v, and

thus p!, can be determined in space (size(u,P))? - 24 for some constant ¢, > 0
independent of u and P. By Proposition 5, the minimal periods () can be written
as
) = S or-p’, 0r€Qf,0< 9 <1,
pleU
where U is the set of the extreme minimal periods p’ of Pp,,, and hence can be
determined in space (size(u,P))? - 2°F for some constant ¢/ > 0 independent of u

and P.

For determining the minimal elements of [u]p, we first consider the commutative
semigroup presentation P’ obtained from P by the same way as in Section 3.2. Since
[u]p is unbounded, Lemma 2, 3, and 4 have to be modified slightly. The proofs of
the resulting lemmata are analogous to the proofs of the corresponding lemmata in
Section 3.2.

Lemma 7 For some v € X*, every word w € [s - v]|p: salisfies the following condi-
tions:

(i) ®(w,s), ®(w,t), B(w,m) e {0,1};
(ii) ®(w,s)+ P(w,t)+ P(w,m) =1;
(i) if ®(w,s)=1, then x?(w7w1)+@(w7y1).xg(wvxz)-l-@(w,yz)‘ . _xf(w7wk)+<1>(w7yk) € [v]p,

P(w,r1)+P(w,z Q(w,r)+P(w,z Q(w,zy)+P(w,z
51?1( 1) ( 1)‘1,2( 2) ( 2)xk( k) ( k) c [U]P;'

if ®(w,t)=1, then xf(w’xl)—l_q)(w’yl)-xg(w’x2)+q>(w’y2)- . -xf(w’”)—l_q)(w’yk)-u € [v]p,

x;b(w,xl)—l—q)(w,m)‘xg(w,xg)—l—@(w,zz)‘ ) ,xf(w,xk)-l-@(w,zk) e [v]p.

Lemma 8 For some v € X* let s-w € [s-v]p with w € X*, w # v, and let
S V= = Y1 — ... — Y, = §-w be any repetition-free derivation in P’ leading
from s-v to s-w. Then there must be somet € I,,_1 withv; = s-y(u)-0, viy1 = 10,70 €

{xlv T YLy Yk e Zk}*; x;b(?,m)-l—@(?,m) . x;b(?,m)-l—@(?,zz) . xf(?,xk)-l-@(ﬂ,z;g) = v,
and some j € l,_q, 7 > 1, with v; = t-W, 41 = s-ylu) W, W €
{@1, o X Y1, Yy 215 21T x?(w’xl)J’@(w’Zl) . xf(w’“”@(w@) e xf(w’xk)+q>(w’zk) =
w.

Lemma 9 Let v, w be two words in X*, then s-w € [s-v]ps iff w € [v]p, and there
is some W € [v]p such that u divides .

16



Thus, for all minimal elements a; of [u]p w.r.t. divisibility, from Theorem 2 it
follows that s-a; € LT(I(P')). Furthermore, if s -v € LT(I(P’)) for some v € X*,
then there is some w € [v]p such that u divides w. Hence, for all words v € X* with
s-v & LT(I(P')), and all periods p = (p1,...,px) € Py, we have that v-af" - ¥
is an element of [v]p. Especially, this is true for the minimal (w.r.t. divisibility) ele-
ments H' of LT(I1(P')), which, by Theorem 3, can be determined in space 2°57¢(v:7)
for some constant ¢ > 0 independent of v and P.

Now we project [u]p onto the bounded coordinates. The set X, C X of the
bounded coordinates can be found using the exponential space algorithm for the
selfcoverability problem for commutative semigroups described in [KM95]. This
algorithm is based on the following proposition:

Proposition 6 [KM95] Let X = {ay,... 2}, P ={l; = r; liyri € X*0 € I},
and u € X*. Then for j € I}, the following are equivalent:

(i) There exist p1,...,pn,q; € Q[X] such that

h
Y opilli—ri)=u wj ¢ —u
=1

(it) There is a derivation u =~y — v — ... — v, = v(P) leading from u to some
v € [u]p such that u is a proper subword of v, ®(v,x;) > ®(u,x;), and for
ne€l,

length(~:) < max{deg(l;p;), deg(r;p;); 1 € I1}.

From Dickson’s Lemma we can derive that an element x; of X is in X} iff there is
no v € [u]p such that u is a proper subword of v, and ®(v, ;) > ®(u,x;). Thus, by
Proposition 6 and Proposition 2, for every j € Iy it can be decided whether z; € X
using at most space 257¢(%) for some constant d > 0 independent of u and P.

Let w; denote the projection of any word w € X*, and P} the projection of P
onto the bounded coordinates in X;. Then the congruence class [u;]p, is bounded,
and, by Theorem 6, there is an algorithm which generates the elements of [up]p,
using at most space (size(uy, Py))? - 22°% < (size(u, P))? - 2%2°F, where ¢}, > 0 is some
constant independent of u and P.

Let ([u]p), denote the projection of [u]p onto the bounded coordinates in Xj.
Then ([u]p), = [us)p,. In particular, the projection (a;), of each of the minimal
elements a; of [u]p onto the bounded coordinates is an element of [u;]p,, and each
element of [uy]p, is the projection of at least one minimal element a;. For each word
Uy € [up]p,, we determine some T =1y, -t € [ulp, t € (X — X3)*, as ‘representative’
of the elements v of [u]p with v, = @W,. By Theorem 4, this computation requires at
most space (size(u, P))?-2%* for some constant ¢ > 0 independent of u and P.

In the following we show that the representative u together with the mini-
mal periods of [u]p provides all minimal elements a; of [u]lp with (a;), = .
We consider the words in X* as vectors in N¥. Let Z(m) C Z* denote the set
{H + 50 b Dz € Zfori =1, .. ,t} with 8%), i € I, the minimal periods of the
congruence class [u]p. Because [u]p = [u]p is a uniformly semilinear set, for all min-
imal elements a; of [u]p with (a;), = U, we have a; € Z(u). Assume that a € NF

17



is a minimal element of [u]p w.r.t. divisibility such that «, = @,, and some of its

. ¢y -size(u,P . .
entries are greater than 22 ( ), where ¢; > 0 is some constant specified below.

Since s-a € LT(I(P’)), there is some s - h, € H' such that h, divides a. We know
that h, + Py C [ha]p, and moreover, v + P, C [v]p for all v € N* such that A,
divides v.

Consider the intersection (h, + N¥) N Z(@) which is nonempty (since it contains
a). This intersection is a set of the form M+ Py, where M is the set of all minimal
elements w.r.t. divisibility. Because of the exponential space upper bounds for h,,
@, and for the elements of Min(F,, ), every element of M has entries bounded by
2262'5&6(“’?), where ¢ > 0 is some constant independent of u and P.

Let @’ be an element in M such that o' + Py, contains a. Then a = a' +t for
some ¢ € N* — {0}. Since a € [u]p, and by construction @’ = a mod P, we have
a’ € [u]p which provides a contradiction to the minimality of a.

Hence, the minimal elements a; of the uniformly semilinear set [u]p can be

determined using at most space 22s12¢(wP), O
Now we are able to prove the main result, Theorem 9.

Proof of Theorem 9: Equality of [u]p and [v]g can be tested by the exponential
space algorithm given in Figure 1.

Since the word problems occuring in this algorithm, by Proposition 3, can be de-
cided using at most space 2°max{size(wP)size(v,.Q)} for some constant ¢ > 0 independent
of u, v, P and Q, this algorithm can be implemented on a Turing machine with space
bound 2emaxisize(u,P)size(v,Q)} < gesize(uv,P.Q) for some constant ¢ > 0 independent of

u, v, P and Q. a

Corollary 2 The equivalence problem for reversible Petri nets and commutative
semigroups is exponential space complete with respect to log-lin reducibility.

Proof: Since FEP for reversible Petri nets, or equivalently, commutative semigroups
is a special case of the equivalence problem, and because of Theorem 8 and Theo-
rem 9 we conclude the assertion. Together with Theorem 9 this fact establishes the
exponential space completeness of the equivalence problem for reversible Petri nets
and commutative semigroups. O

5 Conclusion

The results obtained in this paper show that the equivalence problem for commuta-
tive semigroups is decidable in space 2" where n is the size of the problem instance,
and c is some constant independent of n. This space bound is optimal up to the size
of the constant ¢. We closed the gap between the 218" space upper bound shown
in [Huy85] and the exponential space lower bound resulting from the exponential
space completeness of the uniform word problem established in [MM82].
Furthermore, we provide asymptotically optimal decision procedures for the sub-
word and finite enumeration problems for commutative semigroups. These proce-
dures also require at most space 297, An immediate consequence of this complexity
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The Algorithm

Input: u, v e X~
P, Q two commutative semigroup presentations over X

Output:  [ulp = [v]o

if (u=vmodP and u=vmod Q) then
for each a € X* with degree < 2™t @i g,
if ((¢=umodP and a#wvmodQ ) or
(aZumodP and a=vmodQ)) then
reject
end_if
end_for
for each b€ X* with degree < L [
if ((u=u-bmodP and vZv-bmod Q) or
(uZu-bmodP and v=v-bmod Q) ) then
reject
end_if
end_for
accept
else reject

end_if

Figure 1: The exponential space algorithm for deciding the equivalence problem for
commutative semigroups (for suitable constants ¢; and ¢3)

bound for the finite enumeration problem is an analogous bound for the finite con-
tainment problem for commutative semigroups. Again, these results are asymptoti-
cally optimal, and we establish the exponential space completeness of the subword,
finite enumeration and finite containment problems for commutative semigroups.
Commutative Thue systems permit closed representations of their state space
(even if it is infinite) as semilinear sets. Thus, our algorithms can also be applied
in algorithms investigating the behaviour of such systems, like bisimulation prob-

lems [Par81].
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