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Abstract

Given a polynomial ideal and a term order, there is a unique reduced
Grébner basis and, for each polynomial, a unique normal form, namely the
smallest (w.r.t. the term order) polynomial in the same coset. We consider
the problem of finding this normal form for any given polynomial, without
prior computation of the Grébner basis. This is done by transforming a
representation of the normal form into a system of linear equations and solving
this system. Using the ability to find normal forms, we show how to obtain
the Grobner basis in exponential space.

1 Introduction

Let us first fix some of the notation used in the remainder of this paper. Let
Q[z1,...,2,] be the polynomial ring in the indeterminates x1,...,x, over the ra-
tionals. Let T' be the set of terms or power products in these indeterminates and
let < be some term order on T'. We will consider an ideal [ in the polynomial
ring Q[zq,...,2,] that is generated by s polynomials fi,..., f;. With respect to
this ideal I and the term order < we then have, for any polynomial A, a unique
normal form, denoted by NF(h), with the following defining property: NF(h) is
the smallest, w.r.t. the term order, monic polynomial in the I-coset of ~. In other
words: NF(h) is the outcome of a complete reduction of h w.r.t. the Grobner basis
for [ and <. (Of course, NF(h) depends on the ideal [ and the term order <,
which we disregard in our notation, since there will be no ambiguity.)

This paper presents an algorithm for finding the normal form of a given poly-
nomial h and for computing the unique reduced Grobner basis for a given ideal,
both requiring exponential space. It is structured as follows: First, we fix a way
to represent the term order, allowing us to talk about its representation size and
to bound the length of a reduction w.r.t. a Grobner basis in terms of the size of
the representation of the term order; this will yield a bound on the degree of the
normal form of h. As a consequence, it is possible to bound the degrees of the
coefficients of a representation of A — NF(h) as a linear combination of the given
generators fi,..., fs and to transform this representation into a system of linear
equations over the scalar field @, whose solution is just the vector of coefficients



of the normal form of h. We will solve this system of linear equations efficiently
and thus obtain the normal form of h. Using the calculation of normal forms as a
subroutine, we will compute the Grobner basis of the given ideal by enumerating all
terms up to the known bound on the degree of the Grobner basis and calculating
their normal forms. If a term is not irreducible (i.e. is not equal to its normal form)
but all its divisors are, then we will add the difference of this term and its normal
form to the Grobner basis.

2 A bound on the degree of normal forms

A term order < on the set T' of all terms of Q[z1,...,x,] is defined by the prop-
erties Vi € T': 1 <t and Vi,u,v € T : v < v = tu < tv. Robbiano showed
in [Rob85] that any such term order can be represented by at most n weight func-
tions Wy,..., W, mapping from the set of terms into the set of real numbers as
follows: Let v = x1"*a" ... 2,"" be a term; then

Wk(u) = Z w;m'ui
=1

where wy; are real numbers, specifying the term order. A term u is greater than
another term v in this term order if

ks Wi(u) > Wi(v) AV >k Wi(u) = W;(v)

A constructive proof of this was given by Dubé, Mishra and Yap in [DMY86]; they
also show that the weights wy; can be assumed to be nonnegative.

Since it is not easy to represent numbers in such a way that all reals are finitely
describable, we will restrict ourselves to term orders that are representable by weight
functions with rational weights. This is a proper restriction, i.e. there are term
orders that cannot be represented with rational weights; however, every term order
can be arbitrarily tightly approximated with rational weights in the following sense:
Given a term order and a natural number, there is a term order representable with
rational weights that agrees with the given term order on all terms whose degrees
are bounded by the given number.

Let the weights wy; be given as fractions 7%

br ;
numbers. Let A be the maximum of all the ay; and by ;. Note that maxy(lem;(by;))
is bounded by nA.

We are going to recall parts of [DMY86]: We combine the characterizing weight
functions W; to a single weight function W by simulating their lexicographic inter-
relation by means of a combination of them reminiscent of the B-adic representation

where ay; and by; are natural

of numbers:
n

Wiu) = Z Bi_lVVi(u)

=1



For any given set of terms, it is possible to choose B large enough, so that W will
properly represent the term order on these terms, i.e. W(u) < W(v) if and only
if u<v. We will now find an appropriate value for B.

Let d be a bound on the degrees of the generating polynomials fi,..., fs of the
ideal I. Dubé showed in [Dub90] the existence of a Grébner basis G for [ where
the degrees of all polynomials in G are bounded by 2(% + d)zn_1 (remember that n
was the number of indeterminates in the polynomial ring). Hence, the maximal
weight of any term occurring in a polynomial in G is bounded by 2A(§ + d)zn_l.
The minimal difference between the weights of two terms is at least i, because
this difference must be an integer if multiplied by the lem of the denominators of
the weights. Setting B := ZnAz(g +d)*"7" in the definition

W(u) =3 B Wi(u)
i=1
of the unified weight function therefore guarantees that W will properly represent
the term order on G'.

Though we do not know any Grobner basis as yet, we consider the process
of reducing h w.r.t. G according to Buchberger’s algorithm ([Buc65]). In such a
reduction, a step consists of deleting some monomial in the current polynomial by
subtracting a suitable multiple of a suitable polynomial of the Grébner basis in such
a way that the largest monomial of the multiple of the Grobner basis element and
the monomial chosen for deletion cancel out. Here, we always choose the largest
possible monomial for deletion; this strategy implies that the monomials that are
deleted during the reduction process strictly decrease w.r.t. the term order. We
want to bound the degrees and therefore the number of these monomials in order
to get a bound on the length (i.e. the number of steps) of the reduction.

The fact that the unified weight function W represents the term order on
immediately implies that in any reduction step, the weights of the monomials that
are inserted into the polynomial are strictly smaller than the weight of the monomial
that is deleted. Hence, the weight of a polynomial, defined to be the maximal weight
of its monomials, will not increase in any step of the reduction w.r.t. G. The weight
of h is therefore a bound on the weights of all monomials that are deleted during the
reduction of h. These monomials are all distinct; consequently, the number of them
and with it the length of the reduction is bounded by the number of monomials
whose weights are at most as large as the weight of h.

Let u be the monomial of A with maximal weight. Then

W) = 3 BWiu)

=1

n—1
< Y B'Adeg(u)
=0
B"—1
<
< G Ades(h)
< B"Adeg(h)



Since the weight of any monomial is at least i, we have B"A*deg(h) as a bound
on the degrees of all those monomials whose weights do not exceed the weight of 4.
The number of these monomials and with it the length of the reduction of h is
therefore bounded by (B"A*deg(h))" = ((ZnAz(g + d)?" )" A2 deg(h))".

In every reduction step, the degree of the polynomial to be reduced increases by
at most the maximal degree of the polynomials in the Grobner basis. The product
of this maximal degree and the number of reduction steps is clearly a bound on the
increase of the degree of h during its reduction. Thus, we have as the result of this

section:

Proposition: In Q[zy,...,2,], let a polynomial ideal [ be given by generators
whose degrees are bounded by d and let a term order be given by n weight func-
tions with rational weights, as described at the beginning of this section, where the
numerators and denominators of the weights are bounded by A. Then the degree
of the unique normal form of a given polynomial A w.r.t. the given ideal and term

order is bounded by ((Zn(g + d)zn_l)”AQ” deg(h))"tt = N.

3 Reducing the membership problem to a matrix
equation

We will now exploit the upper bound on the degrees of normal forms for actually
finding them. The difference of A and its normal form is certainly in the ideal and
thus representable as a linear combination of the generators (note that we take the
original ideal basis rather than the Grobner basis G, whose existence we only used
for bounding the degree of the normal form). Hermann showed in [Her26] that there
1s a representation

h — NF(h) = ZS:fZCZ

where the degrees of the coefficients ¢; are bounded by D := deg(h — NF(h)) +
+ (Sd)zn < N + (Sd)zn (remember that d was the bound on the degrees of the f;
and N the bound on the degree of NF(h) developed in the last section).

Expanding all polynomials to sums of monomials, i.e. the ideal generators to
fi=>A{fiidt |t € Thdeg(t) < d}, theunknowns to ¢; = Y {ec; .t | t € TAdeg(t) < D}
and, finally, NF(h) = > {y:t |t € T Ndeg(t) < N}, we get

= Z yit + Z Z Jist Z Cit
teT =1 teT teT
deg(t)<N deg(t)<d deg(t)<D



s

- Z ytt + Z Z Z fi,uci,v t
teT =1 teT u,w€T
deg(¢t)<N deg(t)<d+D uv=t

s

= Z ytt—l— Z Z Z fi,uci,v t
teT teT 1=1 u,weT
deg(¢t)<N deg(t)<d+D uv=t

If we also expand h to h = Y_{hst |t € TAdeg(t) < deg(h)} and compare coefficients
in our polynomial equation, we get, for every term ¢ involved, an equation in @ of

the form .
ht =Yt + Z Z fi,uci,v

=1 u,weT
wv=t

where we assume all coefficients with too high an index to be zero.

The bound on the degrees of the terms involved in the polynomial equation was
max(N,d + D), therefore we get at most (max(N,d 4+ D))" equations in Q. We
can write all these equations as a single matrix equation by forming a vector H of
the coeflicients of &, a vector C' of unknowns consisting of the y; and the ¢;; and
a matrix J whose entries are the coeflicients f;; of the generating polynomials f;
(the same coefficient may occur quite often in this matrix), some 1’s and a lot of
0’s. The matrix equation is then just

H=FC

This matrix equation is a direct translation of the above polynomial equation, so
the solutions are just the vectors of coefficients y; of polynomials y in the coset
of h whose degrees do not exceed N and the corresponding coefficients ¢;; of
representations of & — y as linear combinations of the f;. The solution we are
aiming for is one with minimal y w.r.t. the term order.

We already mentioned that the number of equations or the number of rows of F
is bounded by (max(N,d+ D))". Now we will bound the number of columns of F or
the number of unknowns in the vector C'. We get N™ unknowns y; from NF(h) and
D™ unknowns ¢;; from every ¢;, hence there are altogether N 4+ sD" unknowns.
The format of the matrix, i.e. the maximum of its height and width, is therefore
bounded by N™ + s(d+ D)" =: M.

For the calculation of F, we have to determine the places in F where the
coefficients of the generating polynomials f; go. The entry in the matrix F in the
row corresponding to the term ¢ and the column corresponding to the unknown g,
is one if and only if v = ¢ and zero otherwise. The entry in the matrix F in the
row corresponding to the term ¢ and the column corresponding to the unknown ¢;,,
is the coefficient f; ¢ if ¢ is divisible by u and zero otherwise. So, the required
coefficient is determined by computing the place where to look it up in the table
containing the coefficients of the f;. The space required for that is the space needed
for the division of a term by another one; such a division is merely a subtraction



of the corresponding exponent vectors. Hence, the space requirement is essentially
that for writing down two terms. The degrees of the terms involved are bounded
by max(N,d + D), so the space needed is at most 2n(logmax(N,d + D) +1).

The space for writing down the entire matrix is far too large, therefore we do not
determine the matrix in advance but compute each entry when it is needed during
the further treatment of F.

4 Finding the normal form

Now we are going to find a solution to the matrix equation H = FC' where the
polynomial y = >, y,# built from the entries of the solution vector is minimal w.r.t.
the term order. It is clear that this y is the normal form of kA we are looking for.

As an intermediate step, we want to have a maximal regular minor F’ of F
such that the solution to the corresponding matrix equation H' = F'C’ represents
the normal form of ~. To this end we have to remove rows and columns of F that
are linearly dependent on the others. Note that we do not have enough space to
write down the matrix F and therefore can not actually remove anything. What we
will develop is a method to determine with reasonable space requirements whether
a given row or column is in F’. This method will consist of two rank computations
as follows: If we fix an arbitrary order on the rows (resp., columns) of F, then
the k-th row (resp., column) is in F’ if the ranks of the minor of F consisting
of the first & — 1 rows (resp., columns) and the one consisting of the first k& rows
(resp., columns) differ, whereas that row (resp., column) will be dispensable if those
two ranks are equal. It is clear that the maximal regular minor resulting from this
method depends on the chosen order of the rows and columns. It is also clear that
the solution of the matrix equation with this maximal regular minor will represent
the normal form of 2 if and only if the order of the columns is chosen such that
the columns corresponding to the y; come last (i.e. after the ones corresponding to
the ¢;+) and in ascending term order of their indices (i.e. the column corresponding
to y; comes before the column corresponding to y,, if ¢ < u). Incidentally, the order
of the rows does not influence the solution.

The tools needed for determining this maximal regular minor of F are an efficient
way of enumerating in the given term order all terms up to the given degree bound
and an efficient method for calculating the rank of a matrix.

Comparing two terms essentially requires the space for writing down their weights
multiplied by the lem (or the product) of the denominators of all weights. This
space does not exceed 2(log(n*A*max(N,d + D)) + 1). The space needed for the
enumeration of the terms is essentially that for writing down three terms, namely
the last one output and two others for an exhaustive search of the next one to
output, and for the comparison of two terms. Altogether we need space not exceed-
ing 3nlogmax(N,d + D) + 1 + 2(log(n*A? max(N,d + D)) + 1). The exhaustive
search is possible since we can enumerate all terms up to the given degree bound in
lexicographic order.



As to the rank calculation, we will, for simplicity’s sake, multiply each row of
the matrix and the right hand side by the lem (or even simpler, by the product) of
their denominators to get an integer matrix and then adopt the method of Ibarra,
Moran and Rosier, described in [IMR&0], which runs in parallel as follows: First,
the matrix gets multiplied by its transpose; from the resulting matrix we calculate
the characteristic polynomial. Finally, the rank of the original matrix is the dif-
ference of the degree of the characteristic polynomial and the highest power of the
indeterminate that divides the characteristic polynomial.

Let K be a bound on the numerators and denominators of the coefficients of
the polynomial & to be reduced and the generating polynomials fi,..., fs. Then,
K is a bound on the numerators and denominators of the entries of H and F
and, consequently, the lem (or the product) of the denominators is at most K™
and the entries of the integer matrix are bounded by KM*!. The multiplication of
the matrix by its transpose can be done in O(log M loglog( M (K**1)2)) parallel
time, since log(M(K™*1)?) is an upper bound on the number of bits required for
writing down any number occurring during that calculation. As shown by Galil and
Pan in [GP89], the characteristic polynomial of an integer matrix can be computed
in O(log*(Mp)) parallel time, where p is an upper bound on the number of bits
required for writing down any number occurring during the calculation. In our case,
p = log((M(KMA)HMAMY) < 2M(M + 1)log(2K) will suffice. The determination
of the index of the smallest nonvanishing coefficient of the characteristic polynomial
can be done in O(log M) parallel time.

By the parallel computation thesis, shown by Fortune and Wyllie in [FW78], we
can do all this sequentially using no more space than the square of the time required
by a parallel algorithm. In our case, we need space amounting to O(log*(M log K)).
Thus, we have an efficient method to determine for a given row or column of F
whether this row or column is in our maximal regular minor.

Next we have to compute the unique solution of the matrix equation H' = F'C’
where F’ is the maximal regular minor of F determined above and H' and C’ are
the corresponding shortened versions of H and C'.

In [GP89], Galil and Pan also showed that the inverse of a regular M x M -matrix
can be computed in O(log*(Mp)) parallel time, where p is an upper bound on the
number of bits required for writing down any number occurring during the calcula-
tion. This will easily yield the solution of the matrix equation within essentially the
same time. Again by the parallel computation thesis of [FW78], we therefore can
obtain a solution to the matrix equation requiring O(log*(M log K)) space.

Once more, note that we do never write down the entire matrix for all that has
been described, because this would take too much space. Instead, we calculate each
entry when it is needed, and we determine for each row or column whether it is in
our maximal regular minor at the time when we consider the entries of that row or
column.

It is already clear how the solution of the matrix equation represents the normal
form of the given polynomial. Thus we can calculate this normal form within the
space bound just stated and have the result of this section:



Proposition: In Qz4,...,z,], let the polynomial ideal I be given by s generators
whose degrees are bounded by d. Then the normal form of a given polynomial A
can be computed using O(log*((N"™ + s(d + N + (Sd)Zn)”) log K')) space where N
is the bound on the degree of the normal form of A stated in the proposition at
the end of section 2 and K is a bound on the numerators and denominators of the
coefficients of the given polynomials.

5 Computing the Grobner basis

We will now use the calculation of normal forms as a subroutine for the computation
of Grobner bases. To this end, let us introduce some more terminology: We will
call a term u a direct divisor of another term ¢ # w if u divides ¢ but there is no
term v € {u,t} such that u divides v and v divides ¢; in other words, the direct
divisors of a term are just those terms where the exponent vector is smaller by 1 in
exactly one coordinate and equal in all others. It is obvious that any term has at
most n direct divisors. If a monic monomial m is reducible (i.e. is different from its
normal form) but all its direct divisors are irreducible, then we will call m minimally
reducible. Clearly, if all direct divisors of a monomial are irreducible, then so are all
its (not necessarily direct) proper divisors.

It is not hard to see that the unique reduced Grobner basis of a given ideal is
just the set (& of all the polynomials m — NF(m) where m is a minimally reducible
monic monomial. Indeed, on the one hand, every polynomial that is not minimal in
its coset will be reducible w.r.t. G; on the other hand, any such minimally reducible
monic monomial m could not be reduced w.r.t. G\ {m — NF(m)}.

For generating (7, we enumerate all monic monomials (= terms) up to the degree
bound on Grébuner bases, shown by Dubé in [Dub90]. For every such monomial m,
we calculate its normal form and also the normal forms of all its direct divisors. If
m turns out to be minimally reducible, then we output m — NF(m) as an element
of the Grobner basis. It is clear that the overall output we will produce by this
method is the unique reduced Grobner basis.

The space needed for the enumeration of all monic monomials is essentially that
for writing down a term. For the direct divisors we need space for another term;
and for the normal form calculations the space bound from the preceding section
applies. This gives a space requirement of O(log*(M log K)) altogether. However,
note that one of the parameters in the space bound of the preceding section was the
degree of the input polynomial & but here we do not have such a polynomial as part
of the input. Therefore, we have to replace this parameter in the space bound by
the bound on the degrees of the polynomials whose normal form we calculate. This
new parameter is just the degree bound of Dubé ([Dub90]) on the Grébner basis.
We will take this into account in the next section; let us now briefly summarize the
calculation of the Grobner basis.

The outermost loop of our algorithm is an enumeration of all monic monomials
up to Dubé’s degree bound. In every pass through the loop we call n + 1 times the



subroutine for the normal form calculation applied to the n direct divisors of the
current monomial and the monomial itself. As the result of these n + 1 calls of the
normal form calculating subroutine we get the information whether A is minimally
reducible, in addition to the normal form of A. In case h is minimally reducible we
output h — NF(h) as an element of the Grobner basis and proceed by taking the
next monic monomial in the outermost loop.

Let us also summarize the subroutine for the calculation of normal forms. Let A
denote the monic monomial that is the input of the subroutine. We consider (but do
not write down) the matrix equation H' = F'C’ where F’ is our maximal regular
minor of F and H = FC is the matrix equation representing the polynomial
equation h = NF(h) 437, fic; in the way described in section 3. We calculate, one
by one, those entries of the solution vector € which are the coefficients of the normal
form of h (in case h is a direct divisor, we actually need only the coefficient y;, in
order to know whether % is in normal form) by performing the necessary parts of
the multiplication F'~!'- H'. We never write down the matrix F'~! but compute
each entry when it is needed. The computation of the entries of F'~! can be done
within the required space bound by virtue of [GP89] and [FWT78]. Note that the
entries of F’ used in this computation are also determined from scratch each time
they are used. As has been shown in the previous sections the decision whether a
row or column is in the maximal regular minor as well as the determination of any
entry of F can be done within the required space bounds.

The effort necessary for the normal form subroutine does not increase substan-
tially if we also calculate the entries ¢;; of the solution vector €’ and thus obtain
the coefficients ¢; of the representation of A — NF(h) as a linear combination of
the ideal generators fi,...,fs. This means that we can, for each element of the
Grobner basis, compute, in addition, the coefficients of a representation as a linear
combination of the original basis within the same space bound.

6 Complexity considerations

In this section we will summarize the statements about the space requirements of
the methods described so far.

Let us first consider the problem of computing the normal form of a polynomial.
We are given an ideal [, a term order < and a polynomial /& to be reduced. Let size
be the number of bits needed to write down this input. Here we assume that [ is
given by a collection fi,..., fs of polynomials whose degrees are bounded by d and
whose coefficients’ numerators and denominators are bounded by K. The term order
is given by a collection of n* rational weights (n is the number of indeterminates)
whose numerators and denominators are bounded by A.

It is clear that d, K and A are bounded by 2°%¢ and that n and s are bounded
by size. The degree of h is also bounded by 2°%¢, but in view of the problem of

calculating Grobner bases we will only use a bound of 22759 o1 this degree.



The bound N on the degree of the normal form of & is

N o= (S A deg(h)

20( size)

c (2 deg(h))O(sz’ze)

C 220(5226)

Next we express Hermann’s bound (from [Her26]) on the degrees of the coefficients
in the representation of h — NF(h) in terms of the input-size.

D S N _I_ (Sd)zn E 220(5226)
It remains to give a bound on the format M of F in terms of the input-size.
M = N" + s(d + D)" € 227"

Note that in all these estimates we used 227" as a bound on the degree of h.
Since O(log*(Mlog K)) C 2°05%%) the above arguments imply the first main
result of this paper.

Theorem: The calculation of the normal form of a given polynomial w.r.t. a given
ideal and term order can be done in exponential space.

Let us now turn to the calculation of Grobner bases. Here, we are given an ideal
and a term order in the same way as described above (only the polynomial A is miss-
ing this time). We enumerate all monic monomials m up to Dubé’s degree bound
([Dub90]) which is 227" and use m and its direct divisors as the polynomial h
to be reduced in the normal form calculation. Note that, in the consideration of the
normal form calculation, we took 227 a5 bound on the degree of h, therefore
we can adopt the results from there. After each such normal form calculation, the
space for that calculation can be freed completely, because in the case of a direct
divisor the result only influences whether we proceed testing or interrupt the work
on the current monomial, and in the case of the monomial itself we will immediately
output the difference of the monomial and its normal form, if nonzero, as an element
of the Grobner basis. Thus, we need space for enumerating all monic monomials,
negligible space for the control of the order in which the direct divisors are tested
and space for the normal form calculation. The second main result follows:

Theorem: The unique reduced Grobner basis of a given ideal w.r.t a given term
order can be computed in exponential space.

It is not hard to see that the two main results remain valid if we assume a fixed
term order that is not part of the input, i.e. if the input consists only of the ideal
basis and possibly the polynomial to be reduced.

Another variant to be considered is the case of a fixed term order and a fixed
ideal, both not being part of the input. It is clear that it does not make sense
to look at the complexity of the Grobner basis calculation in this case. But if we
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take a polynomial h as input, we can consider the complexity of its normal form
calculation. Here, n, s, d and A are constant, because we consider the ideal as
well as the term order as fixed. Only deg(h) and K as a bound on the numerators
and denominators of the coefficients of h are bounded by 2°(%¢) . Note that we do
not have to use a more generous bound on deg(h) here, since there is no Grébner
basis calculation we want to provide for. It turns out that, in this case, the space
needed for the calculation of the normal form of £ is bounded by O(size*); in other
words, the normal form calculation can be done in polynomial space.

7 Bibliographic notes

The representation of term orders by a collection of weight functions is due to
Robbiano. His presentation [Rob85], where he shows that every term order can be
represented by at most n weight functions (n is the number of indeterminates) is
essentially an excerpt from his more comprehensive treatment [Rob86] on generalized
standard bases. Dubé, Mishra and Yap take up this idea, give a constructive proof
of the representability of term orders by weight functions and use this representation
for bounding the length of a reduction of a polynomial with respect to some basis
in [DMY86]. By a reduction we always mean a process like the one appearing in
Buchberger’s algorithm which was originally described in [Buc65].

The doubly exponential bound on the degrees of the elements in Grobner bases
has been proved by Dubé in [Dub90]. Hermann proved in her dissertation [Her26]
the doubly exponential bound on the degrees of the coefficients in the representation
of a polynomial as a linear combination of the ideal generators. Mayr and Meyer
showed in [MMS82] that this bound is asymptotically tight. The first application
of this complexity bound to the polynomial ideal membership problem was given
in [May92].

Efficient parallel matrix calculations as used here for the solution of our sys-
tem of linear equations have been widely studied since the appearance of Csanky’s
paper [Csa76]. Many researchers contributed improvements, cf. [PS78], [IMRS0],
[BvzGH82], [Ber84], [Mul86] and [Pan87]. The work of Galil and Pan ([GP89])
gives a better account for the Boolean complexity, which is important in our case of
very large numbers. The easy transition between parallel time complexity and se-
quential space requirements is justified by the parallel computation thesis of Fortune
and Wyllie in [FWT78].

Let us finally mention that Koppenhagen and Mayr present an optimal Grébner
basis algorithm for binomial ideals (each generator is a difference of two monomials)
in [KM96]. This algorithm is based on combinatorial principles and does not rely
on the parallel computation thesis.

A survey on recent developments concerning the algorithmic aspects of polyno-
mial ideal theory can be found in [May95].
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Index of notations

<
A
Ak,

B

bk,z’
C
Cl
¢
Cit

D

QL

the term order

maximum of all a; and by,

numerator of wy;

basis in the definition of the unified weight function W

B = ZnAz(g + d)zn_1

denominator of wy;

vector consisting of the unknowns y, and ¢;

part of C' corresponding to the regular minor F’

i-th coefficient polynomial in the representation of h — NF(h)
coefficient of ¢; belonging to the term ¢

degree bound (from [Her26]) on the coefficients of the representation
of h — NF(h)

D = deg(h — NF(h)) + (sd)*" < N + (sd)*"

bound on the degree of the ideal generators

matrix consisting essentially of the coefficients f;,

maximal regular minor of F
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fi i1-th generating polynomial
fir coeflicient of f; belonging to the term ¢
unique reduced Grobner basis for I w.r.t. <
vector of the coefficients of A

the polynomial to be reduced
coefficient of h belonging to the term ¢
the ideal generated by fi...., f;
K bound on the numerators and denominators of the coefficients of A and
the fZ
M bound on the format of F.
M =N"+s(d+ D)"
N bound on the degree of the normal form of h.
N = ((2n(5 +d)" )" A" deg (k)™

number of indeterminates in the polynomial ring

G

H

H'  part of H corresponding to the regular minor F’
h

hy

3

Z
=
=

normal form (w.r.t. < and ) of a polynomial f
the set of all rational numbers
number of generators of [
size number of bits required to write down the input
T the set of all terms or power products
W unified weight function, defined by
W) = S, BWi)
Wy k-th weight function, defined by
Wk(l'lul Ce l’nu") = Z?:l W ; Uy
wg,;  t-th weight of the k-th weight function
x; t-th indeterminate of the polynomial ring
y: coefficient of NF(h) belonging to the term ¢

w &
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