TUM

INSTITUT FUR INFORMATIK

Improving OLAP Performance by
Multidimensional Hierarchical Clustering

Volker Markl Frank Ramsak Rudolf Bayer

TUM-1007
Varz 00

TECHNISCHE UNIVERSITAT MUNCHEN

TUM-INFO-03-1007-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©2000

Druck: Institut f ur Informatik der
Technischen Universit at Munchen

A015

Improving OLAP Performance by Multidimensional Hier archical
Clustering

Volker Markl” Frank Ramsak® Rudolf Bayer™

"Bayerisches Forschungszentrum “Institut fur Informatik
fur Wissensbasierte Systeme Technische Universitiickkn
Orleanstrale 34 OrleanstralRe 34
81667 Minchen 81667 Munchen
Germany Germany

& +49-89-48095-191
Fax +49-89-48095-203

volker.markl@forwiss.de {ramsak, bayer}@in.tum.de

Abstract

Data-warehousing applications cope with enormous datanstte range of Gigabytes and Terabytes.
Queries usually either select a very small set ofdata or perform aggregations on a fairly large data
set. Materialized views storing pre-computed aggregatassatkto efficiently process queries with ag-
gregations. This approach increases resource requiremetlitk space and slows down updates be-
cause of the view maintenance problem. Multidimensidnatarchical clustering of OLAP data
overcomes these problems while offering more flextipflor aggregation paths. In addition it has the
potential to replace several bitmap indexes which are tasefficiently process high selectivity queries.
We investigate query processing in OLAP environmentsiderttify typical query patterns. Clustering
is introduced as a way to speed up aggregation queries witthditipaal storage cost. We also show
the potential of multidimensional hierarchical clusigrto reduce storage and maintenance cost for in-
dexes. Clustering possibilities for OLAP data are ingeséid. The UB-Tree and the Tetris algorithm as
physical storage structure and access method for clusper&B data are described. Performance and
storage cost of our access method are investigated arghoed to current query processing scenarios.
In addition performance measurements on real world data typical star schema are presented.

1 Introduction

Data processing in data warehousing (DW) applicatiores dsill-down operations as well as slicing
and dicing according to several dimensions. Fo thason multidimensional data models, multidi-
mensional query languages and even multidimensionf ®BMDBMS) have been developed by the
research community and implemented as commercial piodlic a large extent, relational DBMS are
used for decision support applications, since thesemsgstege well researched and are reported to
provide more efficiency for huge databases than MDBR&gardless, whether a multidimensional or
relational paradigm is used to model and query OLAR,dgueries result in multidimensional range
restrictions in combination with sort operations agdregations. Therefore any DBMS storing OLAP
data must efficiently handle this typical query pattern

Pre-computation, clustering and indexing are commadmigaes to speed up query processing. Pre-
computation results in the best query response timeeaixhense of load performance and secondary
storage space. For DW applications, pre-computation g&lyndiscussed for aggregation operations

-1 -

[CD97]. However, one requirement of DW is to efficigndeal with ad-hoc queries. Then, deciding
which queries to pre-compute becomes extremely diffideite-computation also leads to a view
maintenance problem.

Indexing is used to efficiently process a query ifrébgult set defined by the query restrictions is fairly
small. Most OLTP applications use B-Trees as theindsted indexing scheme. Favoring retrieval
response time over update response time allows to il indexes on one table or data cube of a
DW. Bitmap indexes are widely discussed as an impravemeer B-Trees for DW applications,
since they efficiently evaluate gqueries with multibtite restrictions. However, the overall result set
still must be relatively small. This is a major drawkaf bitmap indexes, since usually a relatively
large part of a cube must be accessed in order to delaggregated measures.

Clustering places data that is likely to be accessgethier physically close to each other. The goal of
clustering is to limit the number of disk accessesiired to process a query by increasing the likeli-
hood that query results have already been cached.efhgshas been well researched in the field of
access methods. B-Trees, for instance, provide iomendional clustering. Multidimensional clus-
tering has been discussed in the field of multidinmeradi access methods. See [GG97] and [Sam90]
for excellent surveys of almost all of these methods.

The contribution of our paper is to apply multidimensiattastering and indexing using UB-Trees to
a DW scenario. A clustering scheme for multiple hignamal dimensions is defined, so that OLAP
gueries result in multidimensional range queries. Thentharies of each cluster in multidimensional
space reflect the boundaries of a query with hieraathiestrictions. In contrast to usual
multidimensional clustering schemes most queries lhandled locally in a cluster. Next to a cost
analysis and comparison to other access methods asenprmeasurements on a relational DW for a
fruit juice company using a star schema with a factetabl26 million records (an overall size of 7
GB). On this real-world data we experienced a perfaomancrease up to a factor of ten compared to
traditional techniques.

The rest of the paper is organized as follows: Se@isurveys related work. In section 3 we describe
our terminology and identify a standard query patfernrOLAP queries. Section 4 introducesilti-
dimensional hierarchical clustering, the UB-Tree for a multidimensional partitioning and tAetris
algorithm, an efficient query processing method for OLAP quer@hapter 5 gives a rigid cost analy-
sis of our approach and compares it to traditional gpeogessing scenarios. Section 6 presents per-
formance measurements on real world data. Sectiamwsdconclusions and gives an outlook on fu-
ture work.

2 Related Work

The new requirements and research issues set by ObpRcations are summarized in [Wid95,
WB97]. Besides the questions of data management @ata, cleansing, data maintenance) there are
two issues of great importance. First, the questioprofiding a ‘good’ data warehouse architecture

combining a conceptual, a logical, and a physical daidel. An overview of the most popular mod-
els can be found in [BSH+98]. All these approaches haw®mmon that they are based on a multi-
dimensional data model. On the logical and phydmadl two main streams have been established —
ROLAP that is based on the relational model and M@lthat uses MDBMS.

The second important issue is the question of perfarenaptimization. Due to the completely differ-
ent query characteristics of OLAP applications in caiigpa to OLTP new questions have to be ad-
dressed here. The performance problem is heavilyditdéhe physical data model.

The index selection problem for ROLAP application iseljddiscussed in the research community
[GHR+97, Sar97]. Especially bitmap indexes have been propgosspeed up ROLAP applications
because of their compactness and support of star joi@8][CA common way of performance im-
provement is the usage of materialized views - aftecombination with indexing methods [Moe98,
WB98]. Due to the large number of possible views a selegioblem exists besides the maintenance
issue [Gup97, SDN+96, SDN+98]. Clustering of OLAP data plakeyarole in providing good per-
formance. Clustering has been well researched ididlte of access methods. B-Trees [BM72], for
instance, provide one-dimensional clustering. Multefigional clustering has been discussed in the
field of multidimensional access methods. See [GG8d][&am90] for excellent surveys of almost all
of these methods. [ZSL98] addresses the issue oftlécal clustering for the one-dimensional case.

3 Processing OLAP Queries

On the conceptual level a multidimensional (MD) viexv the data models has been established by
academia and the industry for OLAP applications [CD8¥the MD model the numeric (quantitative)
data (neasures) (e.g., sales, cost) which is the focus of theyaimls organized along multiptmen-
sions. The dimensions provide categorical (qualitativelpd@.g., container size of a product), which
determines the context of the measures. Thereforendasures can be seen as a value in a multidi-
mensional space — one often refers to this modelrasltidimensionakube. An important concept of
OLAP data models is the notion difmension hierarchies. Hierarchies are used to provide structure to
the otherwise flat dimensions. Often the data endimensions can be categorized/classified according
to some additional characteristics (e.g., shops doeldlassified according to their location). Usually
OLAP users are not interested in the single measurem some form of summarized data (e.g., sales
in a certain area). Hierarchies provide an appropntfod of describing the level of aggregation for
a dimension.

Typical OLAP operations are Drill-dowrRoll-up and Slice-and-Dice [Kim96] and usually multiple
dimensions are restricted at the same time. Imergérone can state that these operations in a MD
model lead to range restrictions on the lowestahay level of each dimension [Sar97].

3.1 The Physical Data Model
In the following we are concentrating on ROLAP whéne conceptual MD model is mapped onto a
relational database schema. The most establishdébmaladata models for OLAP applications are the

star schema and thesnowflake schema. In both approaches there is a central fact tablectvdains the
measures and the dimension tables are situated atodrteiconnection between a fact tuple and the
corresponding dimension members is realized via doréey relationships. In the star schema the
dimension tables are completely denormalized whil¢han snowflake schema they may be normal-
ized. Queries usually contain restrictions on multigleetision tables (e.g., only sales for specific
customer group and for a specific time period are agked)are then used as restrictions on the usu-
ally very large fact table. This operaticstaf join) is typical for such models. In ROLAP hierarchies
are usually modeled implicitly by a set of attributes A, A, where A corresponds to hierarchy level

i. We call such a sequence of attributiesarchically dependent.

3.1.1 Running Example: The ‘Juice & More’ Schema

In this paper the following schema of the beverages muplice & More’, a real customer of one of
our project partnetswill serve as running example. In the data warehofisduiwe & More’ data is
organized along the following four dimensions: CUSAER, PRODUCT, DISTRIBUTION and
TIME. Figure 3-1a shows the hierarchies over the dines (the number in parentheses specifies the
maximal number of level members).

[ProbucT| [cusTomer] [bisTriBUTION | | TIME | PRODUCT DISTRIBUTION
5600 rows o
PRODKEY DISTKEY
| Type (5)| | Region (8)| Sales Year (3) TYPE SALESORG
Organization (5) BRAND FACT CHANNEL
h 4 \ 4 ¢ | A 4 | CATEGORY 26M rows
Brand (8 i —— Month (12) CONTAINER PRODKEY
| ()l | Nation (7)| Distribution CUSTEY
Channel (3)
\4 A4 DISTKEY
| Category (l9)| | Trade Type (2)| CUSTOMER TIMEKEY
7030 rows SALES
A A CUSTKEY DISTCOST
| Container (10)| | Business Type (71 REGION TIME
NATION 36 rows
TRADE-TYPE TIMEKEY
| BUSINESS-TYPE | YEAR
MONTH

(a) (b)

Figure 3-1 Hierarchies in the ‘Juice & More’ schema dreldorresponding star schema

The ROLAP data model for the ‘Juice & More’ schefhgure 3-1b) is a typical star schema with
one fact table FACT and a table for each of the 4 miines. Let ‘SALES’ and ‘DISTCOST’ be some
of the measures in the fact table.

3.1.2 Queries on the ‘Juice & More’ Schema

In the following we present typical queries that aeeh from real applications for the schema given
in the previous section. We will use these queriesllustiate our approach and we will present
performance measurements for exactly these queriésrséct

! The company and the data presented here has been noagmans.

-4 -

Query 1 (Q1): This query computes the sales for a givedupt group (TYPE and BRAND
specified) and a given customer group (NATION and RBGI€pecified) for the months from
October to December of 1993.

SELECT SUM(SALES)
FROM FACT F, CUSTOMER C, PRODUCT P, TIME T
WHERE F.PRODKEY = P.PRODKEY AND F.CUSTKEY = C.CUS TKEY AND

P.TYPE=X ;AND P.BRAND =X , AND
C.REGION =Y ; AND C.NATION=Y , AND
F.TIMEKEY = T.TIMEKEY AND T.YEAR = 1993 AND
T.MONTH >= Oct ober AND T.MONTH <= Decenber

Query 2 (Q2): This query calculates the cost of distrilutdf the products of type X for each
distribution channel.

SELECT SALESORG, CHANNEL, SUM(DISTCOST)
FROM FACT F, DISTRIBUTION D, PRODUCT P
WHERE F.DISTKEY = D.DISTKEY AND
F.PRODUCTKEY = P.PRODUCTKEY AND
P.TYPE=X

Group By D.SALESORG,D.CHANNEL

Query 3 (Q3): This query restricts all dimensions anfifst level of the hierarchies.

SELECT SUM(SALES)
FROM FACT F, DISTRIBUTION D, PRODUCT P, CUSTOMER ~ C, TIME T
WHERE F.DISTKEY = D.DISTKEY AND F.TIMEKEY = T. TIM EKEY AND

F.CUSTKEY = C.CUSTKEY AND F.PRODKEY = P.PRODKEY A ND
P.TYPE =T AND D.SALESORG = S AND T.YEAR =Y AND
C.REGION =R

4 Clustering OLAP data

Clustering places data that is likely to be accesagethier physically close to each other. The goal of
clustering is to limit the number of disk accessesiired to process a query by increasing the likeli-
hood that query results have already been cached page size gb tuples this allows a speed up by
a factor ofp when queries retrieve large result sets. Thus for 3@supér page one can expect a
clustered access to be up to 30 times faster than raachess.

Since symmetrical clustering with respect to seveialensions is hard to achieve, most physical
OLAP storage models either use non-clustering indéxesecondary B-Trees [Inf97] or cluster data
with composite B-Trees [Red97]. The most prevalent Oldafa structure are bitmap indexes (e.qg.,
[0OQ97]). Bitmap indexes are useful, if multiple restriction low cardinality attributes like REGION

or BRAND result in a very small selectivity (i.eatio of result set size and table size) for the
conjunctive restriction. However, bitmap indexes ar@-clastering secondary indexes which for
small result sets may require a random access foy aygle. For large result sets (i.e., as soon as the
selectivity of a query exceedglthey may require an access to every page of the iaklorst case.

Figure 4-1 shows how bitmap indexes process a query tltatlatas the total sales of customers in
Asia for distribution organization “TM".

bitmap for organization = ,,TM|‘ 1...11111.1.1.1.1..1.1...1.1.... .11, 1. | 34%

bitmap for region = ,Asia“ | 11.1.....1.11....1.1.1..1...1.1.1..... .1..11 | 32%
result of bitmap intersection | 1. 1L, Lot 1. | 10%
accessed disk pages (Shad9d1 Page 1 | | Page ‘2 | | Page 3 | | Page 4 | | Page 5 | 80%

Figure 4-1 Bitmap Index Intersection

For each restriction, the bitmap is retrieved from tlorresponding bitmap index. After intersecting
these two bitmaps by a bitwise AND-operation the tuplesesponding to 1-bits are retrieved. In the
figure we assump = 10 tuples to fit on one page, thus ten consecutiveditespond to the tuples on
one disk page. The selectivities for both dimensemes32% respectively 34%, resulting in an overall
selectivity of 10%. Since the data is not clusteredhenpages, the query needs to retrieve 80% of the
fact table to retrieve 10% of the tuples.

In practice this ratio is even worse: Actual valuasgfeange between 20 and 400 for 8kB pages. For
the ‘Juice & More’ data warehouse the actual valup #s 30. Therefore bitmap index intersection
might result in a full table scan already, when thgwective selectivity of a query exceeds 3,33%.

4.1 A Formal Description of Hierarchies on Dimensions

For our definition of multidimensional hierarchicdlistering we use a set concept to formally define
hierarchies: A dimensioP consists of a base type having a set of value$v,,...,w}. A hierarchy of
depth h overD is an ordered set of levels, i.Bl7{Ly ,..., L} (see Figure 4-2). Eadtierarchy level i

of H overD is a set of sets; = {m}, ..., m{} with m; OV for k=1,..j. Eachm O L; is a member set
(or member) of the hierarchy of levietontaining all members of a category. Usually a membés
assigned a namabel(m) (e.g., ‘Orange Juice’ fom}) instead of enumerating all valugs(l m. The
subset relationshipl between the members of two neighboring lelglandL;.; defines a hierarchical
relation (i.e., partial ordering) between the le\elg., the product ‘OJ0,7L’ is in the product category
‘Orange Juice’). Increasing the level of a hieraritiftyeases thgranularity of the categorization, i.e.,
the data is classified according to finer categorie

All
|m ©-{030,33L,0J0,7L,0J1L, AppIeJuiceO,SL,AppIeJuicelL}| All Products Lo
¢ Orange Juice ¢ Apple Juice
0 [m?={030,33L,030,7L0011} | 1 |m} ={ AppleJuice0,5L, AppleJuicel L} | Product CateqoryLl
v 0,331 v 07L v il v 050 v 1L

0 [m?={030,334] 1 [mi=t030,713] 2|m3={ounL}| o|m={Appleuicen,5}| 1 |mZ={applesuicar;] ContainerSize L,

Legend: Level Label Member Ordinal (e.g.,2) ~Member Label (e.g. , 0,7L)

Figure 4-2 Example Hierarchy in Member Set Representation

With the base se¥ as the only member of leve} (i.e., Lo = {V}) a hierarchyH builds a hierarchy
treé with the root levelL,. The nodes off are the hierarchy members (or member labels) comhecte
by edges which are defined by the subset relationshipebat members of neighboring levels. The
children of a memberm, of leveli are all membersn ™ of the lower level+1 that are subsets ofj ,
i.e., childrenm)={ m** O L1 | m™0 m.} (e.g., the set {{'Apple Juice 0,5L'},{ ‘Apple Juice 1L'}}
is the children set of ‘Apple Juice’). Tiparent of a memberm,, of leveli then is the membem ™ of
the upper levei-1 that is a superset ofy , i.e.,parent(m,)={ m™ O Ly | m™ O m.} (e.g. ‘Orange
Juice’ is the parent of ‘OJ 0,7L").

The bijective functiorord,, defines a numbering scheme for the children of almeem of H. Ord,,
assigns each subset (child)nofa number between 0 and the total number of childremia.,

ord,, : children(m) - {0....,| children(m)| -1}
(see Figure 4-2 for an example).

Hierarchies should never relate members of diffeddmiensions, since dimensions are independent
and thus such a hierarchy could be split up in two sephiertarchies (see section 4.2.2).

Although there are quite some discussions about morpleworierarchy graphs in the research com-
munity [McGuff96a], we have not found n:m-relationshipsbe relevant for our project partners. The
only exception to this is the issue of slowly changiimgensions, i.e., an object may change its hierar-
chy path over the course of time.

4.2 Multidimensional Hierarchical Clustering

For queries with large result sets one-dimensionateting reduces disk accesses by a factqr. of
Clustering of one-dimensional objects and single obfgerarchies has been discussed to a large
extent (e.g., [ZSL98], [BK89], [MS86], [Sal88]). However, 8. queries often impose restrictions
with respect to hierarchies over multiple dimensiofike result set satisfying these restrictions is
usually quite large; for presentation it is grouped agwtegated or ranked. Clustering data with re-
spect to multiple hierarchies can substantially speedage thperations.

If the order of dimensions during drill down is know advance, clustering the data in this order will
result in a good query performance. In principle, a atemated clustering index (i.e.,-Bree) on the
hierarchy levels of all dimensions ame lexicographic order is maintained. However, witldimen-
sions withh; hierarchy levels over dimensian there are(z%,h)!/N%,(h!) possible lexicographic
orderings. For the 4-dimensional ‘Juice & More' cubatiiwd hierarchy levels for product, 4 for
customer, 2 for distribution and 2 for time) there are 207f8isible orderings. Thus there is a high
probability that the pre-defined clustering order wilt be very useful for a particular query.

2 We will explain how to deal with complex hierarchieg (idirected acyclic graphs) in section 4.2.2. Formally
these hierarchies are modeled by dropping the requireméht@be an ordered set of levels. Neighboring
levels are then defined by coarsest refinement [Mar98].

-7-

MDBMS use multidimensional arrays to physically clusteta. However, for non-aggregated data
this often leads to sparsity problems, which are dsmmisin more detail in section 4.3.
Multidimensional access methods as commonly usedpaticd DBMS provide multidimensional
clustering in order to efficiently answer multidimemal range queries. In combination with a
suitable hierarchy encoding scheme these methodbearsed to significantly speed up OLAP gque-

ries.

4.2.1 Encoding Hierarchies by Surrogates

Many attributes in relational DBMS in general anddata warehouses in particular have an actual
domain of a very small set of values. A typical exanipl¢he attribute REGION of the dimension
table CUSTOMER of ‘Juice & More’, which has an actdamain of 8 values. However, a much

longer character string is used to store the regions

Definition 4-1 (enumeration type): We call the data type of an attribute to besaumeration type, if
its actual domaird\ consists of a relatively small finite set of values

In order to maximize the entropy of an enumeration #p&e define an order preserving one-to-one
mapf and its inverse functioh™

f: A - No, sothat form, b 0 A: f(a) <u f(b) & a<ab

If there is no reasonable ordering on an enumerdyipa (e.g., it does not make sense to ask for
REGION < “middle Europe”), we drop the requirement ¢ém be order preserving and merely require:

f: A 5 N, finjective

We call f a surrogate function for an enumeration type. For each valél A we call f(a) the
surrogate of a. For a very compact representation we number surrogesesjuential order. Figure 4—
3a lists the values of the enumeration type REGIONtlamdorresponding surrogates.

CUSTOMER

region f(region)

SQUth Europe O 0‘South Europe‘ A‘Nonh America ‘...e

Middle Europe 1

Northern Europe 2 o[Canada] 1

Western Europe| 3

North America 4 0[Wholesale .. |Kana’s Sushi Bar| ..
Latin America 5

Asia 6]

Australia 7

@) (b)
Figure 4-3 Surrogates for REGION and the entire Custonaakihy

To efficiently encode hierarchies, we introduce toacept ofcompound surrogates for hierarchies
[Mar98]. Since we require hierarchies to form a dj@artitioning, a uniquely identifying compound
surrogate for each child node of a hierarchy memb&tseand can be recursively calculated by
concatenating<) the compound surrogate of the member with the runmimgber of the child node

as calculated by the surrogate functod from section 4.1. Thus, for a memivdrof hierarchy level
of hierarchyH we define its compound surrogate:

os(H,)= O ey (M) i
’ g:s(H,father(n') o0rd ey (M') Otherwise

The hierarchy path North Ameriea USA > Retail> Bar (Figure 4-3b) has the compound surrogate:
Ordcustomer(NOrth America)e or dyorth america(USA) o ordysa(Retail) o ordrewi{Bar) = 41ol02.

The upper limit of the domain for surrogates of lavial calculated as the maximum fan-out (number
of children) of all members of levell of a hierarch¥, i.e.,

surrogated, i) = max {cardinality(childreri, m)) wherem O levelH, i - 1)}

A path ® through a hierarchy of depthis specified by a list of membens’, ..., n', whereni is a
member of hierarchy levél With |; = og, surrogatedd, i)Oa fixed length compound surrogate can
be stored in a very compact way by binary encotling.

cs(H, ®) =csH, m") =ord (mt) +ord 2)(mz)[,?_'l +...+ord h)(mh)D’Z'”'ZJ'"'J"”-1

father (m*) father (m father (m

This formula leads to the compound surroga(el, Bar) = 10000110%0= 538.

Usually growth expectations for a hierarchy are knoweil in advance. Often hierarchy trees are even
static. Therefore it is possible to determine a neaisle number of bits for storing each surrogate of
the compound surrogate of a hierarchy. Since hieegdhges grow exponentially, the overall number
of bits necessary to store a compound surrogate isvetyasmall. For instance, a hierarchy tree with
four branches on 8 levels already represehts86536 partitions and is stored by 16 bits.

The maximum length of the compound surrogates for ‘J&icelore’ can be computed from the
maximum fan-out of the hierarchy levels given in Fig@&a. For any of the 4 hierarchies the
maximum length of the compound surrogate does not eXdedits and thus can be stored in a single
integer value.

The lexicographic order on the hierarchy levels isemeed by this very compact fixed length encod-
ing. Point restrictions on upper hierarchy levels tesulange restrictions on the finest granularity of
a hierarchy. For instance, the point restriction MAN = “USA” on the second level of the
CUSTOMER hierarchy with(“North America”) = 4 = 109 andf(*USA") = 1 = 00% maps to the
range restrictiorts,spmerbetween 528 = 100001000a8nd 543 = 1000011111Thus, a star join with
this surrogate encoding for the foreign keys of @ fable results in a range restriction on each com-
pound surrogate, if some hierarchy level of each difoanis restricted to a point (e.g., customer re-
gion = “USA"). In the same way intervals on theldtén of one hierarchy level result in a range of

% In general we useariable length compound surrogates that need;(m) = log |children()| bits to store the
surrogate for any child aih. However, since the hierarchy of ‘Juice & More’dsite balanced (i.e., most
hierarchy members have the same number of childnge)chosefixed length compound surrogates for
clustering the ‘Juice & More’ fact table.

the corresponding compound surrogates (e.g., year = 1@98hamh between April and June). A star
join on a schema witth dimensions createsdadimensional interval restriction on the fact table.

4.2.2 Dealing with complex Hierarchy Graphs

If two levels of a hierarchy graph are linked by sal/paths, there are several possibilities to define a
hierarchy tree and therefore several ways to caketie compound surrogates for physical clustering:

« If the order on the lowest level of granularityidentical for two hierarchy paths, then one path
can be derived from the other path by an order preggefuinction on the lowest level of granu-
larity. Then the clustering order for both hierargaths is identical. Thus, the clustering order for

WEEK and MONTH in Figure 4-4a is

identical. Both can be computed by an

o

MONTH || WEEK || TRADE TYPE | |CUSTOMER SIZE |

| CUSTOMER TYPE |

order preserving function from DAY, the

lowest granularity level of the TIME

DAY CUSTOMER hierarchy.

(@ (b)

e If the query profile is known, the most

Figured-4 Complex Hierarcy Graph useful path of the hierarchy graph used for
restrictions, sort operations or grouping

should be chosen. Thus, if in Figure 4—4b queries on CUSTRMdtially restrict REGION and

NATION, this path should be chosen for clustering.

« If the query profile is not known, all paths of a hiehy graph may be used for clustering, since
hierarchies may be used for restrictions independehtting drill-down. For clustering the dif-
ferent paths then can be considered to be independasgions. In the hierarchy graph of Figure
4-4b both the REGION hierarchy and the CUSTOMER hieyanaight be used for clustering.
However, this approach increases the clustering diovality and thus should be used with care.

Other issues in the context of complex hierarchiesuab@alanced hierarchies, slowly changing dimen-
sions and multiple inheritance. Unbalanced hierarchéesir, if some hierarchy members have more
child levels than others. This means, that the conggaurrogates of
Joe’s Sports Bar and Kana’'s Sushi Bar in Figure 4-3b diffeeent
lengths. Using variable length compound surrogates ddipg the

‘South Europe‘ ‘North America‘ ‘Asia‘

shorter compound surrogate with zero bits solves thiblem
without any impact on clustering.

Slowly changing dimensions can be addressed by ngagdoh node

Year <= 1997 Year > 1997

Joe's Sports Bal

Figure4-5 Change of i organization of the physical clustering is not neegssEven with a

of a hierarchy tree with a validity time intervaln object is
physically clustered and retrieved with respect toatidity time. Re-

hierarchy over the time ney classification upon a certain point of time thesting clustering
should be correct from a historic perspective. If thénmss type of Joe’'s Sports Bar changes from bar

-10 -

to restaurant in 1998 (cf. Figure 4-5), all previously cludtdega still is correct. The total sales over
all bars in 1997 must include Joe's Sports Bar, whereas iitcluded in restaurants for 1998.
However, each object of a hierarchy needs informagibout re-classification in order to correctly
calculate the total sales to Joe’s Sports Bar oeelatt years.

Multiple inheritance (e.g., Joe’s Sports Bar is caarEd to be both a bar and a restaurant at the same
time) is solved similarly to slowly changing dimemss: One of the several possible paths to a hierar-
chy node is chosen for clustering. The other pattes luErarchy graph to that object then merely store
a pointer to the sub-tree that actually stores the obfemultiple aggregation paths are possible, pre-
cautions must be taken that only one of these pathses for aggregation.

4.3 Addressing Sparsity

Sparsity is defined as the percentage of a domain that tisexistent in the actual domain. For a

multidimensional data cube sparsity is the ratio betwkemumber of cells not containing any data
and the overall number of cells of a data cube. Som&ROlools allow to mark dimensions to be

sparsely populated and then specially handle them. Howavmultidimensional cube is formed as the
cross product over the domains of all dimensions.réfbee, even for non-sparse dimensions the
sparsity of the entire cube becomes extremely high stom.' Juice & More’ schema, for instance, is

a star schema with four independent dimensions witheasity of 99,8%:

o 26Mio _ _ |FactTabld
sparsityfuice& More) =1- = 0,9984with sparsitygtarschema=1-]
7030560008612 |_Ii-l|Dim Tablei|

To our knowledge sparsities of more than 99% are tygarabdata warehousing applications. The
TPC-D benchmark [TPC97], for instance, can be regatddoe a snowflake schema with shared
hierarchies consisting of three independent dimassio

e part + supplier (combined dimension with 0.8 million résocoming from 0.2 million parts from
10 thousand suppliers)

e customer + order (combined dimension with 1.5 milliotheos from 150 thousand customers)
e time (2557 records for seven years on the aggregatiehdf a single day)

For a fact table of 6 million records (a TPC-D saafiactor of 1) the resulting data cube has a sparsity
of more than 99,99999%.

Thus, in practice sparsity forbids to materialize atireelata cube of raw data. Physical data organi-
zation in a multidimensional array is only feasilbe fighly aggregated data. However, serious deci-
sion support applications require a deep drill down interésting areas of a data cube. Therefore it is
necessary to have a physical representation of aehpargpulated data cube that allows efficient
access to some part of that cube. With multidimensibigahrchical clustering drill down defines a

subspace of a data cube by range restrictions in sadienahsions. Therefore a method to cluster

-11 -

sparse data with respect to several dimensions ibination with an efficient range query and sort
algorithm are necessary for efficient handling idf down queries.

The surrogate calculating function of section 4.2.1 canary multidimensional access method to
implement multidimensional hierarchical clustering.wdwger, using any variant of R-Trees [Gut84,
BKS+90, BKK96] may result in a sub-optimal performance,esiReTrees may subdivide the universe
into overlapping tiles, which may result in multiple esses to one disk page. Therefore the most in-
teresting candidates are Grid-Files [NHS84], hB-Ti{g&90] or space filling curves in combination
with one-dimensional access methods [OM84, Jag90]ofAthese methods provide a disjoint parti-
tioning of multidimensional space. Because of its fiehehierarchical data space organization and its
easy implementation, we use the UB-Tree [Bay96] fordhiee & More’ data warehouse.

4.4 Concept of the UB-Tree

The UB-Tree [Bay96, Bay97a] is an access method foridiménsional point data and thus copes
with sparsity without any additional overhead. Itipgs a space filling curve to create a hierarchical
disjoint partitioning of a multidimensional universehile preserving multidimensional clustering.
Using the Lebesgue-curve (Z-curve, Figure 4-6a) it is reanbof the zkd-B-Tree [OM84]. By the
virtue of compound surrogates from section 4.2.1 for e#olnsion, the UB-Tree creates a multidi-
mensional hierarchical clustering. This clusteringfiiciently exploited by the UB-Tree range query
algorithm [Bay96, Mar98] to answer queries with pointage restrictions in multiple hierarchies.

To define the UB-Tree partitioning scheme we needntbtion of Z-addresses and Z-regions. We as-
sume that each attribute vabgeof attributeA; of ad-dimensional tuple = (xy,... X5) consists of bits’
and we denote the binary representation of attributeexaby X ¢ 1% s.2.. X o.

A Z-address a = Z(x) is the ordinal number of a tupteon the Z-curve and is calculated by interleav-

ing the bits of the attribute values:
s-1 d

Z(x) = ZZXU [pid+i-1
= =

A Z-region [a : A is the space covered by an interval on the Z-cuneia defined by two Z-ad-
dressegy andg.

01234567

0/1/4/5/161720 21
2|3/ 6] 7181922 2
8/9/121324 2528 24
1011141526 2730 31
3233363748 4952 53
343538 3950 515455
404144 4556 5760 61
424346 4758 5962 6

(a) (b) (© (d)

Figure 4-6: Z-addresses and Z-regions

~NoO Oh WNEFEO

* Our implementation uses different lengths for the lyinepresentation of attribute values [Mar98]. We just use
identical lengths for an easy illustration.

-12 -

For an &8 universe, i.e.s = 3 andd = 2, Figure 4-6b shows the corresponding Z-addressgsteFi
4-6¢ shows the Z-region [4: 20] and Figure 4-6d shows atipairtg with five Z-regions [0 : 3],
[4:20],[21:35],[36:47] and [48 : 63].

The UB-Tree utilizes a BTree to partition the multidimensional space intoegions, each of which
is mapped onto one disk page. At insertion time aZukgion [o : £] is split into two Z-regions by
introducing a new Z-addregs with a< y< . y is chosen so that the first half (in Z-order)tlué
tuples stored on Z-regiomr[: £] is distributed to § :] and the second half is stored gn [3]. Thus

a worst case storage utilization of 50% is guarant@éextidresses are only used to organize the data
and are not stored with every individual tuple, but dnlyhe non-leaf nodes of the -Bree. There is
some freedom of choice for the Z-region split. Fptirnal query performance the split algorithm for
UB-Trees tries to maintain rectangular regions atmnmize fringes whenever possible. Assuming a
page capacity of 2 points Figure 4-6e shows ten pointdweh@ted the partitioning of Figure 4-6d.

The UB-Tree requires logarithmic time (in the numbleactual values in the data cube) for the basic
operations of insertion, point retrieval and deletiand storage requirements are also linear. Range
gueries are processed by retrieving all Z-regions itftatsect the query box and thus linearly depend
on the result set size.

The problem of the zkd-B-Tree when handling tuples witntical leading bits in some attributes
[LS90] does not occur for multidimensional hierarchichistering: The leading bits of each dimen-
sion belong to the top level hierarchies and theeefartition the data space with respect to that di-
mension. Since the interleaving order of bit-int@vlag hierarchically organizes the data space, the
boundary of each Z-region exactly reflects the hidnaraver each dimension. The first hierarchical
split levels correspond to the upper nodes of the loieyaree. Therefore a query box defined by hier-
archical restrictions over a multidimensional hiehéeally clustered UB-Tree will contain most Z-
regions completely. Only very few Z-regions will berthaintersected by a query box (see Figure
4-7). Thus the retrieval overhead is minimal; almdlsiata being retrieved is part of the result set.

4.5 Processing OLAP Queries on Multidimensionally Clustere®ata - The Tetris-Al-
gorithm

Sort operations in combination with multi-attribute riesibns are the most important operations that
are necessary to implement drill down queries in dateehousing applications. UB-Trees provide a
single operator for efficiently processing this clabgueries, the so-called Tetris algorithm [MB98].

The Tetris algorithm is a generalization of a midtiehsional range query algorithm that efficiently

combines sort operations with the evaluation of muftikaute restrictions. The basic idea is to use the
partial sort order imposed by a multidimensional partitig in order to process a table in some total
sort order. Essentially a plane sweep [PS85] over aygspace defined by restrictions on a

multidimensionally partitioned table is performed. Tiction of the sweep is determined by the sort
attribute. Initially the algorithm calculates the fig-region that is overlapped by the query box, re-
trieves it and caches it in main memory. Then itticmes to read and cache the next Z-regions with

-13 -

respect to the requested sort order, until a comphitedst possible slice of the query box (in the
sorting dimension) has been read. Then the cachedstaplthis slice are sorted in main memory,
returned in sort order to the caller and removethfoache. The algorithm proceeds reading the next
slice, untilall Z-regions intersecting the query box have been psack Only disk pages overlapping
the query space are accessed. With sufficient, but maombeshe memory each disk page is accessed
only once (see section 5).

jJ [~ 1 jJ jiJ
Sl Sl
ek I Aoble o FEE T 2T+
e eim-ceci I IR (57 .. 2= I I
.] . Jﬁr - | " I
Juice ;5? Juice ;5?
J T F J]
sl e =
fﬁ EHis fﬁ EHis
]]

m Asia m Asia

Figure 4-7: Processing a query box in sort order with thiesTagorithm

Figure 4-7 illustrates how the Tetris algorithm processéierarchically clustered relation to calculate
the total sales for each different fruit juice for@alstomers in Asia. The restriction of the NATION t
‘Asia’ results in an interval in the CUSTOMER dim@ms The same holds for the restriction to
‘Juice’ for PRODUCT. The boundaries of each query vatecorrespond to Z-region boundaries and
thus minimize the number of Z-regions only partly nandpevhollycontained in the query box. The
guery box is read in sort order from bottom to top;abgregates for each juice type are calculated on
the fly. The part of each Z-region from which tuple® &ached is shaded. When all Z-regions
intersecting the ‘Orange Juice’ slice have been rdasl,slice is sorted and aggregated. In the same
way the next slices (‘Apple Juice’, ‘Cherry Juice’, ptare processed. This continues until the entire
product interval defined by the restriction to ‘Juibe’s been handled. We named this algoriftamnis
algorithm, since the visualization of the Z-region processirder reminds us of the Tetris computer
game.

The Tetris algorithm avoids external sorting, sinody sublinear temporary storage is required with
respect to the number of tuples to sort. In additiddstihe is linear in size of the query result set. In
contrast to a standard merge-sort algorithm soiitingo longer a blocking operation. Thus aggrega-
tions can be calculated on-the-fly and allow bettégractive response times. In addition, the Tetris
algorithm efficiently processes iceberg queries fokirsg [FSG+98], if the desired measure is used as
a further dimension of the UB-Tree. The Tetris athon then does not read the entire query box in

-14 -

the sorting dimension, but terminates after procestiiegfirst slices. A detailed description and
analysis of the Tetris algorithm can be found in [NM@BR

4.6 Materializing Aggregates

Multidimensional hierarchical clustering is not omlpplicable to the raw data itself, but can also be
used to organize views with materialized aggregatiégher aggregation levels result in a UB-Tree
with shorter compound surrogates or reduced dimengionhl makes sense to store pre-computed
aggregates for the highest aggregation levels weitrictions in only one dimension, e.g., the total
sales on a yearly basis. However, multidimensionatanchical clustering allows to derive many
aggregates efficiently from the raw data. This dsainaterialization of many aggregation levles and
thereby reduces the view maintenance problem for sunahblgs to a large extent.

5 Performance Analysis

For retrieving or sorting a relation in combinatiaith multidimensional hierarchical restrictions we
define cost functions for response times and inteatedemporary storage. Our analysis considers a
UB-Tree, a composite secondary index (CSI, clusteéBndree) over all attributes (foreign keys of
each dimension and measure attributes) of a fact tabdagle secondary index (SSI, non-clustering
B'-Tree) on the attribute with the least selectivitg anfull table scan (FTS). In addition we analyze
the performance of bitmap index intersection (BIll), gkhcombines the bitmaps of each restricted
attribute to determine the result set of the query.

5.1 Cost Functions for Retrieval with Multi-Attribute Restrictions

An FTS to answer multidimensional range queries \sgfectivity $ in dimensionj can exploit
prefetching techniques to reduce the number of random aegesses at the expense of having to read
the entire table. Using a CSI with a compositeTBee in lexicographic ordek, ..., Aq allows to use
the index for the restriction iA; at the expense of having a random access for eaeh Ae8SI oA
requires a random page access for each tuple satishgngestriction imd, since no clustering of the
tuples is available. The number of random accesse$8i & limited taP, if the row identifiers of the
SSI are sorted and then processed in physical page forddata page retrieval. For point restrictions
on the index attribute (e.g., REGION = ‘Asia’), sogtiof row identifiers may even be avoided: index
pages for tuples with identical index attributes may lgamized in the physical order of the row
identifiers. Then point restrictions will get a lief row identifiers sorted according to the physical
location of the tuple. This makes a SSI not to degeeeand behave similarly to an FTS in worst case.

Bll requires a random access for each tuple satistyiagestrictions in all attributes. In addition the
corresponding part of each bitmap index has to be retfidm analogy to a SSI the result of Bll is a
bitmap which is used to access data pages in physidat. o0Fhus multiple random accesses to one
data page will not occur.

- 15 -

£ distribution| <
clustering with CE 33%{ 52
age prefetchi = i3
page p 8 BE o504
5 —
) 17%
©
FTS ss| Bl cslI UB-Tree

Figure 5-1: Access Methods and Clustering

The shaded part of each cube in Figure 5-1 shows theparthree dimensional database which is
retrieved by the corresponding access method to arsvegiery to compute the sales for one year
(stve = 33%) for all fruit juices $ropuct = 25%) sold by direct marketingo(strisution = 17%): an
FTS retrieves the entire database exploiting clusteximd) prefetching. In contrast to that a SSI will
rarely utilize any clustering benefits for small ressidits. Bll retrieves each bitmap by clustered
access, whereas the data itself will often be sppgadmany data pages and then must be retrieved by
random access to each page. However, for largett setglthe probability rises that prefetching might
be applicable for bitmap indexes. This means, that Blineil be much less efficient than an FTS in
worst case. A CSI with the DISTRIBUTION dimensios frst attribute in concatenation order util-
izes clustering but only exploits the 17% restriction d8 TIRIBUTION. In contrast to that the UB-
Tree utilizes the restrictions of all dimensions egttieves the data in a clustered way.

In accordance with [HR96] we use a cost model thagstakndom page accesses and page transfers
into account. Let,; be the (average case or worst case) positioning aiivee hard diskt; be the
transfer time of a hard disk amdthe CPU tim&spent for page processing after retrieval. We assume
that the prefetching strategy of the file systendsea physical cluster ¢ consecutive pages from
disk with one random access into the read-aheddecddis takes timg;, + (& + t;) OC. Readingk
pages in consecutive order therefore takes

Using that cost model we calculate the cost of psiegsa fact table consisting ©ftuples stored oR
pages restricted by a multidimensional inte@at [[y, Z]] = [y1, z1] X ... X [y}, 2] X ... X [Ya, Zg] With &
selectivity ofs in attributeA.. For UB-Trees we assuntedimensional hierarchical clustering of the
table. For secondary indexes we ass@y® be the size in pages of a secondary indeR;oRigure
5-2 displays cost formulas for these access methodsra®gd in [Mar98]. With increasing result set
size the function prefetchP,s;,....S) in the cost function for BIl will grow from 1 t€ (see [Mar98]
for details).

® Note thatt; heavily depends on the specific query. For complex réstiglike multidimensional intervals or
IN-clauses of SQIt; may be considerably higher than for simple singlabaite restrictions.

-16 -

Cers(d,P,C) = %n %Hr +te @IP

CCSI(d! P; Sl""’sd) = (tn +t‘r +t§)|351 P
Csslondimensiori (d,T, Sise-Sd s Bi) = (tn +t, +t§)Eﬂmin(T Bﬁ) P)+ Bi)
d

_ .l t, . < o o
Cgy (d,t,8,...,84, By, By) %n Géﬂf +t, @]Z (s; EB')+Eprefetch(,) +t, +t, mErED s, PE

bitmapretrieval & intersecton tuple retrieval by randomaccess(clusteredaccesgor large result sets)

d
CUB(d! P! y! Z) = (tn +t1: +t§)|:|_| n] (d! P! yJ ’ ZJ)
=1

Figure 5-2: Cost functions for retrieval of a multidimemsil interval

For a table ofP pages of uniformly distributed data partitioned byg-dimensional UB-Tree and a
query boxQ = [[y, Z]] the cost cyg(d,P,y,2) is the product of the number of Z-regions intersegctire
multidimensional interval §f, Z]] in each dimension as derived by [Mar98]. For eatthbaite A the
cost functiorcyg requires the valueg andz to be normalized to [0, 1]. The formula

n(d, P, y;, 2) =n(y;, 2, 1i(d, P)) + (((y;, 2, Ii(d, P) + 1) -n(y;, 7, Ii(d, P))) Cix(d, P)

to calculate the number of Z-regions intersected byrékgiction §;, z] in attributeA; of a d-dimen-
sional UB-Tree consisting & pages requires the following auxiliary functions:

* |j(d,P) (actual number of completed recursive splits with resjoet)

. (d,P)+1 | if Pmodd < j
d; (d.P) [log, PO I wherel (d’P):DogzPD

'i(d’P):E l,, (d.P) ,otherwise ju Hd §

* pi(d,P) (probability of an incomplete recursive splitAy)

P L
pj(d,p):ézﬂplw_l ,|f] —(legZPDmOdd)"‘l
H o ,otherwise

* n(y, z ,l)) (number of Z-regions fdf completed splits ir)

Jif ;= y;

g 1
n i Z; !I i)= .
(vj»2p1) %}j 2"D—Dyj 2'[]+1 ,otherwise
Our measurements have shown that this rather congalicaist function describes the actual behavior

of the UB-Tree very accurately [Mar98].

5.2 Simulation of Response Times for Queries with Multi-Atibute Restrictions
Current operating systems usually prefaich 16 pages with one random access. We assuymé0
[ms], t; = 0,6 [ms] and: = 0,4 [ms].

-17 -

1000 --SSI Time 2000+
Csl
750 A T 1500
P Distribution| ©
T “FTS — e s/s e e oo eoeeeoee oo uau
£ 500 £ 1000
g Bll ?
8 o |) S 500
250 CSITime | ©
0 +& ‘ ‘ ‘ ‘ - UB-Tree 0 ‘ ‘ ‘ ‘
0 250.000 500.000 750.000 1.000.0bu 0% 28% - 50% - 75% 100%
table size in pages selectivity in dimension time in %
(a) (b)

Figure 5-3: Response times for queries with multi-attribesérictions on ‘Juice & More’ (simulation)

Using our cost functions Figure 5-3a shows the cost J[iofsthe sales querysfme = 33%,
SpistriBUTION = 17%, Sprobuct = 25%, Scustomer = 100%, see section 5.1) for 4-dimensional
hierarchical clustering compared to other accessnigpebs. The table size is varied from one page up
to one million pages.

Varying the selectivity of the restriction in TIMigr a table size oP = 878k pages (about 7GB for a
page size of 8kB) shows that multidimensional clusteviith the UB-Tree is superior to both a SSI
and a CSI on the time dimension, since these acoed®ds cannot exploit any restriction but the one
on time. UB-Trees can exploit the restrictions on TREIBUTION and PRODUCT in addition to the
restriction in TIME. Thus UB-Trees are also supermah FTS and to Bll using bitmap indexes for
all four dimensions (Figure 5-3b). For an overall seliggtof 75% 017% [125% [1100% = 3,1875 %

an FTS is already preferable to Bll. Since bitmap insl@@not cluster the data, the result set defined
by the restrictions in all dimensions must be suffityesmall for Bll to be competitive.

5.3 Cost Functions for Sort Operations

For the following considerations we assume a meogeadgorithm using a main memory Bf pages
and a merge degree nf We divide the sort process in a retrieval phaséctwietrieves the data to
create initial runs for the merge-sort) and a sogsph(which actually performs the merge-sort). Be-
cause of the multi-attribute filtering of the retrieydlase the data set to be sorted is usually smaller
than the entire table. Wit denoting the selectivity of the restriction inrdoite A; and independence
of the attributesPs pages need to be sorted. The cost functions of sebtib can be used to
calculate the cost of the retrieval phase to crdadritial runs for the sort operation. If an access
method does not return the tuples in the requestedstet, sorting with the cost af, takes place.

If M > PMs, sorting takes place in main memocy,: then is the cost of an internal sort operatag.

is zero, if a CSI withA; as first attribute is used for the retrieval phasethadsorting attribute 8y,
since the data then is already retrieved in thetkesort order.

-18 -

tEEPEIjsDng:EIjSiE ,ifM>PE|i|s

— d d
Csont(d,P,C,mM,s,,...,54) =00 Bn El];"‘tf _,_té H] 2 [%: S ngBI:I_J Si H ,otherwise
nt ¢ 0o M4

oOooo

O

O

consecutie access read&
write

pagegosort numbemnf mergephases

[[

As shown in the section before, SSI and CSI onictstr attributes are only efficient for fairly small
result sets. In this case sorting would take placmain memory. One can expect that as soon as
external sorting is necessary, SS| and CSI areffigient for the retrieval phase anymore.

The Tetris algorithm has to sort each cached si@ece the algorithm readyy;, z || slices, the
overall cost of internal sorting accordingAas

Crewis(d, P, Y, 2, J) =t: (N(y, Z; ,|;) [eachereyis(d, P, y, z, j) Hog cachereyis(d, P, Y, z, j)

The Tetris cache is considerably smaller than thpdeary storage oPlls required by the merge-
sort algorithm that is necessary after the databkas retrieved by an FTS or any index on a restricted
attribute. To sor# the Tetris algorithm just requires to cache oneglie.,

CaCheTetriS(d! P! Y, Z, J) = |_| i=_l,.._,d ni (d! P! yi ’ Zi)

i#]
For a two-dimensional UB-Tree the above formula resmlta square root function of the number of
Z-regions overlapping the query box, i@chererid2, P,S1,S, j) = VP35, .

5.4 Simulation of Response Times for Queries with Multi-Atibute Restrictions and
Sort Operations

Using the same parameters as in section 5.2 andamddligi using a main memory cache of 32 MB
and a merge degree wf= 2 for the merge sort algorithm Figure 5—4 shows t®t in s] for sorting
the result set of a fact table defined by restrictiamaultiple hierarchical dimensions.

1000 =33

Distribution
7501 ~-SS| Time | »1500

CsSli
500 Distribution

CSI Time
250 A -—FETS

z BlI

2000 —“

JE————

[

o

o

o
L

cost [time] in s

cost [time] in

al

o

o
L

0

0 250.000 500.000 750.000 1.000.0 = UB-Tree 0

M, 0% 25% 50% 75% 100%
table size in pages selectivity of time dimension in %

(a) (b)

Figure 5-4: Sorting the restricted ‘Juice & More’ factiéaéiccording to the TIME dimension (simulation)

Figure 5—-4a shows the cost [in s] for a query that corapghEmonthly sales over all customexs§.
tomer = 100%) for one yeassfive = 33%) for all fruit juices $ropuct = 25%) sold by direct marketing
(soistriBUTION = 17%). This query requires sorting the 4-dimensionaly)box by month to calculate
the monthly sales. Again the tables size is vaniethfone page to one million pages. The speed up of
the Tetris algorithm for UB-Trees grows superlineavith increasing table size, since all other access

-19 -

methods require an external merge sort to calculatentinthly groups. Varying the selectivity of the
restriction in TIME for a table size & = 878k pages in Figure 5—4b shows the superiority of the Tet-
ris algorithm, since hierarchical clustering allotesexploit multi-attribute restrictions to reduce the
number of random accesses and at the same time aoigspensive external sort operation. Sorting
with Tetris takes place in main memory as long @&srifemory suffices to hold one slice of the query
box. Figure 5-5(a, b) shows that the temporary storaghdamerge sort algorithm used by FTS, BIl,
CSl distribution and SSI distribution soon exceeds thm mmemory sorter cache bf = 32 MB when
processing the queries of Figure 5-4(a, b). In contragtatiosorting with Tetris never requires more
than 14 MB of cache for one slice and thus sortingtake place in main memory.

[y
o
o

300+

~
()]
N
o
o
I

= Mergesort
- Tetris
CSl on Tim

=

o

o
I

sorter cache size in MB
N 0
(6] o

sorter cache size in MB

11

o
o
&

’S

0 250.000 500.000 750.000 1.000.000 0% 25% 50% 75% 100%
table size in pages selectivity of time dimension in %

(a) (b)
Figure 5-5: Temporary storage required for the sorter o@timelation)
A CSI or SSI on TIME does not require any sortethead he tradeoff of these two access methods is
the inability to use restrictions in multiple dimensiorOverall, the Tetris algorithm for UB-Trees
outperforms any access method either with respeasioonse time or with respect to both response
time and temporary storage requirements.

5.5 Further Analysis

Using our cost functions we found out that multidimemaiohierarchical clustering and the Tetris

algorithm are superior to one-dimensional accessausthunless a strongly preferred sort order exists
or the restrictions are not selective enough to ngkéne tenfold speed of an FTS. Another limitation
of our technique is the number of dimensions: Incrgasimensionality exponentially reduces the

potential of multidimensional space partitioning toateea total sort order in one dimension. Our
theoretical and practical analysis shows that muoidisional indexes of up to 6 dimensions are
handled very well with table sizes larger than 1 QBese dimensionalities are typical for data

warehousing applications. and in particular for the 8dicMore’ schema. This dimensionality is also

sufficient for the TPC-D benchmark [MZB98]. With largable sizes even further attributes could be
added to the UB-Tree in order to speed up queries maitlrictions or sorted processing in this

attribute.

6 Performance Measurements
In this section we present measurements performetleofduice & More’ schema with our prototype
implementation of the UB-Tree on top of the commér€@eacle8 Server. For the evaluation of our

- 20 -

clustering technique we defined a benchmark with 36 egleln comparison we also conducted
measurements with native Oracle access methodsahl scan (FTS) and bitmap indexes (BIl). For
these measurements we used a completely denormadizetbble, that is, no additional joins had to
be performed to answer the queries. The bitmap indexesarneated on each hierarchy level. We did
not include secondary indexes in our comparison measntsrbbecause earlier experiments showed
that they are neither competitive to the UB-TreetodeTS or Bll [MZB98].

6.1 Measurement Environment

The measurements were performed on a SUN Enterprikdanir 300 MHz UltraSPARC processors
and 2 GB RAM under Solaris 2.6. As secondary storagartition on a SPARCstorage Array with
Raid-Level 0 (6 disks striping, 5-6 MB/s transfer rate gisk) was used. All measurements were done
in a single-user environment.

It is important to note that our implementation stduses significant overhead due to the fact that we
have implemented the UB-Tree on top of a DBMS andimahe kernel itself. First, the number of
SQL statements that have to be processed (UB: 1 stattdor each page in the result set, Oracle
methods: 1 statement in total) leads to extensie-pitocess communication (about 30% of the total
processing time) and DBMS overhead (e.g., parsirgdatéments). Second, our table is larger than the
one for the FTS and the bitmap indexes due to unimpleche@umpressing techniques in the UB-Tree
(for 8 KB pages: UB: 878362 pages, FTS: 723539 pages, Bll: FTS+3113).page

6.2 Results
Table 6-1 shows the result set sizes and Figure 6-1 thensesfimes of the three example queries

(section 3.1.2). Q1 shows that the UB-Tree with
ouery |Loaded Tuples Efg;r;gassee multidimensional clustering is over 2 times fasterBdiseven
Q1 8160 0,03%| for very small result sets. Q3 which is processed ly th
8§ 16?2%2 S;ggﬂj‘; unoptimized UB-Tree at least 10 times faster than \waitl
Table6-1 Result Set Siz other access method undermines this observation.

The result set of query Q2 is quite large but the almpesiect clustering factor of the UB-Tree (in
average more than 29 out of 30 tuples/page belong to thie sef still leads to a speed up of more
than 30 % in comparison to BIl. The time for FTS fa @ffers from the times for Q1 and Q3 due to
the less complex WHERE clause of the statement.

The number of comparison operations is therefore
300+

much smaller than for the other queries which

200 causes the faster execution.

All these results on real data show how well the

100+

Reponse Time in's

multidimensional hierarchical clustering with UB-

ol Trees works in practice and the accuracy of our

Q1 Q2 Q3

theoretical cost model. In total more than 77% of

Figure6-1 Response Times on Real T all benchmark queries (28 out of 36) showed a

-21 -

speed up between a factor of 1.3 and 10 over traditiomhhitpies. In addition, the resource
requirements of the UB-Tree were significantly laban these of native access methods (see
[MZB98]) which makes it especially valuable in multi-uservironments.

7 Conclusions and Future Work

We have defined an encoding scheme for hierarchicaénsions that allows to cluster the data with
respect to multiple hierarchical dimensions. The prapdserarchy encoding scheme relies on Z-or-
dering and ensures that the Z-region boundaries drdptethe hierarchical splitting of a UB-Tree
exactly reflect the hierarchy over each dimensidme Tirst hierarchical split levels correspond to the
upper nodes of a hierarchy tree. Multidimensional hifieal clustering reduces the number of
random accesses to the fact table for star joinsotmel queries with restrictions in multiple hierar-
chies by a factor op, wherep is the page size in tuples. In addition, sort opanatas necessary for
grouping and aggregation are performed on the flyounittadditional 1/0. For dimensionalities typical
for data warehousing only 1/O-time linear in sizetloé result set prior to aggregation and sublinear
temporary storage are necessary to aggregate paatslathh cube. Thus secondary storage space and
pre-computation time for many aggregates and bitmaxésdean be avoided. In addition the widely
discussed view maintenance problem is minimized. Thhehmeark results for typical queries of a 7
GB real world retail data warehouse confirmed ourlyical expectations and showed significant
speedups up to factor 10 in response time. Depending ajuéng, temporary storage requirements
for sorting are reduced by several orders of magnitQde clustering approach also holds not only for
ROLAP but also for MOLAP implementations of a DW sim#th ROLAP fact tables and MOLAP
data cubes can be clustered in this way.

In our future work we are particularly interested inndotests in multi-user environments where we
expect even more significant speedups. We are in theggaf integrating the UB-Tree into a DBMS
kernel to reduce the overhead of the current implemtient In addition we are investigating a
methodology for query optimization with multidimensabrindexes, both for heuristics-based and
cost-based query optimizers.

Acknowledgments

We thank our project partners SAP, Teijin Systems Teldgy, NEC, Hitachi and the European Commission
for funding this research work. In particular we thankmasster student Roland Pieringer for his effort in doing
the performance measurements reported in this paper afdf@Aproviding the real data and the test
environment.

References

[BM98] Bayer, R.; Markl, V.: The UB-Tree: A Multidimersial Index and its Performance on Relational
Database Management Systems, Technical Report, FORPMAS8, submitted paper

[DKO+85] DeWitt, D.J.; Katz, R.H.; Olken, F.; ShapitoD.; Stonebraker, M.R.; Wood, D.: Implementation
Technigues for Main Memory Database Systems, ProdM AIGMOD Intl. Conf. on Manage-
ment of Data, 1984, pp. 1-8

[FNP+79] Fagin, R.; Nievergelt, J.; Pippenger, N.; StrathgR.: Extendible Hashing — a fast access method
for dynamic files. ACM Transactions on Database &yst4(3), 1979, pp. 315 - 344

-22 -

[Gra93]
[Gin93]
[HNK+90]
[IBM97]
[Jag89)
[JL98]
[ME92]
[Mers1]

[Ora97]
[Rot91]
[Bay96]

[Bay97a]

[Bay97b]
[BK8]
[BKK96]

[BKS+90]

[BKS93]
[BM72]

[BSH+98]

[CD97]
[C198]
[FSG+98]

[GG97]
[GHR+97]

[Gup97]
[Gut84]

[HRO6]

Graefe, G.: Query Evaluation Techniques for L&yggmbases, ACM Computing Surveys 25, pp.
73-170

Gulnther, O.: Efficient computations of Spatiah8piProc. 9th Int. Conf. on Data Engineering,
Vienna, 1993

Harada, L.; Nakano, M.; Kitsuregawa, M.; Takagi,: lQuery Processing Methods for Multi-At-
tribute Clustered Relations, Proc. 16th Int. Conf. ony\l@rge Databases, 1990, pp.59-70

IBM Corporation. IBM DB2 Universal Database f&iNIX Documentation, IBM Corporation,
1997.

H.V. Jagadish. Incorporating Hierarchy in a Ratati Model of Data. Proc. Of the 1989 ACM
SIGMOD Intl. Conference on Management of Data, Rad| Oregon, 1989.

Jurgens, M.; Lenz, H.J.: The R*a-Tree: An improR&dlree with Materialized Data for Support-
ing Range Queries on OLAP-Data, DWDOT Workshop, Vierd988

Mishra, P.; Eich, M.H.: Join Processing in Riglaal Databases, ACM Computing Surveys, Vol.
24 No.1, 1992, pp. 194-211

Merret, T.H.: Why Sort-Merge gives the best lempentation of the Natural Join, SIGMOD
Rec??ord 13, 1981, pp. 39 - 51

Oracle Corporation. Oracle 8 Documentation, @r@orporation, 1997
Rotem, D.: Spatial Join Indices, Proc. Int. Con Data Engineering, 1991, pp. 500-509

R. Bayer. The universal B-Tree for multidimemsibIndexing. Technical Report TUM-19637,
Institut fur Informatik, TU Miinchen, 1996

R. Bayer. The universal B-Tree for multidimensil Indexing: General Concepts. - In: World-
Wide Computing and Its Applications '97 (WWCA '97), Tsukuba, Jap@il, Lecture Notes on
Computer Science, Springer Verlag, March, 1997

R. Bayer. UB-Trees and UB-Cache — A new PingeBaradigm for Database Systems. Technical
Report TUM-19722, Institut fir Informatik, TU Minchen, 1997

E. Bertino and W. Kim. Indexing Technique for QuemmasNested Objects. IEEE Transactions on
Knowledge and Data Engineering, pages 196-214, 1989.

S.D. Berchtold, D. Keim, and H.-P. Kriegel. THeTree: An Index Structure for high-dimensional
Data. Proc. 22nd Int. Conf. on Very Large Data Bases, 1996

N. Beckmann, H.-P. Kriegel, R. Schneider, an&8eger. The R*-Tree: An efficient and robust
Access Method for Points and Rectangles. ACM SIGMOM {Donference on Management of
Data, pp. 322 — 331. 1990.

T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Hifict Processing of Spatial Joins using R-Trees,
ACM SIGMOD Intl. Conference on Management of Data, 28¥-246. 1993.

R. Bayer and E. McCreight, E.: Organization andifiEinance of large ordered Indexes. Acta
Informatica 1, 1972, pp. 173 — 189

Blaschka M., Sapia C., Hofling G., and B. Dintéinding Your Way through Multidimensional
Data Models. Proc. Intl. Workshop on Data Warehoussgdeand OLAP Technology, Vienna,
August 1998.

S. Chaudhuri and U. Dayal. An Overview of Data #famusing and OLAP Technologies. ACM
SIGMOD Record 26(1),1997

C. Chan and Y. loannidis. Bitmap Index Design anduaton. Proc. ACM SIGMOD Intl. Conf.
On Management of Data, 1998.

M. Fang, N. Shivakumar, H. Garcia-Molina, R.tiWemi, and J. Ullman. Computing Iceberg
Queries Efficiently. Proc. of the VLDB 98, pages 299 — 310. 1998.

V. Gaede and O. Ginther. Multidimensional Accesthbtis. Humboldt Universitat, Berlin, 1997.

H. Gupta, V. Harinarayan, A. Rajaraman, andJbman. Index Selection for OLAP. Proc. Intl.
Conf. on Data Engineering, 1997

H. Gupta. Selection of Views to Materialize iDaa Warehouse. Proc. of the Intl. Conference on
Database Theory, Athens, Greece, January 1997.

A. Guttman. R-Trees: A dynamic Index Structure foatel Searching. ACM SIGMOD Intl.
Conference on Management of Data, pp. 47 — 57. 1984.

E.P. Harris and K. Ramamohanarao. Join algorithsts revisited. VLDB Journal, 5, 1996.

- 23 -

[Info7]

[Jag90]

[Kim96]
[KKD89]

[LS90]
[Mar98]
[MB98]

[McG964]
[Moe98]

[MS98]
[MZB9S8]
[NHS84]
[OLA98]
[OM84]
[0Q97]
[PS85]

[Red97]

[Sal88]
[Sar97]
[SDN+96]

[SDN+98]

[TPC97]

[WB97]
[WB9S]

[Wid95]
[ZDN+98]

[ZSL98]

Informix Software Incorporation. A New Generati of Decision Support Indexing for
Enterprisewide Data Warehouses.

Http://www.informix.com/informix/corpinfo/zines/whitpprspxps.pdf, 1997.

H.V. Jagadish. Linear Clustering of Objects witlitiple Attributes. ACM SIGMOD Intl. Con-
ference on Management of Data, pp. 332 — 342. 1990.

R. Kimball. The Data Warehouse Toolkit. Johnl&yi& Sons, New York. 1996.

W. Kim, C.Kim, and A. Dale. Indexing techniques filsject-oriented database. In Object-Oriented
Concepts, Databases, and Applications, pages 371-394. Addisoey\NE89.

D. Lomet and B. Salzberg. The hB-Tree: A Multidtite Indexing Method with good guaranteed
Performance. ACM TODS, 15(4), pp. 625 — 658. 1990.

V. Markl. The UB-Tree: A multidimensional acceasthod and its application to relational data-
base management systems. Ph.D. thesis draft, TU MiantBe8.

V. Markl and R. Bayer. The Tetris-Algorithm foo@ed Reading from UB-Trees. In “Grundlagen
von Datenbanken”, 10th GI Workshop, Konstanz, 1998.

F. McGuff. Data Modeling Patterns for Data Wemgéses. Comprehensive Systems Inc. July 1996.

G. Moerkotte. Small Materialized Aggregates: A ltighleight Index Structure for Data
Warehousing. Proc. of the 24/LDB Conference. New York, USA, 1998.

Microsoft Corporation. OLE DB for OLAP Programrize Reference.
http://www.microsoft.com/data/oledb/olap. February, 1998.

V. Markl, M. Zirkel, and R. Bayer. Processing Ogigons with Restrictions in Relational Database
Management Systems without external Sorting. Submitted pa9@8.

J. Nievergelt, and H. Hinterberger, and K. C.cevihe Grid-File. ACM TODS, 9(1), pp. 38-71,
March 1984.

The OLAP Council. MDAPI TM The OLAP ApplicatiorProgram Interface Version 2.0
Specification January 1998.

J. A. Orenstein and T.H. Merret. A Class of ®8tructures for Associate Searching. Proc. ACM
SIGMOD Intl. Conf. on Management of Data, Portlandegan, pp. 294-305, 1984.

P. O'Neill and D. Quass. Improved Query PerformavitteVariant Indexes. ACM SIGMOD Intl.
Conf. On Management of Data, Tucson, Arizona, pp. 38-49,1997.

F. P. Preparata and M. I. Shamos. Computationah&ey: An Introduction. Springer-Verlag,
New York, 1985.

Redbrick Systems. Star Schema processing for CoiQpleries.
http://www.redbrick.com/rbsg/whitepapers/starJoin.pdf, 1997.

B. Salzberg. File Structures: An Analytic Appraaehentice Hall, 1988.

S. Sarawagi. Indexing OLAP data. Data EngineeringtBul0 (1), pp. 36-43, 1997.

A. Shukla, P. Deshpande, J. Naughton, and K. Ramyas&torage Estimation for
Multidimensional Aggregates in the Presence of HieractProc. of the 22VLDB Conference.
Mumbai (Bombay), India, 1996.

A. Shukla, P. Deshpande, and J. Naughton. Matathl/iew Selection for Multidimensional
Datasets. Proc. ACM SIGMOD Intl. Conf. On ManagenwdriData, 1998.

Transaction Processing Performance Council. BBhmark D (Decision Support). Standard
Specification, Revision 1.2.8ttp://www.tpc.org June, 1997.

M.C. Wu, and A.P. Buchmann. Research Issues ia D&trehousing. BTW'97. 1997.

M.C.Wu and A.P. Buchmann. Encoded Bitmap Indexing fataDNVarehouses. ICDE, Orlando,
1998.

J. Widom. Research Problems in Data Warehou$ingg. of 4' CIKM, November 1995.

Y. Zhao, R. Deshpande, J. Naughton, and A. Sh8iKiautaneous Optimization and Evaluation of
Multiple Dimensional Queries. Proc. ACM SIGMOD Intlo&f. On Management of Data, 1998.

C. Zou, B. Salzberg, and R. Ladin. Back to the FutDynamic Hierarchical Clustering. Rraf
the ICDE 1998: 578 — 587, 1998.

=24 -

