T U M

INSTITUT FÜR INFORMATIK

An Optimal Algorithm for Constructing the Reduced Gröbner Basis of Binomial Ideals

Ulla Koppenhagen
Ernst W. Mayr

TUM-I9605
Januar 1996

TUM-INFO-01-1996-I9605-350/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten
© 1996 MATHEMATISCHES INSTITUT UND INSTITUT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN

Typescript: ---
Druck: Mathematisches Institut und Institut für Informatik der Technischen Universität München

An Optimal Algorithm for Constructing the Reduced Gröbner Basis of Binomial Ideals

Ulla Koppenhagen, Ernst W. Mayr
Institut für Informatik
Technische Universität München
D-80290 München, GERMANY
e-mail: \{KOPPENHA|MAYR\}@INFORMATIK.TU-MUENCHEN.DE
WWW: HTTP://WWWMAYR.INFORMATIK.TU-MUENCHEN.DE/

January 10, 1996

Abstract

In this paper, we present an optimal, exponential space algorithm for generating the reduced Gröbner basis of binomial ideals. We make use of the close relationship between commutative semigroups and pure difference binomial ideals. Based on the algorithm for the uniform word problem in commutative semigroups exhibited by Mayr and Meyer we first derive an exponential space algorithm for constructing the reduced Gröbner basis of a pure difference binomial ideal. In addition to some applications to finitely presented commutative semigroups, this algorithm is then extended to an exponential space algorithm for generating the reduced Gröbner basis of binomial ideals in general.

1 Introduction

One of the most active areas of research in computer algebra is the design and analysis of algorithms for computational problems in commutative algebra. In particular, computational problems for polynomial ideals occur, as mathematical subproblems, in many areas of mathematics, and they also have a number of applications in various areas of computer science, like language generating and term rewriting systems, tiling problems, algebraic manifolds, motion planing, and several models for parallel systems.

Through the introduction of Gröbner bases (see [Buc65], also [Hi64]) many of the mentioned problems become easily expressible and algorithmically solvable. For practical applications, in particular, the implementation in computer algebra systems, it is important to establish upper complexity bounds for the normal form algorithms which transform a given polynomial ideal basis into a Gröbner basis.

First steps were obtained in [Bay82] and [MoMo84] where upper bounds for the degrees in a minimal Gröbner basis were derived. In [Dub90] Dubé obtained the sharpened degree bound of $2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}$ (with d the maximum degree of the input basis and k the number of indeterminates) for the degree of polynomials in a reduced Gröbner basis, employing only combinatorial arguments. By transforming a representation of the normal form of a polynomial into a system of linear equations, Kühnle and Mayr exhibited in [KuMa96] an exponential space computation of Gröbner bases. This, however, is based on very complex parallel computations like parallel rank computations of matrices, and the Parallel Computation Thesis [FW78].

In this paper, we make use of the close relationship between commutative semigroups and pure difference binomial ideals (for an investigation of the algebraic structure of general binomial ideals see [EiSt94]). Based on the algorithm in [MM82] for the uniform word problem in commutative semigroups we derive an exponential space algorithm for constructing the reduced Gröbner basis of a general binomial ideal. This algorithm can be implemented without any difficult parallel rank computations of matrices, or any other complex parallel computations. By the results in [MM82] and [Huy86], which give a doubly exponential lower bound (in the size of the problem instance) for the maximal degree of the elements of Gröbner bases as well as for the cardinality of such bases, this algorithm is space optimal.

The remainder of this paper is organized as follows. In Section 2 we briefly introduce the basic notations and fundamental concepts. In Section 3 we derive an exponential space algorithm for constructing the reduced Gröbner basis of a pure difference binomial ideal, and give some applications to finitely presented commutative semigroups. Then, in Section 4, this algorithm is extended to an exponential space algorithm for generating the reduced Gröbner basis of binomial ideals in general.

2 Preliminaries

In this section we briefly review the basic concepts used in the sequel.

2.1 Basic Definitions and Notations

The polynomial ideals which we get by using the relationship of finitely presented commutative semigroups and polynomial ideals are pure difference binomial ideals, i.e., each polynomial in the basis of such an ideal is the difference of two terms. By looking at Buchberger's algorithm [Buc65], it is not hard to see that the reduced Gröbner basis of a pure difference binomial ideal still consists only of pure difference binomials.

Let X denote the finite set $\left\{x_{1}, \ldots, x_{k}\right\}$, and ${ }^{1} \mathbb{Q}[X]$ the (commutative) ring of polynomials with indeterminates x_{1}, \ldots, x_{k} and rational coefficients.

[^0]A term t in x_{1}, \ldots, x_{k} is a product of the form

$$
t=x_{1}^{e_{1}} \cdot x_{2}^{e_{2}} \cdots x_{k}^{e_{k}},
$$

with $\left(e_{1}, e_{2}, \ldots, e_{k}\right) \in \mathbb{N}^{k}$ the degree vector of t.
By the degree $\operatorname{deg}(t)$ of a term t we shall mean the integer $e_{1}+e_{2}+\ldots+e_{k}$ (which is ≥ 0).

Each polynomial $f\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Q}[X]$ is a finite sum

$$
f\left(x_{1}, \ldots, x_{k}\right)=\sum_{1 \leq i \leq n} a_{i} \cdot t_{i},
$$

with $a_{i} \in \mathbb{Q}-\{0\}$ the coefficient of the i th term t_{i} of f. The product $m_{i}=a_{i} \cdot t_{i}$ is called the i th monomial of the polynomial f. The degree of a polynomial is the maximum of the degrees of its terms.

For $f_{1}, \ldots, f_{h} \in \mathbb{Q}[X],\left\langle f_{1}, \ldots, f_{h}\right\rangle \subseteq \mathbb{Q}[X]$ denotes the ideal generated by $\left\{f_{1}, \ldots, f_{h}\right\}$, that is ${ }^{2}$

$$
\left\langle f_{1}, \ldots, f_{h}\right\rangle:=\left\{\sum_{i=1}^{h} p_{i} f_{i} ; p_{i} \in \mathbb{Q}[X] \text { for } i \in I_{h}\right\} .
$$

If $I=\left\langle f_{1}, \ldots, f_{h}\right\rangle,\left\{f_{1}, \ldots, f_{h}\right\}$ is called a basis of I.
An admissible term ordering \prec on $\mathbb{Q}[X]$ is given by any admissible order on \mathbb{N}^{k}, i.e., any total order $<$ on \mathbb{N}^{k} satisfying the following two conditions:

$$
\begin{align*}
& e>(0, \ldots, 0) \text { for all } e \in \mathbb{N}^{k}-\{(0, \ldots, 0)\} \tag{T1}\\
& a<b \quad \Rightarrow \quad a+c<b+c \text { for all } a, b, c \in \mathbb{N}^{k} \tag{T2}
\end{align*}
$$

If $\left(d_{1}, \ldots, d_{k}\right)>\left(e_{1}, \ldots, e_{k}\right)$, we say that any monomial $a_{1} \cdot x_{1}^{d_{1}} \cdots x_{k}^{d_{k}}, a_{1} \in$ $\mathbb{Q}-\{0\}$, is greater in the term ordering than any monomial $a_{2} \cdot x_{1}^{e_{1}} \cdots x_{k}^{e_{k}}, a_{2} \in \mathbb{Q}-\{0\}$ (written $a_{1} \cdot x_{1}^{d_{1}} \cdots x_{k}^{d_{k}} \succ a_{2} \cdot x_{1}^{e_{1}} \cdots x_{k}^{\epsilon_{k}}$).

For a polynomial $f\left(x_{1}, \ldots x_{k}\right)=\sum_{i=1}^{n} a_{i} \cdot t_{i}$ we always assume that $t_{1} \succ t_{2} \succ$ $\ldots \succ t_{n}$. For any such nonzero polynomial $f \in \mathbb{Q}[X]$ we define the leading term $L T(f):=t_{1}$.

For the sake of constructiveness, we assume that the term order is given as part of the input by a $k \times k$ integral matrix T such that $a_{1} \cdot x_{1}^{d_{1}} \cdots x_{k}^{d_{k}} \succ a_{2} \cdot x_{1}^{e_{1}} \cdots x_{k}^{e_{k}}$ iff, for the corresponding degree vectors d and $e, T d$ is lexicographically greater than $T e$ (see [Rob85, Wei87]).

Let I be an ideal in $\mathbb{Q}[X]$, and let some admissible term ordering \prec on $\mathbb{Q}[X]$ be given. A finite set $\left\{g_{1}, \ldots, g_{r}\right\}$ of polynomials from $\mathbb{Q}[X]$ is called a Gröbner basis of I (w.r.t. \prec), if
(G1) $\quad\left\{g_{1}, \ldots, g_{r}\right\}$ is a basis of I;

[^1](G2) $\left\{L T\left(g_{1}\right), \ldots, L T\left(g_{r}\right)\right\}$ is a basis of the leading term ideal of I, which is the smallest ideal containing the leading terms of all $f \in I$, or equivalently: if $f \in I$, then
$$
L T(f) \in\left\langle L T\left(g_{1}\right), \ldots, L T\left(g_{r}\right)\right\rangle
$$

Let F be a subset of $\mathbb{Q}[X]$ and \prec some fixed admissible term ordering. We say a polynomial p is reducible to q modulo F (written $p \triangleright_{F} q$), if there exists $f \in F$, and a monomial $m \in \mathbb{Q}[X]$ such that $L T(m \cdot f)$ is a monomial of p, and $q=p-m \cdot f$. A polynomial p is reducible modulo F if there exists $q \in \mathbb{Q}[X]$ such that $p \triangleright_{F} q$. If p is not reducible modulo F, then we say p is in normal form modulo F. A normal form of p modulo F is a polynomial q that is in normal form modulo F and satisfies $p \stackrel{*}{\triangleright}_{F} q$, where $\stackrel{*}{\triangleright}_{F}$ is the reflexive transitive closure of \triangleright_{F}.

A Gröbner basis $G=\left\{g_{1}, \ldots, g_{r}\right\}$ is called reduced if all polynomials g_{i} are in normal form modulo $G-\left\{g_{i}\right\}$

For a finite alphabet $X=\left\{x_{1}, \ldots, x_{k}\right\}$, let X^{*} denote the free commutative monoid generated by X. An element u of X^{*} is called a (commutative) word. For a word the order of the symbols is immaterial, and we shall in the sequel use an exponent notation: $u=x_{1}^{e_{1}} \ldots x_{k}^{\epsilon_{k}}$, where $e_{i}=\Phi\left(u, x_{i}\right) \in \mathbb{N}$ for $i=1, \ldots, k$. We identify any $u \in X^{*}$ (resp., the corresponding vector $u=\left(\Phi\left(u, x_{1}\right), \ldots, \Phi\left(u, x_{k}\right)\right)$ $\in \mathbb{N}^{k}$) with the term $u=x_{1}^{\Phi\left(u, x_{1}\right)} \cdot x_{2}^{\Phi\left(u, x_{2}\right)} \cdots x_{k}^{\Phi\left(u, x_{k}\right)}$ and vice versa any term $u=$ $x_{1}^{e_{1}} \cdot x_{2}^{e_{2}} \cdots x_{k}^{e_{k}} \in \mathbb{Q}[X]$ with the word

$$
u=\underbrace{x_{1} \ldots x_{1}}_{\epsilon_{1}} \underbrace{x_{2} \ldots x_{2}}_{e_{2}} \ldots \underbrace{x_{k} \ldots x_{k}}_{e_{k}} \in X^{*} .
$$

Now let $\mathcal{P}=\left\{l_{i} \equiv r_{i} ; i \in I_{h}\right\}$ be any (finite) commutative semigroup presentation with $l_{i}, r_{i} \in X^{*}$ for $i \in I_{h}$. We say a word $v \in X^{*}$ is derived in one step from $u \in X^{*}$ (written $u \rightarrow v(\mathcal{P})$) by application of the congruence $\left(l_{i} \equiv r_{i}\right) \in \mathcal{P}$ iff, for some $w \in X^{*}$, we have $u=w l_{i}$ and $v=w r_{i}$, or $u=w r_{i}$ and $v=w l_{i}$ (note, since ' \equiv ' is symmetric, ' \rightarrow ' is symmetric, i.e., $u \rightarrow v(\mathcal{P}) \Leftrightarrow v \rightarrow u(\mathcal{P})$). The word u derives v resp., $u \equiv v \bmod \mathcal{P}$ iff $u \xrightarrow{*} v(\mathcal{P})$, where $\xrightarrow{*}$ is the reflexive transitive closure of \rightarrow. More precisely we write $u \xrightarrow{+} v(\mathcal{P})$, where $\xrightarrow{+}$ is the transitive closure of \rightarrow, if $u \xrightarrow{*} v(\mathcal{P})$ with $u \neq v$. A sequence $\left(u_{0}, \ldots, u_{n}\right)$ of words $u_{i} \in X^{*}$ with $u_{i} \rightarrow u_{i+1}(\mathcal{P})$ for $i=0, \ldots, n-1$ is called a derivation (of length n) of u_{n} from u_{0} in \mathcal{P}.

By $I(\mathcal{P})$ we denote the pure difference binomial $\mathbb{Q}[X]$-ideal generated by $\left\{l_{1}-\right.$ $\left.r_{1}, \ldots, l_{h}-r_{h}\right\}$, i.e.,

$$
I(\mathcal{P}):=\left\{\sum_{i=1}^{h} p_{i}\left(l_{i}-r_{i}\right) ; p_{i} \in \mathbb{Q}[X] \text { for } i \in I_{h}\right\}
$$

[^2]
2.2 The Uniform Word Problem and the Corresponding Pure Difference Binomial Ideal Membership Problem

The following proposition shows the connection between the uniform word problem for commutative semigroups and the membership problem for ideals in $\mathbb{Q}[X]$. The uniform word problem for commutative semigroups is the problem of deciding for a commutative Thue system \mathcal{P} over X and two words $u, v \in X^{*}$ whether $u \equiv v \bmod \mathcal{P}$. The polynomial ideal membership problem (PIMP) is the problem of deciding for given polynomials $f, f_{1}, \ldots, f_{h} \in \mathbb{Q}[X]$ whether $f \in\left\langle f_{1}, \ldots, f_{h}\right\rangle$.

Proposition 1 [MM82] Let $X=\left\{x_{1}, \ldots, x_{k}\right\}, \mathcal{P}=\left\{l_{i} \equiv r_{i} ; l_{i}, r_{i} \in X^{*}, i \in I_{h}\right\}$, and $u, v \in X^{*}$. Then the following are equivalent:
(i) There exist $p_{1}, \ldots, p_{h} \in \mathbb{Q}[X]$ such that $v-u=\sum_{i=1}^{h} p_{i}\left(l_{i}-r_{i}\right)$.
(ii) There is a derivation $u=\gamma_{0} \rightarrow \gamma_{1} \rightarrow \ldots \rightarrow \gamma_{n}=v(\mathcal{P})$ of v from u such that for $j \in I_{n}$

$$
\operatorname{length}\left(\gamma_{j}\right) \leq \max \left\{\operatorname{deg}\left(l_{i} p_{i}\right), \operatorname{deg}\left(r_{i} p_{i}\right) ; i \in I_{h}\right\} .
$$

(iii) $u \equiv v \bmod \mathcal{P}$.

In the fundamental paper [Her26], G. Hermann gave a doubly exponential degree bound for the polynomial ideal membership problem:

Proposition 2 [Her26] Let $X=\left\{x_{1}, \ldots, x_{k}\right\}$; $g, g_{1}, \ldots, g_{h} \in \mathbb{Q}[X]$; and $d:=$ $\max \left\{\operatorname{deg}\left(g_{i}\right) ; i \in I_{h}\right\}$. If $g \in\left\langle g_{1}, \ldots g_{h}\right\rangle$, then there exist $p_{1}, \ldots, p_{h} \in \mathbb{Q}[X]$ such that
(i) $g=\sum_{i=1}^{h} g_{i} p_{i}$;
(ii) $\left(\forall i \in I_{h}\right)\left[\operatorname{deg}\left(p_{i}\right) \leq \operatorname{deg}(g)+(h d)^{2^{k}}\right]$.

These two propositions yield an exponential space upper bound for the uniform word problem for commutative semigroups.

Proposition 3 [MM82] Let $X=\left\{x_{1}, \ldots, x_{k}\right\}$ and $\mathcal{P}=\left\{l_{i} \equiv r_{i} ; l_{i}, r_{i} \in X^{*}, i \in\right.$ $\left.I_{h}\right\}$. Then there is a (deterministic) Turing machine M and some constant $c>0$ independent of \mathcal{P}, such that M decides for any two words $u, v \in X^{*}$ whether $u \equiv$ $v \bmod \mathcal{P}$ using at most space $(\operatorname{size}(u, v, \mathcal{P}))^{2} \cdot 2^{c \cdot k}$.

3 Constructing the Reduced Gröbner Basis of a Pure Difference Binomial Ideal in Exponential Space

In this section we derive an exponential space algorithm for generating the reduced Gröbner basis of a pure difference binomial ideal. For this purpose, we first analyze the elements of the reduced Gröbner basis.

3.1 The Reduced Gröbner Basis of Pure Difference Binomial Ideals

Let \mathcal{P} be a commutative semigroup presentation over some alphabet X. If C is some congruence class of \mathcal{P}, and $G=\left\{h_{1}-m_{1}, \ldots, h_{r}-m_{r}\right\}\left(h_{i} \succ m_{i}\right)$ a Gröbner basis of the pure difference binomial ideal $I(\mathcal{P})$ w.r.t. some admissible term ordering \prec, then the minimal element m_{C} of C w.r.t. \prec is not reducible modulo G. Otherwise, since G is a Gröbner basis and by Proposition 1, there would be some $i \in I_{r}$, and some $t \in X^{*}$ with $m_{C}=h_{i} \cdot t \xrightarrow{+} m_{i} \cdot t \prec m_{C}$ which contradicts the minimality of m_{C}. Hence m_{C} is the normal form of any word (considered as a term) $t \in C$ modulo G.

The following theorems characterize the terms of the binomials occuring in the reduced Gröbner basis of $I(\mathcal{P})$, and the leading terms of $I(\mathcal{P})$. The first theorem shows that in each binomial of the reduced Gröbner basis G of $I(\mathcal{P})$ the smaller term (w.r.t. \prec) is the minimal element (w.r.t. \prec) of the congruence class of the leading term.

Theorem 1 Let $X=\left\{x_{1}, \ldots, x_{k}\right\}, \mathcal{P}=\left\{l_{i} \equiv r_{i} ; l_{i}, r_{i} \in X^{*}, i \in I_{h}\right\}$, and $G=$ $\left\{h_{1}-m_{1}, \ldots, h_{r}-m_{r}\right\}$ be the reduced Gröbner basis of the ideal $I(\mathcal{P})$ w.r.t. some admissible term ordering $\prec\left(m_{i} \prec h_{i}\right)$. Then m_{i} is the minimal element (w.r.t. $\left.\prec\right)$ of the congruence class $\left[h_{i}\right]_{\mathcal{P}}, i \in I_{r}$.

Proof: Assume that $w \neq m_{i}$ is the minimal element of $\left[h_{i}\right]_{\mathcal{P}}$ (w.r.t. \prec). Then $w \prec m_{i}$ and, by Proposition $1, m_{i}-w \in I(\mathcal{P})$ resp., $m_{i}-w=\sum_{i=1}^{r} p_{i}\left(h_{i}-m_{i}\right)$, for some $p_{i} \in \mathbb{Q}[X], i \in I_{r}$. Since G is the reduced Gröbner basis of $I(\mathcal{P})$, there must be some $j \in I_{r}$ with $L T\left(p_{j}\right) \cdot h_{j}$ divides m_{i}. But this is a contradiction to the fact that $h_{i}-m_{i}$ is an element of the reduced Gröbner basis of $I(\mathcal{P})$.

The next theorem characterizes the leading terms of the polynomials in $I(\mathcal{P})$, and, in particular, the leading terms of the binomials in the reduced Gröbner basis of $I(\mathcal{P})$.

Theorem 2 Let $X=\left\{x_{1}, \ldots, x_{k}\right\}, \mathcal{P}=\left\{l_{i} \equiv r_{i} ; l_{i}, r_{i} \in X^{*}, i \in I_{h}\right\}$, and $G=$ $\left\{h_{1}-m_{1}, \ldots, h_{r}-m_{r}\right\}$ be the reduced Gröbner basis of the ideal $I(\mathcal{P})$ w.r.t. some admissible term ordering $\prec\left(m_{i} \prec h_{i}\right)$. Then $\operatorname{LT}(I(\mathcal{P}))$ (the set of the leading terms of $I(\mathcal{P})$) is the set of all terms with nontrivial congruence class that are not the minimal element in their congruence class w.r.t. $\prec . H=\left\{h_{1}, \ldots, h_{r}\right\}$ is the set of the minimal elements of $\operatorname{LT}(I(\mathcal{P}))$ w.r.t. divisibility.

Proof: Since G is the reduced Gröbner basis of $I(\mathcal{P})$, it is clear that H is the set of the minimal elements of $\operatorname{LT}(I(\mathcal{P})$) w.r.t. divisibility.
Since $h_{i}-m_{i} \in I(\mathcal{P})$, there is a derivation in \mathcal{P} of $m_{i} \prec h_{i}$ from $h_{i}\left(h_{i} \xrightarrow{+} m_{i}(\mathcal{P})\right)$ for all $i \in I_{r}$. Because G is a Gröbner basis, for any $h \in L T(I(\mathcal{P}))$ there is a $h_{j} \in H$ and a term t in X with $h=t \cdot h_{j}$. So from any $h \in \operatorname{LT}(I(\mathcal{P}))$ we can start a derivation in \mathcal{P}, namely the derivation of $t \cdot m_{j} \prec h\left(h \xrightarrow{+} t \cdot m_{j}(\mathcal{P})\right)$, and hence the congruence class $[h]_{\mathcal{P}}$ is nontrivial.

Now let $s \in X^{*}$ be a term with nontrivial congruence class. If s is not the minimal element $m_{s}($ w.r.t. $\prec)$ of its congruence class $[s]_{\mathcal{P}}$, then s derives $m_{s}\left(s \xrightarrow{+} m_{s}(\mathcal{P})\right)$, and thus $s-m_{s} \in I(\mathcal{P})$ resp., $s \in L T(I(\mathcal{P}))$. If $s=m_{s}$, then there is no derivation of some $t_{s} \prec s$ from s. Furthermore there is no $j \in I_{r}$ with h_{j} divides s, because if there is some term $t \in \mathbb{Q}[X]$ and some $j \in I_{r}$ with $s=t \cdot h_{j}$, there is a derivation of $t \cdot m_{j} \prec s$ from s. So if $s=m_{s}$, then $s \notin L T(I(\mathcal{P}))$ and $s \notin H$.

If $s \in X^{*}$ is the minimal element of its congruence class [s] w.r.t. \prec, then every subword s^{\prime} of s, i.e., $s=t \cdot s^{\prime}$ for some $t \in X^{*}$, is also the minimal element of its congruence class $\left[s^{\prime}\right]$ w.r.t. \prec. Otherwise there would be a derivation of some $m_{s^{\prime}} \prec s^{\prime}$ from s^{\prime} and thus a derivation of $t \cdot m_{s^{\prime}} \prec t \cdot s^{\prime}=s$ from s which contradicts the minimality of s.

3.2 The Algorithm

In this section we give an exponential space algorithm for generating the reduced Gröbner basis of a pure difference binomial ideal. To show the correctness and the complexity of the algorithm we need the results of the previous sections and the following upper bound for the total degree of polynomials in a Gröbner basis obtained by Dubé in [Dub90]. Note that we use exponential notation in representing words over X.

Proposition 4 [Dub90] Let $F=\left\{f_{1}, \ldots, f_{h}\right\} \subset \mathbb{Q}[X], I=\left\langle f_{1}, \ldots, f_{h}\right\rangle$ the ideal generated by F, and let d be the maximum degree of any $f \in F$. Then for any admissible ordering \prec on $\mathbb{Q}[X]$, the degree of polynomials required in a Gröbner basis for I w.r.t. \prec is bounded by

$$
2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}
$$

Now we will generate the reduced Gröbner basis of the pure difference binomial ideal $I(\mathcal{P})$ w.r.t. \prec, where $X=\left\{x_{1}, \ldots, x_{k}\right\}$, and $\mathcal{P}=\left\{l_{i} \equiv r_{i} ; l_{i}, r_{i} \in X^{*}, i \in I_{h}\right\}$ (w.l.o.g. $l_{i} \succ r_{i}$). Let H denote the set $\left\{h_{1}, \ldots, h_{r}\right\}$ of the minimal elements of $L T(I(\mathcal{P}))$ w.r.t. divisibility and m_{i} the minimal element of $\left[h_{i}\right]_{\mathcal{P}}, i \in I_{r}$, w.r.t. \prec. From Theorem 1 and Theorem 2 we know the set $G=\left\{h_{1}-m_{1}, \ldots, h_{r}-m_{r}\right\}$ is the reduced Gröbner basis of $I(\mathcal{P})$.

Theorem 2 shows that $\langle L T(I(\mathcal{P}))\rangle \supseteq\left\langle l_{1}, \ldots, l_{h}\right\rangle$ and $\langle L T(I(\mathcal{P}))\rangle \subseteq\left\langle l_{1}, \ldots, l_{h}\right.$, $\left.r_{1}, \ldots, r_{h}\right\rangle$. Let $L^{\prime}=\left\{l_{1}, \ldots, l_{n_{l}^{\prime}}\right\}$ be the set of the minimal elements of $\left\{l_{1}, \ldots, l_{h}\right\}$ w.r.t. divisibility. Then the subset of $\left\{r_{1}, \ldots, r_{h}\right\}$ which contains only minimal elements of $\left\{l_{1}, \ldots, l_{n_{i}^{\prime}}, r_{1}, \ldots, r_{h}\right\}$ w.r.t. divisibility is denoted by $R=\left\{r_{1}, \ldots, r_{n_{r}}\right\}$ and the subset of $\left\{l_{1}, \ldots, l_{n_{l}^{\prime}}\right\}$ which contains only minimal elements of $\left\{l_{1}, \ldots, l_{n_{i}^{\prime}}\right.$, $\left.r_{1}, \ldots, r_{n_{r}}\right\}$ w.r.t. divisibility by $L=\left\{l_{1}, \ldots, l_{n_{l}}\right\}$. Note that

$$
\begin{aligned}
H & \supseteq L \\
\langle L T(I(\mathcal{P}))\rangle & \supseteq\left\langle L^{\prime}\right\rangle \supseteq\langle L\rangle \\
\langle L T(I(\mathcal{P}))\rangle & \subseteq\langle L, R\rangle=\left\langle L^{\prime}, R\right\rangle .
\end{aligned}
$$

We have to determine the elements of the set $H-L$, and the minimal elements m_{i} (w.r.t. \prec) of the congruence classes of all $h_{i} \in H$. From Proposition 4 we know that the degrees $\operatorname{deg}\left(h_{i}\right)$, and $\operatorname{deg}\left(m_{i}\right)$ are bounded by $2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}$, where d is the maximum degree of any $l_{i}-r_{i}, i \in I_{h}$. Since

$$
H-L \subset L T\left(\left\langle L^{\prime}, R\right\rangle\right)-L T\left(\left\langle L^{\prime}\right\rangle\right) \cup\left(L^{\prime}-L\right)=: K H
$$

we consider the terms in $K H$ with degree $\leq 2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}$ in some order, e.g. in ascending lexicographic order with $x_{1} \prec_{l e x} x_{2} \prec_{l e x} \ldots \prec_{l e x} x_{k}$. From Theorem 2 follows immediately:

Lemma 1 A term $u \in X^{*}$ is an element of $\operatorname{LT}(I(\mathcal{P}))$ iff u is not the minimal element of $[u]_{\mathcal{P}}$ w.r.t. \prec.

For the case that the term u is not the minimal element m_{u} of $[u]_{\mathcal{P}}$ the next lemma gives a characterization of the elements $m \in[u]_{\mathcal{P}}$ with $m \prec u$.

Lemma 2 A term $u \in X^{*}$ is the minimal element of $[u]_{\mathcal{P}}$ w.r.t. \prec iff there is no $t \cdot r_{i}$ with $t \cdot r_{i} \prec u, r_{i} \in R, t \in X^{*}$ such that $u \xrightarrow{+} t \cdot r_{i}(\mathcal{P})$.

Proof: If u is the minimal element of $[u]_{\mathcal{P}}$ w.r.t. \prec, then there is no $m \in X^{*}$ with $m \prec u$, and $u \xrightarrow{+} m(\mathcal{P})$.
Now assume that u is not minimal in $[u]_{\mathcal{P}}$ w.r.t. \prec. Then there is a derivation in \mathcal{P} leading from u to the minimal element $m_{u} \prec u$ of $[u]_{\mathcal{P}}$ w.r.t. \prec, i.e., $u \xrightarrow{+} m_{u}(\mathcal{P})$, where $m_{u}=t \cdot r_{i}$ for some $r_{i} \in\left\{r_{1}, \ldots, r_{h}\right\}$ (note $l_{j} \succ r_{j} \forall j \in I_{h}$), $t \in X^{*}$. Since $\left\{r_{1}, \ldots, r_{h}\right\}-R \subset L T(I(\mathcal{P}))$, we can even say $r_{i} \in R$.

Considering degree bounds this Lemma has the following form.
Lemma 3 A term $u \in X^{*}$ with $\operatorname{deg}(u) \leq D$ is the minimal element of $[u]_{\mathcal{P}}$ w.r.t. \prec iff there is no $t \cdot r_{i}$ with $t \cdot r_{i} \prec u, r_{i} \in R, t \in X^{*}$, and $\operatorname{deg}\left(t \cdot r_{i}\right) \leq D+2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}$ such that $u \xrightarrow{+} t \cdot r_{i}(\mathcal{P})$.

Proof: If u is not the minimal element m_{u} of $[u]_{\mathcal{P}}$ w.r.t. \prec, i.e., $u \in \operatorname{LT}(I(\mathcal{P}))$, then either $u \in H$ and $\operatorname{deg}\left(m_{u}\right) \leq 2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}$, or there is some $h \in H$ with $u=t_{u} \cdot h$ for some $t_{u} \in X^{*}$. The degree of the minimal element m_{h} of $[h]_{\mathcal{P}}$ w.r.t. \prec is bounded by $2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}$. From $m_{h} \prec h$ we get $t_{u} \cdot m_{h} \prec u$ with $\operatorname{deg}\left(t_{u} \cdot m_{h}\right) \leq D+2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}$.

Given some term $h \in K H$ with $\operatorname{deg}(h) \leq 2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}$, we have to decide whether $h \in H$, and if $h \in H$ we have to determine the minimal element m_{h} of $[h]_{\mathcal{P}}$ w.r.t. \prec. If $h \in H$, then, by Lemma 2 and Proposition 4, there is a term $t \cdot r_{i}$ with $t \cdot r_{i} \prec h, r_{i} \in R, t \in X^{*}, \operatorname{deg}\left(t \cdot r_{i}\right) \leq 2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}$ such that $h \xrightarrow{+} t \cdot r_{i}(\mathcal{P})$. For h and $t \cdot r_{i}$ with $\operatorname{deg}(h), \operatorname{deg}\left(t \cdot r_{i}\right) \leq 2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}$, by Proposition 3, the decision
whether $h \equiv t \cdot r_{i} \bmod \mathcal{P}$ uses at most space $(\operatorname{size}(\mathcal{P}))^{2} \cdot 2^{c \cdot k}$ for some constant $c>0$ independent of \mathcal{P}. Thus we decide for the words $t \cdot r_{i}$ with $t \cdot r_{i} \prec h, r_{i} \in R, t \in X^{*}$, $\operatorname{deg}\left(t \cdot r_{i}\right) \leq 2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}$ in ascending term order whether $h \equiv t \cdot r_{i} \bmod \mathcal{P}$ until we find the minimal element m_{h} of $[h]_{\mathcal{P}}$, or there is no more $t \cdot r_{i}$ with $t \cdot r_{i} \prec h$, $r_{i} \in R, t \in X^{*}, \operatorname{deg}\left(t \cdot r_{i}\right) \leq 2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}$. In the latter case $h \notin H$, and we have to consider the next element of $K H$ with degree $\leq 2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}$. Otherwise $h \in \operatorname{LT}(I(\mathcal{P}))$ and we have to decide whether $h \in H$.

Lemma 4 Let $h=x_{1}^{e_{1}} \cdots x_{k}^{e_{k}}$ with $h \in L T\left(I(\mathcal{P})\right.$), then $h \in H$ iff for all $i \in I_{k}$ with $e_{i} \geq 1 h^{(i)}:=x_{1}^{e_{1}} \cdots x_{i}^{e_{i}-1} \cdots x_{k}^{e_{k}} \notin L T(I(\mathcal{P}))$, i.e., $h^{(i)}$ is the minimal element of $\left[h^{(i)}\right]_{\mathcal{P}}$ w.r.t. \prec.

Proof: Follows immediately from the definition of H.
Since $\operatorname{deg}(h) \leq 2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}$ and because of Lemma 3, and Proposition 3 the decision whether $h^{(i)} \in L T(I(\mathcal{P}))\left(i \in I_{k}, e_{i} \geq 1\right)$ uses at most space $(\operatorname{size}(\mathcal{P}))^{2} \cdot 2^{c \cdot k}$ for some constant $c>0$ independent of \mathcal{P}. If $h \in H$, then $h-m_{h}$ is an element of the reduced Gröbner basis G of $I(\mathcal{P})$. The algorithm continues by considering the next element $h_{\text {new }}$ of $K H$ with $\operatorname{deg}\left(h_{\text {new }}\right) \leq 2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}$, and h does not divide $h_{\text {new }}$ because any multiple $t \cdot h$ of $h, t \in X^{*}$, is not in H if $h \in \operatorname{LT}(I(\mathcal{P}))$.

When all the elements in $K H$ with degree $\leq 2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}$ are examined it remains to determine the minimal elements (w.r.t. \prec) of the congruence classes of the terms $l_{i} \in L$. Again from Proposition 4 we know that the degree of the minimal element $m_{l_{i}}$ of $\left[l_{i}\right]_{\mathcal{P}}($ w.r.t. $\prec)$ is bounded by $2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}$. As above we determine $m_{l_{i}}$ by deciding for the words $t \cdot r_{i}$ with $t \cdot r_{i} \prec l_{i}, r_{i} \in R, t \in X^{*}$, $\operatorname{deg}\left(t \cdot r_{i}\right) \leq 2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}$ in ascending term order whether $l_{i} \equiv t \cdot r_{i} \bmod \mathcal{P}$.

From this, we derive the exponential space algorithm given in Figure 1.

Putting everything together, we proved the theorem:
Theorem 3 Let $X=\left\{x_{1}, \ldots, x_{k}\right\}, \mathcal{P}=\left\{l_{i} \equiv r_{i} ; l_{i}, r_{i} \in X^{*}, i \in I_{h}\right\}$, and \prec be some admissible term ordering. Then there is an algorithm which generates the reduced Gröbner basis $G=\left\{h_{1}-m_{1}, \ldots, h_{r}-m_{r}\right\}$ of the pure difference binomial ideal $I(\mathcal{P})$ using at most space $(\operatorname{size}(\mathcal{P}))^{2} \cdot 2^{\bar{c} \cdot k} \leq 2^{\text {c.size }(\mathcal{P})}$, where $\bar{c}, c>0$ are some constants independent of \mathcal{P}.

From the results in [Huy86] we know that, in the worst case, any Gröbner basis of $I(\mathcal{P})$ has maximal degree at least $2^{2^{\text {size(} \mathcal{P})}}$. Hence any algorithm that computes Gröbner bases requires at least exponential space in the worst case.

3.3 Applications

We now consider some applications of the algorithm of Theorem 3.

Algorithm 1

Input: $\quad\left\{l_{1}-r_{1}, \ldots, l_{h}-r_{h}\right\}$, admissible term ordering \prec
Output: the reduced Gröbner basis $G=\left\{h_{1}-m_{1}, \ldots, h_{r}-m_{r}\right\}$ of $I(\mathcal{P})$
$L^{\prime}:=\left\{l_{1}, \ldots, l_{n_{i}^{\prime}}\right\} \quad$ the set of the minimal elements of $\left\{l_{1}, \ldots, l_{h}\right\}$ w.r.t. divisibility
$R:=\left\{r_{1}, \ldots, r_{n_{r}}\right\}$ the subset of $\left\{r_{1}, \ldots, r_{h}\right\}$ which contains only minimal elements of $\left\{l_{1}, \ldots, l_{n^{\prime}}, r_{1}, \ldots, r_{h}\right\}$ w.r.t. divisibility
$L:=\left\{l_{1}, \ldots, l_{n_{1}}\right\}$ the subset of $\left\{l_{1}, \ldots, l_{n_{1}^{\prime}}\right\}$ which contains only minimal elements of $\left\{l_{1}, \ldots, l_{n_{i}^{\prime}}, r_{1}, \ldots, r_{n_{r}}\right\}$ w.r.t. divisibility
$d:=\max \left\{\operatorname{deg}\left(l_{i}\right), \operatorname{deg}\left(r_{i}\right) ; i \in I_{h}\right\} ; G:=\emptyset ; h:=1$
repeat
$h:=$ the term of $L T\left(\left\langle L^{\prime}, R\right\rangle\right)-L T\left(\left\langle L^{\prime}\right\rangle\right) \cup\left(L^{\prime}-L\right)$ with degree $\leq 2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}$ which follows h in the lexicographic order defined by $x_{1} \prec_{\text {lex }} x_{2} \prec_{l e x} \ldots \prec_{l e x} x_{k}$ co $h=x_{1}^{e_{1}} \cdots x_{k}^{e_{k}} \quad$ CO
$D:=\operatorname{deg}(h) ; \quad m:=1$
repeat
$m:=$ the term $t \cdot r_{i}$ with $t \cdot r_{i} \prec h, r_{i} \in R, t \in X^{*}, \operatorname{deg}\left(t \cdot r_{i}\right) \leq 2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}$ which follows m in the term ordering \prec
until $\left(m \equiv h \bmod \mathcal{P}\right.$ or there is no more $t \cdot r_{i}$ with $t \cdot r_{i} \prec h, r_{i} \in R, t \in X^{*}$,

$$
\left.\operatorname{deg}\left(t \cdot r_{i}\right) \leq 2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}\right)
$$

if $m \equiv h \bmod \mathcal{P}$ then \quad co $h \in L T(I(\mathcal{P}))$ co
for each $i \in I_{k}$ with $e_{i} \geq 1$ do $h^{\prime}:=x_{1}^{e_{1}} \cdots x_{i}^{e_{i}-1} \cdots x_{k}^{e_{k}} ; \quad m^{\prime}:=1$
repeat
$m^{\prime}:=$ the term $t \cdot r_{i}$ with $t \cdot r_{i} \prec h^{\prime}, r_{i} \in R, t \in X^{*}, \operatorname{deg}\left(t \cdot r_{i}\right) \leq$ $(D-1)+2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}$ which follows m^{\prime} in the term ordering \prec
until ($m^{\prime} \equiv h^{\prime} \bmod \mathcal{P}$ or there is no more $t \cdot r_{i}$ with $t \cdot r_{i} \prec h^{\prime}, r_{i} \in R, t \in X^{*}$,

$$
\left.\operatorname{deg}\left(t \cdot r_{i}\right) \leq(D-1)+2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k}-1}\right)
$$

if $m^{\prime} \equiv h^{\prime} \bmod \mathcal{P}$ then next h with $h_{\text {old }}$ does not divide $h_{\text {new }}$ end.if
co $h^{\prime} \in L T(I(\mathcal{P})) \Rightarrow h \notin H \quad \mathbf{c o}$
end for
$G:=G \cup\{h-m\}$
next h with $h_{\text {old }}$ does not divide $h_{\text {new }}$
end_jf
until there is no more $h \in L T\left(\left\langle L^{\prime}, R\right\rangle\right)-L T\left(\left\langle L^{\prime}\right\rangle\right) \cup\left(L^{\prime}-L\right)$ with degree $\leq 2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}$
for each $l_{i} \in L$ do $m:=1$
repeat
$m:=$ the term $t \cdot r_{i}$ with $t \cdot r_{i} \prec l_{i}, r_{i} \in R, t \in X^{*}, \operatorname{deg}\left(t \cdot r_{i}\right) \leq 2 \cdot\left(\frac{d^{2}}{2}+d\right)^{2^{k-1}}$ which follows m in the term ordering \prec
until $m \equiv l_{i} \bmod \mathcal{P}$
$G:=G \cup\left\{l_{i}-m\right\}$
end_for
Figure 1: Algorithm for the Reduced Gröbner Basis of a Pure Difference Binomial Ideal

3.3.1 Testing for Reducibility

Let \mathcal{P} be a finite commutative semigroup presentation over some alphabet $X, u \in$ X^{*}, and \prec some admissible term ordering on $\mathbb{Q}[X]$. Then, u is the minimal element of $[u]_{\mathcal{P}}$ w.r.t. \prec iff u is in normal form modulo a Gröbner basis G of $I(\mathcal{P})$ w.r.t. \prec, i.e. u is not reducible modulo G. Thus, by Lemma $1, u$ is in normal form modulo G iff $u \notin L T(I(\mathcal{P}))$.

Corollary 1 Let $X=\left\{x_{1}, \ldots, x_{k}\right\}, \mathcal{P}=\left\{l_{i} \equiv r_{i} ; l_{i}, r_{i} \in X^{*}, i \in I_{h}\right\}$, and \prec be some admissible term ordering. Then for any $u \in X^{*}$
(i) there is an algorithm which decides whether $u \in L T(I(\mathcal{P}))$ using at most space $\operatorname{size}(u)+(\operatorname{size}(\mathcal{P}))^{2} \cdot 2^{\bar{c} \cdot k} \leq \operatorname{size}(u)+2^{c \cdot \operatorname{size}(\mathcal{P})}$, where $\bar{c}, c>0$ are some constants independent of u and \mathcal{P}.
(ii) there is an algorithm which decides whether u is the minimal element of its congruence class (w.r.t. \prec), or equivalently, whether u is in normal form modulo the Gröbner basis of $I(\mathcal{P})$ using at most space $\operatorname{size}(u)+(\operatorname{size}(\mathcal{P}))^{2} \cdot 2^{\bar{c} \cdot k} \leq$ $\operatorname{size}(u)+2^{c \cdot \operatorname{size}(\mathcal{P})}$, where $\bar{c}, c>0$ are some constants independent of u and \mathcal{P}.

Proof: Let $G=\left\{h_{1}-m_{1}, \ldots, h_{r}-m_{r}\right\}$ be the reduced Gröbner basis of $I(\mathcal{P})$. Then $\operatorname{LT}(I(\mathcal{P}))$ is generated by $\left\{h_{1}, \ldots, h_{r}\right\}$. Thus, $u \in L T(I(\mathcal{P}))$ iff there is some $h_{i}, i \in I_{r}$, which divides u.

3.3.2 Finding the Minimal Element, and the Normal Form

The next corollary shows that the minimal element of a congruence class w.r.t. \prec, and the normal form of a word modulo G can be found in exponential space.

Corollary 2 Let $X=\left\{x_{1}, \ldots, x_{k}\right\}, \mathcal{P}=\left\{l_{i} \equiv r_{i} ; l_{i}, r_{i} \in X^{*}, i \in I_{h}\right\}$, and \prec be some admissible term ordering. Then there is an algorithm, which determines for any word $u \in X^{*}$ the minimal element of its congruence class (w.r.t. $\left.\prec\right)$, or equivalently, which determines for any term $u \in X^{*}$ the normal form of u modulo the Gröbner basis of $I(\mathcal{P})$ using at most space $(\operatorname{size}(u)+\operatorname{size}(\mathcal{P}))^{2} \cdot 2^{\bar{c} \cdot k} \leq 2^{c \cdot(\operatorname{size}(u)+\operatorname{size}(\mathcal{P}))}$, where $\bar{c}, c>0$ are some constants independent of u and \mathcal{P}.

Proof: In addition to x_{1}, \ldots, x_{k} we introduce a new variable s, and to \mathcal{P} we add the identity $s \equiv u$, where u is the word in X^{*} for whose congruence class we like to determine the minimal element (w.r.t. \prec). Let $X_{s}=X \cup\{s\}, \mathcal{P}_{s}=\mathcal{P} \cup\{s \equiv u\}$, and \prec_{s} be the admissible term ordering which results from \prec by adding $w \prec s$ for all $w \in X^{*}$. Then, by Theorem 2, $\operatorname{LT}\left(I\left(\mathcal{P}_{s}\right)\right)=\operatorname{LT}(I(\mathcal{P})) \cup\left\{s \cdot t ; t \in X_{s}^{*}\right\}$, in particular $s \in L T\left(I\left(\mathcal{P}_{s}\right)\right)$, and, since s is minimal in $L T\left(I\left(\mathcal{P}_{s}\right)\right)$ w.r.t. divisibility, $H_{s}=H \cup\{s\}$, in particular $s \in H_{s}$, where H resp., H_{s} is the set of the minimal elements of $L T(I(\mathcal{P}))$ resp., $L T\left(I\left(\mathcal{P}_{s}\right)\right)$ w.r.t. divisibility. Because $s \succ w$ for all $w \in X^{*}$, the minimal element of some congruence class $[v]_{\mathcal{P}_{s}}, v \in X^{*}$, w.r.t. \prec_{s} is the same as the minimal element of $[v]_{\mathcal{P}}$ w.r.t. \prec. So, because of Theorem 1 , and Theorem 3, we can determine the minimal element of $[u]_{\mathcal{P}}$ (w.r.t. \prec) in space $(\operatorname{size}(u)+\operatorname{size}(\mathcal{P}))^{2} \cdot 2^{\bar{c} \cdot k}$ for some constant $\bar{c}>0$ independent of u and \mathcal{P}.

So far, we only considered terms. Since a polynomial $f=\sum_{i=1}^{n} a_{i} \cdot t_{i}$ is in normal form iff all its terms t_{i} are in normal form, the results obtained for terms can easily be extended to polynomials.

Corollary 3 Let $X=\left\{x_{1}, \ldots, x_{k}\right\}, \mathcal{P}=\left\{l_{i} \equiv r_{i} ; l_{i}, r_{i} \in X^{*}, i \in I_{h}\right\}$, and \prec be some admissible term ordering. Then for any polynomial $f=\sum_{i=1}^{n} a_{i} \cdot t_{i}$ in $Q[X]$,
(i) there is an algorithm, which decides whether f is in normal form modulo the Gröbner basis of $I(\mathcal{P})$ using at most space $\max _{i \in I_{n}}\left\{\operatorname{size}\left(t_{i}\right)\right\}+(\operatorname{size}(\mathcal{P}))^{2} \cdot 2^{\bar{c} \cdot k} \leq$ $\max _{i \in I_{n}}\left\{\operatorname{size}\left(t_{i}\right)\right\}+2^{c \cdot \operatorname{size}(\mathcal{P})}$, where $\bar{c}, c>0$ are some constants independent of f and \mathcal{P}.
(ii) there is an algorithm, which determines the normal form of f modulo the Gröbner basis of $I(\mathcal{P})$ using at most space $\left(\max _{i \in I_{n}}\left\{\operatorname{size}\left(t_{i}\right)\right\}+\operatorname{size}(\mathcal{P})\right)^{2} \cdot 2^{\bar{c} \cdot k} \leq$ $2^{c \cdot\left(\max _{i} \in I_{n}\left\{\operatorname{size}\left(t_{i}\right)\right\}+\operatorname{size}(\mathcal{P})\right)}$, where $\bar{c}, c>0$ are some constants independent of f and \mathcal{P}.

Proof: Follows immediately from Corollary 1 and Corollary 2.

4 Constructing the Reduced Gröbner Basis of a Binomial Ideal in Exponential Space

The algorithm of Theorem 3 generates the reduced Gröbner basis for pure difference binomial ideals. In this section we will be concerned with constructing the reduced Gröbner basis of a larger class of ideals: binomial ideals, in general.

4.1 Basics

Let $m=a \cdot t$ be a monomial in $\mathbb{Q}[X]$ with $a \in \mathbb{Q}$, and t a term in X. Then we write $C(m)$ for the coefficient a, and $T(m)$ for the term t of the monomial m. By $M[X]$ we mean the set of all monomials in $\mathbb{Q}[X]$.

By a binomial in $\mathbb{Q}[X]$ we mean a polynomial with at most two monomials, say $l-r(l \succ r)$. For a finite set $\mathcal{B}=\left\{l_{i}-r_{i} ; l_{i}, r_{i} \in M[X], C\left(l_{i}\right)=1, i \in I_{h}\right\}, I(\mathcal{B})$ denotes the binomial $\mathbb{Q}[X]$-ideal generated by \mathcal{B}, i.e.,

$$
I(\mathcal{B}):=\left\{\sum_{i=1}^{h} p_{i}\left(l_{i}-r_{i}\right) ; p_{i} \in \mathbb{Q}[X] \text { for } i \in I_{h}\right\} .
$$

W.l.o.g. we assume that there are no $i, j \in I_{h}, i \neq j$, with $l_{i}-r_{i}=c \cdot\left(l_{j}-r_{j}\right)$ for some $c \in \mathbb{Q}-\{0\}$. (Otherwise we remove one of the two binomials).

As in the case of pure difference binomial ideals we see from Buchberger's algorithm that the reduced Gröbner basis of a binomial ideal still consists only of binomials.

In the following we generalize the algorithm of Theorem 3 from pure difference binomial ideals to binomial ideals.

First we establish some technical details.
For $X=\left\{x_{1}, \ldots, x_{k}\right\}$, and $\mathcal{B}=\left\{l_{i}-r_{i} ; l_{i}, r_{i} \in M[X], C\left(l_{i}\right)=1, i \in I_{h}\right\}$ a set of binomials in $\mathbb{Q}[X]$, we define the corresponding commutative semigroup presentation $\mathcal{P}(\mathcal{B}):=\left\{T\left(l_{i}\right) \equiv T\left(r_{i}\right) ; l_{i}-r_{i} \in \mathcal{B}\right\}$, where we set $T(0):=x_{1}^{-\infty} \cdot x_{2}^{-\infty} \cdots x_{k}^{-\infty}$. If we agree that $-\infty+n=n+(-\infty)=-\infty$ for any integer n, and $-\infty+(-\infty)=-\infty$, then the whole formalism for commutative semigroups introduced in Section 2 still holds for $\mathcal{P}(\mathcal{B})$. The only difference is that, in addition to the words in X^{*}, we have the word $x_{1}^{-\infty} \cdot x_{2}^{-\infty} \cdots x_{k}^{-\infty}$ which corresponds to 0 when we consider polynomials. In particular, we still have for $u, v \in X_{0}^{*}:=X^{*} \cup\left\{x_{1}^{-\infty} \cdots x_{k}^{-\infty}\right\}$

$$
u-v \in I(\mathcal{P}(\mathcal{B})) \quad \Longleftrightarrow \quad u \equiv v \bmod \mathcal{P}(\mathcal{B})
$$

W.l.o.g. we assume that there are no $i, j \in I_{h}, i \neq j$, with $\left(T\left(l_{i}\right)=T\left(l_{j}\right)\right) \wedge\left(T\left(r_{i}\right)=\right.$ $\left.T\left(r_{j}\right)\right)$. (Otherwise, since there is no $c \in \mathbb{Q}$ with $l_{i}-r_{i}=c \cdot\left(l_{j}-r_{j}\right)$, we know that $l_{i} \in I(\mathcal{B})$ and $r_{i} \in I(\mathcal{B})$, and we replace the two binomials in \mathcal{B} by $T\left(l_{i}\right)$, and $T\left(r_{i}\right)$ if $T\left(r_{i}\right) \neq 0$.)

Let $u, v \in X_{0}^{*}$, and D be a derivation in $\mathcal{P}(\mathcal{B})$ leading from u to v. Then there are terms w_{i} such that $u=T\left(a_{1}\right) \cdot w_{1} \rightarrow T\left(b_{1}\right) \cdot w_{1}=T\left(a_{2}\right) \cdot w_{2} \rightarrow T\left(b_{2}\right) \cdot w_{2} \rightarrow \ldots \rightarrow$ $T\left(b_{n}\right) \cdot w_{n}=v$, where $a_{i}=l_{j_{i}}$ and $b_{i}=r_{j_{i}}$, or $a_{i}=r_{j_{i}}$ and $b_{i}=l_{j_{i}}, j_{i} \in I_{h}, i \in I_{n}$.

Now attach to each $T\left(l_{i}\right) \rightarrow T\left(r_{i}\right)(\mathcal{P}(\mathcal{B})), i \in I_{h}$, the multiplicative factor $C\left(r_{i}\right)$ if $C\left(r_{i}\right) \neq 0$ resp., 1 if $C\left(r_{i}\right)=0$, and to each $T\left(r_{i}\right) \rightarrow T\left(l_{i}\right)(\mathcal{P}(\mathcal{B})), i \in I_{h}$, the multiplicative factor $\frac{1}{C\left(r_{i}\right)}$ if $C\left(r_{i}\right) \neq 0$ resp., 1 if $C\left(r_{i}\right)=0$. Taking into account these factors, we obtain from D a derivation in which the i-th step has the form

$$
c \cdot T\left(l_{j_{i}}\right) \cdot w_{i} \rightarrow c \cdot c_{i} \cdot T\left(r_{j_{i}}\right) \cdot w_{i}
$$

with $c_{i}=C\left(r_{j_{i}}\right)$ resp., $c_{i}=1$, or

$$
c \cdot T\left(r_{j_{i}}\right) \cdot w_{i} \rightarrow c \cdot c_{i} \cdot T\left(l_{j_{i}}\right) \cdot w_{i}
$$

with $c_{i}=\frac{1}{C\left(r_{j_{i}}\right)}$ resp., $c_{i}=1$ for some constant $c \in \mathbb{Q}-\{0\}$ resulting from the first ($i-1$) steps of D.

Thus, we define the multiplicative factor of D as

$$
\mathcal{C}(D):=c_{1} \cdot c_{2} \cdots c_{n} .
$$

Then, for any derivation D in $\mathcal{P}(\mathcal{B})$ leading from u to $v, u, v \in X_{0}^{*}$ we have

$$
\sum_{i=1}^{n} d_{i} \cdot\left(l_{j_{i}}-r_{j_{i}}\right) \cdot w_{i}=u-\mathcal{C}(D) \cdot v
$$

where $d_{1}=1$ if $u=T\left(l_{j_{1}}\right) \cdot w_{1}$, resp., $d_{1}=-c_{1}$ if $u=T\left(r_{j_{1}}\right) \cdot w_{1}$, and for $i>1$ $d_{i}=c_{1} \cdots c_{i-1}$ if the i-th step of D uses $T\left(l_{i}\right) \rightarrow T\left(r_{i}\right)$, resp., $d_{i}=-c_{1} \cdots c_{i}$ if the i-th step of D uses $T\left(r_{i}\right) \rightarrow T\left(l_{i}\right)$. Therefore, $u-\mathcal{C}(D) \cdot v \in I(\mathcal{B})$. Note that $u \in I(\mathcal{B})$, and $v \in I(\mathcal{B})$ if $x_{1}^{-\infty} \cdots x_{k}^{-\infty}$ occurs in D.

Hence, by Proposition 2, we conclude the following

Theorem 4 Let $X=\left\{x_{1}, \ldots, x_{k}\right\}, \mathcal{B}=\left\{l_{i}-r_{i} ; l_{i}, r_{i} \in M[X], C\left(l_{i}\right)=1, i \in I_{h}\right\}$, and $u, v, T(u) \neq T(v)$, be monomials in $M[X]$. Then the following are equivalent:
(i) There exists $d \in \mathbb{Q}-\{0\}$ such that $u-d \cdot v \in I(\mathcal{B})$.
(ii) There is a repetition-free derivation $D: T(u)=\gamma_{0} \rightarrow \gamma_{1} \rightarrow \ldots \rightarrow \gamma_{n}=T(v)$ in $\mathcal{P}(\mathcal{B})$ leading from $T(u)$ to $T(v)$ and such that, for $j \in I_{n}$,

$$
\operatorname{size}\left(\gamma_{j}\right) \leq \operatorname{size}(u, v, \mathcal{B}) \cdot 2^{c \cdot k}
$$

where $c>0$ is some constant independent of \mathcal{B}, u, and v.
Then, by Proposition 3, we have:
Theorem 5 Let $X=\left\{x_{1}, \ldots, x_{k}\right\}$, and $\mathcal{B}=\left\{l_{i}-r_{i} ; l_{i}, r_{i} \in M[X], C\left(l_{i}\right)=1, i \in\right.$ $\left.I_{h}\right\}$. Then there is a (deterministic) Turing machine M and some constant $c>0$ independent of \mathcal{B}, such that M decides for any two monomials $u, v \in M[X], T(u) \neq$ $T(v)$, whether there exists $d \in \mathbb{Q}-\{0\}$ such that $u-d \cdot v \in I(\mathcal{B})$ using at most space $(\operatorname{size}(u, v, \mathcal{B}))^{2} \cdot 2^{c \cdot k}$.

To get similar results concerning the membership of a single monomial in $I(\mathcal{B})$, we need a further detail.

Lemma 5 Let $X=\left\{x_{1}, \ldots, x_{k}\right\}, \mathcal{B}=\left\{l_{i}-r_{i} ; l_{i}, r_{i} \in M[X], C\left(l_{i}\right)=1, i \in I_{h}\right\}$, and $u \neq 0$ be a monomial in $M[X]$. Then $u \in I(\mathcal{B})$ iff there is some $t \in[T(u)]_{\mathcal{P}(\mathcal{B})}$ such that there is a repetition-free derivation D in $\mathcal{P}(\mathcal{B})$ leading from t to $x_{1}^{-\infty} \cdots x_{k}^{-\infty}$, or from t to t with $\mathcal{C}(D) \neq 1$.

Proof: By the above considerations, we already know that $u \in I(\mathcal{B})$ iff there is a derivation $D: T(u)=\gamma_{0} \rightarrow \gamma_{1} \rightarrow \ldots \rightarrow \gamma_{n}$ in $\mathcal{P}(\mathcal{B})$ with $\gamma_{n}=x_{1}^{-\infty} \cdots x_{k}^{-\infty}$, or $\gamma_{n}=T(u)$, and $\mathcal{C}(D) \neq 1$. If $\gamma_{n}=x_{1}^{-\infty} \cdots x_{k}^{-\infty}$, then there is nothing left to prove. In the following we assume that $x_{1}^{-\infty} \cdots x_{k}^{-\infty} \notin[T(u)]_{\mathcal{P}(\mathcal{B})}$. We derive from $u \in I(\mathcal{B}), \gamma_{n}=T(u)$, and $\gamma_{i} \neq x_{1}^{-\infty} \cdots x_{k}^{-\infty}, i \in I_{n}$, that there is a repetition-free derivation \bar{D} in $\mathcal{P}(\mathcal{B})$ leading from some $t \in\left[T(u)_{\mathcal{P}(\mathcal{B})}\right.$ to t with $\mathcal{C}(\bar{D}) \neq 1$. We have $\mathcal{C}(D)=c_{1} \cdots c_{n} \neq 1$. If $\gamma_{1}=\gamma_{n-1}$, then $c_{1}=\frac{1}{c_{n}}$, and $\mathcal{C}(D)=c_{2} \cdots c_{n-1}$. Generally, if $\gamma_{i}=\gamma_{n-i}$ for $i=1, \ldots, j, j \leq\left\lfloor\frac{n}{2}\right\rfloor-1$, then $\mathcal{C}(D)=c_{j+1} \cdots c_{n-j} \neq 1$. Thus, D^{\prime} : $\gamma_{j} \rightarrow \gamma_{j+1} \rightarrow \ldots \rightarrow \gamma_{n-j}$ is a subderivation of D with $\mathcal{C}\left(D^{\prime}\right)=\mathcal{C}(D) \neq 1, \gamma_{j}=\gamma_{n-j}$, and $\gamma_{j+1} \neq \gamma_{n-j-1}$. If D^{\prime} is repetition-free, then we are finished. Otherwise, define m_{1} as the largest, and m_{2} as the smallest index such that $j+1<m_{1}<m_{2}<n-j-1$, and $\gamma_{m_{1}-1}=\gamma_{m_{2}}$. Let $D^{\prime \prime}$ be the repetition-free derivation $\gamma_{m_{1}-1} \rightarrow \ldots \rightarrow \gamma_{m_{2}}$. If $\mathcal{C}\left(D^{\prime \prime}\right)=c_{m_{1}} \cdots c_{m_{2}} \neq 1$, then we are finished. Otherwise, i.e., if $\mathcal{C}\left(D^{\prime \prime}\right)=1$, we consider the derivation $D^{\prime \prime \prime}: \gamma_{j} \rightarrow \ldots \rightarrow \gamma_{m_{1}-1}=\gamma_{m_{2}} \rightarrow \ldots \rightarrow \gamma_{n-j}$ with $\mathcal{C}\left(D^{\prime \prime \prime}\right)=$ $\mathcal{C}(D)=c_{j} \cdots c_{m_{1}-1} \cdot c_{m_{2}+1} \cdots c_{n-j} \neq 1$, and by induction obtain a repetition-free derivation \bar{D} in $\mathcal{P}(\mathcal{B})$ leading from some $t \in[T(u)]_{\mathcal{P}(\mathcal{B})}$ to t with $\mathcal{C}(\bar{D}) \neq 1$.

For the converse implication assume that there is some $t \in[T(u)]_{\mathcal{P}(\mathcal{B})}$ such that there is a derivation $D: t=\gamma_{0} \rightarrow \gamma_{1} \rightarrow \ldots \rightarrow \gamma_{n}$ in $\mathcal{P}(\mathcal{B})$ with $\gamma_{n}=x_{1}^{-\infty} \cdots x_{k}^{-\infty}$, or $\gamma_{n}=t$, and $\mathcal{C}(D) \neq 1$. Then, there is also a derivation $D^{\prime}: T(u)=\bar{\gamma}_{0} \rightarrow \ldots \rightarrow$
$\bar{\gamma}_{m}=t=\gamma_{0} \rightarrow \gamma_{1} \rightarrow \ldots \rightarrow \gamma_{n}$ in $\mathcal{P}(\mathcal{B})$ for some $m \in \mathbb{N}$. If $\gamma_{n}=x_{1}^{-\infty} \cdots x_{k}^{-\infty}$, then it is clear that $u \in I(\mathcal{B})$. If $\gamma_{n}=t$, and $\mathcal{C}(D) \neq 1$, then the multiplicative factor of the derivation $D^{\prime \prime}: T(u)=\bar{\gamma}_{0} \rightarrow \ldots \rightarrow \bar{\gamma}_{m}=t=\gamma_{0} \rightarrow \gamma_{1} \rightarrow \ldots \rightarrow \gamma_{n}=t=\bar{\gamma}_{m} \rightarrow$ $\ldots \rightarrow \bar{\gamma}_{0}=T(u)$ satisfies $\mathcal{C}\left(D^{\prime \prime}\right)=\mathcal{C}(D) \neq 1$, and hence $u \in I(\mathcal{B})$.

In the last part of the above proof we already showed the following lemma.
Lemma 6 Let $X=\left\{x_{1}, \ldots, x_{k}\right\}, \mathcal{B}=\left\{l_{i}-r_{i} ; l_{i}, r_{i} \in M[X], C\left(l_{i}\right)=1, i \in I_{h}\right\}$, and $u \neq 0$ be a monomial in $M[X]$. Then for all $t \in[T(u)]_{\mathcal{P}(\mathcal{B})}$

$$
u \in I(\mathcal{B}) \quad \Longleftrightarrow \quad t \in I(\mathcal{B})
$$

Putting the above results, and Proposition 2 together, we proved the following.
Theorem 6 Let $X=\left\{x_{1}, \ldots, x_{k}\right\}, \mathcal{B}=\left\{l_{i}-r_{i} ; l_{i}, r_{i} \in M[X], C\left(l_{i}\right)=1, i \in I_{h}\right\}$, and $u \neq 0$ be a monomial in $M[X]$. Then the following are equivalent:
(i) $u \in I(\mathcal{B})$.
(ii) There is a derivation $D: T(u)=\gamma_{0} \rightarrow \gamma_{1} \rightarrow \ldots \rightarrow \gamma_{n}$ of length n in $\mathcal{P}(\mathcal{B})$ leading from $T(u)$ to $x_{1}^{-\infty} \cdots x_{k}^{-\infty}$, or from $T(u)$ to $T(u)$ with $\mathcal{C}(D) \neq 1$ such that, for $j \in I_{n}$,

$$
\operatorname{size}\left(\gamma_{j}\right) \leq \operatorname{size}(u, \mathcal{B}) \cdot 2^{c_{1} \cdot k},
$$

and

$$
\operatorname{size}(n) \leq \operatorname{size}(u, \mathcal{B}) \cdot 2^{c_{2} \cdot k},
$$

where $c_{1}, c_{2}>0$ are some constants independent of \mathcal{B}, and u.
Furthermore, we can show the following:
Theorem 7 Let $X=\left\{x_{1}, \ldots, x_{k}\right\}$, and $\mathcal{B}=\left\{l_{i}-r_{i} ; l_{i}, r_{i} \in M[X], C\left(l_{i}\right)=1, i \in\right.$ $\left.I_{h}\right\}$. Then there is a (deterministic) Turing machine M and some constant $c>0$ independent of \mathcal{B}, such that M decides for any monomial $u \neq 0$ in $M[X]$ whether $u \in I(\mathcal{B})$ using at most space $(\operatorname{size}(u, \mathcal{B}))^{2} \cdot 2^{c \cdot k}$.

Proof: By Theorem 6, a nondeterministic Turing machine may determine whether $u \in I(\mathcal{B})$ by generating a derivation $D: T(u)=\gamma_{0} \rightarrow \gamma_{1} \rightarrow \ldots \rightarrow \gamma_{n}$ of length n in $\mathcal{P}(\mathcal{B})$ leading from $T(u)$ to $x_{1}^{-\infty} \cdots x_{k}^{-\infty}$, or from $T(u)$ to $T(u)$ with $\mathcal{C}(D) \neq 1$ iff there is one. If $x_{1}^{-\infty} \cdots x_{k}^{-\infty} \in[T(u)]_{\mathcal{P}(\mathcal{B})}$, then, by Proposition 3, we can conclude the assertion. In the following we assume that $x_{1}^{-\infty} \cdots x_{k}^{-\infty} \notin[T(u)]_{\mathcal{P}(\mathcal{B})}$. Then the Turing machine has to decide whether there is a derivation D from $T(u)$ to $T(u)$ with $\mathcal{C}(D) \neq 1$. For this purpose, the Turing machine needs $2 h$ counters $z_{1}, \ldots, z_{2 h}$ - two for each congruence $T\left(l_{i}\right) \equiv T\left(r_{i}\right)$ in $\mathcal{P}(\mathcal{B})$ - to know how often, and in which direction (i.e. $T\left(l_{i}\right) \rightarrow T\left(r_{i}\right)$, or $\left.T\left(r_{i}\right) \rightarrow T\left(l_{i}\right)\right)$ each of the congruences has been applied in D. (Note that, since $x_{1}^{-\infty} \cdots x_{k}^{-\infty} \notin[T(u)]_{\mathcal{P}(\mathcal{B})}$, in any derivation starting at $T(u)$ no congruence with $r_{i}=0$ (by definition $l_{i} \neq 0$ for all $i \in I_{h}$) can be applied (i.e., $z_{i}=0$ iff $r_{i}=0$), and hence at the end of $D z_{1}+z_{2}+\ldots+z_{2 h}=$
n.) Then $\mathcal{C}(D)=\prod_{i \in I_{h} ; r_{i} \neq 0}\left(\frac{a_{i}}{b_{i}}\right)^{z_{2 i-1}} \cdot\left(\frac{b_{i}}{a_{i}}\right)^{z_{2 i}}$, with $a_{i} \in \mathbb{Z}-\{0\}$ the numerator, and $b_{i} \in \mathbb{N}-\{0\}$ the denominator of $C\left(r_{i}\right) \in \mathbb{Q}-\{0\}$, $i \in I_{h}, r_{i} \neq 0$. Let $Z:=\prod_{i \in I_{h} ; r_{i} \neq 0} a_{i}^{\max \left\{0, z_{2 i-1}-z_{2 i}\right\}} \cdot b_{i}^{\max \left\{0, z_{2 i-1}-z_{2 i}\right\}}$ and $N:=\prod_{i \in I_{h} ; r_{i} \neq 0} b_{i}^{\max \left\{0, z_{2 i}-z_{2 i-1}\right\}}$. $a_{i}^{\max \left\{0, z_{2 i}-z_{2 i-1}\right\}}$, then $\max \{Z, N\} \leq\left(2^{\operatorname{size}(u, \mathcal{B})}\right)^{2^{\operatorname{size}(u, \mathcal{B}) \cdot 2^{d_{1} \cdot k}}}$ for some constant $d_{1}>0$ independent of u, and \mathcal{B}. By the Chinese Remainder Theorem and the Prime Number Theorem (see e.g. [HW85]), we know

$$
\begin{aligned}
\mathcal{C}(D)=1 & \Longleftrightarrow Z=N \\
& \Longleftrightarrow Z \equiv N \bmod p_{j} \quad \forall 1 \leq j \leq m
\end{aligned}
$$

where $p_{j}, j \in I_{m}$, are the prime numbers satisfying $2 \leq p_{j} \leq d_{2} \cdot \log M$ for any integer $M>2 \cdot \max \{|Z|,|N|\}$ with $d_{2}>0$ some constant independent of u, and \mathcal{B}. Thus, the products Z, and N only have to be computed modulo the prime numbers $p_{j}, j \in I_{m}$, and hence the decision whether $Z=N$ uses at most space $\operatorname{size}(u, \mathcal{B}) \cdot 2^{d \cdot k}$, where $d>0$ is some constant independent of u, and \mathcal{B}.

Moreover, for generating the derivation D, the nondeterministic Turing machine has to keep in storage at any time two consecutive words γ_{i-1} and γ_{i} of D in order to check whether $\gamma_{i-1} \rightarrow \gamma_{i}(\mathcal{P}(\mathcal{B}))$. Therefore, by Theorem 6 and the above considerations, there is some constant $\bar{c}>0$ independent of u, and \mathcal{B} such that the nondeterministic Turing machine needs at most $\operatorname{size}(u, \mathcal{B}) \cdot 2^{\bar{c} \cdot k}$ tape cells to determine whether $u \in I(\mathcal{B})$.

By Savitch's Theorem, this nondeterministic Turing machine can be simulated by a deterministic one that calls a recursive boolean function reachable (γ_{1}, γ_{2}, $\left.\left(z_{1}, \ldots, z_{2 h}\right)\right)$, which returns the boolean value true if there exists a derivation from γ_{1} to γ_{2} consisting of at most $z_{1}+z_{2}+\ldots+z_{2 h}$ steps, and applying $T\left(l_{i}\right) \rightarrow$ $T\left(r_{i}\right)(\mathcal{P}(\mathcal{B}))$ resp., $T\left(r_{i}\right) \rightarrow T\left(l_{i}\right)(\mathcal{P}(\mathcal{B})) z_{2 i-1}$ resp., $z_{2 i}$ times, $i \in I_{h}$. The function reachable works by looking for the word γ in the middle of the derivation from γ_{1} to γ_{2}, and checking recursively that it is indeed the middle word. For each call we must store the current values of γ, γ_{1}, and γ_{2}, of size at most $\operatorname{size}(u, \mathcal{B}) \cdot 2^{c_{1} \cdot k}$ each, and the current value of $\left(z_{1}, \ldots, z_{2 h}\right)$, of size at most $\operatorname{size}(u, \mathcal{B}) \cdot 2^{c_{2} \cdot k}$ for some constants $c_{1}, c_{2}>0$ independent of u, and \mathcal{B}. Each call bisects the value of the sum $z_{1}+z_{2}+\ldots+z_{2 h}$, and hence the depth of the recursion is the logarithm of the initial value n of $z_{1}+z_{2}+\ldots+z_{2 h}$. Therefore, by Theorem 6 , $(\operatorname{size}(u, \mathcal{B}))^{2} \cdot 2^{c \cdot k}$ space suffices for a deterministic Turing machine to decide whether $u \in I(\mathcal{B})$, where $c>0$ is some constant independent of u, and \mathcal{B}.

4.2 The Algorithm

Now we derive from the algorithm of Section 3 an exponential space algorithm for generating the reduced Gröbner basis of the binomial ideal $I(\mathcal{B})$ w.r.t. some admissible term ordering \prec, where $X=\left\{x_{1}, \ldots, x_{k}\right\}$, and $\mathcal{B}=\left\{l_{i}-r_{i} ; l_{i}, r_{i} \in\right.$ $\left.M[X], C\left(l_{i}\right)=1, i \in I_{h}\right\}$. Because this algorithm works with words in $X_{0}^{*}=X^{*} \cup$ $\left\{x_{1}^{-\infty} \cdots x_{k}^{-\infty}\right\}$, we define \prec_{0} to be the term ordering which results from \prec by adding $x_{1}^{-\infty} \cdots x_{k}^{-\infty} \prec_{0} t$ for all $t \in X^{*}$. W.l.o.g. we assume $r_{i} \prec_{0} l_{i}, i \in I_{h}$. As in

Section 3.1, we first analyze the elements of the reduced Gröbner basis of a binomial ideal. Note that $t \in I(\mathcal{B})$ for all $t \in\left[x_{1}^{-\infty} \cdots x_{k}^{-\infty}\right]_{\mathcal{P}(\mathcal{B})}$.

Lemma 7 Let $X=\left\{x_{1}, \ldots, x_{k}\right\}, \mathcal{B}=\left\{l_{i}-r_{i} ; l_{i}, r_{i} \in M[X], C\left(l_{i}\right)=1, i \in I_{h}\right\}$, and $G=\left\{h_{1}-m_{1}, \ldots, h_{r}-m_{r} ; C\left(h_{i}\right)=1, i \in I_{r}\right\}$ be the reduced Gröbner basis of the ideal $I(\mathcal{B})$ w.r.t. some admissible term ordering $\prec\left(m_{i} \prec_{0} h_{i}\right)$. Then, if $m_{i} \neq 0, m_{i}$ is the minimal element (w.r.t. \prec_{0}) of the congruence class $\left[h_{i}\right]_{\mathcal{P}(\mathcal{B})}, i \in I_{r}$.

Proof: With Theorem 4 and Theorem 6, this proof follows immediately from the proof of Theorem 1.

Lemma 8 Let $X=\left\{x_{1}, \ldots, x_{k}\right\}, \mathcal{B}=\left\{l_{i}-r_{i} ; l_{i}, r_{i} \in M[X], C\left(l_{i}\right)=1, i \in I_{h}\right\}$, and $G=\left\{h_{1}-m_{1}, \ldots, h_{r}-m_{r} ; C\left(h_{i}\right)=1, i \in I_{r}\right\}$ be the reduced Gröbner basis of the ideal $I(\mathcal{B})$ w.r.t. some admissible term ordering $\prec\left(m_{i} \prec_{0} h_{i}\right)$. Then $\operatorname{LT}(I(\mathcal{B}))$ (the set of the leading terms of $I(\mathcal{B})$) is the set of all terms $t \neq 0$ with either $t \in I(\mathcal{B})$, or, if $t \notin I(\mathcal{B})$, with nontrivial congruence class in $\mathcal{P}(\mathcal{B})$, and t is not the minimal element m_{t} of its congruence class w.r.t. \prec_{0} (note, if $t \notin I(\mathcal{B})$, then $m_{t} \neq$ $\left.x_{1}^{-\infty} \cdots x_{k}^{-\infty}\right) . H=\left\{h_{1}, \ldots, h_{r}\right\}$ is the set of the minimal elements of $\operatorname{LT}(I(\mathcal{B}))$ w.r.t. divisibility.

Proof: With Theorem 4 and Theorem 6, this proof follows immediately from the proof of Theorem 2.

For any two terms $t_{1}, t_{2} \in X_{0}^{*}, t_{1} \neq t_{2}$, with $t_{1} \equiv t_{2} \bmod \mathcal{P}(\mathcal{B})$, it follows $t_{1}-\mathcal{C}(D) \cdot t_{2} \in I(\mathcal{B})$, where D is a derivation from t_{1} to t_{2} in $\mathcal{P}(\mathcal{B})$. By definition $\mathcal{C}(D)=\prod_{i \in I_{h} ; r_{i} \neq 0} C\left(r_{i}\right)^{z_{2 i-1}} \cdot\left(\frac{1}{C\left(r_{i}\right)}\right)^{z_{2 i}}$, where $z_{2 i-1}$ is the number of applications of $T\left(l_{i}\right) \rightarrow T\left(r_{i}\right)(\mathcal{P}(\mathcal{B}))$, and $z_{2 i}$ the number of applications of $T\left(r_{i}\right) \rightarrow T\left(l_{i}\right)(\mathcal{P}(\mathcal{B}))$ in $D, i \in I_{h}, r_{i} \neq 0$. Since, by Theorem 4, the size of each $z_{i}, i \in I_{2 h}$, is bounded by $\operatorname{size}\left(t_{1}, t_{2}, \mathcal{B}\right) \cdot 2^{c \cdot k}, \mathcal{C}(D)$ can be represented in space $\operatorname{size}\left(t_{1}, t_{2}, \mathcal{B}\right) \cdot 2^{d \cdot k}$, where c, $d>0$ are some constants independent of \mathcal{B}, t_{1}, and t_{2}.

Thus, we get an exponential space algorithm for constructing the reduced Gröbner basis of general binomial ideals which is rather similar to Algorithm 1 for pure difference binomial ideals. A listing of this Algorithm 2 is given in the Appendix.

Putting everything together, we proved the theorem:
Theorem 8 Let $X=\left\{x_{1}, \ldots, x_{k}\right\}, \mathcal{B}=\left\{l_{i}-r_{i} ; l_{i}, r_{i} \in M[X], C\left(l_{i}\right)=1, i \in I_{h}\right\}$, and \prec be some admissible term ordering. Then there is an algorithm which generates the reduced Gröbner basis $G=\left\{h_{1}-m_{1}, \ldots, h_{r}-m_{r} ; C\left(h_{i}\right)=1, i \in I_{r}\right\}$ of the binomial ideal $I(\mathcal{B})$ using at most space $(\operatorname{size}(\mathcal{B}))^{2} \cdot 2^{\bar{c} \cdot k} \leq 2^{\text {c.size }(\mathcal{B})}$, where $\bar{c}, c>0$ are some constants independent of \mathcal{B}.

5 Conclusion

The results obtained in this paper first give an algorithm for generating the reduced Gröbner basis of a pure difference binomial ideal using at most space $2^{c \cdot n}$, where n is the size of the problem instance, and $c>0$ some constant independent of n. The
fundamental concept is the algorithm in [MM82] for the uniform word problem in commutative semigroups.

Because of the close relationship between commutative semigroups and pure difference binomial ideals, our basis construction algorithm has a number of applications to finitely presented commutative semigroups. Besides those mentioned in Section 3.3, we are able to derive exponential space complete decision procedures for the subword, finite enumeration, finite containment, and equivalence problems for commutative semigroups (see [KM96]).

Furthermore, as shown in Section 4, we obtain an algorithm for transforming any given basis into the reduced Gröbner basis for binomial ideals in general, which also requires at most space $2^{c \cdot n}$ for some constant $d>0$ independent of the the size n of the problem instance. Since, in the worst case, any Gröbner basis can have maximal degree at least $2^{2^{n}}$, any algorithm for computing Gröbner bases requires at least exponential space (see [MM82], [Huy86]).

References

[Bay82] D. Bayer. The division algorithm and the Hilbert scheme. Ph.d. thesis, Harvard University, Cambridge, MA, 1982.
[Buc65] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal. Ph.d. thesis, Department of Mathematics, University of Innsbruck, 1965.
[Dub90] T.W. Dubé. The structure of polynomial ideals and Gröbner bases. SIAM J. Comput., 19:750-773, 1990.
[EiSt94] D. Eisenbud and B. Sturmfels. Binomial Ideals. Preprint, June 1994.
[FW78] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings of the 10th Ann. ACM Symposium on Theory of Computing (San Diego, CA), pages 114-118, New York, 1978. ACM, ACM Press.
[HW85] G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers. Oxford, 5th Edition 1985. Clarendon Press.
[Her26] G. Hermann. Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. Math. Ann., 95:736-788, 1926.
[Hi64] H. Hironaka. Resolution of singularities of an algebraic variety over a field of characteristic zero: I. Ann. of Math., 79(1):109-203, 1964.
[Huy86] D.T. Huynh. A superexponential lower bound for Gröbner bases and Church-Rosser commutative Thue systems. Inf. Control, 68(1-3):196206, 1986.
[KM96] U. Koppenhagen and E.W. Mayr. The Complexity of the Equivalence Problem for Commutative Semigroups. Technical Report TUM-I9603, Institut für Informatik, Technische Universität München, January 1996.
[KuMa96] K. Kühnle and E.W. Mayr. Exponential space computation of Gröbner bases. Technical Report TUM-I9606, Institut für Informatik, Technische Universität München, January 1996.
[MM82] E.W. Mayr and A. Meyer. The complexity of the word problems for commutative semigroups and polynomial ideals. Adv. Math., 46(3):305329, December 1982.
[MoMo84] H.M. Möller and F. Mora. Upper and lower bounds for the degree of Gröbner bases. In Proceedings of the 3rd International Symposium on Symbolic and Algebraic Computation, EUROSAM 84, volume 174 of $L N C S$, pages 172-183, Berlin-Heidelberg-New York-London-Paris-Tokyo-Hong Kong, 1984. Springer Verlag.
[Rob85] L. Robbiano. Term orderings on the polynomial ring. In Proceedings of the 10th European Conference on Computer Algebra, EUROCAL '85. Vol. 2: Research contributions (Linz, Austria, April 1-3, 1985), volume 204 of LNCS, pages 513-517, Berlin-Heidelberg-New York-London-Paris-Tokyo-Hong Kong, 1985. Springer Verlag.
[Wei87] V. Weispfenning. Admissible orders and linear forms. ACM SIGSAM Bulletin, 21(2):16-18, 1987.

6 Appendix

The listing of the exponential space algorithm for constructing the reduced Gröbner basis of a general binomial ideal:

Algorithm 2

Input: $\mathcal{B}=\left\{l_{1}-r_{1}, \ldots, l_{h}-r_{h} ; C\left(l_{i}\right)=1, i \in I_{h}\right\}$, admissible term ordering \prec
Output: the reduced Gröbner basis $G=\left\{h_{1}-m_{1}, \ldots, h_{r}-m_{r} ; C\left(h_{i}\right)=1, i \in I_{r}\right\}$ of $I(\mathcal{B})$
$L^{\prime}:=\left\{T\left(l_{1}\right), \ldots, T\left(l_{n_{i}^{\prime}}\right)\right\} \quad$ the set of the minimal elements $\neq 0$ of $\left\{T\left(l_{1}\right), \ldots, T\left(l_{h}\right)\right\}$ w.r.t. divisibility
$R:=\left\{T\left(r_{1}\right), \ldots, T\left(r_{n_{r}}\right)\right\}$ the subset of $\left\{T\left(r_{1}\right), \ldots, T\left(r_{h}\right)\right\}$ which contains only minimal elements $\neq 0$ of $\left\{T\left(l_{1}\right), \ldots, T\left(l_{n_{i}^{\prime}}\right), T\left(r_{1}\right), \ldots, T\left(r_{h}\right)\right\}$ w.r.t. divisibility
$L:=\left\{T\left(l_{1}\right), \ldots, T\left(l_{n_{1}}\right)\right\} \quad$ the subset of $\left\{T\left(l_{1}\right), \ldots, T\left(l_{n_{1}^{\prime}}\right)\right\}$ which contains only minimal elements of $\left\{T\left(l_{1}\right), \ldots, T\left(l_{n_{2}^{\prime}}\right), T\left(r_{1}\right), \ldots, T\left(r_{n_{r}}\right)\right\}$ w.r.t. divisibility
$d_{m}:=\max \left\{\operatorname{deg}\left(l_{i}\right), \operatorname{deg}\left(r_{i}\right) ; i \in I_{h}\right\} ; \quad d:=2 \cdot\left(\frac{d_{m}^{2}}{2}+d_{m}\right)^{2^{k-1}} ; \quad G:=\emptyset ; h:=1$

repeat

$h:=$ the term of $L T\left(\left\langle L^{\prime}, R\right\rangle\right)-L T\left(\left\langle L^{\prime}\right\rangle\right) \cup\left(L^{\prime}-L\right)$ with degree $\leq d$ which follows h in the lexicographic order defined by $x_{1} \prec_{l e x} x_{2} \prec_{l e x} \ldots \prec_{l e x} x_{k} \quad$ co $h=x_{1}^{e_{1}} \cdots x_{k}^{e_{k}} \quad$ co
if $h \notin I(\mathcal{B})$ then $\bar{d}:=\operatorname{deg}(h) ; \quad m:=1$
repeat
$m:=$ the term $t \cdot T\left(r_{i}\right)$ with $t \cdot T\left(r_{i}\right) \prec h, T\left(r_{i}\right) \in R, t \in X^{*}, \operatorname{deg}\left(t \cdot T\left(r_{i}\right)\right) \leq d$ which follows m in the term ordering \prec
until $\left(m \equiv h \bmod \mathcal{P}(\mathcal{B})\right.$ or there is no more $t \cdot T\left(r_{i}\right)$ with $t \cdot T\left(r_{i}\right) \prec h, T\left(r_{i}\right) \in R$, $\left.t \in X^{*}, \operatorname{deg}\left(t \cdot T\left(r_{i}\right)\right) \leq d\right)$
end if
if $h \in I(\mathcal{B})$ or $m \equiv h \bmod \mathcal{P}(\mathcal{B})$, i.e. there is a derivation D from h to m in $\mathcal{P}(\mathcal{B})$ then co $h \in L T(I(\mathcal{B}))$ co
for each $i \in I_{k}$ with $e_{i} \geq 1$ do $h^{\prime}:=x_{1}^{e_{1}} \cdots x_{i}^{e_{i}-1} \cdots x_{k}^{e_{k}}$
if $h^{\prime} \in I(\mathcal{B})$ then next h with $h_{\text {old }}$ does not divide $h_{\text {new }}$ end if
co $h^{\prime} \in L T(I(\mathcal{B})) \Rightarrow h \notin H$ co
$m^{\prime}:=1$
repeat
$m^{\prime}:=$ the term $t \cdot T\left(r_{i}\right)$ with $t \cdot T\left(r_{i}\right) \prec h^{\prime}, T\left(r_{i}\right) \in R, t \in X^{*}, \operatorname{deg}\left(t \cdot T\left(r_{i}\right)\right) \leq$ $(\bar{d}-1)+d$ which follows m^{\prime} in the term ordering \prec
until $\left(m^{\prime} \equiv h^{\prime} \bmod \mathcal{P}(\mathcal{B})\right.$ or there is no more $t \cdot T\left(r_{i}\right)$ with $t \cdot T\left(r_{i}\right) \prec h^{\prime}, T\left(r_{i}\right) \in R$, $\left.t \in X^{*}, \operatorname{deg}\left(t \cdot T\left(r_{i}\right)\right) \leq(\bar{d}-1)+d\right)$
if $m^{\prime} \equiv h^{\prime} \bmod \mathcal{P}(\mathcal{B})$ then next h with $h_{\text {old }}$ does not divide $h_{\text {new }}$ end_if
co $h^{\prime} \in L T(I(\mathcal{B})) \Rightarrow h \notin H \quad \mathbf{c o}$
end_for
if $h \in I(\mathcal{B})$ then $G:=G \cup\{h\}$ else $G:=G \cup\{h-\mathcal{C}(D) \cdot m\}$ end jf next h with $h_{\text {old }}$ does not divide $h_{\text {new }}$
end jif
until there is no more $h \in L T\left(\left\langle L^{\prime}, R\right\rangle\right)-L T\left(\left\langle L^{\prime}\right\rangle\right) \cup\left(L^{\prime}-L\right)$ with degree $\leq d$
for each $T\left(l_{i}\right) \in L$ do
if $T\left(l_{i}\right) \notin I(\mathcal{B})$ then $m:=1$ repeat
$m:=$ the term $t \cdot T\left(r_{i}\right)$ with $t \cdot T\left(r_{i}\right) \prec l_{i}, T\left(r_{i}\right) \in R, t \in X^{*}, \operatorname{deg}\left(t \cdot T\left(r_{i}\right)\right) \leq d$ which follows m in the term ordering \prec
until $m \equiv T\left(l_{i}\right) \bmod \mathcal{P}(\mathcal{B})$, i.e. there is a derivation D from $T\left(l_{i}\right)$ to m in $\mathcal{P}(\mathcal{B})$
end if
if $T\left(l_{i}\right) \in I(\mathcal{B})$ then $G:=G \cup\left\{T\left(l_{i}\right)\right\}$ else $G:=G \cup\left\{T\left(l_{i}\right)-\mathcal{C}(D) \cdot m\right\}$ end if
end_for

[^0]: ${ }^{1} \mathbb{N}$ denotes the set of nonnegative integers, \mathbb{Z} the set of integers, and \mathbb{Q} the set of rationals.

[^1]: ${ }^{2}$ for $n \in \mathbb{N}, I_{n}$ denotes the set $\{1, \ldots, n\}$

[^2]: ${ }^{3}$ Let Φ be the Parikh mapping, i.e., $(\Phi(u))_{i}$ (also written $\Phi\left(u, x_{i}\right)$) indicates, for every $u \in X^{*}$ and $i \in\{1, \ldots, k\}$, the number of occurrences of $x_{i} \in X$ in u.

