
T U M

I N S T I T U T F Ü R I N F O R M A T I K

The Complexity of Computing

Graph-Approximating Spanning Trees

Matthias Baumgart and Hanjo Täubig

ABCDEFGHIJKLMNO
TUM-I0822

Juli 08

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-07-I0822-0/1.-FI

Alle Rechte vorbehalten

Nachdruck auch auszugsweise verboten

c©2008

Druck: Institut für Informatik der

Technischen Universität München

The Complexity of Graph-Approximating Spanning Trees

Matthias Baumgart and Hanjo Täubig

Institut für Informatik, Technische Universität München,
Boltzmannstraße 3, D-85748 Garching, Germany

baumgart@in.tum.de

Abstract

This paper deals with the problem of computing a spanning tree of a connected undi-
rected graph G = (V,E) minimizing the sum of distance differences of all vertex pairs
u, v ∈ V which are connected by an edge {u, v} ∈ E. We show that the decision variant
of this optimization problem is NP-complete with respect to the Lp norm for arbitrary
p ∈ N. For the reduction, we use the well known NP-complete problem Vertex Cover.

1 Introduction

1.1 Motivation

Recently, there has been some interest in problems related to simplification of graphs (with
respect to the number of edges, i.e. network sparsification), which intended to thin out the
graph while retaining certain network characteristics (such as the distances between node pairs
or the centrality measures of the nodes). The aim was to reduce the complexity of a given graph
in order to simplify computations of network problems or to feature a concise visualization of
a complex network with its most important structural properties (which makes the network
more amenable to visual examination).

If this simplification is carried to an extreme, we would require the resulting graph to be a
spanning tree, since the elements of this graph class have a minimum number of edges among
all connected subgraphs and they offer a variety of beneficial properties which can be exploited
for fast network algorithms. A couple of concrete applications, e.g. in systems biology, can be
found in [4].

In this paper, we study the problem of computing a spanning tree of a graph, that minimizes,
in its simplest form, the sum of the distances between all pairs of nodes, that were connected
by an edge in the original graph. Actually, we consider a more general form, where the sum is
computed of p-th powers of the respective distances (or distance differences), i.e., the calculation
is made with respect to the Lp-norm.

1

1.2 Related Work

The problem is related to a couple of other problems, the most similar of which is the problem
of computing distance-minimizing or distance-approximating spanning trees (DMST, DAST,
[4]). In contrast to the setting in this paper, the DMST and DAST problems consider the
distances of all vertex pairs (instead of only pairs connected by single edges in the original
graph). Both problems (DMST and DAST) were shown to be NP-complete for all norms Lp,
p ∈ N. For both problems a fixed-edges variant was introduced in [4], where the input includes
a set of fixed edges that have to appear in any admissible solution. For this fixed-edges version
of DAST and arbitrary Lp-norms, there is no constant-factor approximation unless P = NP.

The simplest case of the DMST problem, i.e., DMST using the L1-norm, is equal to the
Simple Network Design Problem introduced in [8] as well as the problem of computing a Min-
imum Average Distance (MAD) Tree [2]. Moreover, this problem is equivalent to the DAST
problem with respect to the L1-norm.

In the more general form of the Network Design Problem, we are given a weighted undirected
graph and want to compute a connected subgraph, that respects a certain budget constraint
(regarding the sum of the edge weights) and minimizes the sum of all shortest path lengths. Of
course, this problem was also shown to be NP-complete [8].

A similar relationship exists between GAST and the problem of computing a minimum fun-
damental cycle basis. Again, we are given a weighted undirected graph. The aim is to compute
a spanning tree (or the respective cycle basis), that causes a minimum sum of the weights
of all fundamental cycles (induced by the edges of the spanning tree). Deo et al. [3] have
shown NP-completeness of this problem. Galbiati and Amaldi [5] proposed an 2O(

√
log n log log n)-

approximation algorithm for arbitrary graphs. Their approach used a related problem intro-
duced by Hu, namely the Minimum Communication Cost Spanning Tree Problem [7], which
was shown to be approximable within the same factor by Peleg and Reshef [10].

While all these problems are NP-complete, there is also an example for polynomial com-
putability of distance-sum-related spanning trees, namely the problem of computing a Minimum
Diameter Spanning Tree [1, 9, 6].

2 Preliminaries

Throughout this paper, we assume that graphs G = (V, E) are always simple, undirected,
connected, and unweighted. The adjacency matrix of G is denoted by AG. For two vertices
u, v ∈ V , the distance between u and v in G is defined as the length of a shortest path
between u and v in G. This length is denoted by dG(u, v). We define the distance matrix
DG by DG[i, j] = dG(vi, vj). Obviously, DG is a symmetric matrix with non-negative entries.
Furthermore, for any given spanning tree T of G, it holds DT [i, j] ≥ DG[i, j] for all vi, vj ∈ V .

Let A ∈ N
n×m and B ∈ N

n×m be two n×m-matrices. We denote by C = A ◦B the matrix
we obtain by performing a multiplication element by element, i.e. C[i, j] = A[i, j] · B[i, j] for
all pairs (i, j). This entrywise product of two matrices of equal dimension is also known as the
Hadamard or Schur product.

2

For evaluating a matrix A ∈ N
n×n, we use the Lp-norm which is defined as

‖A‖Lp =

(

n
∑

i=1

n
∑

j=1

A[i, j]p

)1/p

for all 1 ≤ p < ∞.

3 The 2-Hitting-Set Gadget

For the reduction, we use the Vertex Cover problem, which is well known to be NP-complete.
To avoid confusion between ’vertices’ and ’edges’ of the instance of Vertex Cover and of
the constructed graph, we use the less common terminology of the equivalent 2-Hitting Set

(2HS) problem, i.e. ’literals’ (vertices) and ’clauses’ (edges).

Problem: 2-Hitting Set (2HS).
Input: A triple (C,S, k) consisting of

a family C = {C1, . . . , Cm} of 2-element subsets of
a set S = {s1, . . . , sn} and
a number k ∈ {1, . . . , n}.

Question: Is there a subset S ′ ⊆ S such that |S ′| ≤ k and
the set Cµ ∩ S ′ is not empty for each µ ∈ {1, . . . , m}?

A subset S ′ ⊆ S having the required properties is called an admissible solution to a 2HS in-
stance (C,S, k). For a given 2HS instance, we define the graph G(C,S) (similar to [4]) as
follows:

• For each sµ ∈ S, µ ∈ {1, . . . , n}, we define a literal gadget Gµ consisting of two con-

nection vertices vµ and v′
µ. Both vertices are connected by the so-called elongation path

(vµ, e
µ
1 , . . . , e

µ
m+1, v

′
µ) of length m + 2 and the so-called literal path (vµ, l

µ
1 , . . . , lµm, v′

µ) of
length m + 1.

• For each µ ∈ {1, . . . , n − 1}, we connect the literal gadgets Gµ and Gµ+1 by adding an
edge {v′

µ, vµ+1}.

• Additionally, we introduce a vertex v′
0 which is connected to the first literal gadget G1 by

the edge {v′
0, v1}.

• For each Cµ = {sν , sκ}, we define a clause path of length 2n(m + 2) that connects the
vertices lνµ and lκµ and a safety path of length 2n(m + 2) that connects the vertices v′

0 and
lνµ whereas we assume w.l.o.g. that ν < κ.

In Figure 1, there is an illustration of the graph representation G(C,S) for the 2HS instance
(C,S, k) with S = {s1, s2, s3, s4} and C = {{s1, s3}, {s2, s4}, {s1, s4}, {s3, s4}}.

Lemma 1. Let (C,S, k) be an instance of 2HS. Then we have dG(C,S)(v
′
0, v

′
n) = n(m + 2).

Moreover, there exists an admissible solution S ′ ⊆ S of size |S ′| ≤ k if and only if there exists

a spanning tree T of G(C,S) containing all edges in the clause paths such that dT (v′
0, v

′
n) ≤

dG(C,S)(v
′
0, v

′
n) + k.

3

v′
0 l31 l34

e3
5e3

1

v′
4

safety path clause path

literal gadget G3

Figure 1: Graph representation G(C,S) of a 2HS instance.

Proof. First, we observe that any path from v′
0 to v′

n using a clause or safety path has length
at least 2n(m + 2) whereas the shortest path between v′

0 and v′
n via literal paths has length

n(m +2). Thus, it holds that dG(C,S)(v
′
0, v

′
n) = n(m +2). For proving the second statement, we

consider both directions separately.

(=⇒) Let S ′ be an admissible solution to the 2HS instance (C,S, k). We construct a
spanning tree of the graph representation G(C,S) as follows:

1. For each sµ ∈ S ′, we remove the edge {lµm, v′
µ} which is the last edge on the literal path

of the literal gadget Gµ.

2. For each sµ 6∈ S ′, we remove the edge {vµ, e
µ
1} which is the first edge on the elongation

path of the literal gadget Gµ.

3. For each Cµ = {sν , sκ} ∈ C do the following: if sν ∈ S ′ then remove the edge {lνµ−1, l
ν
µ}.

If sκ ∈ S ′ then remove the edge {lκµ−1, l
κ
µ}. Here, we denoted vν

0 = vν and vκ
0 = vκ. If not

both sν and sκ are elements of S ′ then remove an arbitrary edge from the safety path
between v′

0 and vν
µ.

Note that no edge from a clause path was removed during this construction. Now, we have to
prove that each cycle in G(C,S) is broken when applying the three construction rules. By the
first and second construction rule, at least one edge of each cycle induced by the literal and
elongation paths is removed. The cycles induced by the clause and safety paths are broken
by the first and third construction rule: For each clause Cµ = {sν , sκ} ∈ C, at least one of
the sets {{lνµ−1, l

ν
µ}, {l

ν
m, v′

ν}} and {{lκµ−1, l
κ
µ}, {l

κ
m, v′

κ}} is removed because S ′ is an admissible
solution. Thus, either lνµ or lκµ is not reachable via the clause path from vν or v′

ν (vκ or v′
κ,

respectively). An edge from the safety path is removed, except if both {{lνµ−1, l
ν
µ}, {l

ν
m, v′

ν}} and
{{lκµ−1, l

κ
µ}, {l

κ
m, v′

κ}} are removed, in which case neither lνµ nor lκµ is reachable via the clause
path from any vertex vν , v

′
ν , vκ, v

′
κ.

A cycle induced by multiple clause paths not going through any connection vertices cannot
occur since the connection is broken at one of the literals in S ′. As a result, the path between
v′
0 and v′

n in T is leading through elongation (sµ ∈ S ′) or literal (sµ 6∈ S ′) paths only, and does
not contain any safety or clause path.

By construction of the graph representation G(C,S), the distance of vµ and v′
µ via a literal

path is shorter by 1 compared to the distance via an elongation path. Thus, it holds that

dT (v′
0, v

′
n) = (n − |S ′|)(m + 2) + |S ′|(m + 3) = n(m + 2) + |S ′| ≤ dG(C,S)(v

′
0, v

′
n) + k .

(⇐=) Let T be a spanning tree of G(C,S) containing all clause path edges and satisfying
dT (v′

0, v
′
n) ≤ dG(C,S)(v

′
0, v

′
n) + k. Since dG(C,S)(v

′
0, v

′
n) + k ≤ n(m + 3) < 2n(m + 2), the path

4

between v′
0 and v′

n in T cannot lead through clause or safety paths. Hence, it only goes through
literal and/or elongation paths.

By construction, the length of any (intact) elongation path is m+2, the length of any (intact)
literal path is m + 1. Therefore, the path from v′

0 to v′
n contains exactly k elongation paths.

Let S ′ be the set of literals sµ for which this path leads from vµ to v′
µ via an elongation path.

Here, the literal path must be broken since otherwise T is not a spanning tree. Conversely, for
every sµ 6∈ S ′, the literal path is not broken, i.e., (vµ, l

µ
1 , . . . , lµm, v′

µ) is a path in T . Assume,
there is a clause Cµ = {sν , sκ} ∈ C (where ν < κ) such that Cµ ∩ S ′ = ∅. The clause path
corresponding to the clause Cµ connects lνµ with lκµ. Since sν , sκ 6∈ S ′, the vertex lνµ is connected
to v′

ν which is connected to vκ which is connected to lκµ. This is a contradiction to T being a
spanning tree.

4 Graph-Approximating Spanning Trees

In this section, we consider the problem of computing a spanning tree of a graph G that
minimizes the distances of pairs of vertices which are connected in the original graph. We study
this problem under certain matrix norms. First, we give a formal definition of the problem:

Problem: GAST (with respect to ‖ · ‖Lp).
Input: A connected graph G and an algebraic number γ.
Question: Is there a spanning tree T of G with ‖(DT − DG) ◦ AG‖Lp ≤ γ?

Remember that DG and DT are the distance matrices of graph G and tree T , while AG denotes
the adjacency matrix of G.

In the following, we show that computing such a tree is hard under the Lp-norm for all
p ∈ N. Note that p = 1 is a special case of the NP-complete Minimum Fundamental Cycle
Basis Problem (Min-FCB) [3].

Theorem 2. GAST with respect to ‖ · ‖Lp is NP-complete for all p ∈ N.

Proof. The containment in NP is obvious. We prove the hardness by reduction from 2HS using
the graph representation G(C,S). The idea of the reduction is simple: We join the end vertices
of G(C,S), v′

0 and v′
n, by a connection consisting of a couple of paths. Moreover, the same

technique is used to force the clause path edges of G(C,S) into any optimal spanning tree.
The number of additional paths and their length depends on the given 2HS instance and is
polynomial in the number of literals in S and clauses in C.

Let (C,S, k) be an instance of 2HS and let N be the number of vertices in its graph
representation G(C,S). We define the graph G = (V, E) such that V consists of the vertices in
the graph G(C,S) and

• NA vertex sets {aµ,1, aµ,2, . . . , aµ,LA
} for each µ ∈ {1, . . . , NA} and

• NB ·K vertex sets {bµ
ν,1, b

µ
ν,2, . . . , b

µ
ν,LB

} for each µ ∈ {1, . . . , K} and each ν ∈ {1, . . . , NB}

where K is the number of clause path edges in G(C,S) and NA, NB, LA, LB ∈ N are four
parameters which will be chosen later.

5

The edge set E consists of all edges in G(C,S) and

• NA paths Aµ = (v′
0, aµ,1, aµ,2, . . . , aµ,LA

, v′
n) for each µ ∈ {1, . . . , NA} and

• NB · K paths Bµ
ν = (u, b

µ
ν,1, b

µ
ν,2, . . . , b

µ
ν,LB

, v) for each µ ∈ {1, . . . , K} and for each ν ∈
{1, . . . , NB} where {u, v} is a clause path edge.

The gadget is illustrated in Figures 2 and 3 where the latter figure is a detailed view onto the
extension of a clause path edge which is not displayed in Figure 2. Obviously, the number of
vertices and edges in G are polynomial in n and m if NA, NB, LA, and LB are polynomial in n

and m.

a1,LA
aNA,LA

a1,1 aNA,1

v′
0

Figure 2: Extended graph representation of a 2HS instance.

Now, we define

γ = Np+1 + NA · (LA + n(m + 2) + k)p + K · NB · Lp
B

and we claim that G has a spanning tree T such that ‖(DT − DG) ◦ AG‖
p
Lp

≤ γ if and only if
(C,S, k) has an admissible 2HS-solution S ′ of size |S ′| ≤ k.

Claim 3. Let (C,S, k) be an instance of 2HS. Then G = (V, E) has a spanning tree T such

that ‖(DT − DG) ◦ AG‖
p
Lp

≤ γ if (C,S, k) has an admissible solution S ′ of size |S ′| ≤ k.

Proof. Let S ′ be an admissible solution of (C,S, k) such that |S ′| ≤ k. We construct the
spanning tree T of G as follows: For the part of G which corresponds to G(C,S), we use the
spanning tree TG(C,S) according to Lemma 1. In that construction, we remove two edges for

6

u v

b
µ
1,1

b
µ
NB ,1

b
µ
1,LB

b
µ
NB ,LB

Figure 3: Extension paths of a clause path edge {u, v}.

each clause in C as well as one edge for each literal in S of the given 2HS instance (C,S, k).
Thus, if N is the number of vertices in G(C,S), it holds that

∑

{u,v}∈G(C,S)

(dT (u, v) − 1)p ≤ N · Np = Np+1 . (1)

Note that {u, v} ∈ G(C,S) denotes all edges in G(C,S) (it does not mean all pairs of vertices).
For the sake of readability, we assume this meaning of the notation unless stated otherwise.

Additionally, we break the paths Aµ and Bν
κ as follows:

1. For each path Aµ, µ ∈ {1, . . .NA}, we remove the edge {aµ,1, aµ,2}.

2. For each path Bν
κ, ν ∈ {1, . . . , K} and κ ∈ {1, . . . , NB}, we remove the edge {bν

κ,1, b
ν
κ,2}.

For the first construction rule, the contribution to ‖(DT − DG) ◦ AG‖
p
Lp

is bounded by

NA
∑

µ=1

∑

{u,v}∈Aµ

(dT (u, v) − 1)p ≤ NA · (LA + n(m + 2) + k)p (2)

and for the second rule, we obtain

K
∑

ν=1

NB
∑

κ=1

∑

{u,v}∈Bν
κ

(dT (u, v) − 1)p ≤ K · NB · Lp
B . (3)

Combining (1), (2), and (3), we get the required quality of T

∑

{u,v}∈E

(dT (u, v) − 1)p ≤ Np+1 + NA · (LA + n(m + 2) + k)p + K · NB · Lp
B = γ .

7

Claim 4. Let (C,S, k) be an instance of 2HS. Then (C,S, k) has an admissible solution S ′ of

size |S ′| ≤ k if the graph G has a spanning tree T such that ‖(DT − DG) ◦ AG‖
p
Lp

≤ γ with

NA > Np+1, NB > NA · (2N2)p, LA = N2 · (n(m + 2) + k), and LB > N2 + 1.

Proof. Let T be a spanning tree of G = (V, E) such that

‖(DT − DG) ◦ AG‖
p
Lp

≤ γ = Np+1 + NA · (LA + n(m + 2) + k)p + K · NB · Lp
B . (4)

Assume, there is a clause path edge which does not belong to T . We consider the extension
paths of this edge (see Figure 3) and distinguish two different cases. Either there is exactly one
path Bν

κ (κ ∈ {1, . . . , NB} and ν depends on the removed clause path edge), which is intact,
or each of these paths is broken. Note that two or more intact extension paths of the same
clause path edge would imply the existence of a cycle. For the first case, we can lower bound
the contribution to ‖(DG − DT) ◦ AG‖

p
Lp

for removing an edge from Aµ, µ ∈ {1, . . . , NA}, by

NA
∑

µ=1

∑

{u,v}∈Aµ

(dT (u, v) − 1)p ≥ NA · (LA + n(m + 2))p (5)

and for all deleted edges of paths Bν
κ, ν ∈ {1, . . . , K} and κ ∈ {1, . . . , NB}, we obtain

K
∑

ν=1

NB
∑

κ=1

∑

{u,v}∈Bν
κ

(dT (u, v) − 1)p ≥ (K − 1) · NB · Lp
B + (NB − 1) · (2LB)p + L

p
B

= K · NB · Lp
B + (2p − 1) · (NB − 1) · Lp

B . (6)

By assumption, we have NA > Np+1, LB > N2 + 1, NB > NA · (2N2)p with p ∈ N. Thus,

NA · (N2 · (n(m + 2) + k) + n(m + 2))p > Np+1

and
(2p − 1) · (NB − 1) · Lp

B > NA · ((N2 + 1) + (n(m + 2) + k))p

imply the following contradiction to (4):

NA · (N2 · (n(m + 2) + k) + n(m + 2))p + (2p − 1) · (NB − 1) · Lp
B

> Np+1 + NA · ((N2 + 1) · (n(m + 2) + k))p

=⇒ NA · (LA + n(m + 2))p + K · NB · Lp
B + (2p − 1) · (NB − 1) · Lp

B

> Np+1 + NA · (LA + n(m + 2) + k)p + K · NB · LB

=⇒ ‖(DT − DG) ◦ AG‖
p
Lp

> γ .

For the second case where each path B
{u,v}
κ with κ ∈ {1, . . . , NB} is broken, the lower bound

in (5) holds and (6) changes to

K
∑

ν=1

NB
∑

κ=1

∑

{u,v}∈Bν
κ

(dT (u, v) − 1)p ≥ (K − 1) · NB · LB + NB · (LB + 2n(m + 2))p

= K · NB · Lp
B + NB · (2n(m + 2))p .

8

Analogously to the previous case, we get a contradiction to (4). Thus, all K clause path edges
are forced into each optimal spanning tree by the extension paths Bµ

ν , µ ∈ {1, . . . , K} and
ν ∈ {1, . . . , NB}.

Now, we turn our attention to the paths Aµ, µ ∈ {1, . . . , NA}, and show that all of these
paths must be broken. Afterwards, we prove that the distance between v′

0 and v′
n is at most

n(m+2)+k. Since all clause path edges belong to T , we are able to apply Lemma 1 in order to
prove the existence of an admissible solution S ′ of size |S ′| ≤ k for the 2HS instance (C,S, k).
To this end, we first assume that there is an intact path Aµ for some µ ∈ {1, . . . , NA}. The
contribution of all broken paths Aµ includes the length of the intact path:

NA
∑

µ=1

∑

{u,v}∈Aµ

(dT (u, v) − 1)p ≥ (NA − 1) · (2LA)p .

Since the direct connection between v′
0 and v′

n (inside the original 2HS gadget) is broken, there
exists some edge {u, v} ∈ G(C,S) such that

(dT (u, v) − 1)p ≥ L
p
A .

This is a contradiction to (4) since

‖(DT − DG) ◦ AG‖
p
Lp

> γ

⇐= (NA − 1) · (2LA)p + L
p
A + K · NB · Lp

B

> N · Np+1 + NA · (LA + n(m + 2) + k)p + K · NB · Lp
B

⇐= (NA − 1) · (2N2 · (n(m + 2) + k))p + (N2 · (n(m + 2) + k))p

> Np+1 + NA · ((N2 + 1) · (n(m + 2) + k))p

⇐= (NA − 1) · 2p · N2p > NA · (N2 + 1)p

⇐= N2 · 2p · N2p > (N2 + 1)p+1

⇐= N2 · 2
p

p+1 > N2 + 1

which is true if NA > Np+1, LA = N2 · (n(m + 2) + k), N > 1, and p ∈ N.
Closing the proof, we assume that the distance between v′

0 and v′
n is greater than n(m+2)+k.

Choosing NA > Np+1, we obtain a contradiction to (4) since NA · (LA + n(m + 2) + k + 1)p >

Np+1 + NA · (LA + n(m + 2) + k)p implies ‖(DT − DG) ◦ AG‖
p
Lp

> γ.

This proves the theorem. �

5 Conclusion

We investigated the complexity of the GAST problem which is related to a couple of other
network optimization problems. We proved NP-completeness for all Lp-norms (p ∈ N). A
remaining open question is the approximability of GAST for p > 1. The case p = 1 is a special
case of the Minimum Fundamental Cycle Base (Min-FCB) problem and can be approximated
within O(log2 n), since the distances are metric [11].

9

Acknowledgements

We thank Stefan Eckhardt for helpful discussions.

References

[1] P. M. Camerini, G. Galbiati, and F. Maffioli. Complexity of Spanning Tree Problems:
Part I. European Journal of Operational Research, 5(5):346–352, 1980.

[2] E. Dahlhaus, P. Dankelmann, W. Goddard, and H. C. Swart. MAD Trees and Distance-
Hereditary Graphs. Discrete Applied Mathematics, 131(1):151–167, 2003.

[3] N. Deo, G. Prabhu, and M. S. Krishnamoorthy. Algorithms for Generating Fundamental
Cycles in a Graph. ACM Transactions on Mathematical Software, 8(1):26–42, 1982.

[4] S. Eckhardt, S. Kosub, M. G. Maaß, H. Täubig, and S. Wernicke. Combinatorial Network
Abstraction by Trees and Distances. In Proc. of the 16th Int. Symposium on Algorithms
and Computation (ISAAC’05), LNCS 3827, pages 1100–1109, Springer, 2005.

[5] G. Galbiati and E. Amaldi. On the Approximability of the Minimum Fundamental Cycle
Basis Problem. In Proceedings of the 1st Int. Workshop on Approximation and Online
Algorithms (WAOA’03), LNCS 2909, pages 151–164, Springer, 2004.

[6] R. Hassin and A. Tamir. On the Minimum Diameter Spanning Tree Problem. Information
Processing Letters, 53(2):109–111, 1995.

[7] T. C. Hu. Optimum Communication Spanning Trees. SIAM Journal on Computing,
3(3):188–195, 1974.

[8] D. S. Johnson, J. K. Lenstra, and A. H. G. Rinnooy Kan. The Complexity of the Network
Design Problem. Networks 8(4):279–285, 1978.

[9] E. Minieka. A Polynomial Time Algorithm for Finding the Absolute Center of a Network.
Networks, 11(4):351–355, 1981.

[10] D. Peleg and E. Reshef. Deterministic Polylog Approximation for Minimum Communica-
tion Spanning Trees. In Proc. of the 25th Int. Colloquium on Automata, Languages and
Programming (ICALP’98), LNCS 1443, pages 670–681, Springer, 1998.

[11] E. Reshef. Approximating Minimum Communication Cost Spanning Trees and Related
Problems. Master’s Thesis, Weizmann Institute of Science, Rehovot, Israel, 1999.

10

