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Abstract

In this paper, we present an optimal, exponential space algorithm for gen-
erating the reduced Grobner basis of binomial ideals. We make use of the close
relationship between commutative semigroups and pure difference binomial
ideals. Based on the algorithm for the uniform word problem in commuta-
tive semigroups exhibited by Mayr and Meyer we first derive an exponential
space algorithm for constructing the reduced Grobner basis of a pure differ-
ence binomial ideal. In addition to some applications to finitely presented
commutative semigroups, this algorithm is then extended to an exponential
space algorithm for generating the reduced Grobner basis of binomial ideals
in general.

1 Introduction

One of the most active areas of research in computer algebra is the design and analy-
sis of algorithms for computational problems in commutative algebra. In particular,
computational problems for polynomial ideals occur, as mathematical subproblems,
in many areas of mathematics, and they also have a number of applications in vari-
ous areas of computer science, like language generating and term rewriting systems,
tiling problems, algebraic manifolds, motion planing, and several models for parallel
systems.

Through the introduction of Grobner bases (see [Buc65], also [Hi64]) many of
the mentioned problems become easily expressible and algorithmically solvable. For
practical applications, in particular, the implementation in computer algebra sys-
tems, it is important to establish upper complexity bounds for the normal form
algorithms which transform a given polynomial ideal basis into a Grobner basis.



First steps were obtained in [Bay82] and [MoMo84] where upper bounds for the
degrees in a minimal Groébner basis were derived. In [Dub90] Dubé obtained the
sharpened degree bound of 2 - (% + d)*™" (with d the maximum degree of the in-
put basis and & the number of indeterminates) for the degree of polynomials in a
reduced Grobner basis, employing only combinatorial arguments. By transforming
a representation of the normal form of a polynomial into a system of linear equa-
tions, Kiihnle and Mayr exhibited in [KuMa96] an exponential space computation
of Grobner bases. This, however, is based on very complex parallel computations
like parallel rank computations of matrices, and the Parallel Computation Thesis
[FWT8].

In this paper, we make use of the close relationship between commutative semi-
groups and pure difference binomial ideals (for an investigation of the algebraic
structure of general binomial ideals see [EiSt94]). Based on the algorithm in [MM82]
for the uniform word problem in commutative semigroups we derive an exponential
space algorithm for constructing the reduced Grobner basis of a general binomial
ideal. This algorithm can be implemented without any difficult parallel rank com-
putations of matrices, or any other complex parallel computations. By the results
in [MM82] and [Huy86], which give a doubly exponential lower bound (in the size
of the problem instance) for the maximal degree of the elements of Grébner bases
as well as for the cardinality of such bases, this algorithm is space optimal.

The remainder of this paper is organized as follows. In Section 2 we briefly in-
troduce the basic notations and fundamental concepts. In Section 3 we derive an
exponential space algorithm for constructing the reduced Grobner basis of a pure dif-
ference binomial ideal, and give some applications to finitely presented commutative
semigroups. Then, in Section 4, this algorithm is extended to an exponential space
algorithm for generating the reduced Grobner basis of binomial ideals in general.

2 Preliminaries

In this section we briefly review the basic concepts used in the sequel.

2.1 Basic Definitions and Notations

The polynomial ideals which we get by using the relationship of finitely presented
commutative semigroups and polynomial ideals are pure difference binomial ideals,
i.e., each polynomial in the basis of such an ideal is the difference of two terms. By
looking at Buchberger’s algorithm [Buc65], it is not hard to see that the reduced
Grobner basis of a pure difference binomial ideal still consists only of pure difference

binomials.
Let X denote the finite set {z1,..., 2.}, and" Q[X] the (commutative) ring of
polynomials with indeterminates x1, ..., x; and rational coefficients.

!N denotes the set of nonnegative integers, Z the set of integers, and QQ the set of rationals.



A term tin xq,...,x is a product of the form
=20 . %2 ... g%k
=Xy Ty ko

with (e1,€q,...,ex) € NF the degree vector of t.
By the degree deg(t) of a term ¢ we shall mean the integer e; + ex + ... + ¢

(which is > 0).
Each polynomial f(xy,...,2;) € Q[X] is a finite sum

f(xlv"'vxk): Z ai'tia

1<i<n

with a; € Q — {0} the coeflicient of the ith term ¢; of f. The product m; = a; - ¢;
is called the tth monomial of the polynomial f. The degree of a polynomial is the
maximum of the degrees of its terms.

For fi,....fr € QX], (fi,...,fn) € Q[X] denotes the ideal generated by
{fi,..., fn}, that is?

h
(fi,ooos fn) = {ZPifi; pi € Q[X] for 7 € ]h}-

r={_.... 0, {fi,..., fu} is called a basis of I.

An admissible term ordering < on Q[X] is given by any admissible order on N,
i.e., any total order < on N¥ satisfying the following two conditions:

(T1)  e>(0,...,0) for all e € N* — {(0,...,0)};

(T2) a<b = a+c<b4cforall a,b,ce N,

If (dy,....dy) > (e1,...,¢ex), we say that any monomial ay - z{! calkay €

Q—{0}, is greater in the term ordering than any monomial az-27* - -+ 2%, a; € Q—{0}
(written ay - 2 - 2w ay - 25 - 25F).

For a polynomial f(x1,...25) = Y01y a; - t; we always assume that t; = 15 >
... = t,. For any such nonzero polynomial f € Q[X]| we define the leading term

For the sake of constructiveness, we assume that the term order is given as part
of the input by a k x k integral matrix T such that a; - 2 :L'ik —ag - xteak
iff, for the corresponding degree vectors d and e, T'd is lexicographically greater than

Te (see [Rob85, Wei8T]).

Let I be an ideal in Q[X], and let some admissible term ordering < on Q[X] be
given. A finite set {¢1,...,9,} of polynomials from Q[X] is called a Grébner basis
of I (w.r.t. <), if

(G1)  {g1,...,9-} is a basis of I;

Zfor n € N, I,, denotes the set {1,...,n}



(G2)  {LT(¢1),...,LT(g,)} is a basis of the leading term ideal of I, which is the
smallest ideal containing the leading terms of all f € I, or equivalently: if
f €1, then
LT(f) e (LT(qr),..., LT(g)).

Let F' be a subset of Q[X| and < some fixed admissible term ordering. We say a
polynomial p is reducible to ¢ modulo F' (written prp q), if there exists f € F, and
a monomial m € Q[X] such that LT (m - f) is a monomial of p, and ¢ = p —m - f.
A polynomial p is reducible modulo F' if there exists ¢ € Q[X] such that prpq. If
p 1s not reducible modulo F', then we say p is in normal form modulo F'. A normal
form of p modulo F' is a polynomial ¢ that is in normal form modulo F' and satisfies
P . ¢, where S is the reflexive transitive closure of op.

A Grébner basis G = {g1,...,¢,} is called reduced if all polynomials g; are in
normal form modulo G — {¢;}

For a finite alphabet X = {zq,..., 2}, let X* denote the free commutative
monoid generated by X. An element u of X* is called a (commutative) word. For
a word the order of the symbols is immaterial, and we shall in the sequel use an

exponent notation: v = (' ...x%, where® ¢; = ®(u,z;) € Nfori =1,..., k. We
identify any u € X* (resp., the corresponding vector u = (®(u,x1),..., P(u, xx))
€ N¥) with the term u = x?(u’xl) : :ch(u’xz)) e xf(u’xk) and vice versa any term u =

it - aP - ak € Q[X] with the word

U=21...09T9...T9...0%...0 € X",
e e N’ —_——

€1 €2 €k

Now let P = {l;, = r;; ¢ € I} be any (finite) commutative semigroup presenta-
tion with [;, r; € X* for ¢ € [,. We say a word v € X* is derived in one step from
u € X* (written u — v(P)) by application of the congruence (I; = r;) € P iff, for
some w € X*, we have u = wl; and v = wry, or u = wr; and v = wl; (note, since '=’
is symmetric, '—’ is symmetric, i.e., u — v(P) & v — u(P)). The word u derives
v resp., u = v mod P iff u > v(P), where = is the reflexive transitive closure of
—. More precisely we write u 4 v(P), where % is the transitive closure of —, if
u = v(P) with u # v. A sequence (uo, . ..,u,) of words u; € X* with u; — w1 (P)
for i =0,...,n —1is called a derivation (of length n) of u, from ug in P.

By I(P) we denote the pure difference binomial Q[.X]-ideal generated by {l; —

F1yeeoydp —1pl, dee,

I(P):= {Z:pz(lz —1); pi € Q[X] for ¢ € ]h} )

3Let ® be the Parikh mapping, i.e., (®(u)); (also written ®(u,z;)) indicates, for every u € X*
and i € {1,...,k}, the number of occurrences of ¢; € X in u.



2.2 The Uniform Word Problem and the Corresponding
Pure Difference Binomial Ideal Membership Problem

The following proposition shows the connection between the uniform word problem
for commutative semigroups and the membership problem for ideals in Q[X]. The
uniform word problem for commutative semigroups is the problem of deciding for a
commutative Thue system P over X and two words u,v € X* whether v = v mod P.
The polynomial ideal membership problem (PIMP) is the problem of deciding for

given polynomials f, fi,..., fn € Q[X]| whether f € (fi,..., fa).

Proposition 1 [MMS82] Let X = {ay,... 2}, P =l =ry L,r; € X 0 € I},
and u, v € X*. Then the following are equivalent:

(i) There exist py,...,py € Q[X] such that v —u= 1", pi(l; —ri).

(it) There is a derivation u = — v — ... — v, = v(P) of v from u such that
for g el,
length(y;) < max{deg(lip;), deg(ripi); © € I1}.

(i) u =v mod P.

In the fundamental paper [Her26], G. Hermann gave a doubly exponential degree
bound for the polynomial ideal membership problem:

Proposition 2 [Her26] Let X = {xy,...,21}; ¢,91,---,9r € Q[X]; and d :=
max{deg(¢;); ¢ € I}. If g € (g1,...9n), then there exist p1,...,pn € Q[X] such
that

(Z) g = 2?21 9iPi;
(ii) (Vi € 1) [deg(p;) < deg(g) + (hd)*"].

These two propositions yield an exponential space upper bound for the uniform
word problem for commutative semigroups.

Proposition 3 [MMS82] Let X = {x1,...,2x} and P = {l; = ry; l;,r; € X 0 €
I} Then there is a (deterministic) Turing machine M and some constant ¢ > 0
independent of P, such that M decides for any two words u, v € X* whether u =
v mod P using at most space (size(u,v, P)) - 2°F,

3 Constructing the Reduced Grobner Basis of a
Pure Difference Binomial Ideal in Exponential
Space

In this section we derive an exponential space algorithm for generating the reduced
Grobner basis of a pure difference binomial ideal. For this purpose, we first analyze
the elements of the reduced Grobner basis.



3.1 The Reduced Grobner Basis of Pure Difference Bino-
mial Ideals

Let P be a commutative semigroup presentation over some alphabet X. If C' is some
congruence class of P, and G = {hy —my,..., h, — m,} (h; = m;) a Grobner basis
of the pure difference binomial ideal I(P) w.r.t. some admissible term ordering <,
then the minimal element m¢ of €' w.r.t. < is not reducible modulo G. Otherwise,
since (& is a Grobner basis and by Proposition 1, there would be some ¢ € [, and
some t € X* with mg = h; - ¢ + m; -t < m¢ which contradicts the minimality of
m¢. Hence me is the normal form of any word (considered as a term) ¢ € C' modulo

G.

The following theorems characterize the terms of the binomials occuring in the
reduced Grobner basis of I(P), and the leading terms of I(P). The first theorem
shows that in each binomial of the reduced Grébner basis G of I(P) the smaller term
(w.r.t. <) is the minimal element (w.r.t. <) of the congruence class of the leading
term.

Theorem 1 Let X = {aq,...,a3}, P =1l =ry; liyri € X*i € I}, and G =
{h1 — ma,...,h, — m,} be the reduced Grobner basis of the ideal I(P) w.r.t. some
admissible term ordering < (m; < h;). Then m; is the minimal element (w.r.t. <)
of the congruence class [hi]p, 1 € I,.

Proof: Assume that w # m; is the minimal element of [h;]p (w.r.t. <). Then
w < m; and, by Proposition 1, m; —w € I(P) resp., m; —w = i, p;(h; —m;), for
some p; € Q[X], ¢ € I,.. Since (¢ is the reduced Grobner basis of I(P), there must
be some j € I, with LT (p;) - h; divides m;. But this is a contradiction to the fact
that h; — m, is an element of the reduced Grébner basis of I(P). O

The next theorem characterizes the leading terms of the polynomials in I(P),
and, in particular, the leading terms of the binomials in the reduced Grobner basis

of I(P).

Theorem 2 Let X = {aq,...,a3}, P ={l; = ry; liyri € X*i € I}, and G =
{h1 — ma,...,h, — m,} be the reduced Grobner basis of the ideal I(P) w.r.t. some
admissible term ordering < (m; < h;). Then LT(I(P)) (the set of the leading terms
of 1(P)) is the set of all terms with nontrivial congruence class that are not the

minimal element in their congruence class w.r.t. <. H = {hqy,... h,} is the set of
the minimal elements of LT(I(P)) w.r.t. divisibility.

Proof: Since (i is the reduced Grébner basis of I(P), it is clear that H is the set
of the minimal elements of LT'(1(P)) w.r.t. divisibility.

Since h; —m; € I('P), there is a derivation in P of m; < h; from h; (h; i m;(P)) for
all ¢ € I.. Because (i is a Grobner basis, for any h € LT(I(P)) thereisa h; € H and
a term ¢t in X with A =1-h;. So from any h € LT (I(P)) we can start a derivation

in P, namely the derivation of t-m; < h (h = t-m;(P)), and hence the congruence
class [h]p is nontrivial.



Now let s € X* be a term with nontrivial congruence class. If s is not the minimal
element m, (w.r.t. <) of its congruence class [s]p, then s derives my (s =+ ms(P)),
and thus s — mg € I(P) resp., s € LT(I(P)). If s = mys, then there is no derivation
of some t, < s from s. Furthermore there is no j € I, with h; divides s, because if
there is some term ¢ € Q[X] and some j € [, with s = ¢ hj, there is a derivation of

t-mj; < s from s. Soif s = my, then s & LT(I(P)) and s ¢ H. 0

If s € X* is the minimal element of its congruence class [s] w.r.t. <, then every
subword s’ of s, i.e., s = t- s for some t € X* is also the minimal element of
its congruence class [s'] w.r.t. <. Otherwise there would be a derivation of some
mg < s from s’ and thus a derivation of t-my < ¢-s’" = s from s which contradicts
the minimality of s.

3.2 The Algorithm

In this section we give an exponential space algorithm for generating the reduced
Grobner basis of a pure difference binomial ideal. To show the correctness and
the complexity of the algorithm we need the results of the previous sections and
the following upper bound for the total degree of polynomials in a Grobner basis
obtained by Dubé in [Dub90]. Note that we use exponential notation in representing
words over X.

Proposition 4 [Dub90] Let ' = {fi,..., [} C QX], I = (f1,..., [n) the ideal
generated by F, and let d be the maximum degree of any f € F. Then for any
admissible ordering < on Q[X], the degree of polynomials required in a Grébner
basis for I w.r.t. < is bounded by

e 2
2. = +4d

Now we will generate the reduced Grobner basis of the pure difference binomial
ideal I(P) w.r.t. <, where X = {a1,..., 2}, and P ={l; =ry; li,r; € X*0 € I}
(w.lo.g. l; = r;). Let H denote the set {hq,...,h,} of the minimal elements of
LT(I(P)) w.r.t. divisibility and m; the minimal element of [h;]p, ¢ € I,, w.r.t. <.
From Theorem 1 and Theorem 2 we know the set G = {hy — my,..., h, — m,} is

the reduced Grobner basis of 1(P).

Theorem 2 shows that (LT (1(P))) 2 (l1,....I) and (LT(I(P))) € (l1,..., 1,
Piy..osmh). Let L' ={li,... [} be the set of the minimal elements of {l,...,/;}

k—1

w.r.t. divisibility. Then the subset of {ry,...,rs} which contains only minimal
elements of {/1,..., Ly, 71,...,mp} wa.t. divisibility is denoted by R = {r,...,r,, }
and the subset of {/1,...,l,/} which contains only minimal elements of {/1, ..., .,

T1y.ooy T, b w.r.t. divisibility by L = {l,..., [, }. Note that

H 2 I,
(LT((P))) 2 (L) 2(L),
(LT(I(P))) < (L,R)=(L".R)



We have to determine the elements of the set H — L, and the minimal elements

m; (w.r.t. <) of the congruence classes of all h; € H. From Proposition 4 we know
2k—1

that the degrees deg(h;), and deg(m,) are bounded by 2 - (512—2 + d) , where d is

the maximum degree of any [; — r;, ¢ € [},. Since

H—LCLT({(L,R))— LT((L'))U(L' — L) =: KH,

2k—1
we consider the terms in K H with degree < 2- (% + d) in some order, e.g. in
ascending lexicographic order with =y <. 9 <jey ... <ier Tx. From Theorem 2
follows immediately:

Lemmal A term u € X* is an element of LT(I(P)) iff u is not the minimal
element of [u]p w.r.t. <.

For the case that the term u is not the minimal element m, of [u]p the next
lemma gives a characterization of the elements m € [u]p with m < w.

Lemma 2 A term u € X* is the minimal element of [u]lp w.r.t. < iff there is no
t-r; witht-r; <u,r; € R, t € X* such thatuit-ri(P).

Proof: If u is the minimal element of [u]p w.r.t. <, then there is no m € X* with
m < u, and u m(P).

Now assume that « is not minimal in [u]p w.r.t. <. Then there is a derivation in P
leading from u to the minimal element m, < u of [u]p w.r.t. <, i.e., u 4 myu(P),
where m, =t -r; for some r; € {ry,...,r} (note [; = r; Vj € I}), t € X*. Since
{ri,...,m} — R C LT(I(P)), we can even say r; € R. O

Considering degree bounds this Lemma has the following form.

Lemma 3 A term v € X* with deg(u) < D is the minimal element of [u]p w.r.t. <

k—1
iff there is no t-r; with t-r; <u, r; € R, t € X*, and deg(t-r;) < D+2- (% + d)2
such that u 5 t - ri(P).

Proof: If u is not the minimal element m, of [ulp w.rt. <, i.e., u € LT(I(P)),

2k—1

then either v € H and deg(m,) < 2 - (% + d) , or there is some h € H with

u = t, - h for some t, € X*. The degree of the minimal element my of [h]p
2k—1

w.r.t. < is bounded by 2 - (% + d) . From mj < h we get t, - m;, < u with

2k—1

deg(tu-mh)gD—l—Z-(%—l—d) ) O
k-1
Given some term h€ K H with deg(h) < 2- (512—2 + d)2 , we have to decide
whether h € H, and if h € H we have to determine the minimal element my, of [h]p
w.r.t. <. If h € H, then, by Lemma 2 and Proposition 4, there is a term ¢ - r; with
k-1
t-r;<h,ri € Ryt e X* deg(t-r;) <2- (% + d)2 such that h & ¢ ri(P). For

2k—1

h and t - r; with deg(h), deg(t-r;) <2- (% + d) , by Proposition 3, the decision

8



whether A = t-r; mod P uses at most space (size(73))2 -2°% for some constant ¢ > 0
independent of P. Thus we decide for the words ¢-r; with t-r; < h, r; € R, t € X*,

2k—1

deg(t-r;) <2- (% + d) in ascending term order whether A = ¢ - r; mod P until

we find the minimal element my, of [h]p, or there is no more ¢ - r; with ¢ - r; < h,
2k—1

r, € Ryt e X*, deg(t-r;) < 2- (%—I—d) . In the latter case h € H, and we
2k—1

have to consider the next element of K H with degree <2 - (% + d) . Otherwise
h € LT(I(P)) and we have to decide whether h € H.

Lemma 4 Let h = a7 --- 2 with h € LT(I(P)), then h € H iff for all i € I}, with
e; > 1 R0 = gt as ot @ LT(I(P)), ie., kD is the minimal element of
[(RD)p w.rt. <.

Proof: Follows immediately from the definition of H. a
k-1

Since deg(h) < 2- (% + d)2 and because of Lemma 3, and Proposition 3 the

decision whether A9 € LT(I(P)) (v € Iy, e; > 1) uses at most space (size(73))2 ek

for some constant ¢ > 0 independent of P. If h € H, then h — m;, is an element of

the reduced Grébner basis G of I(P). The algorithm continues by considering the

—1

k
next element f,., of KH with deg(hen) < 2- (% + d)2 , and h does not divide
hpew because any multiple t - h of h, t € X* is not in H if h € LT(I(P)).

2k—1

When all the elements in K'H with degree < 2 - (% + d) are examined it
remains to determine the minimal elements (w.r.t. <) of the congruence classes
of the terms [; € L. Again from Proposition 4 we know that the degree of the

k—1
minimal element my, of [l;]p (w.r.t. <) is bounded by 2- (% + d)2 . As above

we determine m;, by deciding for the words ¢ - r; with ¢t -r; < [, r;, € R, t € X*,

2k—1
deg(t-r;) <2- (% + d) in ascending term order whether /; = ¢ - r; mod P.
From this, we derive the exponential space algorithm given in Figure 1.

Putting everything together, we proved the theorem:

Theorem 3 Let X = {zq,....23}, P=A{l; = r;; l;,r; € X* 0 € I}, and < be
some admissible term ordering. Then there is an algorithm which generates the
reduced Gréobner basis G = {hy — mq,..., h, —m,} of the pure difference binomial
ideal 1(P) using at most space (size(P))? - 25k < 2¢%17¢(P) where ¢,¢ > 0 are some
constants independent of P.

From the results in [Huy86] we know that, in the worst case, any Grobner basis
zsize(P)

of I(P) has maximal degree at least 2
Grobner bases requires at least exponential space in the worst case.

. Hence any algorithm that computes

3.3 Applications

We now consider some applications of the algorithm of Theorem 3.

9



Algorithm 1

Input {ll —T1y..

.l — 1}, admissible term ordering <
the reduced Grébner basis G = {h; — mq, ...

yh, —m,}of I(P)

Output:
L':={ly,...,1,;} thesetof the minimal elements of {/y, ..., 1} w.rt. divisibility
R:={ry,...,r,,} the subset of {ry,...,r,} which contains only minimal elements of
s by ry, o ra Wit divisibility
L:={l,...,l,,}  the subset of {l,,...,I,/} which contains only minimal elements of
s by, ooy, Wit divisibility
d := max{deg(l;), deg(r;); i € I;}; G:=0; h:=1
repeat
h := thetermof LT'((L', R)) — LT((L")) U (L' — L) with degree <2 - (dz—2 + d) which
follows A in the lexicographic order defined by z1 <ic 2 <iew - - - <1ew T
Co h=uaf'---ay* co
D :=deg(h); m:=1
repeat
2 Zk_l .
m:=theterm¢ . -r;witht-r; < h, 7, € Rt € X*, deg(t-r;) < 2- (d? + d) which

follows m in the term ordering <
until (m = h mod P or thereisnomoret-r;witht-r; < h,r; € R, t € X*¥,
5 2k—1
deg(t-ri)§2-(%—|—d) )
co he LT(I(P)) co
e;—1 .

if m =h mod P then
---xl --xzk;

for each¢ € I, withe; > 1 do A’ := 2}’
repeat
m' :=the term ¢ - r; With ¢ -, < A, r, € R, t € X% deg(t-r;) <

m =1

k—1

(D—1)+2- (dz—2 + d) which follows 72’ in the term ordering <
h' mod P or thereisnomore¢-r, witht-r, < A/, 7, % {%,t e X*,
deg(t-r) < (D—1)+2- (£ 4d) )
if m’=h’ mod P then nexth with h,;4 does not divide h,,.,, end._if
co M elLT(I(P))=h¢gH co
end_for
G:=GU{h—m}
next ~ with h,;; does not divide £, .,

until (m' =

2k—1

end_if
until thereisnomore h € LT((L', R))— LT({L")) U (L' — L) with degree < 2 - (% + d)

for eachl; ¢ L do m:=1

repeat
m:=theterm¢ . -rywitht-r; < [, 7, € Rt € X*, deg(t-r) <2- (d2—2 + d) which
follows m in the term ordering <
until m = [, mod P
end_for
Figure 1: Algorithm for the Reduced Grébner Basis of a Pure Difference Binomial

Ideal
10



3.3.1 Testing for Reducibility

Let P be a finite commutative semigroup presentation over some alphabet X, u €
X*, and < some admissible term ordering on Q[X]. Then, u is the minimal element
of [ulp w.r.t. < iff u is in normal form modulo a Grébner basis G of I(P) w.r.t. <,
i.e. u 1s not reducible modulo G. Thus, by Lemma 1, u is in normal form modulo

G iff u & LT(I(P)).

Corollary 1 Let X = {xy,...,2}, P ={li = r;; Liyri € X*,1 € I}, and < be

some admissible term ordering. Then for any u € X*

(i) there is an algorithm which decides whether w € LT(1(P)) using at most space
size(u)—l—(size(?))zﬂak < size(u)—l—Zc'Size(P), where ¢, ¢ > 0 are some constants
independent of u and P.

(ii) there is an algorithm which decides whether w is the minimal element of its
congruence class (w.r.t. <), or equivalently, whether u is in normal form mod-
ulo the Grébner basis of I(P) using at most space size(u) +(size(P))? - 27 <
size(u) + 2°57¢P) where ¢, ¢ > 0 are some constants independent of u and P.

Proof: Let G = {hy — my,..., h, — m,} be the reduced Grébner basis of I(P).
Then LT(I(P)) is generated by {hy,...,h,}. Thus, u € LT(I(P)) iff there is some
h;, v € I., which divides w. a

3.3.2 Finding the Minimal Element, and the Normal Form

The next corollary shows that the minimal element of a congruence class w.r.t. <,
and the normal form of a word modulo G can be found in exponential space.

Corollary 2 Let X = {a1,...,ax}, P = {l; = ri; Li,r; € X*1 € I}, and <
be some admissible term ordering. Then there is an algorithm, which determines
for any word u € X* the minimal element of its congruence class (w.r.t. <), or
equivalently, which determines for any term u € X* the normal form of u modulo the
Grébner basis of I(P) using at most space (size(u)+size(P))?-25F < 2¢-(size(u)tsize(P)),
where ¢, ¢ > 0 are some constants independent of w and P.

Proof: In addition to xq,...,x; we introduce a new variable s, and to P we add
the identity s = u, where u is the word in X* for whose congruence class we like to
determine the minimal element (w.r.t. <). Let X; = X U {s}, P, = P U {s = u},
and < be the admissible term ordering which results from < by adding w < s for
all w € X*. Then, by Theorem 2, LT(I(Ps)) = LT(I(P))U{s-t; t € X}, in
particular s € LT(I(Ps)), and, since s is minimal in LT'(1(Ps)) w.r.t. divisibility,
H, = H U {s}, in particular s € H,, where H resp., H; is the set of the minimal
elements of LT(I(P)) resp., LT(I(Ps)) w.r.t. divisibility. Because s > w for all
w € X*, the minimal element of some congruence class [v]p,, v € X*, w.r.t. <;
is the same as the minimal element of [v]p w.r.t. <. So, because of Theorem 1,
and Theorem 3, we can determine the minimal element of [u]p (w.r.t. <) in space
(size(u) + size(P))* - 2¢* for some constant ¢ > 0 independent of v and P. O
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So far, we only considered terms. Since a polynomial f = 3" | a;-1; is in normal
form iff all its terms #; are in normal form, the results obtained for terms can easily
be extended to polynomials.

Corollary 3 Let X = {xy,...,2}, P ={li = r;; Liyri € X*,1 € I}, and < be
some admissible term ordering. Then for any polynomial f = 3", a; - t; in Q[X],

(i) there is an algorithm, which decides whether [ is in normal form modulo the
Grobner basis of I(P) using at most space max;ey, {size(t;)} + (size(P))?- 2% <
max;er, {size(t;)} +2°57¢P) where €, ¢ > 0 are some constants independent of

f and P.

(ii) there is an algorithm, which determines the normal form of f modulo the
Grobner basis of I(P) using at most space (max;ey, {size(t;)} +size(P))? 2% <
20'<maxi€]”{Size(ti)}"'Size(P)), where ¢, ¢ > 0 are some constants independent of f

and P.

Proof: Follows immediately from Corollary 1 and Corollary 2. O

4 Constructing the Reduced Grobner Basis of a
Binomial Ideal in Exponential Space

The algorithm of Theorem 3 generates the reduced Grobner basis for pure difference
binomial ideals. In this section we will be concerned with constructing the reduced
Grobner basis of a larger class of ideals: binomial ideals, in general.

4.1 Basics

Let m = a -t be a monomial in Q[X] with « € @, and ¢ a term in X. Then we write
C(m) for the coefficient a, and T'(m) for the term ¢ of the monomial m. By M[X]
we mean the set of all monomials in Q[X].

By a binomial in Q[X] we mean a polynomial with at most two monomials, say
[—r (I = r). Fora finite set B = {l; —ri; l;,r; € M[X],C(l;) = 1,¢ € I}, I(B)
denotes the binomial Q[X]-ideal generated by B, i.e.,

1(B):= {Z:pZ(ZZ —1); pi € Q[X] for ¢ € ]h} )

W.l.o.g. we assume that there are no ¢, j € Ij,, 1 # j, with [; —r; = ¢ - ({; — r;) for
some ¢ € Q — {0}. (Otherwise we remove one of the two binomials).

As in the case of pure difference binomial ideals we see from Buchberger’s al-
gorithm that the reduced Grobner basis of a binomial ideal still consists only of
binomials.

In the following we generalize the algorithm of Theorem 3 from pure difference
binomial ideals to binomial ideals.

12



First we establish some technical details.

For X ={a1,...,2ax},and B ={l; —r;; li,r; € M[X], C(l;) = 1,1 € I} a set of
binomials in Q[X], we define the corresponding commutative semigroup presentation
PB):={T;)=T(r); l; —r; € B}, where we set T(0) := 2725 -2, If we
agree that —oco +n =n+ (—o0) = —oo for any integer n, and —oo + (—o0) = —o0,
then the whole formalism for commutative semigroups introduced in Section 2 still
holds for P(B). The only difference is that, in addition to the words in X*, we have

the word 7° - 5% - - 2 ° which corresponds to 0 when we consider polynomials.

In particular, we still have for u, v € X := X* U {a7% - 2,7}
u—vel(P(B)) <+ wu=vmodP(B).

W.l.o.g. we assume that there are no ¢, j € Iy, ¢ # j, with (T'(l;) = T(;)) AN (T(r;) =
T(r;j)). (Otherwise, since there is no ¢ € Q with [; —r; = ¢- (I; — r;), we know that
l; € [(B) and r; € I(B), and we replace the two binomials in B by T'(/;), and T'(r;)
it T'(r;) #0.)

Let u, v € X, and D be a derivation in P(B) leading from u to v. Then there
are terms w; such that v = T'(a1)-wy — T(by)-wy = T(az)we — T(by)wy — ... —
T(b,)w, = v, where a; = l;, and b; =r;,, or a; =r;, and b; = 1;,, j; € I, 1 € [,.

Now attach to each T'(l;) — T'(r;)(P(B)), ¢ € I, the multiplicative factor C'(r;)
it C(r;) # 0 resp., 1 if C(r;) = 0, and to each T(r;) — T(l;)(P(B)), ¢ € I}, the
multiplicative factor C(Lm it C'(r;) # 0 resp., 1 if C(r;) = 0. Taking into account
these factors, we obtain f)rom D a derivation in which the i-th step has the form

C- T(l]l) W, — Ct Gt T(T]‘i) © Wy
with ¢; = C(r,) resp., ¢; = 1, or
C:- T(T]‘i) cW; — € ¢ T(l]l) - Wy

with ¢; = ﬁ resp., ¢; = 1 for some constant ¢ € Q — {0} resulting from the first
"

(1 — 1) steps of D.
Thus, we define the multiplicative factor of D as

CD):=cr-c2---¢y.

Then, for any derivation D in P(B) leading from u to v, u, v € X we have

n

Zdi-(l]'i—T]‘i)-wizu—C(D)-v,

=1

where dy = 1 if w = T(l;)) - wy, resp., dy = —¢p if w = T(r;,) - wy, and for ¢ > 1
d; = ¢1---¢;—q if the i-th step of D uses T'(l;) — T(r;), resp., d; = —e¢p---¢ if
the i-th step of D uses T'(r;) — T'(I;). Therefore, u — C(D) -v € I(B). Note that
u € [(B),and v € [(B)if 7> -+ 2, occurs in D.

Hence, by Proposition 2, we conclude the following
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Theorem 4 Let X = {x1,...,2%}, B={l—ry; li,r; € M[X],C(;) = 1,1 € I,,},
and u, v, T(u) # T'(v), be monomials in M[X]. Then the following are equivalent:

(i) There exists d € Q — {0} such that u—d-v € I(B).

(i) There is a repetition-free derivation D: T(u) =~y — v — ... = v, = T(v)
in P(B) leading from T(u) to T(v) and such that, for j € I,

size(7;) < size(u,v, B) - 27,
where ¢ > 0 is some constant independent of B, u, and v.

Then, by Proposition 3, we have:

Theorem 5 Let X = {aq,..., 2}, and B ={l;, —r;; l;,r; € M[X],C(;) = 1,1 €
I} Then there is a (deterministic) Turing machine M and some constant ¢ > 0
independent of B, such that M decides for any two monomials u, v € M[X], T'(u) #
T(v), whether there exists d € Q— {0} such that u—d-v € I[(B) using at most space
(size(u, v, B))" - 27F.

To get similar results concerning the membership of a single monomial in 1(B),
we need a further detail.

Lemma 5 Let X ={xy,..., 23}, B={li—r; Li,r, € M[X],C(l;) = 1,7 € I}, and
u # 0 be a monomial in M[X]. Then u € I(B) iff there is some t € [T'(u)]ps) such

that there is a repetition-free derivation D in P(B) leading from t to x7° -+,
or fromt to t with C(D) # 1.

Proof: By the above considerations, we already know that v € I(B) iff there is
a derivation D: T(u) = 90 — 71 — ... = 7, in P(B) with v, = a7 2.,
or v, = T'(u), and C(D) # 1. If v, = 7™ - 2, then there is nothing left to
prove. In the following we assume that 7% -2, & [T'(u)]p). We derive from
w € I(B), v, = T(u), and ~; # «7° -2, ¢ € I,, that there is a repetition-free
derivation D in P(B) leading from some ¢ € [T'(u)]p(s) to t with C(D) # 1. We have
CD)=c1 ¢y # 1. If 4 = 7,-1, then ¢ = i, and C(D) = ¢z -+ - ¢,—1. Generally,
ifvi =g, fori=1,...,5,57 < {%J — 1, then C(D) = ¢j41---¢oj # 1. Thus, D"
Yi = Yi+1 — -.. — Yn—; is a subderivation of D with C(D") =C(D) # 1, v; = vu—j,
and v;41 # Yn—j—1. If D' is repetition-free, then we are finished. Otherwise, define
my as the largest, and my as the smallest index such that j+1 < m; < my <n—j5-—1,

and Y,—1 = Ym,. Let D" be the repetition-free derivation v,,,-1 — ... = Y, If
C(D") = ¢my -+ Cmy, # 1, then we are finished. Otherwise, i.e., if C(D") = 1, we
consider the derivation D": v; — ... = Yy -1 = Ymy — « -+ — Yu—j With C(D") =

C(D) =c¢j - Cmy1" Cnpt1 - Cn—y # 1, and by induction obtain a repetition-free
derivation D in P(B) leading from some ¢ € [T'(u)]p(s) to t with C(D) # 1.

For the converse implication assume that there is some t € [T'(u)]p(s) such that
there is a derivation D: t = 49 — v — ... = 7, in P(B) with v, = a7 -2,
or v, = t, and C(D) # 1. Then, there is also a derivation D": T(u) =5, — ... —
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T =t=7%%— 7 — ... = 3, in P(B) for some m € N. If , = a7 - 2., then
it is clear that w € I(B). If v, = t, and C(D) # 1, then the multiplicative factor of
the derivation D": T(u) =%y — ... = F, =t =% =1 — ... > W =1=7, —

.. — 7 = T'(u) satisfies C(D") = C(D) # 1, and hence u € I(B). O

In the last part of the above proof we already showed the following lemma.

Lemma 6 Let X ={xy,..., 23}, B={li—r; Li,r, € M[X],C(l;) = 1,7 € I}, and
u # 0 be a monomial in M[X]. Then for all t € [T(u)}ps)

uwel(B) < tel(B).
Putting the above results, and Proposition 2 together, we proved the following.

Theorem 6 Let X = {x1,...,2%}, B={l—ry; li,r;, € M[X],C(;) = 1,1 € I,,},
and v # 0 be a monomial in M[X]. Then the following are equivalent:

(i) ueI(B).

(ii) There is a derivation D: T(u) = v — 41 — ... — . of length n in P(B)
leading from T'(u) to 7% - 2;°°, or from T(u) to T(u) with C(D) # 1 such
that, for j € I,,

size(7;) < size(u, B) - 2%,

and
size(n) < size(u, B) - 2%,

where ¢y, ¢y > 0 are some constants independent of B, and u.
Furthermore, we can show the following:

Theorem 7 Let X = {a1,..., 2}, and B ={l, —r;; l;,r; € M[X],C(;) = 1,1 €
I} Then there is a (deterministic) Turing machine M and some constant ¢ > 0
independent of B, such that M decides for any monomial u # 0 in M[X] whether
u € I(B) using at most space (size(u, B))* - 2°F,

Proof: By Theorem 6, a nondeterministic Turing machine may determine whether
u € I(B) by generating a derivation D: T'(u) = v — 71 — ... — 7, of length n
in P(B) leading from T'(u) to a7 --- 2, >, or from T'(u) to T'(u) with C(D) # 1 iff
there is one. If 27> -2, € [T'(u)]p(s), then, by Proposition 3, we can conclude
the assertion. In the following we assume that 7% --- 2% & [T'(u)]p(s). Then the
Turing machine has to decide whether there is a derivation D from T'(u) to T'(u)
with C(D) # 1. For this purpose, the Turing machine needs 2h counters zy,.. ., za
- two for each congruence T'(l;) = T'(r;) in P(B) - to know how often, and in which
direction (i.e. T(l;) — T(r;), or T(r;) — T(l;)) each of the congruences has been
applied in D. (Note that, since 27 -~ 27> & [T'(u)]p (), in any derivation starting
at T'(u) no congruence with r; = 0 (by definition [; # 0 for all ¢« € [;) can be
applied (i.e., z; = 0 iff r, = 0), and hence at the end of D z 4+ 25 + ... + 225, =
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n.) Then C(D) = Tlicr,.0 (a’)zm_l . (2—’)221, with a; € Z — {0} the numerator,
and b; € N — {0} the denominator of C(rz) € Q—-{0}, ¢ € I, ; # 0. Let

max{0,22;—1—22; } max{0,z2;—1—22; } max{0,20; —22;— 1}
Z = HZEIh, Hgoa b and N HZEIh iri#£0 b

gsize(u, 8)2 1k

amax{o 727201} then max{Z, N} < (2s7(wB) for some constant d; > 0
independent of u, and B. By the Chinese Remainder Theorem and the Prime
Number Theorem (see e.g. [HW85]), we know

CD)=1 <= Z=N
— Z=Nmodp; V1<j<m,

where p;, j € I, are the prime numbers satisfying 2 < p; < dy - log M for any
integer M > 2-max{|Z|,|N|} with d3 > 0 some constant independent of u, and B.
Thus, the products Z, and N only have to be computed modulo the prime numbers
piyJ € I, and hence the decision whether Z = N uses at most space size(u, B)-2%*,
where d > 0 is some constant independent of u, and B.

Moreover, for generating the derivation D, the nondeterministic Turing machine
has to keep in storage at any time two consecutive words 7;,_; and +; of D in or-
der to check whether v,_1 — 7; (P(B)). Therefore, by Theorem 6 and the above
considerations, there is some constant ¢ > 0 independent of w, and B such that
the nondeterministic Turing machine needs at most size(u, B) - 2% tape cells to
determine whether u € I(B).

By Savitch’s Theorem, this nondeterministic Turing machine can be simulated
by a deterministic one that calls a recursive boolean function reachable(y1, s,
(z1,...,221)), which returns the boolean value true if there exists a derivation from
71 to 72 consisting of at most z; + z3 + ... + 22 steps, and applying T'(l;) —
T(ri)(P(B)) resp., T'(r;) — T(L;)(P(B)) z9i-1 resp., zz; times, ¢ € I,. The function
reachable works by looking for the word ~ in the middle of the derivation from 4
to 72, and checking recursively that it is indeed the middle word. For each call
we must store the current values of v, 41, and 7, of size at most size(u,B) - 2°%
each, and the current value of (z1, ..., za;), of size at most size(u, B) - 2% for some
constants ¢p, ¢y > 0 independent of u, and B. Each call bisects the value of the sum
z1+ 294 ...+ 291, and hence the depth of the recursion is the logarithm of the initial
value n of 2; + 29 + ... + 23,. Therefore, by Theorem 6, (size(u,B))? - 2% space
suffices for a deterministic Turing machine to decide whether v € I(B), where ¢ > 0
is some constant independent of u, and B. O

4.2 The Algorithm

Now we derive from the algorithm of Section 3 an exponential space algorithm
for generating the reduced Grobner basis of the binomial ideal I(B) w.r.t. some
admissible term ordering <, where X = {xy,... 24}, and B = {l; —ry; l;,r; €
MI[X],C(l;) = 1,¢ € I}. Because this algorithm works with words in X = X* U
{a7% - 2%}, we define <, to be the term ordering which results from < by adding
ey a,™ <o tfor all t € X*. W.lo.g. we assume r; <o [;, 2 € [}, As in
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Section 3.1, we first analyze the elements of the reduced Grobner basis of a binomial
ideal. Note that ¢ € I(B) for all £ € [27° -+ 2 ]p(s).

Lemma 7 Let X ={xy,... a3}, B={li—r; Li,r, € M[X],C(l;) = 1,7 € I}, and
G ={hi—mi,....,h, —m,; C(h;) = 1,0 € I} be the reduced Grébner basis of the
ideal 1(B) w.r.t. some admissible term ordering < (m; <o h;). Then, if m; # 0, m;
is the minimal element (w.r.t. <o) of the congruence class [hi]p(s), © € I,.

Proof: With Theorem 4 and Theorem 6, this proof follows immediately from the
proof of Theorem 1. a

Lemma 8 Let X = {xl,...,xk}, B = {ZZ — Ty li,Ti - M[X],C(ZZ) = 1,@ € ]h};
and G = {hy —my,...,h, —m,; C(h;) = 1,i € I} be the reduced Grobner basis of
the ideal 1(B) w.r.t. some admissible term ordering < (m; <o h;). Then LT(1(B))
(the set of the leading terms of 1(B)) is the set of all terms t # 0 with either
t € I(B), or, if t & 1(B), with nontrivial congruence class in P(B), and t is not the
minimal element my of its congruence class w.r.t. <o (note, if t & I(B), then m; #
w7 ay™ ). H = {h1,...,h,} is the set of the minimal elements of LT(I(B))
w.r.t. divisibility.

Proof: With Theorem 4 and Theorem 6, this proof follows immediately from the
proof of Theorem 2. a

For any two terms t1, t3 € X§, t1 # 1o, with t; = 13 mod P(B), it follows
t1 — C(D) -ty € I(B), where D is a derivation from #; to ¢y in P(B). By definition
C(D) = Tiegyrip0 C(ri) " - (0(1”))221, where z5;_1 is the number of applications of
T(l;) — T(r;)(P(B)), and zy; the number of applications of T'(r;) — T(I;)(P(B))
in D, ¢ € I, r; # 0. Since, by Theorem 4, the size of each z;, ¢ € I3, is bounded
by size(t,tq, B) - 2% C(D) can be represented in space size(ty,ty, B) - 2¢% where c,
d > () are some constants independent of B, t;, and t,.

Thus, we get an exponential space algorithm for constructing the reduced Grob-

ner basis of general binomial ideals which is rather similar to Algorithm 1 for pure
difference binomial ideals. A listing of this Algorithm 2 is given in the Appendix.
Putting everything together, we proved the theorem:

Theorem 8 Let X = {ax1,...,23}, B={l—ry; li,r; € M[X],C(;) = 1,1 € I,,},
and < be some admissible term ordering. Then there is an algorithm which generates
the reduced Grobner basis G = {hy — mq,....h, —m,; C(h;) = 1,0 € 1.} of the
binomial ideal 1(B) using at most space (size(B))? - 2°% < 2057(B) where ¢,¢ > 0
are some constants independent of B.

5 Conclusion

The results obtained in this paper first give an algorithm for generating the reduced
Grobner basis of a pure difference binomial ideal using at most space 2", where n
is the size of the problem instance, and ¢ > 0 some constant independent of n. The
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fundamental concept is the algorithm in [MM82] for the uniform word problem in
commutative semigroups.

Because of the close relationship between commutative semigroups and pure
difference binomial ideals, our basis construction algorithm has a number of appli-
cations to finitely presented commutative semigroups. Besides those mentioned in
Section 3.3, we are able to derive exponential space complete decision procedures
for the subword, finite enumeration, finite containment, and equivalence problems
for commutative semigroups (see [KM96]).

Furthermore, as shown in Section 4, we obtain an algorithm for transforming
any given basis into the reduced Grobner basis for binomial ideals in general, which
also requires at most space 2°" for some constant d > 0 independent of the the size
n of the problem instance. Since, in the worst case, any Grobner basis can have
maximal degree at least 22", any algorithm for computing Grobner bases requires
at least exponential space (see [MM82], [Huy86]).
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Algorithm 2

Input:  B=Aly —ry,...., 0 —ry; C(l;) = 1,4 € I, }, admissible term ordering <

Output:  the reduced Grébner basis G = {hy—m1, ..., h,—m,; C(h;) = 1,7 € I} of I(B)

L' :={T(ly),...,T(l.;)} the setof the minimal elements # 0 of {T°(1,),...,T(Ix)} wrt
divisibility

R:={T(ry),...,T(r,,)} the subset of {T'(r;),...,T(rs)} which contains only minimal
elements # 0 of {T°(1y),...,T(lr), T(ry),...,T(rs)} Wrt
divisibility

L:={T(),...,T(l,,)} thesubsetof{T(l,),...,T(l, )} which contains only minimal ele-
ments of {7°(1y), ..., T(ln;), T(re), ..., T(r,,)} Wt divisibility

d

5 2k—1
d,, := max{deg(l;), deg(r;); i € I,}; d:=2- (d’" + m) ;o Gi=0; h:=1
repeat

h:=thetermof LT((L', R))— LT((L")) U (L' — L) with degree < d which follows % in the
lexicographic order defined by @, <jc @2 <iep -+« <pew T CO h =27'---2* CO
if h¢I(B) then d:=deg(h); m:=1
repeat
m:=theterm¢-T(r;)witht-T(r;) < h,T(r;) € R, t € X* deg(t-T(r;)) < dwhich
follows m in the term ordering <
until (m = h mod P(B) or thereisnomore ¢ - T'(r;)with¢-T(r;) < h,T(r;) € R,
te X+ deg(t-T(r;)) <d)
end._if
if helI(B) or m=hmodP(B),i.e. thereis a derivation D from % to m in P(5) then
co he LT(I(B)) co
for eachi € I withe; > 1 do A/ :=a§ - af ™" ok
if h’ € I(B) then nexth with ;4 does not divide A,,.,, end.if
co W e LT(I(B))=h¢gH co
m =1
repeat
m' :=theterm¢ - T(r;)witht - T'(r;) < B/, T(r;) € R, t € X*, deg(t-T(r;)) <
(d — 1) + d which follows " in the term ordering <
until (m’ = A’ mod P(B) or thereisnomore ¢ - T'(r;)with ¢ - T'(r;) < A, T(r;) € R,
te X, deg(t-T(r;)) < (d—1)+4d)
if m’=h" mod P(B) then nexth with k4 does not divide A,,.,, end.if
co W e LT(I(B))=h¢gH co
end_for
if helI(B) then G:=GU{h} else G:=GU{h—-C(D)-m} end.if
next i with f,;4 does not divide £, .,
end._if
until thereisnomore h € LT((L', R)) — LT({L')) U (L' — L) with degree < d
for eachT'(l;) € L do
it T(l;) ¢ I(B) then m:=1
repeat
m:=theterm¢-T(r;)witht-T(r;) < I;, T(r;) € R, t € X*,deg(t-T(r;)) < dwhich
follows m in the term ordering <
until m = T'({;) mod P(B), i.e. there is a derivation D from 7°(1;) to m in P(B)
end._if
if T(l;) € I(B) then G :=GU{T(l;)} else G:=GU{T(l;)—C(D)-m} end.f
end_for




