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Exponential space computation of Gr�obner basesKlaus K�uhnle Ernst W. Mayr16th January 1996AbstractGiven a polynomial ideal and a term order, there is a unique reducedGr�obner basis and, for each polynomial, a unique normal form, namely thesmallest (w.r.t. the term order) polynomial in the same coset. We considerthe problem of �nding this normal form for any given polynomial, withoutprior computation of the Gr�obner basis. This is done by transforming arepresentation of the normal form into a system of linear equations and solvingthis system. Using the ability to �nd normal forms, we show how to obtainthe Gr�obner basis in exponential space.1 IntroductionLet us �rst �x some of the notation used in the remainder of this paper. LetQ[x1; : : : ; xn] be the polynomial ring in the indeterminates x1; : : : ; xn over the ra-tionals. Let T be the set of terms or power products in these indeterminates andlet � be some term order on T . We will consider an ideal I in the polynomialring Q[x1; : : : ; xn] that is generated by s polynomials f1; : : : ; fs . With respect tothis ideal I and the term order � we then have, for any polynomial h , a uniquenormal form, denoted by NF(h) , with the following de�ning property: NF(h) isthe smallest, w.r.t. the term order, monic polynomial in the I -coset of h . In otherwords: NF(h) is the outcome of a complete reduction of h w.r.t. the Gr�obner basisfor I and � . (Of course, NF(h) depends on the ideal I and the term order � ,which we disregard in our notation, since there will be no ambiguity.)This paper presents an algorithm for �nding the normal form of a given poly-nomial h and for computing the unique reduced Gr�obner basis for a given ideal,both requiring exponential space. It is structured as follows: First, we �x a wayto represent the term order, allowing us to talk about its representation size andto bound the length of a reduction w.r.t. a Gr�obner basis in terms of the size ofthe representation of the term order; this will yield a bound on the degree of thenormal form of h . As a consequence, it is possible to bound the degrees of thecoe�cients of a representation of h � NF(h) as a linear combination of the givengenerators f1; : : : ; fs and to transform this representation into a system of linearequations over the scalar �eld Q, whose solution is just the vector of coe�cients1



of the normal form of h . We will solve this system of linear equations e�cientlyand thus obtain the normal form of h . Using the calculation of normal forms as asubroutine, we will compute the Gr�obner basis of the given ideal by enumerating allterms up to the known bound on the degree of the Gr�obner basis and calculatingtheir normal forms. If a term is not irreducible (i.e. is not equal to its normal form)but all its divisors are, then we will add the di�erence of this term and its normalform to the Gr�obner basis.2 A bound on the degree of normal formsA term order � on the set T of all terms of Q[x1; : : : ; xn] is de�ned by the prop-erties 8t 2 T : 1 � t and 8t; u; v 2 T : u � v ) tu � tv . Robbiano showedin [Rob85] that any such term order can be represented by at most n weight func-tions W1; : : : ;Wn mapping from the set of terms into the set of real numbers asfollows: Let u = x1u1x2u2 : : : xnun be a term; thenWk(u) := nXi=1wk;iuiwhere wk;i are real numbers, specifying the term order. A term u is greater thananother term v in this term order if9k : Wk(u) > Wk(v) ^ 8j > k : Wj(u) =Wj(v)A constructive proof of this was given by Dub�e, Mishra and Yap in [DMY86]; theyalso show that the weights wk;i can be assumed to be nonnegative.Since it is not easy to represent numbers in such a way that all reals are �nitelydescribable, we will restrict ourselves to term orders that are representable by weightfunctions with rational weights. This is a proper restriction, i.e. there are termorders that cannot be represented with rational weights; however, every term ordercan be arbitrarily tightly approximated with rational weights in the following sense:Given a term order and a natural number, there is a term order representable withrational weights that agrees with the given term order on all terms whose degreesare bounded by the given number.Let the weights wk;i be given as fractions ak;ibk;i where ak;i and bk;i are naturalnumbers. Let A be the maximumof all the ak;i and bk;i . Note that maxk(lcmi(bk;i))is bounded by nA .We are going to recall parts of [DMY86]: We combine the characterizing weightfunctions Wi to a single weight function W by simulating their lexicographic inter-relation by means of a combination of them reminiscent of the B -adic representationof numbers: W (u) = nXi=1Bi�1Wi(u)2



For any given set of terms, it is possible to choose B large enough, so that W willproperly represent the term order on these terms, i.e. W (u) < W (v) if and onlyif u � v . We will now �nd an appropriate value for B .Let d be a bound on the degrees of the generating polynomials f1; : : : ; fs of theideal I . Dub�e showed in [Dub90] the existence of a Gr�obner basis G for I wherethe degrees of all polynomials in G are bounded by 2(d22 +d)2n�1 (remember that nwas the number of indeterminates in the polynomial ring). Hence, the maximalweight of any term occurring in a polynomial in G is bounded by 2A(d22 + d)2n�1 .The minimal di�erence between the weights of two terms is at least 1nA , becausethis di�erence must be an integer if multiplied by the lcm of the denominators ofthe weights. Setting B := 2nA2(d22 + d)2n�1 in the de�nitionW (u) = nXi=1Bi�1Wi(u)of the uni�ed weight function therefore guarantees that W will properly representthe term order on G .Though we do not know any Gr�obner basis as yet, we consider the processof reducing h w.r.t. G according to Buchberger's algorithm ([Buc65]). In such areduction, a step consists of deleting some monomial in the current polynomial bysubtracting a suitable multiple of a suitable polynomial of the Gr�obner basis in sucha way that the largest monomial of the multiple of the Gr�obner basis element andthe monomial chosen for deletion cancel out. Here, we always choose the largestpossible monomial for deletion; this strategy implies that the monomials that aredeleted during the reduction process strictly decrease w.r.t. the term order. Wewant to bound the degrees and therefore the number of these monomials in orderto get a bound on the length (i.e. the number of steps) of the reduction.The fact that the uni�ed weight function W represents the term order on Gimmediately implies that in any reduction step, the weights of the monomials thatare inserted into the polynomial are strictly smaller than the weight of the monomialthat is deleted. Hence, the weight of a polynomial, de�ned to be the maximal weightof its monomials, will not increase in any step of the reduction w.r.t. G . The weightof h is therefore a bound on the weights of all monomials that are deleted during thereduction of h . These monomials are all distinct; consequently, the number of themand with it the length of the reduction is bounded by the number of monomialswhose weights are at most as large as the weight of h .Let u be the monomial of h with maximal weight. ThenW (u) = nXi=1Bi�1Wi(u)� n�1Xi=0 BiAdeg(u)� Bn � 1B � 1 Adeg(h)� BnAdeg(h)3



Since the weight of any monomial is at least 1A , we have BnA2 deg(h) as a boundon the degrees of all those monomials whose weights do not exceed the weight of h .The number of these monomials and with it the length of the reduction of h istherefore bounded by (BnA2 deg(h))n = ((2nA2(d22 + d)2n�1)nA2 deg(h))n .In every reduction step, the degree of the polynomial to be reduced increases byat most the maximal degree of the polynomials in the Gr�obner basis. The productof this maximal degree and the number of reduction steps is clearly a bound on theincrease of the degree of h during its reduction. Thus, we have as the result of thissection:Proposition: In Q[x1; : : : ; xn] , let a polynomial ideal I be given by generatorswhose degrees are bounded by d and let a term order be given by n weight func-tions with rational weights, as described at the beginning of this section, where thenumerators and denominators of the weights are bounded by A . Then the degreeof the unique normal form of a given polynomial h w.r.t. the given ideal and termorder is bounded by ((2n(d22 + d)2n�1)nA2n deg(h))n+1 =: N .3 Reducing the membership problem to a matrixequationWe will now exploit the upper bound on the degrees of normal forms for actually�nding them. The di�erence of h and its normal form is certainly in the ideal andthus representable as a linear combination of the generators (note that we take theoriginal ideal basis rather than the Gr�obner basis G , whose existence we only usedfor bounding the degree of the normal form). Hermann showed in [Her26] that thereis a representation h�NF(h) = sXi=1 ficiwhere the degrees of the coe�cients ci are bounded by D := deg(h � NF(h)) ++ (sd)2n � N + (sd)2n (remember that d was the bound on the degrees of the fiand N the bound on the degree of NF(h) developed in the last section).Expanding all polynomials to sums of monomials, i.e. the ideal generators tofi = Pffi;tt j t 2 T^deg(t) � dg , the unknowns to ci = Pfci;tt j t 2 T^deg(t) � Dgand, �nally, NF(h) = Pfytt j t 2 T ^ deg(t) � Ng , we geth = NF(h) + sXi=1 fici= Xt2Tdeg(t)�Nytt+ sXi=10BBB@ Xt2Tdeg(t)�dfi;tt1CCCA0BBB@ Xt2Tdeg(t)�Dci;tt1CCCA4



= Xt2Tdeg(t)�Nytt+ sXi=1 Xt2Tdeg(t)�d+D 0BB@ Xu;v2Tuv=t fi;uci;v1CCA t= Xt2Tdeg(t)�Nytt+ Xt2Tdeg(t)�d+D 0BB@ sXi=1 Xu;v2Tuv=t fi;uci;v1CCA tIf we also expand h to h = Pfhtt j t 2 T^deg(t) � deg(h)g and compare coe�cientsin our polynomial equation, we get, for every term t involved, an equation in Q ofthe form ht = yt + sXi=1 Xu;v2Tuv=t fi;uci;vwhere we assume all coe�cients with too high an index to be zero.The bound on the degrees of the terms involved in the polynomial equation wasmax(N; d + D) , therefore we get at most (max(N; d + D))n equations in Q. Wecan write all these equations as a single matrix equation by forming a vector H ofthe coe�cients of h , a vector C of unknowns consisting of the yt and the ci;t anda matrix F whose entries are the coe�cients fi;t of the generating polynomials fi(the same coe�cient may occur quite often in this matrix), some 1's and a lot of0's. The matrix equation is then justH = FCThis matrix equation is a direct translation of the above polynomial equation, sothe solutions are just the vectors of coe�cients yt of polynomials y in the cosetof h whose degrees do not exceed N and the corresponding coe�cients ci;t ofrepresentations of h � y as linear combinations of the fi . The solution we areaiming for is one with minimal y w.r.t. the term order.We already mentioned that the number of equations or the number of rows of Fis bounded by (max(N; d+D))n . Now we will bound the number of columns of F orthe number of unknowns in the vector C . We get Nn unknowns yt from NF(h) andDn unknowns ci;t from every ci , hence there are altogether Nn + sDn unknowns.The format of the matrix, i.e. the maximum of its height and width, is thereforebounded by Nn + s(d+D)n =:M .For the calculation of F , we have to determine the places in F where thecoe�cients of the generating polynomials fi go. The entry in the matrix F in therow corresponding to the term t and the column corresponding to the unknown yuis one if and only if u = t and zero otherwise. The entry in the matrix F in therow corresponding to the term t and the column corresponding to the unknown ci;uis the coe�cient fi; tu if t is divisible by u and zero otherwise. So, the requiredcoe�cient is determined by computing the place where to look it up in the tablecontaining the coe�cients of the fi . The space required for that is the space neededfor the division of a term by another one; such a division is merely a subtraction5



of the corresponding exponent vectors. Hence, the space requirement is essentiallythat for writing down two terms. The degrees of the terms involved are boundedby max(N; d +D) , so the space needed is at most 2n(logmax(N; d +D) + 1).The space for writing down the entire matrix is far too large, therefore we do notdetermine the matrix in advance but compute each entry when it is needed duringthe further treatment of F .4 Finding the normal formNow we are going to �nd a solution to the matrix equation H = FC where thepolynomial y = Pt ytt built from the entries of the solution vector is minimal w.r.t.the term order. It is clear that this y is the normal form of h we are looking for.As an intermediate step, we want to have a maximal regular minor F 0 of Fsuch that the solution to the corresponding matrix equation H 0 = F 0C 0 representsthe normal form of h . To this end we have to remove rows and columns of F thatare linearly dependent on the others. Note that we do not have enough space towrite down the matrix F and therefore can not actually remove anything. What wewill develop is a method to determine with reasonable space requirements whethera given row or column is in F 0 . This method will consist of two rank computationsas follows: If we �x an arbitrary order on the rows (resp., columns) of F , thenthe k -th row (resp., column) is in F 0 if the ranks of the minor of F consistingof the �rst k � 1 rows (resp., columns) and the one consisting of the �rst k rows(resp., columns) di�er, whereas that row (resp., column) will be dispensable if thosetwo ranks are equal. It is clear that the maximal regular minor resulting from thismethod depends on the chosen order of the rows and columns. It is also clear thatthe solution of the matrix equation with this maximal regular minor will representthe normal form of h if and only if the order of the columns is chosen such thatthe columns corresponding to the yt come last (i.e. after the ones corresponding tothe ci;t ) and in ascending term order of their indices (i.e. the column correspondingto yt comes before the column corresponding to yu if t � u). Incidentally, the orderof the rows does not in
uence the solution.The tools needed for determining this maximal regular minor of F are an e�cientway of enumerating in the given term order all terms up to the given degree boundand an e�cient method for calculating the rank of a matrix.Comparing two terms essentially requires the space for writing down their weightsmultiplied by the lcm (or the product) of the denominators of all weights. Thisspace does not exceed 2(log(n2A2max(N; d +D)) + 1). The space needed for theenumeration of the terms is essentially that for writing down three terms, namelythe last one output and two others for an exhaustive search of the next one tooutput, and for the comparison of two terms. Altogether we need space not exceed-ing 3n log max(N; d + D) + 1 + 2(log(n2A2max(N; d + D)) + 1). The exhaustivesearch is possible since we can enumerate all terms up to the given degree bound inlexicographic order. 6



As to the rank calculation, we will, for simplicity's sake, multiply each row ofthe matrix and the right hand side by the lcm (or even simpler, by the product) oftheir denominators to get an integer matrix and then adopt the method of Ibarra,Moran and Rosier, described in [IMR80], which runs in parallel as follows: First,the matrix gets multiplied by its transpose; from the resulting matrix we calculatethe characteristic polynomial. Finally, the rank of the original matrix is the dif-ference of the degree of the characteristic polynomial and the highest power of theindeterminate that divides the characteristic polynomial.Let K be a bound on the numerators and denominators of the coe�cients ofthe polynomial h to be reduced and the generating polynomials f1; : : : ; fs . Then,K is a bound on the numerators and denominators of the entries of H and Fand, consequently, the lcm (or the product) of the denominators is at most KMand the entries of the integer matrix are bounded by KM+1 . The multiplication ofthe matrix by its transpose can be done in O(logM log log(M(KM+1)2)) paralleltime, since log(M(KM+1)2) is an upper bound on the number of bits required forwriting down any number occurring during that calculation. As shown by Galil andPan in [GP89], the characteristic polynomial of an integer matrix can be computedin O(log2(Mp)) parallel time, where p is an upper bound on the number of bitsrequired for writing down any number occurring during the calculation. In our case,p = log((M(KM+1)2)MM !) � 2M(M + 1) log(2K) will su�ce. The determinationof the index of the smallest nonvanishing coe�cient of the characteristic polynomialcan be done in O(logM) parallel time.By the parallel computation thesis, shown by Fortune and Wyllie in [FW78], wecan do all this sequentially using no more space than the square of the time requiredby a parallel algorithm. In our case, we need space amounting to O(log4(M logK)) .Thus, we have an e�cient method to determine for a given row or column of Fwhether this row or column is in our maximal regular minor.Next we have to compute the unique solution of the matrix equation H 0 = F 0C 0where F 0 is the maximal regular minor of F determined above and H 0 and C 0 arethe corresponding shortened versions of H and C .In [GP89], Galil and Pan also showed that the inverse of a regular M�M -matrixcan be computed in O(log2(Mp)) parallel time, where p is an upper bound on thenumber of bits required for writing down any number occurring during the calcula-tion. This will easily yield the solution of the matrix equation within essentially thesame time. Again by the parallel computation thesis of [FW78], we therefore canobtain a solution to the matrix equation requiring O(log4(M logK)) space.Once more, note that we do never write down the entire matrix for all that hasbeen described, because this would take too much space. Instead, we calculate eachentry when it is needed, and we determine for each row or column whether it is inour maximal regular minor at the time when we consider the entries of that row orcolumn.It is already clear how the solution of the matrix equation represents the normalform of the given polynomial. Thus we can calculate this normal form within thespace bound just stated and have the result of this section:7



Proposition: In Q[x1; : : : ; xn] , let the polynomial ideal I be given by s generatorswhose degrees are bounded by d . Then the normal form of a given polynomial hcan be computed using O(log4((Nn + s(d + N + (sd)2n)n) logK)) space where Nis the bound on the degree of the normal form of h stated in the proposition atthe end of section 2 and K is a bound on the numerators and denominators of thecoe�cients of the given polynomials.5 Computing the Gr�obner basisWe will now use the calculation of normal forms as a subroutine for the computationof Gr�obner bases. To this end, let us introduce some more terminology: We willcall a term u a direct divisor of another term t 6= u if u divides t but there is noterm v 62 fu; tg such that u divides v and v divides t ; in other words, the directdivisors of a term are just those terms where the exponent vector is smaller by 1 inexactly one coordinate and equal in all others. It is obvious that any term has atmost n direct divisors. If a monic monomial m is reducible (i.e. is di�erent from itsnormal form) but all its direct divisors are irreducible, then we will call m minimallyreducible. Clearly, if all direct divisors of a monomial are irreducible, then so are allits (not necessarily direct) proper divisors.It is not hard to see that the unique reduced Gr�obner basis of a given ideal isjust the set G of all the polynomials m�NF(m) where m is a minimally reduciblemonic monomial. Indeed, on the one hand, every polynomial that is not minimal inits coset will be reducible w.r.t. G ; on the other hand, any such minimally reduciblemonic monomial m could not be reduced w.r.t. G n fm�NF(m)g .For generating G , we enumerate all monic monomials (= terms) up to the degreebound on Gr�obner bases, shown by Dub�e in [Dub90]. For every such monomial m ,we calculate its normal form and also the normal forms of all its direct divisors. Ifm turns out to be minimally reducible, then we output m�NF(m) as an elementof the Gr�obner basis. It is clear that the overall output we will produce by thismethod is the unique reduced Gr�obner basis.The space needed for the enumeration of all monic monomials is essentially thatfor writing down a term. For the direct divisors we need space for another term;and for the normal form calculations the space bound from the preceding sectionapplies. This gives a space requirement of O(log4(M logK)) altogether. However,note that one of the parameters in the space bound of the preceding section was thedegree of the input polynomial h but here we do not have such a polynomial as partof the input. Therefore, we have to replace this parameter in the space bound bythe bound on the degrees of the polynomials whose normal form we calculate. Thisnew parameter is just the degree bound of Dub�e ([Dub90]) on the Gr�obner basis.We will take this into account in the next section; let us now brie
y summarize thecalculation of the Gr�obner basis.The outermost loop of our algorithm is an enumeration of all monic monomialsup to Dub�e's degree bound. In every pass through the loop we call n+1 times the8



subroutine for the normal form calculation applied to the n direct divisors of thecurrent monomial and the monomial itself. As the result of these n+ 1 calls of thenormal form calculating subroutine we get the information whether h is minimallyreducible, in addition to the normal form of h . In case h is minimally reducible weoutput h � NF(h) as an element of the Gr�obner basis and proceed by taking thenext monic monomial in the outermost loop.Let us also summarize the subroutine for the calculation of normal forms. Let hdenote the monic monomial that is the input of the subroutine. We consider (but donot write down) the matrix equation H 0 = F 0C 0 where F 0 is our maximal regularminor of F and H = FC is the matrix equation representing the polynomialequation h = NF(h)+Psi=1 fici in the way described in section 3. We calculate, oneby one, those entries of the solution vector C 0 which are the coe�cients of the normalform of h (in case h is a direct divisor, we actually need only the coe�cient yh inorder to know whether h is in normal form) by performing the necessary parts ofthe multiplication F 0�1 � H 0 . We never write down the matrix F 0�1 but computeeach entry when it is needed. The computation of the entries of F 0�1 can be donewithin the required space bound by virtue of [GP89] and [FW78]. Note that theentries of F 0 used in this computation are also determined from scratch each timethey are used. As has been shown in the previous sections the decision whether arow or column is in the maximal regular minor as well as the determination of anyentry of F can be done within the required space bounds.The e�ort necessary for the normal form subroutine does not increase substan-tially if we also calculate the entries ci;t of the solution vector C 0 and thus obtainthe coe�cients ci of the representation of h � NF(h) as a linear combination ofthe ideal generators f1; : : : ; fs . This means that we can, for each element of theGr�obner basis, compute, in addition, the coe�cients of a representation as a linearcombination of the original basis within the same space bound.6 Complexity considerationsIn this section we will summarize the statements about the space requirements ofthe methods described so far.Let us �rst consider the problem of computing the normal form of a polynomial.We are given an ideal I , a term order � and a polynomial h to be reduced. Let sizebe the number of bits needed to write down this input. Here we assume that I isgiven by a collection f1 ,: : : ,fs of polynomials whose degrees are bounded by d andwhose coe�cients' numerators and denominators are bounded by K . The term orderis given by a collection of n2 rational weights (n is the number of indeterminates)whose numerators and denominators are bounded by A .It is clear that d , K and A are bounded by 2size and that n and s are boundedby size . The degree of h is also bounded by 2size , but in view of the problem ofcalculating Gr�obner bases we will only use a bound of 22O(size) on this degree.9



The bound N on the degree of the normal form of h isN = ((2n(d22 + d)2n�1)nA2n deg(h))n+12 (22O(size) deg(h))O(size)� 22O(size)Next we express Hermann's bound (from [Her26]) on the degrees of the coe�cientsin the representation of h�NF(h) in terms of the input-size.D � N + (sd)2n 2 22O(size)It remains to give a bound on the format M of F in terms of the input-size.M = Nn + s(d+D)n 2 22O(size)Note that in all these estimates we used 22O(size) as a bound on the degree of h .Since O(log4(M logK)) � 2O(size) the above arguments imply the �rst mainresult of this paper.Theorem: The calculation of the normal form of a given polynomial w.r.t. a givenideal and term order can be done in exponential space.Let us now turn to the calculation of Gr�obner bases. Here, we are given an idealand a term order in the same way as described above (only the polynomial h is miss-ing this time). We enumerate all monic monomials m up to Dub�e's degree bound([Dub90]) which is 22O(size) and use m and its direct divisors as the polynomial hto be reduced in the normal form calculation. Note that, in the consideration of thenormal form calculation, we took 22O(size) as bound on the degree of h , thereforewe can adopt the results from there. After each such normal form calculation, thespace for that calculation can be freed completely, because in the case of a directdivisor the result only in
uences whether we proceed testing or interrupt the workon the current monomial, and in the case of the monomial itself we will immediatelyoutput the di�erence of the monomial and its normal form, if nonzero, as an elementof the Gr�obner basis. Thus, we need space for enumerating all monic monomials,negligible space for the control of the order in which the direct divisors are testedand space for the normal form calculation. The second main result follows:Theorem: The unique reduced Gr�obner basis of a given ideal w.r.t a given termorder can be computed in exponential space.It is not hard to see that the two main results remain valid if we assume a �xedterm order that is not part of the input, i.e. if the input consists only of the idealbasis and possibly the polynomial to be reduced.Another variant to be considered is the case of a �xed term order and a �xedideal, both not being part of the input. It is clear that it does not make senseto look at the complexity of the Gr�obner basis calculation in this case. But if we10



take a polynomial h as input, we can consider the complexity of its normal formcalculation. Here, n , s , d and A are constant, because we consider the ideal aswell as the term order as �xed. Only deg(h) and K as a bound on the numeratorsand denominators of the coe�cients of h are bounded by 2O(size) . Note that we donot have to use a more generous bound on deg(h) here, since there is no Gr�obnerbasis calculation we want to provide for. It turns out that, in this case, the spaceneeded for the calculation of the normal form of h is bounded by O(size4) ; in otherwords, the normal form calculation can be done in polynomial space.7 Bibliographic notesThe representation of term orders by a collection of weight functions is due toRobbiano. His presentation [Rob85], where he shows that every term order can berepresented by at most n weight functions (n is the number of indeterminates) isessentially an excerpt from his more comprehensive treatment [Rob86] on generalizedstandard bases. Dub�e, Mishra and Yap take up this idea, give a constructive proofof the representability of term orders by weight functions and use this representationfor bounding the length of a reduction of a polynomial with respect to some basisin [DMY86]. By a reduction we always mean a process like the one appearing inBuchberger's algorithm which was originally described in [Buc65].The doubly exponential bound on the degrees of the elements in Gr�obner baseshas been proved by Dub�e in [Dub90]. Hermann proved in her dissertation [Her26]the doubly exponential bound on the degrees of the coe�cients in the representationof a polynomial as a linear combination of the ideal generators. Mayr and Meyershowed in [MM82] that this bound is asymptotically tight. The �rst applicationof this complexity bound to the polynomial ideal membership problem was givenin [May92].E�cient parallel matrix calculations as used here for the solution of our sys-tem of linear equations have been widely studied since the appearance of Csanky'spaper [Csa76]. Many researchers contributed improvements, cf. [PS78], [IMR80],[BvzGH82], [Ber84], [Mul86] and [Pan87]. The work of Galil and Pan ([GP89])gives a better account for the Boolean complexity, which is important in our case ofvery large numbers. The easy transition between parallel time complexity and se-quential space requirements is justi�ed by the parallel computation thesis of Fortuneand Wyllie in [FW78].Let us �nally mention that Koppenhagen and Mayr present an optimal Gr�obnerbasis algorithm for binomial ideals (each generator is a di�erence of two monomials)in [KM96]. This algorithm is based on combinatorial principles and does not relyon the parallel computation thesis.A survey on recent developments concerning the algorithmic aspects of polyno-mial ideal theory can be found in [May95].11
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fi i -th generating polynomialfi;t coe�cient of fi belonging to the term tG unique reduced Gr�obner basis for I w.r.t. �H vector of the coe�cients of hH 0 part of H corresponding to the regular minor F 0h the polynomial to be reducedht coe�cient of h belonging to the term tI the ideal generated by f1 ,: : : ,fsK bound on the numerators and denominators of the coe�cients of h andthe fiM bound on the format of F .M = Nn + s(d+D)nN bound on the degree of the normal form of h .N = ((2n(d22 + d)2n�1)nA2n deg(h))n+1n number of indeterminates in the polynomial ringNF(f) normal form (w.r.t. � and I ) of a polynomial fQ the set of all rational numberss number of generators of Isize number of bits required to write down the inputT the set of all terms or power productsW uni�ed weight function, de�ned byW (u) =Pni=1Bi�1Wi(u)Wk k -th weight function, de�ned byWk(x1u1 : : : xnun) = Pni=1wk;iuiwk;i i -th weight of the k -th weight functionxi i -th indeterminate of the polynomial ringyt coe�cient of NF(h) belonging to the term t
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