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A Tableau System for Model Checking Petri Netswith a Fragment of the Linear Time �-CalculusRichard Mayr �AbstractWe present a tableau system for model checking Petri nets with a fragment of thelinear time �-calculus (without the strong nexttime operator). The model checkingproblem is already known to be decidable for the full linear time �-calculus [Esp],but the algorithm has non-elementary complexity and gives no insight into theproof process. In contrast to this, tableau systems give a good intuition why aproperty holds. Although the tableau system is sound and complete and yields adecision procedure, it is not intended to be used as such, but rather as a methodfor proving and understanding properties expressed in this calculus.Keywords: temporal logic, linear-time �-calculus, Petri nets, model checking, tableausystems1 IntroductionModel checking is a very successful technique for verifying temporal properties of con-current systems, which is viewed as being essentially algorithmic. The correspondingstandard algorithms fall into two classes: the iterative algorithms and the tableaux-based algorithms. The iterative algorithms compute all the states of the system whichhave the desired property, and usually yield higher e�ciency in the worst case. Thetableaux-based algorithms are designed to check whether a particular expression has atemporal property. This is called local model checking which avoids the investigation offor the veri�cation irrelevant parts of the process being veri�ed. This is due to the factthat the truth of a property at a state may depend on a small neighborhood of the state,rather than the whole system. Therefore this method is applicable for the veri�cation ofsystems with in�nite state spaces. In local model checking the proof system is developedin a goal directed fashion (top down).Tableau systems consist of tree parts: deduction rules, termination conditions andsuccess conditions. The rules are goal-directed; they transform a goal into subgoals thatmust be proved, in order to establish the truth of the root-sequent. The terminationconditions tell when to stop the construction of the tableau (the proof tree). This is thecase when enough information has been collected to decide the truth/falsity of a branch�Address: Institut f�ur Informatik, Technische Universit�at M�unchen, Arcisstr. 21, D-80290 M�unchen,Germany; e-mail: mayrri@informatik.tu-muenchen.de1



in the tableau. Finally, the success conditions tell if the tableau succeeds in establishingthe truth of the root-sequent.Tableau systems are particularly suitable for computer-assisted veri�cation, i.e. the-orem provers with human interaction. This is due to the fact that they give a goodintuition on why a property holds and allow the user to apply his knowledge on the sys-tem to guide the construction of the tableau by choosing the most promising branches ofthe tableau, which will be explored �rst. Although some tableau systems (like the one inthis paper) are complete in the sense that they yield a decision procedure for the chosenlogic and model of systems, they are not intended to be used as such, but rather as aproof method.In the �eld of �xpoint logics, �-calculi have become very popular in the formal veri-�cation community. Most important are the modal �-calculus, which is interpreted overthe states of systems, and the linear time �-calculus, which is interpreted over runs.Complete tableau systems for these calculi and �nite state systems have been describedin [SW90] and [SW91, BEM96], respectively.For in�nite state systems the situation is di�erent. While model checking with themodal �-calculus is undecidable even for very simple models of in�nite state concurrentsystems (for example BPP) [Esp], the tableau systems for model checking Petri netsdescribed in [Bra92] still provide a useful tool for proving properties. In contrast tothis, model checking Petri nets with the linear time �-calculus is decidable [Esp], but notableau method existed yet. This is the contribution of this paper. We use a restrictedversion of the linear time �-calculus without the strong nexttime operator, but includingthe weak nexttime operator.Section 2 contains basic de�nitions about the linear time �-calculus. Section 3 de�nesthe tableau system, while section 4 contains the proofs of its soundness and completeness.In section 5 we discuss an example and in section 6 we show some possible generalizationsof the tableau method. The paper closes with a section about complexity matters andrelated work.2 The Linear Time �-CalculusWe now de�ne the linear time �-calculus and the restricted fragment that will be usedin the next section. The language is built from a set of propositions, variables, booleanconnectives, the minimal and maximal �xpoint operators � and �, and two temporaloperators, the strong nexttime 
 and the weak nexttime J. Intuitively, 
� means`there is a next moment in time and � is true at this moment', whereas J� means `ifthere is a next moment in time, then � is true at this moment'.De�nition 2.1 Fix two disjoint countable sets, ZC , the set of propositions, and ZV ,the set of variables, and de�ne Z = ZC [ ZV . Let Act be a countable set of atomicactions. Atomic actions will be denoted by a; b; c; : : : and sets of actions by A;B ; : : :.The formulae of �TL are de�ned by the abstract syntax:� ::= Q j Z j �1 ^ �2 j �1 _ �2 j 
A� j �A� j �Z :� j �Z :�where Q ranges over ZC and Z over ZV . The symbol � ranges over f�; �g. An occurrenceof a variable Z in � is bound i� it is within a subformula �Z :�0 of � and free otherwise.2



If Z is a variable, �[�0=Z ] is the result of simultaneously substituting �0 for all freeoccurrences of Z in �.Furthermore, we assume that in any �TL formula the bound variables are distinct, andall occurrences of bound variables are guarded, i.e. that each occurrence of a variable Zin �Z :� is in a subformula of the type 
A�0 or JA �0. Any formula can be e�ectivelytransformed into an equivalent one ful�lling these restrictions.De�nition 2.2 A labelled transition system T over a set of actions Act consists of a(possibly in�nite) set of states S and a binary relation a!� S �S for each a 2 Act . Thesystem is called rooted if it has a distinguished initial state s0 2 S . A path of T is eitheran in�nite sequence s0 a0! s1 a1! s2 a2! s3 : : : or a �nite sequence s0 a0! s1 a1! : : : an�1! sn suchthat sn has no successors. A run is a path that starts at the initial state. Let R be theset of runs. We shall let � range over runs, and if � = s0 a0! s1 a1! � � � then we write �(i)for si and �i for the path si ai! si+1 ai+1! � � �. The i -th action ai will be denoted by �i .A �-calculus model is a transition system T together with a valuation V : ZV ! 2Rand a valuation W : ZC ! 2S . The denotation k � kTV;W of a �-formula � in the model(T ;V;W) is given by the following rules (omitting the superscript T and the subscriptW, which do not change):kZkV = V(Z )kQkV = f� j �(0) 2 W(Q)gk�1 ^ �2kV = k�1kV \ k�2kVk�1 _ �2kV = k�1kV [ k�2kVk
A �kV = f� j �0 2 A ^ �1 2 k�kVgkJA �kV = f� j �0 2 A ^ �1 2 k�kVg [ f� j �0 62 A _ �(0) 6!gk�Z :�kV = SfR � R j k�kV[Z :=R] � Rgk�Z :�kV = TfR � R j k�kV[Z :=R] � Rgwhere V[Z := R](Z 0) := �V(Z ); if Z 6= Z 0R; if Z = Z 0 .A state s satis�es a formula �, s j= �, i� all runs starting at s satisfy �, i.e. f� j�(0) = sg � k�k. For a run � we also write � j= � instead of � 2 k�k.De�nition 2.3 For all ordinals � 2 Ord , the �xpoint approximants ��Z :� and ��Z :�are de�ned by: �0Z :� = � and �0Z :� = tt , ��+1Z :� = �[��Z :�=Z ], ��Z :� =W��� ��Z :�, ��Z :� = V��� ��Z :�, where � is a limit ordinal.Proposition 2.4 (Knaster-Tarski) �Z :� = W� ��Z :�, �Z :� = V� ��Z :�.De�nition 2.5 The �-signature ��sig(�;�) of a run � w.r.t. a formula � (where � j= �)is the lexicographically least sequence �1; : : : ; �k such that � j= �[��iZi :�i=�Zi :�i ] where�Zi :�i are the �-subformulae of � in order of depth (i.e. in some (�xed) order such thatsubformulae appear after any containing subformulae).Dually, the �-signature of � 6j= � is the least sequence s.t. � 6j= �[��iZi :�i=�Zi :�i ].These preliminary de�nitions apply to �nite or in�nite systems. For a thorough treat-ment of �nite systems refer to [BEM96] and [SW91]. Here we are interested in in�nitesystems described by general Petri nets. Esparza [Esp] has proved that model checking3



Petri nets with the linear time �-calculus is decidable, provided that the propositions sat-isfy certain restrictions. The algorithm works by reduction to the reachability problem forPetri nets and B�uchi-automata. One problem is that this algorithm has non-elementarycomplexity and is therefore not useful in practice. (The problem is at least as hard asthe reachability problem for Petri nets and therefore EXPSPACE-hard). Even more im-portant is that the algorithm yields hardly any insight on why a property holds and isuseless as a proof method. The tableau method described in this paper is a generalizationof the tableau method of [BEM96] and can be used as a proof technique.De�nition 2.6 A labelled Petri net N = (S ;T ;W ;L;Act) consists of a �nite set ofplaces S , a �nite set of transitions T , a function W : S � T [ T � S ! IN thatassigns weights to the arcs, a set of actions Act and a labelling function L : T ! Actthat assigns actions to the transitions. Markings of nets will be denoted by �. As atechnicality markings will be mappings S 7! (IN [ f!g) instead of S 7! IN, where ! isthe �rst limit ordinal.In the rest of the paper we will use a restricted version of the linear time �-calculus.De�nition 2.7 (Restrictions)� The strong nexttime operator
 will be left out completely. This is done in order tomake it impossible to express the state of deadlock with the calculus and so to avoidhaving to solve the reachability problem for Petri nets in the tableau. As mentionedearlier the model checking problem is decidable for the full linear time �-calculus[Esp], but so far there exist no tableau methods for solving the reachability problemfor Petri nets.So we only use the weak nexttime operator J.� The propositions Q 2 ZC must satisfy two restrictions.Q1 � 2 W(Q) ) 8�0 � �: �0 2 W(Q)Q2 (� + !�0) 62 W(Q) ) 9k 2 IN 8k 0 � k : (� + k 0�0) 62 W(Q).3 The Tableau System3.1 The SequentsAn important di�erence between the modal �-calculus and the linear time �-calculus isthe treatment of disjunction. In a tableau system for the modal �-calculus (see [SW91])the sequents have the form � ` �, which means that the state s satis�es the formula �.So � j= �_	 means � 2 k�k[k	k and therefore implies either � j= � or � j= 	. Thusthe two rules � ` � _ 	� ` � � ` � _	� ` 	are complete.For the linear time �-calculus the situation is di�erent, because here � j= � _ 	means f�j�(0) = �g � k�k[k	k. As f�j�(0) = �g is a set of runs (that can have morethan one element) we can no longer infer � j= k�k or � j= k	k: some runs starting at �4



may satisfy � but not 	, while others may satisfy 	 and not �. The solution is to allowsets of formulae in the right hand side of the sequent that are interpreted disjunctively(see [BEM96]). This way, the rule � ` � _	� ` �;	is sound and complete.3.2 The RulesThe rules for the tableau can be divided into two groups: the basic rules and the specialrules. While the basic rules are su�cient for �nite state systems the special rules areneeded for the treatment of Petri nets. We will de�ne and discuss the basic rules �rstas they are more intuitive, and make the necessary adjustments and extensions by thespecial rules later. For convenience of notation we de�ne that �;�; : : : denote sequencesof formulae (i.e. � = �1;�2; : : : ;�n and �A� = �A�1; : : : ;�A�n).^ � ` �;� ^	� ` �;� � ` �;	_ � ` �;� _	� ` �;�;	Q � ` �;Q� ` � where � =2 W(Q)� � ` �A1�1; : : : ;�An�n�1 ` � : : : �k ` � where � = �1; : : : ;�k andf�1; : : : ;�kg = f�0 j 9a 2 n\i=1Ai : � a! �0g�Z � ` �; �Z :�� ` �;�[�Z :�=Z ]Additionally use the following \cleanup-procedure" after each rule application: If a for-mula � occurs more than once in a sequence �, then delete all occurrences but the �rst.Lemma 3.1 The antecedent of a rule is true if and only if all its consequents are true.Proof Trivially from the de�nitions. 2For these basic rules the result of the application of a rule to a sequent is completelydetermined by the sequent. In other words, the children are completely determined bythe parent. We'll see later that this is not the case for the special rules. There severalancestors (in the path from the root to the sequent) must be taken into account.3.3 Paths and Internal PathsA proof tree is a tree of sequents constructed by the iterated application of rules, startingwith a root �0 ` �0. Associated with a path � in a proof tree is a sequence � =t1; t2; : : : ; tn of transitions arising from the applications of the �-rule in �. We denotethis by � = trans(�). 5



In a tableau each node is assigned a unique label ni . Let ni : �i ` �i and nj : �j ` �jbe two nodes in the tableau. By ni ' nj we mean that �i = �j and �i = �j . We writeni � nj if nj occurs earlier on the path from the root to ni . It follows that � is a partialorder on the set of nodes in a tableau.The price we pay for allowing sets of formulae in the right hand side of a sequent isthat a path in the proof tree has a more complex internal structure: a set of internalpaths describing the dependencies between formulae at di�erent nodes. The pathn1 : � ` (�fa;bg� ^ 	) _ �fa;cg	n2 : � ` �fa;bg� ^	;�fa;cg	n3 : �0 ` � ^	;	n4 : �0 ` �;	has the following internal paths:n1 : (�fa;bg� ^ 	) _ �fa;cg	 n1 : (�fa;bg� ^	) _ �fa;cg	# #n2 : �fa;bg� ^	 n2 : �fa;cg	# #n3 : � ^	 n3 : 	# #n4 : � n4 : 	Intuitively the truth of a sequent depends on the structure of the internal paths startingat it, particularly on which � or �-variables are unfolded in those paths.De�nition 3.2 (Internal paths, Internal circuits) Let � be a path of the proof tree.An internal path of � is a �nite or in�nite sequence of tripels (n1;�1;�1)(n2;�2;�2); : : :s.t. �1 appears in n1, and for any two consecutive pairs (n1;�i ;�i); (ni+1;�i+1;�i+1),one of the following cases holds:� ni+1 is a child of ni , no rule is applied to �i and �i+1 = �i , or� ni+1 is a child of ni , some rule di�erent from Q is applied to �i , and �i+1;�i+1are the formula/marking given by the rule application.An internal circuit of a �nite path � = n1n2 : : :nk such that n1 : �1 ` �, nk : �k ` � and�k � �1 is a �nite sequence of internal paths of �((n1;�1;�1) : : : (nk ;�k ;�k )) ((n1;�1;�k+1) : : : (nk ;�k ;�2k )) : : :: : : ((n1;�1;�jk+1) : : : (nk ;�(j+1)k )) for j 2 INsuch that �ik+1 = �ik , �1 = �(j+1)k and �1 � �k and �1 2 �.The characteristic of a �nite internal path is the highest variable that is unfolded (bythe �Z-rule) or the symbol ? if no variable is unfolded; the characteristic of an in�niteinternal path is the highest variable that is unfolded in�nitely often. If the characteristic ofan internal path is a �-variable (�-variable), then we say that the path has �-characteristic(�-characteristic). For a path n : : :n 0 the set Int(n;n 0) is de�ned as the set of tripels(�;�0;Z ) such that there exists an internal path (n;�) : : : (n 0;�0) with characteristic Z .6



It is easy to see that if the formula at the root of the proof tree is guarded, then thecharacteristic of any internal circuit is always di�erent from ?.Before de�ning the special rules we must make some additions. We assign each nodea label consisting of a �nite set of pairs 2 INl � N , where l is the number of places ofthe Petri net and N the set of nodes in the tableau. The label of the root node is theempty set. For a node n with state �, label D and sequence of formulae � we writen(D) : � ` �. If the label is of no concern we just write \?" for it.Child-nodes do not inherit these labels; they are only introduced by special rules.3.4 The Special RulesNow that we have de�ned these notions we can de�ne the special rules. Here n �! n 0means that node n is replaced by n 0.! n2(D) : �2 ` � �! n3(D) : �2 + !(�2 � �1) ` �if there is a previous node n1(?) : �1 ` � s.t. n2 � n1, �2 � �1and there is a place s s.t. �1(s) < �2(s) 6= !M n(D) : � ` � �! n(D [ f(�;n 00)g) : � ` �if there are two ancestors n 0(?) : � ` � and n 00(?) : � ` � s.t. n � n 0 � n 00Int(n 00;n 0) = Int(n 00;n) and � is the Parikh-vector of the sequence of transitions�red between n 0 and nSpecial rules take precedence over basic rules and rule ! takes precedence over rule M .The intuition for the special rules is as follows:! Let � be a marking and �0 � �. If there is an unsuccessful run starting at �, then thesame run can also start at �0. So the chance to �nd an unsuccessful run is better ifthe start-marking is larger. The new marking with ! represents the in�nitely manyreachable markings with arbitrarily high numbers of tokens in these places. Notethat the ! does not mean that there are in�nitely many tokens on this place, butonly that there are reachable markings with arbitrarily high numbers of tokens.M If the conditions for theM -rule are satis�ed then the path from node n 0 to node n givesus no new information for the construction of an unsuccessful run. This is becauseof the condition Int(n 00;n 0) = Int(n 00;n). The only thing worth remembering arethe changes � in the marking of the net. By adding the vector to the label of thenode we remember that we could insert this piece of the branch as often as wewant, and change the marking by �. This is necessary, because later in the tableauit might turn out that we should have inserted this piece of the branch betweenn 0 and n a certain number of times in order to be able to construct an in�niteunsuccessful run. However, at the point where the M -rule is applied we don't knowyet how often to insert this part of the branch.Now we can de�ne the terminal nodes.De�nition 3.3 A node n(?) : � ` � is a terminal if any of the following conditions issatis�ed: 7



1. � = Q and � 62 W(Q)2. � = �A1�1; : : : ;�An�n and 6 9a 2 Tni=1 Ai ;�0: � a! �03. Q 2 � and � 2 W(Q)4. n has an ancestor n 0 ' n s.t. n 0 � n and� every internal circuit of the path n 0 : : :n has �-characteristic, and� Let �0 be the Parikh-vector of the sequence of �red transitions between n 0 andn. Let f�1; : : : ; �kg := f� j 9~n: n 0 � ~n(D) � n ^ 9(�; n̂) 2 D :n̂ � n 0g.There are x1; : : : ; xk 2 IN s.t. �0 + x1�1 + : : :+ xk�k � ~0.5. There are nodes n 00(?) : � ` � and n 0(D) : � ` � s.t. n 00 � n 0 � n. Let�1 be the path between n 00 and n 0 and �2 the path between n 0 and n. Let � bethe Parikh-vector of the sequence of transitions �red between in �1. �1 = �2 and9~n: (�; ~n) 2 D .Terminals of type 1 and 4 are unsuccessful, and terminals of type 2,3 and 5 are successful.A tableau is a �nite proof tree whose leaves (and no other nodes) are terminals. Atableau is successful i� all its terminals are successful.Lemma 3.4 There is a unique tableau with a given root.Proof For the basic rules the children of a nonterminal node are determined only bythe node and the rules are deterministic. For the special rules the changes of a nodedepend only on the node and its predecessors. The precedence conditions ensure thatthese changes are deterministic too. Finally the termination conditions are deterministic.2 The intuition behind the de�nition of the special rules and the terminals is the follow-ing: Each path of the tableau can be seen as an attempt to construct a false run of thesystem, i.e. a run that does not satisfy the formula at the root. The terminals identifythe points at which we have gathered enough information either to construct such a run(unsuccessful terminal) or to give up searching the continuations of the path (successfulterminal). Let � be a path of the tableau ending in a terminal n, and let � = trans(�).� If n is of type 1, then it is of the form � ` Q , and no nun starting at � satis�es Q .Therefore any run of the form ��0 is false.� If n is of type 2 then any run of the form ��0 is a true run. This is due to thede�nition of �A as � has no continuations �0 starting with an action in Tni=1 Ai .� If n is of type 3 then any run of the form ��0 is true.� If n is of type 4, then an in�nite unsuccessful run can be constructed. Basicallythis is because that in any chain of dependencies corresponding to this run some�-variable is unfolded in�nitely often. The details will be explained in section 4.� If n is of type 5, then nothing new has happened between n 0 and n. This is becausethe same path has already occurred earlier in the tableau between n 00 and n 0. Eventhe Parikh-vector of transitions �red between n 0 and n has already been recordedin the label of n 0. Basically this means that if any unsuccessful run can be found,then it can be found elsewhere in the tableau in an easier (shorter) way.8



4 Soundness and CompletenessFirst recall a general lemma that is very useful for decidability problems about Petri nets.Lemma 4.1 (Dickson's lemma) Given an in�nite sequence of vectors M1;M2;M3; : : :in INk there are i < j s.t. Mi �Mj (� taken componentwise).Lemma 4.2 The tableau for a given root is �nite.Proof Let � be the tableau with root �0 ` �0 and m the number of symbols in �0.It is easy to see that the size of the closure (i.e. the subformulae, modulo unfolding) of�0 is bounded by m. Therefore at most 2m di�erent sequents � can occur in nodes ofthe tableau and there are at most 2m3 di�erent Int relations. Let t be the number oftransitions in the Petri net. Then each node has at most maxf2; tg children.Assume that there is an in�nite path in the tableau. Because of the special rule !and Dickson's lemma (4.1) the number of di�erent markings � occurring in nodes ofthe tableau is �nite. Thus there are only �nitely many di�erent paths between di�erentnodes with the same marking � and the same sequence of formulae �.Because of the special rule M all the Parikh-vectors of these paths will eventually bestored in the labels of the nodes. So the path will end by termination condition 5.Thus every path in the tableau has �nite length. As each node has only �nitely manychildren the tableau is �nite. 2Lemma 4.3 If �0 j= �0 then there is a successful tableau.Proof Starting with the root-node n0(fg) : �0 ` �0, apply the rules until the tableau isconstructed. The construction terminates by Lemma 4.2.We will assume that there exists an unsuccessful terminal n(D) : � ` � and derive acontradiction. There are two cases:1. n is of type 1. Then n is of the form n(D) : � ` Q and � doesn't satisfy Q .Therefore n is a false node. By condition Q1 and Q2 from Def. 2.7 it follows thatwe could construct another tableau without using the !-rule that has a path leadingto a node n2(?) : �0 ` Q s.t. �0 � � and 8s 2 S : �0(s) 6= �(s) ) �(s) = ! and�0 fails Q . This is a contradiction, because by Lemma 3.1 the node n2 should betrue.2. If n is of type 4 then because of condition Q1 and Q2 for any k 2 IN it is possibleto construct another tableau without using the M - and !-rules s.t. this tableaucontains two nodes n1(?) : �1 ` � � n2(?) : �2 ` �, �2 � �1, 8s 2 S :�(s) =! ) �1(s) � k and every internal circuit of the path n1 : : :n2 has �-characteristic.Let � = trans(n1 : : :n2). By our assumption the run �! starting at �1 satis�essome formula of �. Let f�1; : : : ;�lg be the satis�ed formulae. Let ~� be the Parikh-vector of �. We know that ~� � ~0. An internal path starting with �1 of theform �1 ` �1 : : :�2 = �1 + ~� ` �x : : :�1 + i~� ` �y : : : which is constructed bycertain rules must be periodic. Especially some formula �i must occur in�nitelyoften. Now construct this periodic internal path � = �1 ` �i : : :�1 + 1 � m~� `�i : : :�1 + j � m~� ` �i : : :. The construction is guided by inductively associatingto each pair � ` � a su�x �i of �! s.t. �i(0) = � and �i satis�es �. For the initialpair �1 ` �i this is �! itself. Now we de�ne how to select the (x + 1)-th element�0 ` �0 and �x+1, given the x -th element � ` � and �x .9



� If � = Q and the Q -rule is applied, then � ` � is the last node of �. Inthe original tableau there is a corresponding marking �! s.t. � � �! and8s 2 S :�!(s) 6= �(s) ) �!(s) = ! ^ �(s) � k 0. k 0 2 IN is �nite, but wecan choose it arbitrarily high, because we can choose k arbitrarily high and~� � ~0. As �! 6j= Q it follows that � 6j= Q , because of condition Q2 de�ned inDef. 2.7.� If � = 	^� and ^ is applied to �, then �0 = �, �0 is either 	 or �, accordingto the choice in the path from n1 to n2, and �i+1 = �i .� If � = 	 _� and _ is applied to �, then �0 = �, �i+1 = �i and�0 = �	; if � � sig(�i ;	) � �� sig(�i ;�)�; otherwise� If � = �A	 then � is applied and �0 = 	, �i+1 = �(1)i and �0 is the statecorresponding to �i+1(0).� If � = �Z :	 and �Z is applied then �0 = �, �0 = 	[�Z :	=Z ] and �i+1 = �i .There are two possible sub-cases:(a) � is �nite.Then the last node must be of the form � ` Q , and the Q -rule is applied.Therefore no run starting at � satis�es Q . This is a contradiction, as the node� ` Q should be true.(b) � is in�nite.Let Z be the characteristic of �. Then Z is also the characteristic of someinternal circuit of n1 : : :n2, and therefore a �-variable. Assign to each element� ` � of � (with corresponding run �) a truncated pre�x of � � sig(�;�) byremoving all ordinals corresponding to �-variables lower than Z . Let T� bethe sequence of truncated signatures associated with �.The sequence T� is non-increasing, because no variable higher than Z is everunfolded, and because of the way we de�ned the internal path where the _-rule was applied. As we have shown before an in�nite number of sequentsof the form �1 + j � m~� ` �i for i = 1; 2; : : : occur in �, s.t. each has theassociated run �!. So the associated truncated �-signatures are the same.This is a contradiction, because the truncated �-signature should decrease asthe variable Z is unfolded between two occurrences of this sequent. 2Lemma 4.4 If there is a successful tableau, then �0 j= �0.Proof Assume that there is a successful tableau � for �0 ` �0, but �0 6j= �0. We willderive a contradiction.Assuming that �0 6j= �0 there must be a run �0 starting at �0 s.t. �0 62 k�0k. Weshall use this run to show the existence of an unsuccessful terminal, contradicting thesuccess of � .To do this, we �rst use �0 to construct a (possibly in�nite) path �0 in a tableau � 0constructed without using the special rules (i.e. by the basic rules only). Using this10



path we shall then prove the existence of a �nite unsuccessful path � in the tableau �constructed by all rules.To serve as guide during the construction of the path �0 = n0n1n2 : : :, we inductivelyassociate to each node ni a su�x �i of �0 s.t. the state of ni is �i (0) and �i fails everyformula of ni . The su�x associated with the root n0 is �0. If ni is a terminal of type 1, 2,3 or 4 then (�i ;ni) is the last element of �. Otherwise its successor ni+1 and associatedsu�x �i+1 are chosen as follows:� If the �-rule is applied to ni , then �i+1 = �(1)i , and ni+1 is the child of ni having�i+1(0) as state;� If the ^-rule is applied then to ni , then �i+1 = �i and ni+1 is a child of ni s.t. the�-signature of �i is preserved (if � fails �^	 with �-signature �, then � fails either� or 	 with �-signature �).� If one of the rules _, Q or �Z is applied then �i+1 = �i and ni+1 is the only childof ni .As no special rules are used the labels of all nodes are empty. It follows from Lemma 3.1that every node of �0 is false. There are two cases:1. �0 is in�nite.As there are only �nitely many subformulae of �0, there are only �nitely manydi�erent sequents � in the tableau � 0. So �0 must contain an in�nite subsequencenm1 ;nm2 ; : : : s.t. nmi (fg) : �mi ` �. Let � = �1; : : : ;�n . We assign to each nodenmi a vector of signatures �xi = (��sig(�1; �mi ); : : : ; ��sig(�n ; �mi )). By Dickson'sLemma there are two indices i � j s.t. �xi � �xj and �mi � �mj . Note that therelation between �xi and �xj is the pointwise order on vectors, while the order on theircomponents is the lexicographic order.Now we prove that every internal circuit of nmi : : :nmj has �-characteristic.Assume there is an internal circuit 
 of nmi : : :nmj with �-characteristic Z . Assignto each element (nk ;�k ) of 
 a pre�x of � � sig(�k ; �k ) obtained by removing allordinals corresponding to �-variables lower than Z . Let T
 be the sequence oftruncated signatures corresponding to 
. We claim that T
 is non-increasing. Letnk and nk+1 be two consecutive nodes of 
. If nk 6= nmj then nk+1 is a successorof nk and the truncated signature cannot increase when moving from nk to nk+1,because no variable higher than Z is ever unfolded and because of the way thebranch is chosen at the ^-nodes. If nk = nmj , then nk+1 = nmi+1 and since �xi � �xjthe truncated signature cannot increase as well.Since Z is unfolded somewhere in 
, the last element of T
 is lexicographically lessthan the �rst. This contradicts the assumption that �xi � �xj . Therefore Z must bea �-variable.Using these properties we will construct a tableau � 00 by using the basic rules andthe !-rule, but omitting the M -rule. The condition Q1 from Def. 2.7 ensures that� 00 contains two nodes n1(fg) : � ` � � n2(fg) : � ` �, s.t. every internal circuitbetween them has �-characteristic. (� will possibly contain !s). There are twocases: 11



(a) Either the !-rule has been applied before nmi and n1 corresponds to nmi andn2 to nmj .(b) Or the !-rule is applied at nmj . Let �! be the path from nmi to nmj . Thenn1 corresponds to the modi�ed nmj and n2 corresponds to the node that isreached from n1 via �!.Note that now both n1 and n2 have the same marking � (which can contain !s).Let � be the Parikh-vector of the sequence of transitions �red between n1 and n2.As �mi � �mj we know that � � ~0.Now we construct the tableau � 000 using all rules and show that it must containa terminal of type 4 that occurs at the same place as n2, or even before. Notethat n2 would be a candidate for such a terminal, were it not for the M -rule andtermination condition 5. We will start with the tableau � 00 and successively cut outsegments of the path leading from the root to n2, thus obtaining a shorter pathleading to a type 4 terminal. We repeat this until termination condition 5 is notsatis�ed anywhere in this path. Thus we obtain a tableau that could have beenconstructed from scratch by using all rules. Let n 00, n 0 and n be the nodes thatsatisfy the conditions of the M-rule and �1 be the path from the root to n1 in � 00.Note that no application of the !-rule takes place between n 00 and n, as well asbetween n1 and n2. There are four cases:(a) n � n1Let � be the path from n 0 to n. In the path from n to n1 we can cut out allthe subpaths equal to �, thus obtaining a shorter path. n2 still satis�es theconditions to be a type 4 terminal.(b) n 0 � n1 � nLet � be the path from n to n2 and � the path from n1 to n. Let n3 be thenode that can be reached from n 0 with the path ��. It follows that n3 � n2and n3 is a type 4 terminal.(c) n 00 � n1 � n 0Let � be the path from n to n2 and � the path from n1 to n. Let n3 be thenode that can be reached from n 00 with the path ��. It follows that n3 � n2and n3 is a type 4 terminal.(d) n1 � n 00Let � be the path from n 0 to n. In the path from n to n2 we can now cut outall subpaths equal to �. All internal circuits of the path n1 : : :n2 still have�-characteristic, because Int(n 00;n 0) = Int(n 00;n). Let �0 be the Parikh-vectorof the sequence of transitions �red in �. n2 is still a type 4 terminal, becausen now carries the additional label (�0;n 00) and n 00 � n1.So � 000 must contain an unsuccessful terminal. Since the tableau for a given root isunique it follows that � 000 = � . This is a contradiction, as � is successful.2. �0 is �nite.Let n be the last node of �0. n cannot be a terminal of type 5, because all labelsare empty in � 0. n cannot be a terminal of type 2 or 3, because n is false. So nmust be a terminal of type 1 or 4. 12



(a) If n is of type 1 then it must have the form n(fg) : � ` Q s.t. � 62 W(Q).There is a path � in � corresponding to a subsequence �00 of �0 s.t. �s lastnode is n 0(?) : �0 ` Q and 9�00: �0 = �+!�00. It follows from condition Q1 inDef. 2.7 that �0 62 W(Q). So n 0 is an unsuccessful node in � , a contradiction.(b) If n is of type 4, then we have the same situation as in case 1. 25 ExampleFigure 1: Does this system satisfy the formula �x :�a (x ^ �y:�b (�z :�c (z ^ �dy))) ?bc d42 � 
�a� 1110No. As the tableau is quite large we only describe one unsuccessful branch. � is theinitial marking. � = (1; 0; 1; 0), �2 = (1; 1; 1; 1), �3 = (1; !; 1; !), �4 = (1; !; 0; !).� ` �x : �a (x ^ �y:�b (�z :�c (z ^ �dy))) �Z�! � ` �a(x ^ �y:�b (�z :�c (z ^ �dy))��! �2 ` x ^ �y:�b (�z :�c (z ^ �dy))^+!�! �3 ` �x :�a (x ^ �y:�b (�z :�c (z ^ �dy)))�Z�! �3 ` �a(x ^ �y:�b (�z :�c (z ^ �dy))) ��! �3 ` x ^ �y:�b (�z :�c (z ^ �dy))�̂! n1 : �3 ` �y:�b (�z :�c (z ^ �dy)) �Z�! �3 ` �b(�z :�c (z ^ �dy))��! n2 : �4 ` �z :�c (z ^ �dy) �Z�! �4 ` �c(z ^ �dy) ��! �4 ` z ^ �dy�̂! �4 ` �z :�c (z ^ �dy) �Z�! �4 ` �c(z ^ �dy) ��! �4 ` z ^ �dy^+M�! n3(f((0; 2; 0;�1);n2)g) : �4 ` �z :�c (z ^ �dy)�Z�! n4(fg) : �4 ` �c(z ^ �dy) ��! n5(fg) : �4 ` z ^ �dy �̂! �4 ` �dy��! �3 ` �y:�b (�z :�c (z ^ �dy))The last node in this path already occurred earlier at n1, and all internal paths betweenthem (only one in this case) have �-characteristic, because the highest unfolded variable y13



is a �-variable. The only problem is that the Parikh-vector of the sequence of transitions�red between them is not positive. It is b +3 � c+ d = (0;�5; 0; 3). Fortunately we havea label at n3 with an entry marked with n2, which is below n1 (and thus we may use it).The question is now if there is a k 2 IN s.t. (0;�5; 0; 3) + k � (0; 2; 0;�1) � ~0 ? We seethat there is one (in this case only 1) solution, k = 3. Thus termination-condition 4 issatis�ed and the branch is unsuccessful.It can be veri�ed that even a slight change of the system makes it satisfy the formula.If the arc from � to b is labelled by 13 instead of 11, then no in�nite sequence of the form(bcnd)! is possible, although such sequences of arbitrary length are possible if enough a'sare done �rst. Thus the above construction is impossible. Any in�nite path must containin�nitely many a's and in the tableau each a-action is accompanied by an unfolding ofthe outermost �-variable x . Therefore the system satis�es the formula.6 ExtensionsThe restrictions on the elementary predicates in Def. 2.7 basically amount to the factthat every predicate has the form P := fx1 � k1; x2 � k2; : : : ; xn � kng, where x1; : : : ; xnare the places in the net and k1; : : : ; kn 2 IN [ f!g. A marking � satis�es the predicateP i� 8i 2 f1; : : : ;ng:�(xi) � ki .A possible generalization is to allow conditions of the form si = ki instead of si � ki .The only problem with this is the application of the !-rule. We can no longer assumethat if a marking � fails a predicate P , then every marking �0 � � also fails P . So wecan no longer assume that whenever the !-rule is applicable, an in�nite path could becreated leading to markings with arbitrary high numbers of tokens in some places. Thisis because now it might be possible to terminate this path by termination condition 3.The solution is to modify the !-rule appropriately.n2(D) : �2 ` � �! n3(D) : �2 + !(�2 � �1) ` � if there is a previous noden1(?) : �1 ` � s.t. n2 � n1 and� �2 � �1 and there is a place s s.t. �1(s) < �2(s) 6= ! and� Let �01; : : : ;�0m be the states of nodes in the tableau between n1 and n2 where the Q -rule is applied and P1; : : : ;Pm the corresponding predicates. 8i 2 f1; : : : ;mg:8k 2IN: �0i + k(�2 � �1) 62 W(Pi).Note that this condition is still decidable for these predicates.Now it can be seen that the tableau method can be generalized for predicates satisfyingthe following (weaker) conditions:P1 � 62 W(Q) ) � + !�0 62 W(Q)P2 It is decidable for a marking � and a vector � � ~0 if there is an i 2 IN s.t. � + i� 2W(Q).Q2 � + !�0 62 W(Q) ) 9k 2 IN 8k 0 � k : (� + k 0�0) 62 W(Q).14



7 ConclusionWe have presented a tableau system for model checking Petri nets with a (fairly expres-sive) fragment of the linear time �-calculus. It uses the technique of examining internalpaths that was �rst used for �nite state systems in [BEM96]. In spite of the restric-tions de�ned in De�nition 2.7 this tableau system is still a true generalization of theone for �nite systems in [BEM96]. This is due to the fact that the strong nexttime-operator 
 can be expressed by the weak nexttime-operator � and a predicate P s.t.� 2 W(P) , 9� a! �0. As we can model �nite systems with Petri nets by assigning aplace to each state and a transition to each arc the di�erent states will be incomparableand thus P will satisfy the conditions Q1 and Q2 from De�nition 2.7. Of course this isnot the case for in�nite state systems.Even for �nite state systems the complexity of the algorithm is exponential [BEM96].For general Petri nets the method relies on Dickson's lemma for termination and istherefore not primitive recursive.Although the tableau is sound and complete it is not intended to be used as a decisionprocedure, but rather as a proof method that could be implemented in the framework ofa theorem prover with human interaction.Acknowledgement I would like to thank Javier Esparza and Angelika Mader for manyhelpful discussions.References[BEM96] J. Brad�eld, J. Esparza, and A. Mader. An e�ective tableau system for thelinear time �-calculus. In F. Meyer auf der Heide and B. Monien, editors,Proceedings of ICALP'96, number 1099 in LNCS. Springer Verlag, 1996.[Bra92] J. Brad�eld. Verifying Temporal Properties of Systems. Birkhauser, 1992.[Esp] Javier Esparza. Decidability of model checking for in�nite-state concurrentsystems. To appear in Acta Informatica.[SW90] C. Stirling and D. Walker. Ccs, liveness, and local model checking in thelinear time �-calculus. In Proceedings of the First International Workshop onAutomatic Veri�cation Methods for Finite State Systems, number 407 in LNCS,pages 166{178. Springer Verlag, 1990.[SW91] C. Stirling and D. Walker. Local model checking in the modal �-calculus.Theoretical Computer Science, 89:161{177, 1991.
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