TUTI

TECHNISCHE
UNIVERSITAT
MUNCHEN

INSTITUT FUR INFORMATIK

Sonderforschungsbereich 342:
Methoden und Werkzeuge fiir die Nutzung
paralleler Rechnerarchitekturen

A Tableau System
for Model Checking Petri Nets
with a Fragment of
the Linear Time -Calculus

Richard Mayr

TUM-19634
SFB-Bericht Nr.342/15/96 A
Oktober 1996

TUM-INFO-10-96-134-80/1.—FlI

Alle Rechte vorbehalten

Nachdruck auch auszugsweise verboten

©1996 SFB 342 Methoden und Werkzeuge fiir
die Nutzung paralleler Architekturen

Anforderungen an: Prof. Dr. A. Bode
Sprecher SFB 342
Institut fur Informatik
Technische Universitat Miinchen

D-80290 Miinchen, Germany

Druck: FPFakultat fiur Informatik der
Technischen Universitat Miinchen

A Tableau System for Model Checking Petri Nets
with a Fragment of the Linear Time u-Calculus

Richard Mayr *

Abstract

We present a tableau system for model checking Petri nets with a fragment of the
linear time p-calculus (without the strong nexttime operator). The model checking
problem is already known to be decidable for the full linear time p-calculus [Esp],
but the algorithm has non-elementary complexity and gives no insight into the
proof process. In contrast to this, tableau systems give a good intuition why a
property holds. Although the tableau system is sound and complete and yields a
decision procedure, it is not intended to be used as such, but rather as a method
for proving and understanding properties expressed in this calculus.

Keywords: temporal logic, linear-time p-calculus, Petri nets, model checking, tableau
systems

1 Introduction

Model checking is a very successful technique for verifying temporal properties of con-
current systems, which is viewed as being essentially algorithmic. The corresponding
standard algorithms fall into two classes: the iterative algorithms and the tableaux-
based algorithms. The iterative algorithms compute all the states of the system which
have the desired property, and usually yield higher efficiency in the worst case. The
tableaux-based algorithms are designed to check whether a particular expression has a
temporal property. This is called local model checking which avoids the investigation of
for the verification irrelevant parts of the process being verified. This is due to the fact
that the truth of a property at a state may depend on a small neighborhood of the state,
rather than the whole system. Therefore this method is applicable for the verification of
systems with infinite state spaces. In local model checking the proof system is developed
in a goal directed fashion (top down).

Tableau systems consist of tree parts: deduction rules, termination conditions and
success conditions. The rules are goal-directed; they transform a goal into subgoals that
must be proved, in order to establish the truth of the root-sequent. The termination
conditions tell when to stop the construction of the tableau (the proof tree). This is the
case when enough information has been collected to decide the truth/falsity of a branch

*Address: Institut fiir Informatik, Technische Universitdt Miinchen, Arcisstr. 21, D-80290 Miinchen,
Germany; e-mail: mayrri@informatik.tu-muenchen.de

in the tableau. Finally, the success conditions tell if the tableau succeeds in establishing
the truth of the root-sequent.

Tableau systems are particularly suitable for computer-assisted verification, i.e. the-
orem provers with human interaction. This is due to the fact that they give a good
intuition on why a property holds and allow the user to apply his knowledge on the sys-
tem to guide the construction of the tableau by choosing the most promising branches of
the tableau, which will be explored first. Although some tableau systems (like the one in
this paper) are complete in the sense that they yield a decision procedure for the chosen
logic and model of systems, they are not intended to be used as such, but rather as a
proof method.

In the field of fixpoint logics, p-calculi have become very popular in the formal veri-
fication community. Most important are the modal p-calculus, which is interpreted over
the states of systems, and the linear time p-calculus, which is interpreted over runs.
Complete tableau systems for these calculi and finite state systems have been described
in [SW90] and [SW91, BEM96], respectively.

For infinite state systems the situation is different. While model checking with the
modal p-calculus is undecidable even for very simple models of infinite state concurrent
systems (for example BPP) [Esp], the tableau systems for model checking Petri nets
described in [Bra92] still provide a useful tool for proving properties. In contrast to
this, model checking Petri nets with the linear time p-calculus is decidable [Esp], but no
tableau method existed yet. This is the contribution of this paper. We use a restricted
version of the linear time p-calculus without the strong nexttime operator, but including
the weak nexttime operator.

Section 2 contains basic definitions about the linear time u-calculus. Section 3 defines
the tableau system, while section 4 contains the proofs of its soundness and completeness.
In section 5 we discuss an example and in section 6 we show some possible generalizations
of the tableau method. The paper closes with a section about complexity matters and
related work.

2 The Linear Time u-Calculus

We now define the linear time p-calculus and the restricted fragment that will be used
in the next section. The language is built from a set of propositions, variables, boolean
connectives, the minimal and maximal fixpoint operators g and v, and two temporal
operators, the strong nexttime () and the weak nexttime ©. Intuitively, ()® means
‘there is a next moment in time and ® is true at this moment’, whereas & ® means ‘if
there is a next moment in time, then ® is true at this moment’.

Definition 2.1 Fix two disjoint countable sets, Z¢, the set of propositions, and Zy,
the set of variables, and define Z = Zo U Zy. Let Act be a countable set of atomic
actions. Atomic actions will be denoted by a, b, ¢,... and sets of actions by A, B,....
The formulae of uTL are defined by the abstract syntax:

Du=Q|Z| DAy | DLV Dy | Oud | 0ud | pZ.0 | vZ.0

where () ranges over Z¢ and Z over Zy. The symbol o ranges over {yg, v}. An occurrence
of a variable Z in ® is bound iff it is within a subformula 7.9 of ® and free otherwise.

If 7 is a variable, ®[®'/Z] is the result of simultaneously substituting @’ for all free
occurrences of Z in @.

Furthermore, we assume that in any pTL formula the bound variables are distinct, and
all occurrences of bound variables are guarded, i.e. that each occurrence of a variable 7
in 7.0 is in a subformula of the type (O)4®" or O 4 ®’. Any formula can be effectively
transformed into an equivalent one fulfilling these restrictions.

Definition 2.2 A labelled transition system T over a set of actions Act consists of a
(possibly infinite) set of states S and a binary relation -C § x S for each a € Act. The
system is called rooted it it has a distinguished initial state sy € S. A path of T is either
an infinite sequence sy <> s = 55 — s53... or a finite sequence sy — 51 — ... ‘25' s, such
that s, has no successors. A run is a path that starts at the initial state. Let R be the

. ay a . .
set of runs. We shall let o range over runs, and if 0 = s5 = sy — - - then we write o(1)

for s; and o' for the path s; N Sit1 “41 ... The i-th action a; will be denoted by o;.

A p-calculus model is a transition system 7 together with a valuation V : Zy — 2%
and a valuation W : Z¢ — 2%, The denotation || ® ||,y of a p-formula ® in the model
(7,V,W) is given by the following rules (omitting the superscript 7 and the subscript

W, which do not change):

1Zllv = V(Z)
1Qllv = {o]0(0) e W(Q)}
[@1 A Dofly = [|®s]ly OV[[a|v
[@1V Dofly = [|®1]ly U[[®aly
[Oa®lly = {olooe Ana’ €@y}
[Q4®llv = {o]ooc ANo €[y} U{o|ao & AVa(0) A}
[vZ2.@lly = U{RCR[|®|viz=p 2 R}

Iz @y = N{RCRI[|®|lvz=r S R}

V(Z), 747
R (AN 9
where V|7 := R|(7') := {R, gl

A state s satisfies a formula ®, s = ®, iff all runs starting at s satisfy @, i.e. {o |
o(0) = s} C ||®]|. For a run o we also write o = ® instead of o € ||®]|.

Definition 2.3 For all ordinals « € Ord, the fizpoint approximants u®7.® and v*7.®
are defined by: pu°Z.® = ff and °Z.0 = t#t, c°M 2.0 = ®lc°Z.0/7], P 7.0 =
Vacr 1779, V.0 = Na<r V" Z.®, where A is a limit ordinal.

Proposition 2.4 (Knaster-Tarski) puZ.¢ =V, u*2.®, v7.® = A\, v*7.0.

Definition 2.5 The p-signature p—sig(o, ®) of arun o w.r.t. aformula ® (where o =)
is the lexicographically least sequence (i,...,(; such that o = ®[u% Z;.®;/uZ;.®;] where
(1 Z;.®; are the p-subformulae of @ in order of depth (i.e. in some (fixed) order such that
subformulae appear after any containing subformulae).

Dually, the v-signature of o = @ is the least sequence s.t. o £ ®[v% Z,.®; /v Z;.®;].

These preliminary definitions apply to finite or infinite systems. For a thorough treat-
ment of finite systems refer to [BEM96] and [SW91]. Here we are interested in infinite
systems described by general Petri nets. Esparza [Esp| has proved that model checking

Petri nets with the linear time p-calculus is decidable, provided that the propositions sat-
isfy certain restrictions. The algorithm works by reduction to the reachability problem for
Petri nets and Biichi-automata. One problem is that this algorithm has non-elementary
complexity and is therefore not useful in practice. (The problem is at least as hard as
the reachability problem for Petri nets and therefore EXPSPACE-hard). Even more im-
portant is that the algorithm yields hardly any insight on why a property holds and is
useless as a proof method. The tableau method described in this paper is a generalization
of the tableau method of [BEM96] and can be used as a proof technique.

Definition 2.6 A labelled Petri net N = (S, T, W, L, Act) consists of a finite set of
places S, a finite set of transitions T, a function W : S x TU T x S — IN that
assigns weights to the arcs, a set of actions Act and a labelling function L : T — Act
that assigns actions to the transitions. Markings of nets will be denoted by ¥. As a
technicality markings will be mappings S +— (IN U {w}) instead of S — IN, where w is
the first limit ordinal.

In the rest of the paper we will use a restricted version of the linear time p-calculus.

Definition 2.7 (Restrictions)

o The strong nexttime operator () will be left out completely. This is done in order to
make it impossible to express the state of deadlock with the calculus and so to avoid
having to solve the reachability problem for Petri nets in the tableau. As mentioned
earlier the model checking problem is decidable for the full linear time p-calculus
[Esp], but so far there exist no tableau methods for solving the reachability problem
for Petri nets.

So we only use the weak nexttime operator ©.
o The propositions () € Z¢ must satisfy two restrictions.

Ql Y eW(Q) = VX' <X ¥ eW(Q)
Q2 (T+wy)EW(Q) = Ike NVE >k (S+KY) & W(Q).

3 The Tableau System

3.1 The Sequents

An important difference between the modal p-calculus and the linear time p-calculus is
the treatment of disjunction. In a tableau system for the modal p-calculus (see [SW91])
the sequents have the form ¥ = @, which means that the state s satisfies the formula ®.
So ¥ = &V W means ¥ € ||®||U]||¥]| and therefore implies either ¥ = ® or ¥ = W. Thus

the two rules

YXFoVvY YEOVU
Y- YU

are complete.

For the linear time p-calculus the situation is different, because here ¥ | & v ¥
means {o|o(0) =X} C |®||U|[¥||. As {o]o(0) = X} is a set of runs (that can have more
than one element) we can no longer infer ¥ = ||®|| or ¥ |= ||¥]|: some runs starting at X

may satisfy ® but not ¥, while others may satisty ¥ and not ®. The solution is to allow
sets of formulae in the right hand side of the sequent that are interpreted disjunctively

(see [BEMO96]). This way, the rule
YXFoVU

SE oW

is sound and complete.

3.2 The Rules

The rules for the tableau can be divided into two groups: the basic rules and the special
rules. While the basic rules are sufficient for finite state systems the special rules are
needed for the treatment of Petri nets. We will define and discuss the basic rules first
as they are more intuitive, and make the necessary adjustments and extensions by the
special rules later. For convenience of notation we define that I', A, ... denote sequences

of formulae (i.e. I'= @1, Py,..., ¢, and O41' = ©4P1,...,04P,).

SET,OAW
N OSFre wrru
SED,OV U
Y SFTLew
SET,Q

ST where ¥ ¢ W(Q)

Y F Iy,... I,
© Oatye- Oy where A =T,..., T} and

S FA LS, FA
{(S1,. S} ={¥ |Fae (4. 55}

=1

SED,0Z.9

z
7 SET,00Z.9/7]

Additionally use the following “cleanup-procedure” after each rule application: If a for-
mula ® occurs more than once in a sequence I', then delete all occurrences but the first.

Lemma 3.1 The antecedent of a rule is true if and only if all its consequents are true.

Proof Trivially from the definitions. a

For these basic rules the result of the application of a rule to a sequent is completely
determined by the sequent. In other words, the children are completely determined by
the parent. We’ll see later that this is not the case for the special rules. There several
ancestors (in the path from the root to the sequent) must be taken into account.

3.3 Paths and Internal Paths

A proof tree is a tree of sequents constructed by the iterated application of rules, starting
with a root g F ®q. Associated with a path 7 in a proof tree is a sequence o =
ti,ta, ..., t, of transitions arising from the applications of the (»-rule in #. We denote
this by o = trans(r).

In a tableau each node is assigned a unique label n;. Let n; : ¥; = ®; and n; : ¥; - @,
be two nodes in the tableau. By n; ~ n; we mean that ¥; = ¥, and ®; = ;. We write
n; > n; if n; occurs earlier on the path from the root to n;. It follows that > is a partial
order on the set of nodes in a tableau.

The price we pay for allowing sets of formulae in the right hand side of a sequent is
that a path in the proof tree has a more complex internal structure: a set of internal
paths describing the dependencies between formulae at different nodes. The path

n o u b (@{&b}q) A \I/) V @{mc}\p
ng: Xk @{&b}q) AW, @{mc}\p
nz: X' FOATY U
ng: N O

has the following internal paths:

m o (Opn®AV)V O a0 (O @AYV O aV

Ny Ope,n® AW Ny 1 O,V
! !
ng: AW ng: W
! !
ng : ® ng W

Intuitively the truth of a sequent depends on the structure of the internal paths starting
at it, particularly on which p or v-variables are unfolded in those paths.

Definition 3.2 (Internal paths, Internal circuits) Let 7 be a path of the proof tree.
An internal path of ® is a finite or infinite sequence of tripels (ny, X1, ®1)(ng, Yo, ®a), . ..
s.t. @y appears in ny, and for any two consecutive pairs (ny, X;, ®;), (nig1, Yig1, Pit1),
one of the following cases holds:

o n;41 s a child of n;, no rule is applied to ®; and ¢, = ®;, or

o 1,41 s a child of n;, some rule different from Q) is applied to ®;, and ®,11,%;11
are the formula/marking given by the rule application.

An internal circuit of a finite path ©# = nyny...n such that ny : X1 F 1, np : X B 1T and
Y > Y1 is a finite sequence of internal paths of

((nl,El,(I)l)...(nk,Zk,(I)k)) ((nl,zl,q)k+1)...(nk,Zk,q)Qk))...
oo (1, Xy @) - (s Qggaye)) forj €N

such that (I)z'k-l—l = (I)ik; P, = (I)(j-l—l)k and ¥ < Y, and &, €T,

The characteristic of a finite internal path is the highest variable that is unfolded (by
the o Z-rule) or the symbol L if no variable is unfolded; the characteristic of an infinite
internal path is the highest variable that is unfolded infinitely often. If the characteristic of
an internal path is a v-variable (p-variable), then we say that the path has v-characteristic
(p-characteristic). For a path n...n' the set Int(n,n') is defined as the set of tripels
(®,9', 7) such that there exists an internal path (n,®)...(n', ") with characteristic 7.

It is easy to see that if the formula at the root of the proof tree is guarded, then the
characteristic of any internal circuit is always different from L.

Before defining the special rules we must make some additions. We assign each node
a label consisting of a finite set of pairs € IN' x N, where [is the number of places of
the Petri net and N the set of nodes in the tableau. The label of the root node is the
empty set. For a node n with state ¥, label D and sequence of formulae I' we write
n(D): ¥ F I'. If the label is of no concern we just write “7” for it.

Child-nodes do not inherit these labels; they are only introduced by special rules.

3.4 The Special Rules

Now that we have defined these notions we can define the special rules. Here n — n’
means that node n is replaced by n’.

w ng(D): Yo F T — ng(D) : Yo w(Xy— %) F T
if there is a previous node nq(7) : X1 F ' s.t. ng > my, Xg > ¥y
and there is a place s s.t. Yi(s) < Ea(s) # w
M naD):SFT —n(DU{(6n")}):XFT
if there are two ancestors n/(?) : ¥ F ['and #”(?): ¥ F T sit. n > n' > 0"
Int(n”,n') = Int(n”,n) and ¢ is the Parikh-vector of the sequence of transitions

fired between n’ and n

Special rules take precedence over basic rules and rule w takes precedence over rule M.
The intuition for the special rules is as follows:

w Let X be a marking and ¥’ > Y. If there is an unsuccessful run starting at ¥, then the
same run can also start at ¥’. So the chance to find an unsuccessful run is better if
the start-marking is larger. The new marking with w represents the infinitely many
reachable markings with arbitrarily high numbers of tokens in these places. Note
that the w does not mean that there are infinitely many tokens on this place, but
only that there are reachable markings with arbitrarily high numbers of tokens.

M 1If the conditions for the M-rule are satisfied then the path from node n’ to node n gives
us no new information for the construction of an unsuccessful run. This is because
of the condition Int(n”,n") = Int(n”,n). The only thing worth remembering are
the changes ¢ in the marking of the net. By adding the vector to the label of the
node we remember that we could insert this piece of the branch as often as we
want, and change the marking by 6. This is necessary, because later in the tableau
it might turn out that we should have inserted this piece of the branch between
n’ and n a certain number of times in order to be able to construct an infinite
unsuccessful run. However, at the point where the M-rule is applied we don’t know
yet how often to insert this part of the branch.

Now we can define the terminal nodes.

Definition 3.3 A node n(?) : ¥ F T' is a terminal if any of the following conditions is
satisfied:

I.'=Q and ¥ ¢ W(Q)
I'=@ul,...,04,0, and Aa € Ny 4, Y. 25 Y
@ el and ¥ € W(Q)

S S

n has an ancestor n' ~ n s.t. n’ < n and

e every internal circuit of the path n’...n has g-characteristic, and

o Let 6y be the Parikh-vector of the sequence of fired transitions between n’ and
n. Let {61,....0;} :={é6 | In. »’ < (D) < n A F(b6,n) € D > n'}.
There are a1, ..., 2, € IN s.t. 69 + 2101 + ... + 20 > 0.

5. There are nodes n”(?) : ¥ F I and /(D) : ¥ F I' sit. 2" < n’ < n. Let
71 be the path between n” and n’ and 7, the path between n’ and n. Let ¢ be
the Parikh-vector of the sequence of transitions fired between in 7. 71 = 75 and

Fn. (6,7) € D.

Terminals of type 1 and 4 are unsuccessful, and terminals of type 2,3 and 5 are successful.
A tableau is a finite proof tree whose leaves (and no other nodes) are terminals. A
tableau is successful iff all its terminals are successful.

Lemma 3.4 There is a unique tableau with a given root.

Proof For the basic rules the children of a nonterminal node are determined only by
the node and the rules are deterministic. For the special rules the changes of a node
depend only on the node and its predecessors. The precedence conditions ensure that
these changes are deterministic too. Finally the termination conditions are deterministic.
O

The intuition behind the definition of the special rules and the terminals is the follow-
ing: Each path of the tableau can be seen as an attempt to construct a false run of the
system, i.e. a run that does not satisfy the formula at the root. The terminals identify
the points at which we have gathered enough information either to construct such a run
(unsuccessful terminal) or to give up searching the continuations of the path (successful
terminal). Let = be a path of the tableau ending in a terminal n, and let o = trans(r).

o If n is of type 1, then it is of the form ¥ - (), and no nun starting at ¥ satisfies ().
Therefore any run of the form oo’ is false.

o If n is of type 2 then any run of the form oo’ is a true run. This is due to the
definition of 4 as ¢ has no continuations o’ starting with an action in (' A4;.

e If n is of type 3 then any run of the form oo’ is true.

o If n is of type 4, then an infinite unsuccessful run can be constructed. Basically
this is because that in any chain of dependencies corresponding to this run some
p-variable is unfolded infinitely often. The details will be explained in section 4.

o If n is of type 5, then nothing new has happened between n’ and n. This is because
the same path has already occurred earlier in the tableau between n” and n’. Even
the Parikh-vector of transitions fired between n’ and n has already been recorded
in the label of n’. Basically this means that if any unsuccessful run can be found,
then it can be found elsewhere in the tableau in an easier (shorter) way.

4 Soundness and Completeness

First recall a general lemma that is very useful for decidability problems about Petri nets.

Lemma 4.1 (Dickson’s lemma) Given an infinite sequence of vectors My, My, Ms, . ..
in IN* there are i < j s.t. M; < M; (< taken componentwise).

Lemma 4.2 The tableau for a given root is finite.

Proof Let 7 be the tableau with root g = ®¢ and m the number of symbols in ®,.
It is easy to see that the size of the closure (i.e. the subformulae, modulo unfolding) of
®y is bounded by m. Therefore at most 2™ different sequents I' can occur in nodes of
the tableau and there are at most 2™ different Int relations. Let ¢ be the number of
transitions in the Petri net. Then each node has at most maxz{2,¢} children.

Assume that there is an infinite path in the tableau. Because of the special rule w
and Dickson’s lemma (4.1) the number of different markings ¥ occurring in nodes of
the tableau is finite. Thus there are only finitely many different paths between different
nodes with the same marking ¥ and the same sequence of formulae I'.

Because of the special rule M all the Parikh-vectors of these paths will eventually be
stored in the labels of the nodes. So the path will end by termination condition 5.

Thus every path in the tableau has finite length. As each node has only finitely many
children the tableau is finite. O

Lemma 4.3 [f ¥ | ®g then there is a successful tableau.

Proof Starting with the root-node no({}) : ¥ = @, apply the rules until the tableau is
constructed. The construction terminates by Lemma 4.2.

We will assume that there exists an unsuccessful terminal n(D) : ¥ F I' and derive a
contradiction. There are two cases:

1. n is of type 1. Then n is of the form n(D) : ¥ F @ and ¥ doesn’t satisfy Q.
Therefore n is a false node. By condition Q1 and Q2 from Def. 2.7 it follows that
we could construct another tableau without using the w-rule that has a path leading
toanode ny(?) : X' F @ st. ¥ < Yand Vs € 5. ¥'(s) # ¥(s) = Y(s) =w and
Y/ fails (). This is a contradiction, because by Lemma 3.1 the node ny should be
true.

2. If n 1s of type 4 then because of condition Q1 and Q2 for any £ € IN it is possible
to construct another tableau without using the M- and w-rules s.t. this tableau
contains two nodes ny(?) : ¥y FT' < mp(?7) : Xa B T, Eg > ¥y, Vs € S.3(s) =
w = Yq(s) > k and every internal circuit of the path ny ... ny has p-characteristic.

Let 0 = trans(ny ...ny). By our assumption the run o“ starting at ¥; satisfies
some formula of I'. Let {®4,...,®;} be the satisfied formulae. Let & be the Parikh-
vector of 0. We know that ¢ > 0. An internal path starting with ®; of the
form ¥y F ¢y ... 8 =Y 4+0F ®,...8 +i0 F &,... which is constructed by
certain rules must be periodic. Especially some formula ®; must occur infinitely
often. Now construct this periodic internal path 7 = ¥y F ®;...%; + 1 * md F
O;,...% +j+*md bt ®,.... The construction is guided by inductively associating
to each pair ¥ F & a suffix p; of 0¥ s.t. p;(0) = ¥ and p; satisfies ®. For the initial
pair ¥y F ®; this is 0¢ itself. Now we define how to select the (x + 1)-th element
Y'F @ and p,y1, given the z-th element ¥+ @ and p,.

If & =) and the @-rule is applied, then ¥ F & is the last node of 7. In
the original tableau there is a corresponding marking ¥, s.t. ¥ < X, and
Vs € S.3,(s) # X(s) = Xu(s) =w A X(s) > k. k' € N is finite, but we
can choose it arbitrarily high, because we can choose k arbitrarily high and

F>0. As ¥, £ Q it follows that ¥ £ @, because of condition Q2 defined in
Def. 2.7.

If ® = WATY and A is applied to @, then ¥/ = X, @ is either ¥ or T, according
to the choice in the path from ny to ny, and p;11 = p;.

If ® =¥ VT and V is applied to ®, then ¥/ =X, p;41 = p; and
o — {\I' if p—sigps, V) < p— sig(p;, 1)

T, otherwise

If & = ©4V then © is applied and & = W, p;1; = pgl) and Y’ is the state
corresponding to p;4+1(0).
If & =0Z.V and o7 is applied then ¥/ =3, &' = U[o 7.V /Z] and p, 41 = p;.

There are two possible sub-cases:

(a)

7 is finite.
Then the last node must be of the form ¥ F (), and the Q-rule is applied.
Therefore no run starting at ¥ satisfies (). This is a contradiction, as the node

¥ F @ should be true.

7 1s infinite.

Let Z be the characteristic of #. Then Z is also the characteristic of some
internal circuit of ny ... ny, and therefore a p-variable. Assign to each element
Y F @ of 7 (with corresponding run p) a truncated prefix of u — sig(p, ®) by
removing all ordinals corresponding to p-variables lower than Z. Let T, be
the sequence of truncated signatures associated with =.

The sequence T, is non-increasing, because no variable higher than 7 is ever
unfolded, and because of the way we defined the internal path where the V-
rule was applied. As we have shown before an infinite number of sequents
of the form Xy + j* mo - ®; for ¢ = 1,2,... occur in 7, s.t. each has the
associated run o“. So the associated truncated p-signatures are the same.
This is a contradiction, because the truncated p-signature should decrease as
the variable 7 is unfolded between two occurrences of this sequent.

Lemma 4.4 [f there is a successful tableau, then Yg E ®q.

Proof Assume that there is a successful tableau 7 for ¥g F ®q, but X £ ®¢. We will
derive a contradiction.

Assuming that ¥g & @y there must be a run oy starting at ¥g s.t. o¢ & ||Pol|. We

shall use this run to show the existence of an unsuccessful terminal, contradicting the
success of 7.

To do this, we first use oy to construct a (possibly infinite) path 7’ in a tableau 7’

constructed without using the special rules (i.e. by the basic rules only). Using this

10

path we shall then prove the existence of a finite unsuccesstul path = in the tableau 7
constructed by all rules.

To serve as guide during the construction of the path 7’ = ngnyin, ..., we inductively
associate to each node n; a suffix p; of og s.t. the state of n; is p;(0) and p; fails every
formula of n;. The suffix associated with the root ng is og. If n; is a terminal of type 1, 2,
3 or 4 then (p;, n;) is the last element of 7. Otherwise its successor n;41 and associated
suffix p;11 are chosen as follows:

o If the (O-rule is applied to n;, then p,y; = pgl), and n;4q is the child of n; having
pi+1(0) as state;

o If the A-rule is applied then to n;, then p;11 = p; and n;;4 is a child of n; s.t. the
v-signature of p; is preserved (if p fails ® A U with v-signature £, then p fails either
¢ or ¥ with v-signature &).

o If one of the rules V. () or o7 is applied then p,1; = p; and n;yq is the only child
of n;.

As no special rules are used the labels of all nodes are empty. It follows from Lemma 3.1
that every node of 7’ is false. There are two cases:

1. #" is infinite.

As there are only finitely many subformulae of ®q, there are only finitely many
different sequents I' in the tableau 7/. So 7’ must contain an infinite subsequence
Moy s Mgy« - 8.6 m ({}) 1 X, F T Let I' = @4,...,®,. We assign to each node
N, a vector of signatures #; = (v —sig(P1, py;)y ..., v —5ig(Py, pim,)). By Dickson’s
Lemma there are two indices ¢ < j s.t. 7; < 7; and X, < ij. Note that the
relation between z; and ; is the pointwise order on vectors, while the order on their
components is the lexicographic order.

Now we prove that every internal circuit of n, ... n,, has p-characteristic.

Assume there is an internal circuit y of ny, ... n,, with v-characteristic Z. Assign
to each element (ng, ®1) of v a prefix of v — sig(®y, pi) obtained by removing all
ordinals corresponding to v-variables lower than Z. Let T, be the sequence of
truncated signatures corresponding to v. We claim that T, is non-increasing. Let
ny and npyq be two consecutive nodes of ~. If ny # M, then njyq 1s a successor
of ny and the truncated signature cannot increase when moving from ny to njyq,
because no variable higher than 7 is ever unfolded and because of the way the
branch is chosen at the A-nodes. If n; = Mo, then np41 = np,41 and since 7; < 1;
the truncated signature cannot increase as well.

Since Z is unfolded somewhere in v, the last element of T, is lexicographically less
than the first. This contradicts the assumption that z; < z;. Therefore Z must be
a p-variable.

Using these properties we will construct a tableau 7" by using the basic rules and
the w-rule, but omitting the M-rule. The condition Q1 from Def. 2.7 ensures that
7" contains two nodes ny({}) : ¥ F I' < na({}) : ¥ F T, s.t. every internal circuit
between them has p-characteristic. (X will possibly contain ws). There are two
cases:

11

(a) Either the w-rule has been applied before n,,, and n; corresponds to n,,, and
ny to Moy -

(b) Or the w-rule is applied at M - Let 7, be the path from n,, to Mo, - Then
ny corresponds to the modified M, and ny corresponds to the node that is
reached from n; via 7.

Note that now both n; and ny have the same marking ¥ (which can contain ws).

Let 6 be the Parikh-vector of the sequence of transitions fired between ny and n,.
As ¥, < ij we know that 6 > 0.

Now we construct the tableau 7" using all rules and show that it must contain
a terminal of type 4 that occurs at the same place as ny, or even before. Note
that ny; would be a candidate for such a terminal, were it not for the M-rule and
termination condition 5. We will start with the tableau 7”7 and successively cut out
segments of the path leading from the root to ny, thus obtaining a shorter path
leading to a type 4 terminal. We repeat this until termination condition 5 is not
satisfied anywhere in this path. Thus we obtain a tableau that could have been
constructed from scratch by using all rules. Let n”, n’ and n be the nodes that
satisfy the conditions of the M-rule and 7y be the path from the root to n; in 7.
Note that no application of the w-rule takes place between n” and n, as well as
between n; and ny. There are four cases:

(a) n < m
Let « be the path from n’ to n. In the path from n to n; we can cut out all
the subpaths equal to «, thus obtaining a shorter path. ny still satisfies the
conditions to be a type 4 terminal.

(b) ' < mp < n
Let a be the path from n to ny and the path from ny; to n. Let nz be the
node that can be reached from n’ with the path afg. It follows that ny < ny
and nz is a type 4 terminal.

(c) n" < m < n'
Let a be the path from n to ny and the path from ny; to n. Let nz be the
node that can be reached from n” with the path af. It follows that nz < ny
and nz is a type 4 terminal.

(d) m < n”
Let « be the path from n’ to n. In the path from n to ny; we can now cut out
all subpaths equal to «. All internal circuits of the path ny...ny still have
p-characteristic, because Int(n”, n’') = Int(n”,n). Let 6" be the Parikh-vector
of the sequence of transitions fired in «. ny is still a type 4 terminal, because
n now carries the additional label (¢, n”) and n” > ny.

So 7" must contain an unsuccessful terminal. Since the tableau for a given root is
unique it follows that 7”7 = 7. This is a contradiction, as 7 is successful.

.« is finite.

Let n be the last node of #’. n cannot be a terminal of type 5, because all labels
are empty in 7/. n cannot be a terminal of type 2 or 3, because n is false. So n
must be a terminal of type 1 or 4.

12

(a) If n is of type 1 then it must have the form n({}) : ¥ F @ s.t. ¥ &€ W(Q).
There is a path 7 in 7 corresponding to a subsequence o of oy s.t. ws last
node is n'(?7) : ¥ F @ and 3¥". ¥/ = ¥ 4+ w¥”. It follows from condition Q1 in

Def. 2.7 that ¥ ¢ W(@Q). So n’ is an unsuccessful node in 7, a contradiction.

(b) If n is of type 4, then we have the same situation as in case 1.

5 Example

Figure 1: Does this system satisfy the formula va. ©, (¢ A py. @y (vz. ©c (2 A©qy))) 7

No. As the tableau is quite large we only describe one unsuccessful branch. 3 is the

initial marking. ¥ = (1,0,1,0), ¥5 = (1,1,1,1), ¥3 = (1,w, 1,w), ¥4 = (1,w,0,w).

YSFve. Oy (e Apy. O (vz. O (2 A Oay))) LRSS Oule A py. ©p (vz. ©c (2 AN Ogy
9, YobaApy. O (vz. O (2 A Ogy
A4w

)
)
—= Vs b ve. O (@ A py. O (vz. O (2 A Oqy)))
22, Ys b Oule Apy. O (vz. O (2 A Oay))) Ok a A py. Oy (vz. O (2 AOgy))

)

A

—— o Ns b opy. O (V2. O,

i>nz:Z4|—I/Z.QC(Z/\@dy —>Z4|—® (z/\@ogy)&zzll—z/\@dy

A Gay) 25 Sa b Oy(vr. O (2 A ©ay))

M ns({ (0,2,0 Dyn)}) i Sa b vz, 00 (2 A Ogy)
22 na({}) s Bk Oz A Ogy) - n5<{}> Sq b2 AGay - Sk Oy
HOIN Sy S py. Oy (vz. O (2 AOgy))

(
)
L>§]4|—1/,Z.®C(z/\®dy)—>Z4|—® (z/\Qdy)&Zﬁz/\@dy
(
)

The last node in this path already occurred earlier at ny, and all internal paths between
them (only one in this case) have p-characteristic, because the highest unfolded variable y

13

is a p-variable. The only problem is that the Parikh-vector of the sequence of transitions
fired between them is not positive. It is b+ 3% ¢+ d = (0,—5,0,3). Fortunately we have
a label at ng with an entry marked with ng, which is below ny (and thus we may use it).
The question is now if there is a £ € IN s.t. (0,—5,0,3) + k *(0,2,0,—1) > 0 7 We see
that there is one (in this case only 1) solution, k& = 3. Thus termination-condition 4 is
satisfied and the branch is unsuccessful.

It can be verified that even a slight change of the system makes it satisfy the formula.
If the arc from 3 to b is labelled by 13 instead of 11, then no infinite sequence of the form
(be™d)“ is possible, although such sequences of arbitrary length are possible if enough a’s
are done first. Thus the above construction is impossible. Any infinite path must contain
infinitely many a’s and in the tableau each a-action is accompanied by an unfolding of
the outermost v-variable . Therefore the system satisfies the formula.

6 Extensions

The restrictions on the elementary predicates in Def. 2.7 basically amount to the fact
that every predicate has the form P := {ay < by, 20 < ko,... 2, < k,}, where 21,..., 2,
are the places in the net and ky,..., %k, € NU {w}. A marking ¥ satisfies the predicate

A possible generalization is to allow conditions of the form s; = k; instead of s; < k.
The only problem with this is the application of the w-rule. We can no longer assume
that if a marking ¥ fails a predicate P, then every marking ¥/ > ¥ also fails P. So we
can no longer assume that whenever the w-rule is applicable, an infinite path could be
created leading to markings with arbitrary high numbers of tokens in some places. This
is because now it might be possible to terminate this path by termination condition 3.
The solution is to modify the w-rule appropriately.

ny(D) : o B T — n3(D) : Yo + w(Xy — ¥1) F T if there is a previous node
ni(?7): Xy F st ng > my and

e Yy > ¥, and there is a place s s.t. ¥(s) < ¥a(s) # w and

o Let X7,..., X" be the states of nodes in the tableau between ny and ny where the @-
rule is applied and P, ..., P, the corresponding predicates. Vi € {1,... ., m}.Vk €
IN. X!+ k(S — Xp) € W(P).

Note that this condition is still decidable for these predicates.
Now it can be seen that the tableau method can be generalized for predicates satisfying
the following (weaker) conditions:

P1 S ¢W(Q) = S+wY ¢ W(Q)

P2 It is decidable for a marking > and a vector 6 > 0 if thereis an i € IN s.t. & + 16 €
W(Q).

Q2 T +wY EW(Q) = Fke NVK >k (S+KY) & W(Q).

14

7 Conclusion

We have presented a tableau system for model checking Petri nets with a (fairly expres-
sive) fragment of the linear time p-calculus. It uses the technique of examining internal
paths that was first used for finite state systems in [BEM96]. In spite of the restric-
tions defined in Definition 2.7 this tableau system is still a true generalization of the
one for finite systems in [BEM96]. This is due to the fact that the strong nexttime-
operator () can be expressed by the weak nexttime-operator © and a predicate P s.t.
Y e W(P) & 3¥ 5 Y. As we can model finite systems with Petri nets by assigning a
place to each state and a transition to each arc the different states will be incomparable
and thus P will satisfy the conditions @1 and ()2 from Definition 2.7. Of course this is
not the case for infinite state systems.

Even for finite state systems the complexity of the algorithm is exponential [BEM96].
For general Petri nets the method relies on Dickson’s lemma for termination and is
therefore not primitive recursive.

Although the tableau is sound and complete it is not intended to be used as a decision
procedure, but rather as a proof method that could be implemented in the framework of
a theorem prover with human interaction.

Acknowledgement [would like to thank Javier Esparza and Angelika Mader for many
helpful discussions.

References

[BEM96] J. Bradfield, J. Esparza, and A. Mader. An effective tableau system for the
linear time p-calculus. In F. Meyer auf der Heide and B. Monien, editors,

Proceedings of ICALP’96, number 1099 in LNCS. Springer Verlag, 1996.
[Bra92] J. Bradfield. Verifying Temporal Properties of Systems. Birkhauser, 1992.

[Esp] Javier Esparza. Decidability of model checking for infinite-state concurrent
systems. To appear in Acta Informatica.

[SW90] C. Stirling and D. Walker. Ccs, liveness, and local model checking in the
linear time p-calculus. In Proceedings of the First International Workshop on
Automatic Verification Methods for Finite State Systems, number 407 in LNCS,
pages 166-178. Springer Verlag, 1990.

[SWI1] C. Stirling and D. Walker. Local model checking in the modal p-calculus.
Theoretical Computer Science, 89:161-177, 1991.

15

SEFB 342:

Methoden und Werkzeuge fiir die Nutzung paralleler
Rechnerarchitekturen

bisher erschienen :

Reihe A
342/1/90 A
342/2/90 A

342/3/90 A

342/4/90 A

342/5/90 A
342/6/90 A
342/7/90 A
342/8/90 A

342/9/90 A

342/10/90 A
342/11/90 A

342/12/90 A
342/13/90 A
342/14/90 A

342/15/90 A
342/16/90 A
342/17/90 A

342/18/90 A

Robert Gold, Walter Vogler: Quality Criteria for Partial Order Se-

mantics of Place/Transition-Nets, Januar 1990

Reinhard Féfimeier: Die Rolle der Lastverteilung bei der numeri-
schen Parallelprogrammierung, Februar 1990

Klaus-Jorn Lange, Peter Rossmanith: Two Results on Unambi-
guous Circuits, Februar 1990

Michael Griebel: Zur Lésung von Finite-Differenzen- und Finite-
Element-Gleichungen mittels der Hierarchischen Transformations-

Mehrgitter-Methode

Reinhold Letz, Johann Schumann, Stephan Bayerl, Wolfgang Bibel:
SETHEO: A High-Performance Theorem Prover

Johann Schumann, Reinhold Letz: PARTHEO: A High Performan-
ce Parallel Theorem Prover

Johann Schumann, Norbert Trapp, Martin van der Koelen: SE-
THEO/PARTHEO Users Manual

Christian Suttner, Wolfgang Ertel: Using Connectionist Networks
for Guiding the Search of a Theorem Prover

Hans-Jorg Beier, Thomas Bemmerl, Arndt Bode, Hubert Ertl, Olav
Hansen, Joset Haunerdinger, Paul Hofstetter, Jaroslav Kremenek,
Robert Lindhof, Thomas Ludwig, Peter Luksch, Thomas Treml:
TOPSYS, Tools for Parallel Systems (Artikelsammlung)

Walter Vogler: Bisimulation and Action Refinement

Jorg Desel, Javier Esparza: Reachability in Reversible Free- Choice
Systems

Rob van Glabbeek, Ursula Goltz: Equivalences and Refinement
Rob van Glabbeek: The Linear Time - Branching Time Spectrum

Johannes Bauer, Thomas Bemmerl, Thomas Treml: Leistungsana-
lyse von verteilten Beobachtungs- und Bewertungswerkzeugen

Peter Rossmanith: The Owner Concept for PRAMs
G. Bockle, S. Trosch: A Simulator for VLIW-Architectures

P. Slavkovsky, U. Riide: Schnellere Berechnung klassischer Matrix-
Multiplikationen

Christoph Zenger: SPARSE GRIDS

Reihe A

342/19/90 A
342/20/90 A
342/21/90 A

342/22/90 A

342/23/90 A

342/24/90 A

342/25/90 A

342/26/90 A

342/27/90 A
342/28/90 A

342/29/90 A

342/30/90 A
342/31/90 A

342/32/90 A
342/33/90 A
342/1/91 A
342/2/91 A
342/3/91 A

342/4/91 A

Michael Griebel, Michael Schneider, Christoph Zenger: A combina-

tion technique for the solution of sparse grid problems

Michael Griebel: A Parallelizable and Vectorizable Multi- Level-
Algorithm on Sparse Grids

V. Diekert, E. Ochmanski, K. Reinhardt: On confluent semi-

commutations-decidability and complexity results

Manfred Broy, Claus Dendorfer: Functional Modelling of Opera-
ting System Structures by Timed Higher Order Stream Processing
Functions

Rob van Glabbeek, Ursula Goltz: A Deadlock-sensitive Congruence
for Action Refinement

Manfred Broy: On the Design and Verification of a Simple Distri-
buted Spanning Tree Algorithm

Thomas Bemmerl, Arndt Bode, Peter Braun, Olav Hansen, Peter
Luksch, Roland Wismiiller: TOPSYS - Tools for Parallel Systems

(User’s Overview and User’s Manuals)

Thomas Bemmerl, Arndt Bode, Thomas Ludwig, Stefan Tritscher:

MMK - Multiprocessor Multitasking Kernel (User’s Guide and
User’s Reference Manual)

Wolfgang Ertel: Random Competition: A Simple, but Efficient Me-
thod for Parallelizing Inference Systems

Rob van Glabbeek, Frits Vaandrager: Modular Specification of Pro-
cess Algebras

Rob van Glabbeek, Peter Weijland: Branching Time and Abstrac-
tion in Bisimulation Semantics

Michael Griebel: Parallel Multigrid Methods on Sparse Grids

Rolf Niedermeier, Peter Rossmanith: Unambiguous Simulations of
Auxiliary Pushdown Automata and Circuits

Inga Niepel, Peter Rossmanith: Uniform Circuits and Exclusive
Read PRAMs

Dr. Hermann Hellwagner: A Survey of Virtually Shared Memory
Schemes

Walter Vogler: Is Partial Order Semantics Necessary for Action
Refinement?

Manfred Broy, Frank Dederichs, Claus Dendorfer, Rainer Weber:
Characterizing the Behaviour of Reactive Systems by Trace Sets

Ulrich Furbach, Christian Suttner, Bertram Fronhofer: Massively
Parallel Inference Systems

Rudolf Bayer: Non-deterministic Computing, Transactions and Re-
cursive Atomicity

Reihe A

342/5/91 A
342/6/91 A

342/7/91 A

342/8/91 A
342/9/91 A

342/10/91
342/11/91
342/12/91

342/13/91

342/14/91
342/15/91

342/16/91

342/17/91
342/18/91
342/19/91
342/20/91

342/21/91

342/22/91

A

A

A

A

Robert Gold: Dataflow semantics for Petri nets
A. Heise; C. Dimitrovici: Transformation und Komposition von
P/T-Netzen unter Erhaltung wesentlicher Eigenschaften

Walter Vogler: Asynchronous Communication of Petri Nets and the
Refinement of Transitions

Walter Vogler: Generalized OM-Bisimulation

Christoph Zenger, Klaus Hallatschek: Fouriertransformation auf
diinnen Gittern mit hierarchischen Basen

Erwin Loibl, Hans Obermaier, Markus Pawlowski: Towards Paral-
lelism in a Relational Database System

Michael Werner: Implementierung von Algorithmen zur Kompak-
tifizierung von Programmen fiir VLIW-Architekturen

Reiner Miiller: Implementierung von Algorithmen zur Optimierung
von Schleifen mit Hilfe von Software-Pipelining Techniken

Sally Baker, Hans-Jorg Beier, Thomas Bemmerl, Arndt Bode, Hu-
bert Ertl, Udo Graf, Olav Hansen, Josef Haunerdinger, Paul Hof-
stetter, Rainer Knédlseder, Jaroslav Kremenek, Siegfried Langen-
buch, Robert Lindhof, Thomas Ludwig, Peter Luksch, Roy Milner,
Bernhard Ries, Thomas Treml: TOPSYS - Tools for Parallel Sy-

stems (Artikelsammlung); 2., erweiterte Auflage

Michael Griebel: The combination technique for the sparse grid
solution of PDE’s on multiprocessor machines

Thomas F. Gritzner, Manfred Broy: A Link Between Process Alge-
bras and Abstract Relation Algebras?

Thomas Bemmerl, Arndt Bode, Peter Braun, Olav Hansen, Tho-
mas Treml, Roland Wismiiller: The Design and Implementation of
TOPSYS

Ulrich Furbach: Answers for disjunctive logic programs

Ulrich Furbach: Splitting as a source of parallelism in disjunctive
logic programs

Gerhard W. Zumbusch: Adaptive parallele Multilevel-Methoden

zur Losung elliptischer Randwertprobleme

M. Jobmann, J. Schumann: Modelling and Performance Analysis
of a Parallel Theorem Prover

Hans-Joachim Bungartz: An Adaptive Poisson Solver Using Hier-
archical Bases and Sparse Grids

Wolfgang Ertel, Theodor Gemenis, Johann M. Ph. Schumann, Chri-
stian B. Suttner, Rainer Weber, Zongyan Qiu: Formalisms and Lan-
guages for Specifying Parallel Inference Systems

Reihe A

342/23/91
342/24/91

342/25/91
342/26/91

342/27/91

342/28/91
342/29/91

342/30/91
342/31/91

342/32/91

A

342/1/92 A

342/2/92 A

342/2-2/92 A

312/3/92 A

342/4/92 A

342/5/92 A

312/6/92 A

342/7/92 A

312/8/92 A

Astrid Kiehn: Local and Global Causes
Johann M.Ph. Schumann: Parallelization of Inference Systems by
using an Abstract Machine

Eike Jessen: Speedup Analysis by Hierarchical Load Decomposition

Thomas F. Gritzner: A Simple Toy Example of a Distributed Sy-
stem: On the Design of a Connecting Switch

Thomas Schnekenburger, Andreas Weininger, Michael Friedrich: In-
troduction to the Parallel and Distributed Programming Language

ParMod-C

Claus Dendorfer: Funktionale Modellierung eines Postsystems

Michael Griebel: Multilevel algorithms considered as iterative me-
thods on indefinite systems

W. Reisig: Parallel Composition of Liveness

Thomas Bemmerl, Christian Kasperbauer, Martin Mairandres,
Bernhard Ries: Programming Tools for Distributed Multiprocessor
Computing Environments

Frank LeBlke: On constructive specifications of abstract data types
using temporal logic

L. Kanal, C.B. Suttner (Editors): Informal Proceedings of the
Workshop on Parallel Processing for Al

Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Tho-
mas F. Gritzner, Rainer Weber: The Design of Distributed Systems
- An Introduction to FOCUS

Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Tho-
mas F. Gritzner, Rainer Weber: The Design of Distributed Systems
- An Introduction to FOCUS - Revised Version (erschienen im Ja-
nuar 1993)

Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Tho-
mas F. Gritzner, Rainer Weber: Summary of Case Studies in FO-

CUS - a Design Method for Distributed Systems

Claus Dendorfer, Rainer Weber: Development and Implementation
of a Communication Protocol - An Exercise in FOCUS

Michael Friedrich: Sprachmittel und Werkzeuge zur Unterstiit- zung
paralleler und verteilter Programmierung

Thomas F. Gritzner: The Action Graph Model as a Link between
Abstract Relation Algebras and Process-Algebraic Specifications

Sergei Gorlatch: Parallel Program Development for a Recursive Nu-
merical Algorithm: a Case Study

Henning Spruth, Georg Sigl, Frank Johannes: Parallel Algorithms
for Slicing Based Final Placement

Reihe A
342/9/92 A
342/10/92 A

342/11/92 A

342/12/92 A
342/13/92 A

342/14/92 A
342/15/92 A

342/16/92 A
342/17/92 A

342/18/92 A

342/19/92 A
342/20/92 A
342/21/92 A

342/22/92 A

342/23/92 A
342/24/92 A

342/25/92 A
342/26/92 A

342/1/93 A

342/2/93 A

Herbert Bauer, Christian Sporrer, Thomas Krodel: On Distributed
Logic Simulation Using Time Warp

H. Bungartz, M. Griebel, U. Riide: Extrapolation, Combination and
Sparse Grid Techniques for Elliptic Boundary Value Problems

M. Griebel, W. Huber, U. Riide, T. Stértkuhl: The Combination
Technique for Parallel Sparse-Grid-Preconditioning and -Solution
of PDEs on Multiprocessor Machines and Workstation Networks

Rolf Niedermeier, Peter Rossmanith: Optimal Parallel Algorithms
for Computing Recursively Defined Functions

Rainer Weber: Eine Methodik fiir die formale Anforderungsspezif-
kation verteilter Systeme

Michael Griebel: Grid— and point—oriented multilevel algorithms

M. Griebel, C. Zenger, S. Zimmer: Improved multilevel algorithms
for full and sparse grid problems

J. Desel, D. Gomm, E. Kindler, B. Paech, R. Walter: Bausteine

eines kompositionalen Beweiskalkiils fiir netzmodellierte Systeme

Frank Dederichs: Transformation verteilter Systeme: Von applika-
tiven zu prozeduralen Darstellungen

Andreas Listl, Markus Pawlowski: Parallel Cache Management of
a RDBMS

Erwin Loibl, Markus Pawlowski, Christian Roth: PART: A Parallel
Relational Toolbox as Basis for the Optimization and Interpretation
of Parallel Queries

Jorg Desel, Wolfgang Reisig: The Synthesis Problem of Petri Nets
Robert Balder, Christoph Zenger: The d-dimensional Helmholtz
equation on sparse Grids

[lko Michler: Neuronale Netzwerk-Paradigmen zum Erlernen von
Heuristiken

Wolfgang Reisig: Elements of a Temporal Logic. Coping with Con-
currency

T. Stortkuhl, Chr. Zenger, S. Zimmer: An asymptotic solution for
the singularity at the angular point of the lid driven cavity

Ekkart Kindler: Invariants, Compositionality and Substitution
Thomas Bonk, Ulrich Riide: Performance Analysis and Optimiza-
tion of Numerically Intensive Programs

M. Griebel, V. Thurner: The Efficient Solution of Fluid Dynamics
Problems by the Combination Technique

Ketil Stglen, Frank Dederichs, Rainer Weber: Assumption / Com-
mitment Rules for Networks of Asynchronously Communicating
Agents

Reihe A
342/3/93 A

342/4/93 A

342/5/93 A
342/6/93 A
342/7/93 A

342/8/93 A

342/9/93 A

342/10/93 A
342/11/93 A

342/12/93 A

342/13/93 A

342/14/93 A
342/15/93 A

342/16/93 A

342/17/93 A

342/18/93 A

342/19/93 A

Thomas Schnekenburger: A Definition of Efficiency of Parallel Pro-

grams in Multi-Tasking Environments

Hans-Joachim Bungartz, Michael Griebel, Dierk Réschke, Chri-
stoph Zenger: A Proof of Convergence for the Combination Techni-
que for the Laplace Equation Using Tools of Symbolic Computation

Manfred Kunde, Rolf Niedermeier, Peter Rossmanith: Faster Sor-
ting and Routing on Grids with Diagonals

Michael Griebel, Peter Oswald: Remarks on the Abstract Theory
of Additive and Multiplicative Schwarz Algorithms

Christian Sporrer, Herbert Bauer: Corolla Partitioning for Distri-
buted Logic Simulation of VLSI Circuits

Herbert Bauer, Christian Sporrer: Reducing Rollback Overhead in
Time-Warp Based Distributed Simulation with Optimized Incre-
mental State Saving

Peter Slavkovsky: The Visibility Problem for Single-Valued Surface
(z = {(x,y)): The Analysis and the Parallelization of Algorithms

Ulrich Riide: Multilevel, Extrapolation, and Sparse Grid Methods

Hans Regler, Ulrich Riide: Layout Optimization with Algebraic
Multigrid Methods

Dieter Barnard, Angelika Mader: Model Checking for the Modal

Mu-Calculus using Gauf} Elimination

Christoph Pflaum, Ulrich Riide: Gaufl’ Adaptive Relaxation for
the Multilevel Solution of Partial Differential Equations on Sparse
Grids

Christoph Pflaum: Convergence of the Combination Technique for
the Finite Element Solution of Poisson’s Equation

Michael Luby, Wolfgang Ertel: Optimal Parallelization of Las Vegas
Algorithms

Hans-Joachim Bungartz, Michael Griebel, Dierk Réschke, Chri-
stoph Zenger: Pointwise Convergence of the Combination Technique
for Laplace’s Equation

Georg Stellner, Matthias Schumann, Stefan Lamberts, Thomas
Ludwig, Arndt Bode, Martin Kiehl und Rainer Mehlhorn: Deve-
loping Multicomputer Applications on Networks of Workstations
Using NXLib

Max Fuchs, Ketil Stglen: Development of a Distributed Min/Max
Component

Johann K. Obermaier: Recovery and Transaction Management in
Write-optimized Database Systems

Reihe A

342/20/93 A

342/01/94 A

342/02/94 A

342/03/94 A

342/04/94 A

342/05/94 A

342/06/94 A
342/07/94 A
342/08/94 A
342/09/94 A
342/10/94 A
342/11/94 A

342/12/94 A

342/13/94 A

342/14/94 A
342/15/94 A

342/16/94 A
342/17/94 A

342/18/94 A

Sergej Gorlatch: Deriving Efficient Parallel Programs by Systema-
ting Coarsing Specification Parallelism

Reiner Hiittl, Michael Schneider: Parallel Adaptive Numerical Si-
mulation

Henning Spruth, Frank Johannes: Parallel Routing of VLSI Circuits
Based on Net Independency

Henning Spruth, Frank Johannes, Kurt Antreich: PHIroute: A Par-
allel Hierarchical Sea-of-Gates Router

Martin Kiehl, Rainer Mehlhorn, Matthias Schumann: Parallel Mul-
tiple Shooting for Optimal Control Problems Under NX/2

Christian Suttner, Christoph Goller, Peter Krauss, Klaus-Jérn Lan-
ge, Ludwig Thomas, Thomas Schnekenburger: Heuristic Optimiza-
tion of Parallel Computations

Andreas Listl: Using Subpages for Cache Coherency Control in Par-
allel Database Systems

Manfred Broy, Ketil Stglen: Specification and Refinement of Finite
Dataflow Networks - a Relational Approach

Katharina Spies: Funktionale Spezifikation eines Kommunika-
tionsprotokolls

Peter A. Krauss: Applying a New Search Space Partitioning Me-
thod to Parallel Test Generation for Sequential Circuits

Manfred Broy: A Functional Rephrasing of the Assumption/Com-
mitment Specification Style

Eckhardt Holz, Ketil Stglen: An Attempt to Embed a Restricted
Version of SDL as a Target Language in Focus

Christoph Pflaum: A Multi-Level-Algorithm for the Finite-
Element-Solution of General Second Order Elliptic Differential
Equations on Adaptive Sparse Grids

Manfred Broy, Max Fuchs, Thomas F. Gritzner, Bernhard Schétz,
Katharina Spies, Ketil Stglen: Summary of Case Studies in FOCUS
- a Design Method for Distributed Systems

Maximilian Fuchs: Technologieabhéngigkeit von Spezifikationen di-
gitaler Hardware

M. Griebel, P. Oswald: Tensor Product Type Subspace Splittings
And Multilevel Iterative Methods For Anisotropic Problems

Gheorghe Stefanescu: Algebra of Flownomials

Ketil Stglen: A Refinement Relation Supporting the Transition
from Unbounded to Bounded Communication Buffers

Michael Griebel, Tilman Neuhoeffer: A Domain-Oriented Multilevel

Algorithm-Implementation and Parallelization

Reihe A

342/19/94 A

342/20/94 A

342/01/95 A

342/02/95 A
342/03/95 A

342/04/95 A

342/05/95 A

342/06/95 A
342/07/95 A

342/08/95 A
342/09/95 A
342/10/95 A

342/11/95 A
342/12/95 A

342/13/95 A

342/14/95 A

342/15/95 A

342/16/95 A

342/17/95 A
342/18/95 A

Michael Griebel, Walter Huber: Turbulence Simulation on Sparse
Grids Using the Combination Method

Johann Schumann: Using the Theorem Prover SETHEO for verify-
ing the development of a Communication Protocol in FOCUS - A
Case Study -

Hans-Joachim Bungartz: Higher Order Finite Elements on Sparse
Grids

Tao Zhang, Seonglim Kang, Lester R. Lipsky: The Performance of
Parallel Computers: Order Statistics and Amdahl’s Law

Lester R. Lipsky, Appie van de Liefvoort: Transformation of the
Kronecker Product of Identical Servers to a Reduced Product Space

Pierre Fiorini, Lester R. Lipsky, Wen-Jung Hsin, Appie van de Lief-
voort: Auto-Correlation of Lag-k For Customers Departing From
Semi-Markov Processes

Sascha Hilgenfeldt, Robert Balder, Christoph Zenger: Sparse Grids:

Applications to Multi-dimensional Schrédinger Problems
Maximilian Fuchs: Formal Design of a Model-N Counter

Hans-Joachim Bungartz, Stefan Schulte: Coupled Problems in Mi-
crosystem Technology

Alexander Pfaffinger: Parallel Communication on Workstation Net-
works with Complex Topologies

Ketil Stglen: Assumption/Commitment Rules for Data-flow Net-
works - with an Emphasis on Completeness

Ketil Stglen, Max Fuchs: A Formal Method for Hardware/Software
Co-Design
Thomas Schnekenburger: The ALDY Load Distribution System

Javier Esparza, Stefan Romer, Walter Vogler: An Improvement of

MecMillan’s Unfolding Algorithm

Stephan Melzer, Javier Esparza: Checking System Properties via
Integer Programming

Radu Grosu, Ketil Stglen: A Denotational Model for Mobile Point-
to-Point Dataflow Networks

Andrei Kovalyov, Javier Esparza: A Polynomial Algorithm to Com-
pute the Concurrency Relation of Free-Choice Signal Transition
Graphs

Bernhard Schéatz, Katharina Spies: Formale Syntax zur logischen
Kernsprache der Focus-Entwicklungsmethodik

Georg Stellner: Using CoCheck on a Network of Workstations

Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wismiiller:
Workshop on PVM, MPI, Tools and Applications

Reihe A
342/19/95 A

342/20/95 A
342/21/95 A
342/22/95 A

342/23/95 A
342/24/95 A

342/01/96 A

342/02/96 A

342/03/96 A

342/04/96 A

342/05/96 A
342/06/96 A

342/07/96 A
342/08/96 A
342/09/96 A
342/10/96 A
342/11/96 A

342/12/96 A

342/13/96 A

Thomas Schnekenburger: Integration of Load Distribution into
ParMod-C

Ketil Stglen: Refinement Principles Supporting the Transition from
Asynchronous to Synchronous Communication

Andreas Listl, Giannis Bozas: Performance Gains Using Subpages
for Cache Coherency Control

Volker Heun, Ernst W. Mayr: Embedding Graphs with Bounded
Treewidth into Optimal Hypercubes

Petr Jancar, Javier Esparza: Deciding Finiteness of Petri Nets up
to Bisimulation

M. Jung, U. Riide: Implicit Extrapolation Methods for Variable
Coetticient Problems

Michael Griebel, Tilman Neunhoeffer, Hans Regler: Algebraic Mul-
tigrid Methods for the Solution of the Navier-Stokes Equations in
Complicated Geometries

Thomas Grauschopf, Michael Griebel, Hans Regler: Additive
Multilevel-Preconditioners based on Bilinear Interpolation, Matrix

Dependent Geometric Coarsening and Algebraic-Multigrid Coarse-
ning for Second Order Elliptic PDEs

Volker Heun, Ernst W. Mayr: Optimal Dynamic Edge-Disjoint Em-
beddings of Complete Binary Trees into Hypercubes

Thomas Huckle: Efficient Computation of Sparse Approximate In-
verses

Thomas Ludwig, Roland Wismiiller, Vaidy Sunderam, Arndt Bode:
OMIS — On-line Monitoring Interface Specification

Ekkart Kindler: A Compositional Partial Order Semantics for Petri
Net Components

Richard Mayr: Some Results on Basic Parallel Processes
Ralph Radermacher, Frank Weimer: INSEL Syntax-Bericht

P.P. Spies, C. Eckert, M. Lange, D. Marek, R. Radermacher, F. Wei-
mer, H.-M. Windisch: Sprachkonzepte zur Konstruktion verteilter
Systeme

Stefan Lamberts, Thomas Ludwig, Christian Réder, Arndt Bode:
PFSLib — A File System for Parallel Programming Environments
Manfred Broy, Gheorghe Stefanescu: The Algebra of Stream Pro-
cessing Functions

Javier Esparza: Reachability in Live and Safe Free-Choice Petri
Nets is NP-complete

Radu Grosu, Ketil Stglen: A Denotational Model for Mobile Many-
to-Many Data-flow Networks

Reihe A

342/14/96 A

342/15/96 A

Giannis Bozas, Michael Jaedicke, Andreas Listl, Bernhard Mit-
schang, Angelika Reiser, Stephan Zimmermann: On Transforming
a Sequential SQL-DBMS into a Parallel One: First Results and
Experiences of the MIDAS Project

Richard Mayr: A Tableau System for Model Checking Petri Nets

with a Fragment of the Linear Time p-Calculus

SEFB 342 :

Reihe B

342/1/90 B
342/2/90 B
342/3/90 B
342/4/90 B
342/1/91 B
342/2/91 B
342/3/91 B
342/4/91 B
342/5/91 B

312/6/91 B

342/7/91 B
342/1/92 B

342/2/92 B
342/1/93 B
342/2/93 B

342/1/94 B

Methoden und Werkzeuge fiir die Nutzung paralleler
Rechnerarchitekturen

Wolfgang Reisig: Petri Nets and Algebraic Specifications
Jorg Desel: On Abstraction of Nets
Jorg Desel: Reduction and Design of Well-behaved Free-choice Sy-

stems

Franz Abstreiter, Michael Friedrich, Hans-Jiirgen Plewan: Das
Werkzeug runtime zur Beobachtung verteilter und paralleler Pro-
gramime

Barbara Paechl: Concurrency as a Modality
Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier- Toolbox

-Anwenderbeschreibung

Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop
iiber Parallelisierung von Datenbanksystemen

Werner Pohlmann: A Limitation of Distributed Simulation Me-
thods

Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually
Shared Memory Scheme: Formal Specification and Analysis

Dominik Gomm, Ekkart Kindler: Causality Based Specification and
Correctness Proof of a Virtually Shared Memory Scheme

W. Reisig: Concurrent Temporal Logic

Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-
of-Support

Christian B. Suttner: Parallel Computation of Multiple Sets-of-
Support

Arndt Bode, Hartmut Wedekind: Parallelrechner: Theorie, Hard-

ware, Software, Anwendungen

Max Fuchs: Funktionale Spezifikation einer Geschwindigkeits-
regelung

Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: Ein
Literaturiiberblick

Andreas Listl; Thomas Schnekenburger; Michael Friedrich: Zum
Entwurf eines Prototypen fiir MIDAS

