
T U M
I N S T I T U T F Ü R I N F O R M A T I K

SBSE’03 Service-Based Software Engineering
Proceedings of the FM2003 Workshop

Ingolf Krüger, Bernhard Schätz, Manfred Broy, Heinrich
Hussmann (eds.)

TUM-I0315
September 03

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-09-I0315-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c
�

2003

Druck: Institut f ür Informatik der
Technischen Universit ät M ünchen

FM’03 Workshop on Service-Based Software Engineering
(SBSE)

Manfred Broy¹, Heinrich Hussmann², Ingolf Krüger³, Bernhard Schätz¹

¹Fakultät für Informatik, Technische Universität München, 85748 Garching, Germany
²Fakultät für Informatik, Ludwig Maximilians Universität München, 80538 Munich, Germany

³Computer Science & Engineering Department, UCSD, La Jolla, CA 92093-0114, USA

Service-based systems engineering has proven useful in the development of telecommunication systems,
helping to modularize complex system functionality with high degree of interaction between system
components. Increasingly, the notion of service is gaining ground in other application domains like
spontaneous networks, ubiquitous computing, and safety critical systems from the automotive or avionics
domain. Precise specification and correct implementation of requirements for services are essential in most
of these application domains. Jini, .NET, and SOAP are examples of recently proposed middleware
technologies in which syntactic service notions play an important role as an implementation concept.

Surprisingly, however, no precise mathematical foundation supporting the use of services across
development phases exists to date. Many notions of service, like those used in the middleware technologies
mentioned above, refer only to syntactic interfaces. This is inadequate for more elaborate service
specifications that include, for instance, Quality-of-Service properties. Consequently, services are not treated
as first-class modeling elements, say, in UML/UML-RT and SDL. Therefore, especially in the application
domains mentioned above, a suitable notion of service is needed to support service-based software
engineering beyond simplistic syntactic approaches.

A solid methodological basis for service-oriented system development requires a suitable notion of service
and the availability of systematic modeling, development, and quality assurance methods based on this
service notion.

Therefore, the topics addressed in this workshop include:

- Formal foundations for services
- Modeling notations for services
- Composition operators for services
- Quality-of-Service specifications
- Patterns for service development
- Methodologies for service-oriented system engineering
- Refinement and refactoring techniques for services
- Service-oriented validation and verification techniques

The goal of the workshop is to bring together researchers and practitioners interested in service- oriented
software and systems engineering, with an emphasis on:

- using services to describe complex system functionality
- integrating service descriptions to form a system specification
- constructing architectures supporting a service-based development process

to further the definition and introduction of a precise as well as applicable notion of services.

Services as a means of specifying system functionality in a modular fashion are situated at the intersection of
formal methods and applied systems engineering. An applicable notion of service requires abstract as well as
precise models and notations. Here, proven approaches from formal methods can contribute to supply those
models and notations, and to explain how services can be combined, refined, implemented, or deployed.

The unique positioning of services within the landscape of development tasks and techniques is reflected by
the contributions selected for this workshop. In “Modelling Electronic Service Systems Using UML” Skene,
Piccinelli, and Stearns present a UML profile for service specifications; it relates business workflows with
the electronic infrastructure on which they are executed, resulting in the definition and foundation of
electronic service systems. Ribeiro, Rosa1, and Cunha1 present and formalize an architecture for Quality-of-
Service modeling and deployment in their paper “User Quality of Perception: Towards a Model for
Personalised Communication Services”. The problem of service interaction (sometimes also called feature
interaction) is addressed by means of tailored diagrams and corresponding analysis algorithms in the paper
“Automatic detection of service interactions from graphical specifications”, by Jouve, Le Gall, and Coudert.
“Service Discovery in Mobadtl”, by Montangero, Semini, and Semprini, addresses the formalization of
service discovery in distributed systems, an increasingly important aspect not only of mobile and ad-hoc
communication networks.

In addition to these contributions, the workshop proceedings include two invited presentations: In
“Automotive Infotronics: An Emerging Domain for Service-Based Architecture” Nelson and Prasad
describe a service-oriented approach to automotive software development, tackling the rapidly increasing
complexity of software solutions in this application domain. In their contribution “ServiceFORGE: A
Software Architecture for Power and Quality Aware Services” Cornea, Dutt, Gupta, Mohapatra, Nicolau,
Pereira, Shukla, and Venkatasubramanian present an approach to dealing with Quality-of-Service aspects,
including power-management, in distributed and embedded system architectures.

We are also honored to include an invited talk by Pamela Zave, a true pioneer in the domain of service-
based software architectures and development methods, in our program.

The organizers are very grateful to the authors of the papers and talks presented at the workshop for their
submissions. We also thank the members of the program committee for their efforts in selecting the
contributions for this volume, as well as the organizers of FM’03 for their support in realizing this
workshop.

We wish all participants a very interesting and successful event!

Workshop
"Service-Based Software Engineering"

Pisa, September 8th, 2003

Table Of Contents:

Automotive Infotronics: An emerging domain

for Service-Based Architecture .. 3
 E. C. Nelson, K. V. Prasad

Modelling Electronic Service Systems Using UML ... 15
 J. Skene, G. Piccinelli, M. Stearns

User Quality of Perception: Towards a Model for

Personalised Communication Services... 31
 C. M. F. A. Ribeiro, N. S. Rosa, P. R. F. Cunha

ServiceFORGE: A Software Architecture For

Power and Quality Aware Services... 47
 R. Cornea, N. Dutt, R. Gupta, S. Mohapatra, A. Nicolau,

C. Pereira, S. Shukla, N. Venkatasubramaniam

Automatic detection of service interactions

from graphical specifications ... 63
 H. Jouve, P. Le Gall, S. Coudert

Service Discovery in Mobadtl .. 79
 C. Montangero, L. Semini, S. Semprini

Automotive Infotronics: An Emerging Domain for
Service-Based Architecture

E. C. Nelson, K. V. Prasad

Ford Research and Advanced Engineering, Dearborn Michigan, U.S.A
enelson7@ford.com, kprasad@ford.com

Abstract. The increasing complexity of automotive electronics systems has led
to the evolution of distributed multi-network systems within a vehicle. The fea-
tures supported by these systems are increasingly dependent on the interactions
of distinct components designed by different suppliers. The traditional top-
down systems engineering approach to vehicle electronics software integrates
application software into individual components directly on top of the low layer
hardware support code. Because of the increasing level of interaction between
different components, this approach is no longer adequate. As a result auto-
makers are moving towards defining a middle layer of software that is organ-
ized in terms of services. Defining the semantics of the services in this layer is
one of the major challenges that must be resolved to carry this approach
through.

Introduction

The complexity of automotive electronic systems is increasing rapidly. Today's cars
have 20 to 30 processors in them, with as many as 70 in fully equipped luxury vehi-
cles. In some vehicles the entertainment system alone uses nearly 20 processors.
Some of the processors in a vehicle perform tasks that are very simple, such as con-
trolling a retractable antenna, or the timing of an interval windshield wiper motor,
while others perform tasks that are computationally demanding, such as route calcula-
tion for a navigation system. The various processors are typically connected with
other units performing related functions by digital local area networks. A vehicle may
have three or more networks connecting modules that make up different subsystems
within the vehicle. For example there might be separate networks for powertrain con-
trol, for modules that control various vehicle and chassis functions such as door locks
lights instrument cluster etc., for control of safety systems such as airbags and for en-
tertainment and multimedia systems. Each of these networks will contain modules
manufactured by a number of different suppliers. Moreover, the modules that are pre-
sent on a given network differ from vehicle line to vehicle line and within a vehicle
line depending on the particular set of options installed in a given vehicle. For exam-
ple, the same car model may have one of two different radios depending on the audio
options chosen by the customer.

2 E. C. Nelson, K. V. Prasad

Fig. 1. In-vehicle local area networks

Although the individual networks in a vehicle are largely independent, there is an

increasing trend towards interaction between modules on different networks. For ex-
ample, a navigation module on an infotainment network may need information from
wheel speed sensors on a body network to perform dead reckoning position calcula-
tions. Or an audio amplifier on the entertainment network may use information from
a door module and from the vehicle speed sensor on the body network to automati-
cally raise the volume when the windows are open and the vehicle is moving above a
certain speed. Vehicle electronics systems are thus increasingly becoming distributed
computing systems where the correct operation of any feature implemented by one
part of the system depends on calculations done in another part of the system. More-
over, the nodes in this system are heterogeneous and are all designed by different
suppliers. For example, a vehicle might contain a rear seat family entertainment cen-
ter from one supplier, a front audio head unit from another supplier, and a navigation
system from a third supplier, all of which must share components such as a CD
player, speakers, and so on. These components must interact over a common control
network. Such interaction requires that the behavior of each module be adapted to
work with the other modules in the system. The standard top-down design approach
leads to rapid increase in design complexity, since the number of behaviors of the sys-
tem goes up as the product of the number of behaviors of the components.

Even a relatively simple function like a door lock control interacts with a large
number of other modules. The diagram below shows a simplified view of the associa-

Automotive Infotronics: An Emerging Domain for Service-Based Architecture 3

tions between a central locking facility and other objects on a vehicle that has remote
keyless entry (RKE) feature which illuminates the vehicle's interior lights when the
vehicle is unlocked. The feature also sets driver preferences for seat position, radio
presets and mirror position according to which key fob or mechanical key is used to
unlock the car as well as flashing the exterior lights to confirm that the vehicle is
locked, when the driver presses the lock button on the RKE from outside of the car.
The central locking facility must also receive information from the crash detection
system to meet the regulatory requirement that the doors be unlocked in a crash, from
the vehicle speed sensor and the ignition key status to implement lock on drive away,
and from the door ajar sensors.

Exterior Light control

Interior Light control

Crash notif ication

Vehi cle speed

Driver door lock

Passenger door lock

Left rear door lock

Right rear door lock

Tuner presets

security alarm

seat control

m irror cont rol

RKE authorization

Valet mode switch

Ignition key

Door aj ar sensor

Mechanical key decoding

Central locking control

Trunk lock

Fig. 2. The interactions of the central locking system in a vehicle

The software entities shown in Fig. 2 are apportioned to physical modules in a way
that is heavily dependent on physical packaging and wiring considerations. For exam-
ple, the doors each contain a module that has the door lock control and latch sensing
mechanisms and may contain the door ajar sensor, the mechanical key decoding
mechanism and other functions as well, such as power window control.

To illustrate the complexity of the interactions involved consider the problem of
generating a door lock acknowledgement. When the driver exits the car and presses
the lock button on the key fob, the vehicle will flash the exterior lights to acknowl-
edge that the car is locked. In order to do this correctly, the central locking facility
must not only check for an acknowledgement of the lock request for each door mod-
ule, but it must also check the door ajar sensor for each door to ensure that the door is
actually closed. A sequence diagram for this operation is shown in Fig. 3.

4 E. C. Nelson, K. V. Prasad

 : AuthorizedUser : RKE
authorization

 : Central locking control : Ignition key : Driv er door
lock

 : Passenger
door lock

 : Trunk lock : Door ajar sensor : security
alarm

 : Exterior Light control

Press L...

LockReq(Key f ob)

ReqKey Status

Key out

LockCmd

DDLockStat us(lock ed)

PDStatus(Locked)

LockCmd

TrunkStatus(Locked)

LockCmd

RequestDoorAjarStatus

DoorAjarStatus(none)

SetSecurity Alarm(Armed)

LightsFlash(LockAcknowledge)

Fig. 3. Sequence diagram for lock acknowledgement

This diagram appears to be straightforward, but the design presented here over-
looks an important condition. If the vehicle's occupants leave one of the windows
down when exiting the vehicle, the central locking mechanism may or may not ac-
knowledge the vehicle as "locked" depending on how the door module, which typi-
cally contains both the lock and window controllers, is specified. The door module
lock controller might refrain from returning a "locked" status if a window is open, but
this could cause problems in other situations where it is acceptable for the window to
be open when the door is locked (drive away lock, for example). Additionally, the so-
lution does not work if for some reason the window control and door lock control are
allocated to different modules. The problem of managing issues such as this becomes
intractable when one tries to reuse modules across vehicle models, because the
semantics of the LockStatus message depend on the module that implements it. In
order to keep the acknowledgement policy where it belongs – in the central locking
object – the window closure status needs to be available as a service that can be used
by the central locking facility in the same way that it uses the door ajar status.

Automotive Infotronics: An Emerging Domain for Service-Based Architecture 5

Development of Automotive Electronics

Before we proceed to a discussion of service-based architectures in the context of
automotive infotronics, a brief overview of the progress of automotive electrical, elec-
tronics and software technologies will help place this paper in context. The history of
these technologies placed against a 100-year timeline, as illustrated in Fig. 4, reveals
some noteworthy trends: Every few decades there is a major disruptive technology
enabler: First there were electrical technologies, for instance, the magneto ignition
system in the year 1902 [1]. Then came the era of pre-semiconductor (vacuum tube)
electronics: There were wireless phones in police fleets in the 1920s [2] and radios
[3] in the 1930s. With the advent of semiconductors in the 1950s and 1960s came
compact radios. In the late 1970s, the era of programmable semiconductors began,
resulting in the early electronics engine control modules. This was in many respects
the beginning of in-vehicle software. Software of course played a relatively modest
role, delivering one major function --- such as being able to control the engine elec-
tronically and one associated feature, such as being able to control tailpipe emissions
to desired (or government mandated) levels. The next major step was the development
of network communication systems in vehicles [4]. This coupled with the advent of
complex "radios" with AM/FM/CD/DVD and navigation features began to demon-
strate the unquestionable increase in software enabled functions and associated fea-
tures in automobiles. The need for model based software and system engineering be-
gan to take root in the mid 1990s and today software modeling and associated "auto-
code" generation is globally accepted within the automotive industry [5]. Over the
past thirty years the role of software in automobiles has shifted from a minimal pres-
ence in a silicon-defined module to a major controlling presence in most electrical &
electronic systems. Whether it is today's powertrain and engine con troll modules or
navigation systems, software and associated modeling impacts the look, touch and
feel of automobiles. What about the future of automobile software? In many re-
spects, examining today's technologies in the fast-cycle industries –the consumer
electronics, the computing and telecommunications industry sectors, may reveal
trends in automobile-software. As we look to the future, it appears that software will
begin to increasingly define the functionality of features and functions. Today we are
witnessing the emergence of software-defined radios [6] and it is not inconceivable
that in the future, may of today's silicon-defined functions in the automobile will in-
deed be replaced by software-defined functions with silicon playing a secondary role
to software (see Fig. 5). Concurrent with increasing software-defined functionality,
one other potentially disruptive technology is reconfigurable silicon [7] --- a technol-
ogy that is just emerging.

6 E. C. Nelson, K. V. Prasad

Fig. 4. The Progress of Electrical, Electronics and Software Technologies

As indicated in Fig. 5, the electronics era formed the foundation for the mechatron-

ics [8] era. With the rapid growth in information technologies and associated frame-
works for design and development of information systems the automotive industry
recognized [9] the need for an integrated approach toward combining information
(technologies/systems) with mechatronics and electronic systems --- where appropri-
ate for the functions and features being supported. The result was the creation of the
field of automotive infotronics. Simply stated, infotronics systems are designed and
developed on the premise that the associated subsystems and possibly components are
inter-connected more on the basis of the information they share and less on the fact
that can exchange "electrons." Since sharing information plays a defining role in in-
fotronics technology and system design, the adoption of service-based methodologies
to structure information exchange becomes a very attractive proposition. Further,
with the increasing complexity of software within automobiles (Fig. 5) the need for
service-based specifications of functions and features is being recognized. As a case
in point, the Open Services Gateway Initiative or OSGi [10] framework has been
adopted by the Automotive Multimedia Interface Collaboration or AMI-C [11].

Automotive Infotronics: An Emerging Domain for Service-Based Architecture 7

Fig. 5. Automotive Infotronics and the Evolution of Service-Defined Features

To illustrate the need for service-based definitions of infotronics systems, consider
a modern luxury automobile with a navigation system and an embedded phone with a
keypad built into the instrument panel. Such vehicles may also have a remote control
device (much like a television set "remote") that may be used to enter destination di-
rections into the navigation system and select map-viewing preferences all via a dedi-
cated IrDA link. What if one stepped into such a vehicle with a personal digital assis-
tant (PDA) that also had an IrDA transceiver? Could one "beam" a telephone number
to the embedded phone via the IrDA transceiver in the navigation system? The an-
swer today is very likely a "no." The likely reason is that the IrDA transceiver in the
navigation system provides a dedicated function to the navigation system, as opposed
to providing a service to the vehicle as a whole. Had the IrDA transceiver been de-
fined by a service, say a communications service, this would have been published
within an inter-networked vehicle system (Fig. 1) and if the vehicle policy (also ex-
pressed as a service) permitted it, one's PDA could have discovered the communica-
tions service and requested its use to transfer a phone number to the embedded phone.
This would save the consumer the labor and frustration of having to enter a phone
number, using the keypad on the instrument panel, when the consumer readily had the
phone number on a PDA.

8 E. C. Nelson, K. V. Prasad

Current Practice

Current practice in automotive embedded systems is to build the application software
for a module directly on the low-level infrastructure code — i.e., the RTOS or sched-
uler and the hardware drivers. In the simplest cases, the application code may be
mixed in with the hardware drivers. The process that is used to design the module
software is a traditional top down structured approach to system engineering that is
sometimes referred to as the V model [12]. In this process requirements are first de-
veloped for the vehicle as a whole, and these requirements are then used do develop
the requirements for the systems that make up the vehicle which in turn are cascaded
to subsystems and on down to individual modules. A requirements tracking took
known as CaliberRM [13] is used to perform this cascading process. In the case of our
central locking example, the requirement that the module not return a “door latched”
indication unless the window was also closed would be generated at the level of the
subsystem that included both the door module and the central locking module.

The problem with this approach is that it does not cater for reuse of the software in
modules that will be used across different vehicle lines because it does not separate
generic requirements from requirements that are specific to a particular vehicle. The
low-level infrastructure code can usually be reused between different vehicles, but the
application code often has to be rewritten. Recently there has been an attempt to miti-
gate this problem by standardizing the messages that are passed between modules on
a given network. Automotive message sets were initially developed on an ad hoc ba-
sis, but recently automakers have tried to manage the message sets both internally and
between themselves. This is usually done by defining message sets for a specific net-
work technology, such as CAN or MOST. Currently, these message sets are moving
towards network independent domain specific protocols. For example, in the area of
information and entertainment subsystems, the Automotive Multimedia Interface Col-
laboration (AMI-C), an organization of eight major automakers, has released a speci-
fication for a network independent Common Message Set [14].

A service based approach

The problem that arose in the central locking example is an illustration of the quan-
dary of embedded software. It must be specific to the underlying hardware and at the
same time incorporate the requirements of the overall system. As long there is a sim-
ple one to one mapping between the system and the hardware components that it con-
tains, this presents no problem. However as soon as one wants to reuse modules
across a variety of systems it becomes increasingly difficult to design module applica-
tion software that will meet the requirements of all the environments in which it will
be used.

In the internet domain, the corresponding dichotomy has been addressed by creat-
ing a middleware layer of software based on languages such as Java and XML. Ap-
proaches such as Jini and WSDL define this middleware layer in terms of services,
providing frameworks wherein applications can discover and use services independ-
ently of the platform that they are implemented on.

Automotive Infotronics: An Emerging Domain for Service-Based Architecture 9

This same approach has been taken in the embedded domain by the Open Services
Gateway Initiative (OSGi), which has defined a framework for discovering and using
services on a local area network, such as a home network, that is connected to a wide
area network through an open gateway [10]. The OSGi framework uses Java to de-
fine services in a platform independent way. The OSGi specification has been used as
the basis for a software platform specification by AMI-C, which has recently released
a set of specifications for a vehicle services interface, a human machine interface, and
off-board navigation services, as well as other core services that are required to man-
age software on a vehicle multimedia or telematics platform [15].

The vehicle services interface specification defines interfaces to over 80 services
that may be provided by devices on the vehicle's powertrain, body and safety net-
works to applications running on a multimedia platform [16]. Table 1 lists some of the
vehicle services that are addressed by the AMI-C specification.

Table 1. Vehicle services defined by the AMI-C vehicle service interface specification

Brake Status Airbag Status Engine Speed
Anti-Lock Brake Status Convertible Top Status Vehicle Speed
Cruise Control Status Current Gear Wheel Speed
Door Lock Status Door Ajar / Trunk Open High Resolution Odome-

ter
Engine Running Engine Performance

Status
Vehicle Location

Exterior Lights Engine Start Enable
Status

Engine Coolant Tempera-
ture

Hazard Signal Status Fog Lamps Noise Level
Parking Lights Ignition Key Status Engine Oil Temperature
Seat Belt Park Brake Status Odometer Reading
Sun / Moon Roof Status PRNDL Position Engine Oil Level
Tire Inflation Status Seat Occupied Status Engine Coolant Level
Turn Signal Status Traction Control Status Odometer
Warning Light Status Variable Suspension

Status
Tire Pressure

Wiper Status Window Closure Status Vehicle Location (GPS)
System State Power Mode Management Vehicle Identification
Antenna Status and Con-
trol

Time / Date Vehicle configuration

Engine Oil Pressure Trigger Security Alert
Like the common message set, the AMI-C software interface specifications are in-

tended to define a set of services that are independent of platform, network and the
vehicle in which they are implemented.

What is a service?

Since the specifications defined above are based strongly on the notion of services, it
is appropriate to ask what is meant by a service in this context.

10 E. C. Nelson, K. V. Prasad

A service has a well-defined interface by means of which specific information can
be obtained or certain actions performed. The service may consist of a single interac-
tion between the service provider and the user of the service, or it may consist of an
ongoing sequence of interactions over a specific period of time. The essential char-
acteristic of a service is that it describes the functionality that is provided in a rela-
tively straightforward and simple way.

Services may take several forms depending on the type of interactions that are sup-
ported. The simplest type is just a request for the service to perform some action, or to
return information. For example, a vehicle audio service could return the current vol-
ume and set the volume on request. Another type of service is a subscription, where
the client requests a periodic update of some information. This type of service would
be used to provide vehicle speed, for example. A third type of service is one that pro-
vides notification of some event, for example, that the low fuel warning light had
triggered or that the airbags had deployed. In each case, the user of the service must
first make a request for the information or action that it requires. The difference is in
when and how the information is returned. In some cases, more than one method
would be available from the same service. For example, the door lock status service
could provide both the current state of the lock for that door and a notification when
the door lock status changed.

In the case of information that is updated periodically, there is a choice as to how
the period is specified. The simplest case from the implementation point of view is to
specify a single fixed update rate. Since vehicle signals are sampled at periods that
may depend on the hardware implementation, this simplifies the service considerably.
At the other extreme, the service could allow the client to specify the update rate to
suit its needs. The information being returned is often not a continuously varying sig-
nal, but a stepwise constant signal whose rate of change is determined by the underly-
ing sampling frequency of the hardware implementation of the sensor, making the lat-
ter alternative difficult to implement accurately. On the other hand, a single fixed
update rate may lead to significant overhead in a process that only needs the informa-
tion at a very low frequency. A common compromise is for the service to specify the
minimum period, and allow the client to request updates on some fixed set of multi-
ples of that frequency. If the base period is determined by the implementation, then
the service must provide a means for the client to discover this frequency.

A related issue arises with respect to the actual content of the information returned
by a service, even in response to a simple request. Different implementations of a ser-
vice may provide different information about the same physical quantity. For exam-
ple, some vehicles have an oil pressure sensor that returns the oil pressure as a con-
tinuous variable. Other vehicles have a simpler sensor that only provides a binary
low/normal pressure reading. The question is how to specify an oil pressure service
across both classes of vehicle. For most of the use cases envisioned for this service,
the binary value would suffice. However, a sophisticated diagnostic application might
monitor the continuously variable oil pressure to extract important prognostic infor-
mation about the vehicle's powertrain. The answer could be to specify two separate
services, or it could be to specify a service that can inform the client as to which type
of information it provides.

The issue of matching services to requirements can be resolved by specifying
properties for the service. The OSGi specification, for example allows a service to

Automotive Infotronics: An Emerging Domain for Service-Based Architecture 11

specify a set of properties when it is registered with the framework. Properties, in this
context, are just name value pairs. When an application requests to be connected with
a service, the service properties are used to find the best match among the versions of
the service known to the framework. For this mechanism to be useful, the service
providers and users must agree on a common set of property names as well as the se-
mantics for those properties. Some service properties can be embodied in the types of
the values returned by the service and the types of the inputs to the service, i.e., in its
interface. However, the most interesting properties are more subtle and require do-
main specific definitions as in the case of the door lock status example, where one
wants to know whether a returned value of “locked” implies that the windows are
closed or not.

Defining an adequate set of domain specific service properties would allow one to
address interesting questions, such as whether a given set of services satisfies higher-
level requirements. For example, whether the set of services shown in Fig. 2 is ade-
quate to define the lock acknowledge function or whether a window status service is
also needed.

Service based architectures

In order to gain significant advantage from recasting the functionality of vehicle elec-
tronics components as services, a comprehensive framework for managing services
must be defined and implemented within the vehicle domain. At the specification
level this involves defining the interfaces for all of the services that will be available
on the vehicle. In the automotive context, this is the responsibility of the vehicle
manufacturer. The implementation of the services is then the responsibility of compo-
nent suppliers. The problems that face the vehicle manufacturer are ensuring that the
service specifications are consistent and that they are complete with respect to all of
the technologies and features that might be included on the vehicle at a given point of
time. This includes ensuring that a sufficiently rich set of service properties are de-
fined to distinguish between versions of a service supporting all of the different levels
of hardware functionality that may be present on different vehicle lines.

From the service implementer’s point of view, the main problem is ensuring that
the implementation of a service or set of services conforms to the specification gener-
ated by the vehicle manufacturer. This problem requires both a sufficiently formal
specification language to capture the entire service requirement and a set of tools that
help with the validation of an implementation against that specification.

Conclusions

Service based software architectures have the potential to enable the creation of func-
tionality that depends on networks of distributed embedded devices. Creating such
functionality directly in application software is challenging, because the applications
have to be modified whenever there is a change in the underlying hardware, or even
in the configuration of the hardware. This leads to the proliferation of different ver-

12 E. C. Nelson, K. V. Prasad

sions of the application to support different hardware configurations. The creation of
a middleware layer of software consisting of a set of services can help with this in a
number of ways.

The advantages of a service based architecture depend on the creation of tools for
the validation of service specifications, specifically tools for checking the consistency
and completeness of a set of services, for validating implementations of services
against their specifications and for validating network message sets against the service
architecture. Addressing these needs will enable the creation of distributed electronic
systems with greater functionality and reliability.

References

1. W. Gansert, T. Bertram, "Vehicle Electrical System and Circuit Diagrams," in Auto-
motive Electrics and Electronics, 3rd Edition in English, Robert Bosch GmbH. Editor
Horst Bauer, (1999) 4-5.

2. http://www.ieee.org/ organizations/history_center/milestones_photos/one_way.html
3. Y. Hirota, "Automotive Electronics and Information Technology: A Future Perspec-

tive, " JSAE, Vol. 51, No. 1, (1997) 22-28.
4. N. Allison, "Rethinking Multiplex," in Multiplexing and Networking, Editor, R. K.

Jurgen, Society of Automotive Engineers, (1999) 3-11.
5. Paul Hansen “Software Tools Heading Mainstream” Hansen Report on Automotive

Electronics. July/August (2003)
6. V. Bose, M. Ismert, M. Welborn, J. Guttag, "Virtual Radios," IEEE/JSAC, Special Is-

sue on Software Radios, April (1999).
7. Michael Santarini, "ASIPs: Get ready for reconfigurable silicon," EE Times, Novem-

ber 20, 2000.
8. Lawrence J. Kamm, Understanding Electro-Mechanical Engineering: An Introduction

to Mechatronics. Wiley-IEEE Press. (1995)
9. Vehicle Infotronics: Enabling the Integrated Mobility Experience, Proceedings of the

1998 International Congress on Transportation Electronics, Convergence 1998, Soci-
ety of Automotive Engineers, October (1998).

10. Open Services Gateway Initiative: OSGi Service Platform Release 2 IOS Press Am-
sterdam (2002)

11. A. Malhotra, "Enabling Technology's Promise --- Collaborative Development of
Common Requirements for Mobile Information and Entertainment Systems," Pro-
ceedings of the 2002 International Congress on Transportation Electronics, Conver-
gence 2002, Society of Automotive Engineers, October (2002)

12. T. Pixton, F.Laermann, T Bietz: Vehicle Concept and Development Strategy . In The
New Ford Focus, ATZ/MTZ Special Edition, Nov. (1999) 6-12

13. www.borland.com/caliber/
14. Automotive Multimedia Interface Collaboration: AMI-C Common Message Set,

www.ami-c.org/publicspecrelease.asp
15. Automotive Multimedia Interface Collaboration: AMI-C Software API Specifications

– Core APIs, www.ami-c.org/publicspecrelease.asp
16. Akatsuka, T., Nelson, E. AMI-C Vehicle Interface Specification. Proceedings of the

IEEE Intelligent Vehicles 2001 Symposium (2001)

Modelling Electronic Service Systems Using
UML?

James Skene1, Giacomo Piccinelli1, and Mary Stearns2

1 Dept. of Computer Science, University College London, Gower Street
London WC1E 6BT, UK

{g.piccinelli, j.skene}@cs.ucl.ac.uk
2 2 HP Software & Solutions Operation, Pruneridge Avenue

Cupertino, CA 95014, USA
mary stearns@hp.com

Abstract. This paper presents a profile for modelling systems of elec-
tronic services using UML. Electronic services encapsulate business ser-
vices, an organisational unit focused on delivering benefit to a consumer,
to enhance communication, coordination and information management.
Our profile is based on a formal, workflow-oriented description of elec-
tronic services that is abstracted from particular implementation tech-
nologies. Resulting models provide the basis for a formal analysis to verify
behavioural properties of services. The models can also relate services to
management components, including workflow managers and Electronic
Service Management Systems (ESMSs), a novel concept drawn from ex-
perience of HP Service Composer and DySCo (Dynamic Service Com-
poser), providing the starting point for integration and implementation
tasks. Their UML basis and platform-independent nature is consistent
with a Model-Driven Architecture (MDA) development strategy, appro-
priate to the challenge of developing electronic service systems using
heterogeneous technology, and incorporating legacy systems.

1 Introduction

The contribution of this paper is a UML profile for modelling systems of elec-
tronic services.

UML [16] is an object-oriented modelling language that has found broad
application in analysis and design for software systems. A profile is a package of
syntactic and semantic refinements for the language, which allows it to naturally
model domains of interest.

An electronic service is a set of metadata, communication interfaces, software
and hardware supporting a business service. A business service is a bundle of
coordinated business capabilities (the content of the service) associated with pro-
visioning mechanisms that establish the conditions under which clients, whether
external or internal to the business, can access the capabilities of the service.
? This research is partly funded through the EU project TAPAS (IST-2001-34069),

and the EU project EGSO (IST-2001-32409).

Business services encapsulated by electronic services benefit from additional
communication and provisioning channels, but further, they permit the auto-
mated coordination of capabilities, resources and information, both within and
between organisations. This gives rise to Electronic Service Systems (ESSs), in
which the services are integrated using auxiliary components such as workflow
engines for coordination, databases to store knowledge about the state of the en-
terprise, and Electronic Service Management Systems (ESMS),which we charac-
terise in this paper as combining these various capabilities to provide viewpoints
and control of the enterprise to management, citing experience of the HP Service
Composer and the DySCo (Dynamic Service Composer) research prototype.

The challenge on the business side is to adapt business infrastructure and
models to service-oriented principles. The challenge on the technical side is to
provide integration solutions that are accessible, comprehensive and beneficial.
This requires thorough understanding and active management of the relation-
ships between business capabilities and technical infrastructure. Such under-
standing and management can be achieved through modelling. This modelling
serves as a starting point for software implementation, integration and provision-
ing tasks, which must be applicable to electronic services realised using a variety
of technologies. The Model Driven Architecture (MDA) is a software develop-
ment strategy based on UML models that explicitly addresses the challenge of
integration of heterogeneous systems, and we therefore choose UML as a basis
for our modelling, to ensure compatibility with this approach.

Determining strategies for coordinating services can be difficult, due to com-
plex dependencies between services and the large number of possible states for
the enterprise, arising from the parallel evolution of multiple services. We asso-
ciate a formal model of behaviour based on workflows with our models of services,
providing the opportunity for analysis. This model also formalises our notions of
coordinated capabilities forming larger conceptual entities such as services, and
the flows of information resulting from service enactment. Finally, the formal
semantic provides a reference for implementation activities proceeding from our
models, giving developers the opportunity to assert that software components
act as required.

The remainder of this paper is structured as follows: In Section 2 we provide
a background with a discussion of electronic services (Section 2.1), and UML
and the MDA (Section 2.2); in Section 3 we present a meta-model describing
the domain of ESSs; in Section 4 we show the translation of the meta-model
into a UML profile; in Section 5 we discuss related work and then summarise in
Section 6.

2 Background

2.1 Electronic services

The notion of a ‘business service’ enables the management within an enterprise
of ‘capabilities’ to deliver some benefit to a consumer. The term ‘capability’

refers to the coordination of simpler tasks to achieve an end; the concept is
used to raise the level of abstraction when describing the way that a business
behaves. When describing business services, capabilities are divided into those
involved in ‘provisioning’ the service, and those providing the ‘content’ of the
service. The content of a service is the set of capabilities that deliver the benefit
of the service to the client. For example, the content of a freight service refers
to the capability of moving goods from one place to the other. Provisioning
refers to the business channel [6] between the provider and the consumer of a
service. In the example, provision covers selection, product offer, pricing, and
interaction processes that the freight company applies to its customers. Content
and provisioning are complementary aspects of a service. On the one side, the
provisioning logic depends on the capabilities that the provider can support.
On the other side, the capabilities made available to consumers depend on the
provisioning logic adopted by the provider. In the example, the option of delivery
tracking might be made available only to selected customers. The example is
based on previous research in the freight domain [12].

An electronic service is a business service with communication and coordi-
nation aspects implemented using computer systems [14].

Because business services require communication between the provider and
the consumer it is natural to provide interfaces to business services using commu-
nication technologies such as computer networks, and the software that supports
this such as middleware for distributed systems. Indeed, a service metaphor is
widely used in these technologies. Listeners on network interfaces are often re-
ferred to as services, and web-services communicate using Internet protocols
to provide services of all sorts. Such services are closely analogous to business
services, even to the extent of exhibiting a separation between provisioning ca-
pabilities in the form of meta-data interfaces, reflection and directories, and the
back-end logic implementing the content of the service. Web-services conform
to the model further, by including business terms in meta-data [24], enabling a
market in services.

Middleware services and computing resources also provide the opportunity
to implement new business services with a highly automated content, and this is
an expected benefit of the electronic service model. However, despite the simi-
larities, our notion of electronic services should not be confused with middleware
services. Services must also be coordinated: Internally, to marshal the involved
capabilities and resources and establish the relationship between content and
provisioning; and externally, to manage the interaction between the service and
its clients and environment. This coordination requires a view of the behaviour
of a service. We therefore introduce an operational semantic for capabilities,
presented in Section 3.2. This semantic is broadly compatible with workflow
languages, suggesting that services could be both coordinated and enacted by
workflow engines.

Our semantic also describes abstractly the effect that activities have on the
information in their environment, for example the known locations of vehicles,
or statistics such as the total revenue for a service. Such information can have

a role in coordinating capabilities, and may be maintained and leveraged using
databases or other accounting mechanisms.

There is also a need to manage the resources required by a service, which
may be the role of an Enterprise Resource Planning (ERP) application. Gen-
erally, if electronic services are in place there will be the need and opportunity
to integrate them using a technical infrastructure. We introduce the notion of
an Electronic Service Management System (ESMS), informally defined as an
application that includes coordination, information and resource management
capabilities, providing business-oriented viewpoints and control over the services
that it manages.

IT technology trends and the service model for business provide the con-
text for electronic services. An enterprise adopting an electronic service strat-
egy would structure its business as services, provide interfaces to those services
using middleware technologies, coordinate and automate the services from a
workflow-oriented perspective and implement a technological infrastructure to
take advantage of the coordination and communication opportunities that are
the key benefit of the electronic service model.

2.2 UML and the model-driven architecture

Businesses adopting an electronic service strategy will be faced with integration
and implementation challenges. Modelling systems of electronic services is a vital
step towards meeting a number of these. When implementing a new electronic
service, or adapting an existing business service to an electronic service it is nec-
essary to understand the intended environment of the service, and its interaction
with other services and management systems. Similarly, when introducing new
management components, it is necessary to have a clear understanding of the
services with which it will interact.

The Unified Modelling Language (UML) is an object-oriented graphical lan-
guage that has found wide applicability in analysis and design for software en-
gineering. In this paper we provide a profile for UML to allow the modelling of
ESSs. Profiles are an extension mechanisms whereby the innate notations pro-
vided by the UML can be augmented with labels, called ‘stereotypes’, tagged
values and constraints, which provide semantic refinement, annotations and syn-
tactic refinement respectively.

UML is based on a conceptual architecture that is divided into four meta-
modelling layers as shown in Figure 1. The lowest level is the data layer (M0), in
which objects such as data-patterns in computer memory and other real-world
phenomena including people and things are supposed to reside. The elements
in the lowest level are classified by types in the UML models that analysts and
designers produce, which hence reside at the next meta-level (M1). UML model
elements are, in turn, objects of classes in the UML meta-model (M2). Attached
to these meta-classes are semantic descriptions and syntactic constraints that
control the meaning and applicability of the UML. The meta-model at level M2
is self-describing, so can also be regarded as residing in level M3 (and plausibly
all higher levels).

<<profile>>
UMLExtension

<<model>>
MyModel

UML meta-model Virtual meta-
classes

UML meta-model

M0: Real world

M1: Models

M2: Meta-models

M3: Meta-meta-model

Fig. 1. Meta-modelling architecture of the UML

Profiles then, are a means of refining classes, semantics and syntactic con-
straints at the M2 level. Confusingly, profiles exist at the M1 level, so that they
can be denoted using UML and deployed by including them with any UML
model that requires their language extensions. They can therefore be regarded
as injecting ’virtual meta-classes’ into the UML meta-model (M2).

Before presenting our profile, we present a meta-model that is similar to the
UML meta-model, and can be considered to reside at level M2 in the conceptual
architecture. This is a common practice when defining profiles [5], as a new
meta-model describes the semantic domain directly, independently of the need
to refine the semantics of the UML meta-model. In section 4 the meta-model is
mapped onto profile elements, and existing elements in the UML meta-model.
Our meta-model therefore serves as both a reference model for our definition of
electronic services and to define the semantics of the profile.

The Model Driven Architecture (MDA) [17] is a modelling approach based
on UML. It recommends that development organisations separate models of their
business logic (Platform Independent Models - PIMs), from technical artifacts,
such as design models (Platform Specific Models - PSMs) and source code. The
benefit is to insulate organisations from the cost of re-deploying software services
as architectural infrastructures change, particularly middleware standards. The
approach also supports the integration of heterogeneous and legacy software, and
for these reasons is extremely well suited to development tasks in an electronic
service environment. In the terminology of the MDA, the models produced using
our profile are Platform Independent Models (PIMs). UML can represent refine-
ment relationships between models, for example between a PIM and a PSM. Our
models can therefore be related to more detailed design models, supporting the
MDA approach when implementing or integrating electronic services.

In supporting an MDA approach our profile is similar and complementary
to other profiles including the standard Enterprise Distributed Object Comput-
ing (EDOC) profile [18], which can be used to represent enterprise computing
systems in a platform-neutral manner.

3 The ESS meta-model

The ESS meta-model is divided into two packages as shown in Figure 2. These
partition the elements pertaining to services from those which represent manage-
ment applications. The management component metamodel naturally depends
on concepts from the service metamodel. The following sections present these
metamodels in detail.

Services Management

Fig. 2. Subpackages within the ESS meta-model

3.1 The service meta-model

Figure 3 shows the part of the services meta-model related to the composition
of capabilities into services. The elements shown are now described:

Service An electronic service as described in Section 2.1. Services have any
number of provisioning capabilities, and a single top-level content capability
(the capability to deliver the service). Services can be composed of sub-
services, in which case the content capability coordinates the content of each
sub-service, and each sub-service must have a provisioning capability that
makes a service offer to a role in the coordinating content capability.

Capability A business capability described by a workflow. The behaviour of
capabilities is described formally in Section 3.2. Informally, a number of
roles perform actions and cooperate to complete some task. Capabilities
can be composed in a hierarchy. The workflow of a coordinating capability
constrains the order of tasks in the component capabilities.

CapabilityRole A capability role identifies the behaviour of a worker or re-
source in a coordinated task. Capability roles can be assigned to actual
business entities as discussed below.

InformationItem An identifier for a piece of information about an enterprise
that is relevant to a task. Some workflow actions require information as
a prerequisite and produce or process information as by-product of their
enactment.

Observation Observations give rise to new information from existing informa-
tion. This captures the idea that not all derived information is produced by
a particular action. When the condition of the observation is satisfied then
new information may be introduced by the observation expression.

Constraints defined over the meta-model further reinforce these informal se-
mantics. For example, capabilities may not coordinate themselves. Constraints
are expressed formally using OCL [16]:

dependentinput

1..*

output

1..*

0..*
subservice

1 1..*

actor

0..*

0..* output

consumer 0..*

0..*

producer

input

0..*

0..*

coordinator

components
composition

0..*

0..*

provisioned

provisioning

0..*

1

realised

content

InformationItem

+name:String

Service

+name:String
+external:Boolean
+enabled:Boolean

CapabilityRole

+name:String

Observation

+condition:String
+observation:String

Capability

+name:String
+workflow:String

Fig. 3. Capabilities view of the services meta-model

context Capability
def :

let allCoordinators = self.coordinator→union(
self.coordinator→collect(c | c.allCoordinators))

inv:
not self.allCoordinators→exists(c | c = self)

Complementary to the abstract view of services are models of the business
assets in an enterprise, and their assignment to capability roles to realise a
service. Figure 4 shows the meta-model classes supporting such models.

BusinessEntity A business entity is a person, resource or system that can fulfil
one or more roles in a capability.

ServiceOffer A service offer is made to a capability role (typically that of
the ‘customer’). That capability role must be associated with one of the
provisioning mechanisms of the service.

0..* provisioned

0..*
0..*1

0..*

0..*

1..*1

enacter

1

1..* actor

0..*

provisioning

0..*

customer

0..*

1

Service

+name:String
+external:Boolean
+enabled:Boolean

ServiceImplementation

ServiceOffer

+name:String
+enabled:Boolean

BusinessEntity

+external:Boolean
+name:String

CapabilityRole

+name:String

Capability

+name:String
+workflow:String

ITSystem

Fig. 4. Implementation view of the services meta-model

ServiceImplementation ServiceImplementation captures the idea that busi-
ness assets can be assigned to capability roles in order to make a service
concrete. There is no explicit notion of service instance. However, if neces-
sary business assets can be grouped to show those relevant to a particular
scenario.

ITSystem An IT system is a computing system that can perform a role in a
capability. Electronic services are intended to provide integration and auto-
mated coordination. This class allows the identification of the components
providing these services, possibly as a prelude to an MDA-style development
activity. Section 3.3 provides refinements of this stereotype to identify likely
management applications.

Additional classes not shown in Figures 3 and 4 are now discussed:

Property and HasProperties Properties capture different types of meta-data
about capabilities. Such meta-information mainly refers to functional and
non-functional requirements for a capability. For example, a property for a
negotiation capability is to be usable only with a certain type of customers.
The following classes inherit from HasProperties to enable the attachment
of properties: BusinessEntity, CapabilityRole, Capability and Service. The
properties mechanism maps onto the tagged-value mechanism in UML in the
profile definition.

Group and Groupable Experience with the HP Service Composer revealed
the benefit of composing capabilities into loosely-grouped higher-level ag-

gregates called ‘clusters’, in which capabilities exhibited functional overlaps,
dependencies, mutual ownership or other subjective similarities. There is also
often the need to group services into related offerings or ‘service packs’. Fi-
nally, as stated above, a grouping mechanism addresses the lack of a concept
of service instance by allowing the association of business entities that ac-
tually cooperate (since more than one entity can enact a given service role).
Group and Groupable provide a single mechanism for hierarchical grouping.
The following elements inherit from Groupable, and hence may appear in
a Group: CapabilityRole, Capability, BusinessEntity, InformationItem, Ser-
vice and Group. Grouping is implemented by UML’s package mechanism in
the profile definition.

3.2 Formal semantics for the service meta-model

In this section we formalise notions of information and coordination for capabil-
ities, using the Structured Operational Semantics (SOS) style of [22], in which
inference rules define the structure of a Labelled Transition System (LTS) in-
tentionally. This definition contributes to the semantics of the profile by empha-
sising the definition of capabilities as coordinated activities whose behaviour is
known, and by providing a high level constraint on workflow descriptions taken
as values for the meta-attribute Capability.workflow. Our formalism is defined
independently of specific workflow languages by omitting base cases for our rules.
Instead, we assume that the workflow language employed allows us to make as-
sertions such as:

〈Σ ∪ I, c〉 α:I→O−→ 〈Σ ∪O, c′〉 (1)

Meaning that a specific, isolated capability, c, in a system where the current
information is represented by Σ ∪ I, evolves to c′ by undertaking an action, α,
which effects some change, reflected by the transformation of the information I
to new information O.

Capabilities may evolve independently of each other, when not coordinated:

〈Σ, ci〉
α−→ 〈Σ′, c′i〉

〈Σ, {c1 . . . ci . . . ck}〉
α−→ 〈Σ′, {c1 . . . c′i . . . ck}〉

(2)

Even when coordinated, capabilities may perform uncoordinated actions (A(c)
yields the set of actions that a process c can undertake):

〈Σ, ci〉
α−→ 〈Σ′, c′i〉 α /∈ A(cc)

〈Σ, cc[{c1 . . . ci . . . ck}]〉
α−→ 〈Σ′, cc[{c1 . . . c′i . . . ck}]〉

(3)

Coordinated actions may occur only when the coordinating process permits,
and when all capabilities that can perform them are ready to do so simultane-
ously:

〈Σ, cc〉
α−→ 〈Σ′, c′c〉 〈Σ, c1〉

α−→ 〈Σ′, c′1〉 . . . 〈Σ, ci〉
α−→ 〈Σ′, c′i〉 α /∈

⋃
cf∈F

A(cf)

〈Σ, cc[{c1 . . . ci} ∪ F]〉 α−→ 〈Σ′, c′c[{c′1 . . . c′i} ∪ F]〉
(4)

A capability may have multiple coordinators in the metamodel. The inter-
pretation of this is that the capability is a subcapability of its coordinator. It
is therefore replicated for each coordinator. Shared sub-capabilities are not syn-
chronized.

Note that an action may require certain information to be present and sat-
isfy some condition before the action can be performed. Hence, coordination
by shared memory is also possible for capabilities. Under the electronic service
model, provisioning and content capabilities are not explicitly coordinated, hence
this mechanism links these capabilities for a service. The provisioning capabilities
create conditions under which the content capabilities are enabled.

Information in the system may arise naturally from the occurrence of actions.
However, the progress of the system may depend on broader observations than
those made in the context of a particular action. Hence we enable the modelling
of observations that derive new information from that already present in the
system:

〈Σ ∪ I, Γ 〉 ∧ ∃o : I → O ∈ Ω

〈Σ ∪ I ∪O, Γ 〉 (5)

We do not prescribe the language used to specify observations. OCL would
be a good candidate. The information prerequisites for the observation could
be captured by a boolean expression, and then let-clauses could introduce new
information. Note that it is possible to specify observations that lead to incon-
sistencies in the system information. Modellers should try to avoid this. One
strategy for dealing with this is to rule that if multiple values can be derived
for an information item then the value of the information item is not known.
However, in systems where action is preferable to inaction, this may not be safe.

For the purposes of assigning work the underlying workflow language must
also associate actions with roles, although this association is not required in this
discussion of coordination, as we assume that coordination is independent of the
entities that implement roles. That is, an entity will eventually be capable of
enacting all actions required of it during the evolution of the system.

The benefit of a formal semantic based on an LTS are in terms of simulation
and analysis. A tool such as LTSA [13] can provide scenario-based validation
of models. This can be used to assert safety conditions, fairness and liveness
conditions, and to ensure the absence of deadlocks (presumably arising from
capabilities failing to establish adequate preconditions for their successors). The
use of information for coordination complicates such models, and can increase
their state-space beyond feasibility. However, reasonable abstractions can usually
be found.

3.3 The management meta-model

The management meta-model shown in Figure 5 allows the identification of
common management components and their relationship to electronic services.
We have not included modelling functional or structural relationships between
management components as this is out of scope of our discussion of electronic
services. However, such modelling is necessary and is supported by the full ex-
pressive power of the UML, possibly augmented by other profiles such as the
EDOC profile.

0..* 0..*

stores

0..* 0..*

manager managed

0..*

0..*

actor

0..*

0..*
coordinator

coordinated

0..* 0..*

enacts

resource

0..* 0..*

Database

WfMS

ERPS
ESS.Services.BusinessEntity

+external:Boolean
+name:String

ESS.Services.InformationItem

+name:String

ESS.Services.Service

+name:String
+external:Boolean
+enabled:Boolean

ESS.Services.Capability

+name:String
+workflow:String

ESMS

ESS.Services.ITSystem

Fig. 5. The management meta-model

ESMS An application offering a enterprise-oriented management view of an
electronic service environment. For example, the HP Service Composer [7],
or the DySCo research prototypes [21]. Other candidate technologies might
be an application service offering a middle-tier of business logic, with a web-
server providing the management interfaces.

WfMS A workflow management system, either embodying a capability (enact-
ment) or coordinating a number of subcapabilities. Examples of workflow

applications are IBM’s MQ-Series Workflow [8] and PeopleSoft’s [20] Peo-
pleTools and Integration Broker.

ERPS An Enterprise Resource Planning System, dedicating to coordinating
entities in the system, presumably making them available to fulfil capabil-
ity roles. We do not consider resource planning in this paper, although it
interacts at a functional level with coordination based on capabilities, and
future work may provide a combined modelling approach. Examples of ERP
systems are SAP’s mySAP [23] and Baan’s iBaan [1].

Database Most enterprises use databases to store information about the en-
terprise. Establishing a relationship between the (conceptual) information
items and the databases that store them allows a modeller to check whether
the information required by a business entity to fulfil a capability role is
available in its context. Popular databases are Oracle [19] and MySQL [15].

4 The ESS Profile

The following tables relate elements in the meta-model to profile elements and
elements in the UML meta-model.

All name attributes in the meta-models map to the name attribute of the
class element in the UML meta-model. All associations in the meta-model map to
associations in models. Stereotypes on AssociationEnds are used to disambiguate
associations where more than one exists between the same two meta-model ele-
ments. The meta-model constraints also have translations into constraints on the
profile elements, and additional constraints reflect the structure of the original
meta-model. For example, the ‘Fulfills’ stereotype can only be attached to an
association between a CapabilityRole and a BusinessEntity, and its service tag
must always be present:

package Foundation::Core
context Association

inv:
self.stereotype→exists(“Fulfills”) implies

self.connection.participant.stereotype→exists(“CapabilityRole”)
and
self.connection.participant.stereotype→exists(“BusinessEntity”)
and
self.taggedValue.type→exists(name = “service”)

5 Related work

The definition and characteristics of the ESS model derive substantially from the
experience of HP Service Composer. UML notation is used in the HPSC, with
a separation between platform-dependent and platform-independent models of
an electronic service. Workflow notation and technology is used to model and
manage the business logic of a service.

Meta-model element Stereotype UML base class Parent Tags

Service Service Class – external
enabled

Service.content content AssociationEnd – –

Service.provisioning provisioning AssociationEnd – –

Service.component component AssociationEnd – –

Capability Capability Class –

Capability.input input AssociationEnd – –

Capability.output output AssociationEnd – –

CapabilityRole CapabilityRole Class – –

InformationItem InformationItem Class – –

Observation Observation Class – condition
observation

Observation.input input AssociationEnd – –

Observation.output output AssociationEnd – –

BusinessEntity BusinessEntity Class – –

ServiceOffer ServiceOffer Class – enabled

ServiceImplementation Fulfills Association – service

ITSystem ITSystem Class BusinessEntity –

ESMS ESMS Class ITSystem –

WfMS WfMS Class ITSystem –

WfMS.actor wfactor AssociationEnd – –

WfMS.enacts enacts Class – –

WfMS.coordinated coordinates Class – –

ERPS ERPS Class ITSystem –

Database Database Class ITSystem –

Table 1. Stereotypes in the ESS profile

Meta-model element Tag Stereotype Type Multiplicity

Service.external external Service Boolean 0..1

Service.enabled enabled Service Boolean 0..1

Capability.workflow workflow Capability String 0..1

Observation.condition condition Observation String 1

Observation.observation observation Observation String 1

ServiceImplementation.service service Fulfills Class 1

BusinessEntity.external external BusinessEntity Boolean 0..1

ServiceOffer.enabled enabled ServiceOffefr Boolean 0..1

Table 2. Tags in the ESS profile

The ESS model is also closely related to the DySCo (Dynamic Service Com-
poser) [21] research prototype. DySCo is the result of a two-year project involv-
ing University College London (UK), the University of St. Petersburg (Russia),
the University of Ferrara (Italy), the University of Hamburg (Germany), and

Hewlett-Packard (UK and USA). The objective of DySCo was the development
of a conceptual and technology framework for the dynamic composition of elec-
tronic services. While lacking direct support for UML, DySCo provides modelling
facilities for workflows and a homogeneous execution platform for an ESMS.

An electronic-services model is currently being used in the context of the
EGSO (European Grid for Solar Observations) [2] project. The model-driven
approach to the architecture of the service provision part of the EGSO grid is
expected to address the need to integrate services based on different provision
models and execution platforms. Each service provider in the EGSO grid will be
equipped with an ESMS. In addition, a specific ESMS federates and manages
the service provisioning capabilities of the overall EGSO grid.

The Enterprise Collaboration Architecture (ECA) defined in the OMGs EDOC
specification [18] provides a comprehensive framework for the modelling of en-
terprise systems. The ESS profile introduces enterprise system components that
can be designed based on the ECA, and provides a means to model features pe-
culiar to electronic services that are not explicitly addressed by the ECA. Similar
considerations apply for the Reference Model for Open Distributed Processing
(RM-ODP) [9], which is also closely related with the ECA.

Most technology and conceptual frameworks for electronic services [11] focus
on web-service-based automation of the front-end of individual services. Web
Services [3, 4] constitute the reference model for access to and basic orchestration
of business resources. We envision Web Services playing a fundamental role in the
realisation of electronic services. Still, a more comprehensive approach is needed
for the realisation and operation of business-level services. An example of the
issues involved in the realisation of business-level service is HiServs Business Port
[10]. FRESCO (Foundational Research on Service Composition) [22] provides an
example of second-generation framework for electronic service management. The
focus of FRESCO is on the provision aspects of services.

6 Conclusions

Electronic services provide the conceptual and technology framework for the ag-
gregation and coordination of business resources. The realisation and operation
of a service requires close integration between different systems. A model-driven
approach to development in an electronic-service environment helps tackle the
integration issues arising from heterogeneity and change.

In this paper, we present a means to model ESSs using UML, in a manner
compatible with the MDA approach. We apply concepts derived from the spe-
cific experience of HP Service Composer, but also closely related to concepts in
OMGs EDOC specification and the RM-ODP. The semantics of the models are
described with reference to a meta-model from which a UML profile is defined.
The behaviour of electronic services is described formally using operational se-
mantics, providing an additional benefit of our models as a foundation for formal
analyses.

References

1. Baan. iBaan. http://www.baan.com/.
2. R. D. Bentley. EGSO – the european grid of solar observations. In European Solar

Physics Meeting, ESA Publication SP-506, 2002.
3. E. Cerami. Web Services Essentials. ORielly and Associates, 2002.
4. M. Clark et Al. Web Services Business Strategies and Architectures. Expert Press,

2002.
5. D. S. Frankel. Model Driven Architecture: Applying MDA to Enterprise Computing.

John Wiley and Sons, 2003.
6. B. Gibb and S. Damodaran. ebXML: Concepts and Application. John Wiley and

Sons, 2002.
7. Hewlett-Packard Company. HP Service Composer User Guide, 2002.
8. IBM. Websphere MQ Workflow. http://www-3.ibm.com/ software/

integration/ wmqwf/.
9. ISO/IEC, ITU-T. Open Distributed Processing – Reference Model – Part 2: Foun-

dations, ISO/IEC 10746-2, ITU-T Recommendation X.902.
10. R. Klueber and N. Kaltenmorgen. eServices to integrate ebusiness with ERP

systems – the case of HiServs business port. In Workshop on Infrastructures for
Dynamic Business-to-Business Service Outsourcing (CAISE-ISDO), 2000.

11. H. Kuno. Surveying the e-services technical landscape. In Workshop on Advance
Issues of E-Commerce and Web-Based Information Systems (WECWIS). IEEE
Press, 2000.

12. N. Linketscher and M. Child. Trust issues and user reactions to e-services and
e-marketplaces: A customer survey. In DEXA Workshop on e-Negotiation, 2001.

13. J. Magee and J. Kramer. Concurrency: State Models and Java Programs. John
Wiley and Sons, 1999.

14. A. Marton, G. Piccinelli, and C. Turfin. Service provision and composition in
virtual business communities. In IEEE-IRDS Workshop on Electronic Commerce,
Lausanne, Switzerland, 1999.

15. MySQL AB. MySQL Database. http://www.mysql.com/.
16. OMG document formal/2003-03-01. Unified Modelling Language (UML), version

1.5, January 2003.
17. OMG Document ormsc/01-07-01. Model Driven Architecture (MDA), July 2001.
18. OMG, document ptc/02-02-05. UML Profile for Enterprise Distributed Object

Computing Specification, May 2002.
19. Oracle. Oracle database products. http://www.oracle.com.
20. PeopleSoft. PeopleTools and Integration Broker. http://www.peoplesoft.com/.
21. G. Piccinelli and L. Mokrushin. Dynamic e-service composition in DySCo. In

Workshop on Distributed Dynamic Multiservice Architecture, IEEE ICDCS-21,
Phoenix, Arizona, USA, 2001.

22. G. Piccinelli, C. Zirpins, and W. Lamersdorf. The FRESCO framework: An
overview. In Symposium on Applications and the Internet (SAINT), IEEE-IPSJ,
2003.

23. SAP. mySAP. http://www.sap.com/.
24. UDDI.org. UDDI (Universal Description, Descovery and Integration)

Executive White Paper, November 2003. http://www.uddi.org/ pubs/

UDDI Executive White Paper.pdf.

User Quality of Perception: Towards a Model for
Personalised Communication Services

Cláudia Maria F.A. Ribeiro1,2, Nelson Souto Rosa1, Paulo Roberto F.Cunha1

1 Universidade Federal de Pernambuco
Cidade Universitária, Recife-PE, Brazil

2 Universidade do Estado do Rio Grande do Norte
Campus Universitário, Mossoró-RN, Brazil
{cmfar,nsr,prfc}@cin.ufpe.br

Abstract. The emerging of the new generation applications like videoconfer-
ence and the increasing in the demand of QoS services has enforced the need of
new service models. As in the most new applications the user can perceive the
level of quality a service is provided, data communication services are currently
evolving towards more personalised ones. A direct consequence of this trend is
the necessity of explicit treatment of the user quality of perception (known
QoP). Challenges in this evolution include the better understanding of “how”
users perceive QoS and “how” the perception is actually realised by underlying
QoS mechanisms. We present a formal architecture, namely ESCHER that im-
plements a QoP model for QoS services. The QoP model focus the precise
specification and mapping of user QoS requirements into QoS parameters. The
Z notation is used to formalise the ESCHER elements and their operations

1. Introduction

The emerging of new generation applications like videoconference and the increas-
ing in the demand of QoS services have motivated some key transformations in the
application development process. Meanwhile, there is a clear necessity of new service
models [1].

Data communication services are currently evolving towards more personalised
ones, as the users can perceives the level of quality a service is provided [4]. In fact,
those services are becoming as personalised as health care services, bank services and
traditional voice communication services [2]. A direct consequence of this trend is the
necessity of explicit treatment of the user quality of perception (known QoP).

Typical users are not able to express their QoS requirements in quantitative terms,
as they are not concerned with details of implementation of QoS services. For in-
stance, they know neither what is the upper limit of tolerable packet delay nor jitter in
an IP telephony session. Moreover, they cannot provide the traff ic specification of
their application flow.

Actually, the user has a very subjective view of QoS and he/she usually defines
QoS constraints as a set of non-functional requirements (NFRs) such as performance

and cost. In order to understand, precisely specify and map user QoS specifications
into quantitative network parameters, new capabili ties must be incorporated by QoS
mechanisms.

Despite the high abstraction level in which NFRs are commonly stated, there is a
rationale to treat with the NFRs defined by users. As resources are traditionally
scarce, the resource allocation based on the quality perceived by the user yields a
more effective resource management. For example, a video quality may be good for a
particular user, while its quality is not acceptable to others. The optimisation of re-
source allocation embodies benefits to communication service providers, whilst the
differentiation of services motivated by the user quality of perception (QoP) leads to
money saving on behalf of the users.

Quality of Service is a key factor for differentiating service offers in a competitive
market. Some organisations of communication service providers such as Eurescom
and ETSI are currently trying to define service quali ty classes (QC model), which are
easily identified by users [5,12]. For instance, the class of communication service
named “gold” would be associated to a better quality of service and consequently
with a higher cost than the class “silver” .

The aforementioned initiative are a progress towards the effective treatment of the
individual necessities of users, however two important issues are still open: it is nec-
essary a better understanding of “how” the user perceives quali ty; and “how” the per-
ception is actually realised into underlying quali ty of services elements.

We have addressed these mentioned issues by conceiving a layered architecture
namely ESCHER1 that implements the QoP model for QoS services. The QoP model
focuses on both the precise specification and mapping of user QoS requirements into
QoS parameters. The precise specification and its benefits are obtained by the adop-
tion of the Z notation.

The definition of the ESCHER architecture has four main benefits. Firstly, it con-
tains a layer that enables the active participation of users in the definition of QoS re-
quirements, preserving their subjective notion of QoS. Second, the architecture makes
explicit the elements involved in the specification and provisioning of personalised
QoS services in different levels. Thirdly, it serves to guide the implementation of per-
sonalised QoS services. Finally, it facil itates the mapping of high abstraction level
specification (defined by the user) into more concrete specification (treated by under-
lying QoS mechanisms) through the integration of different QoS views.

This paper is organised as follows. Section 2 introduces the QC model. Section 3
presents the principle of the QoP model. Sections 4 and 5 are dedicated to ESCHER
QoP architecture fundamentals and formalisation, respectively. In Section 6 is pre-
sented a modelling of videoconference application using ESCHER. Finally, the last
section presents the conclusions and some directions for future work.

1 Maurits Cornelis Escher (1898-1972) is a graphic artist. He is most famous for his so-called

“ impossible” structures which allow multiple perceptions

2. Related Work

There are some research activities on capturing of user QoS requirements
[10,11,13]. However, due to space limitation and mainly for relevance to our
proposal, only a Quality Class Model (QC Model) named QUASI-model [5] is de-
scribed in this section.

In a typical scenario of QUASI-model, the user requires a certain Quali ty Class
(QC) for a specific Application Category (AC) to the Service Provider. Each combi-
nation (QC, AC) corresponds to a Network Performance Level (NPL).

Some examples of Application Categories include: ‘Conversational’ , ‘Streaming’ ,
‘ Interactive’ and ‘Background’ . The QUASI-model also defines the Quality Classes
(QCs) that are used as a QoS differentiator towards the user. Examples of Quality
Classes are ‘Gold’ and ‘Silver’ .

An NPL is a small set of network performance parameters, e.g., delay, jit ter and
loss. Each parameter has assigned a value range and the guarantee that each parame-
ter value belongs is in the range. This represents the goal of the network in order to
provide the desired Quality Class of a particular Application Category.

The QC model assumes that the user has selected a QoS (offered by the network
provider) based on his/her perception. This fact implies that the network provider or
the application service provider offers a limited set of QoS profiles that the user can
chose. The selected QoS is mapped into attributes applicable to the QoS mechanism
that realises the requested QoS. When the QoS mechanism has accomplished the se-
lected QoS, the transmitter can send the content to the user.

Table 1. QC model example

 AC1
Non-Real Time

AC2
Non-Interactive Real

Time

AC3
Interactive Real

Time
Premium NPL11 NPL12 NPL13

Basic NPL21 NPL22 NPL23

A practical QC Model (see Table 1) contains two Quality Classes, namely Pre-
mium and Basic, and three Application Categories, namely interactive non-real-time,
non-interactive real time and interactive real-time. Combining the two QCs with the
three ACs results at most in six possible data flows to be treated differently in the
network in order to preserve the performance requirements of the relative ser-
vices/applications.

Despite the simplicity, the main disadvantage of QC Model refers to the categori-
sation of users. The different level of perception of each user is not direct treated by
this model. Additionally, the cost is a consequence of selected quality class and NPL
associated, not a constraint imposed by the user.

The QoP Model, described in next Section, presents a service model to solve the
questions above mentioned, by considering the explicit treatment of user quality of
perception. It serves as a basis of QoS management service implemented by ESCHER
architecture proposal.

3. The QoP Model

The QoP Model considers the necessity of precisely expressing QoS requirements
at user level, the necessity of mapping QoS requirements into QoS parameters of un-
derlying QoS mechanisms and the need of guaranteeing the required QoS level. Some
basic principles are considered by QoP model:
• The user can require different level of quality for multimedia services;
• The QoS provided is perceived by the user by considering personal characteristics;
• The user satisfaction level is represented by the trade-off between non-functional

requirements like QoS and cost;
• The QoS mapping process translates subjective specification defined by the user

into QoS parameters used by underlying QoS mechanisms;
• Each QoS mechanism has its own set of QoS parameters; and
• The QoS mapping is a bi-directional process: from upper to lower layers at con-

figuration phase and in the opposite direction at monitoring phase.
To realise aforementioned principles, in QoP Model the “user layer” is proposed as

the most abstract layer instead the traditional “application layer” . In traditional ap-
proach, the needs of the users are dealt in an implicit manner by the application. In a
personalised service, the user has the opportunity of defining the level of desired
quali ty and the upper limit for the cost. The perception of QoS is a function of per-
sonal characteristics of each user.

Another difference between traditional approach and QoP Model is the way the
user satisfaction level is considered. In QoP Model the user satisfaction level is repre-
sented by the trade-off between non-functional requirements like QoS and cost.

A key feature of QoP Model is the separation of concerns in the requirement speci-
fication. By adopting this principle, both the specification of non-functional require-
ments (including QoS requirements) and functional requirements of a given applica-
tion, can be obtained in a separate manner. It allows legacy applications to use QoS
services without any change in its code. In the proposed QoP architecture described
in Section 4, the middleware layer that serves as an architectural element for integrat-
ing requirement specifications [8,9] has this characteristic.

It is important to notice that each QoS mechanism has its own set of QoS parame-
ters and the QoS mapping has to consider this aspect [7]. In QoP Model the QoS
mechanism are represented in an abstract way by an architectural layer. This feature
allows the introduction of new mechanisms.

Finally, the QoP Model considers two phases for QoS management service: con-
figuration and monitoring. The first one includes QoS requirements specification,
QoS mapping and QoS negotiation for resource allocation. The second one represents
the renegotiation phase when environmental changes affect the level of QoS pro-
vided. The QoS mapping is structured as bi-directional process: from upper to lower
layers at configuration phase and in the opposite direction at monitoring phase.

4. The ESCHER QoP Architecture

Figure 1 illustrates the ESCHER layers and the relationships between QoS
abstractions of each layer.

Fig. 1. Components of the ESCHER QoP Architecture

Each layer represents a particular entity together with its respective view of QoS.
In the User Layer, QoS requirements consist of non-functional requirements (NFR)
their associated constraint level and the relationship of priorities between them. In the
Application Layer, a set of QoS attributes such as “ frame rate” and “ resolution” real-
izes NFRs defined at User Layer by considering both the category and type of appli-
cation.

The third layer represents the QoS middleware view, a key architectural element
for the “ transparent” support of QoS. At this layer, QoS requirements are defined by
QoS characteristics such as delay, ji tter and loss. Finally, the lower layer is the QoS
Mechanism Layer. This layer represents QoS mechanisms such as IntServ, DiffServ
and ATM. Each QoS mechanism has their own QoS information represented by QoS
parameters.

4.1 ESCHER Elements

There are two basic elements in ESCHER: layers and relationships between ab-
stractions of each layer. The layers previously presented represent different QoS
views (user, application, middleware and QoS mechanism). Each layer has its own
abstraction to specify QoS requirements.

NFR

L evel L evel

NFR
UserL ayer

QoS attrib

A ppli cationL ayer

V alue
V alue

QoS attrib QoS attrib QoS attrib

V alue
V alue

M iddlewareL ayer

V alue

QoS char QoS char

V alue

QoS char

V alue

QoS M echanismL ayer

V alue

QoS param QoS param

V alue

QoS param

V alue

D
o

w
n

 Q
o

S
 m

ap
p

in
g

U
p

 Q
o

S
 m

ap
p

in
g

The relationships are classified into direct and indirect. The first one relates di-
rectly two QoS abstractions. For instance, the direct relationship namely Realization
relates a specific NFR to the QoS attributes that realize it. The second one is com-
posed by at least two direct relationships. For instance, the relationship between NFR
and QoS characteristic is composed by Realization and Affect direct relationships. Re-
lationships serve as basis for the QoS mapping as they model constraints imposed on
mapping of user QoS requirements (NFR) into QoS parameters. They are detailed in
Section 5.1.

4.2 ESCHER Operations

The ESCHER operations are grouped into two phases: configuration and monitor-
ing. The first one is made up of the specification of user QoS requirements, the map-
ping of QoS requirement into QoS parameters and the negotiation for establishment
of the QoS contract. The second one is composed by the activities of monitoring con-
tracts, the reverse mapping to identify possible changes on agreed QoS level and the
adaptation process.

An important characteristic of ESCHER is the facility in specifying the QoS re-
quirements. The user basically defines the minimum set of requirements related to
constraints, priorities and kind of application. The mapping process is responsible for
translating the user QoS requirements into QoS parameters treated by the QoS
mechanisms.

In the ESCHER, the QoS mapping is a bi-directional process, i.e., there is a down
QoS mapping, from upper to lower layers and another one named up QoS mapping,
in the opposite direction. Each mapping consists of the translation between QoS ab-
stractions, respecting the relationships between them.

The down QoS mapping is a three-step process that is executed during the configu-
ration phase. Each step is responsible for the translation between abstractions of two
layers, e.g., from the user layer to the application layer.

After the down QoS mapping, it is initiated the negotiation to allocate resources to
satisfy the required QoS. In the QoS Mechanism Layer, virtual resources represent an
abstraction of physical resources managed by specific underlying QoS mechanisms.

The monitoring phase begins with the evaluation of the QoS provided. If the
agreed QoS level is not respected, a reverse QoS mapping (up QoS Mapping) is trig-
gered in order to identify impacts over user QoS constraints. Instead quantitative pa-
rameters, this mapping takes care of qualitative aspects when changes justify a rene-
gotiation process.

Despite this systematic process, the user actually decides whether a renegotiation
process is necessary or not. Individual quality of perception serves as basis to the user
decision. The user may be satisfied with a new trade-off between performance and
cost even if the QoS provided is different from the QoS initially defined.

5. Formalising the ESCHER QoP Architecture

As mentioned before, the ESCHER architecture has been formalised in Z2. The
following points justify the adoption of the Z notation. Firstly, the emphasis of the
ESCHER architecture is on the QoS information contained in contracts. That infor-
mation is very complex, which demands a powerful notation for its definition. Sec-
ond, the operations have to preserve the consistency of the QoS information, which
can effectively be verified through the Z. Finally, the Z notation enables the formal
verification of properties of the architecture, e.g., it makes possible to check whether
user QoS requirements are actually realised into QoS parameters or not.

The Z specification is presented following a well-known convention: Z elements
are written in italic and Z components (schemas, variables and functions) are referred
to only by name.

According to the architectural components introduced in the sections 4.1 and 4.2,
the ESCHER architecture (ESCHER) is made up of two elements, namely layers
(Layers) and relationships (Relationships).

w3ESCHER 333333333333333333333333333333333
c Layers

c Relationships
{333333333333333333333333333333333333333

In order to simplify the comprehension, we divide the formal specification into
two parts: (1) QoS information, represented by state-schemas, and (2) QoS opera-
tions, specifically those related to the specification and the mapping process (opera-
tion-schemas). By the lack of space, only key schemas are detailed in the following.

5.1 ESCHER State Schemas

In ESCHER, each layer has its own abstraction to specify QoS requirements pre-
sented at the bottom of schema-hierarchy: non-functional requirements (NFR) in the
user layer (UserLayer), QoS attributes (QoSattr) in the application layer (Applica-
tionLayer), QoS characteristics (QoSchar) in the middleware layer (Middleware-
Layer) and QoS parameters (QoSparam) in the QoS mechanisms layer (QoSMecha-
nismLayer).

Each layer contains QoS specifications defined for its specific level. At user Layer,
the UserQoS schema represents user QoS specification. In the ApplicationLayer the
constraints imposed by the application is defined by ApplicationQoS.

In order to facilitate the QoS mapping process, we adopt the strategy of aggregat-
ing QoS specifications into QoS documents. There are three QoS documents consid-
ered in the ESCHER architecture: abstract QoS specification (AbstractQoSspec), con-
crete QoS specification (ConcreteQoSspec) and QoS contract (ContractQoS).

2 Z/EVES tool was used to check the specification

In ESCHER, the middleware is responsible for QoS management service. As QoS
mapping is a key task of QoS management service, the middleware layer integrates
abstract and concrete QoS specifications that are manipulated during QoS mapping.
The QoS mechanism layer maintains the QoS contract.

 In order to understand QoS information belonging to individual layers, it is nec-
essary to detail the basic elements UserQoS and ApplicationQoS schemas, as well as
QoS documents AbstractQoSspec, ConcreteQoSspec and ContractQoS schemas.

Fig. 2 depicts the ESCHER state schemas. At the top of schema-hierarchy is the
ESCHER schema, which is composed by Layers schema representing different QoS
visions (user, application, middleware and QoS mechanism) and Relationships
schema.

Fig. 2. ESCHER state-schemas

User QoS
The UserQoS schema is made up by five variables: (1) idUser identifies the user;

(2) QoSconstraints defines the set of NFRs that represents QoS required by the user;
(3) QoSpriorities establishes more restrictive NFRs; (4) QoSperceived represents the
user quali ty of perception; and (5) SatisfactionLevel represents the satisfaction level
of the user, which is related to the QoS constraints defined.

The invariant of the UserQoS schema includes restrictions about NFRs. If two
NFRs, namely nfr1 and nfr2, belong to the QoSpriorities then only one (nfr1 or nfr2)
can be defined as priority or more restrictive. For instance, if “quality of audio” is
defined as more restrictive then “cost” , this constraint must be respected in the defini-
tion of priorities. The satisfaction level of the user (SatisfactionLevel variable) is de-
fined as a set having the same structure as QoSconstraints variable, but semantically
different. The QoS constraints represent QoS desired, whilst the satisfaction level
represents the user quality of perception (QoP).

ESCH ER

L ayers Relationships

U serL ayer
QoSM echanism

L ayer

A bstract
QoSspec

Concrete
QoSspec

QoSparamQoSchar

U serQoS
A ppl ication

QoS

d irect in d irect

A ppl ication
L ayer

M iddlew are
L ayer

ContractQoS

N FR QoSattr

w3UserQoS33333333333333333333333333333333333
c idUser: .

c QoSconstraints : (NFR]Level)

c QoSpriorities : (NFR JNFR)]NFR

c QoSperceived : (NFR]Level)

c SatisfactionLevel : Level
v333333333333333
c �nfr1,nfr2:NFR | (nfr1,nfr2) 8dom QoSpriorities \

c (nfr2,nfr1) 8dom QoSpriorities [
c ((QoSpriorities (nfr1,nfr2) = nfr1 \QoSpriorities (nfr2,nfr1) = nfr1) H

c (QoSpriorities (nfr1,nfr2) = nfr2 \QoSpriorities (nfr2,nfr1) = nfr2)) \

c (dom QoSperceived Ldom QoSconstraints) � (ran QoSpriorities Ldom QoSconstraints)
{333333333333333333333333333333333333333

Application QoS
In the Application Layer, the ApplicationQoS schema represents constraints im-

posed by the application. It is composed by four variables: (1) idAppl identifies appli-
cation; (2) category identifies application category; (3) typeApplic identifies the type
of application; and (4) QoSconstraints represents constraints imposed by the applica-
tion. Each QoS attribute defined in the QoSconstraints variable is associated with 3
values: “ ideal” , “upper” and “ lower".

w3ApplicationQoS 3333333333333333333333333333333
c idAppl : .

c category : Category

c typeApplic: ApplicType

c QoSconstraints : QoSattr](Value JValue JValue)
{333333333333333333333333333333333333333

Most architectural elements are directly related (see Fig. 2) to others.

Concrete QoS Specification
The concrete QoS specification (ConcreteQoSspec) is an internal QoS document

used only by the QoS mapping process.
w3ConcreteQoSspec3333333333333333333333333333333
c idUser: .

c idAppl: .

c QoSMech: QoSMechanismType

c QoSchars: QoSchar](Value JValue JValue)

c QoSparams: QoSparam](Value JValue JValue)
{333333333333333333333333333333333333333

This QoS document is dependent on a specific QoS mechanism instantiated to sup-
port QoS guarantees. Each QoS mechanism type has its own set of QoS parameters.
The ConcreteQoSspec schema is composed by five variables: (1) idUser identifies the
user; (2) idAppl identifies the application; (3) QoSMech identifies the QoS
mechanism used; (4) QoSchars is the set of QoS characteristics derived from the
mapping of QoS constraints into the abstract QoS specification (user and applica-
tion); and (5) QoSparams results from the mapping of QoSchars variable into a set of
QoS parameters (considering a specific QoS mechanism).

QoS Contract
The QoS contract (ContractQoS) represents the agreement established after nego-

tiation between the user, application and system. It is only valid when restrictions are
negotiated and there is the possibility of placing resources for attending the requested
services. The ContractQoS schema is made up five variables: (1) idUser identifies the
user; (2) idAppl identifies the application; (3) QoSrequired represents a set of agreed
QoS parameters and their respective values (ideal and boundaries); (4) QoSprovided
represents the quality actually provided by the system; and (5) virtualResourcesAlloc
is a set of virtual resources allocated after negotiation.

w3ContractQoS333333333333333333333333333333333
c idUser: .
c idAppl: .
c QoSrequired: QoSparam](Value JValue JValue)
c QoSprovided: QoSparam](Value JValue JValue)
c virtualResourcesAlloc: %VirtualResource
{333333333333333333333333333333333333333

Layers
As mentioned before, each layer holds QoS specification defined at specific level.

In the ESCHER architecture (see Fig. 2), the middleware layer represents an architec-
tural element for integrating the entire specification. The QoS mechanism layer is re-
sponsible for the QoS contracts.

Relationships
The relationships are key elements in the ESCHER architecture. The relationships

(Relationships) detail the direct relationships between QoS abstract elements. The
priority relationship specified inside the user QoS description is an exception. Indeed,
it is the representation of individual user preferences. In order to differentiate rela-
tionships from others elements in the formal specification, we add the “Rel” prefix.
There are eight direct relationships:
1. RelSpecializedBy – it relates a generic NFR and a more specific one. For example,

“quality of presentation” is a generic NFR and “quality of video” , “quality of au-
dio” and “quality of synchronization” are specializations of the first one.

2. RelConflictConvergent – it relates two NFRs. This relationship is used to detect
conflicts: the system cannot maintain the level of QoS agreed and environment
changes affect two or more NFRs. If the NFRs are convergent, there is no prob-
lem. In the case of conflicting NFRs, the priorities are used to decide which NFR
is more restrictive.

3. RelRealization – it relates a specific NFR and QoS attributes that realize it. For ex-
ample, “quality of video” is a NFR realized by QoS attributes: “Frame Rate” , “As-
pect Ratio” and “Resolution” . The QoS attributes values are associated to NFR
levels.

4. RelRelatedTo – it relates the kind of application and a specific NFR. For example,
an application like VoIP does not need to carry through NFR "quality of video".
Thus, if the user specifies the generic NFR "quality of presentation" there wil l be
established only relationships between “quality of audio” and their attributes. The

RelatedTo relationship is useful to detect inconsistency or incompleteness in the
user QoS specification.

5. RelAffect – it relates QoS attributes and QoS characteristics. This relationship al-
lows the detection of the impacts of changes at QoS level provided by the system.
It is used by QoS adaptation mechanisms.

6. RelClassifiedAs – it relates category and types of applications. In the QoS para-
digm, it is important to differentiate the category of the applications such as: inter-
active real-time and non-interactive real-time, interactive burst and asynchronous.
The category classifies applications into more restrictive and more flexible ones.
This relationship turns QoS specification a more friendly process, since the user
does not have knowledge about the category of the application, but only about the
type of the application (videoconference, distance education, etc).

7. RelRestriction – it relates category of application and QoS characteristics. Some
restrictive categories of applications usually indicate threshold values to QoS char-
acteristics such as delay, jitter and loss.

8. RelQoSattrLevel – it define the values (ideal and boundaries) associated to quality
levels. For example, the QoS attribute “resolution” has different values for “high”
and “ low” quali ty levels.

5.2 ESCHER Operation Schemas

The formalization of ESCHER operations is described in the next two subsections.
The first one presents the configuration phase and the second one concentrates on the
monitoring phase.

5.2.1 Configuration Phase
Fig. 3 shows the activities that compose the configuration phase. As mentioned be-

fore, an important characteristic of our model is the facili ty of the process of specifi-
cation. The user essentially defines the minimum set of requirements and the mapping
process translates them into underlying QoS parameters.

Fig. 3. The QoS specification in the configuration phase and down QoS mapping.

idUser?; idA ppl?;
typeA pplic?;

QoSconstraints?
QoSpriori ties?

M appingTo
QoSattr

M appingTo
QoSparam

M appingTo
QoSchar

QoS
Negotiation

getV irtual
Resources

function schema

A ddQoS
User

downQoS
M apping

AddQoSUser
The AddQoSUser schema specifies the process of the user QoS requirement defini-

tion. It is composed by five input variables: (1) idUser? identifies the user; (2)
idAppl? identifies the application; (3) typeApplic? identifies the kind of application;
(4) QoSconstraints is a set of constraints imposed by the user; and (5) QoSpriorities
identifies the NFRs considered more restrictive by the user. The category of the ap-
plication is modelled through the RelClassifiedAs relationship.

w3AddQoSUser 333333333333333333333333333333333
c∆Layers

cΞRelationships

cidUser?: .

cidAppl?: .

ctypeApplic?: ApplicType

cQoSconstraints?: NFR] Level

cQoSpriorities?: NFR J NFR] NFR
v333333333333333
c�u: UserQoS; a: ApplicationQoS

c
�

u . idUser = idUser? \ u . QoSconstraints = QoSconstraints?

c \ u . QoSpriorities = QoSpriorities?

c \ a . idAppl = idAppl? \ a . typeApplic = typeApplic?

c \ a . category = RelClassifiedAs typeApplic?

c \ a . QoSconstraints = �

c � u � UserLayer \ a � ApplicationLayer \ UserLayer' = UserLayer * MuO
c \ ApplicationLayer' = ApplicationLayer * Ma� \ MiddlewareLayer' = MiddlewareLayer

c \ QoSMechanismLayer' = QoSMechanismLayer
{333333333333333333333333333333333333333

downQoSMapping
The down QoS mapping (downQoSMapping) is a three-step process composed by:

(1) the translation of NFR into a set of QoS attributes (MappingToQoSattr); (2) the
translation of the set of QoS attributes into a set of QoS characteristics (MappingTo-
QoSchar); and (3) the translation of the set of QoS characteristics into a set of QoS
parameters, by considering a specific QoS mechanism (MappingToQoSparam). Each
mapping respects the relationships between QoS abstractions. A generic function
(getVirtualResources) was defined to represent allocation of virtual resources.

QoSnegotiation
The process of QoS negotiation (QoSnegotiation) is based on both the resulting

parameters of the down QoS mapping (maintained in the concreteQoSspec) and a
particular policy of admission control (the variable AdmissionPolicy), which is de-
fined in an abstract manner. This process automatically triggered during the configu-
ration phase. The allocation treats with virtual resources obtained through a specific
function. As we mentioned previously, the management of physical resources is out
of scope of our proposal. A generic function (getVirtualResources) has been defined
to represent allocation of virtual resources.

5.2.2 Monitoring Phase
The monitoring phase (Fig. 4) has a dynamic nature as it occurs at run-time. This

phase is composed by five specific activities: the MonitoringContract is executed by
protocols of lower level such as RSVP (ReSerVation Protocol); (2) the upQoSMap-
ping is a reverse mapping that reflects the changes along the layers; (3) the UserSatis-
factionLevel is used to get the level of satisfaction of the user; (4) the noAdaptation-
Process stops the renegotiation process; and (5) the AdaptationProcess starts a
renegotiation process.

Fig. 4. The Monitoring phase and up QoS mapping

Additionally, the monitoring phase uses some generic functions to abstract tasks
executed by underlying mechanisms. These generic functions are divided into two
kinds: external and internal. Either the users or the underlying mechanisms use the
first one. The second one is used by the ESCHER operations.

The purpose of monitoring contract activities is to get the QoS provided for the
system and to verify if contracts are being respected. If agreed values are not re-
spected, a reverse mapping (upQoSMapping) is triggered. It reflects the changes
along layers, from QoS Mechanism Layer to User Layer, and aims to evaluate the
impacts of changes in the level of QoS agreed over QoS constraints defined by the
user. Additionally, a generic external function (getQoSprovided) gets the level of
QoS provided. The difference between QoS required and QoS provided defined at
QoS contract is used to identify the user satisfaction level.

The adaptation process (AdaptationProcess) is specified by the conjunction of
AdaptationContract, downQoSMapping and QoSnegotiation schemas. The process of
contract adaptation (AdaptationContract) tries to define a future adjustment of con-
straints, mapping and renegotiation for new resource allocation. It takes into account
the new level of QoS provided and the user satisfaction level. If more than one NFR
is affected and conflicting (e.g., Audio Quality and Cost), priorities defined by the
user are used to solve the conflict.

userPerception?

user
Satisfaction

Level

noAdaptation
Contract

Adaptation
Process

function schema

getQoS
Perceived

getQoS
Provided

Monitoring
Contract

upQoS
Mapping

6. An Example: Videoconference

In order to il lustrate our approach, we have modelled a videoconference application.
The main objective of this example is to show how the QoS abstractions are related
and how the mapping can be realized. In Fig. 5, it is possible to observe the QoS
mapping process along ESCHER layers.

Fig. 5. Modelling of Videoconference Application

In this example, the user defines a general NFR called “quali ty of presentation”
(QofP). The relationship RelSpecializedBy is used to translate this NFR into more
specific ones to represent quality of audio (QofAudio), quality of video (QofVideo)
and quality of synchronization (QofSync). The mapping of quali ty of audio is pre-
sented. It has been considered usually recommended set of QoS attributes at Applica-
tion Layer and values associated to QoS characteristics at Middleware Layer. QoS pa-
rameters at QoS Mechanism Layer are treated in an abstract way.

7. Conclusions and Future Work

We have presented a formal QoP architecture, namely ESCHER, which explicitly
takes into account the user perception, whilst it also proposes a systematic mapping
of QoS requirements (at user level) into QoS parameters (treated by QoS mecha-
nisms).

In addition to the high level of abstraction the user QoS requirements are specified,
the benefits of our proposal also include: the separation of concerns in QoS specifica-
tion and the treatment of user satisfaction as a trade-off among NFRs. The first one

QofPHigh
UserL ayer

High

A ppli cationL ayer

44 KH z

SampleSize SampleRate Channel Codec

16 bi ts Stereo PCM

M iddlewareL ayer

Delay

<35ms

Jitter

<1%

L oss

<30ms

QoS M echanismL ayer

V alue

QoS param QoS param

V alue

QoS param

V alue

High High

QofA udio QofSyncQofV ideo

allows legacy applications to use QoS services offered by the middleware. The sec-
ond one serves as a basis for more flexible QoS adaptation mechanism.

In terms of future work, we intend to concentrate on the QoS mapping by identify-
ing and formalizing the rules to make this process automatic. We also intend to verify
some properties of our model. For example, the capacity of our model to reflect
changes in the level of provided QoS and vice-versa.

References

1.P.Bernstein.“Middleware, a Model for Distributed System Service”, Communications of the
ACM, 39:2, February 1996

2.P.E. Pedersen, L.B. Methlie and H. Thorbjørnsen, "Understanding mobile commerce end-
user adoption: a triangulation perspective and suggestions for an exploratory service evalua-
tion framework". HICSS-35, Hawaii, US, Jan 7-10, 2002.

3.C. Aurrecoechea, A. Campbell and L. Hauw “A Survey of Quality of Service Architecture”,
Multimedia Systems Journal, November, 1995.

4.G. Ghinea and J.P. Thomas. “QoS Impact on User Perception and Understanding of Multi-
media Video Clips” , Proc. of ACM Multimedia ’98, Bristol, United Kingdom, 1998

5.EURESCOM, “Offering Quality Classes to end users” , Deliverable 1,Volume 1 of 2, Project
P906-GI, QUASIMODO, http://www.eurescom.de/public/projectresults/results.asp

6. J.M. Spivey. The Z notation: A reference Manual, Second Edition. Prentice Hall, 1992
7.T.Yamazaki and J. Matsuda, "On QoS Mapping in Adaptive QoS Management for Distrib-

uted Multimedia Applications", Proc.ITC-CSCC' 99, vol.2, pp. 1342-1345, July, 1999.
8.Klara Nahrstedt, Dongyan Xu, Duangdao Wichadakul and Baochun Li. “QoS-Aware Mid-

dleware for Ubiquitous and Heterogeneous Environments” IEEE Communications Maga-
zine, 39(11), 2001.

9.Kachroo V, Karr DA, Rodrigues C, Loyall JP, Schantz RE, Schmidt DC, “ Integration of
QoS-Enabled Distributed Computing Middleware for Developing Next-Generation Distrib-
uted Applications” . Proc. of the ACM SIGPLAN (OM 2001), June 18, 2001, Snowbird Utah.

10.N. Bhatti, Anna Bouch, and Allan Kuchinsky – “ Integrating user-perceived quality into web
server design” . In 9th International World Wide Web Conference, Amsterdam, May 2000.

11.Anna Bouch, Allan Kuchinsky, Nina Bhatti - “Quality is in the Eye of the Beholder: Meet-
ing Users' Requirements for Internet Quality of Service” – Proc. of the CHI 2000 Conference
on Human Factors in Computing Systems, p.297-304, April 01-06, 2000, Netherlands

12.ETSI, TS 101329-2 v1.1.1, Telecommunication and Internet Protocols Harmonisation over
Networks (Tiphon); End to End Quality of Service in TIPHON Systems; Part 2: Definition
of Quality of Service (QoS) Classes, 2000-07, www.etsi.org

13.I. Widya, R.E. Stap, L.J. Teunissen, B.F. Hopman “On the end-user QoS-awareness of a
distributed service environment” . Accepted at 6th PROMS' 01. Netherlands, October 2001

ServiceFORGE: A Software Architecture for Power
and Quality Aware Services

Radu Cornea, Nikil Dutt, Rajesh Gupta*, Shivajit Mohapatra, Alex Nicolau,
Cristiano Pereira*, Sandeep Shukla**, Nalini Venkatasubramanian

University of California, Irvine, * University of California, San Diego
** Virginia Tech. University, Blacksburg, Virginia

Abstract. We present a novel power management service in QoS-brokerage ar-
chitecture that relies on multi-level middleware services to act as brokers in de-
livering multimedia content in distributed real-time systems under performance
and power constraints. To minimize power consumption, the power manage-
ment service provides for minimal interaction among the system components as
well as provides dynamic control of speed scaling (such as voltage, frequency)
and component shutdown. These power control “knobs” enable the service to
match instantaneous application needs against available energy resources. The
power management service is implemented using the Comp|OSE middleware
framework using a power-aware API that allows the applications programmer
to ensure a continuous dialogue between the distributed embedded systems and
changing application needs. In this paper, we focus on the interfaces to the
power management service that ensure semantically correct composability of
power management actions in a distributed systems and its use in applications
programming. We present example of a multimedia streaming server to hand-
held devices that demonstrates the use of automatic speed scaling knobs in
minimizing energy consumption.

1. Introduction

Power management is important for a range of embedded applications from port-
able terminals to ad hoc sensor networks. The focus of much of the work in this area,
so far has been on minimization of energy at the node level [FengSechrest96,
ChandraVahdat02]. For distributed embedded systems, the problem is much more
complex because of the dynamic tradeoffs involved at several levels of abstraction
between local processing and communication/coordination [Yuan et al 2003]. The
correct way to think about it is to treat as a multi-level ‘service’ in a distributed em-
bedded system [Cornea et al 03]. In this paper, we describe a software system archi-
tecture that enables the system architect to compose distributed power/performance
related decision making and to ensure compliance with functionality and system en-
ergy constraints based on the runtime conditions. This is done by means of “brokers.”
These brokers are built in a model-based system specification that allows reasoning
about the functional and non-functional properties of the system from the
properties of the constituent components and the composition mechanism

applied[VenkatasubramanianTalcottAgha01]. We use a middleware infrastructure that
lends itself to platform specific optimization for performance and size. Specifically,
we focus on adaptive and reflective middleware services [Venkatasubramanian et al
2001] to meet the application requirements and to dynamically smooth the imbalances
between demands and changing environments. Fig. 1 illustrates the fundamental lev-
els of adaptation and reflection supported by middleware services: (a) changes in the
middleware, operating systems, and networks beneath the applications to continue to
meet the required service levels despite changes in resource availability, such as
changes in network bandwidth or power levels, and (b) changes at the application
level to either react to currently available levels of service or request new ones under
changed circumstances, such as changing the transfer rate or resolution of information
over a congested network. In both instances, the middleware must determine if it
needs to (or can) reallocate resources or change strategies to achieve the desired QoS.
Embedded applications must be built in such a way that they can change their QoS
demands as the conditions under which they operate change. Mechanisms for recon-
figuration need to be put into place to implement new levels of QoS as required,
mindful of both the individual and the aggregate points of view, and the conflicts that
they may represent.

Fig. 1. Middleware Services and QoS Brokerage.

2. ServiceFORGE: A Software Architecture for Quality-Aware
Services

We approach the application development in ServiceFORGE as not only specification
of the desired functionality but also specification and management of a contract with
the underlying mobile software system on timing performance and energy needs. The
underlying software is aware of the finite energy/power resources and makes use of

its own contract and brokering services to adapt its functional needs to match low-
level computing, communication and networking capabilities. Our strategy is based
on building an application development framework that allows radically enhanced
configurability and adaptability in pretty much all aspects of software and networking
processes. These include reconfiguration algorithms that exploit adaptability in the
various tasks that constitute the wireless protocols and management of application-
level tasks to ensure efficient use of the dynamically changing battery resource as
well as performance and energy requirements of the executing tasks. Our approach
consists of two parts: power aware operating and runtime system services, and their
interface to middleware services that ensure efficient brokerage of the application
needs and system resource constraints.

Power Aware Operating and Runtime System Services
For effective system-level power management, it is important that an application is

able to monitor and control both electrical knobs (such as voltage and scheduling), as
well as exercise control on the task scheduling and shutdown states of different parts
of the client device (node). The operating system is an important place for making
power management decisions since it has the knowledge about timing, usage and traf-
fic patterns of applications. We modify traditional OS services to make them power-
aware vis-à-vis their execution so that energy is used in an efficient fashion. At the
system-level, power management consists of three parts: (a) system components as
resources that provide service such a computation or I/O and consume power, (b)
application functionality as tasks that utilize the resources, and (c) system timing per-
formance and result quality requirements as service contracts. Each resource may
have one or more operating modes (e.g. a CPU core may be in run or shutdown mode,
and a radio subsystem may be in transmit or receive or idle mode). The transitions
between operating modes of a resource are dictated by the availability of tasks need-
ing that resource, and the functional requirements of those tasks (e.g. a packet sender
task would put the radio in the transmit mode). Further, a resource in each of these
modes can be put in one of multiple operating points in a mode-specific power-speed
subspace (and more generally power-speed-quality subspace) via “control knobs” that
could be relatively universal or perhaps resource-specific. An example of a relatively
universal control knob is the processor supply voltage. Supply voltage change, with a
coordinated change in the clock frequency, leads to multiple power-vs.-speed points.
The transitions between the power-speed-quality operating points will be dictated by
the system timing performance and result quality requirements [Choi02]. At any
given instant the system may be viewed to be in a specific power state corresponding
to a specific permutation of the operation mode and power-speed-quality operating
point for each resource. The key to system-level power/performance optimization is a
power management control strategy consisting of task and resource specific algo-
rithms to decide the power state evolution of the system. We describe our approach to
control node-specific power/performance constraints in the next section, followed by
a description of their integration with the middleware brokerage services using the
example of a streaming video server.

3. Power Aware Nodal Services in ServiceFORGE

As mentioned earlier, the chief goal of power awareness at the node level is to enable
a continuous dialogue between the application, the OS, and the underlying
hardware. This dialogue establishes the functionality and performance expectations
(or even contracts, as in real-time sense) within the available energy constraints. We
describe here our implementation of a Power Aware Software Architecture (PASA).
PASA is composed of two software layers and the RTOS kernel. One layer interfaces
applications with operating system and the other layer makes power related hardware
“knobs” available to the operating system.
Both layers are connected by means of corre-
sponding power aware operating system ser-
vices as shown in Fig. 2. At the topmost
level, embedded applications call the API
level interface functions to make use of a
range of services that ultimately makes the
application energy efficient in the context
of its specific functionality. The API level
is separated into two sub-layers. PA-API
layer provides all the functions available to
the applications, while the other layer pro-
vides access to operating system services and
power aware modified operating system ser-
vices (PA OS Services). Active entities that
are not implemented within the RTOS kernel
should also be implemented at this level
(threads created with the sole purpose of as-
sisting the power management of an operating
system service, such as a thread responsible
for killing threads whose deadlines were
missed). We call this layer the power aware
operating system layer (PA-OSL).

Fig. 2. Nodal Services and API for Power

To interface the modified operating system level and the underlying hardware
level, we define a power aware hardware abstraction layer (PA-HAL). The PA-HAL
gives the access to the power related hardware ``knobs'' in a way that makes it inde-
pendent of the hardware.

Table below lists the functions relevant to the implementation of power
aware scheduling techniques. At the PA-API layer there are functions to create types
(informing the real time related parameters) and instances of tasks, to notify start and
end of tasks (needed by the OS in order to detect whether the task execution is over
and the deadline of a task has been met), and to either inform the application
about the execution time predicted by the OS or tell the OS about the execution
time prediction estimated by the application (which can be based on application
specific parameters). At the PA-OSL layer there are functions to manipulate informa-
tion related to the power aware scheduling schemes that are maintained within the
kernel (such as the type table in the case of the scheduler), the thread responsible
for killing threads whose deadlines were missed (assuming that the threads

whose deadlines were missed are no longer useful). The alarm handler notifies the
killer thread, which in turn kills the thread and re-creates it. The overhead of having
an extra thread is minimal since the killer thread is constantly blocked unless a re-
quest to kill another thread is received. When it happens, the killer thread wakes up
and finishes the execution of the proper thread. At the PA-HAL layer functions to
manipulate processor frequency and voltage levels and low power states are present.
These are called by the RTOS scheduler when slowing down the processor or shutting
it down. For processor frequency and voltage scaling, different platforms have differ-
ent precautions that have to be taken care of before doing the scaling. These precau-
tions might have to be done before the scaling, after it or both before and after. For
these the functions pahal_pre_set_frequency_and_voltage and pa-
hal_post_set_frequency_and_voltage are provided and must be implemented by the
OS programmer according to the platform. And finally functions to poll the status of
battery based platforms are also important in order to enhance their lifetime.

Layer Function name

PA-API paapi_dvs_create_thread_type(), paapi_dvs_create_thread_instance()
paapi_dvs_app_started(), paapi_dvs_get_time_prediction()
paapi_dvs_set_time_prediction(),paapi_dvs_app_done(),
paapi_dvs_set_adaptive_param(),paapi_dvs_set_policy(),
paapi_dpm_register_device()

PA-OSL paosl_dvs_create_task_type_entry(),paosl_dvs_create_task_instance_entry(),
paosl_dvs_killer_thread(),paosl_dvs_killer_thread_alarm_handler(),
paosl_dpm_register_device(), paosl_dpm_deamon()

PA-HAL pahal_dvs_initialize_processor_pm(), pahal_dvs_get_frequency_levels_info()
pahal_dvs_get_current_frequency(), pahal_dvs_set_frequency_and_voltage()
pahal_dvs_pre_set_frequency_and_voltage(),
pahal_dvs_post_set_frequency_and_voltage()
pahal_dvs_get_lowpower_states_info(), pahal_dvs_set_lowpower_state()
pahal_dpm_device_check_activity(), pahal_dpm_device_pre_switch_state()
pahal_dpm_device_switch_state(), pahal_dpm_device_post_switch_state()
pahal_dpm_device_get_info(), pahal_dpm_device_get_curr_state()
pahal_battery_get_info()

The piece of code that follows shows an example on how the PA-API functions are
used in a MPEG decoder source code when creating threads using PA-API functions.
A thread is created specifying that the deadline and period are 100 and the worst case
execution time is 30 (assuming it was profiled and therefore known ahead of time.
The thread is instantiated and access to the power-aware functionality contracts is
enabled and terminated by the functions paapi_app_started() and paapi_app_done()
respectively. These functions delimit the work done by the threads which is encapsu-
lated in one single function in this example.
void main() {
 mpeg_decoding_t =
 paapi_create_thread_type(100,30,100);
 paapi_create_thread_instance(mpeg_decoding_t,
mpeg_decode_thread); }

void mpeg_decode_thread() {
 for (;;) {
 paapi_app_started();
 /* original code */
 mpeg_frame_decode()
 paapi_app_done(); }}

This provides a generic dynamic power management (DPM) API sufficient to sup-
port different devices and DPM policies by using a common set of functions. The API
also provides a common framework for implementing new (DPM) policies. For DPM
purposes, each device is registered with the power manager and with each device we
attach enough information to execute whichever policy the device was registered to
be managed with. Often device DPM techniques switch devices to low-power modes
or states based on how long the device has been idle. For instance, threshold values
are defined for each device so that the longer the device is idle, the deeper the sleep
mode it is switched to. A common set of functions and data structures have to be de-
fined in order to manage such devices. These furnish the implementation of the DPM
techniques and provide the guidelines for implementing new ones. Some of the func-
tions defied for this purpose are listed in the previous table and are shortly described
below:

• dpm_device_check_activity() - This function finds out whether the
device was activated or has been idle since the last time it was queried. To do
that, a device activity structure has to be kept and has to be compared against
a new activity information every time the device is queried (on the embedded
Linux platform, for instance, this information comes from the /proc virtual
file system interface. For other operating systems without such interface this
information has to be kept by the API in form of tables in order to track the
device activity). If the amount of activity is the same it means that nothing
has happened since the last time it was checked. Otherwise some activity has
happened and the stored information is updated. This function makes sense
only if the policy used is based on the activity information (kept in a device
status table).

• dpm_device_switch_state() - This function will switch the state of
the device from origin state to destination state.

• dpm_device_get_info() - It gets information about the device.
• dpm_device_get_state() - It tells in which state the device is in cur-

rently.
• dpm_device_register() - It registers the device along with the appro-

priate functions and power management policy to handle it. This information
is kept in the device info table.

Structures containing the possible states each device can be at, as well as which
policies, are attached to each device and the information needed to implement such
policies are defined and kept within the kernel. The kernel DPM entity consists of
tasks associated with each device and implementing a specific policy for managing
the device. If all devices use the same policy then multiple instances of this policy are
created and they manage each device individually.

The piece of code below shows a threshold based dynamic power management
scheme. For each device state there is an associated threshold which defines when to
switch to that state as described in the lower envelope algorithm.
void threshold_policy_deamon(device_info_t dev){
 unsigned idleness;
 for (;;) {
 /* check for how long the device has been idle */
 idleness = dev->check_activity(dev);
 /* if idle for longer than the threshold
 switch to next state */
 if (idleness > dev->check_state()->threshold) {
 dev->check_state()->switch_state(dev,
 dev->check_state, dev->check_state()->next); }
 /* sleep until next period for checking idleness */
 sleep(dev->policy_info->th_policy->period); }}

When mixing DPM and DVS algorithms in the same platform there is a tradeoff on
whether to slowdown as much as possible or to execute some tasks faster than the
minimum possible frequency and rearrange the idle times in order to get better
changes to shutdown some of the system components. In [IraniShuklaGupta03], we
have devised an algorithm to optimize this tradeoff on a system. The algorithm,
named as Procrastinator, adjusts (or procrastinates) start times and deadlines of some
of the tasks in order to create longer idle times and obtain more chances to wisely
bring the device to a low power mode. The PASA architecture and its API make it
possible to utilize the combined DVS and DPM opportunities and improve their effec-
tiveness with additional information available from the application itself.

4. Middleware Power/Performance Brokerage Service in
ServiceFORGE

Node level dynamic power management described in the previous section is only a
first step in achieving an application-level control of the system power/performance
tradeoffs. We approach the distributed power/performance optimization problem as
one of middleware services that interact with the node level services to make the right
tradeoffs in the context of application behavior and its needs [Mohapatra et al 03,
MohapatraVenkatasubramanian03].

To explain this, let us use the example of a multimedia streaming from a server to a
set of mobile handheld devices. The system architecture shown in Fig. 3 below con-
sists of a multimedia server, a proxy server (that adapts the video stream to client ca-
pabilities), a wireless access point and the clients (low-power wireless devices). The
multimedia server streams videos to clients on request from users. All communication
between the servers and clients are routed through the proxy server, which can
transcode the video stream in real time.

S P

 Fig. 3. Streaming Multimedia Example

C

C

C

ProxyServer Switch Access
Point

Rule
Base Transcoder

Directory
Service

Noise

WAN WIRED ETHERNET

WIRELESS

U
 S

 E
 R

 S

Broker

S P

CC

CC

CC

ProxyServer Switch Access
Point

Rule
Base Transcoder

Directory
Service

Noise

WAN WIRED ETHERNET

WIRELESS

U
 S

 E
 R

 S

Broker

Middleware level components (services) execute on both the handheld device and
the proxy, performing two important functions: On the device, it sends residual en-
ergy availability information the proxy and relates video stream parameters and net-
work control information to lower abstraction layers. This information is conveyed
using the PASA API for the HAL/OSL layers. On the proxy, it performs a feedback
based power aware admission control and real time transcoding of the video stream
based on the feedback from the device. It also controls the video transmission over the
network based on the load on the network and video stream quality level. To illustrate
the application control of the client power and fairness of the service to multiple cli-
ents, we use quality level of the video (specified as PSNR).

Fig. 4 shows the overall ServiceFORGE architecture. To implement the desired
level of power/performance control, we assume that the following levels of abstrac-
tion apply to both the proxy and the clients: architecture, operating system, middle-
ware, application. Each of these levels has components/services interacting with cor-
responding services on the same level or with components at a different level of ab-
straction. The architecture level includes most of hardware components: CPU with
memory, display, network card, etc. OS level provides the scheduler, DVS control,
power-aware APIs and other OS level services. The middleware level provides a se-
ries of services, like network management, transcoding, admission control, mobility
information, etc. The video application runs at the application level, with the other
tasks running on the device.

Fig. 4. Architecture of ServiceFORGE

Components and services at different level of abstraction interact together with a
final goal of improving the overall system performance, including power, deadlines
and quality of service. There are various control knobs available at the device: CPU
voltage and frequency scaling, memory system configuration, network card access
pattern. The video stream can be controlled through its encoding parameters: frame
rate, bitrate, and frame rate. Each of these parameters are controlled by the middle-
ware services and adapted as required by the runtime conditions in the system. For
example, if the residual energy available at a mobile device drops, the control de-
creases the quality of the video stream by lowering its frame rate or one of the other
parameters (frame size, bitrate). Similarly, when a new user joins the system, re-
sources need to be freed in order to accommodate the new node in the network (allo-
cate network bandwidth, transcoder CPU time, etc.).

The middleware services also control network transmission. To save power, video
stream data is grouped into short burst transmissions and sent periodically over the
network. This allows the network card at the device to go into longer periods of low-
power sleep mode [Shenoy03].

Each component in the abstraction hierarchy provides services to the other compo-
nents on the same node or on other nodes in the network. During runtime, there is a
continuous exchange of information and control between nodes to ensure that the
constraints imposed on the system are met and quality of service is preserved for all
the clients. If for some reasons these conditions cannot be satisfied the admission con-
trol component may decide to renegotiate video quality levels with all users in the
system.

Experiments Using Video Server Example

We performed several experiments to evaluate power savings and performance im-
provements at different levels of abstraction as well as globally for the entire system.
At the architecture level, we selected cache parameters as optimizing knobs and pro-
filed video clips for a large space of cache configuration points. Fig. 5 shows results
from configuring the data cache to meet the requirements of particular video streams.
These changes alone can yield 10-15% in power savings. Combining frequency and
voltage scaling with cache reconfiguration increase the opportunities for power sav-
ings, as the processor can be run at a lower voltage and frequency when decoding less
complex frames. This combined approached yields up to 60% in energy savings as
compared with the initial architecture.

Fig. 5. Cache Optimization Search Space Fig. 6. Power Savings in the Network Card

Fig. 6 shows that at the network level we obtained up to 70% power savings by
sending optimized bursts of video and turning the network interface off (sleep mode)
between consecutive bursts. The ideal burst time was computed for each quality level
and for different network load - users in the network are modeled as noise. Finally, we
evaluate the performance of the integrated framework. Our goal is to provide an op-
timal user experience and maintain an acceptable utility factor for the system. We
define an “acceptable utility factor” to be obtained when the system can stream the
highest possible quality of video to the user such that time, acceptable quality and
power constraints are satisfied (i.e the video clip runs to completion, at a quality level
above or equal to the one the user specified, the difference between the two defining
the final utility factor). To accomplish this it is important to understand the notion of
video quality for a handheld device and its implications on power consumption. Fig. 7
shows how adaptive middleware provided by ServiceFORGE can improve the utility
factor for the integrated framework.

 Fig. 7. Utility Factor over Time.

5. Summary and Conclusions

Ensuring best system performance in presence of very real resource constraints in
distributed embedded systems is a difficult problem. Solving this problem requires
analysis of available system resources, application needs in presence of dynamically
changing operating conditions. Instead of seeking optimization techniques, our ap-
proach is to enable application participation with the runtime systems in setting the
appropriate resource utilization policies. Towards that end, we have built Service-
FORGE to provide two basic capabilities: capability for the middleware to carry out a
dialogue with the application in determining its needs and conveying these through a
structured interface to individual nodes; and the capability for the individual nodes to
change performance/power usage knobs based on the middleware directives. Early
experiments suggest that this architecture can be useful in achieving better quality of
results for the same power budgets in the case of streaming video. Additional experi-
mentation across various application domains is necessary to understand how applica-
tion programming can be structured to take advantage of the new services in the sys-
tem software.

References

[ACEORB] Center for Distributed Object Computing, “The ACE ORB (TAO)”
 www.cs.wustl.edu/_schmidt/TAO.html Washington University.
[aspectGAMMA02] M. Mousavi, G. Russello, M. Chaudron, M.A. Reniers, T. Basten, A.

Corsaro, S. Shukla, R. Gupta, D. Schmidt,
“Aspects+GAMMA=AspectGAMMA: A Formal Framework for As-
pect-Oriented Specification”, presented at the Early Aspects Workshop,
Twente, Netherlands, April 2002.

[Balboa] Balboa Project. Component Composition Enviornement
 Home page: http://www.cecs.uci.edu/_balboa.
[Banatre93] Jean-Pierre Banatre and Daniel Le Metayer, Programming by multiset

transformation, Communications of the ACM (CACM), 36(1):98--111,
January 1993.

[Bapty et al, 2000] Bapty T., Neema S., Scott J., Sztipanovits J., Asaad S, “Model-
Integrated Tools for the Design of Dynamically Reconfigurable Sys-
tems”, VLSI Design, 10, 3, pp. 281-306, 2000.

[Birkhoff1933] G. Birkhoff. On the Combination of Subalgebras. Proceedings of Cam-
bridge Philosophical Society, 1933.

[Blair et al 98] Gordon S. Blair, G. Coulson, P. Robin, and M. Papathomas, "An archi-
tecture for next generation middleware," in Proceedings of the IFIP In-
ternational Conference on Distributed Systems Platforms and Open Dis-
tributed Processing, Springer-Verlag, London, 1998.

[Boehm80] Boehm, B. Software Engineering Economics, Prentice Hall, 1980.
[Bol00] Bollella, G., Gosling, J. “The Real-Time Specification for Java,” Com-

puter, June 2000.
[Booch98] Grady Booch, Ivar Jacobson, James Rumbaugh, Jim Rumbaugh “The

Unified Modeling Language User Guide”, The Addison-Wesley Object
Technology Series, 1998.

[BroyKrueger98] M. Broy, I. Krüger: Interaction Interfaces - Towards a scientific founda-
tion of a methodological usage of Message Sequence Charts, in: J. Sta-
ples, M. G. Hinchey, Shaoying Liu (eds.): Formal Engineering Methods
(ICFEM'98), IEEE Computer Society, 1998

[BroyStoelen01] M. Broy, K. Stølen: Specification and Development of Interactive Sys-
tems. Focus on Streams, Interfaces, and Refinement. Springer, 2001

[ChandraVahdat02] S. Chandra and A. Vahdat. “Application-specific Network Management
for Energy-aware Streaming of Popular Multimedia Formats”. In
Usenix Annual Technical Conference, June 2002.

[Chaudron98] Chaudron, M. R. V, “Separating Computation and Co-ordination in the
Design of Parallel and Distributed Systems”, Ph.D thesis, Leiden
University, 1998.

[Chaudron94] Michel R.V. Chaudron, Schedules for Multiset Transformer Programs,
Technical Report no 94-36, Department of Computer Science, Leiden
University, December 1994.

[Choi02] K. Choi, K. Dantu, W.-C. Chen, and M. Pedram. “Frame-Based Dy-
namic Voltage and Frequency Scaling for a MPEG Decoder”. In IC-
CAD 2002.

[Chou94] P. Chou, and G. Boriello, “ Software Scheduling in the co-synthesis of
Reactive Real-Time Systems”, in Proceedings of the 31st Design
Automation Conference, 1994.

[Corba 2000] Object Management Group, “The Common Object Request Broker:
Architecture and Specification, 2.4 ed.”, Oct. 2000.

[Cornea et al 03] R. Cornea, N. Dutt, R. Gupta, I. Krueger, A. Nicolau, D. Schmidt, S.
Shukla, “FORGE: A Framework for Optimization of Distributed Em-
bedded Systems Software”, IPDPS 03.

[Culler et al 01] David E. Culler, Jason Hill, Philip Buonadonna, Robert Szewczyk, and
Alec Woo, “A Network-Centric Approach to Embedded Software for
Tiny Devices”,in DARPA workshop on Embedded Software, 2001.

[Donahue et al 2001] S. M. Donahue, M.P. Hampton, M. Deters, J. M. Nye, R.K. Cytron, and
K. M. Kavi, “Storage allocation for real-time, embedded systems,” in
Embedded Software: Proceedings of the First International Workshop
(T.A. Henzinger and C.M. Kirsch, eds.), pp.131-147.

[Donahue et al 2002] S. Donahue, M. Hampton, R. Cytron, M. Franklin, and K. kavi, “Hard-
ware support for fast and bounded-time storage allocation,” Second
Annual Workshop on Memory Performance Issues (WMPI 2002), 2002

[Doucet-date02] F. Doucet, R. Gupta, M. Otsuka, S. Shukla, “An Environment for Dy-
namic Component Composition for Efficient Co-Design”, Accepted for
presentation at the Design Automation and Test Conference (DATE
2002), Match 2002.

[Eme90] E. Allen Emerson. Temporal and Modal Logic. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B, pages
995--1072. Elsevier, 1990.

[Esterel Tech] Esterel Technologies Web Page, http://www.esterel-technologies.com/
[FengSechrest96] W.chi Feng and S. Sechrest. “Improving data caching for software

mpeg video decompression”. In IS&T/SPIE Digital Video Compress-
sion: Algorithms and Technologies, 1996.

[FinkbeinerKrueger01] B. Finkbeiner, I. Krüger: Using Message Sequence Charts for Compo-
nent-Based Formal Verification. Specification and Verification of
Component-Based Systems (SAVCBS). Workshop at OOPSLA 2001.

[Frappier 2000] Marc Frappier, Henri Habrias , “Software Specification Methods : An
Overview Using a Case Study (Formal Approaches to Computing and
Information Technology”, Springer Verlag, November 2000.

[Gal01] Andreas Gal, Wolfgang Schroder-Preikschat, and Olaf Spinczyk, “On
Aspect Orientation in Distributed Real-Time Dependable Systems”,
"On Aspect-Orientation in Distributed Real-time Dependable Systems",
Accepted at the Seventh IEEE International Workshop on Object-
oriented Real-time Dependable Systems (WORDS 2002) , San
Diego,CA, January 7-9, 2002

[GarlanAllenOckerbloom95] D. Garlan, R. Allen, and J. Ockerbloom. Architectural Mismatch:
Why Reuse Is So Hard. IEEE Software, November 1995.

[Genssler et al 2002 T. Genssler, O. Nierstraszand B. Schoenhage. Componenets for embed-
ded software: The pecos approach. In Proc. Int. Conf. On Compilers,
Architecture, and Systhesis for Embedded Systems, 2002.

[Gill et al 2001] Chris Gill, David Levine, and Douglas C. Schmidt, “The Design and
Performance of a Real-Time CORBA Scheduling Service,” The Inter-
national Journal of Time-Critical Computing Systems, special issue on
Real-Time Middleware, guest editor Wei Zhao, Volume 20, Number 2,
March 2001.

[GorlickRazouk91] M. M. Gorlick and A.R.R. Razouk. Using weaves for software con-
struction and analysis. In Proc. Int. Conf. On Software Engineering,
1991.

[Grundy99] Jim Grundy, “Aspect Oriented Requirements Engineering for Compo-
nent Based Software Systems”, In the Proceedings of Requirements
Engineering (RE’99), June, 1999, Limerick, Ireland, IEEE Press.

[GunterMuschollPeled01] E. Gunter, A. Muscholl, and D. Peled. Compositional Message
Sequence Charts. In Proc. of TACAS’01, volume 2031 of Lecture
Notes in Computer Science, pages 496–511. Springer, 2001.

 [Harrison et al 97] Tim Harrison and David Levine and Douglas C. Schmidt, “The Design
and Performance of a Real-time CORBA Event Service,” Proceedings
of OOPSLA ‘97, ACM, Atlanta, GA, October 1997.

[Henzinger98] Thomas A. Henzinger, It's about time: Real-time logics reviewed., In
Davide Sangiorgi and Robert de Simone, editors, Proceedings of Ninth
International Conference on Concurrency, volume 1466 of LNCS,
pages 439–454. Springer-Verlag, Nice, France, 1998.

[Henzinger01] Thomas A. Henzinger, Ben. Horowitz, and Christoph M. Kirsch,
“Giotto: A Time Triggered Language for Embedded Programming”, In
the Proceedings of the First International Workshop on Embedded
Software (EMSOFT’01), Lake Tahoe, CA, USA, October 2001.

[Hoare85] Communicating Sequential Processes, Prentice Hall, 1985.
[Huang et al 97] J. Huang, R. Jha, W. Heimerdinger, M. Muhammad, S. Lauzac, B.

Kannikeswaran, K. Schwan, W. Zhaonad R. Bettati, “RT-ARM: A
Real-Time Adaptive Resource Management system for Distributed
Mission-Critical Applications,” in Workshop on Middleware for
Distrbuted Real-Time Systems, RTSS-97, (San Francisco, CA), IEEE,
1997.

[IDL/OMG] OMG Website, http://www.omg.org.
[IraniShuklaGupta03] Sandy Irani, Sandeep Shukla and Rajesh Gupta. “Algorithms for Power

Savings, SODA 2003.
[JainSchmidt97] P. Jain and D. C. Schmidt, “Service Configurator: A Pattern for Dy-

namic Configuration of Services: in Proceedings of the 3rd Conference

on Object-Oriented Technologies and and Systems, USENIX, June
1997.

[Kiczales 97] G. Kiczales, "Aspect-Oriented Programming," in Proceedings of the
11th European Conference on Object-oriented Programming, June,
1997

[Koskimies et al. 98] Kai Koskimies, Tarja SystÄa, Jyrki Tuomi, and Tatu Männistö. Auto-
mated Support for Modeling OO Software. IEEE Software, pp. 87–94,
January—February 1998.

[Krueger00] I. H. Krüger: Distributed System Design with Message Sequence
Charts, Dissertation, Technical University of Munich, 2000, available
at: http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2000/krueger.html

[Lamsweerde00] Axel v. Lamsweerde, “Formal specification: a roadmap”, in Anthony
Frankelstein ed., The Future of Software Engineering, ACM Press,
2000.

[LeeXiong01] E . A. Lee and Y. Xiong. System-Level Types for Component-Based
Design. In First International Workshop on Embedded Software,
vol.2211 of Lecture Notes in Computer Science. Springer, October
2001.

[LiaoTjiangGupta97] S. Liao, S. Thiang, and R. Gupta. An Efficient Implementation of Reac-
tivity in Modeling Hardware in the Scenic Synthesis and Simulation
Environment. In Proc. IEEE/ACM Design Automation Conf., 1997.

[Linda 93] Bjornson Robert, “Linda on Distributed Memory Multiprocessors”,
PhD thesis, Yale University, 1993.

[Loyall et al 01] J. Loyall, J. Gossett, C. Gill, R. Schantz, J.Zinky, P. Pal, R. Shapiro, C.
Rodrigues, M. Atighetchi and D. Karr, “Comparing and Contrasting
Adaptive Middleware Support in Wide-Area and Embedded Distributed
Object Applications,” in Proceedings of the 21st International confer-
ence on Distributed Computing systems (ICDCS-21), pp.625-634,
IEEE, April 2001.

[Manna, Pnueli] Zohar Manna and Amir Pnueli, "The temporal Logic of reactive and
concurrent systems", Springer Verlag, 1992

[Metropolis] Metropolis Project Web Page,
http://www.gigascale.org/metropolis/infrastructure.html

 [Microsoft Dnet 01] Microsoft, Microsoft(r) .NET My Services Specification, Microsoft
Press, October 2001

[Misra, Chandy 88] J. Misra and K. M. Chandy, Parallel Program Design: A Foundation,
Addison-Wesley, 1988.

[MohapatraVenkatasubramanian03] S. Mohapatra and N. Venkatasubramanian, “PARM:
Power-Aware Reconfigurable Middleware”, in ICDCS-03.

[Mohapatra et al 03] S. Mohapatra, R. Cornea, N. Dutt, A. Nicolau, N. Venkatasubramanian,
“Integrated Power Management for Video Streaming to Mobile Hand-
held Devices, ACM Multimedia 2003.

 [Moml 2000] Steve Neuendorffer, Ed Lee, “MoML: An XML Modeling Markup
Language”,
http://buffy.eecs.berkeley.edu/IRO/Summary/00abstracts/neuendor.1.ht
ml

[Morse96] J. Morse, and S. Hargrave, “The increasing importance of Software”,
Electronic Design, vol.44(1), Jan. 1996.

[Mousavi01] Mousavi, M.R., Rusello G., and Chaudron M. R. V, “ A Coordination
Approach for the Design of Component Based Distributed Real-Time
Systems”, submitted.

[Mousavi et al 2002] M. Mousavi, M. Chaudron, G. Russello, M. Reniers, T. Basten, A. Cor-
saro, S. Shukla, R. Gupta and D. Schmidt. Using aspect –GAMMA in
Design and Verification of Embedded systems. In Proc. High level De-
sign Validation and Test Workshop, 2002.

 [O’Ryan et al 2000] C. O’Ryan, D. C. Schmidt, F. Kuhns, M. Spivak, J. Parsons, I. Pyarali,
D. Levine, “Evaluating Policies and Mechanisms for Supporting Em-
bedded, Real-Time Applications with CORBA 3.0” in Proceedings for
the 6th IEEE Real-Time Technology and Applications Symposium,
(Wash. D.C.), IEEE, May 2000.

[Omg99a] Object Management Group, Real-time CORBA Joint Revised Submis-
sion, OMG Documentorbos/99-02-12 ed., March 1999.

[Omg99b] Object Management Group, “Dynamic Scheduling, OMG document
orbos/99-03-32 ed., March 1999.

[Omg2000] Object Management Group, “The Common Object Request Broker:
Architecture and Specification, 2.4 ed., October 2000.

[Omg01a] Object Management Group, “The Common Object Request Broker:
Architecture and Specification Revision 2.5, OMG Technical Document
formal/00-11-07”, October 2001.

[Omg01b] Object Management Group, “The Common Object Request Broker:
Architecture and Specification, 2.6 ed., December 2001.

[Paulin97] P. Paulin, C. Liem, M. Cornero, F. Nacabal, G. Goossens,
“Embedded Software in real-time signal processing systems: Applica-
tion and architectural Trends”, Proceedings of IEEE, vol. 85(3), 1997.

[Pyarali+02] Irfan Pyarali, Douglas C. Schmidt, and Ron Cytron, “Techniques for
Enhancing Real-time CORBA Quality of Service,” Submitted to the
IEEE Proceedings. Available at
http://www.cs.wustl.edu/~schmidt/corba-research-realtime.html.
p. 419-435.

 [Ramanathan TCAD2002] D. Ramanathan, S. Irani, R. Gupta, "An Analysis of System
Level Power Management Algorithms and their effects on Latency",
IEEE Transactions on Computer Aided Design, March 2002.

[RTCorba 2000] Object Management Group, “Dynamic Scheduling Real-Time CORBA
Joint Revised Submission, OMG Document orbos/2000-08-12 ed.”,
August 2000.

 [Saxena99] Saxena . A, Shukla. S, Weihmayer. R, Wu. P, “CORBA based Event
Management System: A Case Study in Automatic Global Correlation”,
In the Proceedings of the International Conference on Parallel Process-
ing Techniques and Applications (PDPTA’99), CRA Press, Las Vegas,
June 1999.

[Schantz 2002] Richard E. Schantz and Douglas C. Schmidt, “Middleware for Distrib-
uted Systems: Evolving the Common Structure for Network-centric
Applications,” Encyclopedia of Software Engineering, Wiley and Sons,
2002.

[Schmidt et al 2000] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-
Oriented Software Architecture: Patterns for Concurrent and Networked
Objects, Vol. 2. New York: Wiley & Sons, 2000.

[SchmidtKuhns2000] D. C. Schmidt and F. Kuhns “An Overview of the Real-time CORBA
Specification” IEEE Computer Magazine, Special Issue on Object-
oriented Real-time Computing, vol.33, June 2000.

[Schmidt et al 2001] D. C. Schmiddt, S. Mungee, S. Flores-Gaitan, and A. Gokhale, “Soft-
ware Architectures for Reducing Priority Inversion and Non-
determinism in Real-time Object Request Brokers,” Journal of Real-

time Systesm, special issue on Real-time Computing in the Age of the
Weg and the Internet, vol.21, no.2, 2001.

[Schmidt 2001] Douglas C. Schmidt, Sumedh Mungee, Sergio Flores-Gaitan, and
Aniruddha Gokhale, “Software Architectures for Reducing Priority
Inversion and Non-determinism in Real-time Object Request Brokers,”
Journal of Real-time Systems, Kluwer, Vol. 21, No. 2, 2001.

[SelicGulleksonWard94] Bran Selic, Garth Gullekson, and Paul T. Ward: Real-Time Ob-
ject-Oriented Modeling, Wiley, 1994.

[ShaRajkumarLehoczky90] L. Sha, R. Rajkumar, and J.P. Lehoczky, “Priority Inheritance
Protocols: An Approach to Real-time Synchronization,” IEEE Transac-
tions on Computers, vol. 39, September 1990

[Shenoy03] P. Shenoy and P. Radkov. “Proxy-Assisted Power-Friendly Streaming
to Mobile Devices”. In MMCN, 2003.

[Shukla98] S. Shukla “Fault-Tolerance Patterns for Network Management Applica-
tions”, Invited Presentation at the Dagstuhl Seminar on Self-
Stabilization, Dagstuhl, Germany, August 1998.

 [Stankovik87] John A. Stankovic and Krithi Ramamritham, Tutorial on Hard Real-
Time Systems, IEEE Computer Society Press, 1987.

[Szyperski98] C. Szyperski. Component software: Beyond Object Oriented Program-
ming. Addison-Wesley, 1998.

[Thoen-Cathhoor00] Filip Thoen, and Francky Catthoor, “Modeling, Verification and
Exploration of Task-Level Concurrency in Real-Time Embedded
Systems”, Kluwer Academic Publishers, 2000.

[Udupa 99] Divakara K. Udupa “TMN: Telecommunications Management Net-
work”, McGraw-Hill Professional Publishing, January 1999.

[U2 Partners] Revised submission to OMG RFPs ad/00-09-01 and ad/00-09-
02:Unified Modeling Language 2.0 Proposal. Version 0.671 (draft).
available at http://www.u2-partners.org/artifacts.htm, 2002.

[VenkatasubramanianTalcottAgha01] Nalini Venkatasubramanian, Carolyn Talcott, Gul Agha,
"A Formal Model for Reasoning about Adaptive QoS-Enabled Middle-
ware ", FME 2001, Germany, March 12-16, 2001.

[Venkatasubramanian et al 2001] Nalini Venkatasubramanian, Mayur Deshpande, Shivajit
Mohapatra, Sebastian Gutierrez-Nolasco and Jehan Wickramasuriya,
“Design & Implementation of a Composable Reflective Middleware
Framework", ICDCS-21, April 2001.

 [Wang et al 01] Nanbor Wang, Douglas C. Schmidt, Kirthika Parameswaran, and Mi-
chael Kircher, “Towards a Reflective Middleware Framework for QoS-
enabled CORBA Component Model Applications,” IEEE Distributed
Systems Online special issue on Reflective Middleware, 2001.

[WhittleSchumann00] J. Whittle and J. Schumann. Generating Statechart Designs From Sce-
narios. In International Conference on Software Engineering (ICSE
2000), 2000.

[XiongLee2000] Y. Xiong and E. A. Lee. An Extensible Type System for Component-
Based Design. In the 6th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, vol. 1785 of Lec-
ture Notes in Computer Science. Sringer, april 2000.

[Yuan et al 2003] W. Yuan, K. Nahrstedt, S. Adve, D. Jones, and R. Kravets. “Design and
Evaluation of a Cross-Layer Adaptation Framework for Mobile
Multimedia Systems”. In MMCN-03.

[ZinkyBakkenSchantz97] J. A. Zinky, D. E. Bakken and R. Schantz, “Architectural Support
for Quality of Service for CORBA Objects,” Theory and Practice of
Objects Systems, vol. 3, no.1, pp.1-20, 1997.

Automatic detection of service interactions from
graphical specifications

Hélène Jouve, Pascale Le Gall, and Sophie Coudert

L.a.M.I., CNRS UMR 8042
Université d’Évry

523 places des Terrasses
91000 Évry, France

Tel: (+33) 1 60 87 39 14 Fax: (+33) 1 60 87 37 89�
hjouve, legall, coudert � @lami.univ-evry.fr

Abstract. The paper presents a systematic method for detecting interactions
from telecommunication service specifications. Services are graphically speci-
fied by means of formalised diagrams. The detection of service interactions is
based on static analysis of the diagrams and reveals two kinds of interactions.
Direct interactions occur when a message triggers two services. Indirect interac-
tions occur when the triggering of a service simulates a triggering message of
another one. The method allows to compute interactions in terms of subscription
configuration, triggering message and triggering condition. It is fully automatic
without any need of additional knowledge, implemented in Prolog and illustrated
in the paper on a small running example.
Keywords : Telecommunication services, service interaction, static analysis, sub-
scription configuration, unification.

1 Introduction

Telecommunication systems are constantly evolving due to the introduction of new ser-
vices (also often called features) which increase the set of available functionalities. [5],
[7], [10], [3] give a general presentation of the feature interaction problem which is still
pressing and largely unsolved. A service may be understood as a functional and op-
tional unit modifying an underlying basic call service1. Network operators are strongly
interested in decreasing the life cycle of the service design. Most of the time, services
are designed separately. Thus, their integration may lead to unexpected interactions,
when the mutual influence between two or more services makes the system behave dif-
ferently from the expected behaviour of each involved service. These interactions may
be considered as acceptable or unpleasant. In order to propose a care-free service set,
network operators should prevent the emergence of undesirable interactions. The first
step to tackle the service interaction problem is clearly the detection: the knowledge of
interactions is necessary to integrate services in a way that satisfies the need of users

1 As in many other articles dealing with services, this basic call service pre-existent to all further
services is simply called POTS for Plain Old Telephone Service, ensuring simple calls between
users.

subscribing these services. Indeed, roughly speaking, a pragmatic service-oriented de-
sign method ([4]) includes the following steps: interaction detection, expert judgement
to qualify interactions as desired or not, integration mechanisms to keep the desired
interactions while discarding the undesired ones.

Since properties of the integrated system obviously inherit from properties of in-
dividual services, formal methods are promising in detecting interactions. Verification
techniques such as theorem-proving, model-checking or formal testing have been pro-
posed for that purpose ([10], [18], [1], [6] [2], [14], [8], [4], [23]). The main common
drawback of most of these approaches is that their application needs costly efforts such
as the construction of the whole model of the telecommunication system as an automa-
ton, the systematic exploration of the built automaton, . . . which can reveal intrinsic
complexity limitations. However there are also some works ([21], [12], [9] . . .) based
on static analysis methods. They generally deal with prepost formulas. Roughly speak-
ing, they study how properties expressed by means of preposts formulas issued from
different services can be in conflict. Either they lead to irreconcilable situations from
compatible preconditions (in other words, this is a non-determinism case) or they lead
to situations where some preposts of one of the two services cannot be applied any
more. These methods are essentially based on heuristics.

The work we present here takes place in the family of static methods for detect-
ing interactions. It addresses high-level intrinsic interactions since services will be de-
scribed from the user’s point of view, only capturing the observable behaviours. The
result is an actually implemented algorithm for detecting interactions from formalised
diagram specifications. Indeed, a classical way to achieve such high level specifications
is to synthesise behaviours under the form of representative message sequences ([22]).
In our approach, we consider sequences which are made of messages sent between the
network and the users. This point of view discards as much as possible details about the
network internals. We use a common specification style based on diagrams of essential
communication scenarios, as it has been done in the two recent service interaction con-
tests ([11], [15]) which defined services by means of diagrams known as respectively
Chisel sequence diagrams and state transition diagrams. Using such intuitive diagrams,
we propose a systematic method for detecting logical interactions based on static anal-
ysis. To facilitate the definition of algorithms, we have been induced to define our own
framework of diagram specification. In particular, we precisely define variable scope,
variable substitution or the mechanisms of aliases introduced to model loops. The for-
malisation allows us to model service diagrams as simple trees, and thus as Prolog terms
to be analysed. Indeed, we have fully implemented our method using logic program-
ming in order to take advantage of its symbolic facilities. With respect to the prepost
approaches, dealing with diagrams for static analysis offers a better consideration of
state successions and a finer characterisation of state equivalence by providing a more
complete characterisation of the future of a state. In order to assess the value of our
method, we have first analysed the computed results with respect to our understanding
of the service specifications. Then, we have compared the results provided by our ap-
proach with the results of the FIW98 and FIW00 contests ([5], [7]). The details of this
study can be found in [13]. Our results are globally significant since we almost find all
already detected interactions. To our opinion, the slight differences which remain may

be explained by the fact that some service description in the contests were ambiguous,
and thus may be specified in different ways. Thanks to our static analysis, problem-
atic configurations (states and subscriptions which lead to interactions) are infered and
not proposed a priori. On the contrary, in most of verification approaches based on
test or model-checking technics, a number of phones and a subscription configuration
have to be provided in order to build the model to check. Our method allows to auto-
matically elicit knowledge about minimal subscription configuration needed to reveal
interactions. Moreover, by considering intentional specified behaviour of services, we
also go beyond obvious syntactical criteria which for example, lead to cases of non-
determinism. We find both obvious interactions raised by a triggering event common to
different services and indirect interactions occurring when the effect induced by a first
service meets the triggering condition of the second one. Each computed interaction
is provided with the minimal informations of the subscription configuration, state con-
ditions over the phones involved in the subscription configuration, and the triggering
message at the source of the interaction.

The rest of the paper is structured as follows. Section 2 introduces our characteri-
sation of interactions and the running small example used to illustrate our approach. In
Section 3, we present some of the service diagram specifications we deal with. In Sec-
tion 4 we explain our method and show on a classical example how it allows to compute
interactions. By lack of space, the algorithm will be given only at the level of its main
steps : technical details or minor steps will be skipped. The algorithm description will
combine intuitive and technical considerations.

2 Characterisation of interactions

2.1 A simple intuition

Let us introduce the interaction problem from an classical example involving two ser-
vices : TCS (Terminating Call Screening) and CFB (Call Forward when Busy). TCS
allows the subscriber to prevent incoming calls from a specified phone. When such calls
are performed, they are rejected and then, the callers listen to a specific refusal recorded
message, denoted by TCSmsg in the sequel. CFB ensures that all calls towards the sub-
scribing phone are forwarded to another phone (specified by the subscriber), as soon as
the subscriber is busy.

Direct interaction: If a phone � is forwarding incoming calls to a phone � and
rejecting incoming calls from a phone � , a interaction occurs when � calls � (mes-
sage ��� call �����) while � is busy. With respect to CFB, the message ��� call ���	� should
aim to connect � and � , while respecting TCS, it should originate the sending to � of
the TCSmsg recorded message. The network could so react to the triggering message
��� call �
��� in two different ways. This double incompatible answer precisely charac-
terises direct interactions. Such interactions are often seen as a case of non-determinism
because in a same network state, the sending of a message requires two different re-
sponses from the network.

Indirect interaction: A more subtle interaction occurs when a contradiction indi-
rectly arises between service requirements. It is the case when the expected behaviour

specified for a service meets the triggering conditions of another service. Such cases
are said to be semantical interactions by [21]. Let us clarify this class of interactions by
considering a phone � subscribing the CFB service with � as target and � subscribing
the TCS service with � in its screening list. Then, an interaction occurs when � calls �
which is already in a busy state. Indeed, the CFB service asks for the network to react
as if it had received the intentional message ��� call �
� � instead of the initial message
��� call �
��� . An interaction occurs since the simulated message could originate the re-
fusal message TCSmsg to � while the CFB service requires to put in connection � and
� . This situation is an indirect case of non-determinism and so, should be also consid-
ered as an interaction. We will qualify such interactions as indirect. In the sequel, the
simulated messages will be said to be intentional. Thus, through the intentional mes-
sages associated to the service invocations, interactions may be indirectly perceived.

Interactions may be characterised by information of different nature. The first infor-
mation, called call configuration in the sequel, is the knowledge of the involved phones
provided with their subscriptions to the services. In the first example (direct interac-
tion), the configuration is given by three phones, respectively � , � and � such that �
subscribes to TCS in order to prevent incoming calls from � and to CFB with � as
target. In the second example (indirect interaction), the configuration is given by three
phones too, but with another subscription arrangement: � forwards incoming calls to
� which prevents calls from � . The second information is the triggering message caus-
ing the interaction: ��� call ����� in both examples. The last useful information implied in
interactions is the triggering condition, which gives pertinent knowledge on the phone
states to reveal the interaction. In both examples, � has to be busy just as � tries to call
it. It expresses the minimal condition on the system state for the services to be jointly
exercised so that an interaction occurs. In the sequel, another aspect will be taken into
account to characterise interactions. According to the fact that the responses specified
by the two services are the same or not, the corresponding interactions will be qualified
as visible or invisible. Thus, in the previous examples, the two described interactions
are visible. The following Section is devoted to detail the elements defining interactions
(as indirect or not, visible or not).

2.2 Interactions

Service specifications contain elements of d
similated to the network phones, recorded m
like dialtone, ringingtone, ringbacktone, lineb
user in which state is its phone, etc.

Definition 1. Let us consider
�

a set of so
phone, tone. Each sort, except the sort phone
erally simple constants like dialtone for the s

For any service name �������
	 � � ���
�
subscription to the service � is of the form
 %� a term of sort �&� . User is called the subs
User � is called an argument user.
ifferent nature such as users which are as-
essages like the TCSmsg message, tones
usytone or disctone indicating to the phone

rts including at least the sorts recorded,
, is provided with a set of constructors, gen-
ort tone or TCSmsg for the sort recorded.
with ������� � � �����
��� �

and ����� , a
User ��� �! ��"� � � �#�$ %� � with, for all � in � � � �
cribing user while for each �"�('*)�+-,&�/. ,

The set of sorts is useful to declare all the basic data types used in a service speci-
fication. With respect to the sort phone, in the concern of generality, we will represent
arbitrary users by simple anonymous variables. Thus, in the sequel, � will denote the
set of phone variables representing phone users, and provided with a total order relation� when technical reasons ask for it. These variables will be denoted as � , � , � , . . . , or
User � , and possibly indexed by a service name.

Provided that the Terminating Call Screening service is introduced by the notation
TCS � phone, an example of subscription is given by � � TCS �
��� and indicates that �
subscribes the service TCS with � as forbidden origin of incoming calls2. Moreover, a
user variable � without any particular subscription subscribes by default the basic call
system, named as POTS. Such a situation is denoted by � � POTS. In practice, most of
services are defined from the knowledge of the underlying common basic call system
POTS. It can be generalised by introducing a partial order relation over services. Since
POTS is a basic service, all services � depend on the POTS description, but some other
dependences between services can also exist. Thus, the notation � � � ��� means that
the specification of the service ��� is based on the knowledge of the one of � � . Such a
facility will allow us to express a more complex service on some intermediate services
in order to reduce the specification size of ��� by referencing elements of � � within the
specification of ��� .
Definition 2. A call configuration is the given of a set of subscriptions such that each
user variable occurring as argument user of a subscription is also a subscribing user
of another subscription of the configuration.

A call configuration is said to be non-degenerated if any subscription does not
contain several occurrences of a same variable3.

Let ���&� � � ��� � be � service names. A � � �"� � � �#��� � � -call configuration is a non-
degenerated call configuration containing at least a subscription to � � for each � in
� � � � .

For example a � TCS � CFB � -call configuration for the first given interaction is � � �
POTS � ��� TCS �
� � � � � CFB �
� � � � � POTS � while � ��� POTS � � � CFB �
� � � ���
TCS ��� ��� concerns the second one. Both are non-degenerated, exactly contain a sub-
scription for each service of � TCS � CFB � . Let us remark that to ensure that any user
variable subscribes to at least a service, some user variables subscribe to POTS, the
least service name by hypothesis.

Let us remark that � � � � � � � -call configurations are similar to possibly interacting
configurations as defined in [19] in order to enumerate all call configurations likely
to bring about some interactions between the services � � and � � . [19] a priori builds
all the possibly interesting configurations in which one has to search for possible in-
teractions. But the number of such configurations remains large. Contrary to [19], our
purpose is not to a priori build them, but to detect interactions and to be capable for

2 If one wants to express that 	 prevents incoming calls from both
 and � , then 	 has to
subscribe twice the TCS service: 	
����������
�� and 	
������������� .

3 Thus, for example, a call configuration cannot contain a subscription neither of the form������� � �!� ������� � nor of the form
�������#" � $%� �������'&'()�������'& � .

each of them of infering the knowledge of an underlying call configuration representa-
tive of the interaction. To firstly consider simple cases and like some other works ([20]),
we restrict ourselves to � ����� � � � � � � � -service configurations for � '�� in order to focus
on the detection of interactions occurring between only 2 service subscriptions.

We have already outlined that interactions will be also characterised by triggering
information, decomposed into two parts; the triggering message and the triggering con-
ditions:

Definition 3. Let us consider � a set of predicates provided with an arity on4 ��� .
A system state is a set of literals either of the form) �! ��"� � � � �$ %� � or of the form5

�) �! ��&� � � �#�$ %� � with) a predicate of � provided with the arity � � 	 � � ��	 �
� and
 %� for � � � � � � a term of sort �
� .

Let us consider ��� (resp. �	�) a set of phone (resp. network) message names
provided with an arity on

��

. For a phone message name � in �
� of arity � � 	 � � � 	 � � ,

the phone message ��� � � � � � � � �$ � � with � of sort � � means that the phone � sends the
message � �! � � � � � �� � � to the network. For a network message name � in ��� of arity
� � 	 � � � � � , the network message � �! � � � � � �� � � � � with � of sort � � means that the
network sends the message � �! � � � � � �$ � � to the phone � .

All symbols needed to specify a service (as
�

, � , �
� , ��� for sorts, predicates,
messages and so on) are grouped in a signature, denoted by � in a generic way.

Definition 4. A triggering message is a phone (or possibly a network) message while
a triggering condition is a finite set of literals.

For example, if � subscribes to the CFB service with �*� CFB � � � , then ��� call ���	�
is a possible pertinent triggering message and � � idle �
��� � dialing ��� ��� is the associ-
ated triggering condition with idle and dialing predicates of arity)�+-,&�/. interpreted
according to their obvious meaning.

Definition 5. Let � ��������� � be two services names.
A � � � ��� � � -service interaction � ' �
� � ����� ��� � � is the given of a � � � ��� � � -call

configuration, a triggering message and a triggering condition such that the user vari-
ables occurring in ��� or � � are variables of the configuration � � .

For example, � � � � POTS � ��� TCS �
� � � � � CFB �
� � � � � POTS � � ��� call ���	� ��� �
idle �
��� � dialing ��� ��� � and � � ��� POTS � � � CFB � � � � � � TCS ��� ��� � ��� call ���	� ��� �
idle �
��� � dialing ��� ��� � are two service interactions for � TCS � CFB � . Our purpose is to
automatically elicit such interactions from the static analysis of the service specifica-
tions. Indeed, [17] outlines that observing and analysing statically graphical descrip-
tions of services allow to find most of the interactions. We want to emphasise this point
of view in giving more importance to the role of variables and intentional messages. Our
method is extending the one developed in [21] to specification given under the form of
diagrams instead of state transition rule set. Indeed, [21] already elicits pertinent knowl-
edge, such as inhibited primitive and intention primitive in order to explain the presence
of interactions. Our approach may also be compared to the one described in [9] since

4 ��� denotes all the non empty words on � while ��� denotes all the words on � .
5 The symbol � is here used as negation symbol.

they also extract interactions by static analysis from graphical specifications, except that
they do not deal with indirect interactions.

3 Diagrams

In order to ease static analysis of our specifications, we opt to denote them
as rooted trees which can be represented as finite terms. However, some nodes
are aliases pointing at a marked node to express loop schemas. Our specifications
are composed of a service call configuration, a diagram and a constraint set. The
diagram describes the system behavior by making explicit all representative al-
lowed message exchanges between the network and the phones. The call config-
uration expresses a kind of general precondition in relation to the diagram vari-
ables: the variables of the diagram are precisely the ones occurring in the sub-
scription terms of the call configuration. The constraints allow to express semantic
links between state predicates which restrict the set of admissible states of the sys-
tem.

A.startdialing

idle(B)
talking(A,B)

idle(B) idle(A)

8,(A,B) 9,(A,B)

5,(A,B)

10,(A)

6,(A) 7,(A)

3,(A,B)

11,(A,B)

12,(A,B)

13,(A) 14,(B)

stop(dltone).A

4,(A)

2,(A,B)

start(dltone).A

1, (A)

B:POTS

idle(A)

emitting(A, lbtone)

idle(A)

idle(A)

dialing(A)

emitting(A,rbtone)
emitting(B,rgtone)

stop(rbtone).A
stop(rgtone).B

talking(B,A)

 emitting(A,disctone) emitting(B,disctone)

idle(A) idle(B)

idle(A)

idle(A)

B.offhook

stop(rgtone).B

start(rgtone).B
start(rbtone).A

start(lbtone).A

 ~ idle(B)
idle(B)

A.call(B) A.onhook

start(disctone).A

A.onhook

A.onhook
A.onhook

start(disctone).A

B.onhook

start(disctone).B

A.onhook B.onhook

A.onhook

emitting(A,dltone)

A.offhook

A:POTS

Fig. 1: POTS diagram

talking �
��� �	��� � idle ��� � is,
for example, a constraint im-
posing that a phone � cannot
be at the same time in commu-
nication with another one and
in an idle state.
Each diagram admits a graph-
ical representation. To give a
general idea of our service spe-
cification, let us first introduce
the one of the POTS, the basic
communication service.
POTS has for call configura-
tion a double subscription of
the POTS service by the vari-
ables � and � . The diagram
begins with the root node spec-
ifying that � is in an idle state.
Each node expresses proper-
ties on phones that are requi-
red both before the messages
labelling the outgoing edges
are sent and after the messages
labelling the entering edges are
sent. Most of the edges are
labelled by a phone message
and an answer of the network.
At each diagram node, each
potential future event (phone

message) has to be specified so that each possible transition figures on the diagram.
The network can give two different answers to the output ��� call �
��� which depend on
whether � is idle or not. This illustrates the interest of using conditions on edges. The
common part of the two edges, i.e. the ��� call ����� label, is then shared: it makes the
diagram more legible. Let us remark that on this diagram, the condition is empty for all
the other edges.

Let us also remark that each node is annotated by a number � and a list of variables, the
ones which are precisely in the scope of the considered node. The variable list ���(� �	�
of the POTS service is ordered according to � � � . We do not detail all uses of sym-
bols involved in the POTS diagram which in fact, naturally correspond to their usual
meaning in the field of telecommunication services. For example, start � disctone � � � is
a network message in direction of � under the form of a specific tone indicating to �
that there is no longer a user talking to it. In the same way, ringbacktone holds for the
ringbacktone, ringingtone for the ringingtone, dialtone for the dialing tone . . .

Our diagrams are very close to the Chisel ones ([5]). They specify an alternation of
messages from phones to the network and from the network to phones. They also share
the notion of system states with state transitions diagrams used in [16]. As previously
explained, we systematically use variables to model phones. Indeed, substitution mech-
anisms will assign different rôles to the occurring phones, particularly, in different sub-
scription terms of a call configuration.

3.1 Definitions

Definition 6. Let us consider two services provides with � as service name. Let ��� be
an arbitrary set. A node identifier for � over ��� is a couple � � �$� � , where � belongs
to ��� . An alias for � is a couple �!� ��� ��� �"� � � � ����� � � where � � is a node identifier for a
service

�
such that

�
	 � and � � for � � � � ��� is a variable of � . The alias set for � is
denoted by Alias
 � � � ��� .

In practice, the considered set � � will be a finite subset of the set of all natural
numbers so that each node of the diagram of a service specification will simply be
denoted by an arbitrary number and implicitly marked by the service name. Obviously,
this systematic node marking will serve us to define alias mechanisms.

The node identifier appearing in an alias for � has to refer to a node of a service
preceding it according to the preorder relation defined over the services. � is a priori
the number of variables under the scope of the node indicated by the alias.

Definition 7. Let us consider a service of name � and provided with a signature � . A
node label over � is either a system state over � or an alias for � .

NodeLabel
 � � � denotes the set of node labels made of system states over � .

A system state for a node label partly characterizes the current state of the system
while an alias will serve us as a link to a referenced node. It allows us both to be
sparing of specification redundancies and to model intrinsic loop phenomena within
specifications.

Definition 8. Let � be a signature for the service name � . An edge label over � is
either a 3-uple made of a phone message, a literal set and a set of network messages or
a couple made of a literal set and a set of network messages.

The literal set is called condition while the set of network messages is simply called
an answer. The set of all edge labels for � is denoted by EdgeLabel
 � ��� .

An edge label expresses input and output messages leading to a system state evolu-
tion. The outputs (the network answers) are sent to the phones. They can occur either
in direct reaction to a network input (a phone message) and/or according to some con-
ditions expressed on the system states. The conditions on edge labels are necessary to
the given input/output message exchange but not required in the source node of the
transition.

Definition 9. Let � be a signature for the service name � provided with its set of node
identifiers built from the set � � .

A diagram � for � , over � is a 4-uple � � � � Edge � node � edge � where � � � � Edge �
is a rooted tree 6 and node and edge are the labelling functions respectively from � � to
NodeLabel
 � �	��� Alias
 � � � ��� and from Edge to EdgeLabel
 � � � such that any node
labelled by an alias is a leaf of the rooted tree.

In a diagram, nodes correspond to the state descriptions and edges to the transi-
tion descriptions. As diagrams are trees, we inherit of the notion of subdiagrams de-
fined as subtrees of the global tree. These subdiagrams may be reduced to simple alias
nodes. Moreover, for each node, we can consider branches following it, as defined by
any couple composed of an outgoing edge stemming from the node and the subdia-
gram it points to. Aliases are in fact references to pre-existing (sub)diagrams: an alias
� � � ��� � � ��� � � � � � ��� � � � of a � diagram designates the node referenced by � � ��� � in the�

diagram provided that of course,
� 	 � . If

�
is equal to � itself, then the � dia-

gram contains a loop. For example, the diagram associated to the Call Waiting service
contains a communication loop since the subscriber can switch the held phone with the
one it’s talking to. More precisely, the alias � � � ��� � � � � � � � � � ��� � � � points at the subdia-
gram of the

�
diagram whose the root node is � � ��� � . The variables occurring in the

�

subdiagram are substituted by ��� �"� � � �#� ��� � , according to the order defined over the
�

variables : in other words, the least variable in the scope of the subdiagram defined by
the root � � ��� � is replaced by the variable � � . It is thus required that � coincides with
the number of variables in the scope of the � � ��� � node.

Let us now introduce the CFB diagram which is based on the POTS one. The begin-
ning of the service diagrams coincides with an intermediate node of the POTS diagram.
It ensures that the initial states of the CFB service is reachable from a network only
involved with users subscribing the basic call system POTS. The CFB diagram con-

6 A directed graph is defined by a couple � Node
(
Edge � where Node and Edge respectively define

the set of all nodes and the set of all edges (defined as couples of their source node and target
node). A rooted tree is a connected directed graph with an identified node, the root, considered
as initial and such that there is no cycle in the graph, any node being reachable from the root
by a consecutive edge sequence.

C:POTS
A:POTS
B:CFB(C) dialing(A)

A.onhookA.call(B)

sists in adding
both edges for
new messages
��� call ����� and

t
t
t
a
v
i
d
i

��
a

D
a

n
d
f
t
p
h
i
c

POTS,5,(A,B) POTS,5,(A,C)
POTS,7,(A)

POTS,10,(A)

 ~ idle(C)
 ~ idle(B)idle(B)

 idle(C)
 ~ idle(B)start(rbtone).A

start(rgtone).C
start(lbtone).Astart(rbtone).A

start(rgtone).B

Fig. 2: ����
 diagram

conditions for
��� call ����� ed-
ges: the con-
ditions depend
on the state of
the two pho-
nes � and �
and according

o the cases, the service is triggered or not. In particular, the first branch stemming from
he dialing ��� � node is similar to the corresponding POTSbranch while the second and
he third ones are new. Indeed, they are g as
n argument of the CFB service. There a
ariable substitution, to a POTSsubdiagr
s � POTS ��� � . In order to explicit these sim
etailing these diagrams. Alias nodes are g
nstead of ovals used for state nodes.

B:TCS(A)
A:POTS

idle(A)playing(A, TCSmsg)

idle(A)

dialing(A)

A.call(B) A.onhook

A.onhook

startplaying(TCSmsg).A

Fig. 3: ����� diagram

Wi
� sub
parame
duce a
� � call
cific re
cation
ity, the
gram d
Some i
has to
same s

��� . �
� � . Such requirements are specified b
re added to a diagram.

efinition 10. Let � be a service signatu
nd � � are both literals over � .

Constraints play the rôle of invariants
ot develop this point but they are particu
itions in a minimal way. For example, ta
or POTS specifying that a given phone �
alking state. Obviously, as we have said it
ropriate constraints, mainly by introduci
ave to be explicitly specified and joined to
s composed of a signature, a diagram p
onstraints. However, the constraints are r
concerned with the variable � occurrin

re two subdiagrams equivalent, up to some
am, precisely the one whom node identifier

ilarities, we prefer to use aliases instead of
raphically represented by means of triangles

th the subscription information that a phone
scribes the TCS service with a phone � as
ter, the TCS service simply amounts to intro-
new answer from the network to the message
���	� . The network sends to the phone � a spe-
corded message. It explains why the specifi-
diagram is simple and concise. For simplic-
node identifiers are left implicit. But a dia-
oes not suffice by itself to specify a service.
nformations lack about state predicates. One
specify that a phone � cannot satisfy in the
tate the predicates playing ����� TCSmsg � and
y means of axioms, called constraints, which

re. A constraint is a formula ������� where �

on the set of reachable system states. We do
larly useful to define system states and con-
lking �
	 ����� � � dialing ����� is a constraint
cannot be at the same time in a dialing and

for the TCS service, each service adds its ap-
ng new predicate symbols. These constraints

the service diagram : a service specification
rovided with subscription informations, and
ather obvious to write.

4 The detection method and the corresponding algorithms

4.1 The main steps of the method

In fact, the proposed method combines two major steps corresponding to two differ-
ent algorithms which are more precisely presented in the two following subsections.
The first algorithm extracts the triggering informations of a service from its diagram
specification. The idea is to simply identify the points in the diagram where the spec-
ification differs from the one of the reference system (the point where the service is
supposed to be plugged, generally a point included in the POTSdiagram). While de-
tecting these divergences, the algorithm collects the configuration informations leading
to them as term of subscriptions, states and triggering message. Moreover, the diagram
is annotated with the appropriate intentional messages. The second algorithm exploits
information computed by the first one by comparing the whole annotated subdiagram
stemming from the activation point of the first service to the triggering conditions of the
second one. Like the previous algorithm, while searching, this one collects the informa-
tions relative to the configuration which leads to a conflict and then provides them as a
result. This algorithm can thus be qualified as an interaction elicitation algorithm.

4.2 Extraction of the triggering informations

Principle of the algorithm To compute the triggering information of any service � ,
we compare its diagram to the default service diagram, i.e. generally the POTS one.
Below, we outline the main steps to extract all pertinent informations related to service
triggering. Notice that we use a special kind of unification: the computed unifiers are
constrained by preventing each variable of a diagram from being bound to more than
one variable of the other diagram. This prevents the confusions between the different
phones occurring in a given specification. Indeed, in the intention of the specifier, each
variable of phone of a service diagram corresponds to a specific rôle in the described
set of scenari. Confusing them is not relevant: this differs from the prepost specifica-
tions, for example, where the far past and future of states are not explicitly specified.
Considering this precision about unification mechanism, the principle of the algorithm
is the following one:

� If the initial nodes of the POTS and � services match, the comparison produces
a unifier denoted by

�
. If the two initial nodes do not match (see the CFBdiagram for

example), we look for a POTS node coinciding to the initial node of the service in order
to proceed with the corresponding POTS subdiagram. If finding this analogous node in
the POTS diagram is not possible, we consider that the initial node of the � diagram is
in fact a specification error.

� Once a POTS node has be found as a mirror node of the � initial node, the compar-
ison of the two diagrams is pursued with the comparison of the subdiagrams stemming
from these two similar nodes. Diagram paths are recursively compared two by two, one
outgoing from the � initial node, and the other one outgoing from the similar POTS
node. This provides us with a set of path peers which exactly match in the context of
the unifier

�
(recursively extended to the new encountered variables while descending

the compared paths) and a set of paths outgoing of the � initial node which do not
match any of the POTS paths. The remarkable set is the one of mismatching branches

http://www.cs.wustl.edu/_schmidt/TAO.html
http://trese.cs.utwente.nl/AOSD-EarlyAspectsWS/Papers/Mousavi.pdf
http://trese.cs.utwente.nl/AOSD-EarlyAspectsWS/Papers/Mousavi.pdf

provided with their corresponding unifier: they are built from mismatching paths such
that the branch edge is the first edge of the path without any equivalent node in POTS.
The edge source is the activation point, the edge user message is the triggering message,
the union of the edge condition and the node label of the source node is the triggering
condition and finally, the subdiagram linked to the edge target is simply called the acti-
vation subdiagram. Activation branches are grouped together as soon as they share both
their activation point and triggering message.

� Once activation branches has been computed, the static analysis is pursued in
order to collect all pertinent knowledge about these activations. First step: Elicitation
of intentional messages associated to the activation branch, if they exist. It consists in
looking for a network answer provided with its POTS subdiagram similar to those of
the activation branch, up to some restricted unifications. If the search is successful then
the user message at the origin of the corresponding POTS subdiagram is precisely the
intentional message we are looking for. Of course, this search is led taking into account
alias mechanisms. At each intentional message is associated an intentional condition:
the union of the condition labelling the corresponding POTS edge and the label node of
its node source. Second step: Elicitation of intentional messages located in subdiagrams
of the activation diagram. Indeed, such intentional messages are likely to interact with
triggering messages of another service, and thus, may be at the origin of an indirect
interaction.

To conclude, triggering informations are basically made of the given of a set of data
structured as follows: call configuration, triggering message, triggering condition, an-
notated activation diagram and intentional messages (associated to the triggering mes-
sage), which is illustrated by the two following examples. In the sequel, by lack of
place, the annotated activation diagram will be left implicit: they are given under the
form of a network message and the corresponding annotated activation diagram.

Triggering information of CFB The informations computed by the algorithm for the
CFBservice are synthesized in the following tabular:

Call configuration Triggering message Condition Intentional Condition
phone msg. message���

POTS
���

call ����� 	 idle ����� ��� call ��
�� idle ��
��� �
CFB �

�� dialing � � � dialing � � �
 �
POTS idle ��
�����
POTS

���
call ����� 	 idle ����� ��� call ��
�� 	 idle �

��� �

CFB �

�� dialing � � � dialing � � �
 �
POTS 	 idle ��
��

These results are the expected ones: by confronting the CFBdiagram with the POTS
diagram, we can see that the activation point of CFBis clearly the dialing ��� � node.
From this node, the CFB diagram contains two branches both sharing the � � call ���	�
message and the � idle ���	� � dialing ��� � condition but respectively adding the idle �
� �
and � idle � � � conditions. Thus, ��� call ����� the triggering message. The corresponding
activation diagrams take place in the lacking Activation column of the tabular, together
with the respective network answers (� start � ringingtone � � � � start � ringbacktone � � � �
and � start � linebusytone � � � �). And as expected, the computed intentional messages are
in the first case � � call � � � (with the idle � � � condition) and in the second case ��� call �
� �
(with the � idle �
� � condition).

http://www4.informatik.tu-muenchen.de/papers/BK98.html
http://www4.informatik.tu-muenchen.de/papers/BK98.html
http://www.esterel-technologies.com/
http://www-cse.ucsd.edu/~ikrueger/publications/savcbs01.pdf
http://www-cse.ucsd.edu/~ikrueger/publications/savcbs01.pdf

Triggering information of TCS In the TCSdiagram, the two POTS branches existing
for the � � call ���	� message are suppressed and replaced by a new branch having a differ-
ent associated activation diagram : the network sends the playing of a recorded refusal
message. This message is really specific to TCS so that any intentional message can be
found. So the TCStriggering information the programs returns is simplified:

Call configuration Triggering message Condition Intentional Condition
phone msg. message� �

POTS
���

call ����� dialing � � � none none� �
TCS � � �

4.3 Elicitation of interactions

Principle of the algorithm In order to detect interactions between two services � �
and � � (possibly � � ' � �), we apply a static analysis on their respective triggering
informations. Our interaction search is decomposed in main steps according the kind of
interactions we are looking for. At first glance, there are three principal cases explaining
that a activation of � � causes an interaction with ��� .

– � � and � � share the same triggering message (direct interaction).
– The intentional message associated to the triggering message of � � coincides with

the triggering message of � � .
– The activation of ��� is likely to activate ��� via real or intentional messages.

The first step is based on a comparison of the triggering messages and thus, con-
cerns direct interactions. The second step concerns intentional messages compared with
triggering messages of the other service. The third step amounts to apply the first and
second step at each edge of the activation diagram. All steps are based on a same com-
parison technic and according to the fact that messages are triggering or intentional
ones, the interpretation of the detected interactions differs. Moreover, we can also de-
duce informations about the visibility of the interactions. This is shortly detailed in the
four following points:

� The comparison principle: For � ' � � � , let � � � , ��� � , � � be respectively a
call configuration, a triggering message and a triggering condition associated to the � �
specification. Moreover, let us denote � � � and � � � the intentional message and associ-
ated condition when they exist. The comparison of (triggering or intentional) messages
is considered as successful if they are unified up to a restricted unifier

�
(which do not

unify variables of a given diagram) and provided that their associated conditions are
compatible with respect to the constraints and

�
. In other words, it means that there

exists at least one state satisfying both
� �
� � � � � �
��� � and the constraints of the specifi-

cations. As soon as the comparison of messages provides us with a unifier such that the
conditions are compatible, there is clearly an interaction. Then, the corresponding call
configuration � � results from the union of the two service call configurations � � �
and � � � , once the unifier has been applied and each useless POTS subscription has
been suppressed of the global subscription. More precisely, if the resulting configura-
tion contains for example the subscriptions ��� TCS and � � POTS, then the POTS
subscription is deleted since the POTS subscription is considered as a default one.

� Direct interactions (with two triggering messages): The detected interaction
�
� � ����� ��� � � is given by ��� ' � � ��� � � (also equals to

� � ��� � � by hypothesis)

http://www.aspectc.org/download/words2002.ps.gz
http://beta.ece.ucsb.edu/WORDS-2002/
http://beta.ece.ucsb.edu/WORDS-2002/
http://www.omg.org/

and � � ' � � � � � � � �
��� � , the call configuration � � being already defined. Thus, for
each possible unifier

�
, there is an associated direct interaction.

� Indirect Interactions (with a triggering message and an intentional message
at the activation point): Let us suppose that the intentional message is the � � one,
the messages � � � and ��� � are unified up to an unifier

�
and the conditions � � � and

� � are compatible. Then, it means that the intentional message � � � corresponds to an
� � triggering message. In other words, when � � is triggered, the expected behaviour
meets the triggering condition of a ��� triggering. For each possible unifier

�
, there is

an indirect 2-service interaction denoted by �
� � � ��� ��� � � where ��� is the message
��� � corresponding to the intentional message � � � , up to the unifier

�
, � � ' � �
� � � �

� � � � � . Such an interaction can be understood as: “in the configuration � � , when � � is
triggered on the message ��� � , all happens as if the network had received the message
� � � , at the origin of an indirect � � triggering”.

� Indirect Interactions (with messages inside the activation diagram): the whole
activation diagram is covered by applying the two previous comparison mechanisms at
each encountered edge.

� Visibility of interactions : As the triggering informations contain also activation
diagrams, we are able to determine whether the detected interaction is sensible or not.
If after a joint triggering of � � and � � as given in an interaction, the two activation
diagrams are similar up to the appropriate unifier, then the interaction is perceived as
invisible. In all other cases, it is a visible one. This means that there really exists a
difference between the service requirements which is observable by an user. Of course,
nothing is said about its seriousness.

We will now illustrate how our method can be applied on the CFBand TCSservices
before giving the corresponding result of the program. The research begins by the in-
teractions on triggering messages. CFBand TCShave the same triggering messages :
� CFB � call �
� CFB � and � TCS � call ��� TCS � on which the restricted unification provides the
unifier

� '
� � CFB ' � TCS � � CFB ' � TCS � leaving � CFB unbound. The activation

conditions are compatible : � � idle �
� CFB ��� ��� . At this step, we can affirm TCSand
CFB interact because they are triggered at the same time. Let us detail the interactions.

The � CFB call will be forwarded to � CFB: if � CFB is idle, � CFB will perhaps be con-
nected to it, and in the other case (� idle � � CFB �), � CFB will receive the linebusytone
tone. By the TCStriggering, � CFB should receive the TCSmsg recorded message in
both cases. The two expected behaviours do not match. So, a simultaneous triggering
of CFBand TCSis perceived by the user as a requirement conflict. It is a typical exam-
ple of a visible interaction. We can now apply

�
to compute the two resulting interac-

tions composed of the same call configuration � � ' � � � POTS � � � CFB �
� � � � �
TCS ��� � � � � POTS � , the same message � � call �
��� and two different conditions, respec-
tively � � idle ���	� � idle � � � � dialing �
� ���) and � � idle ����� � � idle �
� � � dialing ��� ���). Let
us now consider intentional messages. There is no intentional message for TCS. The
first activation branch of CFB (holding for idle �
� �) has an intentional corresponding
message: � CFB � call � � CFB � . It can be unified with � TCS � call ��� TCS � (TCS triggering
message): this produces the unifier

� � '
� � CFB ' � TCS � � CFB ' � TCS � . The inten-

tional condition � idle �
� CFB � � dialing �
� ��� is also compatible with the TCS activation
condition.

http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2000/krueger.html
http://www.gigascale.org/metropolis/infrastructure.html

The resulting interaction provides us with the call configuration � � � ' � � �
POTS � ��� CFB � � � � � � TCS �
� � � � � POTS � , with the triggering message ��� � '
��� call �
��� (corresponding to the intentional message � � call �
���) and the triggering con-
ditions � � � ' � � idle �
��� � idle �
� � � dialing ��� ��� .

The remaining question concerns the visibility of the detected indirect interaction.
Clearly, the direct triggering of CFBand the indirect one of TCSlead to two different
expected network answers. It can be established by the comparison of the activation
diagrams. Thus, there is a visible interaction with this configuration.

Concerning the second activation branch of CFB, the resulting interaction is quite
similar. Only the condition changes. The new triggering condition is � � idle ���	� � �
� idle �
� � � � dialing �
� ��� . The comparison of the central answer and of the activation di-
agrams allows us to conclude this interaction is visible too: with CFB, � would emit a
busy line tone and with TCSthe refusal message. This interaction is visible too.

To summarize, the previous computations simply allow us to retrieve the well known
interactions between TCSand CFBwhich are detected by the programs giving the fol-
lowing as result:

CC � � �
POTS � � �

CFB ��
����� �
TCS � � ���
 �

POTS �
TM

���
call �
���

TC � 	 idle ������� idle ��
���� dialing � � ��� �
or � 	 idle ������� 	 idle ��
���� dialing � � ��� �

CC’ � � �
POTS � � �

CFB �

����
 �
TCS � � ���
 �

POTS �
TM’

���
call ����� (int. message :

���
call ��
��)

TC’ � 	 idle ������� idle ��
���� dialing � � ���
or � 	 idle ������� 	 idle ��
���� dialing � � ���

All the triggering informations (subscription configuration, state conditions, trig-
gering message, status of visibility) are automatically computed from the given of the
service diagrams and their associated constraints. The results given above have been
computed by our Prolog prototype.

5 Conclusion

In this paper, we presented a formalism dedicated to service specification and a static
interaction detection method implanted for such specifications. The detection method
uses two algorithms implemented in Prolog. The first one compares a service specifi-
cation to the basic system specification in order to find the triggering information of
the service, that is to say, the conditions of its activation. The second one compares
the triggering informations of two services in order to find interactions between them.
These two algorithms have been shortly introduced and performed on a classical exam-
ple (interactions between CFB and TCS). A comparison with other works on interaction
detection can be found in [13] and concerns all services given in the FIW98 and FIW00
contests, except those dealing with billing. In order to improve our detection method,
we could perform further works in several directions. First, the calculus of the triggering
information allows to compute an activation path (from the initial node to the activation
point) in the diagram that could be exploited. For example, giving triple <triggering
path, triggering message,triggering condition> can be seen as giving a (uninstantiated)
test case. Combined with the use of the constraints, all this could be used in order to
determine state reachability in the model. The service specifications could also be ex-
tended by adding data types definition (and their associated operations) or by adding
some other kind messages and equipments or else by distinguishing phones and users
to model services based on a notion of user mobility.

http://www.cs.wustl.edu/~schmidt/PDF/IEEE-proc.pdf
http://www.cs.wustl.edu/~schmidt/PDF/IEEE-proc.pdf
http://www.cs.wustl.edu/~schmidt/corba-research-realtime.html
http://www.cs.wustl.edu/~schmidt/PDF/middleware-chapter.pdf
http://www.cs.wustl.edu/~schmidt/PDF/middleware-chapter.pdf
http://www.cs.wustl.edu/~schmidt/PDF/middleware-chapter.pdf

Acknowledgements. We thank Francis Klay for discussions, and for financial sup-
port of France Telecom with the MOECIF project. We also thank the French national
project RNRT ValiServ.

References

1. R. Accorsi, C. Areces, W. Bouma, and M. De Rijke. Features as Constraints. In [7], pages
210–225, 2000.

2. D. Amyot, L. Charfi, N. Gorse, and T. Gray. Feature Description and Feature Interaction
Analysis with Use case Maps and LOTOS. In [7], pages 274–289, 2000.

3. D. Amyot and L. Logrippo, editors. Feature Interactions in Telecommunications and Soft-
ware Systems 7. IOS Press, 2003.

4. K. Berkani, R. Cave, S. Coudert, Francis Klay, P. Le Gall, F. Ouabdesselam, and J.-L. Richier.
An environment for interactive service specification. In [3], pages 25–41, 2003.

5. L.G. Bouma and K. Kimbler, editors. Feature Interactions in Telecommunications and Soft-
ware Systems 5. IOS Press, 1998.

6. L. D Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon. Incremental Feature Valida-
tion : A synchronous Point of View. In [5], pages 262–275, 1998.

7. M. Calder and E. Magill, editors. Feature Interactions in Telecommunications and Software
Systems 6. IOS Press, 2000.

8. D. Cansell and D. Méry. Abstraction and refinement of features. In [10], pages 65–84, 2000.
9. R. Crespo, L. Logrippo, and T. Gray. Feature Execution Trees and Interactions. In Hamid R.

Arabnia, editor, Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications, PDPTA ’02, pages 1230–1236, 2002.

10. S. Gilmore and M. Ryan, editors. Language Constructs for Describing Features. Springer-
Verlag London Ltd, 2000.

11. N. Griffeth, R. Blumenthal, J.-C. Gregoire, and T. Ohta. Feature Interaction Detection Con-
test. In [5], page 327, 1998.

12. M. Heisel and J. Souquières. A Heuristic Algorithm to Detect Feature Interactions in Re-
quirements. In [10], pages 143–162, 2000.

13. H. Jouve. Caractérisation et détection des interactions à partir de spécification graphiques.
PhD thesis, Université d’Evry, 2003. forthcoming thesis.

14. F. Klay, M. Rusinovitch, and S. Stratulat. Analysing feature interactions with automated
deduction systems. In 7th International Conference on Telecommunication System Modeling
and Analysis, 1999.

15. M. Kolberg, E. H. Magill, D. Marples, and S. Reiff. Second Feature Interaction Contest. In
[7], pages 213–231, 2000.

16. M. Nakamura, Y. Kakuda, and T. Kikuno. Feature Interaction Detection Using Permutation
Symmetry. In [5], pages 187–201, 1998.

17. M. Plath and M.D. Ryan. Defining features for CSP: Reflections on the feature interactions
contest. In [10], pages 163–176, 2000.

18. M. Plath and M.D. Ryan. The feature construct for SMV : semantics. In [7], pages 129–144,
2000.

19. S. Reiff. Notes on Call Configurations with Features. In [10], 2000.
20. D. Samborski. Stack Service Model. In [10], 2000.
21. T. Ohta T. Yoneda. A Formal Approach for Definition and Detection of Feature Interaction.

In [5], pages 202–216, 1998.
22. K.J. Turner. Formalising the chisel feature notation. In [7], pages 241–256, 2000.
23. T. Yoneda, S. Kawauchi, J. Yoshida, and T. Ohta. Formal approaches for Detecting Feature

Interactions, Their Experimental Results, and Application to VoIP. In [3], pages 205–212,
2003.

http://www.cs.wustl.edu/~schmidt/papers/NASA/dsonline.html
http://www.cs.wustl.edu/~schmidt/papers/NASA/dsonline.html
http://www.computer.org/dsonline/
http://www.computer.org/dsonline/
http://www.computer.org/dsonline/middleware/RM.htm

������� ��������	 �
 ���
���

�� ����������� �� ������� �� ��� ����
!"#$%&"'()&* +" ,)-*%'$&".$/ 0)"1(%2"&3$ +" 4"2$

56789:;8< =(%1".(+"2.*1(%> '(.?$)"2'2 #@$> $) ").%($2")A@> %(@(1$)&
%*@(") &?(+(B)"&"*) $)+ .*)2&%C.&"*) *- $ D(E"F@($)+ #*G(%-C@ ")-%$2H&%C.&C%(-*% $##@".$&"*)2 &?$& ?$1(&?(,)&(%)(& $2 &?("% %(-(%().(%C))")A()1"%*)'()&I J?(%(-*%("& "2)*& *)@> 2()2"F@(FC& ?"A?@> +(2"%$F@($)+
2*'(?*G '$)+$&*%>/ &* $++%(22 &?(C)$'F"AC*C2 $)+ %"A*%*C2 +(2.%"#H&"*) *- 2(%1".(F$2(+ 2>2&('2/ ") &?(.*)&(E& *- &?(%(2($%.? *) -*%'$@'(&?*+2 -*% &?(2#(."B.$&"*) $)+ 1(%"B.$&"*) *- +"2&%"FC&(+ 2>2&('2I K(H2"+(2/ "& G*C@+ F(A%($&@> C2(-C@ &* ?$1($.*''*) -%$'(G*%L *) G?".?
&* F$2(&?(2#(."B.$&"*) *- +"2&%"FC&(+ 2>2&('2 ") A()(%$@ $)+ *- 2(%1".(2F$2(+ 2>2&('2 ") #$%&".C@$%I ,) &?"2 #$#(% G(.@$"' &?$& M*FNOPQ / G"&?"&2 C)+(%@>")A '*+(@/ "&2 @*A". $)+ "&2 %(B)('()&H*%"()&(+ 2#(."B.$&"*)#%*.(22/ .$) F(2C.? $ -%$'(G*%L $)+ 2?*G 2*'((1"+().(*- ?*G "& .$)F(C2(+ ") &?"2 2()2(I

R STUVWXYZU[WT

\� �]� ^���_] `�� �� �a�� ���� b�c�de� ��f �g��`he ��� ��`��^��h_�h�� �� ��^�
�]� ������_���� �` � e�_�����^ �� ijk^ l��f �]� \������� �^ �]� ���� ��`����_�
^_������m� ^��a�_�^ e�n � ��e�a��� ��e�� j e�_�����^ �]�� ���f ^��� ����_he��
��`�������� �� �]��� ���� �� ������e� ���f �� ��`��� ��^o^ `�� g]�_] �]�n ���
��� �ph� �f ^]�hef d� ������f �]� _]��_� �� e��o `�� ��]�� � e�_�����^ �de� ��
`heqe �]��� ��ph�^�^� \� � _e�^^�_ f�^���dh��f ��a��������� g]��� �a��n�]��� _��
d� �]�h�]� �` �^ ���^���den ^��de� ��f ^��������n� ^h_] ^��a�_� ��a�f��^ g�hef
d� �f����q�f ��_� ��f `�� �ee ��f ��gd�� g�hef d� ��� �en ��^����f �� �ee �]�
��]�d�����^ �` � ���� \� �]� ��g ^������^� g]��� ^��a�_�^ ��� �� e����� ^��de� ���
^��������n� ���� �g��`he ����^ `�� �]��� f�^_�a��n ��� ���f�f�r�^�f�^� �� ^h_] � ^������� d���� �de� �� h���d��h�h^en ^���� �]� �� �����^
�c]�d���f dn �h� ^n^���^ �^ �` �]� h ��^� �� �����_�� s� �_]��a� �]� �� ��
e�a�e �` _��qf��_� �� �]� _e���^ �d�h� �]� �� �����^ �` ������^�� g� ���f �� ��
`����e ���e^ �]�� �ee�g h^ �� ^ �_�`n �h� ^n^���^ ��f �� ���^�� �� �]�^� ^ �_�tq_�����^� s]� ^ �_�q_����� �` ^��a�_�^ f�^_�a��n ��_]���^�^ �^ uh^� �� ��^���_�
�` �]�^ g�f�� �_�h������a�_� f�^_�a��n ��_]���^�^ ��� � ��e�a��� ��� �� �]� e�`� �` � f�^���dh��f
^n^���� �� g�hef d� � ����� d���q� �� d� �de� �� �__����f��� �� �]� ^���
`����g��o d��] �]� f�^_�� ���� �` �]�^� ��_]���^�^ ��f �]� ^ �_�q_����� �`
f�^���dh��f ^n^���^ ^� �� ��^� �]� ����������� �` �]� �g� ���^� j���]�� � ��e���
`���h�� g�hef d� �]� ^ �_�q_����� �` � ������e ^��a�_� f�^_�a��n ��_]���^�� ��
�a��f �����h�� _]��_�^ g��] ��^ �_� �� ^��a�_� �� e����������^� s]�^ g�hef

��a� �]� f�^�����^ �]� _]��_� �� o�� f������� _��_���^ ^� ������ ����en �]�
^ �_�q_ ^n^��� ��_]���_�h�� ��f `h�_�����e����^ �� �]� ��� ^�f� ��f �]� ^��a�_�
f�^_�a��n ��_]���^�^ �� �]� ��]��� �` _�h�^�� g]�� �]� ���� `�� � _]��_�]�^
���� �� ^]�hef d� �^^�de� �� f����e �]� ������e f�^�� ���� �� ���_] � ����_he��
��_]���^� ��f ^��ee o�� �]� ������e f�^_�� ���� �^ � a�e�f �����`�_� d��g��� �]�
^n^��� ��f �]� ^��a�_� ��a�f��^�

�h� _e��� �^ �]�� ��d���� �^ ^h_] � `����g��o� ���� ��d���� ����^ �ee g�
���f �� ^ �_�`n �]� �c e�������� �` ^��a�_� f�^_�a��n ��_]���^�^ �� �]� ��^�
������e ^������ �` ��d�e� f�^���dh��f ^n^���^ �h����� �� ijk^� ��f ����^ �]�
��ph�������^ �e�_���f ^� `���

s]� ��d���� ���]�f�e��n �^ d�^�f �� � ��f�e �]�� _� �h��^ � ������e ^��h_t�h�� � � �� d� h^�f �� f�^_��d� ��d�e� f�^���dh��f ^n^���^� s]�^ ��f�e �^�^ �]�
d�^�^ `�� �]� g]�e� ���]�f�e��n dn f�q���� � ^�� �` _��_� �^� �����^ l��d�e� ��
^��������n _�� h�������e _�� �����^m� ����]d��]��f^ l�]� e�_�e����^� �]� e�_�^
g]��� �����^ e�a�m� ��f �h��f���^ l�]� �������^ �]�� ��d�fn ��f ���_� �]� ^�_ht
���n �e�_��^ ��e���a� �� ��_] ����]d��]��f ��f ��_��_�een ��o� _��� �` _���ht��_�����^ ��f ��d�e��n]��fe��� �����^� ��ph�^�^m� s]� ��d���� ��f�e �^ �����
�� d� � ������e g�ee f�q��f ��_]���_�h��� g]��� ^�a���e �^ �_�^� ���� ��h���� `��
�]� f�e�a��n �` ��^^���^� ��� ��� ^ �_�q�f �� f����e� s]�^ �ee�g^ �__����f�����
��n _]��_� �]�� _�hef ���^� `��� ^ �_�q_ ���f^ �` � ^n^���� r���� �]�^ ��f�e
�]� a��n d�^� �` �]� ���]�f�e��n� �� �^ �]� ������ �` ��q������ �]�� �h�f�^ �]�
f�^����� �� �]� f�^_�� ���� ��f a���q_����� �` � ��d���� ^n^����

s�o��� �]� ��a� `��� � f�^_�� ���� �` �]� ��`����_� ��f�e� �^^��� �]��h�]
^�a���e �������f���� ^�� ^� � ^ �_�q_����� �` �]� f�^���f ^n^��� g�ee d� ��fh_�f
�]�� ��a�^ f����e^ `�� g]�� �^ ����������een e�`� h�f���^ �_�q�f �� �]� ��`����_�
��f�e� s]�^� f����e^ _�� e��� �]� ^ �_�q_����� g��] �ee �]� �_he��� `h�_�����e
��f ����`h�_�����e �^ �_�^ �` �]� ^n^��� �` ������^�� j �� ��� ������h^ f�q��t���� �` � ��q������ ��e����� �h�������^ �]�� �]� ��q������ ��_�^^ ��^��a�^
�]� a�e�f��n �` �� �����^ `��� ^�� �� ^�� � �h_] ��q������ ��e����� ��e��^ ��
e���_�e �� e�_����� d��g��� ^ �_�q_�����^ g������ �� 	�s�lcm� � e���_ �]�� �ee�g^
f�^_��d��� ��� ���e �� �����^ �` f�^���dh��f ^����^ �` _�� �����^ _���h��_��t
��� �^n�_]����h^en� �]h^ ��a��� �]� ����^ �� ��eo �d�h� �]� �a�eh���� �` �]�
_�� h������^ �` f�^���dh��f ^n^���^�

s]� �f�� h�f��en��� �]�^ g��o �^ �]� `�ee�g���� g� ��q�� �]� ��d���� ��f�e
�� f�^_��d� � ������e �d^���_� �����`�_� �� ^��a�_� f�^_�a��n ��_]���^�^� �]h^
�_�h�een f�q���� � ��g ��`����_� ��f�e �]�� �^ �� d� _��^�f���f �^ �]� ^����t
��� ���� �` �]� ^ �_�q_����� �` ��n ��d�e� f�^���dh��f ^n^��� �]�� �^ ^���]�g
��e���f �� ^��a�_�^� s]�^ ��g ��`����_� ��f�e� �����]�� g��] �]� �c�^���� ���]�ft
�e��n� �^ �]� _����� `����g��o g� ��� e��o��� `��� s]��� a�� �� �� ��q������
 ��_�^^� g� _�� f�^_��d� ��n ����_he�� ^��a�_� f�^_�a��n ��_]���^� o�� ��� �^
�]� �����`�_� �]� �d^���_� f�^_�� ���� g� ��a� �� �]� d���������

s]� _�� �^������e ���h�� �` ��d���� ^ �_�q_�����^ �ee�g^ h^ �� �]��o �` �
^_������ e�o� �]� ��� �� ��^����f ��
��h�� �� ��a�� �]� ^ �_�q_����� �` � ^��a�_�
d�^�f ^n^���� f�q��f �� ����^ �` �]� ��`����_� ��f�e� g� _�� f���a� �� ��^�����t

���< �< � 2.()$%"* *- %(B)('()& $)+ .*'#*2"&"*)I

reference model
 Mobadtl

service discovery
 general

 system
service based

 type 1
service discovery

 type 2
service discovery

 type 3
service discovery

system (type 1)
 service based

system (type 2)
 service based

system (type 3)
 service based

����� �` �]� ^n^��� f� ��f��� �� �]� ����_he�� f�^_�a��n ��_]���^� g� _]��^�
�� �_o h `��� � e�d���n �` ��_]���^� ^ �_�q_�����^�

\�
��h�� �� d�c�^ �� ��^��� ^ �_�q_�����^ ��f ����g^ �� ��^��� ��q������
��e�����^ d��g��� ^ �_�q_�����^�

\� �]�^ � ��� `�� �]� ^�o� �` �_����n �� �]� ��^�������� �` �]� e���_ ��f �`
�]� ��f�e� g� `�_h^ �h� ��������� �� �]� ^ �_�q_����� �` ^��a�_� f�^_�a��n ��_]t���^�^ ���]�� �]�� �� ��d�e� ^n^���^� i� �� ��� � ����_he�� ��q������ �` �]�
������e ��d���� ��f�e �]�� _��^�����^ �� �� � ^��������n ^������ g]��� ^�_h���n
�����^� �` �]� h ��^� ��e�a��_� �� �]� ������e ��d���� ��f�e� ��� ��� ��o��
���� �__�h��� ������� �]� ��^he�^ ��^����f �� �]�^ � �� �� �]� ������e ��f�e
g�hef d� �� ��^n ��^o� s]�^ ������ g�hef �� en �]� �c e�������� �` 	�s�lcm
`hee �c ��^^�a���^^� �]�� �^ ���f�f `�� � �� �� f�^_�� ���� �` �]� ��_]���_^ �`
�]� �������h��f��� ��e�����^]� � ��f �` _���h��_�����^ ��f ��d�e��n�

� ���Z[�Z�U[WT �TX V��T���TU [T ���	
��
i� g���� �h� ^ �_�q_�����^ h^��� �� �^n�_]����h^� f�^���dh��f� ��f ��� ���e
e���_ _�ee�f 	�s�lcm� �]� q�^� ��f�� �c���^��� �` 	�s�
���� \� �^ d�^�f ��
� e���_ `�� f�^���dh��f ^����^� 	��
���� ��f ��_ehf�^ ��� ���e � ������^ �� e�����n
��� i� dh�ef �� �]� ����n e���_ ^��_� �� �^ ��en � ^hd^�� �` e����� ����
��� ���e e���_� g��] � e�����f �h�d�� �` � ������^� g]�_] ��� ���]�� ��^n ��
h�f��^���f ���h���a�en� ��f _����� d� ��^��f� ��g�a��� �]� e���_ �����^ �� �ct ��^^ ��^� �` �]� �� ������ �� �����^ �` � ^n^���� �c e������ �]� ^�� e�_��n
��f ���` ^�����]�`��g��f��^^ g]�_] ��o�^ ����n ���� � ��e��� `�� �]� f�t
^�����^ �]�� e����� ���� ��� ���e e���_� s]� �c���^���^ g� ��o� ����� �� f��e
g��] f�^���dh��f �^n�_]����h^ ^n^���^� i� ���� �]� _�� �����^ �` �]� ^n^t��� ��f ��e��� �� �����^ g]�_] ���]�]�ef �� f�^����h�^]�f _�� �����^� �� ��
�^n�_]����h^ ^�������

i� �^^h�� � f��h����de� ^�� �` _�� ����� ����^ ����������� � � ��� ��f
�]�� �]� a����de�^ ^�� ��_ehf�^ � f��h����de� ^�� �` _�� ����� a����de�^ ��� ����� ��� � � ���

i� �����fh_� e�_����� ��f�e����^ `�� ��_] _�� ����� �� � ^n^���� g� h^�
_�� ����� ����^� g��] � f������� `����
�� ��^���_�� �� �^ �]� e�_����� ��f�et��n _����^ ��f��� �� _�� ����� ��� ��f �� !�l��m ^��n^ `�� "�� _�� �����
��� !�l��m]�ef^#� i� e�� ph����q��^ ����� �a�� ��f�e����^� ��f $ � % � $&� � � ��� e�_����� ��f�e��n a����de�^� r��f��� d��g��� e�_����� a����de�^ ��f ���the�� a����de�^ �^ �^^�de��
�� �c�� e�� '��$!�l�m ����^ �]�� `�� �ee _��t
 �����^ �(� �& !�l�(m]�ef^�)h����q_����� �a�� ��f�e��n a����de�^ �^ f��� ��
� ^���f��f g�n� `�ee�g���� `�� ��^���_�
*��

	h� �� `�_h^ ��f �� ^ �_� ���^��^� �� �]�^ g��o g� _��^�f�� � `������� �`
	�s�lcm� ��f f� ��� fg�ee �� �]� `����e �^ �_�^ �` �]� e���_� s]� ��`����_� � ��
�^
���� g]��� ��e�����^]� �� ���n e���_ `�� f�^���dh��f ��f ��d�e� ^n^���^ �^ �e^�
f�^_h^^�f� ���� g� uh^� ��_�ee �]�� �]� ���� ��a�e�n �` �]� e���_ �^ �� ����a���a�
^������_ f������ �]� +�� o� ��f�e^ ��� dh�e� �� g��ef^ �]�� ��� ��d�����n ^��^
�` _�� h������ ^����^� ��^���f �` ^���e� ^����^ �� �h e�^ �` �]�� l��� `�� ��_]
_�� �����m� s]�^� _]��_�^� �f� ��f �� ���n e���_^ `�� f�^���dh��f ^n^���^ ���
��� g�ee ^h���f �� �^n�_]����h^ _���h��_�����^�

,-. /01234
5 ��6 7 88 9 88 : 5 88 5 ; 5 < 88 $&5
= ��6 '>5 88 5 ?@ABC DE 5 < 88 5 F@GAHC@ 5 < 88 CDAF?@ 5 88 IJID 5

s]� q�^� �ph����� f�q��^ 	��lcm `���he��� 7 �^ �� ����� 9 �^ �]� �� �^������e
_��^���� K LMNO� i��] P$& g� f����� �]� fh�e �` $& � ����� P$&5 Q: $& : 5 � i��]R g� f����� STUO� ���� R Q: 9�

s]� ^�_��f �ph����� f�q��^ 	�s�lcm `���he��� j 	��lcm `���he� �^ �e^�
� 	�s�lcm `���he�� ��a�f�f �� �^ � _e�^�f ^�����_�� �� ����c �����e `����

�� �]� ^�o� �` ���f�d�e��n� g� e��a� h��a��^�e ph����q_����� �� e�_��� ��f ��o�
�c e�_��� g]�� ���f�f� �c�^������e ph����q��^�
�� ��^���_�� >V� $W lXm Y ZlX�Vm�

�^ �� e�_��en ��qc�f dn '��X� ���a��^�en� ph����q_����� �` ��� ���e `���he��
�^ �eg�n^ �� e�_��� �^ f�^_h^^�f d�e�g�

� ������ ?@ABC DE �c ��^^�^ � e�a���^^ _��f������ ��f �^ ^���e�� �� ����n �̂
�Y le��f^ ��m� 5 �^ �eg�n^ `�ee�g�f dn 5 < � F@GAHC@ �c ��^^�^ � ^�`��n _��f������
��f ^�n^ �]�� 5 �h^� d� ��_�f�f dn 5 < � CDAF?@ �c���f^ ����n �̂ CDAF?@ �� �]�
f�^���dh��f _�^�� IJID �����^ �� f�^_��d� �]� ������e ^�����
s�� ���e `���he�� ��� g������ g��]�h� �c e�_�� ph����q_������ s]� �����f�f
������� �^ �]�� � `���he� 5 �^ h��a��^�een ph����q�f �a�� �ee a�eh�^ �` �]�
a����de�^ � ������ �� �]� ����^�^ �` 5 � ��f �c�^������een ph����q�f �� �]�
��������� a����de�^�
�� �c�� e� $W lXm; ZlVm ?@ABC DE %�lX����m ^]�hef d�
h�f��^���f �^ ��qc�f dn '��X�V >��� � s]� a����de�^ �� �]� `���he�� g��]
IJID ��f CDAF?@ ��� �ee h��a��^�een ph����q�f�s]� f����� �a�� g]�_] � a����de� �^ ph����q�f l���� ��^ ^���m _�� d� h�f��t
^���f `��� �]� _����c� �� �c e�_��en f�q��f�i]�� �^ �� ������ �^ �]�� g� �^^h��
�]�^� f�����^ �� d� ��a������ fh���� ���� ��f �� ^ �_��

,-, /��312���
s]� ��f�e^ `�� 	�s�lcm `���he�� ��� dh�e� �� ^��h_�h��^ e�o� �]� ��� �� �]�
`�ee�g��� q�h��� g]�_] f�^_��d�^ �]� _�� h������ �` � ^n^��� g��] �g� _�� �t
����^� ����� W � Z � � � � ��� �]� �� �����^]�ef��� �� �]� ^����^�

l�m W
//
Z

%%
K

K
K

K
// � // 	�� // � // � //

l�m W �
 // 	 // � //
W

// � �
 //

66nnnn � �
 //

i� _�ee
(�]� ^�� �` ^����^ �` _�� ����� �(� ��f
 �]� ^�� �` �ee �]� ^����^ �`
�]� _�� h������� j f�^���dh��f ^���� �� �^ ��n ^hd^�� �`
 � ��f ��� �^ �]� ^�� �`
�]� ������e ^����^�

��� � d� � ��f�e� �]� ^������_^ �` 	�s�lcm `���he�� �^ ��a�� dn ^��h_�h��e
��fh_���� �� s�de� ��k��� �]�� � f�^���dh��f ^���� �^ ��n ^�� �` ^����^� s]�^ ����^ �]�� g]��
g�]�a� �� _]�_o � _��f����� e�o� '�� � � �>��< � � �� g� ���f �� _��^�f�� �ee �^^�tde� ^hd^��^ �`
 � s]�^ ��n e��f �� _�h��������h���a� _]��_�^� e�o� ��o��� e�����
^����^ �]�� ���f�f� ��g�a��� �]� ^ �_�q�� _�� d� ^�`�en �h�f�f dn �]� ���ht��e ����� �������� �` �]� � ������^� j�n]�g� �h� f�q������ �` f�^���dh��f ^����
�^ �c�_�en g]�� g�^ ���f�f �� �a��_��� �]� ��de��^ g��] �]� �c�^���� e���_^
`�� f�^���dh��f ^n^���^� g]�_] f� ���]�a� �]� ���]� �c ��^^�a� �g�� �� ���^��
�� �]� ^n^���^ d�]�a��h�� g]�� �]� _���h��_����� �^ d�^�f �� �^n�_]����h^
��^^��� �^^����
��L�� MO �� i� f�^_h^^ �]� ^���^q�d�e��n �` ^��� `���he�� g��] ��^ �_� �� �]�
_�� h������ �d�a��

�:6�� �< =('$)&".2 *- !=J��E�I

� ��	
 "� �
��
� ��
� ��	
 ?@ABC DE
� "� �
��
� ��
 "'#@"(2 �
�� �
��
�� ��
 �� ��	
 F@GAHC@
� "� �
��
� ��
 "'#@"(2 �
�� �
��
�� ��
 �� ��	 CDAF?@
 "� �
��
� ��
 "'#@"(2 �
�� ��
��
�� ��
� ��	 IJID
 "�
�� ��

G?(%(�

� �� �
� �� � "� � ?*@+2 ") � -*% $@@ � �
�
� ���
 "�)*&
� ��

� ��
 �
� "�
� ��
 $)+
� ��
 �
� �� ��
 "� �� �
� � ! $)+ "�# ��

$(2$> &?$&
� �
�� ��� "- $)+ *)@> "- ($.? 2&$&(")
�� "2 -*@@*G(+ �#%(.(+(+� F> $
2&$&(")
� $)+ ($.? 2&$&(")
� "2 #%(.(+(+ �-*@@*G(+� F> $ 2&$&(")
�� I %(@$&"*)2 �$)+ � $%(%(D(E"1(@> $)+ &%$)2"&"1(@> .@*2(+I$(2$> &?$&
� ��
�� G?() &?(2&$&(2 ")
�� $%("''(+"$&(@> -*@@*G(+ F> $ 2&$&(")
� �$)+ 1".(1(%2$� $)+
� +*(2)*& ").@C+(
�� I$(%(.$@@ &?$& $!=J��E� -*%'C@$ "2 $.@*2(+ 2()&().(/ 2?$#")A �"'#@"."&@> *% (EH#@"."&(@>� � � � � � � � �&I '().(/ G(%(2&%".& &?(2('$)&". +(B)"&"*)2 &* &?(�A%*C)+� 2CFH-*%'C@$ &I

� (6) *	 ?@ABC DE �	 ; *
- j f�^���dh��f ^���� ^���^q�^ �]� ����^� �` �� _��t����^� `�� ��^���_�� �]� ^�_��f ^���� �` _�� ����� �� g]���]�ef^� _�ee ��
�� \� �^ ����f���� �� q�f � f�^���dh��f ^���� `�ee�g��� ��� ��f ^���^`n��� �]�
��^�ph���� ���� �]� q�^� ��� �` ^����^ g]���]�ef^ �� � ��f
]�ef^ �� �
l��e���f dn � _���h��_����� �� �]� q�h��m� _�ee �]�^ ��� W � j�n e����� f�^t���dh��f ^���� �� ��_ehf��� � ^���^q�^ �]� ����^� ��f �^ `�ee�g�f� `�� ��^���_�
dn �� +W � g]�_] ^���^q�^ �	 ; *
�

� (6 *� F@GAHC@ *W ; *	- ���^�f��� `�� ��^���_�� �]� q�^� ^����� ^�n �� �` �
g]��� �]�ef^� ��� ��� �^ ��_�f�f dn �]� ��� W _�� �^�f �` �]� ������e ��f
�]� ^�_��f ^���� �` �� ��� W ^���^q�^ �]� _��^�ph��_�� j ^h ��^�� �� �` ���
�^ ��_�f�f dn �� +W �

� ,(6 *� F@GAHC@ *lW ; 	m- s� ^���^`n �]� `���he�� g� g�hef ���f � ^���e����
^���� �` � ^���^`n��� d��] W ��f 	�

� (6 CDAF?@ *l� ;
m- j�n f�^���dh��f ^���� ��_ehf��� � ^���� �` � ^���^`n���
� ;
� �^ ����f����en `�ee�g�f dn � f�^���dh��f ^���� ��_ehf��� � ^���� �` �
^���^`n��� � ;
�

� (6 >�� P$l	 Y �m- s]��� �c�^�^ � _�� ������ � �� �h� �c�� e�� g]��� ��_]
^���� ^���^q�^� 	 Y � �

,-� ���1���12 31� 2�� ����� 3����2312 	3�

\� �]� ��c� ^�_���� g� f�^_��d� �]� �������_ �^^h�^ �` �]� ��d���� ��q������
 ��_�^^�
��� � `�h�f������e ���� �` a��g� � �]���n � l� ^�� �` 	�s�lcm `��t�he��m �^ ��q��f dn �]���n � < �` �ee �]� `���he�� �� � _�� d� f���a�f `��� �]�
`���he�� �� � < � �__��f��� �� �]� �c��� ^n^��� �` �]� e���_� �c�� e�� �c���^
��f �he�^ �` 	�s�lcm �^ �� s�de�^
 ��f � �� �]� � ��f�c�

��q������ a���q_����� �^ ^h ����f dn �]� ���` �^^�^���� ���o l��d�������^����� +��m
���� g]�_] �^ f�a�e� �f �� \^�d�ee�
�*�� s]� �fa������^ �` h^������o ��_ehf�� �]� �d�e��n �� o�� ���_o �` �]� �^^h� ����^ � �� ���n ��e��^ ���
�]� �d�e��n ��]��fe� ^���f��f dh���h_����_ �_��a����^ ld��e��� ���^����� ��f
^���f��f a���q_����� ��_]��ph�^m� �]� �d�e��n �� ^h ��� �]� �������� ��a���
 ������^� �]� �d�e��n �` �����fh_��� ��_��_^� ���� ���` ������^� � �g��`he ��_]t���^� �� ������ �]� _�� e�c��n �` ���`^�

� �W�����
\� �]�^ ^�_���� g� ��a� � d���` f�^_�� ���� �` �]� ��f�e ��f �� �c���_� `��� ��^
�c������������� �� ��a� �� �f�� �` g]�� ��d���� ^ �_�q_�����^ e��o e�o� ��f]�g
�]���^ g��o� �����a�� g� _e���`n �]� ��q������ ��_�^^ �]�� �^ ��������f �� �]�\����fh_���� ��f �]�� �^ �]� e��������` �` ��d���� ���]�f�e��n �� ������e� ��f
�]� �������e d�]��f �]� g��o ��^����f �� �]�^ � �� �� ����_he�����d���� ^ �_�q_�����^ f�^_��d� �]� d�]�a��h� �` �����^� ���� �h����� _�� ht������^� �]�� ���� �� � ���g��o �` d�h�f�f e�_�e����^� _�ee�f ����]d��]��f^� ��f
���h����� �^n�_]����h^en� j ^��������n �����n _�ee�f �h��f��� �^ ����_]�f ��
��_] ����]d��]��f� \� �^ �� _]���� �` ���������� �]� �_��a����^ �` �]� �����^ �]��
������_� g��] �]� ����]d��]��f� ���]�� e�a��� �� �]� ����]d��]��f �� ��n��� ��
���h����� g��] �����^ ��^�f� ��� ��_] ����� g�ee��� �� ��`��� ^��� �_�����
���� _���h��_����� �� ��a���� �h^� ��`�� �� �]� �h��f��� �` �]� ����]d��]��f
g]��� �� �^ _h�����en e�_���f� ��_] �h��f��� ������^ �]� ��ph�^�^ �` ��^ �����^
d�^��� ��^ f�_�^���^ �� �]� ^�_h���n �e�_n �` �]� ����]d��]��f �� �^ �h��f����\� ��n]� �� �]�� �]� ������_���� �` ^�a���e �h��f���^ �^ ��ph���f �� ��f�� ��
`heqee �� ����� ��ph�^�� s]� ��^he� �` �]�^ ��_�^^ �^ � �e�d�e fn����_ ^�_h���n
 �e�_n d�^�f �� �]� _�� �^����� �` ^�a���e e�_�e ^�_h���n �e�_��^�

��h�� � ��a�^ � �_�����e �� ��^�������� �` �]�^� _��_� �^� s]� q�h�� ^]�g^
� ����]d��]��f e�o� � _�������� �` �����^ _�����ee�f dn � �h��f��� g]�_] _��t
�h��_��� g��] ��]�� �h��f���^ �� f��e g��] � _���h��_����� ��ph�^��s]� ��q������ ��_�^^ �ee�g^ �]� f�^����� �� f�^_��d� �]� �� �����^ �` �����t
�^� �� f������� e�a�e �` f����e^� `��� � a��n ������e� �d^���_� ^ �_�q_����� f�g�
�� � ^ �_�q_����� �` �]� `���h��^ �` �]� ^n^���� �^ f����e�f �^ ���f�f�j� ��_] e�a�e �` �]� ��q������ _]���� �]� ^ �_�q_����� �` � ^n^��� �^ ^��h_t�h��f �^ � ��� e� �` �]�����^ ^ �_�`n��� �]� d�]�a��h� �` �����^� �]� d�]�a��h�
�` �h��f���^ ��f �]� ������_����^ ����� �����^ ��f �h��f���^� s]�����^ ���
^��h_�h��f ^� �]�� �]� ^ �_�q_����� �` ��_] _e�^^ �`]��������h^ _�� �����^ �^o� � ^� ����� `��� �]� ^ �_�q_����� �` ��]�� _e�^^�^� ��f _�� d� ��q��f ��f� ��tf���en� �� � `heen _�� �^������e g�n� s]� ^ �_�q_����� �` � _e�^^ _������^ ��en

���<�< J?(M*FNOPQ '*+(@I

communication

� � �� � �� � �� � �� � �� � �� � �� � � � � �� � �� � �
� � � guardian component

neighborhood unspecified part of the net

���<�< !(2"A) '(&?*+*@*A>� $ &?(*%> ?"(%$%.?>I

A 1 C 1

A 0 0C

G 1

0G

A k C k G k

e�_�e �c���^ �� �c���^ ��e����� �a���^ ��f _��f�����^ �� f������� _�� �����^ �`
�]�� _e�^^� s]� _���f������� �c���^ ^ �_�`n ������_����^ ��a�ea��� _�� �����^
`��� f������� _e�^^�^� j� ��_] ��q������ ^�� �� �^ �^^�de� �� �c���f �]� ^�� �`
�c���^ �� ^ �_�`n ��g �� �����^� �� �� ��q�� ��f f�^���dh�� �]� `���he�� �� �]�
�c�^���� �]�����^� s]� q��e ���e �` �]� ��q������^ �^ �� ^ �_�`n �]� _e�^^�^ `heen
��f �� e��a� �� �]� _���f������� �]���n ��en �]� �^^h� ����^ �� �]� h�f��en���
��ffe�g��� �� �]� �� �����^ �]�� g�ee]�a� �� d� �h�������f dn �]� � e�_�����
����c�� j �n ��e ��ffe�g��� �� ���n �^ �]�� �������� ���� _���h��_�����
�^ ��e��de�� �^^h� ����^ �� �]� _����c� _�� ��_ehf�]h��� d�]�a��h��
��h�� �
^]�g^ �]� �a���ee ��q��������c���^��� ^��h_�h�� �` �]� ��d���� �]�����^�j� e�a�e ���� g� f�q�� �]� �e�d�e �� �����^ �` �]� ��f�e� �����^ ��f �h��ft
���^ ��� �]� _e�^^�^ �` ������^�� 	� �
� �]��� ^ �_�q_�����^� ��f �� ^ �_�q�^ �]�
_���f������� ����� �]��� i� f�q�� �]� ��q������ ��e����� d��g��� �]�����^
�__��f���en �� �]� �� �^�f ��q������ ^������n�i� �^o �]�� �� ��_] ^�� �]���n
	(��q��^ 	(�� �
(��q��^
(�� � ��f 	(+ �(+
(��q�� �(���

���_� �]� `�_h^ �` �]�^ � �� �^ ��� �� �]� ��d���� ��f�e dh� �� ^��a�_�^�s�de� � ��^���^ ��en �]� �c���^ �` e�a�e
 f��e��� g��] _���h��_�����^� ����t�a��� ^��_� �]� h� �^� �^ uh^� �� ��a� �]� ��^�� �` ��d���� ^ �_�q_�����^ ��f ���
�� dh�f�� �]� ���f�� g��] ��_]��_�e����^� � ^�� e�q�f a��^��� �^ ��^����f �]��
f��^ ��� ��o� ���� �__�h�� ^�_h���n ��f `��eh��^� s]� _�� e��� ^ �_�q_����� _��
d� `�h�f ��
����

\� �]�^ ��de� ��f �� �]� `�ee�g��� ���^� e�_����� a����de� � �����^ �a�� �]�
�h��f��� ����^� ��f � � � ��f � ����� �a�� �]� ����� ����^�

�:6�� �< M*FNOPQ .*''C)".$&"*)2I

��
�� �� � *C&�M/4� ?@ABC DE 	 ")�M/=�

�� � 	 ")�M/=� F@GAHC@
 �'2A%(��M/=/4� � 2$&"2->�"%#/4��
�
��
 '2A%(��M/=/4� F@GAHC@ � *C&�M/4�

�� �:8�� �
 2$&"2->�=(&/ 4� � 2$&"2->�=(&� / 4� � 2$&"2->�=(& � =(&� / 4�
�:8��� �
 2$&"2B(2�=/ 4� � 2$&"2->�"=#/ 4�
�:8�� �
 2$&"2B(2�=/ 4� � 2$&"2B(2�=/ 4�� � 2$&"2B(2�=/ 4� 4��
�:8��� �
 2$&"2B(2 .*)2&%$")&�=/ �*)2� � 2$&"2B(2�=/ "�*)2#�

\� �]� ^���� �` �� ������ ��f�_��� �h�l���m ����^ �]�� ��^^��� �]�^ d���
^��� �� � ��_��a�� �]�� ^���^q�^ ��qe� �� ��f�_��� ��l���m �� ��^���^ � ��^^���� ��_��a�f `��� ����� �� ��f �c��� � ^�n^ �]�� ��n ��a��_� g�ee ��^he� �� � f�e�at��n l�� �]�^ ^�� e�q�f ��f�em� jc���^ �< �h�������^ �]�� � ��^^��� �^ ��_��a�f
��en �` �_�h�een ^���� ��f �]�� �]� ��_��a�� ^���^q�^ �]� ��qe��
���een� �c���^
��, ^�n^ �]�� �]��� _�� d� � _���h��_����� ��ph�^� �����dh��f �� � ^��f�� �
��en �` � �_�h�een _�������f �� _���h��_���� �� � �h��f��� �^���pl�����m
^ �_�q�^ �]� ��^^��� d�fn� �]� ^��f�� ��f �]� ��qe� �` �]� ��_��a���

���qe�^ ��� �]� ^�eh���� �]�� ��d���� ��a�^ �� �]� ���f �` � ������e� �he���
 h� �^� ��_]���^� �� �f����`n ^��^ �` �������^ ^���^`n��� ��a�� �� �����^� ����)�� _��^������^� �f�����n _��^������^� ^�_h���n _��^������^ ��_� \� �]� ������e��d���� ��f�e� ��qe�^ ��� h^�f �� �f����`n �]� ^�� �` �]� �^^�de� ��_��a��^ �` �
���h������� l_`�� �c��� �<m ��f �]� �^^�de� ������^ �` � ��a������

���f�_��� ^���^`n ��e���^ ^��^ �` ����^ ��f ��qe�^� j ��qe� �^ ^ �_�q�f �^ �
^�� �` _��^������^� ��f f�^���_� ��qe�^ _��]�a� �a��e� ��� _��^������^� ���ft�_��� ^���^`nl���� �m ^�n^ �]�� �]� �e�����^ �` ��� ^���^`n ��qe� �� s]�^� ^��^ ���
dh�e� �c e������ �]� ��e�����^ f�q��f dn ��f�_���^ ^���^q�^ ��f ^���^q�^ _��^������
`�ee�g��� �]�^ ������� �c���^ /32<� ^�n^ �]�� � ^���e� �����n _�� ^���^`n � ^���e�
 ��qe� ��f �����fh_�^ ^���^`�_���� �` � ^�� �` ��qe�^� �^ ^����f �� �c��� /32� �
^�� �` �������^ ��� f��e� g��] ^���e��en �� �c���^ /32<� ��f /32� �

\� �]�^ � ��� ��qe� ^���^q�d�e��n e�n^ � _�����e ��e� �^ �]� a��n ��_]���^�
�� �]� d�^�^ �` ^��a�_� f�^_�a��n� j ^��a�_� �^ f�q��f dn � ^�� �` `h�_�����e ��f
��� `h�_�����e ��������^ dh�e� h �� � ��qe�� j ^��a�_� ��ph�^� �^ ^h__�^^`heen
��^�ea�f g]�� �� �����n �^ `�h�f �]�� ��a�f�^ �]� ^��a�_� ^ �_�q�f �� �]� ��qe�
_�������f �� �]� ��ph�^��

� ��� ��V�[Z� X[�ZW��V� [TU�V��Z�
\� �]�^ ^�_���� g� f�^_��d� �]� ��_�^^ �]�� e��f^ h^ `��� �]� ^ �_�q_����� �`��d���� �� �]� ��d���� ^��a�_� f�^_�a��n �����`�_� l��d���� �	\m� ���� �]� ^�_��f
d�c �� �]� ��q������]�����_]n ^]�g� ��
��h�� �� s]� �c���^ �` ��_] ��q������
^�� ��� ��a�� ��f �� ��en _�������f� ��f �]� ^���^`�_���� �` �]� ��q������
��e����� d��g��� f������� ^�� ^ �^ a���q�f ��f �c e����f g��] ��`����_�^ �� �]�
�he�^ �` 	�s�lcm�

�-. ���������12� ��� ���	��� �����	��0
j� �]� q�^� e�a�e� ��`����f �� �^ ��a�e � ��f ^]�g� �� s�de� �� g� ^�� en ^����
�]� �a���ee �� �����^ �]�� g� �]��o ^h
���� ��f ���^^��n �� ^ �_�`n � ^��a�_�
f�^_�a��n ��_]���^� �����`�_��
�ee�g��� �]� ��d���� ���]�f�e��n� g� f� ���
� n �]� �c���^ `��� �]� ��a��h^ e�a�e� �]�� ��� e�`� h���h]�f ��f ��� ��q��f�\� �]�^ _�^�� �ee �]� �c���^ �� s�de� � ��� �� e�_��en �� ����f �� �]�^ e�a�e�

�:6�� �< %(�C"%('()&2 *- &?(M*FNOPQ =!,I

�� ��9���� �� � �2(%1".(1"@$F@(�=/
C)/ 4$%2� �)* 2(%1".(1"@$F@(�
C)/ 4$%2��
��9���� � *C&�2(%�
C)/4$%2�/")$'(�=�#� F@GAHC@ � 2(%1".(1"@$F@(�=/
C)/4$%2�

�� ��9��� � � 2(%1".(%(��
C)/4$%2� ?@ABC DE
� �2(%1".(1"@$F@(�=/
C)/ 4$%2� �)* 2(%1".(1"@$F@(�
C)/ 4$%2��

��9���� � � �2(%1".(1"@$F@(�=/
C)/ 4$%2� �)* 2(%1".(1"@$F@(�
C)/ 4$%2��F@GAHC@ � 2(%1".(%(��
C)/4$%2�
��9����� � � 2(%1".(1"@$F@(�=/
C)/ 4$%2� F@GAHC@

 2$&"2->�"=#/"2(%1".(#%*B@(�
C)/4$%2/��#�
��9������ � �)* 2(%1".(1"@$F@(�
C)/ 4$%2� F@GAHC@

 C)2$&"2B$F@(�"2(%1".(#%*B@(�
C)/4$%2/��#�
�� �:8� � �
 C)2$&"2B$F@(�4� � � 2$&"2->�=(&/ 4�

��^� �` �ee� �� �^ ���h��e �� ��ph��� �����^ ��]�a� _��^�^���� o��ge�f�� �d�h�
^��a�_� ��a�f��^� s]�^ �^ ^����f �� /������ ^��a�_� �a��e�de�l��
h�����^m ����^
�]�� �]� f�^_�a��n ^��a�_�]�^ ����q�f _�� ����� � �]�� � _�� ��a�f� ^��a�_�

h� ^���^`n��� �]� _��^������^ �� ���^� a�_�a��^�� �� ^��a�_� �a��e�de�l
h�����^m
����^ �]�� �]� ^���_] `�� �]� ^ �_�q�f ^��a�_� `��e�f� j ���� _�� e��� ^ �_�qt_����� g�hef]�a� ��� ���� ��������� �� _���n ��`�������� �d�h� �]� ���^��^
�` �]� `��eh���jc��� /����� ^�n^ �]�� �� ��f�� �� �^o � `�� � ����_he�� ^��a�_�� � _�� �����
�h^� o��g �]�� � ��a�f�^ �]�� ^��a�_�� s]�^� ��� �� �����^ f��e��� g��] �]�
e�_�e ^���� �` _�� �����^� jee �]� ��]�� �c���^ �` �]�^ e�a�e d�e��� �� �]� _���tf������� �]���n� ^��_� �]�n ��� uh^� �]� ��^� �d^���_� ^ �_�q_����� �` � ��_�^^

�]�� e��f^ �� �]� f�^_�a��n �` ^��a�_�^ ��f �]�� _�� ��a�ea� d��] �h��f���^ ��f
_�� �����^�

/����� ��f�e^ �]� �h�_��� �` � ^��a�_� ��ph�^�� ���]�� �]� ��ph�^���� _��t
 ����� g�ee]�a� �]� �f�����n �` � ^��a�_� ��a�f��� �� �� g�ee d� ��`����f �]��
�]��� �^ �� ^h���de� ��a�f��� �` _�h�^�� ^h_] � o��ge�f�� _�� d� �_ph���f ��en
�` �]� �� �� ��ph�^�]�^ d��� �c ��^^�f� �^ ^����f �� �c��� /��<��� � s]� e�^�
�g� �c���^ /��<<��� ��f /��<<<��� �c ��^^ �]� f�^_�a��n ^������n� ����� �]�� �� �^ �]�
��^ ��^�d�e��n �` �]� �h��f���^ �� q�f � ��a�f�� �]�� ^���^q�^ �]� ��qe� �� �]�
��ph�^�� s]� ���� �` �]� ��ph�^���� _�� ����� �^ h� �� �]� ��qe�� ^��_� ^�_ht
���n �� �h�]����_����� _��_���^ ��n f�������� �]� ��^ ��^� �� ^��a�_� ��ph�^�^�

/32� �^ �� �hc�e���n �c��� �� �a��f �� h^� :^���^`n �� � _����c� g]��� a����de���� g�hef d� l�������h^enm �c�^������een ph����q�f� e�o� �� /��<<<��� �

�-, ���1���12 �� 2�� ���	��� �����	��0 �����

s]� q�^� ��q������ ��o�^ h^ �� ��a�e �� � f�q������ �` �]� ��e� �` �h��f���^ �� �]�
 ��_�^^ �` ^��a�_� f�^_�a��n� s]� ��e���f �c���^ ��� �� ����f �� s�de� �� j^ ��ta��h^en ^����f� �]�^ �^ �]� e�a�e �� ^���� ^ �_�`n��� ^ �_�q_ f�^_�a��n ��_]���^�^
��f ^��a�_� d�^�f f�^���dh��f ^n^���^�

s]� �f�� �^ �]�� g]�� � _�� ����� ���f^ �� e��o `�� � ^��a�_�� � �h��f���
g�ee d� ��`����f l�c���^ /�����m ��f g�ee ��o� �]� ��^ ��^�d�e��n �` �f����`n���
�]� �� �� ^��a�_� ��a�f��� �` ��n l�c��� /�����m� �` _�h�^� � �h��f��� g�ee
e��o `�� � ^��a�_� ��a�f�� ��en �` � _�� ����� �^o^ `�� �� l�c��� /��<���m� ��f� _�� ����� g�ee ��_��a� �]� ��^he� �` � ^��a�_� ��ph�^� ��en �` � �h��f���]�^
��_��a�f �]�� ��ph�^� l�c��� /�����m�

�:6�� �< %(B)('()& *- &?(M*FNOPQ =!,I

��
�� ��9���� � 2(%1".(%(��
C)/4$%2� ?@ABC DE
 2(%1".(%(2*@1(�
C)/4$%2/��

��9�����
 2(%1".(%(2*@1(�
C)/4$%2/�� F@GAHC@ � 2(%1".(%(��
C)/4$%2�
��9����
 2(%1".(-*C)+�
C)/4$%2/�/=� ?@ABC DE � 2(%1".(1"@$F@(�
C)/4$%2/=�
��9��� �
)* 2(%1".(-*C)+�
C)/4$%2/�� ?@ABC DE �)* 2(%1".(1"@$F@(�
C)/4$%2�
��9��� � � 2(%1".(1"@$F@(�
C)/4$%2/=� �)* 2(%1".(1"@$F@(�
C)/4$%2�F@GAHC@
 2(%1".(%(2*@1(�
C)/4$%2/��

�� ��9����
 2(%1".(%(2*@1(�
C)/4$%2/�� ?@ABC DE

 2(%1".(-*C)+�
C)/4$%2/�/=� �)* 2(%1".(-*C)+�
C)/4$%2/��

��9�����
 2(%1".(-*C)+�
C)/4$%2/�/=� �)* 2(%1".(-*C)+�
C)/4$%2/��F@GAHC@
 2(%1".(%(2*@1(�
C)/4$%2/��
��9��� � �
 2(%1".(-*C)+�
C)/4$%2/�/=� � 2$&"2->�"=#/"2(%1".(#%*B@(�
C)/4$%2/��#�
��9��	� �
)* 2(%1".(-*C)+�
C)/4$%2/���C)2$&"2B$F@(�"2(%1".(#%*B@(�
C)/4$%2/��#�

jc���^ /����� ��f /����� f�^_��d�]�g �]� ������e ^��a�_� f�^_�a��n ��_]t���^� �^ d�^�f �� �]� ��qe� ��^�eh���� _� �d�e����^ �` �h��f���^ �e���fn �����t
fh_�f �� �]� ������e ��d���� ��`����_� ��f�e�s]� �c���^ �� �]�^ e�a�e ��_ehf� �]�^� �� s�de� � ��f �]�^� �� �]� ��a��h^s�de�^� dh� /����� ��f /��<��� � /����� ��f /����� ��q�� /����� � dn ����^���a��n
l�he� �s�m� ����e��en� /��<��� �^ ��q��f dn /��<��� ��f /����� � a�� �he� rs��

�c e������ �he�^ �s�� ��	 ��f �i�� g� _�� f���a� �� ������^���� �� ���n
]�ef��� �� �]�^ e�a�e� ����en�

� ^��a�_� ��^�ea�l
h�����^��m ?@ABC DE
� ^��a�_� �a��e�de�l
h�����^��m � �� ^��a�_� �a��e�de�l
h�����^m

k���_� �]�� �� �]�^ e�a�e �` ��q������� �� �^ ��� n�� f��������f]�g ���n ��^g��^
� f�^_�a��n ��ph�^� g�ee ��_��a�� ^��_� �]� �h�d�� �` �h��f���^ �]�� ��� _����_��f
�^ �e^� ��� f��������f� ��f e�`� �� `h��]�� ��q������^� je^�� � �^^�de� ��q������
�^ ��� g]��� �]� ������a� ��^g�� f��^ ��� ��_�^^���en ����^ �]�� �]��� ��� ��
^h���de� ^��a�_�^ �� �]� ^n^���� dh� ^�� en �]�� �]� ��a�ea�f �h��f���^ f�_�f�f
��� �� g��� ��n e������ dn ^��� ^��� �` f�^���dh��f _��^��^h^� j� �c�� e� �`
^h_] � d�]�a��h�]�^ d��� ^ �_�q�f ��
����

� ����U�X �WV�

��j� ��f i�	� ��� �]� _h����� _��� ��_]��e����^ `�� i�d ���a�_�^
���� ��ht
 e�f g��] � ����^ ��� ����_�e� �]�n �ee�g ^�� e� �������� ���� ������_����^
����� f�^���dh��f ^�`�g��� _�� �����^� ��g�a��� g]�� _�� e�c ������_����^
��_ehf��� ���n _�� �����^ ��� ���f�f �� � ����^�_����� ��j� ��f i�	�
^]�g �]��� g��o��^^� ��_]�^�������� ����� �]� _��d������� �` _�� �^����� ��f
_���f�������� �^ ���f�f
�� �
����d���� d�e���^ �� �]� `���en �` ��_]�^������� ��f�e^� �� ���de�^ �]� _��t^��h_���� �` _�� e�c � e�_�����^ �^ �]� _�� �^����� �` f�^���dh��f ^hd ^��a�_�^
�a��e�de� �� �]� ���� �^^�den g��]�h� � _�����e _���f�������s� fn����_�een f�^_�a�� �]� ^��a�_�^ �]�� ��� �a��e�de� �a�� �]� ���� ��f ��
��d��� �]�� ��t�]�tbn� g� ���f �� `�� � �h�d�� �` _]�ee����^ ��e���f �� fnt
����_ �n � _]�_o���� ^��a�_� ��qe� hde�_������������a�e� ��g d��f��� ^_]���^
�]�� _���� `��)�� _]���_����^��_^� ���� ��a�e � ���_]�^ �]�� ��n d� `����et
���f �^ ��q������ �` �]� ��d���� �	\� ��_ehf� �	sj

� ��f \r� ���_]��o���
������
��� `�� f�^_�a��n� ��f
��� �
������� `�� ^��a�_� _�� �^������

i]�� f�^_�a����� ��f _�� �^��� ^��a�_�^ �a��e�de� �� �]� ���� �� �^ �^^�����e
�� _��^�f�� ^�_h���n� ��� �� d� `��e�f ��f _����_� �� ��e�_��h^ ^��a��^� ����
^�_h���n �e�_��^ �]�� _�hef d� `����e���f �� ��d���� �	\ ���� 	k���� g]�_]
h^�^ f�����e ^�����h��^ �� ^�ea� ^�a���e 	k� ��de��^� �	j� �a�� ��� l�	j��m
��f�ss� �a�� ��� l�ss��m g]�_] �ee�g ^�_h�� ��f �h�]����_���f _e���� �__�^^
�� ^��a��^�	+�� `��� �j�\� ��f i�� ��a�f��� f�a�e� ��^ g��] � g�n �� h^�
	��td�^�f ����^�_����^ �� �c_]���� hde�_ o�n^�s]� ��d���� ��qe� ��_]���^� _�hef d� h^�f �� ^ �_�`n �]� _��^������^ ��
�]� ��ph���f ^��a�_�^� g��] ��^ �_� �� _����c� �g�����^^ ��f �f� �������
��

��^���_��
�� ������ ��a�^��� ^�e`t�f� ��a� ^�`�g��� ��_]���_�h��^� e��`���^ ^h_]
�^ ����
��� ^h ��� �]� f�a�e� ���� �` ^��a�_�^ ��f _�� �����^ �� �� �`
e�g _�^� f�a�_�^ g��] e�����f _�� h�������e _� �d�e����^� ��f `����g��o^ ^h_]
�^ �d�ph���h^ i�d j e�_�����
�
� �ee�g ^��a�_�^ �� d� �f� ��f �� f�a�_� _]��t�_����^��_^�jf� ������ ^��������^ ^ �� ���n � ����^� e�o� �c e������ ��d�e� _�f� �� ��ft�`n �]� �h�d��� �n � �� e�_����� �` _�� �����^
�
�� �� ���e����� �]� ������_����
 ����_�e^ �� ��g _����c�^� ���� dn ��f�`n��� �]� �__h��_n �` �]� ����^�����f
f���� �� _�^� �` _]����^ �� �]� _���h��_����� d��fg�f�]� �� dn �����fh_���
^�_h���n ��_]���^�^� �� �f� � �� ��^�_h�� ��a��������^
���

� �WTZ�Y�[WT�

\� �]�^ � �� g� ^]�g�f]�g ��d���� � �]��] e�a�e f�_e�����a� ��f�e `�� �]�
f�^��� �` ��d�e� ��f f�^���dh��f ^n^���^� ����^ `hee ^h ��� �� ^ �_�`n ��f ���^��
�d�h� ^��a�_� f�^_�a��n ��_]���^�^�

��d���� ��a�f�^ � `����e ���]�f�e��n �� f��a� �]� f�^��� �` � e�_�����^
d�^�f �� �]� ������ �` ^��h_�h��f ��q������^� ��f g� �c e����f �]�^ ���]�f�e��n
�� f�q�� �� �d^���_� �����`�_� �� ^��a�_� f�^_�a��n ��_]���^�^� �]h^ �_�h�een
f�q���� � ��g ��`����_� ��f�e �]�� �^ �� d� _��^�f���f �^ �]� ^������� ���� �`
�]� ^ �_�q_����� �` ��n ��d�e� f�^���dh��f ^n^��� �]�� �^ ^���]�g ��e���f ��
^��a�_�^�

����V�TZ��
�I �I
I �)+%$+(/ �I�I
"$+("%*/ �I �*C1("$/ �I�*C&2*CL*2/ $)+ MI$(%'(@")A(%I �*H*%+")$&"*) -*% *%.?(2&%$&"*)I ,)
I �%F$F $)+ �I�I J$@.*&&/ (+"&*%2/ ��	
���
���
� ������ ��
����������� ������ ��� ��������� �
���
!"#
�! $%%$&/ 1*@C'(
'(�) *- ������� !���� ��
�*+���� ,������/ #$A(2)-�(I =#%")A(%H.(%@$A/ '//'I'I �I �%L") (& $@I $(F =(%1".(�?*%(*A%$#?> ,)&(%-$.(�I/I GGG2I2C)I.*'02*-&G$%(0
E'@0+(1(@*#(%20G2."0G2."H2#(.H�/I#+-/ �C@> '//'I(I KI K$+%")$&? (& $@I � .*).(#&C$@ -%$'(G*%L -*%)(&G*%L $)+ .@"()& $+$#&$&"*)I
��1��� !��2��3� ��� "++���������/)�4��''�-'('/ !(.I '///I4I KI K()$&$@@$? $)+ MI !C'$2I J?(2(@-H2(%1 ()1"%*)'()& -*% G(F 2(%1".(2 .*'#*H2"&"*)I
555
�������
�*+�����/ �$)I-
(FI '//(I)I !I K%**L2?"(%/ 6I �%"2?)$)/ !I �*1*)"/ $)+ �I�I =*&*I 78#"9 7�:�#� ;$;
;�����**���I =�M= 4CF@"2?")A/ �C)('//'I

<I
I �2&" (& $@I �+$#&"1($)+ !>)$'". =(%1".(�*'#*2"&"*) ") (
@*GI J(.?)".$@ %(H#*%&/ '(G@(&&-4$.L$%+ �*'#$)>/ M$%I '///I GGGI?#@I?#I.*'0&(.?%(#*%&20'///0
'4�H'///H(=I#+-I>I �IMI �?$)+> $)+ �I M"2%$I ;������� ;�����* �����9 " ?���������I �++"2*)H$(2@(>/ %($+")A M$22I/ �=@@I

@I =IH$I �?()A (& $@I 02")A $%.?"&(.&C%$@ 2&>@($2 $ F$2"2 -*% 2(@--%(#$"%I ,) ;���� ABOC��3���
555D
?
;
��� � �� ,���2��� "��	�������� �C

," $%%$&/ #$A(2 4)-)=/
�CAI '//'I

=I JI �*2&(@@* $)+ �I 4$&&(%2*)I �C$)&"B(%2 $)+ *#(%$&"*)2 *) '*+$@"&"(2 $)+ .*)H&(E&2I ,) �I�I �*?)/ �I =.?CF(%&/ $)+ =I�I =?$#"%*/ (+"&*%2/ �� ���9 ;�����+��� ��
���2����� ��+����������� ��� ���������/ #$A(2 '>/-'@�I M*%A$) �$C-'$))/ =$)
%$)."2.*/ �==@I

�/I
I �C%F(%$ (& $@I KC2")(22 #%*.(22 (E(.C&"*) @$)AC$A(-*% G(F 2(%1".(2/ 1(%2"*)
�I/I GGGH�/<I"F'I.*'0+(1(@*#(%G*%L20G(F2(%1".(20@"F%$%>0G2HF#(@0/ �C@> '//'I��I J?(!�M� =(%1".(2 �*$@"&"*)I !$'@-2� $(F 2(%1".(+(2.%"#&"*) -*% &?(2('$)&".
G(FI ,) ;���� ��P
��� ,�*����� C�1
��� � �
,C
&/ �C)('//'I

�'I �I
(%%$%"/ �I M*)&$)A(%*/ �I =('")"/ $)+ =I =('#%")"I M$%L/ $ %($2*)")A L"& -*%'*F"@"&>I "���*���� ,���2��� 5����������/ =�'���(>-�)// �#% '//'I�(I �I
(%%$%"/ �I M*)&$)A(%*/ �I =('")"/ $)+ =I =('#%")"I J?('*FNOPQ '*+(@ $)+'(&?*+ &* +(2"A))(&G*%L G%($##@".$&"*)2I J(.?)".$@ %(#*%& J%H/(H/@/ !"#I +",)-*%'$&".$/ 0)"1(%2"&3$ +" 4"2$/ '//(I �& GGGI+"IC)"#"I"&0%".(%.$0J%0&%I?&'@I
�4I =I
"(@+I � #(%2*)$@"2(+)((+2 *%"()&(+ $##%*$.? &* ")2C%$).(#%*+C.& 2$@(2I J(.?I

%(#I ,KM/ '//'I GGGI�C%".?I"F'I.*'0#+-0G'(0$M� ,)2C%$).(4%*+C.&2I#+-I
�)I �I
CAA(&&$/ �I4I 4"..*/ $)+ �I ."A)$I 0)+(%2&$)+")A �*+(M*F"@"&>I
555

#����������� �� ,���2��� 5����������/ '4�)��(4'-(<�/ �==@I�<I �I M*)&$)A(%* $)+ �I =('")"I !"2&%"FC&(+ 2&$&(2 &('#*%$@ @*A".I �	%% �%.?"1(�.2I�	0/(/4/4<I
�>I �I M*)&$)A(%* $)+ �I =('")"I !"2&%"FC&(+ 2&$&(2 @*A".I ,) �P

������������ ,�*�

+����* �� #�*+���� ��+����������� ��� ��������� �#
�5 �%$&/ M$).?(2&(%/ 0�/
�C@> '//'I ,��� �= 4%(22I

�@I 4I 	%(>�" (& $@I �) $%.?"&(.&C%(-F$2(+ $##%*$.? &* 2(@--$+$#&"1(2*-&G$%(I
555
���������� ,����*�/ #$A(2)4-<'/ M$>0�C)(�===I
�=I �I 4$C@2*) $)+ JI 6"#L*GI ,2$F(@@(I GGGI.@I.$'I$.ICL0%(2($%.?0'.�0 ,2$F(@@(0I'/I J?(0$� �0F"�C"&*C2$(F �##@".$&"*)� 4%*�(.&I ?&&#�00GGGICG$#%*�(.&I*%A0I
'�I MI =$&>$)$%$>$)$)I M*F"@(")-*%'$&"*) $..(22I
555 ;�������
�**����������/

(���/
(FI �===I
''I MI =&$@I $(F 2(%1".(2� K(>*)+ .*'#*)()&HF$2(+ .*'#C&")AI
�**���������� ���	� "
�/ 4)��/��>�-></ 	.& '//'I'(I =C)I �1 ' #@$&-*%' M".%* �+"&"*) ��'M��I ?&&#�00�1I2C)I.*'0�''(0I

�:6��
< �E"*'2 $)+ %C@(2 *- !=��E�I

��� $E"*'2 *- &?(��P *%+(% @*A". � ���
 �
�� � � ��
 � ��
��
���� ��� ��
 �
 � ���� � �� �� �����

��

 �
�

 �

��;

��

�:6�� �< �E"*'2 $)+ %C@(2 *- !=J��E�I

� ��;�77�8:8���< �$(C2(���� $)+ ���	� -*% &?(2$L(*- .*'#%(?()2"*)�I
-*% $@@ �� � � ��	 (E"2&2
� � � �
	 ����
 ��;���	� �
� � � �
	

� ��89�
�;8��� :�
 ���
��:8��� ����7<
��
 ?@ABC DE
 ��
 F@GAHC@

��CDAF?@

 ?@ABC DE �

��
�

 F@GAHC@ �
���

IJID �
 CDAF?@ �

��

��

� �9:�7�8���8� ����7<

 ?@ABC DE
�
 � ?@ABC DE �
���

 ?@ABC DE �

 F@GAHC@
�
 � F@GAHC@ �

���

 F@GAHC@ �

� �9�
�7�7 :�
 ;��7�����;�7 789���8������ :�
 ��:������<
�� ��

 ?@ABC DE
� ���
� � �� ���

� ?@ABC DE ��

 ?@ABC DE �
� ?@ABC DE �

���

 �
� ?@ABC DE �

� ?@ABC DE
 � ?@ABC DE
� ���
� ?@ABC DE
 �
�

��C"1$@()& %C@(2 ?*@+ -*% F@GAHC@I ,) &?(.$2(*- IJID�

IJID

 � �
��

IJID �
IJID
 IJID
� ��

IJID
 �
�
� ��8��;:8��� :�
 �������;�<

 F@GAHC@� � ?@ABC DE ��� CDAF?@ ��� ��

 � �� ?@ABC DE ���

CDAF?@ �
 CDAF?@ �
�
���
 � �
� � ��
 �
 ��

� �9���98��7 �� 8�� ���8�:� 78:8�<

��� IJID �� IJID �
 ��
IJID ��

IJID ��
 ��
IJID �

$(%(.$@@ &?$&)*) &('#*%$@ !=J� -*%'C@$($%("'#@"."&@> C)"1(%2$@@> �C$)&"B(+ ") $@@1$%"$F@(2 G"&? &?((E.(#&"*) *- &?*2((E#@"."&(@> F*C)+ F> (E"2&()&"$@ �C$)&"B.$&"*)I
'(%(/ ") &?(.$2(*- "'#@".$&"*)/ G"&? ��
 � � G(+()*&($ -*%'C@$ C)"1(%2$@@>
�C$)&"B(+ ") $@@ &?(1$%"$F@(2 *- #%('"2(
 / $)+ (E"2&()&"$@@> �C$)&"B(+ ") $@@ &?(-%((1$%"$F@(2 *- &?(.*)2(�C().(�I

	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	pg:
	P4:
	stampTemplate:
	pg: 1

	P5:
	stampTemplate:
	pg: 2

	P6:
	stampTemplate:
	pg: 3

	P7:
	stampTemplate:
	pg: 4

	P8:
	stampTemplate:
	pg: 5

	P9:
	stampTemplate:
	pg: 6

	P10:
	stampTemplate:
	pg: 7

	P11:
	stampTemplate:
	pg: 8

	P12:
	stampTemplate:
	pg: 9

	P13:
	stampTemplate:
	pg: 10

	P14:
	stampTemplate:
	pg: 11

	P15:
	stampTemplate:
	pg: 12

	P16:
	stampTemplate:
	pg: 13

	P17:
	stampTemplate:
	pg: 14

	P18:
	stampTemplate:
	pg: 15

	P19:
	stampTemplate:
	pg: 16

	P20:
	stampTemplate:
	pg: 17

	P21:
	stampTemplate:
	pg: 18

	P22:
	stampTemplate:
	pg: 19

	P23:
	stampTemplate:
	pg: 20

	P24:
	stampTemplate:
	pg: 21

	P25:
	stampTemplate:
	pg: 22

	P26:
	stampTemplate:
	pg: 23

	P27:
	stampTemplate:
	pg: 24

	P28:
	stampTemplate:
	pg: 25

	P29:
	stampTemplate:
	pg: 26

	P30:
	stampTemplate:
	pg: 27

	P31:
	stampTemplate:
	pg: 28

	P32:
	stampTemplate:
	pg: 29

	P33:
	stampTemplate:
	pg: 30

	P34:
	stampTemplate:
	pg: 31

	P35:
	stampTemplate:
	pg: 32

	P36:
	stampTemplate:
	pg: 33

	P37:
	stampTemplate:
	pg: 34

	P38:
	stampTemplate:
	pg: 35

	P39:
	stampTemplate:
	pg: 36

	P40:
	stampTemplate:
	pg: 37

	P41:
	stampTemplate:
	pg: 38

	P42:
	stampTemplate:
	pg: 39

	P43:
	stampTemplate:
	pg: 40

	P44:
	stampTemplate:
	pg: 41

	P45:
	stampTemplate:
	pg: 42

	P46:
	stampTemplate:
	pg: 43

	P47:
	stampTemplate:
	pg: 44

	P48:
	stampTemplate:
	pg: 45

	P49:
	stampTemplate:
	pg: 46

	P50:
	stampTemplate:
	pg: 47

	P51:
	stampTemplate:
	pg: 48

	P52:
	stampTemplate:
	pg: 49

	P53:
	stampTemplate:
	pg: 50

	P54:
	stampTemplate:
	pg: 51

	P55:
	stampTemplate:
	pg: 52

	P56:
	stampTemplate:
	pg: 53

	P57:
	stampTemplate:
	pg: 54

	P58:
	stampTemplate:
	pg: 55

	P59:
	stampTemplate:
	pg: 56

	P60:
	stampTemplate:
	pg: 57

	P61:
	stampTemplate:
	pg: 58

	P62:
	stampTemplate:
	pg: 59

	P63:
	stampTemplate:
	pg: 60

	P64:
	stampTemplate:
	pg: 61

	P65:
	stampTemplate:
	pg: 62

	P66:
	stampTemplate:
	pg: 63

	P67:
	stampTemplate:
	pg: 64

	P68:
	stampTemplate:
	pg: 65

	P69:
	stampTemplate:
	pg: 66

	P70:
	stampTemplate:
	pg: 67

	P71:
	stampTemplate:
	pg: 68

	P72:
	stampTemplate:
	pg: 69

	P73:
	stampTemplate:
	pg: 70

	P74:
	stampTemplate:
	pg: 71

	P75:
	stampTemplate:
	pg: 72

	P76:
	stampTemplate:
	pg: 73

	P77:
	stampTemplate:
	pg: 74

	P78:
	stampTemplate:
	pg: 75

	P79:
	stampTemplate:
	pg: 76

	P80:
	stampTemplate:
	pg: 77

	P81:
	stampTemplate:
	pg: 78

	P82:
	stampTemplate:
	pg: 79

	P83:
	stampTemplate:
	pg: 80

	P84:
	stampTemplate:
	pg: 81

	P85:
	stampTemplate:
	pg: 82

	P86:
	stampTemplate:
	pg: 83

	P87:
	stampTemplate:
	pg: 84

	P88:
	stampTemplate:
	pg: 85

	P89:
	stampTemplate:
	pg: 86

	P90:
	stampTemplate:
	pg: 87

	P91:
	stampTemplate:
	pg: 88

	P92:
	stampTemplate:
	pg: 89

	P93:
	stampTemplate:
	pg: 90

	P94:
	stampTemplate:
	pg: 91

	P95:
	stampTemplate:
	pg: 92

	P96:
	stampTemplate:
	pg: 93

