T UM

INSTITUT FUR INFORMATIK

SBSE'03 Service-Based Software Engineering
Proceedings of the FM2003 Workshop

Ingolf Kruger, Bernhard Séiz, Manfred Broy, Heinrich
Hussmann (eds.)

TUM-10315
September 03

TECHNISCHE UNIVERSITATMUNCHEN

TUM-INFO-09-10315-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©2003

Druck: Institut f ur Informatik der
Technischen Universit at Munchen

FM’03 Workshop on Service-Based Software Engineering
(SBSE)

Manfred Broy', Heinrich Hussmann?, Ingolf Kriiger?, Bernhard Schétz!

'Fakultit fiir Informatik, Technische Universitidt Miinchen, 85748 Garching, Germany
2Fakultat fir Informatik, Ludwig Maximilians Universitdt Miinchen, 80538 Munich, Germany
3Computer Science & Engineering Department, UCSD, La Jolla, CA 92093-0114, USA

Service-based systems engineering has proven useful in the development of telecommunication systems,
helping to modularize complex system functionality with high degree of interaction between system
components. Increasingly, the notion of service is gaining ground in other application domains like
spontaneous networks, ubiquitous computing, and safety critical systems from the automotive or avionics
domain. Precise specification and correct implementation of requirements for services are essential in most
of these application domains. Jini, .NET, and SOAP are examples of recently proposed middleware
technologies in which syntactic service notions play an important role as an implementation concept.

Surprisingly, however, no precise mathematical foundation supporting the use of services across
development phases exists to date. Many notions of service, like those used in the middleware technologies
mentioned above, refer only to syntactic interfaces. This is inadequate for more elaborate service
specifications that include, for instance, Quality-of-Service properties. Consequently, services are not treated
as first-class modeling elements, say, in UML/UML-RT and SDL. Therefore, especially in the application
domains mentioned above, a suitable notion of service is needed to support service-based software
engineering beyond simplistic syntactic approaches.

A solid methodological basis for service-oriented system development requires a suitable notion of service
and the availability of systematic modeling, development, and quality assurance methods based on this
service notion.

Therefore, the topics addressed in this workshop include:

- Formal foundations for services

- Modeling notations for services

- Composition operators for services

- Quality-of-Service specifications

- Patterns for service development

- Methodologies for service-oriented system engineering
- Refinement and refactoring techniques for services

- Service-oriented validation and verification techniques

The goal of the workshop is to bring together researchers and practitioners interested in service- oriented
software and systems engineering, with an emphasis on:

- using services to describe complex system functionality
- integrating service descriptions to form a system specification
- constructing architectures supporting a service-based development process

to further the definition and introduction of a precise as well as applicable notion of services.

Services as a means of specifying system functionality in a modular fashion are situated at the intersection of
formal methods and applied systems engineering. An applicable notion of service requires abstract as well as
precise models and notations. Here, proven approaches from formal methods can contribute to supply those
models and notations, and to explain how services can be combined, refined, implemented, or deployed.

The unique positioning of services within the landscape of development tasks and techniques is reflected by
the contributions selected for this workshop. In “Modelling Electronic Service Systems Using UML” Skene,
Piccinelli, and Stearns present a UML profile for service specifications; it relates business workflows with
the electronic infrastructure on which they are executed, resulting in the definition and foundation of
electronic service systems. Ribeiro, Rosal, and Cunhal present and formalize an architecture for Quality-of-
Service modeling and deployment in their paper “User Quality of Perception: Towards a Model for
Personalised Communication Services”. The problem of service interaction (sometimes also called feature
interaction) is addressed by means of tailored diagrams and corresponding analysis algorithms in the paper
“Automatic detection of service interactions from graphical specifications”, by Jouve, Le Gall, and Coudert.
“Service Discovery in Mob,q”, by Montangero, Semini, and Semprini, addresses the formalization of
service discovery in distributed systems, an increasingly important aspect not only of mobile and ad-hoc
communication networks.

In addition to these contributions, the workshop proceedings include two invited presentations: In
“Automotive Infotronics: An Emerging Domain for Service-Based Architecture” Nelson and Prasad
describe a service-oriented approach to automotive software development, tackling the rapidly increasing
complexity of software solutions in this application domain. In their contribution “ServiceFORGE: A
Software Architecture for Power and Quality Aware Services” Cornea, Dutt, Gupta, Mohapatra, Nicolau,
Pereira, Shukla, and Venkatasubramanian present an approach to dealing with Quality-of-Service aspects,
including power-management, in distributed and embedded system architectures.

We are also honored to include an invited talk by Pamela Zave, a true pioneer in the domain of service-
based software architectures and development methods, in our program.

The organizers are very grateful to the authors of the papers and talks presented at the workshop for their
submissions. We also thank the members of the program committee for their efforts in selecting the
contributions for this volume, as well as the organizers of FM’03 for their support in realizing this
workshop.

We wish all participants a very interesting and successful event!

Workshop
" Service-Based Softwar e Engineering"
Pisa, September 8th, 2003

Table Of Contents:

Automotive Infotronics: An emerging domain
for Service-Based ArChiteCtUIecoveiiiiiic e
E. C. Nelson, K. V. Prasad

Modelling Electronic Service Systems USiNg UMLcccooeiiciiccecice e,
J. Skene, G. Piccinelli, M. Stearns

User Quality of Perception: Towards a Model for

Personalised COMMUNICALION SEIVICES.oveens
C. M. F. A. Ribero, N. S. Rosa, P. R. F. Cunha

ServiceFORGE: A Software Architecture For
Power and Quality AWare SENVICES.......coiviieieereeee st eriesee st esre et e e e
R. Cornea, N. Dutt, R. Gupta, S. Mohapatra, A. Nicolau,
C. Pereira, S. Shukla, N. Venkatasubramaniam

Automatic detection of serviceinteractions

from graphical SPECITICAtIONS.........ccciiiiiiece e
H. Jouve, P. Le Gall, S. Coudert

Service DISCOVENY 1N M ODAGt] «eeveerreeieeiieeiieesieeiteeseeeireeeee e e sreeesreesreeereesneesnne e
C. Montangero, L. Semini, S. Semprini

Automotive Infotronics: An Emerging Domain for
Service-Based Architecture

E. C. Nelson, K. V. Prasad

Ford Research and Advanced Engineering, Dearborn Michigan, U.S.A
enelson7 @ford.com, kprasad @ford.com

Abstract. The increasing complexity of automotive electronics systems has led
to the evolution of distributed multi-network systems within a vehicle. The fea-
tures supported by these systems are increasingly dependent on the interactions
of distinct components designed by different suppliers. The traditional top-
down systems engineering approach to vehicle electronics software integrates
application software into individual components directly on top of the low layer
hardware support code. Because of the increasing level of interaction between
different components, this approach is no longer adequate. As a result auto-
makers are moving towards defining a middle layer of software that is organ-
ized in terms of services. Defining the semantics of the services in this layer is
one of the major challenges that must be resolved to carry this approach
through.

Introduction

The complexity of automotive electronic systems is increasing rapidly. Today's cars
have 20 to 30 processors in them, with as many as 70 in fully equipped luxury vehi-
cles. In some vehicles the entertainment system alone uses nearly 20 processors.
Some of the processors in a vehicle perform tasks that are very simple, such as con-
trolling a retractable antenna, or the timing of an interval windshield wiper motor,
while others perform tasks that are computationally demanding, such as route calcula-
tion for a navigation system. The various processors are typically connected with
other units performing related functions by digital local area networks. A vehicle may
have three or more networks connecting modules that make up different subsystems
within the vehicle. For example there might be separate networks for powertrain con-
trol, for modules that control various vehicle and chassis functions such as door locks
lights instrument cluster etc., for control of safety systems such as airbags and for en-
tertainment and multimedia systems. Each of these networks will contain modules
manufactured by a number of different suppliers. Moreover, the modules that are pre-
sent on a given network differ from vehicle line to vehicle line and within a vehicle
line depending on the particular set of options installed in a given vehicle. For exam-
ple, the same car model may have one of two different radios depending on the audio
options chosen by the customer.

2 E.C. Nelson, K. V. Prasad

Vehicle Control Networks

Body s Chassis Contral b N
A A o

b Safety Control
.’_
| antenna
. Yehicle

Powertrain Control "
Services
Interface

wireless h

port game
processar

Multimedia Networke | application
haost

Fig. 1. In-vehicle local area networks

Although the individual networks in a vehicle are largely independent, there is an
increasing trend towards interaction between modules on different networks. For ex-
ample, a navigation module on an infotainment network may need information from
wheel speed sensors on a body network to perform dead reckoning position calcula-
tions. Or an audio amplifier on the entertainment network may use information from
a door module and from the vehicle speed sensor on the body network to automati-
cally raise the volume when the windows are open and the vehicle is moving above a
certain speed. Vehicle electronics systems are thus increasingly becoming distributed
computing systems where the correct operation of any feature implemented by one
part of the system depends on calculations done in another part of the system. More-
over, the nodes in this system are heterogeneous and are all designed by different
suppliers. For example, a vehicle might contain a rear seat family entertainment cen-
ter from one supplier, a front audio head unit from another supplier, and a navigation
system from a third supplier, all of which must share components such as a CD
player, speakers, and so on. These components must interact over a common control
network. Such interaction requires that the behavior of each module be adapted to
work with the other modules in the system. The standard top-down design approach
leads to rapid increase in design complexity, since the number of behaviors of the sys-
tem goes up as the product of the number of behaviors of the components.

Even a relatively simple function like a door lock control interacts with a large
number of other modules. The diagram below shows a simplified view of the associa-

Automotive Infotronics: An Emerging Domain for Service-Based Architecture 3

tions between a central locking facility and other objects on a vehicle that has remote
keyless entry (RKE) feature which illuminates the vehicle's interior lights when the
vehicle is unlocked. The feature also sets driver preferences for seat position, radio
presets and mirror position according to which key fob or mechanical key is used to
unlock the car as well as flashing the exterior lights to confirm that the vehicle is
locked, when the driver presses the lock button on the RKE from outside of the car.
The central locking facility must also receive information from the crash detection
system to meet the regulatory requirement that the doors be unlocked in a crash, from
the vehicle speed sensor and the ignition key status to implement lock on drive away,
and from the door ajar sensors.

Ignition key }_Q

Vehicle peed

Cragh notification

@

Valet mode switch

RKE authorization
Mechanical key decoding

Driver door lock
Passenger door lock

Left rear door lock Central locking control @
seat control
Right rear door lock

O

Exterior Light control

O

Interior Light control

Tuner presets

Trunk lock

miror control

Fig. 2. The interactions of the central locking system in a vehicle

The software entities shown in Fig. 2 are apportioned to physical modules in a way
that is heavily dependent on physical packaging and wiring considerations. For exam-
ple, the doors each contain a module that has the door lock control and latch sensing
mechanisms and may contain the door ajar sensor, the mechanical key decoding
mechanism and other functions as well, such as power window control.

To illustrate the complexity of the interactions involved consider the problem of
generating a door lock acknowledgement. When the driver exits the car and presses
the lock button on the key fob, the vehicle will flash the exterior lights to acknowl-
edge that the car is locked. In order to do this correctly, the central locking facility
must not only check for an acknowledgement of the lock request for each door mod-
ule, but it must also check the door ajar sensor for each door to ensure that the door is
actually closed. A sequence diagram for this operation is shown in Fig. 3.

4 E.C. Nelson, K. V. Prasad

X o @ o

: AuthorizedUser[T TRKE .. Central locking

horization

PressL._[]

: Passenger
door lock

”““‘ lanition key

|
|

: Driver door
lock

‘ TTriKIagk - Door ajar sensor ey Exterior Light control

< security
| alam

|

l

|

LockReq(Key!ob)

ReqKey Status

Key out

LockGmd

|
LockCmd ’F

DDLockStat us(locked)

gt
|
PDStams{Locked)u H]

T
| Locﬁ‘()md
L

‘ TrunkStat]ss(Locked)

RequestD

SetSecurity Alarm(Armed) ‘J ‘
‘ "D

| | |
‘ ‘ LightsfFlas NLockAckno\MeLge)
I I I
| | |

Fig. 3. Sequence diagram for lock acknowledgement

This diagram appears to be straightforward, but the design presented here over-
looks an important condition. If the vehicle's occupants leave one of the windows
down when exiting the vehicle, the central locking mechanism may or may not ac-
knowledge the vehicle as "locked" depending on how the door module, which typi-
cally contains both the lock and window controllers, is specified. The door module
lock controller might refrain from returning a "locked" status if a window is open, but
this could cause problems in other situations where it is acceptable for the window to
be open when the door is locked (drive away lock, for example). Additionally, the so-
lution does not work if for some reason the window control and door lock control are
allocated to different modules. The problem of managing issues such as this becomes
intractable when one tries to reuse modules across vehicle models, because the
semantics of the LockStatus message depend on the module that implements it. In
order to keep the acknowledgement policy where it belongs — in the central locking
object — the window closure status needs to be available as a service that can be used
by the central locking facility in the same way that it uses the door ajar status.

Automotive Infotronics: An Emerging Domain for Service-Based Architecture 5

Development of Automotive Electronics

Before we proceed to a discussion of service-based architectures in the context of
automotive infotronics, a brief overview of the progress of automotive electrical, elec-
tronics and software technologies will help place this paper in context. The history of
these technologies placed against a 100-year timeline, as illustrated in Fig. 4, reveals
some noteworthy trends: Every few decades there is a major disruptive technology
enabler: First there were electrical technologies, for instance, the magneto ignition
system in the year 1902 [1]. Then came the era of pre-semiconductor (vacuum tube)
electronics: There were wireless phones in police fleets in the 1920s [2] and radios
[3] in the 1930s. With the advent of semiconductors in the 1950s and 1960s came
compact radios. In the late 1970s, the era of programmable semiconductors began,
resulting in the early electronics engine control modules. This was in many respects
the beginning of in-vehicle software. Software of course played a relatively modest
role, delivering one major function --- such as being able to control the engine elec-
tronically and one associated feature, such as being able to control tailpipe emissions
to desired (or government mandated) levels. The next major step was the development
of network communication systems in vehicles [4]. This coupled with the advent of
complex "radios" with AM/FM/CD/DVD and navigation features began to demon-
strate the unquestionable increase in software enabled functions and associated fea-
tures in automobiles. The need for model based software and system engineering be-
gan to take root in the mid 1990s and today software modeling and associated "auto-
code" generation is globally accepted within the automotive industry [5]. Over the
past thirty years the role of software in automobiles has shifted from a minimal pres-
ence in a silicon-defined module to a major controlling presence in most electrical &
electronic systems. Whether it is today's powertrain and engine con troll modules or
navigation systems, software and associated modeling impacts the look, touch and
feel of automobiles. What about the future of automobile software? In many re-
spects, examining today's technologies in the fast-cycle industries —the consumer
electronics, the computing and telecommunications industry sectors, may reveal
trends in automobile-software. As we look to the future, it appears that software will
begin to increasingly define the functionality of features and functions. Today we are
witnessing the emergence of software-defined radios [6] and it is not inconceivable
that in the future, may of today's silicon-defined functions in the automobile will in-
deed be replaced by software-defined functions with silicon playing a secondary role
to software (see Fig. 5). Concurrent with increasing software-defined functionality,
one other potentially disruptive technology is reconfigurable silicon [7] --- a technol-
ogy that is just emerging.

6 E.C. Nelson, K. V. Prasad

Automotive Services &
Software-Defined
Systems Era

Automotive Wireless ‘#’

Communication / MNetworking
ore-wa - o,
I o
<s 5%

MNetworked Electronic
Wehicle Confrol

Automotive Multiplexing,
Metworking Era

'

%3
Automotive Programmable
Semiconductor Era

! y

Automotive Electronics

~WacLum Tube Era ALtomotive Electronics — Semiconductor Era (;
Automotive Electrical Era "
A A A A A A
1900 1925 1950 1975 2000 2025

Fig. 4. The Progress of Electrical, Electronics and Software Technologies

As indicated in Fig. 5, the electronics era formed the foundation for the mechatron-
ics [8] era. With the rapid growth in information technologies and associated frame-
works for design and development of information systems the automotive industry
recognized [9] the need for an integrated approach toward combining information
(technologies/systems) with mechatronics and electronic systems --- where appropri-
ate for the functions and features being supported. The result was the creation of the
field of automotive infotronics. Simply stated, infotronics systems are designed and
developed on the premise that the associated subsystems and possibly components are
inter-connected more on the basis of the information they share and less on the fact
that can exchange "electrons." Since sharing information plays a defining role in in-
fotronics technology and system design, the adoption of service-based methodologies
to structure information exchange becomes a very attractive proposition. Further,
with the increasing complexity of software within automobiles (Fig. 5) the need for
service-based specifications of functions and features is being recognized. As a case
in point, the Open Services Gateway Initiative or OSGi [10] framework has been
adopted by the Automotive Multimedia Interface Collaboration or AMI-C [11].

Automotive Infotronics: An Emerging Domain for Service-Based Architecture 7

‘ — Feature; Example: Location on a Mawvigation Map

o — Function; Example: Location Coordinates (Latitude, Longitude).

Silicon-defined, Silicon-defined, mult-
single-flnction, function, multi-feature Service - defined, multi-function,
single-feature automotive software. multi-feature automative software
adtomotive software, on reconfgurabi - silicon.
‘ ‘ ‘ ? Service Definitions _,ﬁ_ ’ ’ ‘ ‘ g___
f D\J’ 7 of Features ——= =
i
. Service Definitions “g‘ffgaaa‘ff.ﬂaa%"
T \ A of Functions ——= e
Software Software
— Software
|j: Presence Influence Dominance @
FixedSilicon — FixedtSilicon Reconfigurable EI:
(a)) -Silicon ©
Aultomotve Automotive
Mechatronics Era Infotronics Era
Begins Begins
:J; YV k4 &
’ A A Timeline = A ’;
1975 2025

Fig. 5. Automotive Infotronics and the Evolution of Service-Defined Features

To illustrate the need for service-based definitions of infotronics systems, consider
a modern luxury automobile with a navigation system and an embedded phone with a
keypad built into the instrument panel. Such vehicles may also have a remote control
device (much like a television set "remote") that may be used to enter destination di-
rections into the navigation system and select map-viewing preferences all via a dedi-
cated IrDA link. What if one stepped into such a vehicle with a personal digital assis-
tant (PDA) that also had an IrDA transceiver? Could one "beam" a telephone number
to the embedded phone via the IrDA transceiver in the navigation system? The an-
swer today is very likely a "no." The likely reason is that the IrDA transceiver in the
navigation system provides a dedicated function to the navigation system, as opposed
to providing a service to the vehicle as a whole. Had the IrDA transceiver been de-
fined by a service, say a communications service, this would have been published
within an inter-networked vehicle system (Fig. 1) and if the vehicle policy (also ex-
pressed as a service) permitted it, one's PDA could have discovered the communica-
tions service and requested its use to transfer a phone number to the embedded phone.
This would save the consumer the labor and frustration of having to enter a phone
number, using the keypad on the instrument panel, when the consumer readily had the
phone number on a PDA.

8 E.C. Nelson, K. V. Prasad

Current Practice

Current practice in automotive embedded systems is to build the application software
for a module directly on the low-level infrastructure code — i.e., the RTOS or sched-
uler and the hardware drivers. In the simplest cases, the application code may be
mixed in with the hardware drivers. The process that is used to design the module
software is a traditional top down structured approach to system engineering that is
sometimes referred to as the V model [12]. In this process requirements are first de-
veloped for the vehicle as a whole, and these requirements are then used do develop
the requirements for the systems that make up the vehicle which in turn are cascaded
to subsystems and on down to individual modules. A requirements tracking took
known as CaliberRM [13] is used to perform this cascading process. In the case of our
central locking example, the requirement that the module not return a “door latched”
indication unless the window was also closed would be generated at the level of the
subsystem that included both the door module and the central locking module.

The problem with this approach is that it does not cater for reuse of the software in
modules that will be used across different vehicle lines because it does not separate
generic requirements from requirements that are specific to a particular vehicle. The
low-level infrastructure code can usually be reused between different vehicles, but the
application code often has to be rewritten. Recently there has been an attempt to miti-
gate this problem by standardizing the messages that are passed between modules on
a given network. Automotive message sets were initially developed on an ad hoc ba-
sis, but recently automakers have tried to manage the message sets both internally and
between themselves. This is usually done by defining message sets for a specific net-
work technology, such as CAN or MOST. Currently, these message sets are moving
towards network independent domain specific protocols. For example, in the area of
information and entertainment subsystems, the Automotive Multimedia Interface Col-
laboration (AMI-C), an organization of eight major automakers, has released a speci-
fication for a network independent Common Message Set [14].

A service based approach

The problem that arose in the central locking example is an illustration of the quan-
dary of embedded software. It must be specific to the underlying hardware and at the
same time incorporate the requirements of the overall system. As long there is a sim-
ple one to one mapping between the system and the hardware components that it con-
tains, this presents no problem. However as soon as one wants to reuse modules
across a variety of systems it becomes increasingly difficult to design module applica-
tion software that will meet the requirements of all the environments in which it will
be used.

In the internet domain, the corresponding dichotomy has been addressed by creat-
ing a middleware layer of software based on languages such as Java and XML. Ap-
proaches such as Jini and WSDL define this middleware layer in terms of services,
providing frameworks wherein applications can discover and use services independ-
ently of the platform that they are implemented on.

10

Automotive Infotronics: An Emerging Domain for Service-Based Architecture 9

This same approach has been taken in the embedded domain by the Open Services
Gateway Initiative (OSGi), which has defined a framework for discovering and using
services on a local area network, such as a home network, that is connected to a wide
area network through an open gateway [10]. The OSGi framework uses Java to de-
fine services in a platform independent way. The OSGi specification has been used as
the basis for a software platform specification by AMI-C, which has recently released
a set of specifications for a vehicle services interface, a human machine interface, and
off-board navigation services, as well as other core services that are required to man-
age software on a vehicle multimedia or telematics platform [15].

The vehicle services interface specification defines interfaces to over 80 services
that may be provided by devices on the vehicle's powertrain, body and safety net-
works to applications running on a multimedia platform [16]. Table 1 lists some of the

vehicle services that are addressed by the AMI-C specification.

Table 1. Vehicle services defined by the AMI-C vehicle service interface specification

Brake Status
Anti-Lock Brake Status
Cruise Control Status
Door Lock Status

Engine Running
Exterior Lights

Hazard Signal Status
Parking Lights

Seat Belt

Sun / Moon Roof Status
Tire Inflation Status
Turn Signal Status
Warning Light Status

Wiper Status

System State

Antenna Status and Con-
trol

Engine Oil Pressure

Airbag Status
Convertible Top Status
Current Gear

Door Ajar / Trunk Open

Engine Performance
Status

Engine Start Enable
Status
Fog Lamps

Ignition Key Status

Park Brake Status
PRNDL Position

Seat Occupied Status
Traction Control Status
Variable Suspension
Status

Window Closure Status
Power Mode Management
Time / Date

Trigger Security Alert

Engine Speed

Vehicle Speed

Wheel Speed

High Resolution Odome-
ter

Vehicle Location

Engine Coolant Tempera-
ture

Noise Level

Engine Oil Temperature
Odometer Reading
Engine Oil Level

Engine Coolant Level
Odometer

Tire Pressure

Vehicle Location (GPS)
Vehicle Identification
Vehicle configuration

Like the common message set, the AMI-C software interface specifications are in-
tended to define a set of services that are independent of platform, network and the
vehicle in which they are implemented.

What is a service?

Since the specifications defined above are based strongly on the notion of services, it
is appropriate to ask what is meant by a service in this context.

11

10 E. C. Nelson, K. V. Prasad

A service has a well-defined interface by means of which specific information can
be obtained or certain actions performed. The service may consist of a single interac-
tion between the service provider and the user of the service, or it may consist of an
ongoing sequence of interactions over a specific period of time. The essential char-
acteristic of a service is that it describes the functionality that is provided in a rela-
tively straightforward and simple way.

Services may take several forms depending on the type of interactions that are sup-
ported. The simplest type is just a request for the service to perform some action, or to
return information. For example, a vehicle audio service could return the current vol-
ume and set the volume on request. Another type of service is a subscription, where
the client requests a periodic update of some information. This type of service would
be used to provide vehicle speed, for example. A third type of service is one that pro-
vides notification of some event, for example, that the low fuel warning light had
triggered or that the airbags had deployed. In each case, the user of the service must
first make a request for the information or action that it requires. The difference is in
when and how the information is returned. In some cases, more than one method
would be available from the same service. For example, the door lock status service
could provide both the current state of the lock for that door and a notification when
the door lock status changed.

In the case of information that is updated periodically, there is a choice as to how
the period is specified. The simplest case from the implementation point of view is to
specify a single fixed update rate. Since vehicle signals are sampled at periods that
may depend on the hardware implementation, this simplifies the service considerably.
At the other extreme, the service could allow the client to specify the update rate to
suit its needs. The information being returned is often not a continuously varying sig-
nal, but a stepwise constant signal whose rate of change is determined by the underly-
ing sampling frequency of the hardware implementation of the sensor, making the lat-
ter alternative difficult to implement accurately. On the other hand, a single fixed
update rate may lead to significant overhead in a process that only needs the informa-
tion at a very low frequency. A common compromise is for the service to specify the
minimum period, and allow the client to request updates on some fixed set of multi-
ples of that frequency. If the base period is determined by the implementation, then
the service must provide a means for the client to discover this frequency.

A related issue arises with respect to the actual content of the information returned
by a service, even in response to a simple request. Different implementations of a ser-
vice may provide different information about the same physical quantity. For exam-
ple, some vehicles have an oil pressure sensor that returns the oil pressure as a con-
tinuous variable. Other vehicles have a simpler sensor that only provides a binary
low/normal pressure reading. The question is how to specify an oil pressure service
across both classes of vehicle. For most of the use cases envisioned for this service,
the binary value would suffice. However, a sophisticated diagnostic application might
monitor the continuously variable oil pressure to extract important prognostic infor-
mation about the vehicle's powertrain. The answer could be to specify two separate
services, or it could be to specify a service that can inform the client as to which type
of information it provides.

The issue of matching services to requirements can be resolved by specifying
properties for the service. The OSGi specification, for example allows a service to

12

Automotive Infotronics: An Emerging Domain for Service-Based Architecture 11

specify a set of properties when it is registered with the framework. Properties, in this
context, are just name value pairs. When an application requests to be connected with
a service, the service properties are used to find the best match among the versions of
the service known to the framework. For this mechanism to be useful, the service
providers and users must agree on a common set of property names as well as the se-
mantics for those properties. Some service properties can be embodied in the types of
the values returned by the service and the types of the inputs to the service, i.e., in its
interface. However, the most interesting properties are more subtle and require do-
main specific definitions as in the case of the door lock status example, where one
wants to know whether a returned value of “locked” implies that the windows are
closed or not.

Defining an adequate set of domain specific service properties would allow one to
address interesting questions, such as whether a given set of services satisfies higher-
level requirements. For example, whether the set of services shown in Fig. 2 is ade-
quate to define the lock acknowledge function or whether a window status service is
also needed.

Service based architectures

In order to gain significant advantage from recasting the functionality of vehicle elec-
tronics components as services, a comprehensive framework for managing services
must be defined and implemented within the vehicle domain. At the specification
level this involves defining the interfaces for all of the services that will be available
on the vehicle. In the automotive context, this is the responsibility of the vehicle
manufacturer. The implementation of the services is then the responsibility of compo-
nent suppliers. The problems that face the vehicle manufacturer are ensuring that the
service specifications are consistent and that they are complete with respect to all of
the technologies and features that might be included on the vehicle at a given point of
time. This includes ensuring that a sufficiently rich set of service properties are de-
fined to distinguish between versions of a service supporting all of the different levels
of hardware functionality that may be present on different vehicle lines.

From the service implementer’s point of view, the main problem is ensuring that
the implementation of a service or set of services conforms to the specification gener-
ated by the vehicle manufacturer. This problem requires both a sufficiently formal
specification language to capture the entire service requirement and a set of tools that
help with the validation of an implementation against that specification.

Conclusions

Service based software architectures have the potential to enable the creation of func-
tionality that depends on networks of distributed embedded devices. Creating such
functionality directly in application software is challenging, because the applications
have to be modified whenever there is a change in the underlying hardware, or even
in the configuration of the hardware. This leads to the proliferation of different ver-

13

12 E. C. Nelson, K. V. Prasad

sions of the application to support different hardware configurations. The creation of
a middleware layer of software consisting of a set of services can help with this in a
number of ways.

The advantages of a service based architecture depend on the creation of tools for
the validation of service specifications, specifically tools for checking the consistency
and completeness of a set of services, for validating implementations of services
against their specifications and for validating network message sets against the service
architecture. Addressing these needs will enable the creation of distributed electronic
systems with greater functionality and reliability.

References

L.

10.

11.

12.

13.
14.

15.

16.

W. Gansert, T. Bertram, "Vehicle Electrical System and Circuit Diagrams," in Auto-
motive Electrics and Electronics, 3™ Edition in English, Robert Bosch GmbH. Editor
Horst Bauer, (1999) 4-5.

http://www.ieee.org/ organizations/history_center/milestones_photos/one_way.html
Y. Hirota, "Automotive Electronics and Information Technology: A Future Perspec-
tive, " JSAE, Vol. 51, No. 1, (1997) 22-28.

N. Allison, "Rethinking Multiplex," in Multiplexing and Networking, Editor, R. K.
Jurgen, Society of Automotive Engineers, (1999) 3-11.

Paul Hansen “Software Tools Heading Mainstream” Hansen Report on Automotive
Electronics. July/August (2003)

V. Bose, M. Ismert, M. Welborn, J. Guttag, "Virtual Radios," IEEE/JSAC, Special Is-
sue on Software Radios, April (1999).

Michael Santarini, "ASIPs: Get ready for reconfigurable silicon," EE Times, Novem-
ber 20, 2000.

Lawrence J. Kamm, Understanding Electro-Mechanical Engineering: An Introduction
to Mechatronics. Wiley-IEEE Press. (1995)

Vehicle Infotronics: Enabling the Integrated Mobility Experience, Proceedings of the
1998 International Congress on Transportation Electronics, Convergence 1998, Soci-
ety of Automotive Engineers, October (1998).

Open Services Gateway Initiative: OSGi Service Platform Release 2 10S Press Am-
sterdam (2002)

A. Malhotra, "Enabling Technology's Promise --- Collaborative Development of
Common Requirements for Mobile Information and Entertainment Systems," Pro-
ceedings of the 2002 International Congress on Transportation Electronics, Conver-
gence 2002, Society of Automotive Engineers, October (2002)

T. Pixton, F.Laermann, T Bietz: Vehicle Concept and Development Strategy . In The
New Ford Focus, ATZ/MTZ Special Edition, Nov. (1999) 6-12
www.borland.com/caliber/

Automotive Multimedia Interface Collaboration: AMI-C Common Message Set,
www.ami-c.org/publicspecrelease.asp

Automotive Multimedia Interface Collaboration: AMI-C Software API Specifications
— Core APIs, www.ami-c.org/publicspecrelease.asp

Akatsuka, T., Nelson, E. AMI-C Vehicle Interface Specification. Proceedings of the
IEEE Intelligent Vehicles 2001 Symposium (2001)

14

Modelling Electronic Service Systems Using
UML*

James Skene!, Giacomo Piccinelli', and Mary Stearns?

! Dept. of Computer Science, University College London, Gower Street
London WCI1E 6BT, UK
{g.piccinelli, j.skene}@cs.ucl.ac.uk
2 2 HP Software & Solutions Operation, Pruneridge Avenue
Cupertino, CA 95014, USA
mary_stearns@hp.com

Abstract. This paper presents a profile for modelling systems of elec-
tronic services using UML. Electronic services encapsulate business ser-
vices, an organisational unit focused on delivering benefit to a consumer,
to enhance communication, coordination and information management.
Our profile is based on a formal, workflow-oriented description of elec-
tronic services that is abstracted from particular implementation tech-
nologies. Resulting models provide the basis for a formal analysis to verify
behavioural properties of services. The models can also relate services to
management components, including workflow managers and Electronic
Service Management Systems (ESMSs), a novel concept drawn from ex-
perience of HP Service Composer and DySCo (Dynamic Service Com-
poser), providing the starting point for integration and implementation
tasks. Their UML basis and platform-independent nature is consistent
with a Model-Driven Architecture (MDA) development strategy, appro-
priate to the challenge of developing electronic service systems using
heterogeneous technology, and incorporating legacy systems.

1 Introduction

The contribution of this paper is a UML profile for modelling systems of elec-
tronic services.

UML [16] is an object-oriented modelling language that has found broad
application in analysis and design for software systems. A profile is a package of
syntactic and semantic refinements for the language, which allows it to naturally
model domains of interest.

An electronic service is a set of metadata, communication interfaces, software
and hardware supporting a business service. A business service is a bundle of
coordinated business capabilities (the content of the service) associated with pro-
visioning mechanisms that establish the conditions under which clients, whether
external or internal to the business, can access the capabilities of the service.

* This research is partly funded through the EU project TAPAS (IST-2001-34069),
and the EU project EGSO (IST-2001-32409).

15

Business services encapsulated by electronic services benefit from additional
communication and provisioning channels, but further, they permit the auto-
mated coordination of capabilities, resources and information, both within and
between organisations. This gives rise to Electronic Service Systems (ESSs), in
which the services are integrated using auxiliary components such as workflow
engines for coordination, databases to store knowledge about the state of the en-
terprise, and Electronic Service Management Systems (ESMS),which we charac-
terise in this paper as combining these various capabilities to provide viewpoints
and control of the enterprise to management, citing experience of the HP Service
Composer and the DySCo (Dynamic Service Composer) research prototype.

The challenge on the business side is to adapt business infrastructure and
models to service-oriented principles. The challenge on the technical side is to
provide integration solutions that are accessible, comprehensive and beneficial.
This requires thorough understanding and active management of the relation-
ships between business capabilities and technical infrastructure. Such under-
standing and management can be achieved through modelling. This modelling
serves as a starting point for software implementation, integration and provision-
ing tasks, which must be applicable to electronic services realised using a variety
of technologies. The Model Driven Architecture (MDA) is a software develop-
ment strategy based on UML models that explicitly addresses the challenge of
integration of heterogeneous systems, and we therefore choose UML as a basis
for our modelling, to ensure compatibility with this approach.

Determining strategies for coordinating services can be difficult, due to com-
plex dependencies between services and the large number of possible states for
the enterprise, arising from the parallel evolution of multiple services. We asso-
ciate a formal model of behaviour based on workflows with our models of services,
providing the opportunity for analysis. This model also formalises our notions of
coordinated capabilities forming larger conceptual entities such as services, and
the flows of information resulting from service enactment. Finally, the formal
semantic provides a reference for implementation activities proceeding from our
models, giving developers the opportunity to assert that software components
act as required.

The remainder of this paper is structured as follows: In Section 2 we provide
a background with a discussion of electronic services (Section 2.1), and UML
and the MDA (Section 2.2); in Section 3 we present a meta-model describing
the domain of ESSs; in Section 4 we show the translation of the meta-model
into a UML profile; in Section 5 we discuss related work and then summarise in
Section 6.

2 Background

2.1 Electronic services

The notion of a ‘business service’ enables the management within an enterprise
of ‘capabilities’ to deliver some benefit to a consumer. The term ‘capability’

16

refers to the coordination of simpler tasks to achieve an end; the concept is
used to raise the level of abstraction when describing the way that a business
behaves. When describing business services, capabilities are divided into those
involved in ‘provisioning’ the service, and those providing the ‘content’ of the
service. The content of a service is the set of capabilities that deliver the benefit
of the service to the client. For example, the content of a freight service refers
to the capability of moving goods from one place to the other. Provisioning
refers to the business channel [6] between the provider and the consumer of a
service. In the example, provision covers selection, product offer, pricing, and
interaction processes that the freight company applies to its customers. Content
and provisioning are complementary aspects of a service. On the one side, the
provisioning logic depends on the capabilities that the provider can support.
On the other side, the capabilities made available to consumers depend on the
provisioning logic adopted by the provider. In the example, the option of delivery
tracking might be made available only to selected customers. The example is
based on previous research in the freight domain [12].

An electronic service is a business service with communication and coordi-
nation aspects implemented using computer systems [14].

Because business services require communication between the provider and
the consumer it is natural to provide interfaces to business services using commu-
nication technologies such as computer networks, and the software that supports
this such as middleware for distributed systems. Indeed, a service metaphor is
widely used in these technologies. Listeners on network interfaces are often re-
ferred to as services, and web-services communicate using Internet protocols
to provide services of all sorts. Such services are closely analogous to business
services, even to the extent of exhibiting a separation between provisioning ca-
pabilities in the form of meta-data interfaces, reflection and directories, and the
back-end logic implementing the content of the service. Web-services conform
to the model further, by including business terms in meta-data [24], enabling a
market in services.

Middleware services and computing resources also provide the opportunity
to implement new business services with a highly automated content, and this is
an expected benefit of the electronic service model. However, despite the simi-
larities, our notion of electronic services should not be confused with middleware
services. Services must also be coordinated: Internally, to marshal the involved
capabilities and resources and establish the relationship between content and
provisioning; and externally, to manage the interaction between the service and
its clients and environment. This coordination requires a view of the behaviour
of a service. We therefore introduce an operational semantic for capabilities,
presented in Section 3.2. This semantic is broadly compatible with workflow
languages, suggesting that services could be both coordinated and enacted by
workflow engines.

Our semantic also describes abstractly the effect that activities have on the
information in their environment, for example the known locations of vehicles,
or statistics such as the total revenue for a service. Such information can have

17

a role in coordinating capabilities, and may be maintained and leveraged using
databases or other accounting mechanisms.

There is also a need to manage the resources required by a service, which
may be the role of an Enterprise Resource Planning (ERP) application. Gen-
erally, if electronic services are in place there will be the need and opportunity
to integrate them using a technical infrastructure. We introduce the notion of
an Electronic Service Management System (ESMS), informally defined as an
application that includes coordination, information and resource management
capabilities, providing business-oriented viewpoints and control over the services
that it manages.

IT technology trends and the service model for business provide the con-
text for electronic services. An enterprise adopting an electronic service strat-
egy would structure its business as services, provide interfaces to those services
using middleware technologies, coordinate and automate the services from a
workflow-oriented perspective and implement a technological infrastructure to
take advantage of the coordination and communication opportunities that are
the key benefit of the electronic service model.

2.2 UML and the model-driven architecture

Businesses adopting an electronic service strategy will be faced with integration
and implementation challenges. Modelling systems of electronic services is a vital
step towards meeting a number of these. When implementing a new electronic
service, or adapting an existing business service to an electronic service it is nec-
essary to understand the intended environment of the service, and its interaction
with other services and management systems. Similarly, when introducing new
management components, it is necessary to have a clear understanding of the
services with which it will interact.

The Unified Modelling Language (UML) is an object-oriented graphical lan-
guage that has found wide applicability in analysis and design for software en-
gineering. In this paper we provide a profile for UML to allow the modelling of
ESSs. Profiles are an extension mechanisms whereby the innate notations pro-
vided by the UML can be augmented with labels, called ‘stereotypes’, tagged
values and constraints, which provide semantic refinement, annotations and syn-
tactic refinement respectively.

UML is based on a conceptual architecture that is divided into four meta-
modelling layers as shown in Figure 1. The lowest level is the data layer (MO0), in
which objects such as data-patterns in computer memory and other real-world
phenomena including people and things are supposed to reside. The elements
in the lowest level are classified by types in the UML models that analysts and
designers produce, which hence reside at the next meta-level (M1). UML model
elements are, in turn, objects of classes in the UML meta-model (M2). Attached
to these meta-classes are semantic descriptions and syntactic constraints that
control the meaning and applicability of the UML. The meta-model at level M2
is self-describing, so can also be regarded as residing in level M3 (and plausibly
all higher levels).

18

M3: Meta-meta-model UML meta-model

! ==
lgmmm == |
M2: Meta-models UML meta-model |<|_ _ 4 Virtual meta-
N

| _classes _ 1

ST-TEREE
1 N z
T N7
! /*\
4 ., S
M1: Models <<model>> <<profile>>
MyModel UMLEXxtension

MO: Real world D ﬁ O

S Y
'
[}

Fig. 1. Meta-modelling architecture of the UML

Profiles then, are a means of refining classes, semantics and syntactic con-
straints at the M2 level. Confusingly, profiles exist at the M1 level, so that they
can be denoted using UML and deployed by including them with any UML
model that requires their language extensions. They can therefore be regarded
as injecting ’virtual meta-classes’ into the UML meta-model (M2).

Before presenting our profile, we present a meta-model that is similar to the
UML meta-model, and can be considered to reside at level M2 in the conceptual
architecture. This is a common practice when defining profiles [5], as a new
meta-model describes the semantic domain directly, independently of the need
to refine the semantics of the UML meta-model. In section 4 the meta-model is
mapped onto profile elements, and existing elements in the UML meta-model.
Our meta-model therefore serves as both a reference model for our definition of
electronic services and to define the semantics of the profile.

The Model Driven Architecture (MDA) [17] is a modelling approach based
on UML. It recommends that development organisations separate models of their
business logic (Platform Independent Models - PIMs), from technical artifacts,
such as design models (Platform Specific Models - PSMs) and source code. The
benefit is to insulate organisations from the cost of re-deploying software services
as architectural infrastructures change, particularly middleware standards. The
approach also supports the integration of heterogeneous and legacy software, and
for these reasons is extremely well suited to development tasks in an electronic
service environment. In the terminology of the MDA, the models produced using
our profile are Platform Independent Models (PIMs). UML can represent refine-
ment relationships between models, for example between a PIM and a PSM. Our
models can therefore be related to more detailed design models, supporting the
MDA approach when implementing or integrating electronic services.

In supporting an MDA approach our profile is similar and complementary
to other profiles including the standard Enterprise Distributed Object Comput-
ing (EDOC) profile [18], which can be used to represent enterprise computing
systems in a platform-neutral manner.

19

3 The ESS meta-model

The ESS meta-model is divided into two packages as shown in Figure 2. These
partition the elements pertaining to services from those which represent manage-
ment applications. The management component metamodel naturally depends
on concepts from the service metamodel. The following sections present these
metamodels in detail.

—

Services [&— — —| Management

Fig. 2. Subpackages within the ESS meta-model

3.1 The service meta-model

Figure 3 shows the part of the services meta-model related to the composition
of capabilities into services. The elements shown are now described:

Service An electronic service as described in Section 2.1. Services have any
number of provisioning capabilities, and a single top-level content capability
(the capability to deliver the service). Services can be composed of sub-
services, in which case the content capability coordinates the content of each
sub-service, and each sub-service must have a provisioning capability that
makes a service offer to a role in the coordinating content capability.

Capability A business capability described by a workflow. The behaviour of
capabilities is described formally in Section 3.2. Informally, a number of
roles perform actions and cooperate to complete some task. Capabilities
can be composed in a hierarchy. The workflow of a coordinating capability
constrains the order of tasks in the component capabilities.

CapabilityRole A capability role identifies the behaviour of a worker or re-
source in a coordinated task. Capability roles can be assigned to actual
business entities as discussed below.

InformationItem An identifier for a piece of information about an enterprise
that is relevant to a task. Some workflow actions require information as
a prerequisite and produce or process information as by-product of their
enactment.

Observation Observations give rise to new information from existing informa-
tion. This captures the idea that not all derived information is produced by
a particular action. When the condition of the observation is satisfied then
new information may be introduced by the observation expression.

Constraints defined over the meta-model further reinforce these informal se-
mantics. For example, capabilities may not coordinate themselves. Constraints
are expressed formally using OCL [16]:

20

Service

+name:String
+external:Boolean
+enabled:Boolean

subservice
0.
| provisioned 0.* | realised
* | provisioning 1 | content
Capability CapabilityRole
) 1 1.x)
+name:String +name:String
+workflow:String actor
0.*
components
0.* [consumer 0.* [0.* ?coordinator composition
producer
0..* | output 0..* | input
Informationltem 1 Observation
+name:String input dependent +condition:String
1.* +observation:String
output

Fig. 3. Capabilities view of the services meta-model

context Capability
def:
let allCoordinators = self.coordinator—union(
self.coordinator—-collect(c | c.allCoordinators))
inv:
not self.allCoordinators—exists(c | ¢ = self)

Complementary to the abstract view of services are models of the business
assets in an enterprise, and their assignment to capability roles to realise a
service. Figure 4 shows the meta-model classes supporting such models.

BusinessEntity A business entity is a person, resource or system that can fulfil
one or more roles in a capability.

ServiceOffer A service offer is made to a capability role (typically that of
the ‘customer’). That capability role must be associated with one of the
provisioning mechanisms of the service.

21

Service 1 1.+ Servicelmplementation BusinessEntity ITSystem

0.* 0.*
+name:String enacter +external:Boolean [<——
+external:Boolean +name:String
+enabled:Boolean
0.*
1 | CapabilityRole
1 0. ServiceOffer 0 o +name:String
0..* | provisioned +name:String customer
+enabled:Boolean

1.* | actor

1

0.* Capability
provisioning

+name:String
+workflow:String

Fig. 4. Implementation view of the services meta-model

ServiceImplementation Servicelmplementation captures the idea that busi-
ness assets can be assigned to capability roles in order to make a service
concrete. There is no explicit notion of service instance. However, if neces-
sary business assets can be grouped to show those relevant to a particular
scenario.

ITSystem An IT system is a computing system that can perform a role in a
capability. Electronic services are intended to provide integration and auto-
mated coordination. This class allows the identification of the components
providing these services, possibly as a prelude to an MDA-style development
activity. Section 3.3 provides refinements of this stereotype to identify likely
management applications.

Additional classes not shown in Figures 3 and 4 are now discussed:

Property and HasProperties Properties capture different types of meta-data
about capabilities. Such meta-information mainly refers to functional and
non-functional requirements for a capability. For example, a property for a
negotiation capability is to be usable only with a certain type of customers.
The following classes inherit from HasProperties to enable the attachment
of properties: BusinessEntity, CapabilityRole, Capability and Service. The
properties mechanism maps onto the tagged-value mechanism in UML in the
profile definition.

Group and Groupable Experience with the HP Service Composer revealed
the benefit of composing capabilities into loosely-grouped higher-level ag-

22

gregates called ‘clusters’, in which capabilities exhibited functional overlaps,
dependencies, mutual ownership or other subjective similarities. There is also
often the need to group services into related offerings or ‘service packs’. Fi-
nally, as stated above, a grouping mechanism addresses the lack of a concept
of service instance by allowing the association of business entities that ac-
tually cooperate (since more than one entity can enact a given service role).
Group and Groupable provide a single mechanism for hierarchical grouping.
The following elements inherit from Groupable, and hence may appear in
a Group: CapabilityRole, Capability, BusinessEntity, InformationItem, Ser-
vice and Group. Grouping is implemented by UML’s package mechanism in
the profile definition.

3.2 Formal semantics for the service meta-model

In this section we formalise notions of information and coordination for capabil-
ities, using the Structured Operational Semantics (SOS) style of [22], in which
inference rules define the structure of a Labelled Transition System (LTS) in-
tentionally. This definition contributes to the semantics of the profile by empha-
sising the definition of capabilities as coordinated activities whose behaviour is
known, and by providing a high level constraint on workflow descriptions taken
as values for the meta-attribute Capability.workflow. Our formalism is defined
independently of specific workflow languages by omitting base cases for our rules.
Instead, we assume that the workflow language employed allows us to make as-
sertions such as:

(XUl) =2 (xuo,d) (1)

Meaning that a specific, isolated capability, ¢, in a system where the current

information is represented by X U I, evolves to ¢’ by undertaking an action, «,

which effects some change, reflected by the transformation of the information I
to new information O.

Capabilities may evolve independently of each other, when not coordinated:

(Z,ci) == (X' ch)
(N Aer.ociier}) (X {ci.. . c ek })

(2)

Even when coordinated, capabilities may perform uncoordinated actions (A(c)
yields the set of actions that a process ¢ can undertake):

(Zyei) = (X)) adAle)
(X, cel{cr .. cioer}]) = (5 cel{cr... ¢ en}])

3)

Coordinated actions may occur only when the coordinating process permits,
and when all capabilities that can perform them are ready to do so simultane-
ously:

23

(Z,ce) == (T ety (Z,e) == (Zc) . (D, a) == (X)) ad chgFA(Cf)

(X, ce[{ci...c;y UF)) 5 (2 ch[{ch...c,y UF))

A capability may have multiple coordinators in the metamodel. The inter-
pretation of this is that the capability is a subcapability of its coordinator. It
is therefore replicated for each coordinator. Shared sub-capabilities are not syn-
chronized.

Note that an action may require certain information to be present and sat-
isfy some condition before the action can be performed. Hence, coordination
by shared memory is also possible for capabilities. Under the electronic service
model, provisioning and content capabilities are not explicitly coordinated, hence
this mechanism links these capabilities for a service. The provisioning capabilities
create conditions under which the content capabilities are enabled.

Information in the system may arise naturally from the occurrence of actions.
However, the progress of the system may depend on broader observations than
those made in the context of a particular action. Hence we enable the modelling
of observations that derive new information from that already present in the
system:

(XUILLIYANJo: I -0 €
(Yulruo,r)

()

We do not prescribe the language used to specify observations. OCL would
be a good candidate. The information prerequisites for the observation could
be captured by a boolean expression, and then let-clauses could introduce new
information. Note that it is possible to specify observations that lead to incon-
sistencies in the system information. Modellers should try to avoid this. One
strategy for dealing with this is to rule that if multiple values can be derived
for an information item then the value of the information item is not known.
However, in systems where action is preferable to inaction, this may not be safe.

For the purposes of assigning work the underlying workflow language must
also associate actions with roles, although this association is not required in this
discussion of coordination, as we assume that coordination is independent of the
entities that implement roles. That is, an entity will eventually be capable of
enacting all actions required of it during the evolution of the system.

The benefit of a formal semantic based on an LTS are in terms of simulation
and analysis. A tool such as LTSA [13] can provide scenario-based validation
of models. This can be used to assert safety conditions, fairness and liveness
conditions, and to ensure the absence of deadlocks (presumably arising from
capabilities failing to establish adequate preconditions for their successors). The
use of information for coordination complicates such models, and can increase

their state-space beyond feasibility. However, reasonable abstractions can usually
be found.

24

3.3 The management meta-model

The management meta-model shown in Figure 5 allows the identification of
common management components and their relationship to electronic services.
We have not included modelling functional or structural relationships between
management components as this is out of scope of our discussion of electronic
services. However, such modelling is necessary and is supported by the full ex-
pressive power of the UML, possibly augmented by other profiles such as the
EDOC profile.

ESS.Services.ITSystem

ESS.Services.Service
: +name:String
A +external:Boolean
ESMS 0.* 0.* +enabled:Boolean
manager managed
3
ESS.Services.BusinessEntity
ERPS
0.* 0-* | +external:Boolean
resource | +name:String
0.*
actor |a
WFMS 0..%
0.* 0..* | ESS.Services.Capability
0.* enacts .
coordinator +name.Smng.
0..* | +workflow:String
coordinated
|| Database e
0.+ 0. | ESS.Services.Informationltem
stores +name:String

Fig. 5. The management meta-model

ESMS An application offering a enterprise-oriented management view of an
electronic service environment. For example, the HP Service Composer [7],
or the DySCo research prototypes [21]. Other candidate technologies might
be an application service offering a middle-tier of business logic, with a web-
server providing the management interfaces.

WIMS A workflow management system, either embodying a capability (enact-
ment) or coordinating a number of subcapabilities. Examples of workflow

25

applications are IBM’s MQ-Series Workflow [8] and PeopleSoft’s [20] Peo-
pleTools and Integration Broker.

ERPS An Enterprise Resource Planning System, dedicating to coordinating
entities in the system, presumably making them available to fulfil capabil-
ity roles. We do not consider resource planning in this paper, although it
interacts at a functional level with coordination based on capabilities, and
future work may provide a combined modelling approach. Examples of ERP
systems are SAP’s mySAP [23] and Baan’s iBaan [1].

Database Most enterprises use databases to store information about the en-
terprise. Establishing a relationship between the (conceptual) information
items and the databases that store them allows a modeller to check whether
the information required by a business entity to fulfil a capability role is
available in its context. Popular databases are Oracle [19] and MySQL [15].

4 The ESS Profile

The following tables relate elements in the meta-model to profile elements and
elements in the UML meta-model.

All name attributes in the meta-models map to the name attribute of the
class element in the UML meta-model. All associations in the meta-model map to
associations in models. Stereotypes on AssociationEnds are used to disambiguate
associations where more than one exists between the same two meta-model ele-
ments. The meta-model constraints also have translations into constraints on the
profile elements, and additional constraints reflect the structure of the original
meta-model. For example, the ‘Fulfills’ stereotype can only be attached to an
association between a CapabilityRole and a BusinessEntity, and its service tag
must always be present:

package Foundation::Core
context Association
inv:
self.stereotype—exists(“Fulfills”) implies
self.connection.participant.stereotype—exists(“CapabilityRole”)

and

self.connection.participant.stereotype—exists(“BusinessEntity”)
and

self.tagged Value.type—exists(name = “service”)

5 Related work

The definition and characteristics of the ESS model derive substantially from the
experience of HP Service Composer. UML notation is used in the HPSC, with
a separation between platform-dependent and platform-independent models of
an electronic service. Workflow notation and technology is used to model and
manage the business logic of a service.

26

Meta-model element|Stereotype UML base class|Parent Tags
Service Service Class - external
enabled
Service.content content AssociationEnd |- -
Service.provisioning provisioning AssociationEnd |- -
Service.component component AssociationEnd |- -
Capability Capability Class -
Capability.input input AssociationEnd |- -
Capability.output output AssociationEnd |- -
CapabilityRole CapabilityRole |Class - -
Informationltem Informationltem|Class - -
Observation Observation Class - condition
observation
Observation.input input AssociationEnd |- -
Observation.output output AssociationEnd |- -
BusinessEntity BusinessEntity |Class - -
ServiceOffer ServiceOffer Class - enabled
Servicelmplementation |Fulfills Association — service
ITSystem ITSystem Class BusinessEntity|—
ESMS ESMS Class ITSystem -
WIMS WIMS Class ITSystem -
WIMS.actor wfactor AssociationEnd |- -
WIMS.enacts enacts Class - -
WIMS.coordinated coordinates Class - -
ERPS ERPS Class ITSystem -
Database Database Class ITSystem -
Table 1. Stereotypes in the ESS profile
Meta-model element Tag Stereotype |Type |Multiplicity
Service.external external Service Boolean|0..1
Service.enabled enabled Service Boolean|0..1
Capability.workflow workflow |Capability String [0..1
Observation.condition condition |Observation |String |1
Observation.observation observation|Observation |String |1
Servicelmplementation.service|service Fulfills Class |1
BusinessEntity.external external BusinessEntity|Boolean|0..1
ServiceOffer.enabled enabled ServiceOffefr |Boolean|0..1

Table 2. Tags in the ESS profile

The ESS model is also closely related to the DySCo (Dynamic Service Com-
poser) [21] research prototype. DySCo is the result of a two-year project involv-
ing University College London (UK), the University of St. Petersburg (Russia),
the University of Ferrara (Italy), the University of Hamburg (Germany), and

27

Hewlett-Packard (UK and USA). The objective of DySCo was the development
of a conceptual and technology framework for the dynamic composition of elec-
tronic services. While lacking direct support for UML, DySCo provides modelling
facilities for workflows and a homogeneous execution platform for an ESMS.

An electronic-services model is currently being used in the context of the
EGSO (European Grid for Solar Observations) [2] project. The model-driven
approach to the architecture of the service provision part of the EGSO grid is
expected to address the need to integrate services based on different provision
models and execution platforms. Each service provider in the EGSO grid will be
equipped with an ESMS. In addition, a specific ESMS federates and manages
the service provisioning capabilities of the overall EGSO grid.

The Enterprise Collaboration Architecture (ECA) defined in the OMGs EDOC
specification [18] provides a comprehensive framework for the modelling of en-
terprise systems. The ESS profile introduces enterprise system components that
can be designed based on the ECA, and provides a means to model features pe-
culiar to electronic services that are not explicitly addressed by the ECA. Similar
considerations apply for the Reference Model for Open Distributed Processing
(RM-ODP) [9], which is also closely related with the ECA.

Most technology and conceptual frameworks for electronic services [11] focus
on web-service-based automation of the front-end of individual services. Web
Services [3, 4] constitute the reference model for access to and basic orchestration
of business resources. We envision Web Services playing a fundamental role in the
realisation of electronic services. Still, a more comprehensive approach is needed
for the realisation and operation of business-level services. An example of the
issues involved in the realisation of business-level service is HiServs Business Port
[10]. FRESCO (Foundational Research on Service Composition) [22] provides an
example of second-generation framework for electronic service management. The
focus of FRESCO is on the provision aspects of services.

6 Conclusions

Electronic services provide the conceptual and technology framework for the ag-
gregation and coordination of business resources. The realisation and operation
of a service requires close integration between different systems. A model-driven
approach to development in an electronic-service environment helps tackle the
integration issues arising from heterogeneity and change.

In this paper, we present a means to model ESSs using UML, in a manner
compatible with the MDA approach. We apply concepts derived from the spe-
cific experience of HP Service Composer, but also closely related to concepts in
OMGs EDOC specification and the RM-ODP. The semantics of the models are
described with reference to a meta-model from which a UML profile is defined.
The behaviour of electronic services is described formally using operational se-
mantics, providing an additional benefit of our models as a foundation for formal
analyses.

28

References

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.
21.

22.

23.
24.

Baan. iBaan. http://www.baan.com/.

R. D. Bentley. EGSO — the european grid of solar observations. In European Solar
Physics Meeting, ESA Publication SP-506, 2002.

E. Cerami. Web Services Essentials. ORielly and Associates, 2002.

M. Clark et Al. Web Services Business Strategies and Architectures. Expert Press,
2002.

D. S. Frankel. Model Driven Architecture: Applying MDA to Enterprise Computing.
John Wiley and Sons, 2003.

B. Gibb and S. Damodaran. ebXML: Concepts and Application. John Wiley and
Sons, 2002.

Hewlett-Packard Company. HP Service Composer User Guide, 2002.

IBM. Websphere MQ Workflow. http://wuw-3.ibm.com/ software/
integration/ wmqwf/.

ISO/IEC, ITU-T. Open Distributed Processing — Reference Model — Part 2: Foun-
dations, ISO/IEC 10746-2, ITU-T Recommendation X.902.

R. Klueber and N. Kaltenmorgen. eServices to integrate ebusiness with ERP
systems — the case of HiServs business port. In Workshop on Infrastructures for
Dynamic Business-to-Business Service Outsourcing (CAISE-ISDO), 2000.

H. Kuno. Surveying the e-services technical landscape. In Workshop on Advance
Issues of E-Commerce and Web-Based Information Systems (WECWIS). IEEE
Press, 2000.

N. Linketscher and M. Child. Trust issues and user reactions to e-services and
e-marketplaces: A customer survey. In DEXA Workshop on e-Negotiation, 2001.
J. Magee and J. Kramer. Concurrency: State Models and Java Programs. John
Wiley and Sons, 1999.

A. Marton, G. Piccinelli, and C. Turfin. Service provision and composition in
virtual business communities. In IEEE-IRDS Workshop on Electronic Commerce,
Lausanne, Switzerland, 1999.

MySQL AB. MySQL Database. http://www.mysql.com/.

OMG document formal/2003-03-01. Unified Modelling Language (UML), version
1.5, January 2003.

OMG Document ormsc/01-07-01. Model Driven Architecture (MDA), July 2001.
OMG, document ptc/02-02-05. UML Profile for Enterprise Distributed Object
Computing Specification, May 2002.

Oracle. Oracle database products. http://www.oracle. com.

PeopleSoft. PeopleTools and Integration Broker. http://www.peoplesoft.com/.
G. Piccinelli and L. Mokrushin. Dynamic e-service composition in DySCo. In
Workshop on Distributed Dynamic Multiservice Architecture, IEEE ICDCS-21,
Phoenix, Arizona, USA, 2001.

G. Piccinelli, C. Zirpins, and W. Lamersdorf. The FRESCO framework: An
overview. In Symposium on Applications and the Internet (SAINT), IEEE-IPSJ,
2003.

SAP. mySAP. http://wuw.sap.com/.

UDDI.org. UDDI (Universal Description, Descovery and Integration)
Ezxecutive White Paper, November 2003. http://wuw.uddi.org/ pubs/
UDDI_Executive_White_Paper.pdf.

29

30

User Quality of Perception: Towardsa M odel for
Per sonalised Communication Services

ClaudiaMariaF.A. Ribeiro™, Nelson Souto Rosa', Paulo Roberto F.Cunha

* Universidade Federal de Pernambuco
Cidade Universitéria, Redfe-PE, Braal
? Universidade do Estado doRio Grande do Norte
Campus Universitario, Mossor6-RN, Brazl
{cnfar, nsr, prfc}@in. uf pe. br

Abstract. The emerging of the new generation applications like videoconfer-
ence and the increasing in the demand of QoS services has enforced the need of
new service models. As in the most new applicaions the user can perceve the
level of quality aserviceis provided, data communication services are airrently
evolving towards more personalised ones. A dired consequence of thistrend is
the necessity of explicit treament of the user quality of perception (known
QoP). Challenges in this evolution include the better understanding of “how”
users perceive QoS and “how” the perception is adually redised by underlying
QoS mechanisms. We present a formal architecure, namely ESCHER that im-
plements a QoP model for QoS services. The QoP model focus the predse
spedfication and mapping of user QoS reguirements into QoS parameters. The
Z notation is used to formalise the ESCHER elements and their operations

1. Introduction

The emerging d new generation appli caions like videoconference and the increas-
ing in the demand of QoS services have motivated some key transformations in the
appli cation development process Meanwhile, thereis a dear necessity of new service
models[1].

Data communication services are currently evolving towards more personalised
ones, as the users can perceives the level of quality a service is provided [4]. In fact,
those services are beaoming as personalised as health care services, bank services and
traditional voice @mmunication services[2]. A dired consequence of thistrendisthe
necessty of explicit treament of the user quality of perception (known QoP).

Typicd users are not able to express their QoS requirements in quantitative terms,
as they are not concerned with details of implementation d QoS services. For in-
stance, they know neither what is the upper limit of tolerable padket delay nor jitter in
an IP telephony sesson. Moreover, they canna provide the traffic specification of
their application flow.

Actually, the user has a very subjective view of QoS and he/she usually defines
QoS constraints as a set of nonfunctional requirements (NFRS) such as performance

31

and cost. In order to understand, predsely specify and map user QoS spedfications
into quantitative network parameters, new capabili ties must be incorporated by QoS
medhanisms.

Despite the high abstraction level in which NFRs are commonly stated, there is a
rationale to treat with the NFRs defined by wsers. As resources are traditionally
scarce, the resource dlocation kased on the quality perceived by the user yields a
more dfective resource management. For example, avideo quality may be goodfor a
particular user, while its quality is not acceptable to athers. The optimisation of re-
source alocation embodes benefits to communication service providers, whilst the
differentiation d services motivated by the user quality of perception (QoP) leads to
money saving onbehalf of the users.

Quality of Serviceis akey factor for differentiating service offersin a mmpetitive
market. Some organisations of communication service providers such as Eurescom
and ETSI are aurrently trying to define service quality classes (QC model), which are
easily identified by users [5,12]. For instance, the class of communication service
named “gold” would be associated to a better quality of service and consequently
with ahigher cost than the dass “silver”.

The aforementioned initiative are a progresstowards the eff ective treagment of the
individual necessties of users, however two important issues are still open: it is nec-
essary abetter understanding d “how” the user perceves quality; and “how” the per-
ceptionisadualy redised into underlying quality of services elements.

We have addressd these mentioned isaues by conceiving a layered architedure
namely ESCHER?! that implements the QoP model for QoS services. The QoP model
focuses on bdah the precise specification and mapping d user QoS requirements into
QoS parameters. The precise spedfication and its benefits are obtained by the adop-
tion d the Z natation.

The definition d the ESCHER architecture has four main benefits. Firstly, it con-
tains a layer that enables the active participation d usersin the definition d QoS re-
quirements, preserving their subjedive notion d QoS. Second, the architedure makes
explicit the dements invalved in the specification and provisioning d personali sed
QoS servicesin dfferent levels. Thirdly, it servesto gude the implementation o per-
sonalised QoS services. Finaly, it fadlitates the mapping d high abstraction level
specification (defined by the user) into more concrete specificaion (treated by under-
lying QoS mechanisms) throughthe integration o different QoS views.

This paper is organised as follows. Section 2introduces the QC model. Section 3
presents the principle of the QoP model. Sections 4 and 5are dedicaed to ESCHER
QoP architecture fundamentals and formalisation, respectively. In Section 6is pre-
sented a modelling of videoconference gplication wsing ESCHER. Finadly, the last
section presents the conclusions and some directions for future work.

1 Maurits Cornelis Escher (1898-1972) is a graphic artist. He is most famous for his s-cdled
“impossible” structures which allow multiple perceptions

32

2. Related Work

There are some research activities on capturing d user Qo0S requirements
[10,11,13]. However, due to space limitation and mainly for relevance to ou
propasal, only a Quality Class Model (QC Model) named QUASI-model [5] is de-
scribed in this section.

In a typicd scenario of QUASI-model, the user reguires a certain Quality Class
(QC) for a specific Application Category (AC) to the Service Provider. Each combi-
nation (QC, AC) corresponds to a Network Performance Level (NPL).

Some examples of Application Categories include: ‘ Conversational’, ‘ Streaming’,
‘Interactive’ and ‘Background. The QUASI-model also defines the Quality Classes
(QCs) that are used as a QoS differentiator towards the user. Examples of Quality
Classes are ‘Gold' and‘Silver’.

An NPL is a small set of network performance parameters, e.g., delay, jitter and
loss. Each parameter has assigned a value range and the guarantee that each parame-
ter value belongs is in the range. This represents the goal of the network in order to
provide the desired Quality Classof a particular Application Category.

The QC model asaumes that the user has slected a QoS (offered by the network
provider) based on hgher perception. This fact implies that the network provider or
the application service provider offers a limited set of QoS profiles that the user can
chase. The selected QoS is mapped into attributes applicable to the QoS mechanism
that realises the requested QoS. When the QoS mechanism has accomplished the se-
leded QoS, the transmitter can send the ntent to the user.

Table 1. QC model example

AC1 AC2 AC3
Non-Red Time Non-Interadive Red Interadive Red
Time Time
Premium NPL 11 NPL 1, NPL13
Basic NPL,, NPL ,, NPL 3

A practicd QC Modd (see Table 1) contains two Quality Classs, namely Pre-
mium and Basic, and three Application Categories, namely interactive non-real-time,
non-interactive real time and interactive real-time. Combining the two QCs with the
three ACs results at most in six posshle data flows to be treated dfferently in the
network in order to preserve the performance requirements of the relative ser-
vices/applications.

Despite the simplicity, the main dsadvantage of QC Model refers to the categori-
sation of users. The different level of perception d each user is naot direct treated by
this model. Additionally, the st is a consequence of selected quality class and NPL
associated, not a constraint imposed by the user.

The QoP Model, described in next Sedion, presents a service model to solve the
guestions above mentioned, by considering the explicit treatment of user quality of
perception. It serves as abasis of QoS management service implemented by ESCHER
architecture proposal.

33

3. The QoP M odel

The QoP Model considers the necessty of precisely expressng QoS requirements
at user level, the necessty of mapping QoS requirements into QoS parameters of un-
derlying QoS mechanisms and the need of guaranteeing the required QoS level. Some
basic principles are nsidered by QoP model:

» Theuser can require different level of quality for multimedia services;

* The QoS provided is perceived by the user by considering personal characteristics;

* The user satisfaction level is represented by the trade-off between nonfunctional
requirements like QoS and cost;

* The QoS mapping process transates subjedive spedfication defined by the user
into QoS parameters used by underlying QoS mechanisms;

» Each QoS medhanism hasits own set of QoS parameters; and

e The QoS mapping is a bi-directiona process. from upper to lower layers at con-
figuration phase and in the oppasite direction at monitoring phese.

Toredise dorementioned principles, in QoP Model the “ user layer” is proposed as
the most abstract layer instead the traditiona “application layer”. In traditiona ap-
proach, the needs of the users are dealt in an implicit manner by the application. In a
personalised service, the user has the oppatunity of defining the level of desired
quality and the upper limit for the cost. The perception o QoS is a function of per-
sonal characteristics of each user.

Anather difference between traditional approach and QoP Model is the way the
user satisfaction level is considered. In QoP Model the user satisfaction level is repre-
sented by the trade-off between non-functional requirements like QoS and cost.

A key feature of QoP Modd isthe separation o concernsin the requirement speci-
fication. By adopting this principle, bath the specification o nonfunctional require-
ments (including QoS requirements) and functional requirements of a given applica-
tion, can be obtained in a separate manner. It allows legacy applications to use QoS
services without any change in its code. In the proposed QoP architecture described
in Section 4, the middeware layer that serves as an architectural element for integrat-
ing requirement specifications [8,9] has this characteristic.

It isimportant to ndice that each QoS mechanism has its own set of QoS parame-
ters and the QoS mapping hes to consider this asped [7]. In QoP Mode the QoS
medhanism are represented in an abstract way by an architectural layer. This feature
alowstheintroduction d new mechanisms.

Finaly, the QoP Model considers two pheses for QoS management service: con-
figuration and monitoring. The first one includes QoS requirements ecification,
QoS mapping and QoS negoatiation for resource all ocation. The second ore represents
the renegatiation plese when environmental changes affed the level of QoS pro-
vided. The QoS mapping is dructured as bi-directional process from upper to lower
layers at configuration phase and in the oppgsite direction at monitoring plese.

34

4. The ESCHER QOoP Architecture

Figure 1 illustrates the ESCHER layers and the relationships between QoS
abstractions of each layer.

<»

L Level

ApplicationL ayer| g

puiddew sod umoq
puiddew sod dn

QoS M echanismL ayer) v':'

Fig. 1. Components of the ESCHER QoP Architedure

Each layer represents a particular entity together with its respective view of QoS.
In the User Layer, QoS requirements consist of nonfunctiona requirements (NFR)
their associated constraint level and the relationship of priorities between them. In the
Application Layer, a set of QoS attributes guch as “frame rate” and “resolution” real-
izes NFRs defined at User Layer by considering bah the caegory and type of appli-
cation.

The third layer represents the QoS middleware view, a key architectural element
for the “transparent” suppat of QoS. At this layer, QoS requirements are defined by
QoS characteristics such as delay, jitter and loss Finaly, the lower layer is the QoS
Mechanism Layer. This layer represents QoS mechanisms such as IntServ, DiffServ
and ATM. Each QoS mechanism has their own QoS information represented by QoS
parameters.

4.1 ESCHER Elements

There are two basic dements in ESCHER: layers and relationships between ab-
stractions of each layer. The layers previoudy presented represent different QoS
views (user, applicaion, middleware and QoS mechanism). Each layer has its own
abstraction to specify QoS requirements.

35

The relationships are classified into direct and indirect. The first one relates di-
rectly two QoS abstractions. For instance, the direct relationship namely Realization
relates a specific NFR to the QoS attributes that realize it. The second one is com-
posed by at least two direct relationships. For instance, the relationship between NFR
and QoS characteristic is composed by Realization and Affect direct relationships. Re-
lationships serve as basis for the QoS mapping as they model constraints imposed on
mapping of user QoS requirements (NFR) into QoS parameters. They are detailed in
Section 5.1.

4.2 ESCHER Operations

The ESCHER operations are grouped into two phases: configuration and monitor-
ing. The first one is made up of the specification of user QoS requirements, the map-
ping of QoS requirement into QoS parameters and the negotiation for establishment
of the QoS contract. The second one is composed by the activities of monitoring con-
tracts, the reverse mapping to identify possible changes on agreed QoS level and the
adaptation process.

An important characteristic of ESCHER is the facility in specifying the QoS re-
quirements. The user basically defines the minimum set of requirements related to
constraints, priorities and kind of application. The mapping process is responsible for
trandating the user QoS requirements into QoS parameters treated by the QoS
mechanisms.

In the ESCHER, the QoS mapping is a bi-directional process, i.e., there is a down
QoS mapping, from upper to lower layers and another one named up QoS mapping,
in the opposite direction. Each mapping consists of the translation between QoS ab-
stractions, respecting the relationships between them.

The down QoS mapping is athree-step process that is executed during the configu-
ration phase. Each step is responsible for the trandlation between abstractions of two
layers, e.g., from the user layer to the application layer.

After the down QoS mapping, it is initiated the negotiation to allocate resources to
satisfy the required QoS. In the QoS Mechanism Layer, virtual resources represent an
abstraction of physical resources managed by specific underlying QoS mechanisms.

The monitoring phase begins with the evaluation of the QoS provided. If the
agreed QoS level is not respected, a reverse QoS mapping (up QoS Mapping) is trig-
gered in order to identify impacts over user QoS constraints. Instead quantitative pa-
rameters, this mapping takes care of qualitative aspects when changes justify a rene-
gotiation process.

Despite this systematic process, the user actualy decides whether a renegotiation
process is necessary or not. Individual quality of perception serves as basis to the user
decision. The user may be satisfied with a new trade-off between performance and
cost even if the QoS provided is different from the QoS initially defined.

36

5. Formalising the ESCHER QoP Ar chitecture

As mentioned before, the ESCHER architecture has been formalised in Z2. The
following points justify the adoption of the Z notation. Firstly, the emphasis of the
ESCHER architecture is on the QoS information contained in contracts. That infor-
mation is very complex, which demands a powerful notation for its definition. Sec-
ond, the operations have to preserve the consistency of the QoS information, which
can effectively be verified through the Z. Finally, the Z notation enables the formal
verification of properties of the architecture, e.g., it makes possible to check whether
user QoS requirements are actually realised into QoS parameters or not.

The Z specification is presented following a well-known convention: Z elements
are written in italic and Z components (schemas, variables and functions) are referred
to only by name.

According to the architectural components introduced in the sections 4.1 and 4.2,
the ESCHER architecture (ESCHER) is made up of two elements, namely layers
(Layers) and relationships (Relationships).

— ESCHER
Layers
Relationships

In order to simplify the comprehension, we divide the formal specification into
two parts: (1) QoS information, represented by state-schemas, and (2) QoS opera-
tions, specifically those related to the specification and the mapping process (opera-
tion-schemas). By the lack of space, only key schemas are detailed in the following.

5.1 ESCHER State Schemas

In ESCHER, each layer has its own abstraction to specify QoS requirements pre-
sented at the bottom of schema-hierarchy: non-functional requirements (NFR) in the
user layer (UserLayer), QoS attributes (QoSattr) in the application layer (Applica-
tionLayer), QoS characteristics (QoSchar) in the middleware layer (Middleware-
Layer) and QoS parameters (QoSparam) in the QoS mechanisms layer (QoSMecha-
nismLayer).

Each layer contains QoS specifications defined for its specific level. At user Layer,
the User QoS schema represents user QoS specification. In the ApplicationLayer the
constraints imposed by the application is defined by ApplicationQoS.

In order to facilitate the QoS mapping process, we adopt the strategy of aggregat-
ing QoS specifications into QoS documents. There are three QoS documents consid-
ered in the ESCHER architecture: abstract QoS specification (AbstractQoSspec), con-
crete QoS specification (ConcreteQoSspec) and QoS contract (ContractQoS).

2 ZIEVEStool was used to check the specification

37

In ESCHER, the middleware is resporsible for QoS management service. As QoS
mapping is a key task of QoS management service, the middeware layer integrates
abstract and concrete QoS specifications that are manipulated duing QoS mapping.
The QoS mechanism layer maintains the QoS contract.

In order to understand QoS information belongng to individual layers, it is nec-
essary to detail the basic elements UserQoS and ApplicationQoS schemas, as well as
QoS documents AbstractQoSspec, ConcreteQoSspec and ContractQoS schemas.

Fig. 2 depicts the ESCHER state schemas. At the top o schema-hierarchy is the
ESCHER schema, which is composed by Layers schema representing dfferent QoS
visions (user, application, middeware and QoS mechanism) and Relationships
schema.

ESCHER
R I
| |
Layers | ___ | Relationships
T
[I I |
UserLayer Application Middleware QoSM echanism
Layer Layer Layer
Abstract Concrete
QoSspec QoSspec CRlREE
]]
e i 1
|)
i
Application !
UserQoS QoS _1
I I
NFR QoSattr QoSchar QoSparam
direct 777 indirect

Fig. 2. ESCHER state-schemas

User QoS

The UserQoS schema is made up byfive variables: (1) idUser identifies the user;
(2) Qoonstraints defines the set of NFRs that represents QoS required by the user;
(3) QoSpriorities establishes more restrictive NFRs; (4) QoSperceived represents the
user quality of perception; and (5) SatisfactionLevel represents the satisfaction level
of the user, which isrelated to the QoS constraints defined.

The invariant of the UserQoS schema includes restrictions abou NFRs. If two
NFRs, namely nfr, and rir,, belong to the QoSpriorities then orly ore (nfr, or nfr,)
can be defined as priority or more restrictive. For instance, if “quality of audio” is
defined as more restrictive then “cost”, this constraint must be respeded in the defini-
tion of priorities. The satisfadion level of the user (SatisfactionLevel variable) is de-
fined as a set having the same structure as QoSconstraints variable, but semantically
different. The QoS constraints represent QoS desired, whilst the satisfaction level
represents the user quality of perception (QoP).

38

_ UserQoS
idUser: 2
QoSconstraints : (NFR —Level)
QoSpriorities : (NFR XNFR) --NFR
QoSperceived : (NFR--Level)
SatisfactionLevel : Level

vnfrl,nfr2:NFR| (nfr1,nfr2) edom QoSpriorities A
(nfr2,nfr1) edom QoSpriorities -
((QoSpriorities (nfr1,nfr2) = nfr1 AQoSpriorities (nfr2,nfrl) = nfrl) v
(QoSpriorities (nfr1,nfr2) = nfr2 AQoSpriorities (nfr2,nfr1) = nfr2)) A
(dom QoSperceived cdom QoSconstraints) A (ranQoSpriorities cdom QoSconstraints)

Application QoS

In the Application Layer, the ApplicationQoS schema represents constraints im-
posed by the application. It is compased by four variables: (1) idAppl identifies appli-
cation; (2) category identifies application category; (3) typeApplic identifies the type
of application; and (4) QoSconstraints represents constraints impased by the applica-
tion. Each QoS attribute defined in the QoSconstraints variable is associated with 3
values: “ided”, “upper” and “lower".

—ApplicationQoS
| idAppl:2

| category : Category

| typeApplic: ApplicType

QoSconstraints : QoSattr —+(Value xValue xValue)

Most architectural elements are diredly related (seeFig. 2) to athers.

Concrete QoS Specification

The mncrete QoS specification (ConcreteQoSspec) is an internal QoS document
used ony by the QoS mapping process
——ConcreteQoSspec.
| iduser:z
| idAppl: 2
| QosSMech: QuSMechanismiType
|

QoSchars: QoSchar —»(Value xValue xValue)
QoSparams: QoSparam —(Value xValue xValue)

This QoS document is dependent on a specific QoS mechanism instantiated to sup-
port QoS guarantees. Each QoS mechanism type has its own set of QoS parameters.
The ConcreteQoSspec schemais composed byfive variables: (1) idUser identifies the
user; (2) idAppl identifies the application; (3) QoSMech identifies the QoS
medanism used; (4) QoSchars is the set of QoS characteristics derived from the
mapping d QoS constraints into the abstract QoS specification (user and applica-
tion); and (5) QoSparams results from the mapping o QoSchars variable into a set of
QoS parameters (considering a specific QoS mechanism).

39

QoS Contract

The QoS contract (ContractQoS) represents the agreement established after nego-
tiation between the user, application and system. It is only valid when restrictions are
negotiated and there is the possibility of placing resources for attending the requested
services. The ContractQoS schemais made up five variables: (1) idUser identifies the
user; (2) idAppl identifies the application; (3) QoSrequired represents a set of agreed
QoS parameters and their respective values (ideal and boundaries); (4) QoSprovided
represents the quality actually provided by the system; and (5) virtual ResourcesAlloc
isaset of virtual resources allocated after negotiation.

ContractQoS

idUser: 2
idAppl: 2
QoSrequired: QoSparam —(Value xValue xValue)
QoSprovided: QoSparam —(Value xValue xValue)
virtual ResourcesAlloc: PVirtual Resource

Layers

As mentioned before, each layer halds QoS specificaion defined at specific level.
In the ESCHER architedure (see Fig. 2), the middleware layer represents an architec-
tural element for integrating the entire specification. The QoS mechanism layer is re-
sporsible for the QoS contracts.

Relationships
The relationships are key elements in the ESCHER architedure. The relationships

(Relationships) detail the dired relationships between QoS abstract elements. The

priority relationship spedfied inside the user QoS descriptionis an exception. Indeed,

it is the representation d individual user preferences. In order to dfferentiate rela-
tionships from others elements in the formal specification, we ald the “Rel” prefix.

There ae eight direct relationships:

1. RelSpecializedBy — it relates a generic NFR and a more specific one. For example,
“quality of presentation” is a generic NFR and “quality of video”, “quality of au-
dio” and“ quality of synchronization” are speciaizations of thefirst one.

2. RelCorflictConvergent — it relates two NFRs. This relationship is used to detect
conflicts: the system canna maintain the level of QoS agreel and environment
changes affect two or more NFRs. If the NFRs are wonvergent, there is no prob-
lem. In the @se of conflicting NFRs, the priorities are used to decide which NFR
is more restrictive.

3. RelRealization - it relates a specific NFR and QoS attributes that realizeit. For ex-
ample, “quality of video” isa NFR redized by QoS attributes. “Frame Rate”, “As-
pect Ratio” and “Resolution”. The QoS attributes values are associated to NFR
levels.

4. RelRelatedTo — it relates the kind o application and a specific NFR. For example,
an application like Vol P does not neel to carry throughNFR "quality of video".
Thus, if the user spedfies the generic NFR "quality of presentation” there will be
established only relationships between “quality of audio” and their attributes. The

40

RelatedTo relationship is useful to detect inconsistency or incompletenessin the
user QoS specification.

5. RelAffect — it relates QoS attributes and QoS charaderistics. This relationship al-
lows the detedion d the impacts of changes at QoS level provided by the system.
Itisused by QoS adaptation mechanisms.

6. RelClassifiedAs — it relates caegory and types of applications. In the QoS para-
digm, it isimportant to dfferentiate the ctegory of the gplications such as: inter-
active real-time and noninteractive real-time, interactive burst and asynchronots.
The ctegory clasdfies applications into more restrictive and more flexible ones.
This relationship turns QoS specification a more friendly process since the user
does not have knowledge about the ategory of the application, but only about the
type of the goplication (videoconference, distance alucation, etc).

7. RelRestriction — it relates category of application and QoS characteristics. Some
restrictive categories of applications usualy indicate threshold values to QoS char-
acteristics such asdelay, jitter and loss

8. RelQoSattrLevel — it define the values (ideal and boundries) associated to quality
levels. For example, the QoS attribute “resolution” has different values for “high”
and“low” quality levels.

5.2 ESCHER Operation Schemas

The formalization d ESCHER operations is described in the next two subsections.
The first one presents the configuration prese and the second ane wncentrates on the
monitoring phese.

5.2.1 Configuration Phase
Fig. 3 shows the activities that compose the mnfiguration phase. As mentioned be-
fore, an important characteristic of our model is the fadlity of the process of specifi-
cation. The user essentiall y defines the minimum set of requirements and the mapping
processtranslates them into underlying QoS parameters.
idUser?; idAppl?;

typeApplic?; AddQoS .
QoSconstraints? ey ,’/ Mgzpsigt?;l'o
QoSpriorities? v e
downQoS .
Mapring MappingTo
AN QoSchar
v AN
N\
. N
getVirtual » QqS_ \\ M appingTo
Resources Negotiation x| QoSparam
{778 function —= schema

Fig. 3. The QoS spedficdion in the cnfiguration phase and down QoS mapping.

41

AddQoSUser

The AddQoSUser schema specifies the process of the user QoS requirement defini-
tion. It is composed by five input variables: (1) idUser? identifies the user; (2)
idAppl? identifies the application; (3) typeApplic? identifies the kind of application;
(4) Qoconstraints is a set of constraints imposed by the user; and (5) QoSpriorities
identifies the NFRs considered more restrictive by the user. The category of the ap-
plication is modelled through the Rel ClassifiedAs relationship.

— AddQoSUser
AlLayers
=Relationships
idUser?: 2
idAppl?: Z
typeApplic?: ApplicType
QoSconstraints?: NFR — Level
QoSpriorities?: NFR x NFR -+ NFR

Ju: UserQoS; a: ApplicationQoS

| u.idUser = idUser? A u.QoSconstraints = QoSconstraints?
A U. QoSpriorities= QoSpriorities?
Aa.idAppl = idAppl? A a. typeApplic = typeApplic?
A a. category = RelClassifiedAs typeApplic?
A a.QoSconstraints = &

. Ug UserLayer A ag ApplicationLayer A UserLayer' = UserLayer U {u}
A ApplicationLayer' = ApplicationLayer U {a} A MiddewareLayer' = MiddewarelLayer
A QoSMecharismLayer' = QoSMecharismLayer

downQoSM apping

The down QoS mapping (downQoSMapping) is a three-step process composed by:
(2) the trandation of NFR into a set of QoS attributes (MappngToQoSdtr); (2) the
trandation of the set of QoS attributes into a set of QoS characteristics (MappngTo-
Qo&har); and (3) the trandation of the set of QoS characteristics into a set of QoS
parameters, by considering a specific QoS mechanism (MappngToQoSpaam). Each
mapping respects the relationships between QoS abstractions. A generic function
(getVirtua Resources) was defined to represent allocation of virtual resources.

QoSnegotiation

The process of QoS negotiation (QoSregatiation) is based on both the resulting
parameters of the down QoS mapping (maintained in the concreteQoSspec) and a
particular policy of admission control (the variable AdmissonPolicy), which is de-
fined in an abstract manner. This process automatically triggered during the configu-
ration phase. The alocation treats with virtual resources obtained through a specific
function. As we mentioned previously, the management of physical resources is out
of scope of our proposal. A generic function (getVirtualResources) has been defined
to represent alocation of virtual resources.

42

5.2.2 Monitoring Phase

The monitoring phase (Fig. 4) has a dynamic nature as it occurs at run-time. This
phase is composed by five specific activities: the MonitoringContract is executed by
protocols of lower level such as RSVP (ReSerVation Protocol); (2) the upQoSMap-
ping is areverse mapping that reflects the changes along the layers; (3) the User Satis-
factionLevel is used to get the level of satisfaction of the user; (4) the noAdaptation-
Process stops the renegotiation process; and (5) the AdaptationProcess starts a
renegotiation process.

noAdaptation Adaptation
Contract Process
user
Satisfaction
Level
userPerception? | gg0s upQoS
—————F Pocdved - Mapping
getQoS Monitoring
Provided | Contract

[schema

Fig. 4. The Monitoring phase and up QoS mapping

Additionaly, the monitoring phase uses some generic functions to abstract tasks
executed by underlying mechanisms. These generic functions are divided into two
kinds: external and internal. Either the users or the underlying mechanisms use the
first one. The second one is used by the ESCHER operations.

The purpose of monitoring contract activities is to get the QoS provided for the
system and to verify if contracts are being respected. If agreed values are not re-
spected, a reverse mapping (upQoSMapping) is triggered. It reflects the changes
along layers, from QoS Mechanism Layer to User Layer, and aims to evaluate the
impacts of changes in the level of QoS agreed over QoS constraints defined by the
user. Additionally, a generic external function (getQoSprovided) gets the level of
QoS provided. The difference between QoS required and QoS provided defined at
QoS contract is used to identify the user satisfaction level.

The adaptation process (AdaptationProcess) is specified by the conjunction of
AdaptationContract, downQoSMapping and QoShegotiation schemas. The process of
contract adaptation (AdaptationContract) tries to define a future adjustment of con-
straints, mapping and renegotiation for new resource allocation. It takes into account
the new level of QoS provided and the user satisfaction level. If more than one NFR
is affected and conflicting (e.g., Audio Quality and Cost), priorities defined by the
user are used to solve the conflict.

43

6. An Example: Videoconference

In order to illustrate our approach, we have modelled a videoconference application.
The main oljective of this example is to show how the QoS abstradions are related
and hav the mapping can be redlized. In Fig. 5, it is possble to observe the QoS
mapping processalong ESCHER layers.

UserLayer|

v

) [_nion]

} v 4 A ApplicationL ayer;

((4akHz] [16bits | ((stereo] [Pcm]

MiddlewarelL ayer

(<soms] ((<ssms] [<1»)

QoS M echanismLayer|

Fig. 5. Modelling of Videoconference Application

In this example, the user defines a general NFR called “quality of presentation”
(QofP). The relationship RelSpecializedBy is used to trandate this NFR into more
specific ones to represent quality of audio (QofAudio), quality of video (QofVideo)
and quality of synchronization (QofSync). The mapping d quality of audio is pre-
sented. It has been considered usually recommended set of QoS attributes at Applica-
tion Layer and values associated to QoS charaderistics at Middeware Layer. QoS pa-
rameters at QoS Mechanism Layer are treated in an abstract way.

7. Conclusions and Future Work

We have presented a formal QoP architecture, namely ESCHER, which explicitly
takes into account the user perception, whilst it also propcses a systematic mapping
of QoS requirements (at user level) into QoS parameters (treated by QoS medha-
nisms).

In additionto the high level of abstradion the user QoS requirements are spedfied,
the benefits of our propasal aso include: the separation o concerns in QoS specifica
tion and the treatment of user satisfaction as a trade-off among NFRs. The first one

44

alows legacy applications to use QoS services offered by the middieware. The sec-
ond ore serves as abasis for more flexible QoS adaptation mechanism.

In terms of future work, we intend to concentrate on the QoS mapping byidentify-
ing and formalizing the rules to make this process automatic. We dso intend to verify
some properties of our model. For example, the cpadty of our model to refled
changesin the level of provided QoS and vice-versa.

References

1.P.Bernstein.“Middleware, a Model for Distributed System Service”, Communicétions of the
ACM, 39:2, February 1996

2.P.E. Pedersen, L.B. Methlie and H. Thorbjegrnsen, "Understanding mobile commerce end-
user adoption: atriangulation perspedive and suggestions for an exploratory service evalua
tion framework". HICSS 35, Hawaii, US, Jan 7-10, 2002.

3.C. Aurrececheg A. Campbell and L. Hauw “A Survey of Quality of Service Architecture”,
Multimedia Systems Dburnal, November, 1995.

4.G. Ghinea ad J.P. Thomas. “QoS Impad on User Perception and Understanding of Multi-
media Video Clips’, Proc. of ACM Multimedia’ 98, Bristol, United Kingdom, 1998

5.EURESCOM, “Offering Quality Classes to end users’, Deliverable 1,Volume 1 o 2, Projed
P906-GI, QUASIMODO, http://www.eurescom.de/public/projedresults/results.asp

6. J.M. Spivey. The Z notation: A reference Manual, Second Edition. Prentice Hall, 1992

7.T.Yamaz&i and J. Matsuda, "On QoS Mapping in Adaptive QoS Management for Distrib-
uted Multimedia Applications', Proc.ITC-CSCC' 99, val.2, pp. 13421345, July, 1999.

8.Klara Nahrstedt, Dongyan Xu, Duangdao Wichadakul and Baochun Li. “QoS-Aware Mid-
dleware for Ubiquitous and Heterogeneous Environments’ |EEE Communicaions Maga-
zine, 39(11), 2001.

9.Kadroo V, Karr DA, Rodrigues C, Loyall JP, Schantz RE, Schmidt DC, “Integration of
QoS-Enabled Distributed Computing Middleware for Developing Next-Generation Distrib-
uted Applicaions’. Proc. of the ACM SIGPLAN (OM 2001), June 18, 2001, Snowbird Utah.

10.N. Bhatti, Anna Bouch, and Allan Kuchinsky — “ Integrating user-perceived quality into web
server design”. In Sth International World Wide Web Conference, Amsterdam, May 2000.

11.Anna Bouch, Allan Kuchinsky, Nina Bhatti - “Quality isin the Eye of the Beholder: Med-
ing Users Requirements for Internet Quality of Service- Proc. of the CHI 2000 Conference
on Human Fadors in Computing Systems, p.297-304, April 01-06, 2000, Netherlands

12.ETSI, TS 101329-2 v1.1.1, Teleoommunication and Internet Protocols Harmonisation over
Networks (Tiphon); End to End Quality of Servicein TIPHON Systems; Part 2: Definition
of Quality of Service(QoS) Classes, 2000-07, www.etsi.org

13.1. Widya, R.E. Stap, L.J. Teunisen, B.F. Hopman “On the end-user QoS-awareness of a
distributed service ewironment”. Accepted at 6th PROMS' 01. Netherlands, Oaiber 2001

45

46

ServiceFORGE: A Software Architecture for Power
and Quality Aware Services

Radu Cornea, Nikil Dutt, Rajesh Gupta*, Shivajit Mohapatra, Alex Nicolau,
Cristiano Pereira*, Sandeep Shukla**, Nalini Venkatasubramanian

University of California, Irvine, * University of California, San Diego
** Virginia Tech. University, Blacksburg, Virginia

Abstract. We present a novel power management service in QoS-brokerage ar-
chitecture that relies on multi-level middleware services to act as brokers in de-
livering multimedia content in distributed real-time systems under performance
and power constraints. To minimize power consumption, the power manage-
ment service provides for minimal interaction among the system components as
well as provides dynamic control of speed scaling (such as voltage, frequency)
and component shutdown. These power control “knobs” enable the service to
match instantaneous application needs against available energy resources. The
power management service is implemented using the Comp|OSE middleware
framework using a power-aware API that allows the applications programmer
to ensure a continuous dialogue between the distributed embedded systems and
changing application needs. In this paper, we focus on the interfaces to the
power management service that ensure semantically correct composability of
power management actions in a distributed systems and its use in applications
programming. We present example of a multimedia streaming server to hand-
held devices that demonstrates the use of automatic speed scaling knobs in
minimizing energy consumption.

1. Introduction

Power management is important for a range of embedded applications from port-
able terminals to ad hoc sensor networks. The focus of much of the work in this area,
so far has been on minimization of energy at the node level [FengSechrest96,
ChandraVahdat02]. For distributed embedded systems, the problem is much more
complex because of the dynamic tradeoffs involved at several levels of abstraction
between local processing and communication/coordination [Yuan et al 2003]. The
correct way to think about it is to treat as a multi-level ‘service’ in a distributed em-
bedded system [Cornea et al 03]. In this paper, we describe a software system archi-
tecture that enables the system architect to compose distributed power/performance
related decision making and to ensure compliance with functionality and system en-
ergy constraints based on the runtime conditions. This is done by means of “brokers.”
These brokers are built in a model-based system specification that allows reasoning
about the functional and non-functional properties of the system from the
properties of the constituent components and the composition mechanism

47

applied[VenkatasubramanianTalcottAgha01]. We use a middleware infrastructure that
lends itself to platform specific optimization for performance and size. Specifically,
we focus on adaptive and reflective middleware services [Venkatasubramanian et al
2001] to meet the application requirements and to dynamically smooth the imbalances
between demands and changing environments. Fig. 1 illustrates the fundamental lev-
els of adaptation and reflection supported by middleware services: (a) changes in the
middleware, operating systems, and networks beneath the applications to continue to
meet the required service levels despite changes in resource availability, such as
changes in network bandwidth or power levels, and (b) changes at the application
level to either react to currently available levels of service or request new ones under
changed circumstances, such as changing the transfer rate or resolution of information
over a congested network. In both instances, the middleware must determine if it
needs to (or can) reallocate resources or change strategies to achieve the desired QosS.
Embedded applications must be built in such a way that they can change their QoS
demands as the conditions under which they operate change. Mechanisms for recon-
figuration need to be put into place to implement new levels of QoS as required,
mindful of both the individual and the aggregate points of view, and the conflicts that
they may represent.

—

Link 16

N e ———_ e ..

s
P
QoS Doctrine QoS Doctrine

Applications Applications

| |
|'"le";e|“°r Lﬂs Cond :I_[&'s Cond] [Sys Cond]_[Sys Cond J Iniecc ey

— e — 3

Middleware I I Middleware

[Mechanisim & Property]

| Domain-Specific Services | Managers

| Domain-Specific Services |

| Common Services |} | Common Services

Distribution Middleware

Distribution Middleware

|Ir|frastructure Middleware | | Infrastructure Middleware |

T B Rescurce S e S 25 o= TR
AL = st AL
Endsystemn Endsystern

Fig. 1. Middleware Services and QoS Brokerage.

2. ServiceFORGE: A Software Architecture for Quality-Aware
Services

We approach the application development in ServiceFORGE as not only specification
of the desired functionality but also specification and management of a contract with
the underlying mobile software system on timing performance and energy needs. The
underlying software is aware of the finite energy/power resources and makes use of

48

its own contract and brokering services to adapt its functional needs to match low-
level computing, communication and networking capabilities. Our strategy is based
on building an application development framework that allows radically enhanced
configurability and adaptability in pretty much all aspects of software and networking
processes. These include reconfiguration algorithms that exploit adaptability in the
various tasks that constitute the wireless protocols and management of application-
level tasks to ensure efficient use of the dynamically changing battery resource as
well as performance and energy requirements of the executing tasks. Our approach
consists of two parts: power aware operating and runtime system services, and their
interface to middleware services that ensure efficient brokerage of the application
needs and system resource constraints.

Power Aware Operating and Runtime System Services

For effective system-level power management, it is important that an application is
able to monitor and control both electrical knobs (such as voltage and scheduling), as
well as exercise control on the task scheduling and shutdown states of different parts
of the client device (node). The operating system is an important place for making
power management decisions since it has the knowledge about timing, usage and traf-
fic patterns of applications. We modify traditional OS services to make them power-
aware Vis-a-vis their execution so that energy is used in an efficient fashion. At the
system-level, power management consists of three parts: (a) system components as
resources that provide service such a computation or I/O and consume power, (b)
application functionality as tasks that utilize the resources, and (c) system timing per-
formance and result quality requirements as service contracts. Each resource may
have one or more operating modes (e.g. a CPU core may be in run or shutdown mode,
and a radio subsystem may be in transmit or receive or idle mode). The transitions
between operating modes of a resource are dictated by the availability of tasks need-
ing that resource, and the functional requirements of those tasks (e.g. a packet sender
task would put the radio in the transmit mode). Further, a resource in each of these
modes can be put in one of multiple operating points in a mode-specific power-speed
subspace (and more generally power-speed-quality subspace) via “control knobs” that
could be relatively universal or perhaps resource-specific. An example of a relatively
universal control knob is the processor supply voltage. Supply voltage change, with a
coordinated change in the clock frequency, leads to multiple power-vs.-speed points.
The transitions between the power-speed-quality operating points will be dictated by
the system timing performance and result quality requirements [Choi02]. At any
given instant the system may be viewed to be in a specific power state corresponding
to a specific permutation of the operation mode and power-speed-quality operating
point for each resource. The key to system-level power/performance optimization is a
power management control strategy consisting of task and resource specific algo-
rithms to decide the power state evolution of the system. We describe our approach to
control node-specific power/performance constraints in the next section, followed by
a description of their integration with the middleware brokerage services using the
example of a streaming video server.

49

3. Power Aware Nodal Services in ServiceFORGE

As mentioned earlier, the chief goal of power awareness at the node level is to enable
a continuous dialogue between the application, the OS, and the underlying
hardware. This dialogue establishes the functionality and performance expectations
(or even contracts, as in real-time sense) within the available energy constraints. We
describe here our implementation of a Power Aware Software Architecture (PASA).
PASA is composed of two software layers and the RTOS kernel. One layer interfaces
applications with operating system and the other layer makes power related hardware
“knobs” available to the operating system.
Both layers are connected by means of corre-
sponding power aware operating system ser- p-omTTEmemTERTEemom s m o e s
vices as shown in Fig. 2. At the topmost | Applications |
level, embedded applications call the APl ! :
level interface functions to make use of a
range of services that ultimately makes the
application energy efficient in the context
of its specific functionality. The API level

is separated into two sub-layers. PA-API ..l..1Y. . OStevsl .y _ |

layer provides all the functions available to
the applications, while the other layer pro-
vides access to operating system services and
power aware modified operating system ser-
vices (PA OS Services). Active entities that
are not implemented within the RTOS kernel
should also be implemented at this level
(threads created with the sole purpose of as-
sisting the power management of an operating
system service, such as a thread responsible
for killing threads whose deadlines were Fig. 2. Nodal Services and API for Power
missed). We call this layer the power aware

operating system layer (PA-OSL).

To interface the modified operating system level and the underlying hardware
level, we define a power aware hardware abstraction layer (PA-HAL). The PA-HAL
gives the access to the power related hardware ““knobs" in a way that makes it inde-
pendent of the hardware.

Table below lists the functions relevant to the implementation of power
aware scheduling techniques. At the PA-API layer there are functions to create types
(informing the real time related parameters) and instances of tasks, to notify start and
end of tasks (needed by the OS in order to detect whether the task execution is over
and the deadline of a task has been met), and to either inform the application
about the execution time predicted by the OS or tell the OS about the execution
time prediction estimated by the application (which can be based on application
specific parameters). At the PA-OSL layer there are functions to manipulate informa-
tion related to the power aware scheduling schemes that are maintained within the
kernel (such as the type table in the case of the scheduler), the thread responsible
for killing threads whose deadlines were missed (assuming that the threads

'
'
\\5\
. Dlermory
g Tvlanager

50

whose deadlines were missed are no longer useful). The alarm handler notifies the
killer thread, which in turn Kills the thread and re-creates it. The overhead of having
an extra thread is minimal since the Killer thread is constantly blocked unless a re-
quest to kill another thread is received. When it happens, the killer thread wakes up
and finishes the execution of the proper thread. At the PA-HAL layer functions to
manipulate processor frequency and voltage levels and low power states are present.
These are called by the RTOS scheduler when slowing down the processor or shutting
it down. For processor frequency and voltage scaling, different platforms have differ-
ent precautions that have to be taken care of before doing the scaling. These precau-
tions might have to be done before the scaling, after it or both before and after. For
these the functions pahal_pre_set frequency and_voltage and pa-
hal_post_set frequency _and_voltage are provided and must be implemented by the
OS programmer according to the platform. And finally functions to poll the status of
battery based platforms are also important in order to enhance their lifetime.

Layer Function name

PA-API [paapi_dvs_create_thread_type(), paapi_dvs_create_thread_instance()

paapi_dvs_app_started(), paapi_dvs_get_time_prediction()

paapi_dvs_set_time_prediction(),paapi_dvs_app_done(),

paapi_dvs_set_adaptive_param(),paapi_dvs_set_policy(),
aapi_dpm_register_device()

[PA-OSL paosl_dvs_create_task_type_entry(),paosl_dvs_create_task_instance_entry(),
paosl_dvs_killer_thread(),paosl_dvs_killer_thread_alarm_handler(),
paosl_dpm_register_device(), paosl_dpm_deamon()

[PA-HAL|pahal_dvs_initialize_processor_pm(), pahal_dvs_get_frequency_levels_info()
pahal_dvs_get_current_frequency(), pahal_dvs_set_frequency_and_voltage()
pahal_dvs_pre_set_frequency_and_voltage(),
pahal_dvs_post_set_frequency_and_voltage()
pahal_dvs_get_lowpower_states_info(), pahal_dvs_set_lowpower_state()
ipahal_dpm_device_check_activity(), pahal_dpm_device_pre_switch_state()
pahal_dpm_device_switch_state(), pahal_dpm_device_post_switch_state()
pahal_dpm_device_get_info(), pahal_dpm_device_get_curr_state()
pahal_battery_get_info()

The piece of code that follows shows an example on how the PA-API functions are
used in a MPEG decoder source code when creating threads using PA-API functions.
A thread is created specifying that the deadline and period are 100 and the worst case
execution time is 30 (assuming it was profiled and therefore known ahead of time.
The thread is instantiated and access to the power-aware functionality contracts is
enabled and terminated by the functions paapi_app_started() and paapi_app_done()
respectively. These functions delimit the work done by the threads which is encapsu-
lated in one single function in this example.

void main() {
mpeg_decoding t =
paapi create thread type(100,30,100);
paapi create thread instance (mpeg decoding t,
mpeg_decode thread); |

51

void mpeg decode thread() {
for (;;)
paapi app started() ;
/* original code */
mpeg_frame decode ()
paapi_app_done () ; 1}

This provides a generic dynamic power management (DPM) API sufficient to sup-
port different devices and DPM policies by using a common set of functions. The API
also provides a common framework for implementing new (DPM) policies. For DPM
purposes, each device is registered with the power manager and with each device we
attach enough information to execute whichever policy the device was registered to
be managed with. Often device DPM techniques switch devices to low-power modes
or states based on how long the device has been idle. For instance, threshold values
are defined for each device so that the longer the device is idle, the deeper the sleep
mode it is switched to. A common set of functions and data structures have to be de-
fined in order to manage such devices. These furnish the implementation of the DPM
techniques and provide the guidelines for implementing new ones. Some of the func-
tions defied for this purpose are listed in the previous table and are shortly described
below:

e dpm_device_check_activity(- This function finds out whether the
device was activated or has been idle since the last time it was queried. To do
that, a device activity structure has to be kept and has to be compared against
a new activity information every time the device is queried (on the embedded
Linux platform, for instance, this information comes from the /proc virtual
file system interface. For other operating systems without such interface this
information has to be kept by the API in form of tables in order to track the
device activity). If the amount of activity is the same it means that nothing
has happened since the last time it was checked. Otherwise some activity has
happened and the stored information is updated. This function makes sense
only if the policy used is based on the activity information (kept in a device
status table).

e dpm_device_switch_state() - This function will switch the state of
the device from origin state to destination state.

e dpm_device_get_info(- It gets information about the device.

e dpm_device_get_state() - It tells in which state the device is in cur-
rently.

e dpm_device_register(- It registers the device along with the appro-
priate functions and power management policy to handle it. This information
is kept in the device info table.

Structures containing the possible states each device can be at, as well as which
policies, are attached to each device and the information needed to implement such
policies are defined and kept within the kernel. The kernel DPM entity consists of
tasks associated with each device and implementing a specific policy for managing
the device. If all devices use the same policy then multiple instances of this policy are
created and they manage each device individually.

52

The piece of code below shows a threshold based dynamic power management
scheme. For each device state there is an associated threshold which defines when to
switch to that state as described in the lower envelope algorithm.

void threshold policy deamon (device info t dev) {
unsigned idleness;

for (;;) {
/* check for how long the device has been idle */
idleness = dev->check activity(dev) ;

/* if idle for longer than the threshold
switch to next state */
if (idleness > dev->check state()->threshold) {
dev->check state()->switch state(dev,
dev->check state, dev->check state()->next) ; }
/* sleep until next period for checking idleness */
sleep(dev->policy info->th policy-speriod); }}

When mixing DPM and DVS algorithms in the same platform there is a tradeoff on
whether to slowdown as much as possible or to execute some tasks faster than the
minimum possible frequency and rearrange the idle times in order to get better
changes to shutdown some of the system components. In [IraniShuklaGupta03], we
have devised an algorithm to optimize this tradeoff on a system. The algorithm,
named as Procrastinator, adjusts (or procrastinates) start times and deadlines of some
of the tasks in order to create longer idle times and obtain more chances to wisely
bring the device to a low power mode. The PASA architecture and its APl make it
possible to utilize the combined DVS and DPM opportunities and improve their effec-
tiveness with additional information available from the application itself.

4. Middleware Power/Performance Brokerage Service in
ServiceFORGE

Node level dynamic power management described in the previous section is only a
first step in achieving an application-level control of the system power/performance
tradeoffs. We approach the distributed power/performance optimization problem as
one of middleware services that interact with the node level services to make the right
tradeoffs in the context of application behavior and its needs [Mohapatra et al 03,
MohapatraVenkatasubramanian03].

To explain this, let us use the example of a multimedia streaming from a server to a
set of mobile handheld devices. The system architecture shown in Fig. 3 below con-
sists of a multimedia server, a proxy server (that adapts the video stream to client ca-
pabilities), a wireless access point and the clients (low-power wireless devices). The
multimedia server streams videos to clients on request from users. All communication
between the servers and clients are routed through the proxy server, which can
transcode the video stream in real time.

53

Directory Rule A\
Service Base Transcoder Broker -
K

e D g 5 ' .Noise
N \ J/ e N
R ’/, N

NN \“ , 2]
AV . ¥ &
P 0
[>
Server Proxy Switch Access
Point
*¥ J
WAN WIRED ETHERNET
WIRELESS

Fig. 3. Streaming Multimedia Example

Middleware level components (services) execute on both the handheld device and
the proxy, performing two important functions: On the device, it sends residual en-
ergy availability information the proxy and relates video stream parameters and net-
work control information to lower abstraction layers. This information is conveyed
using the PASA API for the HAL/OSL layers. On the proxy, it performs a feedback
based power aware admission control and real time transcoding of the video stream
based on the feedback from the device. It also controls the video transmission over the
network based on the load on the network and video stream quality level. To illustrate
the application control of the client power and fairness of the service to multiple cli-
ents, we use quality level of the video (specified as PSNR).

Fig. 4 shows the overall ServiceFORGE architecture. To implement the desired
level of power/performance control, we assume that the following levels of abstrac-
tion apply to both the proxy and the clients: architecture, operating system, middle-
ware, application. Each of these levels has components/services interacting with cor-
responding services on the same level or with components at a different level of ab-
straction. The architecture level includes most of hardware components: CPU with
memory, display, network card, etc. OS level provides the scheduler, DVS control,
power-aware APIs and other OS level services. The middleware level provides a se-
ries of services, like network management, transcoding, admission control, mobility
information, etc. The video application runs at the application level, with the other
tasks running on the device.

USER APPLICATIONS (Quality perception + Utility)

Video Quality Feedback

controlled packet
ng

. Residual Power Info 3
. Power API

knobs
(register file sizes, cache
ronfimratinn |

" .Stream quality

- Operating Voltage l . Voltage scaling interface 3 ‘
-NIC power control . Architectural tuning knobs
Cache Memory Register
Nenvons ||| oiseea
CARD I I e]

Fig. 4. Architecture of ServiceFORGE

54

Components and services at different level of abstraction interact together with a
final goal of improving the overall system performance, including power, deadlines
and quality of service. There are various control knobs available at the device: CPU
voltage and frequency scaling, memory system configuration, network card access
pattern. The video stream can be controlled through its encoding parameters: frame
rate, bitrate, and frame rate. Each of these parameters are controlled by the middle-
ware services and adapted as required by the runtime conditions in the system. For
example, if the residual energy available at a mobile device drops, the control de-
creases the quality of the video stream by lowering its frame rate or one of the other
parameters (frame size, bitrate). Similarly, when a new user joins the system, re-
sources need to be freed in order to accommaodate the new node in the network (allo-
cate network bandwidth, transcoder CPU time, etc.).

The middleware services also control network transmission. To save power, video
stream data is grouped into short burst transmissions and sent periodically over the
network. This allows the network card at the device to go into longer periods of low-
power sleep mode [Shenoy03].

Each component in the abstraction hierarchy provides services to the other compo-
nents on the same node or on other nodes in the network. During runtime, there is a
continuous exchange of information and control between nodes to ensure that the
constraints imposed on the system are met and quality of service is preserved for all
the clients. If for some reasons these conditions cannot be satisfied the admission con-
trol component may decide to renegotiate video quality levels with all users in the
system.

Experiments Using Video Server Example

We performed several experiments to evaluate power savings and performance im-
provements at different levels of abstraction as well as globally for the entire system.
At the architecture level, we selected cache parameters as optimizing knobs and pro-
filed video clips for a large space of cache configuration points. Fig. 5 shows results
from configuring the data cache to meet the requirements of particular video streams.
These changes alone can yield 10-15% in power savings. Combining frequency and
voltage scaling with cache reconfiguration increase the opportunities for power sav-
ings, as the processor can be run at a lower voltage and frequency when decoding less
complex frames. This combined approached yields up to 60% in energy savings as
compared with the initial architecture.

55

SRR
2 & o

% power saved
2

Qs T
a7
Qs -

Qs

Vi e
Cache Associativity 32 Stee co Qua,',b/ e O;.N;;N:J‘N\;;a‘"
Fig. 5. Cache Optimization Search Space Fig. 6. Power Savings in the Network Card

Fig. 6 shows that at the network level we obtained up to 70% power savings by
sending optimized bursts of video and turning the network interface off (sleep mode)
between consecutive bursts. The ideal burst time was computed for each quality level
and for different network load - users in the network are modeled as noise. Finally, we
evaluate the performance of the integrated framework. Our goal is to provide an op-
timal user experience and maintain an acceptable utility factor for the system. We
define an “acceptable utility factor” to be obtained when the system can stream the
highest possible quality of video to the user such that time, acceptable quality and
power constraints are satisfied (i.e the video clip runs to completion, at a quality level
above or equal to the one the user specified, the difference between the two defining
the final utility factor). To accomplish this it is important to understand the notion of
video quality for a handheld device and its implications on power consumption. Fig. 7
shows how adaptive middleware provided by ServiceFORGE can improve the utility
factor for the integrated framework.

IiL = LIFETIME OF iPAQ AT THE
B po--mmmmmm—mmoo- TIME OF VIDEO REQUEST

IIL = 150 to 154 mins (No Optimizations) |

IIL = 144 — 148 mins (No Optimizations) |

1 -~ Ugatstartofstreaming ~~ """ """ T oo oo oo oooo o oooooooooooooo

= = =

2 @

" ®

Video playback time
(secs)

Fig. 7. Utility Factor over Time.

o o o
M o @
Gy W @

1320
1650
1980
2640
2970
5940
6270
6600
6930

4620
4950
5280
5610

[=]
8
=+

2310
3960

56

5. Summary and Conclusions

Ensuring best system performance in presence of very real resource constraints in
distributed embedded systems is a difficult problem. Solving this problem requires
analysis of available system resources, application needs in presence of dynamically
changing operating conditions. Instead of seeking optimization techniques, our ap-
proach is to enable application participation with the runtime systems in setting the
appropriate resource utilization policies. Towards that end, we have built Service-
FORGE to provide two basic capabilities: capability for the middleware to carry out a
dialogue with the application in determining its needs and conveying these through a
structured interface to individual nodes; and the capability for the individual nodes to
change performance/power usage knobs based on the middleware directives. Early
experiments suggest that this architecture can be useful in achieving better quality of
results for the same power budgets in the case of streaming video. Additional experi-
mentation across various application domains is necessary to understand how applica-
tion programming can be structured to take advantage of the new services in the sys-
tem software.

References

[ACEORB] Center for Distributed Object Computing, “The ACE ORB (TAO)”
www.cs.wustl.edu/_schmidt/TAO.html Washington University.

[aspectGAMMAO02] M. Mousavi, G. Russello, M. Chaudron, M.A. Reniers, T. Basten, A.
Corsaro, S. Shukla, R. Gupta, D. Schmidt,
“AspectstGAMMA=AspectGAMMA: A Formal Framework for As-
pect-Oriented Specification”, presented at the Early Aspects Workshop,
Twente, Netherlands, April 2002.

[Balboa] Balboa Project. Component Composition Enviornement
Home page: http://www.cecs.uci.edu/_balboa.

[Banatre93] Jean-Pierre Banatre and Daniel Le Metayer, Programming by multiset
transformation, Communications of the ACM (CACM), 36(1):98--111,
January 1993.

[Bapty et al, 2000] Bapty T., Neema S., Scott J., Sztipanovits J., Asaad S, “Model-
Integrated Tools for the Design of Dynamically Reconfigurable Sys-
tems”, VLSI Design, 10, 3, pp. 281-306, 2000.

[Birkhoff1933] G. Birkhoff. On the Combination of Subalgebras. Proceedings of Cam-
bridge Philosophical Society, 1933.
[Blair et al 98] Gordon S. Blair, G. Coulson, P. Robin, and M. Papathomas, "An archi-

tecture for next generation middleware," in Proceedings of the IFIP In-
ternational Conference on Distributed Systems Platforms and Open Dis-
tributed Processing, Springer-Verlag, London, 1998.

[Boehm80] Boehm, B. Software Engineering Economics, Prentice Hall, 1980.

[Bol00] Bollella, G., Gosling, J. “The Real-Time Specification for Java,” Com-
puter, June 2000.

[Booch98] Grady Booch, Ivar Jacobson, James Rumbaugh, Jim Rumbaugh “The

Unified Modeling Language User Guide”, The Addison-Wesley Object
Technology Series, 1998.

57

[BroyKrueger98]

[BroyStoelen01]

[ChandraVahdat02]

[Chaudron98]

[Chaudron94]

[Choi02]

[Chou94]

[Corba 2000]

[Cornea et al 03]

[Culler et al 01]

[Donahue et al 2001]

[Donahue et al 2002]

[Doucet-date02]

[Eme90]

[Esterel Tech]
[FengSechrest96]

M. Broy, I. Krtger: Interaction Interfaces - Towards a scientific founda-
tion of a methodological usage of Message Sequence Charts, in: J. Sta-
ples, M. G. Hinchey, Shaoying Liu (eds.): Formal Engineering Methods
(ICFEM'98), IEEE Computer Society, 1998

M. Broy, K. Stglen: Specification and Development of Interactive Sys-
tems. Focus on Streams, Interfaces, and Refinement. Springer, 2001

S. Chandra and A. Vahdat. “Application-specific Network Management
for Energy-aware Streaming of Popular Multimedia Formats”. In
Usenix Annual Technical Conference, June 2002.

Chaudron, M. R. V, “Separating Computation and Co-ordination in the
Design of Parallel and Distributed Systems”, Ph.D thesis, Leiden
University, 1998.

Michel R.V. Chaudron, Schedules for Multiset Transformer Programs,
Technical Report no 94-36, Department of Computer Science, Leiden
University, December 1994.

K. Choi, K. Dantu, W.-C. Chen, and M. Pedram. “Frame-Based Dy-
namic Voltage and Frequency Scaling for a MPEG Decoder”. In IC-
CAD 2002.

P. Chou, and G. Boriello, “ Software Scheduling in the co-synthesis of
Reactive Real-Time Systems”, in Proceedings of the 31st Design
Automation Conference, 1994.

Object Management Group, “The Common Object Request Broker:
Avrchitecture and Specification, 2.4 ed.”, Oct. 2000.

R. Cornea, N. Dutt, R. Gupta, |. Krueger, A. Nicolau, D. Schmidt, S.
Shukla, “FORGE: A Framework for Optimization of Distributed Em-
bedded Systems Software”, IPDPS 03.

David E. Culler, Jason Hill, Philip Buonadonna, Robert Szewczyk, and
Alec Woo, “A Network-Centric Approach to Embedded Software for
Tiny Devices”,in DARPA workshop on Embedded Software, 2001.

S. M. Donahue, M.P. Hampton, M. Deters, J. M. Nye, R.K. Cytron, and
K. M. Kavi, “Storage allocation for real-time, embedded systems,” in
Embedded Software: Proceedings of the First International Workshop
(T.A. Henzinger and C.M. Kirsch, eds.), pp.131-147.

S. Donahue, M. Hampton, R. Cytron, M. Franklin, and K. kavi, “Hard-
ware support for fast and bounded-time storage allocation,” Second
Annual Workshop on Memory Performance Issues (WMPI 2002), 2002
F. Doucet, R. Gupta, M. Otsuka, S. Shukla, “An Environment for Dy-
namic Component Composition for Efficient Co-Design”, Accepted for
presentation at the Design Automation and Test Conference (DATE
2002), Match 2002.

E. Allen Emerson. Temporal and Modal Logic. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B, pages
995--1072. Elsevier, 1990.

Esterel Technologies Web Page, http://www.esterel-technologies.com/
W.chi Feng and S. Sechrest. “Improving data caching for software
mpeg video decompression”. In IS&T/SPIE Digital Video Compress-
sion: Algorithms and Technologies, 1996.

[FinkbeinerKrueger01] B. Finkbeiner, I. Kriger: Using Message Sequence Charts for Compo-

nent-Based Formal Verification. Specification and Verification of
Component-Based Systems (SAVCBS). Workshop at OOPSLA 2001.

58

[Frappier 2000]

[Galo1]

Marc Frappier, Henri Habrias , “Software Specification Methods : An
Overview Using a Case Study (Formal Approaches to Computing and
Information Technology”, Springer Verlag, November 2000.

Andreas Gal, Wolfgang Schroder-Preikschat, and Olaf Spinczyk, “On
Aspect Orientation in Distributed Real-Time Dependable Systems”,
"On Aspect-Orientation in Distributed Real-time Dependable Systems”,
Accepted at the Seventh IEEE International Workshop on Object-
oriented Real-time Dependable Systems (WORDS 2002) , San
Diego,CA, January 7-9, 2002

[GarlanAllenOckerbloom95] D. Garlan, R. Allen, and J. Ockerbloom. Architectural Mismatch:

[Genssler et al 2002

[Gill et al 2001]

[GorlickRazouk91]

[Grundy99]

Why Reuse Is So Hard. IEEE Software, November 1995.

T. Genssler, O. Nierstraszand B. Schoenhage. Componenets for embed-
ded software: The pecos approach. In Proc. Int. Conf. On Compilers,
Avrchitecture, and Systhesis for Embedded Systems, 2002.

Chris Gill, David Levine, and Douglas C. Schmidt, “The Design and
Performance of a Real-Time CORBA Scheduling Service,” The Inter-
national Journal of Time-Critical Computing Systems, special issue on
Real-Time Middleware, guest editor Wei Zhao, Volume 20, Number 2,
March 2001.

M. M. Gorlick and A.R.R. Razouk. Using weaves for software con-
struction and analysis. In Proc. Int. Conf. On Software Engineering,
1991.

Jim Grundy, “Aspect Oriented Requirements Engineering for Compo-
nent Based Software Systems”, In the Proceedings of Requirements
Engineering (RE’99), June, 1999, Limerick, Ireland, IEEE Press.

[GunterMuschollPeled01] E. Gunter, A. Muscholl, and D. Peled. Compositional Message

[Harrison et al 97]

[Henzinger98]

[Henzinger01]

[Hoare85]
[Huang et al 97]

[IDL/OMG]
[IraniShuklaGupta03]

[JainSchmidt97]

Sequence Charts. In Proc. of TACAS’01, volume 2031 of Lecture
Notes in Computer Science, pages 496-511. Springer, 2001.

Tim Harrison and David Levine and Douglas C. Schmidt, “The Design
and Performance of a Real-time CORBA Event Service,” Proceedings
of OOPSLA ‘97, ACM, Atlanta, GA, October 1997.

Thomas A. Henzinger, It's about time: Real-time logics reviewed., In
Davide Sangiorgi and Robert de Simone, editors, Proceedings of Ninth
International Conference on Concurrency, volume 1466 of LNCS,
pages 439-454. Springer-Verlag, Nice, France, 1998.

Thomas A. Henzinger, Ben. Horowitz, and Christoph M. Kirsch,
“Giotto: A Time Triggered Language for Embedded Programming”, In
the Proceedings of the First International Workshop on Embedded
Software (EMSOFT’01), Lake Tahoe, CA, USA, October 2001.
Communicating Sequential Processes, Prentice Hall, 1985.

J. Huang, R. Jha, W. Heimerdinger, M. Muhammad, S. Lauzac, B.
Kannikeswaran, K. Schwan, W. Zhaonad R. Bettati, “RT-ARM: A
Real-Time Adaptive Resource Management system for Distributed
Mission-Critical Applications,” in Workshop on Middleware for
Distrbuted Real-Time Systems, RTSS-97, (San Francisco, CA), IEEE,
1997.

OMG Website, http://www.omg.org.

Sandy Irani, Sandeep Shukla and Rajesh Gupta. “Algorithms for Power
Savings, SODA 2003.

P. Jain and D. C. Schmidt, “Service Configurator: A Pattern for Dy-
namic Configuration of Services: in Proceedings of the 3" Conference

59

[Kiczales 97]

[Koskimies et al. 98]

[Krueger00]

[Lamsweerde00]

[LeeXiong01]

[LiaoTjiangGupta97]

[Linda 93]

[Loyall et al 01]

[Manna, Pnueli]
[Metropolis]
[Microsoft Dnet 01]

[Misra, Chandy 88]

on Object-Oriented Technologies and and Systems, USENIX, June
1997.

G. Kiczales, "Aspect-Oriented Programming,” in Proceedings of the
11th European Conference on Object-oriented Programming, June,
1997

Kai Koskimies, Tarja SystAa, Jyrki Tuomi, and Tatu Méannisto. Auto-
mated Support for Modeling OO Software. IEEE Software, pp. 87-94,
January—February 1998.

I. H. Kriger: Distributed System Design with Message Sequence
Charts, Dissertation, Technical University of Munich, 2000, available
at: http://tumbl.biblio.tu-muenchen.de/publ/diss/in/2000/krueger.html
Axel v. Lamsweerde, “Formal specification: a roadmap”, in Anthony
Frankelstein ed., The Future of Software Engineering, ACM Press,
2000.

E . A. Lee and Y. Xiong. System-Level Types for Component-Based
Design. In First International Workshop on Embedded Software,
vol.2211 of Lecture Notes in Computer Science. Springer, October
2001.

S. Liao, S. Thiang, and R. Gupta. An Efficient Implementation of Reac-
tivity in Modeling Hardware in the Scenic Synthesis and Simulation
Environment. In Proc. IEEE/ACM Design Automation Conf., 1997.
Bjornson Robert, “Linda on Distributed Memory Multiprocessors”,
PhD thesis, Yale University, 1993.

J. Loyall, J. Gossett, C. Gill, R. Schantz, J.Zinky, P. Pal, R. Shapiro, C.
Rodrigues, M. Atighetchi and D. Karr, “Comparing and Contrasting
Adaptive Middleware Support in Wide-Area and Embedded Distributed
Object Applications,” in Proceedings of the 21% International confer-
ence on Distributed Computing systems (ICDCS-21), pp.625-634,
IEEE, April 2001.

Zohar Manna and Amir Pnueli, "The temporal Logic of reactive and
concurrent systems”, Springer Verlag, 1992

Metropolis Project Web Page,
http://lwww.gigascale.org/metropolis/infrastructure.html

Microsoft, Microsoft(r) .NET My Services Specification, Microsoft
Press, October 2001

J. Misra and K. M. Chandy, Parallel Program Design: A Foundation,
Addison-Wesley, 1988.

[MohapatraVenkatasubramanian03] ~ S. Mohapatra and N. Venkatasubramanian, “PARM:

[Mohapatra et al 03]

[Moml 2000]

[Morse96]

[MousaviO1]

Power-Aware Reconfigurable Middleware”, in ICDCS-03.

S. Mohapatra, R. Cornea, N. Dutt, A. Nicolau, N. Venkatasubramanian,
“Integrated Power Management for Video Streaming to Mobile Hand-
held Devices, ACM Multimedia 2003.

Steve Neuendorffer, Ed Lee, “MoML: An XML Modeling Markup
Language”,
http://buffy.eecs.berkeley.edu/IRO/Summary/00abstracts/neuendor.1.ht
ml

J. Morse, and S. Hargrave, “The increasing importance of Software”,
Electronic Design, vol.44(1), Jan. 1996.

Mousavi, M.R., Rusello G., and Chaudron M. R. V, “ A Coordination
Approach for the Design of Component Based Distributed Real-Time
Systems”, submitted.

60

[Mousavi et al 2002]

[O’Ryan et al 2000]

[Omg99a]
[Omg99b]
[Omg2000]

[Omg01a]

[Omg01b]

[Paulin97]

[Pyarali+02]

M. Mousavi, M. Chaudron, G. Russello, M. Reniers, T. Basten, A. Cor-
saro, S. Shukla, R. Gupta and D. Schmidt. Using aspect -GAMMA in
Design and Verification of Embedded systems. In Proc. High level De-
sign Validation and Test Workshop, 2002.

C. O’Ryan, D. C. Schmidt, F. Kuhns, M. Spivak, J. Parsons, I. Pyarali,
D. Levine, “Evaluating Policies and Mechanisms for Supporting Em-
bedded, Real-Time Applications with CORBA 3.0” in Proceedings for
the 6™ IEEE Real-Time Technology and Applications Symposium,
(Wash. D.C.), IEEE, May 2000.

Object Management Group, Real-time CORBA Joint Revised Submis-
sion, OMG Documentorbos/99-02-12 ed., March 1999.

Object Management Group, “Dynamic Scheduling, OMG document
orbos/99-03-32 ed., March 1999.

Object Management Group, “The Common Object Request Broker:
Avrchitecture and Specification, 2.4 ed., October 2000.

Object Management Group, “The Common Object Request Broker:
Architecture and Specification Revision 2.5, OMG Technical Document
formal/00-11-07”, October 2001.

Object Management Group, “The Common Object Request Broker:
Avrchitecture and Specification, 2.6 ed., December 2001.

P. Paulin, C. Liem, M. Cornero, F. Nacabal, G. Goossens,
“Embedded Software in real-time signal processing systems: Applica-
tion and architectural Trends”, Proceedings of IEEE, vol. 85(3), 1997.
Irfan Pyarali, Douglas C. Schmidt, and Ron Cytron, “Techniques for
Enhancing Real-time CORBA Quality of Service,” Submitted to the
IEEE Proceedings. Available at
http://www.cs.wustl.edu/~schmidt/corba-research-realtime.html.

p. 419-435.

[Ramanathan TCAD2002] D. Ramanathan, S. Irani, R. Gupta, "An Analysis of System

[RTCorba 2000]

[Saxena99]

[Schantz 2002]

[Schmidt et al 2000]

[SchmidtKuhns2000]

[Schmidt et al 2001]

Level Power Management Algorithms and their effects on Latency",
IEEE Transactions on Computer Aided Design, March 2002.

Object Management Group, “Dynamic Scheduling Real-Time CORBA
Joint Revised Submission, OMG Document orbos/2000-08-12 ed.”,
August 2000.

Saxena . A, Shukla. S, Weihmayer. R, Wu. P, “CORBA based Event
Management System: A Case Study in Automatic Global Correlation”,
In the Proceedings of the International Conference on Parallel Process-
ing Techniques and Applications (PDPTA’99), CRA Press, Las Vegas,
June 1999.

Richard E. Schantz and Douglas C. Schmidt, “Middleware for Distrib-
uted Systems: Evolving the Common Structure for Network-centric
Applications,” Encyclopedia of Software Engineering, Wiley and Sons,
2002.

D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-
Oriented Software Architecture: Patterns for Concurrent and Networked
Objects, Vol. 2. New York: Wiley & Sons, 2000.

D. C. Schmidt and F. Kuhns “An Overview of the Real-time CORBA
Specification” IEEE Computer Magazine, Special Issue on Object-
oriented Real-time Computing, vol.33, June 2000.

D. C. Schmiddt, S. Mungee, S. Flores-Gaitan, and A. Gokhale, “Soft-
ware Architectures for Reducing Priority Inversion and Non-
determinism in Real-time Object Request Brokers,” Journal of Real-

61

[Schmidt 2001]

time Systesm, special issue on Real-time Computing in the Age of the
Weg and the Internet, vol.21, no.2, 2001.

Douglas C. Schmidt, Sumedh Mungee, Sergio Flores-Gaitan, and
Aniruddha Gokhale, “Software Architectures for Reducing Priority
Inversion and Non-determinism in Real-time Object Request Brokers,”
Journal of Real-time Systems, Kluwer, Vol. 21, No. 2, 2001.

[SelicGulleksonWard94] Bran Selic, Garth Gullekson, and Paul T. Ward: Real-Time Ob-

ject-Oriented Modeling, Wiley, 1994.

[ShaRajkumarLehoczky90] L. Sha, R. Rajkumar, and J.P. Lehoczky, “Priority Inheritance

[Shenoy03]

[Shukla98]

[Stankovik87]
[Szyperski98]

[Thoen-Cathhoor00]

[Udupa 99]

[U2 Partners]

Protocols: An Approach to Real-time Synchronization,” IEEE Transac-
tions on Computers, vol. 39, September 1990

P. Shenoy and P. Radkov. “Proxy-Assisted Power-Friendly Streaming
to Mobile Devices”. In MMCN, 2003.

S. Shukla “Fault-Tolerance Patterns for Network Management Applica-
tions”, Invited Presentation at the Dagstuhl Seminar on Self-
Stabilization, Dagstuhl, Germany, August 1998.

John A. Stankovic and Krithi Ramamritham, Tutorial on Hard Real-
Time Systems, IEEE Computer Society Press, 1987.

C. Szyperski. Component software: Beyond Object Oriented Program-
ming. Addison-Wesley, 1998.

Filip Thoen, and Francky Catthoor, “Modeling, Verification and
Exploration of Task-Level Concurrency in Real-Time Embedded
Systems”, Kluwer Academic Publishers, 2000.

Divakara K. Udupa “TMN: Telecommunications Management Net-
work”, McGraw-Hill Professional Publishing, January 1999.

Revised submission to OMG RFPs ad/00-09-01 and ad/00-09-
02:Unified Modeling Language 2.0 Proposal. Version 0.671 (draft).
available at http://www.u2-partners.org/artifacts.htm, 2002.

[VenkatasubramanianTalcottAghaO1] Nalini Venkatasubramanian, Carolyn Talcott, Gul Agha,

"A Formal Model for Reasoning about Adaptive QoS-Enabled Middle-
ware ", FME 2001, Germany, March 12-16, 2001.

[Venkatasubramanian et al 2001] Nalini Venkatasubramanian, Mayur Deshpande, Shivajit

[Wang et al 01]

[WhittleSchumann00]

[XiongLee2000]

[Yuan et al 2003]

Mohapatra, Sebastian Gutierrez-Nolasco and Jehan Wickramasuriya,
“Design & Implementation of a Composable Reflective Middleware
Framework", ICDCS-21, April 2001.

Nanbor Wang, Douglas C. Schmidt, Kirthika Parameswaran, and Mi-
chael Kircher, “Towards a Reflective Middleware Framework for QoS-
enabled CORBA Component Model Applications,” IEEE Distributed
Systems Online special issue on Reflective Middleware, 2001.

J. Whittle and J. Schumann. Generating Statechart Designs From Sce-
narios. In International Conference on Software Engineering (ICSE
2000), 2000.

Y. Xiong and E. A. Lee. An Extensible Type System for Component-
Based Design. In the 6" International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, vol. 1785 of Lec-
ture Notes in Computer Science. Sringer, april 2000.

W. Yuan, K. Nahrstedt, S. Adve, D. Jones, and R. Kravets. “Design and
Evaluation of a Cross-Layer Adaptation Framework for Mobile
Multimedia Systems”. In MMCN-03.

[ZinkyBakkenSchantz97] J. A. Zinky, D. E. Bakken and R. Schantz, “Architectural Support

for Quality of Service for CORBA Objects,” Theory and Practice of
Objects Systems, vol. 3, no.1, pp.1-20, 1997.

62

Automatic detection of service interactions from
graphical specifications

Héléne Jouve, Pascale Le Gall, and Sophie Coudert

L.a.M.l., CNRS UMR 8042
Université d’Evry
523 places des Terrasses
91000 Evry, France
Tel: (+33) 1 60 87 39 14 Fax: (+33) 1 60 87 37 89
{hj ouve, legall, coudert}@am .univ-evry.fr

Abstract. The paper presents a systematic method for detecting interactions
from telecommunication service specifications. Services are graphically speci-
fied by means of formalised diagrams. The detection of service interactions is
based on static analysis of the diagrams and reveals two kinds of interactions.
Direct interactions occur when a message triggers two services. Indirect interac-
tions occur when the triggering of a service simulates a triggering message of
another one. The method allows to compute interactions in terms of subscription
configuration, triggering message and triggering condition. It is fully automatic
without any need of additional knowledge, implemented in Prolog and illustrated
in the paper on a small running example.

Keywords: Telecommunication services, service interaction, static analysis, sub-
scription configuration, unification.

1 Introduction

Telecommunication systems are constantly evolving due to the introduction of new ser-
vices (also often called features) which increase the set of available functionalities. [5],
[71, [10], [3] give a general presentation of the feature interaction problem which is still
pressing and largely unsolved. A service may be understood as a functional and op-
tional unit modifying an underlying basic call service®. Network operators are strongly
interested in decreasing the life cycle of the service design. Most of the time, services
are designed separately. Thus, their integration may lead to unexpected interactions,
when the mutual influence between two or more services makes the system behave dif-
ferently from the expected behaviour of each involved service. These interactions may
be considered as acceptable or unpleasant. In order to propose a care-free service set,
network operators should prevent the emergence of undesirable interactions. The first
step to tackle the service interaction problem is clearly the detection: the knowledge of
interactions is necessary to integrate services in a way that satisfies the need of users

1 As in many other articles dealing with services, this basic call service pre-existent to all further

services is simply called POTS for Plain Old Telephone Service, ensuring simple calls between
users.

63

subscribing these services. Indeed, roughly speaking, a pragmatic service-oriented de-
sign method ([4]) includes the following steps: interaction detection, expert judgement
to qualify interactions as desired or not, integration mechanisms to keep the desired
interactions while discarding the undesired ones.

Since properties of the integrated system obviously inherit from properties of in-
dividual services, formal methods are promising in detecting interactions. Verification
techniques such as theorem-proving, model-checking or formal testing have been pro-
posed for that purpose ([10], [18], [1], [6] [2], [14], [8], [4], [23]). The main common
drawback of most of these approaches is that their application needs costly efforts such
as the construction of the whole model of the telecommunication system as an automa-
ton, the systematic exploration of the built automaton, ...which can reveal intrinsic
complexity limitations. However there are also some works ([21], [12], [9] ...) based
on static analysis methods. They generally deal with prepost formulas. Roughly speak-
ing, they study how properties expressed by means of preposts formulas issued from
different services can be in conflict. Either they lead to irreconcilable situations from
compatible preconditions (in other words, this is a non-determinism case) or they lead
to situations where some preposts of one of the two services cannot be applied any
more. These methods are essentially based on heuristics.

The work we present here takes place in the family of static methods for detect-
ing interactions. It addresses high-level intrinsic interactions since services will be de-
scribed from the user’s point of view, only capturing the observable behaviours. The
result is an actually implemented algorithm for detecting interactions from formalised
diagram specifications. Indeed, a classical way to achieve such high level specifications
is to synthesise behaviours under the form of representative message sequences ([22]).
In our approach, we consider sequences which are made of messages sent between the
network and the users. This point of view discards as much as possible details about the
network internals. We use a common specification style based on diagrams of essential
communication scenarios, as it has been done in the two recent service interaction con-
tests ([11], [15]) which defined services by means of diagrams known as respectively
Chisel sequence diagrams and state transition diagrams. Using such intuitive diagrams,
we propose a systematic method for detecting logical interactions based on static anal-
ysis. To facilitate the definition of algorithms, we have been induced to define our own
framework of diagram specification. In particular, we precisely define variable scope,
variable substitution or the mechanisms of aliases introduced to model loops. The for-
malisation allows us to model service diagrams as simple trees, and thus as Prolog terms
to be analysed. Indeed, we have fully implemented our method using logic program-
ming in order to take advantage of its symbolic facilities. With respect to the prepost
approaches, dealing with diagrams for static analysis offers a better consideration of
state successions and a finer characterisation of state equivalence by providing a more
complete characterisation of the future of a state. In order to assess the value of our
method, we have first analysed the computed results with respect to our understanding
of the service specifications. Then, we have compared the results provided by our ap-
proach with the results of the FIW98 and FIWO0O contests ([5], [7]). The details of this
study can be found in [13]. Our results are globally significant since we almost find all
already detected interactions. To our opinion, the slight differences which remain may

64

be explained by the fact that some service description in the contests were ambiguous,
and thus may be specified in different ways. Thanks to our static analysis, problem-
atic configurations (states and subscriptions which lead to interactions) are infered and
not proposed a priori. On the contrary, in most of verification approaches based on
test or model-checking technics, a number of phones and a subscription configuration
have to be provided in order to build the model to check. Our method allows to auto-
matically elicit knowledge about minimal subscription configuration needed to reveal
interactions. Moreover, by considering intentional specified behaviour of services, we
also go beyond obvious syntactical criteria which for example, lead to cases of non-
determinism. We find both obvious interactions raised by a triggering event common to
different services and indirect interactions occurring when the effect induced by a first
service meets the triggering condition of the second one. Each computed interaction
is provided with the minimal informations of the subscription configuration, state con-
ditions over the phones involved in the subscription configuration, and the triggering
message at the source of the interaction.

The rest of the paper is structured as follows. Section 2 introduces our characteri-
sation of interactions and the running small example used to illustrate our approach. In
Section 3, we present some of the service diagram specifications we deal with. In Sec-
tion 4 we explain our method and show on a classical example how it allows to compute
interactions. By lack of space, the algorithm will be given only at the level of its main
steps : technical details or minor steps will be skipped. The algorithm description will
combine intuitive and technical considerations.

2 Characterisation of interactions

2.1 Asimple intuition

Let us introduce the interaction problem from an classical example involving two ser-
vices : TCS (Terminating Call Screening) and CFB (Call Forward when Busy). TCS
allows the subscriber to prevent incoming calls from a specified phone. When such calls
are performed, they are rejected and then, the callers listen to a specific refusal recorded
message, denoted by TCSmsg in the sequel. CFB ensures that all calls towards the sub-
scribing phone are forwarded to another phone (specified by the subscriber), as soon as
the subscriber is busy.

Direct interaction: If a phone B is forwarding incoming calls to a phone C' and
rejecting incoming calls from a phone A, a interaction occurs when A calls B (mes-
sage A.call(B)) while B is busy. With respect to CFB, the message A.call(B) should
aim to connect A and C, while respecting TCS, it should originate the sending to A of
the TCSmsg recorded message. The network could so react to the triggering message
A.cal(B) in two different ways. This double incompatible answer precisely charac-
terises direct interactions. Such interactions are often seen as a case of non-determinism
because in a same network state, the sending of a message requires two different re-
sponses from the network.

Indirect interaction: A more subtle interaction occurs when a contradiction indi-
rectly arises between service requirements. It is the case when the expected behaviour

65

specified for a service meets the triggering conditions of another service. Such cases
are said to be semantical interactions by [21]. Let us clarify this class of interactions by
considering a phone B subscribing the CFB service with C' as target and C subscribing
the TCS service with A in its screening list. Then, an interaction occurs when A calls B
which is already in a busy state. Indeed, the CFB service asks for the network to react
as if it had received the intentional message A.call(C) instead of the initial message
A.cdl(B). An interaction occurs since the simulated message could originate the re-
fusal message TCSmsgto A while the CFB service requires to put in connection A and
C. This situation is an indirect case of non-determinism and so, should be also consid-
ered as an interaction. We will qualify such interactions as indirect. In the sequel, the
simulated messages will be said to be intentional. Thus, through the intentional mes-
sages associated to the service invocations, interactions may be indirectly perceived.

Interactions may be characterised by information of different nature. The first infor-
mation, called call configuration in the sequel, is the knowledge of the involved phones
provided with their subscriptions to the services. In the first example (direct interac-
tion), the configuration is given by three phones, respectively A, B and C such that B
subscribes to TCS in order to prevent incoming calls from A and to CFB with C' as
target. In the second example (indirect interaction), the configuration is given by three
phones too, but with another subscription arrangement: B forwards incoming calls to
C which prevents calls from A. The second information is the triggering message caus-
ing the interaction: A.call(B) in both examples. The last useful information implied in
interactions is the triggering condition, which gives pertinent knowledge on the phone
states to reveal the interaction. In both examples, B has to be busy just as A tries to call
it. It expresses the minimal condition on the system state for the services to be jointly
exercised so that an interaction occurs. In the sequel, another aspect will be taken into
account to characterise interactions. According to the fact that the responses specified
by the two services are the same or not, the corresponding interactions will be qualified
as visible or invisible. Thus, in the previous examples, the two described interactions
are visible. The following Section is devoted to detail the elements defining interactions
(as indirect or not, visible or not).

2.2 Interactions

Service specifications contain elements of different nature such as users which are as-
similated to the network phones, recorded messages like the TCSmsg message, tones
like dialtone, ringingtone, ringbacktone, linebusytoneor disctoneindicating to the phone
user in which state is its phone, etc.

Definition 1. Let us consider S a set of sorts including at least the sorts recorded,
phone, tone. Each sort, except the sort phone, is provided with a set of constructors, gen-
erally simple constants like dialtonefor the sort toneor TCSmsg for the sort recorded.

For any service name F' : s; X ...s, WithVi € 1l.n,s; € Sandn > 0, a
subscription to the service F' is of the form User : F(ty,...,t,) with, forall i in 1..n
t; a term of sort s;. User is called the subscribing user while for each s; = phone,
User; is called an argument user.

66

The set of sorts is useful to declare all the basic data types used in a service speci-
fication. With respect to the sort phone, in the concern of generality, we will represent
arbitrary users by simple anonymous variables. Thus, in the sequel, V' will denote the
set of phone variables representing phone users, and provided with a total order relation
< when technical reasons ask for it. These variables will be denoted as A, B, C, ..., or
User;, and possibly indexed by a service name.

Provided that the Terminating Call Screening service is introduced by the notation
TCS: phone, an example of subscription is given by A : TCSB) and indicates that A
subscribes the service TCSwith B as forbidden origin of incoming calls?. Moreover, a
user variable A without any particular subscription subscribes by default the basic call
system, named as POTS. Such a situation is denoted by A : POTS. In practice, most of
services are defined from the knowledge of the underlying common basic call system
POTS. It can be generalised by introducing a partial order relation over services. Since
POTSis a basic service, all services F' depend on the POTSdescription, but some other
dependences between services can also exist. Thus, the notation F; < F; means that
the specification of the service F5 is based on the knowledge of the one of F;. Such a
facility will allow us to express a more complex service on some intermediate services
in order to reduce the specification size of F5 by referencing elements of F; within the
specification of F5.

Definition 2. A call configuration is the given of a set of subscriptions such that each
user variable occurring as argument user of a subscription is also a subscribing user
of another subscription of the configuration.

A call configuration is said to be non-degenerated if any subscription does not
contain several occurrences of a same variable®.

Let Fi,...F, be n service names. A (F1, ..., F,)-call configuration is a non-
degenerated call configuration containing at least a subscription to F; for each ¢ in
1..n.

For example a (TCS, CFB)-call configuration for the first given interaction is {4 :
POTS,B : TCSA),B : CFB(C),C : POTS} while {A : POTS, B : CFB(C),C :
TCS(A)} concerns the second one. Both are non-degenerated, exactly contain a sub-
scription for each service of (TCS, CFB). Let us remark that to ensure that any user
variable subscribes to at least a service, some user variables subscribe to POTS, the
least service name by hypothesis.

Let us remark that (F}, F»)-call configurations are similar to possibly interacting
configurations as defined in [19] in order to enumerate all call configurations likely
to bring about some interactions between the services F; and F5. [19] a priori builds
all the possibly interesting configurations in which one has to search for possible in-
teractions. But the number of such configurations remains large. Contrary to [19], our
purpose is not to a priori build them, but to detect interactions and to be capable for

2 If one wants to express that A prevents incoming calls from both B and C, then A has to
subscribe twice the TCS service: A : TCS(B) and A : TCS(C).

3 Thus, for example, a call configuration cannot contain a subscription neither of the form
User : F(User) nor of the form User: : G(Usera, Userz).

67

each of them of infering the knowledge of an underlying call configuration representa-
tive of the interaction. To firstly consider simple cases and like some other works ([20]),
we restrict ourselves to (F1, .. ., Fy,)-service configurations for n. = 2 in order to focus
on the detection of interactions occurring between only 2 service subscriptions.

We have already outlined that interactions will be also characterised by triggering
information, decomposed into two parts; the triggering message and the triggering con-
ditions:

Definition 3. Let us consider P a set of predicates provided with an arity on* S+.
A system state is a set of literals either of the form p(ty,...,t,) or of the form®
~ p(t1,...,tn) With p a predicate of P provided with the arity s; x ... x s, and
t; fori € 1..n aterm of sort s;.

Let us consider PM (resp. N M) a set of phone (resp. network) message names
provided with an arity on S*. For a phone message name m in PM of arity s1 X. . .X sy,
the phone message A.m(t1, - - -, t,) With ¢; of sort s; means that the phone A sends the
message m(t1, - .., t,) to the network. For a network message name m in N M of arity
81 X ...8p, the network message m(ty,...,t,).A with ¢; of sort s; means that the
network sends the message m(t1, ..., t,) to the phone A.

All symbols needed to specify a service (as S, P, PM, N M for sorts, predicates,
messages and so on) are grouped in a signature, denoted by @ in a generic way.

Definition 4. A triggering message is a phone (or possibly a network) message while
a triggering condition is a finite set of literals.

For example, if B subscribes to the CFB service with B : CFB(C), then A.call(B)
is a possible pertinent triggering message and {~ idlg(B), dialing(A)} is the associ-
ated triggering condition with idle and dialing predicates of arity phone interpreted
according to their obvious meaning.

Definition 5. Let (Fy, F3) be two services names.

A (Fy, F»)-service interaction I = (CC,TM,TC) is the given of a (F, F»)-call
configuration, a triggering message and a triggering condition such that the user vari-
ables occurring in T M or T'C are variables of the configuration CC'.

For example, ({A : POTS B : TCS(A), B : CFB(C),C : POTS}, A.cdll(B),{~
idle(B), diding(A)}) and ({A : POTS B : CFB(C),C : TCSA)}, A.cal(B),{~
idle(B), dialing(A)}) are two service interactions for (TCS, CFB). Our purpose is to
automatically elicit such interactions from the static analysis of the service specifica-
tions. Indeed, [17] outlines that observing and analysing statically graphical descrip-
tions of services allow to find most of the interactions. We want to emphasise this point
of view in giving more importance to the role of variables and intentional messages. Our
method is extending the one developed in [21] to specification given under the form of
diagrams instead of state transition rule set. Indeed, [21] already elicits pertinent knowl-
edge, such as inhibited primitive and intention primitive in order to explain the presence
of interactions. Our approach may also be compared to the one described in [9] since

4 87 denotes all the non empty words on S while S* denotes all the words on S.
5 The symbol ~ is here used as negation symbol.

68

they also extract interactions by static analysis from graphical specifications, except that

they do not deal with indirect interactions.

3 Diagrams

In order to ease static analysis of our specifications, we opt to denote them
as rooted trees which can be represented as finite terms. However, some nodes
are aliases pointing at a marked node to express loop schemas. Our specifications
are composed of a service call configuration, a diagram and a constraint set. The
diagram describes the system behavior by making explicit all representative al-
lowed message exchanges between the network and the phones. The call config-
uration expresses a kind of general precondition in relation to the diagram vari-
ables: the variables of the diagram are precisely the ones occurring in the sub-
scription terms of the call configuration. The constraints allow to express semantic
links between state predicates which restrict the set of admissible states of the sys-

tem.

APOTS
B:POTS

A.offhook
o
start(dltone).A

A.onhook

T~

4 (idle(A)

A.call(B A.onhook

idle(B)

start(rbtone).A
start(rgtone).B

emitting(A,rbtone)
emitting(B,rgtone)

5,(A.B)
B.offhook

stop(rbtone).A ?
stop(rgtone).B

talking(B,A)
talking(A,B)

8(A.B)

B.onhook Aoahook

(©) o
start(disctone).B

startEdisctoneg.
start(disctone).)
idle(B) idle(A) 12,(A.8)
emitting(A disctone) emitting(B,disctone)
A.onhook B.onhook

Fig.1: POTSdiagram

69

talking(A, B) =~ idlg(A) is,
for example, a constraint im-
posing that a phone A cannot
be at the same time in commu-
nication with another one and
in an idle state.

Each diagram admits a graph-
ical representation. To give a
general idea of our service spe-
cification, let us first introduce
the one of the POTS, the basic
communication service.
POTS has for call configura-
tion a double subscription of
the POTS service by the vari-
ables A and B. The diagram
begins with the root node spec-
ifying that A isinan idle state.
Each node expresses proper-
ties on phones that are requi-
red both before the messages
labelling the outgoing edges
are sent and after the messages
labelling the entering edges are
sent. Most of the edges are
labelled by a phone message
and an answer of the network.
At each diagram node, each
potential future event (phone

message) has to be specified so that each possible transition figures on the diagram.
The network can give two different answers to the output A.call(B) which depend on
whether B is idle or not. This illustrates the interest of using conditions on edges. The
common part of the two edges, i.e. the A.call(B) label, is then shared: it makes the
diagram more legible. Let us remark that on this diagram, the condition is empty for all
the other edges.

Let us also remark that each node is annotated by a number n and a list of variables, the
ones which are precisely in the scope of the considered node. The variable list (A, B)
of the POTS service is ordered accordingto A < B. We do not detail all uses of sym-
bols involved in the POTS diagram which in fact, naturally correspond to their usual
meaning in the field of telecommunication services. For example, start(disctone). A is
a network message in direction of A under the form of a specific tone indicating to A
that there is no longer a user talking to it. In the same way, ringbacktone holds for the
ringbacktone, ringingtone for the ringingtone, dialtone for the dialing tone . ..

Our diagrams are very close to the Chisel ones ([5]). They specify an alternation of
messages from phones to the network and from the network to phones. They also share
the notion of system states with state transitions diagrams used in [16]. As previously
explained, we systematically use variables to model phones. Indeed, substitution mech-
anisms will assign different r6les to the occurring phones, particularly, in different sub-
scription terms of a call configuration.

3.1 Definitions

Definition 6. Let us consider two services provides with F" as service name. Let Ny be
an arbitrary set. A node identifier for F' over N is a couple (F,n), where n belongs
to Ng. An alias for F is a couple (ni, (v1, - .., vx)) Where ni is a node identifier for a
service G suchthat G < F and v; for i € 1..k is a variable of V. The alias set for F' is
denoted by Aliase(V, F).

In practice, the considered set Ny will be a finite subset of the set of all natural
numbers so that each node of the diagram of a service specification will simply be
denoted by an arbitrary number and implicitly marked by the service name. Obviously,
this systematic node marking will serve us to define alias mechanisms.

The node identifier appearing in an alias for F' has to refer to a node of a service
preceding it according to the preorder relation defined over the services. k is a priori
the number of variables under the scope of the node indicated by the alias.

Definition 7. Let us consider a service of name F' and provided with a signature ©. A
node label over @ is either a system state over @ or an alias for F'.
Nodel abelg (V') denotes the set of node labels made of system states over 6.

A system state for a node label partly characterizes the current state of the system
while an alias will serve us as a link to a referenced node. It allows us both to be
sparing of specification redundancies and to model intrinsic loop phenomena within
specifications.

70

Definition 8. Let © be a signature for the service name F'. An edge label over O is
either a 3-uple made of a phone message, a literal set and a set of network messages or
a couple made of a literal set and a set of network messages.

The literal set is called condition while the set of network messages is simply called
an answer. The set of all edge labels for F' is denoted by Edgel abel, (V).

An edge label expresses input and output messages leading to a system state evolu-
tion. The outputs (the network answers) are sent to the phones. They can occur either
in direct reaction to a network input (a phone message) and/or according to some con-
ditions expressed on the system states. The conditions on edge labels are necessary to
the given input/output message exchange but not required in the source node of the
transition.

Definition 9. Let © be a signature for the service name F' provided with its set of node
identifiers built from the set Np.

A diagram D for F, over O is a 4-uple (N, Edge, node, edge) where (N, Edge)
is a rooted tree 8 and nodeand edgeare the labelling functions respectively from N to
Nodel abelo (V') U Aliase (V, F') and from Edgeto Edgel abel, (V') such that any node
labelled by an alias is a leaf of the rooted tree.

In a diagram, nodes correspond to the state descriptions and edges to the transi-
tion descriptions. As diagrams are trees, we inherit of the notion of subdiagrams de-
fined as subtrees of the global tree. These subdiagrams may be reduced to simple alias
nodes. Moreover, for each node, we can consider branches following it, as defined by
any couple composed of an outgoing edge stemming from the node and the subdia-
gram it points to. Aliases are in fact references to pre-existing (sub)diagrams: an alias
((G,j), (v1,...,vg)) of a F diagram designates the node referenced by (G, j) in the
G diagram provided that of course, G < F'. If G is equal to F itself, then the F' dia-
gram contains a loop. For example, the diagram associated to the Call Waiting service
contains a communication loop since the subscriber can switch the held phone with the
one it’s talking to. More precisely, the alias ((G, 7), (v1,- .., vx)) points at the subdia-
gram of the G diagram whose the root node is (G, j). The variables occurring in the G
subdiagram are substituted by (vy, ..., v), according to the order defined over the G
variables : in other words, the least variable in the scope of the subdiagram defined by
the root (G, j) is replaced by the variable v, . It is thus required that k¥ coincides with
the number of variables in the scope of the (G, j) node.

Let us now introduce the CFB diagram which is based on the POTSone. The begin-
ning of the service diagrams coincides with an intermediate node of the POTSdiagram.
It ensures that the initial states of the CFB service is reachable from a network only
involved with users subscribing the basic call system POTS. The CFB diagram con-

& A directed graph is defined by a couple (Node, Edge) where Nodeand Edgerespectively define
the set of all nodes and the set of all edges (defined as couples of their source node and target
node). A rooted tree is a connected directed graph with an identified node, the root, considered
as initial and such that there is no cycle in the graph, any node being reachable from the root
by a consecutive edge sequence.

71

sists in adding

. diaing(A
B:CE8O) both edges for
C:POTS A.cal(B) A.onhook new messages
A.cdl(B) and
idle(B) conditions for

btone). o 21dl

R T e T L I A.cal(B) e
ges: the con-

ditions depend
on the state of
POTST(A) the two pho-
nes B and C
Fig.2: CF B diagram and according
to the cases, the service is triggered or not. In particular, the first branch stemming from
the dialing(A) node is similar to the corresponding POTShranch while the second and
the third ones are new. Indeed, they are concerned with the variable C' occurring as
an argument of the CFB service. There are two subdiagrams equivalent, up to some
variable substitution, to a POTSsubdiagram, precisely the one whom node identifier
is (POTS, 5). In order to explicit these similarities, we prefer to use aliases instead of
detailing these diagrams. Alias nodes are graphically represented by means of triangles
instead of ovals used for state nodes.
BTCSA) With the subscription information that a phone
APOTS | B subscribes the TCS service with a phone A as
parameter, the TCS service simply amounts to intro-
duce a new answer from the network to the message
A.cdl(B). The network sends to the phone A a spe-
(Paying(a, Tesmsg) ((99A) | ¢ific recorded message. It explains why the specifi-

POTS5,(A,B) POTS5,(A,C) POTS,10,(A)

A-onhook cation diagram is simple and concise. For simplic-
0 ity, the node identifiers are left implicit. But a dia-

gram does not suffice by itself to specify a service.

Some informations lack about state predicates. One

has to specify that a phone A cannot satisfy in the
same state the predicates playing(A, TCSmsg) and
idle(A). Such requirements are specified by means of axioms, called constraints, which
are added to a diagram.

Fig.3: TC'S diagram

Definition 10. Let © be a service signature. A constraint is a formula ! = [’ where [
and I’ are both literals over 6.

Constraints play the réle of invariants on the set of reachable system states. We do
not develop this point but they are particularly useful to define system states and con-
ditions in a minimal way. For example, talking(X,Y) =~ diaing(Y") is a constraint
for POTS specifying that a given phone Y cannot be at the same time in a dialing and
talking state. Obviously, as we have said it for the TCS service, each service adds its ap-
propriate constraints, mainly by introducing new predicate symbols. These constraints
have to be explicitly specified and joined to the service diagram : a service specification
is composed of a signature, a diagram provided with subscription informations, and
constraints. However, the constraints are rather obvious to write.

72

4 The detection method and the corresponding algorithms
4.1 The main steps of the method

In fact, the proposed method combines two major steps corresponding to two differ-
ent algorithms which are more precisely presented in the two following subsections.
The first algorithm extracts the triggering informations of a service from its diagram
specification. The idea is to simply identify the points in the diagram where the spec-
ification differs from the one of the reference system (the point where the service is
supposed to be plugged, generally a point included in the POTSdiagram). While de-
tecting these divergences, the algorithm collects the configuration informations leading
to them as term of subscriptions, states and triggering message. Moreover, the diagram
is annotated with the appropriate intentional messages. The second algorithm exploits
information computed by the first one by comparing the whole annotated subdiagram
stemming from the activation point of the first service to the triggering conditions of the
second one. Like the previous algorithm, while searching, this one collects the informa-
tions relative to the configuration which leads to a conflict and then provides them as a
result. This algorithm can thus be qualified as an interaction elicitation algorithm.

4.2 Extraction of the triggering informations

Principle of the algorithm To compute the triggering information of any service F',
we compare its diagram to the default service diagram, i.e. generally the POTS one.
Below, we outline the main steps to extract all pertinent informations related to service
triggering. Notice that we use a special kind of unification: the computed unifiers are
constrained by preventing each variable of a diagram from being bound to more than
one variable of the other diagram. This prevents the confusions between the different
phones occurring in a given specification. Indeed, in the intention of the specifier, each
variable of phone of a service diagram corresponds to a specific réle in the described
set of scenari. Confusing them is not relevant: this differs from the prepost specifica-
tions, for example, where the far past and future of states are not explicitly specified.
Considering this precision about unification mechanism, the principle of the algorithm
is the following one:

o If the initial nodes of the POTS and F’ services match, the comparison produces
a unifier denoted by A. If the two initial nodes do not match (see the CFBdiagram for
example), we look for a POTS node coinciding to the initial node of the service in order
to proceed with the corresponding POTS subdiagram. If finding this analogous node in
the POTS diagram is not possible, we consider that the initial node of the F’ diagram is
in fact a specification error.

e Once a POTS node has be found as a mirror node of the F initial node, the compar-
ison of the two diagrams is pursued with the comparison of the subdiagrams stemming
from these two similar nodes. Diagram paths are recursively compared two by two, one
outgoing from the F' initial node, and the other one outgoing from the similar POTS
node. This provides us with a set of path peers which exactly match in the context of
the unifier A (recursively extended to the new encountered variables while descending
the compared paths) and a set of paths outgoing of the F initial node which do not
match any of the POTS paths. The remarkable set is the one of mismatching branches

73

http://www.cs.wustl.edu/_schmidt/TAO.html
http://trese.cs.utwente.nl/AOSD-EarlyAspectsWS/Papers/Mousavi.pdf
http://trese.cs.utwente.nl/AOSD-EarlyAspectsWS/Papers/Mousavi.pdf

provided with their corresponding unifier: they are built from mismatching paths such
that the branch edge is the first edge of the path without any equivalent node in POTS.
The edge source is the activation point, the edge user message is the triggering message,
the union of the edge condition and the node label of the source node is the triggering
condition and finally, the subdiagram linked to the edge target is simply called the acti-
vation subdiagram. Activation branches are grouped together as soon as they share both
their activation point and triggering message.

e Once activation branches has been computed, the static analysis is pursued in
order to collect all pertinent knowledge about these activations. First step: Elicitation
of intentional messages associated to the activation branch, if they exist. It consists in
looking for a network answer provided with its POTS subdiagram similar to those of
the activation branch, up to some restricted unifications. If the search is successful then
the user message at the origin of the corresponding POTS subdiagram is precisely the
intentional message we are looking for. Of course, this search is led taking into account
alias mechanisms. At each intentional message is associated an intentional condition:
the union of the condition labelling the corresponding POTS edge and the label node of
its node source. Second step: Elicitation of intentional messages located in subdiagrams
of the activation diagram. Indeed, such intentional messages are likely to interact with
triggering messages of another service, and thus, may be at the origin of an indirect
interaction.

To conclude, triggering informations are basically made of the given of a set of data
structured as follows: call configuration, triggering message, triggering condition, an-
notated activation diagram and intentional messages (associated to the triggering mes-
sage), which is illustrated by the two following examples. In the sequel, by lack of
place, the annotated activation diagram will be left implicit: they are given under the
form of a network message and the corresponding annotated activation diagram.

Triggering information of CFB The informations computed by the algorithm for the
CFBservice are synthesized in the following tabular:

Call configuration [Triggering message|Condition [|Intentional |Condition
phone msg. message

A : POTS A.cdl(B) ~ idle(B)||A.cdl(C)|idle(C)

B : CFB(C) dialing(A) dialing(A)

C : POTS idle(C)

A : POTS A.cdl(B) ~ idle(B)[|A.cdl(C) |~ idleg(C)

B : CFB(C) dialing(A) dialing(A)

C : POTS ~ idle(C)

These results are the expected ones: by confronting the CFBdiagram with the POTS
diagram, we can see that the activation point of CFBis clearly the dialing(A) node.
From this node, the CFB diagram contains two branches both sharing the A.call(B)
message and the ~ idle(B), dialing(A) condition but respectively adding the idle(C)
and ~ idle(C) conditions. Thus, A.call(B) the triggering message. The corresponding
activation diagrams take place in the lacking Activation column of the tabular, together
with the respective network answers ({start (ringingtone).C, start(ringbacktone).A}
and {start(linebusytone).A}). And as expected, the computed intentional messages are
in the first case A.call(C) (with the idlg(C') condition) and in the second case A.call(C)
(with the ~ idle(C') condition).

74

http://www4.informatik.tu-muenchen.de/papers/BK98.html
http://www4.informatik.tu-muenchen.de/papers/BK98.html
http://www.esterel-technologies.com/
http://www-cse.ucsd.edu/~ikrueger/publications/savcbs01.pdf
http://www-cse.ucsd.edu/~ikrueger/publications/savcbs01.pdf

Triggering information of TCS In the TCSdiagram, the two POTS branches existing
for the A.call(B) message are suppressed and replaced by a new branch having a differ-
ent associated activation diagram : the network sends the playing of a recorded refusal
message. This message is really specific to TCSso that any intentional message can be
found. So the TCStriggering information the programs returns is simplified:

Call configuration [Triggering message|Condition [|Intentional|Condition
phone msg. message
A : POTS A.cal(B) dialing(A) [[none none
B : TCS(A)

4.3 Elicitation of interactions

Principle of the algorithm In order to detect interactions between two services F}
and F» (possibly Fi = Fy), we apply a static analysis on their respective triggering
informations. Our interaction search is decomposed in main steps according the kind of
interactions we are looking for. At first glance, there are three principal cases explaining
that a activation of F; causes an interaction with Fj.

— Fi and F; share the same triggering message (direct interaction).

— The intentional message associated to the triggering message of F; coincides with
the triggering message of F5.

— The activation of F; is likely to activate F> via real or intentional messages.

The first step is based on a comparison of the triggering messages and thus, con-
cerns direct interactions. The second step concerns intentional messages compared with
triggering messages of the other service. The third step amounts to apply the first and
second step at each edge of the activation diagram. All steps are based on a same com-
parison technic and according to the fact that messages are triggering or intentional
ones, the interpretation of the detected interactions differs. Moreover, we can also de-
duce informations about the visibility of the interactions. This is shortly detailed in the
four following points:

e The comparison principle: For ¢ = 1,2, let CC;, T M;, C; be respectively a
call configuration, a triggering message and a triggering condition associated to the F;
specification. Moreover, let us denote I M; and IC; the intentional message and associ-
ated condition when they exist. The comparison of (triggering or intentional) messages
is considered as successful if they are unified up to a restricted unifier A (which do not
unify variables of a given diagram) and provided that their associated conditions are
compatible with respect to the constraints and A. In other words, it means that there
exists at least one state satisfying both A(C1) UA(C2) and the constraints of the specifi-
cations. As soon as the comparison of messages provides us with a unifier such that the
conditions are compatible, there is clearly an interaction. Then, the corresponding call
configuration C'C results from the union of the two service call configurations CC}
and C'Cs, once the unifier has been applied and each useless POTS subscription has
been suppressed of the global subscription. More precisely, if the resulting configura-
tion contains for example the subscriptions A : TCSand A : POTS, then the POTS
subscription is deleted since the POTS subscription is considered as a default one.

e Direct interactions (with two triggering messages): The detected interaction
(CC, TM,TC) is given by TM = X\(T'M,) (also equals to \(T'M>) by hypothesis)

75

http://www.aspectc.org/download/words2002.ps.gz
http://beta.ece.ucsb.edu/WORDS-2002/
http://beta.ece.ucsb.edu/WORDS-2002/
http://www.omg.org/

and T'C = A(C1) U X(Cs), the call configuration CC being already defined. Thus, for
each possible unifier A, there is an associated direct interaction.

e Indirect Interactions (with a triggering message and an intentional message
at the activation point): Let us suppose that the intentional message is the F; one,
the messages I My and T M, are unified up to an unifier A and the conditions IC; and
C> are compatible. Then, it means that the intentional message I M corresponds to an
F;, triggering message. In other words, when F} is triggered, the expected behaviour
meets the triggering condition of a F; triggering. For each possible unifier A, there is
an indirect 2-service interaction denoted by (CC, T M, T C) where T M is the message
T M, corresponding to the intentional message I M, up to the unifier \, TC = X(C;)U
A(C>). Such an interaction can be understood as: “in the configuration CC, when F} is
triggered on the message T M7, all happens as if the network had received the message
I My, at the origin of an indirect F5 triggering”.

e Indirect Interactions (with messages inside the activation diagram): the whole
activation diagram is covered by applying the two previous comparison mechanisms at
each encountered edge.

o Visibility of interactions : As the triggering informations contain also activation
diagrams, we are able to determine whether the detected interaction is sensible or not.
If after a joint triggering of F; and F5 as given in an interaction, the two activation
diagrams are similar up to the appropriate unifier, then the interaction is perceived as
invisible. In all other cases, it is a visible one. This means that there really exists a
difference between the service requirements which is observable by an user. Of course,
nothing is said about its seriousness.

We will now illustrate how our method can be applied on the CFBand TCSservices
before giving the corresponding result of the program. The research begins by the in-
teractions on triggering messages. CFBand TCShave the same triggering messages :
Acrg.cal(Bcrg) and Arcs.call(Brcs) on which the restricted unification provides the
unifier A\ = [Aces = Arcs, Bers = Breg| leaving Cerg unbound. The activation
conditions are compatible : {~ idle(Bcrg)} U 0. At this step, we can affirm TCSand
CFBinteract because they are triggered at the same time. Let us detail the interactions.

The Acrg call will be forwarded to Cers: if Ccrs is idle Acrg Will perhaps be con-
nected to it, and in the other case (~ idle(Ccrg)), Acrs Will receive the linebusytone
tone. By the TCStriggering, Aces should receive the TCSmsg recorded message in
both cases. The two expected behaviours do not match. So, a simultaneous triggering
of CFBand TCSis perceived by the user as a requirement conflict. It is a typical exam-
ple of a visible interaction. We can now apply A to compute the two resulting interac-
tions composed of the same call configuration CC' = {A : POTS,B : CFB(C), B :
TCS(A), C : POTS}, the same message A.call(B) and two different conditions, respec-
tively {~ idle(B), idleg(C), diding(A)}) and {~ idle(B), ~ idle(C), diding(A)}). Let
us now consider intentional messages. There is no intentional message for TCS. The
first activation branch of CFB (holding for idle(C)) has an intentional corresponding
message: Aceg.call(Ccrg). It can be unified with Arcs.call(Brcs) (TCS triggering
message): this produces the unifier ' = [Acrs = Arcs, Ccrs = Breg). The inten-
tional condition {idle(Cceg), dialing(A)} is also compatible with the TCS activation
condition.

76

http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2000/krueger.html
http://www.gigascale.org/metropolis/infrastructure.html

The resulting interaction provides us with the call configuration CC' = {4 :
POTS, B : CFB(C),C : TCSA),C : POTS}, with the triggering message TM' =
A.call(B) (corresponding to the intentional message A.call(B)) and the triggering con-
ditions TC' = {~ idle(B), idle(C), dialing(A)}.

The remaining question concerns the visibility of the detected indirect interaction.
Clearly, the direct triggering of CFBand the indirect one of TCSlead to two different
expected network answers. It can be established by the comparison of the activation
diagrams. Thus, there is a visible interaction with this configuration.

Concerning the second activation branch of CFB, the resulting interaction is quite
similar. Only the condition changes. The new triggering condition is {~ idlegB), ~
(idle(C)), dialing(A) }. The comparison of the central answer and of the activation di-
agrams allows us to conclude this interaction is visible too: with CFB, A would emit a
busy line tone and with TCSthe refusal message. This interaction is visible too.

To summarize, the previous computations simply allow us to retrieve the well known
interactions between TCSand CFBwhich are detected by the programs giving the fol-
lowing as result:

CC|[{A: POTS, B : CFB(C), CC' [{A: POTS, B : CFB(C),

B : TCS(A),C : POTS} C: TCYA),C : POTS}
TM|A.cdl(B) TM’[A.cal(B) (int. message : A.cal(C))
TC |{~ idle(B), idlg(C'), dialing(A)}) TC’ |[{~ idleg(B), idle(C), dialing(A) }
or |{~ id&B),~ idlegC), dialing(A)}) or |{~idegB),~ idleC), dialing(A)}

All the triggering informations (subscription configuration, state conditions, trig-
gering message, status of visibility) are automatically computed from the given of the
service diagrams and their associated constraints. The results given above have been
computed by our Prolog prototype.

5 Conclusion

In this paper, we presented a formalism dedicated to service specification and a static
interaction detection method implanted for such specifications. The detection method
uses two algorithms implemented in Prolog. The first one compares a service specifi-
cation to the basic system specification in order to find the triggering information of
the service, that is to say, the conditions of its activation. The second one compares
the triggering informations of two services in order to find interactions between them.
These two algorithms have been shortly introduced and performed on a classical exam-
ple (interactions between CFB and TCS). A comparison with other works on interaction
detection can be found in [13] and concerns all services given in the FIW98 and FIW00
contests, except those dealing with billing. In order to improve our detection method,
we could perform further works in several directions. First, the calculus of the triggering
information allows to compute an activation path (from the initial node to the activation
point) in the diagram that could be exploited. For example, giving triple <triggering
path, triggering message,triggering condition> can be seen as giving a (uninstantiated)
test case. Combined with the use of the constraints, all this could be used in order to
determine state reachability in the model. The service specifications could also be ex-
tended by adding data types definition (and their associated operations) or by adding
some other kind messages and equipments or else by distinguishing phones and users
to model services based on a notion of user mobility.

77

http://www.cs.wustl.edu/~schmidt/PDF/IEEE-proc.pdf
http://www.cs.wustl.edu/~schmidt/PDF/IEEE-proc.pdf
http://www.cs.wustl.edu/~schmidt/corba-research-realtime.html
http://www.cs.wustl.edu/~schmidt/PDF/middleware-chapter.pdf
http://www.cs.wustl.edu/~schmidt/PDF/middleware-chapter.pdf
http://www.cs.wustl.edu/~schmidt/PDF/middleware-chapter.pdf

Acknowledgements. We thank Francis Klay for discussions, and for financial sup-

port of France Telecom with the MOECIF project. We also thank the French national
project RNRT ValiServ.

References

1.

2.

© ©

10.

11.

12.

13.

14.

15.

16.

17.

R. Accorsi, C. Areces, W. Bouma, and M. De Rijke. Features as Constraints. In [7], pages
210-225, 2000.

D. Amyot, L. Charfi, N. Gorse, and T. Gray. Feature Description and Feature Interaction
Analysis with Use case Maps and LOTOS. In [7], pages 274-289, 2000.

D. Amyot and L. Logrippo, editors. Feature Interactions in Telecommunications and Soft-
ware Systems 7. 10S Press, 2003.

K. Berkani, R. Cave, S. Coudert, Francis Klay, P. Le Gall, F. Ouabdesselam, and J.-L. Richier.
An environment for interactive service specification. In [3], pages 25-41, 2003.

L.G. Bouma and K. Kimbler, editors. Feature Interactions in Telecommunications and Soft-
ware Systems 5. 10S Press, 1998.

L. D Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon. Incremental Feature Valida-
tion : A synchronous Point of View. In [5], pages 262-275, 1998.

M. Calder and E. Magill, editors. Feature Interactions in Telecommunications and Software
Systems 6. 10S Press, 2000.

D. Cansell and D. Méry. Abstraction and refinement of features. In [10], pages 65-84, 2000.
R. Crespo, L. Logrippo, and T. Gray. Feature Execution Trees and Interactions. In Hamid R.
Avrabnia, editor, Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications, PDPTA *02, pages 1230-1236, 2002.

S. Gilmore and M. Ryan, editors. Language Constructs for Describing Features. Springer-
Verlag London Ltd, 2000.

N. Griffeth, R. Blumenthal, J.-C. Gregoire, and T. Ohta. Feature Interaction Detection Con-
test. In [5], page 327, 1998.

M. Heisel and J. Souquiéres. A Heuristic Algorithm to Detect Feature Interactions in Re-
quirements. In [10], pages 143-162, 2000.

H. Jouve. Caractérisation et détection des interactions & partir de spécification graphiques.
PhD thesis, Université d’Evry, 2003. forthcoming thesis.

F. Klay, M. Rusinovitch, and S. Stratulat. Analysing feature interactions with automated
deduction systems. In 7th International Conference on Telecommunication System Modeling
and Analysis, 1999.

M. Kolberg, E. H. Magill, D. Marples, and S. Reiff. Second Feature Interaction Contest. In
[7]1. pages 213-231, 2000.

M. Nakamura, Y. Kakuda, and T. Kikuno. Feature Interaction Detection Using Permutation
Symmetry. In [5], pages 187-201, 1998.

M. Plath and M.D. Ryan. Defining features for CSP: Reflections on the feature interactions
contest. In [10], pages 163-176, 2000.

M. Plath and M.D. Ryan. The feature construct for SMV : semantics. In [7], pages 129-144,
2000.

S. Reiff. Notes on Call Configurations with Features. In [10], 2000.

D. Samborski. Stack Service Model. In [10], 2000.

. T. Ohta T. Yoneda. A Formal Approach for Definition and Detection of Feature Interaction.

In [5], pages 202-216, 1998.

. K.J. Turner. Formalising the chisel feature notation. In [7], pages 241-256, 2000.

T. Yoneda, S. Kawauchi, J. Yoshida, and T. Ohta. Formal approaches for Detecting Feature
Interactions, Their Experimental Results, and Application to VoIP. In [3], pages 205-212,
2003.

78

http://www.cs.wustl.edu/~schmidt/papers/NASA/dsonline.html
http://www.cs.wustl.edu/~schmidt/papers/NASA/dsonline.html
http://www.computer.org/dsonline/
http://www.computer.org/dsonline/
http://www.computer.org/dsonline/middleware/RM.htm

Service Discovery in Mob,g4

C. Montangero, L. Semini, S. Semprini

Dipartimento di Informatica, Universita di Pisa

Abstract. Service discovery mechanisms play an increasingly relevant
role in the definition and construction of a flexible and powerful infras-
tructure for applications that have the Internet as their reference running
environment. Therefore it is not only sensible but highly desirable and
somehow mandatory, to address the unambiguous and rigorous descrip-
tion of service based systems, in the context of the research on formal
methods for the specification and verification of distributed systems. Be-
sides, it would be greatly useful to have a common framework on which
to base the specification of distributed systems in general and of services
based systems in particular. In this paper we claim that Mobgg:, with
its underlying model, its logic and its refinement-oriented specification
process, can be such a framework and show some evidence of how it can
be used in this sense.

1 Introduction

In the search for an ever more flexible and powerful net infrastructure to ease
the interaction of applications on WANSs (and the Internet as the main reference
scenario), services play a relevant role. Applications that need some particular
information or that, more in general, need to perform tasks for which they are
not equipped should be granted the chance to look for other applications able to
fulfil their requests. In a classic distributed environment, where everything can
be thought of as reasonably stable and stationary, such service providers would
be identified once and for all and newbie would be promptly presented to all the
inhabitants of a net. In the new settings, where services are no longer stable nor
stationary, more powerful means for their discovery are needed.

Besides, in such a setting, being able to unambiguously state the properties
exhibited by our systems is of the upmost importance. To achieve the proper
level of confidence on the claims about the properties of interest, we need proper
formal tools that allow us to specify our systems and to reason on these speci-
fications. The specification of services discovery mechanisms is just an instance
of this wider picture.

Service discovery mechanisms are a relevant part in the life of a distributed
system, it would be a great benefit to be able to accommodate in the same
framework both the description of these mechanisms and the specification of
distributed systems so to ease the integration of the two parts. Another appealing
feature would be the specification of a general service discovery mechanism, to
avoid premature choices with respect to service implementations. This would

79

give the designers the chance to keep different concerns separate, namely the
specific system architecture and functionalities on the one side and the service
discovery mechanisms on the other. Of course, when the time for a choice has
come, it should be possible to detail the general description to match a particular
mechanism and still keep the general description as a valid interface between the
system and the service providers.

Our claim is that Mob,gy is such a framework, i.e. Mob,gy offers all we
need to specify the exploitation of service discovery mechanisms in the most
general setting of mobile distributed systems running on WANSs, and meets the
requirements elicited so far.

The Mob,4;; methodology is based on a model that captures a general struc-
ture apt to be used to describe mobile distributed systems. This model poses the
bases for the whole methodology by defining a set of concepts: agents (mobile or
stationary computational components), neighborhoods (the localities, the places
where agents live), and guardians (the entities that embody and enact the secu-
rity policies relative to each neighborhood and practically take care of commu-
nications and mobility handling agents’ requests). The Mob,4y model is meant
to be a general well defined architecture, where several aspects, e.g. routing for
the delivery of messages, are not specified in detail. This allows accommodating
any choice that could arise from specific needs of a system. Being this model
the very base of the methodology, it is the notion of refinement that guides the
designer in the description and verification of a Mob,gy system.

Taking the move from a description of the reference model, passing through
several intermediate steps, a specification of the desired system will be produced
that gives details for what is intentionally left under—specified in the reference
model. These details complete the specification with all the peculiar functional
and non—functional aspects of the system of interest. A proper, rigorous defini-
tion of a refinement relation guarantees that the refinement process preserves
the validity of properties from step to step. Such refinement relation relies on
logical implication between specifications written in DSTL(x), a logic that allows
describing temporal properties of distributed states of components communicat-
ing asynchronously, thus giving the means to talk about the evolution of the
computations of distributed systems.

The idea underlying this work is the following: we refine the Mob, 44 model
to describe a general abstract interface to service discovery mechanisms, thus
actually defining a new reference model that is to be considered as the start-
ing point of the specification of any mobile distributed system that is somehow
related to services. This new reference model, together with the existing method-
ology, is the common framework we are looking for. Then, via proper refinement
process, we can describe any particular service discovery mechanism keeping as
the interface the abstract description we gave at the beginning.

The compositional nature of Mob,gs specifications allows us to think of a
scenario like the one represented in Figure 1. Given the specification of a service
based system, defined in terms of the reference model, we can derive an instanti-

80

Fig. 1. A scenario of refinement and composition.

M obadit!
reference model

general
service discovery

service based
system

service discovery
type 1

service discovery
type2

service discovery

service based
system (type 1)

service based
system (type 2)

service based
system (type 3)

ation of the system depending on the particular discovery mechanism we choose
to pick up from a library of mechanism specifications.

In Figure 1, boxes represent specifications and arrows represent refinement
relations between specifications.

In this paper, for the sake of economy in the presentation of the logic and of
the model, we focus our attention on the specification of service discovery mech-
anisms rather than on mobile systems. We report a particular refinement of the
general Mob,gy model that constrains it to a stationary setting where security
concerns, of the upmost relevance to the general Mob,4y; model, are not taken
into account. Porting the results presented in this paper to the general model
would be an easy task. This porting would imply the exploitation of DSTL(x)
full expressiveness, that is needed for a proper description of the mechanics of
the agent/guardian relationship, and of communications and mobility.

81

2 Specification and refinement in DSTL(x)

We write our specifications using an asynchronous, distributed, and temporal
logic called DSTL(x), the first order extension of DSTL [16]. It is based on
a logic for distributed states, DSL [17], and includes temporal operators a la
Unity [7]. We build on the Unity logic since it is only a subset of linear time
temporal logic, with a limited number of operators, which are rather easy to
understand intuitively, and cannot be nested. However, the logic permits to ex-
press most of the important properties of a system, exploiting the simplicity
and proof straightforwardness which makes Unity more appealing for the de-
signers than linear time temporal logic. The extensions we make permit to deal
with distributed asynchronous systems. We name the components of the sys-
tem and relate properties which might hold in distinguished components, in an
asynchronous setting.

We assume a denumerable set of component names {m,n, my,ms,...}, and
that the variables set includes a denumerable set of component variables {M, N,
My, Ms,...}.

We introduce location modalities for each component in a system: we use
component names, with a different font. For instance, my is the location modal-
ity corresponding to component my, and mjZam(m,) stays for “in component
m1, Tam(my) holds”. We let quantifiers range over modalities, and M , N , M;
...are location modality variables. Binding between location variables and reg-
ular variables is possible. For example, VM. MIam(M) means that for all com-
ponents m;, m;Iam(m;) holds. Quantification over modality variables is done in
a standard way, following, for instance [9].

Due to focus and to space reasons, in this work we consider a fragment of
DSTL(x), and do not dwell in the formal aspects of the logic. The reference paper
is [16], where relationship to many logic for distributed and mobile systems is also
discussed. Here we just recall that the main novelty of the logic is an innovative
semantic domain: the Kripke models are built on worlds that are arbitrary sets
of computation states, instead of single states or tuples of them (one for each
component). These choices, adopted in many logics for distributed systems are
not well suited to asynchronous communications.

2.1 Syntax
Fu= A|L| ~F|FAF' |MF
¢ == VIF | F eapsto F' | F Becavse F' | staBLe F | it F

The first equation defines DSL(x) formulae: A is an atom, L is the propositional
constant false. With M; we denote the dual of M; , i.e., M{F =~ M; ~ F. With
T we denote true, i.e. T =~ L.

The second equation defines DSTL(x) formulae: A DSL(x) formula is also
a DSTL(x) formula, provided it is a closed sentence, in prenex normal form.
For the sake of readability, we leave universal quantification implicit, and make
explicit, when needed, existential quantifiers. For instance, 3y. Mp(z) — q(z,),

82

is implicitly prefixed by VM, z. Conversely, quantification of temporal formulae
is always implicit, as discussed below.

Operator LEADS_TO expresses a liveness condition, and is similar to Unity’s
— (leads to): F is always followed by F'; BECAUSE expresses a safety condition,
and says that F' must be preceded by F’; sTABLE extends Unity’s STABLE to the
distributed case; INIT permits to describe the initial state.

Temporal formulae are written without explicit quantification. The intended
meaning is that a formula F' is universally quantified over all values of the
variables appearing in the premises of F', and existentially quantified on the
remaining variables. For example M p(z) A q(y) Leaps_to Nr(x, M, z) should be
understood as prefixed by VM, z,y 3N, z. The variables in the formulae with
INIT and STABLE are all universally quantified.

The domain over which a variable is quantified (i.e. its sort) can be under-
stood from the context or explicitly defined. What is important is that we assume
these domains to be invariant during time and in space.

2.2 Semantics

The models for DSTL(x) formulae are built on structures like the one in the
following figure, which describes the computation of a system with two compo-
nents. Here, p, ¢, ...are the properties holding in the states.

(m) 4 q r UyZ —> 2 —> 2 —>

(n) p,t >U—>V ——>DP—>w,t w,t —

We call S; the set of states of component m;, and S the set of all the states of
the computation. A distributed state ds is any subset of S, and ds® is the set of
the initial states.

Let M be a model, the semantics of DSTL(x) formulae is given by structural
induction in Table 1.

Note that a distributed state is any set of states. This means that when
we have to check a condition like Vds...3ds’ ..., we need to consider all possi-
ble subsets of S. This may lead to counter-intuitive choices, like taking larger
states than needed. However, the specifier can be safely guided by the natu-
ral interpretation of the operators. Anyhow, our definition of distributed state
is exactly what was needed to overcome the problems with the existing logics
for distributed systems, which do not have the right expressive power to reason
on the systems behaviour, when the communication is based on asynchronous
message passing.

Ezample 1. We discuss the satisfiability of some formulae with respect to the
computation above.

83

Table 1. Semantics of DSTL(x).

MEr F iff Vds.dsEF
M 7 F LEaps_t0 F' iff Vds.ds |= F implies 3ds’ > ds. ds' = F’
M =7 F BECcAUSE F' iff Vds.ds |= F implies 3ds’ < ds.ds' = F’

M =7 STABLE F iff Vds.ds|= F implies 3ds’ >. ds.ds' E F
MEr T F if ds°EF

where:

dsET

dsE A iff Aholds in s for all s € ds

dsE~F iff notdsgEF

dsEFAF if dsEFanddsgEF

ds |EmF iff dsedsnS;and{s}=F

We say that ds > ds' (<) if and only if each state in ds’ is followed (preceded) by a
state in ds and each state in ds is preceded (followed) by a state in ds’. Relations >
and < are reflexively and transitively closed. We say that ds >. ds’ when the states in
ds' are immediately followed by a state in ds (and viceversa) and ds does not include
ds'.

We recall that a DSTL(x) formula is a closed sentence, shaping (implicitly or ex-
plicitely) V...3...¢. Hence, we restrict the semantic definitions to the (ground) sub-
formula ¢.

M =1 nu LEADS_TO mu A nt. A distributed state satisfies the premise if it con-
tains, for instance, the second state of component n, where u holds, call it
s. It is immediate to find a distributed state following {s} and satisfying the
consequence, e.g. the first pair of states where u holds in m and ¢ holds in n
(related by a communication in the figure), call this pair p. Any larger dis-
tributed state ds including s satisfies the premise and is followed, for instance
by ds U p, which satisfies mu A nt.

M E nw BeCAUSE np A nu. Consider, for instance, the first state, say s, of n
where w holds. Set {s} is preceded by the pair p composed of the initial and
the second state of n. Set p satisfies the consequence. A superset ds of {s}
is preceded by ds U p.

M £ nw BECAUSE n(p A u). To satisfy the formula, we would need a singleton
state of n satisfying both p and u.

M = staBre n(w At). Any distributed state including a state of n satisfying
w A t, is immediately followed by a distributed state including a state of n
satisfying w A t.

M = 3IM. M(u — z). There exists a component, m in our example, where each
state satisfies: u — z.

84

2.3 Refinement and the proof assistant Mark

In the next section we describe the pragmatic issues of the Mob,gy refinement
process. From a foundational point of view, a theory 7 (a set of DSTL(x) for-
mulae) is refined by theory 7 if all the formulae in T can be derived from the
formulae in 7', according to the axiom system of the logic. Examplar axioms
and rules of DSTL(x) is in Tables 5 and 6 in the appendix.

Refinement verification is supported by the proof assistant Mark (Mobgau
Reasoning Kit) [12], which is developed in Isabelle [19]. The advantages of using
Mark include: the ability to keep track of the assumptions a property relies on;
the ability to handle standard bureaucratic activities (boolean reasoning and
standard verification techniques); the ability to support the emergent proving
patterns; the ability of introducing tactics, i.e. proof patterns, a powerful mech-
anism to manage the complexity of proofs.

3 MObadu

In this section we give a brief description of the model and an extract from its
axiomatization, to give an idea of what Mob,4 specifications look like and how
things work. Moreover we clarify the refinement process that is mentioned in the
Introduction and that is the leit—motif of Mob,4y methodology in general, and
the rational behind the work presented in this paper in particular.

Mob,qy specifications describe the behaviour of agents, i.e. running compu-
tations, that roam in a network of bounded localities, called neighborhoods, and
communicate asynchronously. A stationary entity called guardian is attached to
each neighborhood. It is in charge of monitoring the activities of the agents that
interact with the neighborhood, either living in the neighborhood or trying to
communicate with agents inside it. Each agent willing to perform some action,
e.g. communicating or moving, must refer to the guardian of the neighborhood
where it is currently located. Each guardian manages the requests of its agents
basing its decisions on the security policy of the neighborhood it is guarding.
It may happen that the interaction of several guardians is required in order to
fulfill an agent request. The result of this process is a global dynamic security
policy based on the composition of several local security policies.

Figure 2 gives a pictorial representation of these concepts. The figure shows
a neighborhood like a container of agents controlled by a guardian which com-
municate with other guardians to deal with a communication request.

The refinement process allows the designer to describe the properties of inter-
est at different level of details, from a very general, abstract specification down
to a specification of the features of the system, as detailed as needed.

At each level of the refinement chain, the specification of a system is struc-
tured as a triple of theories specifying the behaviour of agents, the behaviour
of guardians and the interactions among agents and guardians. Theories are
structured so that the specification of each class of homogeneous components is
kept separate from the specification of other classes, and can be refined indepen-
dently, in a fully compositional way. The specification of a class contains only

85

Fig. 2. The Mob,q; model.

® guardian (O component

neighborhood unspecified part of the nel

communication

—

Fig. 3. Design methodology: a theory hierarchy.

Ag Co Go
i
\ \ \
Ay C, G,
I I
Ay Cy Gy

local axioms or axioms relating events and conditions in different components of
that class. The coordination axioms specify interactions involving components
from different classes. At each refinement step it is possible to extend the set of
axioms to specify new properties, or to refine and distribute the formulae in the
existing theories. The final goal of the refinements is to specify the classes fully
and to leave in the coordination theory only the assumptions on the underlying
middleware or the properties that will have to be guaranteed by the application
context. A typical middleware property is that point—to—point communication
is reliable; assumptions on the context can include human behaviour. Figure 3
shows the overall refinement /extension structure of the Mob,qy theories.

At level zero we define the global properties of the model: agents and guard-
ians are the classes of interest, Ag, Go their specifications, and Cy specifies the
coordination among them. We define the refinement relation between theories
accordingly to the proposed refinement strategy. We ask that at each step theory
A; refines A;_1, G; refines G;_1, and A; UC; U G; refine C;_1.

Since the focus of this paper is not on the Mob,4y model but on services,
Table 2 presents only the axioms of level 0 dealing with communications. More-
over, since the purpose is just to give the taste of Mob,gs specifications and not
to burden the reader with technicalities, a simplified version is presented that
does not take into account security and failures. The complete specification can
be found in [13].

86

In this table and in the following ones, location variable G ranges over the
guardian names, and S , R and C range over the agent names.

Table 2. Mob,4; communications.

Ao
Co |C: S out(M,P) LEADS_TO R in(M,S)

C'’: R in(M,S) BECAUSE G (msgReq(M,S,P) A satisfy({R},P))
Id>: G msgReq(M,S,P) BECAUSE S out(M,P)

Go |Sati: G satisfy(Set, P) A satisfy(Set’, P) « satisfy(Set U Set’, P)
Sat|: G satisfies(S, P) < satisfy({S}, P)

Sats: G satisfies(S, P) A satisfies(S, P’) ¢ satisfies(S, PU P’)
Saty: G satisfies_constraint(S, Cons) < satisfies(S, {Cons})

In the state of an agent, predicate out(M,P) means that message M has been
sent to a receiver that satisfies profile P, predicate in(M,S) represents a message
M received from agent S, and axiom C says that any invoice will result in a deliv-
ery (in this simplified model). Axioms C' guarantees that a message is received
only if actually sent, and that the receiver satisfies the profile. Finally, axioms
Id2 says that there can be a communication request attributed to a sender S
only if S actually committed to communicate: in a guardian msgReq(M,S,P)
specifies the message body, the sender and the profile of the receiver.

Profiles are the solution that Mob,4 gives to the need of a general, multi—
purpose mechanism to identify sets of entities satisfying given properties, e.g.
QoS constraints, identity constraints, security constraints etc. In the general
Mob, g4 model, profiles are used to identify the set of the possible receivers of a
communication (cfr. axiom C') and the possible targets of a movement.

Predicate satisfy relates sets of names and profiles. A profile is specified as a
set of constraints, and distinct profiles can have overlapping constraints. Pred-
icate satisfy(Set, P) says that the elements of Set satisfy profile P. These sets are
built exploiting the relations defined by predicates satisfies and satisfies_constraint
following this pattern: axioms Sat} says that a single entity can satisfy a single
profile and introduces satisfaction of a set of profiles, as stated in axiom Sats;
set of entities are dealt with similarly in axioms Sat] and Sat;.

In this paper, profile satisfiability plays a central role as the very mechanism
at the basis of service discovery. A service is defined by a set of functional and
non functional parameters built up in a profile. A service request is successfully
resolved when an entity is found that provides the service specified in the profile
contained in the request.

87

4 The service discovery interface

In this section we describe the process that leads us from the specification of
Mobgat to the Mob, 4 service discovery interface (Mob,qy SDI), i.e. the second
box in the refinement hierarchy shown in Figure 1. The axioms of each refinement
step are given and properly commented, and the satisfaction of the refinement
relation between different steps is verified and explained with references to the
rules of DSTL(x).

4.1 Requirements for service discovery

At the first level, referred to as Level 1 and shown in Table 3, we simply state
the overall properties that we think sufficient and necessary to specify a service
discovery mechanism interface. Following the Mob,44; methodology, we do not
copy the axioms from the previous level, that are left untouched and not refined.
In this case, all the axioms in Table 2 are implicitly imported in this level.

Table 3. Requirements of the Mob,q4+ SDI.

Ai|Seri.1: C ~ (service_available(S, Fun, Pars) A no_service_available(Fun, Pars))
Ser;.»: C out(ser(Fun,Pars),{name(S)}) BECAUSE C service_available(S,Fun,Pars)

Ci |Seri.s: C service_req(Fun,Pars) LEADS_TO
C (service_available(S, Fun, Pars) V no_service_available(Fun, Pars))
Ser] 3: C (service_available(S, Fun, Pars) V no_service_available(Fun, Pars))
BECAUSE C servicereq(Fun,Pars)
Ser’ 3: C service_available(S, Fun, Pars) BECAUSE
G satisfy({S},{service_profile(Fun,Pars,C)})
n

Ser?’s: C noservice_available(Fun, Pars) BECAUSE
G unsatisfiable({service_profile(Fun,Pars,C)})

G1 |Satz: G unsatisfiable(P) — ~ satisfy(Set, P)

First of all, it is natural to require agents to have consistent knowledge about
service providers. This is stated in Ser; ;: service_available(S,Fun,Pars) means
that the discovery service has notified component C that S can provide service
Fun satisfying the constraints in Pars; viceversa, no_service_available(Fun,Pars)
means that the search for the specified service failed. A more complete specifi-
cation would have one more parameter, to carry information about the reasons
of the failure.

Axiom Ser; » says that in order to ask S for a particular service, a component
must know that S provides that service. These are properties dealing with the
local state of components. All the other axioms of this level belong to the coor-
dination theory, since they are just the most abstract specification of a process

88

that leads to the discovery of services and that can involve both guardians and
components.

Ser; 3 models the outcome of a service request: either the requesting com-
ponent will have the identity of a service provider, or it will be informed that
there is no suitable provider. Of course, such a knowledge can be acquired only
if the proper request has been expressed, as stated in axiom Ser} ;. The last
two axioms Ser? ; and Ser!’; express the discovery strategy, i.e., that it is the
responsibility of the guardians to find a provider that satisfies the profile in the
request. The name of the requesting component is put in the profile, since secu-
rity or authentication concerns may determine the response to service requests.

Sats is an auxiliary axiom to avoid to use ~satisfy in a context where variable

Set would be (erroneously) existentially quantified, like in Sery’s.

4.2 Refinement of the service discovery model

The first refinement takes us to Level 2, a definition of the role of guardians in the
process of service discovery. The related axioms are reported in Table 4. As pre-
viously stated, this is the level to start specifying specific discovery mechanisms
and service based distributed systems.

The idea is that when a component needs to look for a service, a guardian
will be informed (axioms Sers ;) and will take the responsibility of identifying
the proper service provider, if any (axiom Sers ;). Of course a guardian will
look for a service provider only if a component asks for it (axiom Ser}), and
a component, will receive the result of a service request only if a guardian has
received that request (axiom Sers 4).

Table 4. Refinement of the Mob,g4s; SDI.

A

C» |Sers.1: C service_req(Fun,Pars) LEADS_TO G service_resolve(Fun,Pars,C)

Ser) ;: G service_resolve(Fun,Pars,C) BECAUSE C service_req(Fun,Pars)

Sers.o: G service_found(Fun,Pars,C,S) LEADS_TO C service_available(Fun,Pars,S)
Sers.3: G noservice_found(Fun,Pars,C) LEADS_TO C no_service_available(Fun,Pars)

Sers.4: C service_available(Fun,Pars,S) V no_service_available(Fun,Pars)
BECAUSE G service_resolve(Fun,Pars,C)

G- |Sera.5: G service_resolve(Fun,Pars,C) LEADS_TO
G service_found(Fun,Pars,C,S) V no_service_found(Fun,Pars,C)

Ser 5: G service_found(Fun,Pars,C,S) V no_service_found(Fun,Pars,C)
BECAUSE G service_resolve(Fun,Pars,C)

Sers.s: G service_found(Fun,Pars,C,S) — satisfy({S},{service_profile(Fun,Pars,C)})
Sers.7: G no_service_found(Fun,Pars,C)—unsatisfiable({service_profile(Fun,Pars,C)})

89

Axioms Sery g and Sers ; describe how the general service discovery mech-
anism is based on the profile resolution capabilities of guardians already intro-
duced in the general Mob,g44; reference model.

The axioms at this level include those in Table 4 and those in the previous
Tables, but Ser; 3 and Ser| ;. Sery; and Sery ; refine Ser; 3, by transitivity
(rule LTR). Similarly, Ser] 5 is refined by Ser} ; and Sers 4, via rule BTR.

Exploiting rules LTR, LPD and LWC, we can derive an interesting property
holding at this level, namely:

G service_resolve(Fun,Pars,C) LEADS_TO
C service_available(Fun,Pars,S) V no_service_available(Fun,Pars)

Notice that at this level of refinement, it is not yet determined how many answers
a discovery request will receive, since the number of guardians that are contacted
is also not determined, and left to further refinements. Also, a possible refinement
is one where the negative answer does not necessarily means that there are no
suitable services in the system, but simply that the involved guardians decided
not to wait any longer, by some sort of distributed consensus. An example of
such a behaviour has been specified in [16].

5 Related Work

SOAP and WSDL are the current core technologies for Web Services [22]. Cou-
pled with a transport protocol, they allow simple point—to—point interactions
among distributed software components. However, when complex interactions
including many components are needed in a transaction, SOAP and WSDL
show their weakness: orchestration, i.e., the combination of composition and
coordination, is needed [1,10].

Mobgg4; belongs to the family of orchestration models, it enables the con-
struction of complex applications as the composition of distributed sub services
available on the net, possibly without a central coordinator.

To dynamically discover the services that are available over the net, and to
combine them on-the-fly, we need to face a number of challenges related to dy-
namic type checking, service profile publication/retrieval, new binding schemes
that cater for QoS characteristics. Some novel approaches that may be formal-
ized as refinement of the Mob, gy SDI, include JXTA [5] and IBM MatchMaking
Engine [14] for discovery, and [11,10,2, 6, 4] for service composition.

When discovering and composing services available on the net, it is essential
to consider security, not to be fooled and connect to malicious servers. Some
security policies that could be formalized in Mob,gy SDI are: DNSSEC which
uses digital signatures to solve several DNS problems; LDAP over SSL (LDAPS)
and HTTP over SSL (HTTPS) which allow secure and authenticated client access
to servers; XKMS from OASIS and W3C providing developers with a way to use
XML-based transactions to exchange public keys.

The Mob,gy profile mechanism could be used to specify the constraints on
the required services, with respect to context awareness and adaptation. For

90

instance, [8, 18, 21] envisage self-adaptive software architectures, platforms such
as J2ME [23] support the development of services and components on top of
low cost devices with limited computational capabilities, and frameworks such
as Ubiquitous Web Application [20] allow services to be adapted to device char-
acteristics.

Adaptation strategies span many options, like exploiting mobile code to mod-
ify the number, type or location of components [15], or tailoring the interaction
protocols to new contexts, e.g. by modifying the accuracy of the transmitted
data, in case of changes in the communication bandwidth, or by introducing
security mechanisms, to adapt to insecure environments [3].

6 Conclusions

In this paper we showed how Mob,g44, a high level declarative model for the
design of mobile and distributed systems, offers full support to specify and reason
about service discovery mechanisms.

Mobggy provides a formal methodology to drive the design of applications
based on the notion of structured refinements, and we exploited this methodology
to define an abstract interface to service discovery mechanisms, thus actually
defining a new reference model that is to be considered as the starting point of
the specification of any mobile distributed system that is somehow related to
services.

References

1. L.F. Andrade, J.L. Fiadeiro, J. Gouveia, G. Koutsoukos, and M. Wermelinger. Co-
ordination for orchestration. In F. Arbab and C.L. Talcott, editors, 5th Int. Con-
ference on Coordination Models and Languages (COORDINATION 2002), volume
2315 of Lecture Notes in Computer Science, pages 5—13. Springer-Verlag, 2002.

2. A. Arkin et al. Web Service Choreography Interface 1.0. wwws.sun.com/software/
xml/developers/wsci/wsci-spec-10.pdf, July 2002.

3. B. Badrinath et al. A conceptual framework for network and client adaptation.
Mobile Networks and Applications, 5(4):221-232, Dec. 2000.

4. B. Benatallah and M. Dumas. The self-serv environment for web services compo-
sition. IEEE Internet Computing, Jan.—Feb. 2003.

5. D. Brookshier, N. Krishnan, D. Govoni, and J.C. Soto. JXTA: JavaTM P2P
Programming. SAMS Publishing, June 2002.

6. F. Casati et al. Adaptive and Dynamic Service Composition in eFlow. Technical re-
port, Hewlett—Packard Company, Mar. 2000. www.hpl.hp.com/techreports/2000/
HPL-2000-39.pdf.

7. K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley, Reading Mass., 1988.

8. S.-W. Cheng et al. Using architectural style as a basis for self-repair. In Proc. 3¢
Working IEEE/IFIP Conf. on Software Architecture (WICSA 2002), pages 4559,
Aug. 2002.

91

9. T. Costello and A. Patterson. Quantifiers and operations on modalities and con-
texts. In A.G. Cohn, L. Schubert, and S.C. Shapiro, editors, KR’98: Principles of
Knowledge Representation and Reasoning, pages 270-281. Morgan Kaufmann, San
Francisco, 1998.

10. F. Curbera et al. Business process execution language for web services, version
1.0. www-106.ibm.com/developerworks/webservices/library /ws-bpel/, July 2002.

11. The DAML Services Coalition. Daml-s: Web service description for the semantic
web. In Proc. 1°% Int. Semantic Web Conf. (ISWC), June 2002.

12. G. Ferrari, C. Montangero, L. Semini, and S. Semprini. Mark, a reasoning kit for
mobility. Automated Software Engineering, 9(2):137-150, Apr 2002.

13. G. Ferrari, C. Montangero, L. Semini, and S. Semprini. The mob,qy model and
method to design network aware applications. Technical Report TR-03-08, Dip. di
Informatica, Universita di Pisa, 2003. At www.di.unipi.it/ricerca/TR /tr.html.

14. S. Field. A personalised needs oriented approach to insurance product sales. Tech.
rep. IBM, 2002. www.zurich.ibm.com/pdf/wme/WME_Insurance _Products.pdf.

15. A. Fuggetta, G.P. Picco, and G. Vigna. Understanding Code Mobility. IEEE
Transactions on Software Engineering, 24(5):342-361, 1998.

16. C. Montangero and L. Semini. Distributed states temporal logic. CORR Archive:
cs.LO/0304046.

17. C. Montangero and L. Semini. Distributed states logic. In 9* International Sym-
posium on Temporal Representation and Reasoning (TIME’02), Manchester, UK,
July 2002. IEEE CS Press.

18. P. Oreyzi et al. An architecture-based approach to self-adaptive software. IEEE
Intelligent Systems, pages 54-62, May/June 1999.

19. L. Paulson and T. Nipkow. Isabelle. www.cl.cam.ac.uk/Research/HVG/ Isabelle/.

20. The UWA (Ubiquitous Web Application) Project. http://www.uwaproject.org/.

21. M. Satyanarayanan. Mobile information access. IEEE Personal Communications,
3(1), Feb. 1999.

22. M. Stal. Web services: Beyond component-based computing. Communications of
the ACM, 45(10):71-76, Oct 2002.

23. Sun. Java 2 platform Micro Edition (J2ME). http://java.sun.com/j2me/.

Table 5. Axioms and rules of DSL(x).

FOL axioms of the 1°* order logic K M(F = F') — (MF — MF’)
DSL1 M(MF & F) DSL2 M#N — MNL
F F—F F
MP J— Nec —_—
F MF

92

Table 6. Axioms and Rules of DSTL(x).

e Necessitation. (We use Fpsr and Fpsrr for the sake of comprehension).

for all z; ...z, exists y1...yn Fpst F

Nec
Fostre Jyi...ynF
e Introduction and Elimination Rules. P
LI F LEADS_TO F BI F BECAUSE F ——S1I
STABLE F
F LEADS_TO L F BECAUSE L INIT MEF' STABLE MF
— LE — BE — SE
~F ~F MF
e Transitivity Rules.
F LEADS_TO F' F'LEADS_TO G F BECAUSE I’ F'BECAUSE G
LTR BTR
F LEADS_.TO G F BECAUSE G
e Premises and consequences strengthening and weakening.
I3rG— F F LEaps.to F' 3g F' - G
LSW
G LEADS_TO G’
F LEADS_.TO G F' LEADS_.TO G G LEADS.TO F G LEADS_TO F'
- LPD - LCC
FV F LEADS_.TO G G LEADS.TO FAF
Equivalent rules hold for BECAUSE. In the case of INIT:
INIT F F—G iniT BNt FY
—_— IWw I1C
INIT G INIT FAF'
e Notification and Confluence.
F BECAUSE G G LEADS_TO MG’ STABLE MG’ STABLE MF STABLE MF'
Nf
F AMT LEADS_TO MG’ MFAMF' — M(FAF')
e Properties of the initial state.
INIT mF INIT mF
I1: INIT mT — 12 — 13
INIT mF INIT mF

We recall that non temporal DSTL formulae are implicitly universally quantified in all
variables with the exception of those explicitely bound by existential quantification.
Here, in the case of implication, with 3¢ F — G we denote a formula universally
quantified in all the variables of premise F', and existentially quantified in all the free
variables of the consequence G.

93

	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	pg:
	P4:
	stampTemplate:
	pg: 1

	P5:
	stampTemplate:
	pg: 2

	P6:
	stampTemplate:
	pg: 3

	P7:
	stampTemplate:
	pg: 4

	P8:
	stampTemplate:
	pg: 5

	P9:
	stampTemplate:
	pg: 6

	P10:
	stampTemplate:
	pg: 7

	P11:
	stampTemplate:
	pg: 8

	P12:
	stampTemplate:
	pg: 9

	P13:
	stampTemplate:
	pg: 10

	P14:
	stampTemplate:
	pg: 11

	P15:
	stampTemplate:
	pg: 12

	P16:
	stampTemplate:
	pg: 13

	P17:
	stampTemplate:
	pg: 14

	P18:
	stampTemplate:
	pg: 15

	P19:
	stampTemplate:
	pg: 16

	P20:
	stampTemplate:
	pg: 17

	P21:
	stampTemplate:
	pg: 18

	P22:
	stampTemplate:
	pg: 19

	P23:
	stampTemplate:
	pg: 20

	P24:
	stampTemplate:
	pg: 21

	P25:
	stampTemplate:
	pg: 22

	P26:
	stampTemplate:
	pg: 23

	P27:
	stampTemplate:
	pg: 24

	P28:
	stampTemplate:
	pg: 25

	P29:
	stampTemplate:
	pg: 26

	P30:
	stampTemplate:
	pg: 27

	P31:
	stampTemplate:
	pg: 28

	P32:
	stampTemplate:
	pg: 29

	P33:
	stampTemplate:
	pg: 30

	P34:
	stampTemplate:
	pg: 31

	P35:
	stampTemplate:
	pg: 32

	P36:
	stampTemplate:
	pg: 33

	P37:
	stampTemplate:
	pg: 34

	P38:
	stampTemplate:
	pg: 35

	P39:
	stampTemplate:
	pg: 36

	P40:
	stampTemplate:
	pg: 37

	P41:
	stampTemplate:
	pg: 38

	P42:
	stampTemplate:
	pg: 39

	P43:
	stampTemplate:
	pg: 40

	P44:
	stampTemplate:
	pg: 41

	P45:
	stampTemplate:
	pg: 42

	P46:
	stampTemplate:
	pg: 43

	P47:
	stampTemplate:
	pg: 44

	P48:
	stampTemplate:
	pg: 45

	P49:
	stampTemplate:
	pg: 46

	P50:
	stampTemplate:
	pg: 47

	P51:
	stampTemplate:
	pg: 48

	P52:
	stampTemplate:
	pg: 49

	P53:
	stampTemplate:
	pg: 50

	P54:
	stampTemplate:
	pg: 51

	P55:
	stampTemplate:
	pg: 52

	P56:
	stampTemplate:
	pg: 53

	P57:
	stampTemplate:
	pg: 54

	P58:
	stampTemplate:
	pg: 55

	P59:
	stampTemplate:
	pg: 56

	P60:
	stampTemplate:
	pg: 57

	P61:
	stampTemplate:
	pg: 58

	P62:
	stampTemplate:
	pg: 59

	P63:
	stampTemplate:
	pg: 60

	P64:
	stampTemplate:
	pg: 61

	P65:
	stampTemplate:
	pg: 62

	P66:
	stampTemplate:
	pg: 63

	P67:
	stampTemplate:
	pg: 64

	P68:
	stampTemplate:
	pg: 65

	P69:
	stampTemplate:
	pg: 66

	P70:
	stampTemplate:
	pg: 67

	P71:
	stampTemplate:
	pg: 68

	P72:
	stampTemplate:
	pg: 69

	P73:
	stampTemplate:
	pg: 70

	P74:
	stampTemplate:
	pg: 71

	P75:
	stampTemplate:
	pg: 72

	P76:
	stampTemplate:
	pg: 73

	P77:
	stampTemplate:
	pg: 74

	P78:
	stampTemplate:
	pg: 75

	P79:
	stampTemplate:
	pg: 76

	P80:
	stampTemplate:
	pg: 77

	P81:
	stampTemplate:
	pg: 78

	P82:
	stampTemplate:
	pg: 79

	P83:
	stampTemplate:
	pg: 80

	P84:
	stampTemplate:
	pg: 81

	P85:
	stampTemplate:
	pg: 82

	P86:
	stampTemplate:
	pg: 83

	P87:
	stampTemplate:
	pg: 84

	P88:
	stampTemplate:
	pg: 85

	P89:
	stampTemplate:
	pg: 86

	P90:
	stampTemplate:
	pg: 87

	P91:
	stampTemplate:
	pg: 88

	P92:
	stampTemplate:
	pg: 89

	P93:
	stampTemplate:
	pg: 90

	P94:
	stampTemplate:
	pg: 91

	P95:
	stampTemplate:
	pg: 92

	P96:
	stampTemplate:
	pg: 93

