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An Optimal Algorithm for Constructing theReduced Gr�obner Basis of Binomial IdealsUlla Koppenhagen, Ernst W. MayrInstitut f�ur InformatikTechnische Universit�at M�unchenD-80290 M�unchen, GERMANYe-mail: fkoppenhajmayrg@informatik.tu-muenchen.deWWW: http://wwwmayr.informatik.tu-muenchen.de/January 10, 1996AbstractIn this paper, we present an optimal, exponential space algorithm for gen-erating the reduced Gr�obner basis of binomial ideals. We make use of the closerelationship between commutative semigroups and pure di�erence binomialideals. Based on the algorithm for the uniform word problem in commuta-tive semigroups exhibited by Mayr and Meyer we �rst derive an exponentialspace algorithm for constructing the reduced Gr�obner basis of a pure di�er-ence binomial ideal. In addition to some applications to �nitely presentedcommutative semigroups, this algorithm is then extended to an exponentialspace algorithm for generating the reduced Gr�obner basis of binomial idealsin general.1 IntroductionOne of the most active areas of research in computer algebra is the design and analy-sis of algorithms for computational problems in commutative algebra. In particular,computational problems for polynomial ideals occur, as mathematical subproblems,in many areas of mathematics, and they also have a number of applications in vari-ous areas of computer science, like language generating and term rewriting systems,tiling problems, algebraic manifolds, motion planing, and several models for parallelsystems.Through the introduction of Gr�obner bases (see [Buc65], also [Hi64]) many ofthe mentioned problems become easily expressible and algorithmically solvable. Forpractical applications, in particular, the implementation in computer algebra sys-tems, it is important to establish upper complexity bounds for the normal formalgorithms which transform a given polynomial ideal basis into a Gr�obner basis.1



First steps were obtained in [Bay82] and [MoMo84] where upper bounds for thedegrees in a minimal Gr�obner basis were derived. In [Dub90] Dub�e obtained thesharpened degree bound of 2 � (d22 + d)2k�1 (with d the maximum degree of the in-put basis and k the number of indeterminates) for the degree of polynomials in areduced Gr�obner basis, employing only combinatorial arguments. By transforminga representation of the normal form of a polynomial into a system of linear equa-tions, K�uhnle and Mayr exhibited in [KuMa96] an exponential space computationof Gr�obner bases. This, however, is based on very complex parallel computationslike parallel rank computations of matrices, and the Parallel Computation Thesis[FW78].In this paper, we make use of the close relationship between commutative semi-groups and pure di�erence binomial ideals (for an investigation of the algebraicstructure of general binomial ideals see [EiSt94]). Based on the algorithm in [MM82]for the uniform word problem in commutative semigroups we derive an exponentialspace algorithm for constructing the reduced Gr�obner basis of a general binomialideal. This algorithm can be implemented without any di�cult parallel rank com-putations of matrices, or any other complex parallel computations. By the resultsin [MM82] and [Huy86], which give a doubly exponential lower bound (in the sizeof the problem instance) for the maximal degree of the elements of Gr�obner basesas well as for the cardinality of such bases, this algorithm is space optimal.The remainder of this paper is organized as follows. In Section 2 we brie
y in-troduce the basic notations and fundamental concepts. In Section 3 we derive anexponential space algorithm for constructing the reduced Gr�obner basis of a pure dif-ference binomial ideal, and give some applications to �nitely presented commutativesemigroups. Then, in Section 4, this algorithm is extended to an exponential spacealgorithm for generating the reduced Gr�obner basis of binomial ideals in general.2 PreliminariesIn this section we brie
y review the basic concepts used in the sequel.2.1 Basic De�nitions and NotationsThe polynomial ideals which we get by using the relationship of �nitely presentedcommutative semigroups and polynomial ideals are pure di�erence binomial ideals,i.e., each polynomial in the basis of such an ideal is the di�erence of two terms. Bylooking at Buchberger's algorithm [Buc65], it is not hard to see that the reducedGr�obner basis of a pure di�erence binomial ideal still consists only of pure di�erencebinomials.Let X denote the �nite set fx1; : : : ; xkg, and1 Q[X] the (commutative) ring ofpolynomials with indeterminates x1; : : : ; xk and rational coe�cients.1N denotes the set of nonnegative integers,Zthe set of integers, and Q the set of rationals.2



A term t in x1; : : : ; xk is a product of the formt = xe11 � xe22 � � � xekk ;with (e1; e2; : : : ; ek) 2 Nk the degree vector of t.By the degree deg(t) of a term t we shall mean the integer e1 + e2 + : : : + ek(which is � 0).Each polynomial f(x1; : : : ; xk) 2 Q[X] is a �nite sumf(x1; : : : ; xk) = X1�i�n ai � ti;with ai 2 Q � f0g the coe�cient of the ith term ti of f . The product mi = ai � tiis called the ith monomial of the polynomial f . The degree of a polynomial is themaximum of the degrees of its terms.For f1; : : : ; fh 2 Q[X], hf1; : : : ; fhi � Q[X] denotes the ideal generated byff1; : : : ; fhg, that is2hf1; : : : ; fhi := ( hXi=1 pifi; pi 2 Q[X] for i 2 Ih) :If I = hf1; : : : ; fhi, ff1; : : : ; fhg is called a basis of I.An admissible term ordering � on Q[X] is given by any admissible order on Nk,i.e., any total order < on Nk satisfying the following two conditions:(T1) e > (0; : : : ; 0) for all e 2 Nk � f(0; : : : ; 0)g;(T2) a < b ) a+ c < b+ c for all a; b; c 2 Nk.If (d1; : : : ; dk) > (e1; : : : ; ek), we say that any monomial a1 � xd11 � � �xdkk , a1 2Q�f0g, is greater in the term ordering than any monomial a2�xe11 � � � xekk , a2 2 Q�f0g(written a1 � xd11 � � �xdkk � a2 � xe11 � � � xekk ).For a polynomial f(x1; : : : xk) = Pni=1 ai � ti we always assume that t1 � t2 �: : : � tn. For any such nonzero polynomial f 2 Q[X] we de�ne the leading termLT (f) := t1.For the sake of constructiveness, we assume that the term order is given as partof the input by a k � k integral matrix T such that a1 � xd11 � � �xdkk � a2 � xe11 � � �xekki�, for the corresponding degree vectors d and e, Td is lexicographically greater thanTe (see [Rob85, Wei87]).Let I be an ideal in Q[X], and let some admissible term ordering � on Q[X] begiven. A �nite set fg1; : : : ; grg of polynomials from Q[X] is called a Gr�obner basisof I (w.r.t. �), if(G1) fg1; : : : ; grg is a basis of I;2for n 2 N, In denotes the set f1; : : : ; ng 3



(G2) fLT (g1); : : : ; LT (gr)g is a basis of the leading term ideal of I, which is thesmallest ideal containing the leading terms of all f 2 I, or equivalently: iff 2 I, then LT (f) 2 hLT (g1); : : : ; LT (gr)i :Let F be a subset of Q[X] and � some �xed admissible term ordering. We say apolynomial p is reducible to q modulo F (written p .F q), if there exists f 2 F , anda monomial m 2 Q[X] such that LT (m � f) is a monomial of p, and q = p �m � f .A polynomial p is reducible modulo F if there exists q 2 Q[X] such that p .F q. Ifp is not reducible modulo F , then we say p is in normal form modulo F . A normalform of p modulo F is a polynomial q that is in normal form modulo F and satis�esp �.F q, where �.F is the re
exive transitive closure of .F .A Gr�obner basis G = fg1; : : : ; grg is called reduced if all polynomials gi are innormal form modulo G � fgigFor a �nite alphabet X = fx1; : : : ; xkg, let X� denote the free commutativemonoid generated by X. An element u of X� is called a (commutative) word . Fora word the order of the symbols is immaterial, and we shall in the sequel use anexponent notation: u = xe11 : : : xekk , where3 ei = �(u; xi) 2 N for i = 1; : : : ; k. Weidentify any u 2 X� (resp., the corresponding vector u = (�(u; x1); : : : ;�(u; xk))2 Nk) with the term u = x�(u;x1)1 � x�(u;x2)2 � � �x�(u;xk)k and vice versa any term u =xe11 � xe22 � � � xekk 2 Q[X] with the wordu = x1 : : : x1| {z }e1 x2 : : : x2| {z }e2 : : : xk : : : xk| {z }ek 2 X�:Now let P = fli � ri; i 2 Ihg be any (�nite) commutative semigroup presenta-tion with li, ri 2 X� for i 2 Ih. We say a word v 2 X� is derived in one step fromu 2 X� (written u ! v(P)) by application of the congruence (li � ri) 2 P i�, forsome w 2 X�, we have u = wli and v = wri, or u = wri and v = wli (note, since '�'is symmetric, '!' is symmetric, i.e., u! v(P) , v ! u(P)). The word u derivesv resp., u � v mod P i� u �! v(P), where �! is the re
exive transitive closure of!. More precisely we write u +! v(P), where +! is the transitive closure of !, ifu �! v(P) with u 6= v. A sequence (u0; : : : ; un) of words ui 2 X� with ui ! ui+1(P)for i = 0; : : : ; n� 1 is called a derivation (of length n) of un from u0 in P.By I(P) we denote the pure di�erence binomial Q[X]-ideal generated by fl1 �r1; : : : ; lh � rhg, i.e.,I(P) := ( hXi=1 pi(li � ri); pi 2 Q[X] for i 2 Ih) :3Let � be the Parikh mapping, i.e., (�(u))i (also written �(u; xi)) indicates, for every u 2 X�and i 2 f1; : : : ; kg, the number of occurrences of xi 2 X in u.4



2.2 The Uniform Word Problem and the CorrespondingPure Di�erence Binomial Ideal Membership ProblemThe following proposition shows the connection between the uniform word problemfor commutative semigroups and the membership problem for ideals in Q[X]. Theuniform word problem for commutative semigroups is the problem of deciding for acommutative Thue systemP overX and two words u; v 2 X� whether u � v mod P.The polynomial ideal membership problem (PIMP) is the problem of deciding forgiven polynomials f; f1; : : : ; fh 2 Q[X] whether f 2 hf1; : : : ; fhi.Proposition 1 [MM82] Let X = fx1; : : : ; xkg, P = fli � ri; li; ri 2 X�; i 2 Ihg,and u, v 2 X�. Then the following are equivalent:(i) There exist p1; : : : ; ph 2 Q[X] such that v � u = Phi=1 pi(li � ri).(ii) There is a derivation u = 
0 ! 
1 ! : : :! 
n = v(P) of v from u such thatfor j 2 In length(
j) � maxfdeg(lipi); deg(ripi); i 2 Ihg:(iii) u � v mod P.In the fundamental paper [Her26], G. Hermann gave a doubly exponential degreebound for the polynomial ideal membership problem:Proposition 2 [Her26] Let X = fx1; : : : ; xkg; g; g1; : : : ; gh 2 Q[X] ; and d :=maxfdeg(gi); i 2 Ihg. If g 2 hg1; : : : ghi, then there exist p1; : : : ; ph 2 Q[X] suchthat(i) g = Phi=1 gipi;(ii) (8i 2 Ih) [deg(pi) � deg(g) + (hd)2k ].These two propositions yield an exponential space upper bound for the uniformword problem for commutative semigroups.Proposition 3 [MM82] Let X = fx1; : : : ; xkg and P = fli � ri; li; ri 2 X�; i 2Ihg. Then there is a (deterministic) Turing machine M and some constant c > 0independent of P, such that M decides for any two words u, v 2 X� whether u �v mod P using at most space (size(u; v;P))2 � 2c�k.3 Constructing the Reduced Gr�obner Basis of aPure Di�erence Binomial Ideal in ExponentialSpaceIn this section we derive an exponential space algorithm for generating the reducedGr�obner basis of a pure di�erence binomial ideal. For this purpose, we �rst analyzethe elements of the reduced Gr�obner basis.5



3.1 The Reduced Gr�obner Basis of Pure Di�erence Bino-mial IdealsLet P be a commutative semigroup presentation over some alphabet X. If C is somecongruence class of P, and G = fh1 �m1; : : : ; hr �mrg (hi � mi) a Gr�obner basisof the pure di�erence binomial ideal I(P) w.r.t. some admissible term ordering �,then the minimal element mC of C w.r.t. � is not reducible modulo G. Otherwise,since G is a Gr�obner basis and by Proposition 1, there would be some i 2 Ir, andsome t 2 X� with mC = hi � t +! mi � t � mC which contradicts the minimality ofmC. HencemC is the normal form of any word (considered as a term) t 2 C moduloG. The following theorems characterize the terms of the binomials occuring in thereduced Gr�obner basis of I(P), and the leading terms of I(P). The �rst theoremshows that in each binomial of the reduced Gr�obner basis G of I(P) the smaller term(w.r.t. �) is the minimal element (w.r.t. �) of the congruence class of the leadingterm.Theorem 1 Let X = fx1; : : : ; xkg, P = fli � ri; li; ri 2 X�; i 2 Ihg, and G =fh1 �m1; : : : ; hr �mrg be the reduced Gr�obner basis of the ideal I(P) w.r.t. someadmissible term ordering � (mi � hi). Then mi is the minimal element (w.r.t. �)of the congruence class [hi]P, i 2 Ir.Proof: Assume that w 6= mi is the minimal element of [hi]P (w.r.t. �). Thenw � mi and, by Proposition 1, mi�w 2 I(P) resp., mi�w = Pri=1 pi(hi�mi), forsome pi 2 Q[X], i 2 Ir. Since G is the reduced Gr�obner basis of I(P), there mustbe some j 2 Ir with LT (pj) � hj divides mi. But this is a contradiction to the factthat hi �mi is an element of the reduced Gr�obner basis of I(P). 2The next theorem characterizes the leading terms of the polynomials in I(P),and, in particular, the leading terms of the binomials in the reduced Gr�obner basisof I(P).Theorem 2 Let X = fx1; : : : ; xkg, P = fli � ri; li; ri 2 X�; i 2 Ihg, and G =fh1 �m1; : : : ; hr �mrg be the reduced Gr�obner basis of the ideal I(P) w.r.t. someadmissible term ordering � (mi � hi). Then LT (I(P)) (the set of the leading termsof I(P)) is the set of all terms with nontrivial congruence class that are not theminimal element in their congruence class w.r.t. �. H = fh1; : : : ; hrg is the set ofthe minimal elements of LT (I(P)) w.r.t. divisibility.Proof: Since G is the reduced Gr�obner basis of I(P), it is clear that H is the setof the minimal elements of LT (I(P)) w.r.t. divisibility.Since hi�mi 2 I(P), there is a derivation in P of mi � hi from hi (hi +! mi(P)) forall i 2 Ir. Because G is a Gr�obner basis, for any h 2 LT (I(P)) there is a hj 2 H anda term t in X with h = t � hj . So from any h 2 LT (I(P)) we can start a derivationin P, namely the derivation of t �mj � h (h +! t �mj(P)), and hence the congruenceclass [h]P is nontrivial. 6



Now let s 2 X� be a term with nontrivial congruence class. If s is not the minimalelement ms (w.r.t. �) of its congruence class [s]P, then s derives ms (s +! ms(P)),and thus s�ms 2 I(P) resp., s 2 LT (I(P)). If s = ms, then there is no derivationof some ts � s from s. Furthermore there is no j 2 Ir with hj divides s, because ifthere is some term t 2 Q[X] and some j 2 Ir with s = t � hj, there is a derivation oft �mj � s from s. So if s = ms, then s 62 LT (I(P)) and s 62 H. 2If s 2 X� is the minimal element of its congruence class [s] w.r.t. �, then everysubword s0 of s, i.e., s = t � s0 for some t 2 X�, is also the minimal element ofits congruence class [s0] w.r.t. �. Otherwise there would be a derivation of somems0 � s0 from s0 and thus a derivation of t �ms0 � t � s0 = s from s which contradictsthe minimality of s.3.2 The AlgorithmIn this section we give an exponential space algorithm for generating the reducedGr�obner basis of a pure di�erence binomial ideal. To show the correctness andthe complexity of the algorithm we need the results of the previous sections andthe following upper bound for the total degree of polynomials in a Gr�obner basisobtained by Dub�e in [Dub90]. Note that we use exponential notation in representingwords over X.Proposition 4 [Dub90] Let F = ff1; : : : ; fhg � Q[X], I = hf1; : : : ; fhi the idealgenerated by F , and let d be the maximum degree of any f 2 F . Then for anyadmissible ordering � on Q[X], the degree of polynomials required in a Gr�obnerbasis for I w.r.t. � is bounded by2 �  d22 + d!2k�1 :Now we will generate the reduced Gr�obner basis of the pure di�erence binomialideal I(P) w.r.t. �, where X = fx1; : : : ; xkg, and P = fli � ri; li; ri 2 X�; i 2 Ihg(w.l.o.g. li � ri). Let H denote the set fh1; : : : ; hrg of the minimal elements ofLT (I(P)) w.r.t. divisibility and mi the minimal element of [hi]P, i 2 Ir, w.r.t. �.From Theorem 1 and Theorem 2 we know the set G = fh1 �m1; : : : ; hr � mrg isthe reduced Gr�obner basis of I(P).Theorem 2 shows that hLT (I(P))i � hl1; : : : ; lhi and hLT (I(P))i � hl1; : : : ; lh;r1; : : : ; rhi. Let L0 = fl1; : : : ; ln0lg be the set of the minimal elements of fl1; : : : ; lhgw.r.t. divisibility. Then the subset of fr1; : : : ; rhg which contains only minimalelements of fl1; : : : ; ln0l; r1; : : : ; rhg w.r.t. divisibility is denoted by R = fr1; : : : ; rnrgand the subset of fl1; : : : ; ln0lg which contains only minimal elements of fl1; : : : ; ln0l;r1; : : : ; rnrg w.r.t. divisibility by L = fl1; : : : ; lnlg. Note thatH � L;hLT (I(P))i � hL0i � hLi;hLT (I(P))i � hL;Ri = hL0; Ri:7



We have to determine the elements of the set H � L, and the minimal elementsmi (w.r.t. �) of the congruence classes of all hi 2 H. From Proposition 4 we knowthat the degrees deg(hi), and deg(mi) are bounded by 2 � �d22 + d�2k�1, where d isthe maximum degree of any li � ri, i 2 Ih. SinceH � L � LT (hL0; Ri) � LT (hL0i) [ (L0 � L) =: KH;we consider the terms in KH with degree � 2 � �d22 + d�2k�1 in some order, e.g. inascending lexicographic order with x1 �lex x2 �lex : : : �lex xk. From Theorem 2follows immediately:Lemma 1 A term u 2 X� is an element of LT (I(P)) i� u is not the minimalelement of [u]P w.r.t. �.For the case that the term u is not the minimal element mu of [u]P the nextlemma gives a characterization of the elements m 2 [u]P with m � u.Lemma 2 A term u 2 X� is the minimal element of [u]P w.r.t. � i� there is not � ri with t � ri � u, ri 2 R, t 2 X� such that u +! t � ri(P).Proof: If u is the minimal element of [u]P w.r.t. �, then there is no m 2 X� withm � u, and u +! m(P).Now assume that u is not minimal in [u]P w.r.t. �. Then there is a derivation in Pleading from u to the minimal element mu � u of [u]P w.r.t. �, i.e., u +! mu(P),where mu = t � ri for some ri 2 fr1; : : : ; rhg (note lj � rj 8j 2 Ih), t 2 X�. Sincefr1; : : : ; rhg �R � LT (I(P)), we can even say ri 2 R. 2Considering degree bounds this Lemma has the following form.Lemma 3 A term u 2 X� with deg(u) � D is the minimal element of [u]P w.r.t. �i� there is no t �ri with t �ri � u, ri 2 R, t 2 X�, and deg(t �ri) � D+2 ��d22 + d�2k�1such that u +! t � ri(P).Proof: If u is not the minimal element mu of [u]P w.r.t. �, i.e., u 2 LT (I(P)),then either u 2 H and deg(mu) � 2 � �d22 + d�2k�1, or there is some h 2 H withu = tu � h for some tu 2 X�. The degree of the minimal element mh of [h]Pw.r.t. � is bounded by 2 � �d22 + d�2k�1. From mh � h we get tu � mh � u withdeg(tu �mh) � D + 2 � �d22 + d�2k�1. 2Given some term h2KH with deg(h) � 2 � �d22 + d�2k�1, we have to decidewhether h 2 H, and if h 2 H we have to determine the minimal elementmh of [h]Pw.r.t. �. If h 2 H, then, by Lemma 2 and Proposition 4, there is a term t � ri witht � ri � h, ri 2 R, t 2 X�, deg(t � ri) � 2 � �d22 + d�2k�1 such that h +! t � ri(P). Forh and t � ri with deg(h), deg(t � ri) � 2 � �d22 + d�2k�1, by Proposition 3, the decision8



whether h � t � ri mod P uses at most space (size(P))2 � 2c�k for some constant c > 0independent of P. Thus we decide for the words t � ri with t � ri � h, ri 2 R, t 2 X�,deg(t � ri) � 2 � �d22 + d�2k�1 in ascending term order whether h � t � ri mod P untilwe �nd the minimal element mh of [h]P, or there is no more t � ri with t � ri � h,ri 2 R, t 2 X�, deg(t � ri) � 2 � �d22 + d�2k�1. In the latter case h 62 H, and wehave to consider the next element of KH with degree � 2 � �d22 + d�2k�1. Otherwiseh 2 LT (I(P)) and we have to decide whether h 2 H.Lemma 4 Let h = xe11 � � �xekk with h 2 LT (I(P)), then h 2 H i� for all i 2 Ik withei � 1 h(i) := xe11 � � �xei�1i � � �xekk 62 LT (I(P)), i.e., h(i) is the minimal element of[h(i)]P w.r.t. �.Proof: Follows immediately from the de�nition of H. 2Since deg(h) � 2 � �d22 + d�2k�1 and because of Lemma 3, and Proposition 3 thedecision whether h(i) 2 LT (I(P)) (i 2 Ik, ei � 1) uses at most space (size(P))2 � 2c�kfor some constant c > 0 independent of P. If h 2 H, then h�mh is an element ofthe reduced Gr�obner basis G of I(P). The algorithm continues by considering thenext element hnew of KH with deg(hnew) � 2 � �d22 + d�2k�1, and h does not dividehnew because any multiple t � h of h, t 2 X�, is not in H if h 2 LT (I(P)).When all the elements in KH with degree � 2 � �d22 + d�2k�1 are examined itremains to determine the minimal elements (w.r.t. �) of the congruence classesof the terms li 2 L. Again from Proposition 4 we know that the degree of theminimal element mli of [li]P (w.r.t. �) is bounded by 2 � �d22 + d�2k�1. As abovewe determine mli by deciding for the words t � ri with t � ri � li, ri 2 R, t 2 X�,deg(t � ri) � 2 � �d22 + d�2k�1 in ascending term order whether li � t � ri mod P.From this, we derive the exponential space algorithm given in Figure 1.Putting everything together, we proved the theorem:Theorem 3 Let X = fx1; : : : ; xkg, P = fli � ri; li; ri 2 X�; i 2 Ihg, and � besome admissible term ordering. Then there is an algorithm which generates thereduced Gr�obner basis G = fh1 �m1; : : : ; hr �mrg of the pure di�erence binomialideal I(P) using at most space (size(P))2 � 2�c�k � 2c�size(P), where �c; c > 0 are someconstants independent of P.From the results in [Huy86] we know that, in the worst case, any Gr�obner basisof I(P) has maximal degree at least 22size(P). Hence any algorithm that computesGr�obner bases requires at least exponential space in the worst case.3.3 ApplicationsWe now consider some applications of the algorithm of Theorem 3.9



Algorithm 1
Input: fl1 � r1; : : : ; lh � rhg, admissible term ordering �
Output: the reduced Gröbner basis G = fh1 �m1; : : : ; hr �mrg of I(P)L0 := fl1; : : : ; ln0lg the set of the minimal elements of fl1; : : : ; lhg w.r.t. divisibilityR := fr1; : : : ; rnrg the subset of fr1; : : : ; rhg which contains only minimal elements offl1; : : : ; ln0l; r1; : : : ; rhg w.r.t. divisibilityL := fl1; : : : ; lnlg the subset of fl1; : : : ; ln0lg which contains only minimal elements offl1; : : : ; ln0l; r1; : : : ; rnrg w.r.t. divisibilityd := maxfdeg(li); deg(ri); i 2 Ihg ; G := ; ; h := 1

repeath := the term of LT (hL0; Ri)�LT (hL0i) [ (L0 �L) with degree� 2 � �d22 + d�2k�1
which

follows h in the lexicographic order defined by x1 �lex x2 �lex : : : �lex xk
co h = xe11 � � �xekk coD := deg(h) ; m := 1

repeatm := the term t � ri with t � ri � h, ri 2 R, t 2 X�, deg(t � ri) � 2 � �d22 + d�2k�1
which

follows m in the term ordering �
until ( m � h mod P or there is no more t � ri with t � ri � h, ri 2 R, t 2 X�,deg(t � ri) � 2 � �d22 + d�2k�1

)
if m � h mod P then co h 2 LT (I(P)) co

for each i 2 Ik with ei � 1 do h0 := xe11 � � �xei�1i � � �xekk ; m0 := 1
repeatm0 := the term t � ri with t � ri � h0, ri 2 R, t 2 X�, deg(t � ri) �(D � 1) + 2 � �d22 + d�2k�1

which follows m0 in the term ordering �
until ( m0 � h0 mod P or there is no more t � ri with t � ri � h0, ri 2 R, t 2 X�,deg(t � ri) � (D � 1) + 2 � �d22 + d�2k�1

)
if m0 � h0 mod P then next h with hold does not divide hnew end if

co h0 2 LT (I(P))) h 62 H co
end forG := G [ fh�mg
next h with hold does not divide hnew

end if

until there is no more h 2 LT (hL0; Ri)� LT (hL0i) [ (L0 � L) with degree � 2 � �d22 + d�2k�1
for each li 2 L do m := 1

repeatm := the term t � ri with t � ri � li, ri 2 R, t 2 X�, deg(t � ri) � 2 � �d22 + d�2k�1
which

follows m in the term ordering �
until m � li mod PG := G[ fli �mg

end forFigure 1: Algorithm for the Reduced Gr�obner Basis of a Pure Di�erence BinomialIdeal 10



3.3.1 Testing for ReducibilityLet P be a �nite commutative semigroup presentation over some alphabet X, u 2X�, and � some admissible term ordering on Q[X]. Then, u is the minimal elementof [u]P w.r.t. � i� u is in normal form modulo a Gr�obner basis G of I(P) w.r.t. �,i.e. u is not reducible modulo G. Thus, by Lemma 1, u is in normal form moduloG i� u 62 LT (I(P)).Corollary 1 Let X = fx1; : : : ; xkg, P = fli � ri; li; ri 2 X�; i 2 Ihg, and � besome admissible term ordering. Then for any u 2 X�(i) there is an algorithm which decides whether u 2 LT (I(P)) using at most spacesize(u)+(size(P))2 �2�c�k � size(u)+2c�size(P), where �c, c > 0 are some constantsindependent of u and P.(ii) there is an algorithm which decides whether u is the minimal element of itscongruence class (w.r.t. �), or equivalently, whether u is in normal form mod-ulo the Gr�obner basis of I(P) using at most space size(u) +(size(P))2 � 2�c�k �size(u) + 2c�size(P), where �c, c > 0 are some constants independent of u and P.Proof: Let G = fh1 � m1; : : : ; hr �mrg be the reduced Gr�obner basis of I(P).Then LT (I(P)) is generated by fh1; : : : ; hrg. Thus, u 2 LT (I(P)) i� there is somehi, i 2 Ir, which divides u. 23.3.2 Finding the Minimal Element, and the Normal FormThe next corollary shows that the minimal element of a congruence class w.r.t. �,and the normal form of a word modulo G can be found in exponential space.Corollary 2 Let X = fx1; : : : ; xkg, P = fli � ri; li; ri 2 X�; i 2 Ihg, and �be some admissible term ordering. Then there is an algorithm, which determinesfor any word u 2 X� the minimal element of its congruence class (w.r.t. �), orequivalently, which determines for any term u 2 X� the normal form of u modulo theGr�obner basis of I(P) using at most space (size(u)+size(P))2�2�c�k � 2c�(size(u)+size(P)),where �c, c > 0 are some constants independent of u and P.Proof: In addition to x1; : : : ; xk we introduce a new variable s, and to P we addthe identity s � u, where u is the word in X� for whose congruence class we like todetermine the minimal element (w.r.t. �). Let Xs = X [ fsg, Ps = P [ fs � ug,and �s be the admissible term ordering which results from � by adding w � s forall w 2 X�. Then, by Theorem 2, LT (I(Ps)) = LT (I(P)) [ fs � t; t 2 X�s g, inparticular s 2 LT (I(Ps)), and, since s is minimal in LT (I(Ps)) w.r.t. divisibility,Hs = H [ fsg, in particular s 2 Hs, where H resp., Hs is the set of the minimalelements of LT (I(P)) resp., LT (I(Ps)) w.r.t. divisibility. Because s � w for allw 2 X�, the minimal element of some congruence class [v]Ps, v 2 X�, w.r.t. �sis the same as the minimal element of [v]P w.r.t. �. So, because of Theorem 1,and Theorem 3, we can determine the minimal element of [u]P (w.r.t. �) in space(size(u) + size(P))2 � 2�c�k for some constant �c > 0 independent of u and P. 211



So far, we only considered terms. Since a polynomial f = Pni=1 ai � ti is in normalform i� all its terms ti are in normal form, the results obtained for terms can easilybe extended to polynomials.Corollary 3 Let X = fx1; : : : ; xkg, P = fli � ri; li; ri 2 X�; i 2 Ihg, and � besome admissible term ordering. Then for any polynomial f = Pni=1 ai � ti in Q[X],(i) there is an algorithm, which decides whether f is in normal form modulo theGr�obner basis of I(P) using at most space maxi2Infsize(ti)g+(size(P))2�2�c�k �maxi2Infsize(ti)g+2c�size(P), where �c, c > 0 are some constants independent off and P.(ii) there is an algorithm, which determines the normal form of f modulo theGr�obner basis of I(P) using at most space (maxi2Infsize(ti)g+size(P))2�2�c�k �2c�(maxi2Infsize(ti)g+size(P)), where �c, c > 0 are some constants independent of fand P.Proof: Follows immediately from Corollary 1 and Corollary 2. 24 Constructing the Reduced Gr�obner Basis of aBinomial Ideal in Exponential SpaceThe algorithm of Theorem 3 generates the reduced Gr�obner basis for pure di�erencebinomial ideals. In this section we will be concerned with constructing the reducedGr�obner basis of a larger class of ideals: binomial ideals, in general.4.1 BasicsLet m = a � t be a monomial in Q[X] with a 2 Q, and t a term in X. Then we writeC(m) for the coe�cient a, and T (m) for the term t of the monomial m. By M [X]we mean the set of all monomials in Q[X].By a binomial in Q[X] we mean a polynomial with at most two monomials, sayl � r (l � r). For a �nite set B = fli � ri; li; ri 2 M [X]; C(li) = 1; i 2 Ihg, I(B)denotes the binomial Q[X]-ideal generated by B, i.e.,I(B) := ( hXi=1 pi(li � ri); pi 2 Q[X] for i 2 Ih) :W.l.o.g. we assume that there are no i, j 2 Ih, i 6= j, with li � ri = c � (lj � rj) forsome c 2 Q � f0g. (Otherwise we remove one of the two binomials).As in the case of pure di�erence binomial ideals we see from Buchberger's al-gorithm that the reduced Gr�obner basis of a binomial ideal still consists only ofbinomials.In the following we generalize the algorithm of Theorem 3 from pure di�erencebinomial ideals to binomial ideals. 12



First we establish some technical details.For X = fx1; : : : ; xkg, and B = fli � ri; li; ri 2M [X]; C(li) = 1; i 2 Ihg a set ofbinomials inQ[X], we de�ne the corresponding commutative semigroup presentationP(B) := fT (li) � T (ri); li� ri 2 Bg, where we set T (0) := x�11 �x�12 � � �x�1k . If weagree that �1+ n = n+ (�1) = �1 for any integer n, and �1+ (�1) = �1,then the whole formalism for commutative semigroups introduced in Section 2 stillholds for P(B). The only di�erence is that, in addition to the words in X�, we havethe word x�11 � x�12 � � �x�1k which corresponds to 0 when we consider polynomials.In particular, we still have for u, v 2 X�0 := X� [ fx�11 � � �x�1k gu� v 2 I(P(B)) () u � v mod P(B) :W.l.o.g. we assume that there are no i, j 2 Ih, i 6= j, with (T (li) = T (lj))^ (T (ri) =T (rj)). (Otherwise, since there is no c 2 Q with li � ri = c � (lj � rj), we know thatli 2 I(B) and ri 2 I(B), and we replace the two binomials in B by T (li), and T (ri)if T (ri) 6= 0.)Let u, v 2 X�0 , and D be a derivation in P(B) leading from u to v. Then thereare terms wi such that u = T (a1)�w1 ! T (b1)�w1 = T (a2)�w2 ! T (b2)�w2 ! : : : !T (bn)�wn = v, where ai = lji and bi = rji , or ai = rji and bi = lji, ji 2 Ih, i 2 In.Now attach to each T (li) ! T (ri)(P(B)), i 2 Ih, the multiplicative factor C(ri)if C(ri) 6= 0 resp., 1 if C(ri) = 0, and to each T (ri) ! T (li)(P(B)), i 2 Ih, themultiplicative factor 1C(ri) if C(ri) 6= 0 resp., 1 if C(ri) = 0. Taking into accountthese factors, we obtain from D a derivation in which the i-th step has the formc � T (lji) � wi ! c � ci � T (rji) � wiwith ci = C(rji) resp., ci = 1, orc � T (rji) � wi ! c � ci � T (lji) � wiwith ci = 1C(rji ) resp., ci = 1 for some constant c 2 Q � f0g resulting from the �rst(i� 1) steps of D.Thus, we de�ne the multiplicative factor of D asC(D) := c1 � c2 � � � cn :Then, for any derivation D in P(B) leading from u to v, u, v 2 X�0 we havenXi=1 di � (lji � rji) � wi = u� C(D) � v ;where d1 = 1 if u = T (lj1) � w1, resp., d1 = �c1 if u = T (rj1) � w1, and for i > 1di = c1 � � � ci�1 if the i-th step of D uses T (li) ! T (ri), resp., di = �c1 � � � ci ifthe i-th step of D uses T (ri) ! T (li). Therefore, u � C(D) � v 2 I(B). Note thatu 2 I(B), and v 2 I(B) if x�11 � � �x�1k occurs in D.Hence, by Proposition 2, we conclude the following13



Theorem 4 Let X = fx1; : : : ; xkg, B = fli � ri; li; ri 2 M [X]; C(li) = 1; i 2 Ihg,and u, v, T (u) 6= T (v), be monomials in M [X]. Then the following are equivalent:(i) There exists d 2 Q� f0g such that u� d � v 2 I(B).(ii) There is a repetition-free derivation D: T (u) = 
0 ! 
1 ! : : : ! 
n = T (v)in P(B) leading from T (u) to T (v) and such that, for j 2 In,size(
j) � size(u; v;B) � 2c�k;where c > 0 is some constant independent of B, u, and v.Then, by Proposition 3, we have:Theorem 5 Let X = fx1; : : : ; xkg, and B = fli � ri; li; ri 2 M [X]; C(li) = 1; i 2Ihg. Then there is a (deterministic) Turing machine M and some constant c > 0independent of B, such that M decides for any two monomials u, v 2M [X], T (u) 6=T (v), whether there exists d 2 Q�f0g such that u�d �v 2 I(B) using at most space(size(u; v;B))2 � 2c�k.To get similar results concerning the membership of a single monomial in I(B),we need a further detail.Lemma 5 Let X = fx1; : : : ; xkg, B = fli� ri; li; ri 2M [X]; C(li) = 1; i 2 Ihg, andu 6= 0 be a monomial in M [X]. Then u 2 I(B) i� there is some t 2 [T (u)]P(B) suchthat there is a repetition-free derivation D in P(B) leading from t to x�11 � � �x�1k ,or from t to t with C(D) 6= 1.Proof: By the above considerations, we already know that u 2 I(B) i� there isa derivation D: T (u) = 
0 ! 
1 ! : : : ! 
n in P(B) with 
n = x�11 � � � x�1k ,or 
n = T (u), and C(D) 6= 1. If 
n = x�11 � � � x�1k , then there is nothing left toprove. In the following we assume that x�11 � � �x�1k 62 [T (u)]P(B). We derive fromu 2 I(B), 
n = T (u), and 
i 6= x�11 � � �x�1k , i 2 In, that there is a repetition-freederivation D in P(B) leading from some t 2 [T (u)]P(B) to t with C(D) 6= 1. We haveC(D) = c1 � � � cn 6= 1. If 
1 = 
n�1, then c1 = 1cn , and C(D) = c2 � � � cn�1. Generally,if 
i = 
n�i for i = 1; : : : ; j, j � jn2k � 1, then C(D) = cj+1 � � � cn�j 6= 1. Thus, D0:
j ! 
j+1 ! : : :! 
n�j is a subderivation of D with C(D0) = C(D) 6= 1, 
j = 
n�j ,and 
j+1 6= 
n�j�1. If D0 is repetition-free, then we are �nished. Otherwise, de�nem1 as the largest, andm2 as the smallest index such that j+1 < m1 < m2 < n�j�1,and 
m1�1 = 
m2 . Let D00 be the repetition-free derivation 
m1�1 ! : : : ! 
m2 . IfC(D00) = cm1 � � � cm2 6= 1, then we are �nished. Otherwise, i.e., if C(D00) = 1, weconsider the derivation D000: 
j ! : : :! 
m1�1 = 
m2 ! : : : ! 
n�j with C(D000) =C(D) = cj � � � cm1�1 � cm2+1 � � � cn�j 6= 1, and by induction obtain a repetition-freederivation D in P(B) leading from some t 2 [T (u)]P(B) to t with C(D) 6= 1.For the converse implication assume that there is some t 2 [T (u)]P(B) such thatthere is a derivation D: t = 
0 ! 
1 ! : : : ! 
n in P(B) with 
n = x�11 � � � x�1k ,or 
n = t, and C(D) 6= 1. Then, there is also a derivation D0: T (u) = 
0 ! : : : !14




m = t = 
0 ! 
1 ! : : :! 
n in P(B) for some m 2 N. If 
n = x�11 � � �x�1k , thenit is clear that u 2 I(B). If 
n = t, and C(D) 6= 1, then the multiplicative factor ofthe derivation D00: T (u) = 
0 ! : : :! 
m = t = 
0 ! 
1 ! : : :! 
n = t = 
m !: : :! 
0 = T (u) satis�es C(D00) = C(D) 6= 1, and hence u 2 I(B). 2In the last part of the above proof we already showed the following lemma.Lemma 6 Let X = fx1; : : : ; xkg, B = fli� ri; li; ri 2M [X]; C(li) = 1; i 2 Ihg, andu 6= 0 be a monomial in M [X]. Then for all t 2 [T (u)]P(B)u 2 I(B) () t 2 I(B) :Putting the above results, and Proposition 2 together, we proved the following.Theorem 6 Let X = fx1; : : : ; xkg, B = fli � ri; li; ri 2 M [X]; C(li) = 1; i 2 Ihg,and u 6= 0 be a monomial in M [X]. Then the following are equivalent:(i) u 2 I(B).(ii) There is a derivation D: T (u) = 
0 ! 
1 ! : : : ! 
n of length n in P(B)leading from T (u) to x�11 � � � x�1k , or from T (u) to T (u) with C(D) 6= 1 suchthat, for j 2 In, size(
j) � size(u;B) � 2c1�k;and size(n) � size(u;B) � 2c2�k;where c1; c2 > 0 are some constants independent of B, and u.Furthermore, we can show the following:Theorem 7 Let X = fx1; : : : ; xkg, and B = fli � ri; li; ri 2 M [X]; C(li) = 1; i 2Ihg. Then there is a (deterministic) Turing machine M and some constant c > 0independent of B, such that M decides for any monomial u 6= 0 in M [X] whetheru 2 I(B) using at most space (size(u;B))2 � 2c�k.Proof: By Theorem 6, a nondeterministic Turing machine may determine whetheru 2 I(B) by generating a derivation D: T (u) = 
0 ! 
1 ! : : : ! 
n of length nin P(B) leading from T (u) to x�11 � � � x�1k , or from T (u) to T (u) with C(D) 6= 1 i�there is one. If x�11 � � �x�1k 2 [T (u)]P(B), then, by Proposition 3, we can concludethe assertion. In the following we assume that x�11 � � �x�1k 62 [T (u)]P(B). Then theTuring machine has to decide whether there is a derivation D from T (u) to T (u)with C(D) 6= 1. For this purpose, the Turing machine needs 2h counters z1; : : : ; z2h- two for each congruence T (li) � T (ri) in P(B) - to know how often, and in whichdirection (i.e. T (li) ! T (ri), or T (ri) ! T (li)) each of the congruences has beenapplied in D. (Note that, since x�11 � � � x�1k 62 [T (u)]P(B), in any derivation startingat T (u) no congruence with ri = 0 (by de�nition li 6= 0 for all i 2 Ih) can beapplied (i.e., zi = 0 i� ri = 0), and hence at the end of D z1 + z2 + : : : + z2h =15



n.) Then C(D) = Qi2Ih;ri 6=0 �aibi �z2i�1 � � biai�z2i , with ai 2 Z� f0g the numerator,and bi 2 N � f0g the denominator of C(ri) 2 Q � f0g, i 2 Ih, ri 6= 0. LetZ := Qi2Ih;ri 6=0 amaxf0;z2i�1�z2igi � bmaxf0;z2i�1�z2igi and N := Qi2Ih;ri 6=0 bmaxf0;z2i�z2i�1gi �amaxf0;z2i�z2i�1gi , then maxfZ;Ng � �2size(u;B)�2size(u;B)�2d1 �k for some constant d1 > 0independent of u, and B. By the Chinese Remainder Theorem and the PrimeNumber Theorem (see e.g. [HW85]), we knowC(D) = 1 () Z = N() Z � N mod pj 8 1 � j � m;where pj , j 2 Im, are the prime numbers satisfying 2 � pj � d2 � logM for anyinteger M > 2 �maxfjZj; jN jg with d2 > 0 some constant independent of u, and B.Thus, the products Z, and N only have to be computed modulo the prime numberspj , j 2 Im, and hence the decision whether Z = N uses at most space size(u;B)�2d�k,where d > 0 is some constant independent of u, and B.Moreover, for generating the derivation D, the nondeterministic Turing machinehas to keep in storage at any time two consecutive words 
i�1 and 
i of D in or-der to check whether 
i�1 ! 
i (P(B)). Therefore, by Theorem 6 and the aboveconsiderations, there is some constant �c > 0 independent of u, and B such thatthe nondeterministic Turing machine needs at most size(u;B) � 2�c�k tape cells todetermine whether u 2 I(B).By Savitch's Theorem, this nondeterministic Turing machine can be simulatedby a deterministic one that calls a recursive boolean function reachable(
1; 
2;(z1; : : : ; z2h)), which returns the boolean value true if there exists a derivation from
1 to 
2 consisting of at most z1 + z2 + : : : + z2h steps, and applying T (li) !T (ri)(P(B)) resp., T (ri) ! T (li)(P(B)) z2i�1 resp., z2i times, i 2 Ih. The functionreachable works by looking for the word 
 in the middle of the derivation from 
1to 
2, and checking recursively that it is indeed the middle word. For each callwe must store the current values of 
, 
1, and 
2, of size at most size(u;B) � 2c1�keach, and the current value of (z1; : : : ; z2h), of size at most size(u;B) � 2c2�k for someconstants c1; c2 > 0 independent of u, and B. Each call bisects the value of the sumz1+z2+ : : :+z2h, and hence the depth of the recursion is the logarithm of the initialvalue n of z1 + z2 + : : : + z2h. Therefore, by Theorem 6, (size(u;B))2 � 2c�k spacesu�ces for a deterministic Turing machine to decide whether u 2 I(B), where c > 0is some constant independent of u, and B. 24.2 The AlgorithmNow we derive from the algorithm of Section 3 an exponential space algorithmfor generating the reduced Gr�obner basis of the binomial ideal I(B) w.r.t. someadmissible term ordering �, where X = fx1; : : : ; xkg, and B = fli � ri; li; ri 2M [X]; C(li) = 1; i 2 Ihg. Because this algorithm works with words in X�0 = X� [fx�11 � � �x�1k g, we de�ne �0 to be the term ordering which results from � by addingx�11 � � �x�1k �0 t for all t 2 X�. W.l.o.g. we assume ri �0 li, i 2 Ih. As in16



Section 3.1, we �rst analyze the elements of the reduced Gr�obner basis of a binomialideal. Note that t 2 I(B) for all t 2 [x�11 � � � x�1k ]P(B).Lemma 7 Let X = fx1; : : : ; xkg, B = fli� ri; li; ri 2M [X]; C(li) = 1; i 2 Ihg, andG = fh1 �m1; : : : ; hr �mr; C(hi) = 1; i 2 Irg be the reduced Gr�obner basis of theideal I(B) w.r.t. some admissible term ordering � (mi �0 hi). Then, if mi 6= 0, miis the minimal element (w.r.t. �0) of the congruence class [hi]P(B), i 2 Ir.Proof: With Theorem 4 and Theorem 6, this proof follows immediately from theproof of Theorem 1. 2Lemma 8 Let X = fx1; : : : ; xkg, B = fli � ri; li; ri 2 M [X]; C(li) = 1; i 2 Ihg,and G = fh1 �m1; : : : ; hr �mr; C(hi) = 1; i 2 Irg be the reduced Gr�obner basis ofthe ideal I(B) w.r.t. some admissible term ordering � (mi �0 hi). Then LT (I(B))(the set of the leading terms of I(B)) is the set of all terms t 6= 0 with eithert 2 I(B), or, if t 62 I(B), with nontrivial congruence class in P(B), and t is not theminimal element mt of its congruence class w.r.t. �0 (note, if t 62 I(B), then mt 6=x�11 � � �x�1k ). H = fh1; : : : ; hrg is the set of the minimal elements of LT (I(B))w.r.t. divisibility.Proof: With Theorem 4 and Theorem 6, this proof follows immediately from theproof of Theorem 2. 2For any two terms t1, t2 2 X�0 , t1 6= t2, with t1 � t2 mod P(B), it followst1 � C(D) � t2 2 I(B), where D is a derivation from t1 to t2 in P(B). By de�nitionC(D) = Qi2Ih;ri 6=0C(ri)z2i�1 � � 1C(ri)�z2i , where z2i�1 is the number of applications ofT (li) ! T (ri)(P(B)), and z2i the number of applications of T (ri) ! T (li)(P(B))in D, i 2 Ih, ri 6= 0. Since, by Theorem 4, the size of each zi, i 2 I2h, is boundedby size(t1; t2;B) � 2c�k, C(D) can be represented in space size(t1; t2;B) � 2d�k, where c,d > 0 are some constants independent of B, t1, and t2.Thus, we get an exponential space algorithm for constructing the reduced Gr�ob-ner basis of general binomial ideals which is rather similar to Algorithm 1 for puredi�erence binomial ideals. A listing of this Algorithm 2 is given in the Appendix.Putting everything together, we proved the theorem:Theorem 8 Let X = fx1; : : : ; xkg, B = fli � ri; li; ri 2 M [X]; C(li) = 1; i 2 Ihg,and � be some admissible term ordering. Then there is an algorithm which generatesthe reduced Gr�obner basis G = fh1 � m1; : : : ; hr � mr; C(hi) = 1; i 2 Irg of thebinomial ideal I(B) using at most space (size(B))2 � 2�c�k � 2c�size(B), where �c; c > 0are some constants independent of B.5 ConclusionThe results obtained in this paper �rst give an algorithm for generating the reducedGr�obner basis of a pure di�erence binomial ideal using at most space 2c�n, where nis the size of the problem instance, and c > 0 some constant independent of n. The17



fundamental concept is the algorithm in [MM82] for the uniform word problem incommutative semigroups.Because of the close relationship between commutative semigroups and puredi�erence binomial ideals, our basis construction algorithm has a number of appli-cations to �nitely presented commutative semigroups. Besides those mentioned inSection 3.3, we are able to derive exponential space complete decision proceduresfor the subword, �nite enumeration, �nite containment, and equivalence problemsfor commutative semigroups (see [KM96]).Furthermore, as shown in Section 4, we obtain an algorithm for transformingany given basis into the reduced Gr�obner basis for binomial ideals in general, whichalso requires at most space 2c�n for some constant d > 0 independent of the the sizen of the problem instance. Since, in the worst case, any Gr�obner basis can havemaximal degree at least 22n, any algorithm for computing Gr�obner bases requiresat least exponential space (see [MM82], [Huy86]).References[Bay82] D. Bayer. The division algorithm and the Hilbert scheme. Ph.d. thesis,Harvard University, Cambridge, MA, 1982.[Buc65] B. Buchberger. Ein Algorithmus zum Au�nden der Basiselemente desRestklassenrings nach einem nulldimensionalen Polynomideal. Ph.d. the-sis, Department of Mathematics, University of Innsbruck, 1965.[Dub90] T.W. Dub�e. The structure of polynomial ideals and Gr�obner bases. SIAMJ. Comput., 19:750{773, 1990.[EiSt94] D. Eisenbud and B. Sturmfels. Binomial Ideals. Preprint, June 1994.[FW78] S. Fortune and J. Wyllie. Parallelism in random access machines. InProceedings of the 10th Ann. ACM Symposium on Theory of Computing(San Diego, CA), pages 114{118, New York, 1978. ACM, ACM Press.[HW85] G.H. Hardy and E.M. Wright. An Introduction to the Theory of Num-bers. Oxford, 5th Edition 1985. Clarendon Press.[Her26] G. Hermann. Die Frage der endlich vielen Schritte in der Theorie derPolynomideale. Math. Ann., 95:736{788, 1926.[Hi64] H. Hironaka. Resolution of singularities of an algebraic variety over a�eld of characteristic zero: I. Ann. of Math., 79(1):109{203, 1964.[Huy86] D.T. Huynh. A superexponential lower bound for Gr�obner bases andChurch-Rosser commutative Thue systems. Inf. Control, 68(1-3):196{206, 1986. 18
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Algorithm 2
Input: B = fl1 � r1; : : : ; lh � rh; C(li) = 1; i 2 Ihg, admissible term ordering �
Output: the reduced Gröbner basis G = fh1�m1; : : : ; hr�mr; C(hi) = 1; i 2 Irg of I(B)L0 := fT (l1); : : : ; T (ln0l)g the set of the minimal elements 6= 0 of fT (l1); : : : ; T (lh)g w.r.t.

divisibilityR := fT (r1); : : : ; T (rnr)g the subset of fT (r1); : : : ; T (rh)g which contains only minimal
elements 6= 0 of fT (l1); : : : ; T (ln0l); T (r1); : : : ; T (rh)g w.r.t.
divisibilityL := fT (l1); : : : ; T (lnl)g the subset of fT (l1); : : : ; T (ln0l)gwhich contains only minimal ele-
ments of fT (l1); : : : ; T (ln0l); T (r1); : : : ; T (rnr)gw.r.t. divisibilitydm := maxfdeg(li); deg(ri); i 2 Ihg ; d := 2 � �d2m2 + dm�2k�1 ; G := ; ; h := 1

repeath := the term of LT (hL0; Ri)� LT (hL0i) [ (L0 � L) with degree � d which follows h in the
lexicographic order defined by x1 �lex x2 �lex : : :�lex xk co h = xe11 � � �xekk co

if h 62 I(B) then d := deg(h) ; m := 1
repeatm := the term t �T (ri) with t �T (ri) � h, T (ri) 2 R, t 2 X�, deg(t �T (ri)) � d which

follows m in the term ordering �
until ( m � h mod P(B) or there is no more t � T (ri) with t � T (ri) � h, T (ri) 2 R,t 2 X�, deg(t � T (ri)) � d )

end if
if h 2 I(B) or m � h mod P(B), i.e. there is a derivation D from h to m in P(B) then

co h 2 LT (I(B)) co
for each i 2 Ik with ei � 1 do h0 := xe11 � � �xei�1i � � �xekk

if h0 2 I(B) then next h with hold does not divide hnew end if
co h0 2 LT (I(B))) h 62 H com0 := 1

repeatm0 := the term t � T (ri) with t � T (ri) � h0, T (ri) 2 R, t 2 X�, deg(t � T (ri)) �(d� 1) + d which follows m0 in the term ordering �
until ( m0 � h0 mod P(B) or there is no more t � T (ri) with t � T (ri) � h0, T (ri) 2 R,t 2 X�, deg(t � T (ri)) � (d� 1) + d )
if m0 � h0 mod P(B) then next h with hold does not divide hnew end if

co h0 2 LT (I(B))) h 62 H co
end for
if h 2 I(B) then G := G [ fhg else G := G [ fh� C(D) �mg end if
next h with hold does not divide hnew

end if
until there is no more h 2 LT (hL0; Ri)� LT (hL0i) [ (L0 � L) with degree� d
for each T (li) 2 L do

if T (li) 62 I(B) then m := 1
repeatm := the term t �T (ri) with t �T (ri) � li, T (ri) 2 R, t 2 X�, deg(t �T (ri)) � d which

follows m in the term ordering �
until m � T (li) mod P(B), i.e. there is a derivation D from T (li) to m in P(B)

end if
if T (li) 2 I(B) then G := G [ fT (li)g else G := G [ fT (li)� C(D) �mg end if

end for


