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Abstract

The On-line Monitoring Interface Specification (OMIS) aims at defining an open
interface for connecting on-line software development tools to parallel programs run-
ning in a distributed environment. Interactive tools like debuggers and performance
analyzers and automatic tools like load balancers are typical representatives of the
considered class of tools.

The current situation is characterized by the fact that tools either follow the off-line
paradigm by only having access to trace data and not to the running program or
else they are on-line oriented but suffer from the following deficiencies: they do not
support interoperability in the sense that different tools can be used simultaneously
— not even tools from the same developer. Furthermore, no uniform environment
exists where the same tools can be used for parallel programs running on different
target architectures.

A reason for this situation can be found in a lack of systematic development of moni-
toring systems, i.e. systems which provide a tool with necessary runtime information
about the application programs and make it possible to even manipulate the program
run.

The goal of the OMIS project is to specify an interface which is appropriate for a
large set of different tools. Having an agreed on on-line monitoring interface facili-
tates the development of tools in the way that tool implementation and monitoring
system implementation are now decoupled. Bringing n tools to m target platforms
(consisting of hardware, operating system, programming libraries etc.) will be re-
duced in complexity from n x m to n + m. In addition, it will eventually be
possible to simultaneously use tools of different developers and to compose uniform
tool environments.

As a second step following this specification the research group at LRR-TUM has
designed an OMIS compliant monitoring system (OCM) which is currently being im-
plemented. It will be available for the PVM and MPI programming models running
on networks of workstations. A set of interactive and automatic tools will be made
available for OCM.

The present document defines the goals of the OMIS project and lists necessary
requirements for such a monitoring system. It is an improved and enhanced version
of OMIS 1.0 which was published in February 1996. We will describe the system
model OMIS is primarily intended for and give an outline of available services of the
interface. A special section will give details on how to extend OMIS, as this is an
indispensable feature for future tool development.

We would appreciate to get further feedback on the design of OMIS. If you would
like to see special issues incorporated into this specification document you are in-
vited to contact the authors (omis@informatik.tu-muenchen.de). If you would like
to participate in the implementation or would like to use OCM for your own tool
development please feel free to ask us!
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Preface to this Document Version

This document version is an enhancement and improvement of OMIS 1.0 which was published
in February 1996. Critical feedback from various persons and recognition of several problems
have lead to OMIS 2.0. There is no change of the basic principles of the interface specification.
However, services were renamed for better consistency and sometimes extensions were made to
meet requirements with specific tool scenarios.

Part I describes motivation, project goals, and requirements of the project. Part II comprises
a description of the structure of the monitoring interface. It describes the underlying system
model, what services are, and how to extend OMIS. Part III gives a detailed description of
services provided by the monitoring interface.

We would like to encourage people to send us feedback on the “Requests for Comments” and
also maybe on “Known Problems”. Any further ideas, comments, criticism etc. are also welcome
(omis@informatik.tu-muenchen.de).

Please see also chapter History for the document history.
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The OMIS Project
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Chapter 1

Motivation

Parallel processing is a key technology of the 21th century both for commercial/industrial appli-
cations and for research. Current needs of computational power can only be satisfied by using
parallel and distributed architectures like multiprocessor and multicomputer systems. For al-
ready several years also clusters and networks of workstations (COWs, NOWs) play an important
role, as often only their aggregate power can meet user requirements. We can distinguish sys-
tems by their architectural concepts like e.g. coupling of processing elements (busses, switches
etc.) or memory organization (distributed memory, shared memory). Various programming
paradigms can be used for implementing software for these systems, message passing and usage
of shared memory segments being the most popular amongst them.

In order to reduce the complexity of software development we need powerful tools throughout
the life cycle of parallel and distributed software. Ideally, they should cover all issues from
specification to production runs of the programs. They are essential in order to achieve a high
efficiency with software engineering, where quality of code and time to market are the most
important factors.

The present report refers to tools where the program is already operational, i.e. where the
first prototype is running. Starting from this phase we usually apply tools that cooperate with
the running program by observing and modifying its behavior. Debuggers are examples for such
tools. The tools get their information by a so called monitoring system. It establishes a software
layer that connects the running program system (consisting of hardware, operating system, and
application program processes) to the tools or tool environments and guarantees observation
and manipulation capabilities.

Due to its intermediate position, the monitoring system has two interfaces: one towards the
tool, the other one towards the running program. Up to now, not much attention was put on
these interfaces, especially on the issue of proposing standards for them. There are some few
approaches undertaken to fix at least the tool/monitoring system interface. The p2d2 debugging
concept by Hood/Becker/Cheng [Hoo96] and the Universal Measurement Architecture (UMA)
approach by the X/Open group [Gro95a, Gro95b| are examples for this.

On most systems we can find simple tools for debugging and runtime management like e.g.
processor allocation. More powerful tools or special tools like for example load balancing fa-
cilities or support for fault tolerance mechanisms do rarely exist. In addition, only very few
tool environments support design, implementation, and maintenance of parallel software in a
consistent manner. Also, tools of different vendors do not interoperate because they are based
on e.g. different monitoring techniques or trace data formats or just use proprietary program-
ming libraries or special adaptations of publicly available programming libraries. Usually, the
programmer can use only one tool at a time or must even specially adapt his program before
applying another tool. Finally, there are no uniform tool environments in the sense that an
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application developer could use the same set of tools on different target architectures. Thus,
it is not astonishing that the results of the Second Pasadena Workshop on System Software
and Tools for High Performance Computing Environments [SMP95] stress a considerable lack
of sophisticated tools and tool environments.

Let us now have a closer look at the types of tools that would be required. Tools that
support an investigation of the running parallel program can be divided into on-line and off-
line tools. Off-line tools exclusively support post-mortem inspection of the program behavior.
The drawback of this approach is its lack of interactive program manipulation facilities and its
delay between problem recognition and problem correction. On-line tools, however, support
interactive program manipulation with an immediate feedback to the user, thus shortening the
time spent for debugging and performance analysis. In addition, special automatic tools like e.g.
load balancer systems, must necessarily interact with the running program. An off-line concept
is not feasible for them.

Both tool approaches are based on different classes of information which are collected by
different mechanisms. Off-line tools typically offer information that was collected during a
program run (trace data) or after program completion (core dump). Trace data is gathered with
a monitor component being introduced into the program, the runtime libraries, the operating
system, or even the hardware. The monitor’s task is restricted to only collecting information
about the system behavior and forwarding it to a file for storage. In addition, as we do not
know in advance which information the user would like to evaluate, all possibly interesting data
have to be transferred to this file. We prefer to call this mechanism “recording” instead of
“monitoring”. For long program runs or fine grained information this is not a feasible approach
as it requires to collect an enormous amount of data.

With on-line tools the situation is more complex. In addition to the above mentioned data
(trace data, core dump) we need information about the current program state. Moreover, as
the user evaluates this data immediately, additional tasks have to be added to the monitor’s
responsibility: first, it must be adaptable in the sense that new evaluations can be activated
while others will be stopped. (This, however, decreases dramatically the amount of data which
has to be transferred to the tools.) Second, the monitor must be able to manipulate the program,
e.g. to stop a task or to force it to single step mode. A software component which supplies this
class of functionality will be called on-line monitor. The goal of this report is to lay the basis
for the design (and also the implementation) of on-line monitors for parallel environments with
distributed memory. We would like to stress here that a monitoring system for on-line tools
usually provides a superset of the functionality that is required by off-line tools.

Currently, several on-line tools are already available for the above mentioned environments,
but most of them are proprietary solutions of parallel computer manufacturers. Public domain
or copy-left tools are for the most part only available for programming libraries like e.g. PVM
or implementations of MPI. Any activity in this field is hindered by the fact that for every new
tool, for every new hardware, and for every new implementation of a programming library a
new monitoring system has to be developed.

Without a reasonable standard, new tools must also have new monitoring systems even if
their functionality is not completely disjunct to already existing tools. Finally, the missing
standard makes the integral use of a set of tools impossible as they are currently always based
on differently implemented monitoring concepts which are incompatible to each other.

Having an agreed on on-line monitoring interface, different tool developer groups could design
and implement new interactive and automatic tools whereas other groups could do implemen-
tations of the monitors for various hardware/software environments. The amount of effort for
having n tools on m systems (being composed of hardware, operating system, and runtime
library of the programming environment) would be reduced from n x m to n + m, thus bring-
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ing more tools onto more parallel and distributed systems which finally would ease software
development on these architectures. A further implication of having standardized monitoring
systems is that finally we will reach the goal of having uniform environments, i.e. tools which
are identical for a variety of target architectures.

If we compare different tools we will find that they use a considerable part of the monitor
interface that is identical for all of the tools. For some tools like e.g. an interactive performance
analyzer and an automatic load balancer system the functionality might even coincide. For that
reason it is desirable to design a monitoring system that can be adapted to different underlying
hardware/software environments and can be expanded for connecting it to new tools.

The goal of the OMIS' project that will be presented in this report is to provide a viable basis
for better tools with respect to integration of the individual tools into a single environment. It is
an approach to define a powerful interface between tools for parallel and distributed computing
and monitoring systems that control computers and applications. Eventually, OMIS will help
to build unified tool environments, where the same set of tools runs on a big variety of target
platforms. The goal of this report is to specify OMIS and to explain, how it can be applied to
reach the described goals.

The approach presented in this document version will in its current phase concentrate on
systems with distributed memory architecture and programs being implemented with message
passing libraries. However, the concepts introduced are not contradictory to the shared mem-
ory programming paradigm. Necessary enhancements to our approach for covering also these
environments will be included in the next document version.

LOMIS is an acronym for On-line Monitoring Interface Specification.

14



Chapter 2

Project Goals

2.1 Background

The OMIS project being described in this paper has not been started as an isolated project
although there might be a real necessity for such an approach. It is embedded into research
and development activities at the Lehrstuhl fiir Rechnertechnik und Rechnerorganisation at
Technische Universitat Miinchen (LRR-TUM). Before going into details with OMIS let us give
some information on the background.

During the last nine years the parallel processing group at LRR-TUM has been working in
the field of interactive and automatic on-line tools for parallel programming. Starting point
was the TOPSYS project which was funded by a special research grant of the German Science
Foundation. Topsys stands for TOols for Parallel SYStems; for detailed information please
refer to [Bod94, BBB+90, BB91, Lud93b].

Within the framework of ToprsSys we developed a set of tools for Intel iPSC hypercube
computers. A debugger [BW95], a performance analyzer [BHL90], and a program flow visual-
izer [BB92] were the main interactive components. In addition, we investigated tools for auto-
matic load balancing [Lud93a). The environment was based on our proprietary programming
model MMK (multiprocessor multitasking kernel) [BL90]. Tools were using on-line monitoring
systems which were realized with identical functionality in both, hardware and software [BLT90].

Already in parallel to ToPSYS we designed and implemented tools within the frameworks
of other projects and direct industry cooperations. Examples are an adaptation of TOPSYS to
workstation clusters (cooperation with SUN Microsystems), adaptions of the performance anal-
ysis tool in the Esprit project PREPARE (an on-line version) and the Esprit project HAMLET
(an off-line version) as well as smaller cooperations with e.g. INTEL, Siemens, Genias, and
others. (For more details please refer to the annual report of LRR-TUM®.)

For already several years a very important cooperation links LRR-TUM and PARSYTEC,
a German vendor of parallel supercomputers and embedded systems. Within that project we
designed and implemented versions of our debugging and performance analysis tools especially
adapted for PARSYTEC parallel systems [Han94, OW95, WOKH96]. Both tools are successors
of former TOPSYS tools and became an integral part of the PARIX parallel programming system
for PowerXplorer systems in 1994. In 1996 we adapted the debugging tool to the new CC
systems running EPX, a special version of PARIX for embedded systems. Again, the main
effort concerned an appropriate port of the underlying monitoring system to the now used AIX
operating system.

Within the framework of the Prepare project we developed a special monitoring system for
HPF programs together with a dedicated performance analysis tool.

"http:/ /wwwbode.informatik.tu-muenchen.de/archiv/diverses/jber94/jb.ps.gz and .../jber95/jber.ps.gz
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Currently, the research groups of Karl/Hellwagner at LRR-TUM are developing an SCI-based
networking platform that will exploit the distributed shared memory programming paradigm
(DSM) [AHKL96, HKL97a, HKL97b]. As soon as the architecture is in a stable state, tool
development will start based on the OMIS approach.

In the last years a change in paradigm took place: distributed memory multiprocessors
systems are no longer the only vehicles of parallel processing. In addition, workstation clus-
ters, SMPs, clusters of SMPs, and DSM systems enjoy an increasing popularity. The style
of programming did not change significantly. However, the environment structure increases
complexity: time sharing replaces or adds to space sharing, thus making it necessary to have
appropriate development tools. The main difference is the step from single user/single program
environments to multiuser/multiprogram environments.

As a reaction to that, the parallel processing group at LRR-TUM started two new projects
in 1995 namely the OMIS project and THE TOOL-SET project (see [LWB+95]). Before going
into details with the project goals of OMIS let us give a quick overview on the latter project.
Its global goal is to design and implement an integrated environment of various tools to make
cluster computing easier. The implementation will initially be based on PVM which represents
a current de facto standard for parallel programming. The PVM library and runtime environ-
ment is available for all major workstation brands as well as for all important multiprocessor
and multicomputer systems. PVM supports the main aspects of distributed computing: work
distribution (by process management mechanisms) and cooperation (by message passing mecha-
nisms). In the first project phase, THE TOOL-SET will be made available for workstation clusters
only. Adaptions to genuine parallel architectures and the MPI programming model will follow
in the future. THE TOOL-SET will comprise a set of interactive and automatic on-line tools such
as a debugger, a performance analyzer, a program flow visualizer, a tool for deterministic pro-
gram execution, a dynamic load balancer, a consistent check-pointing facility [Ste96a, Ste96b],
a distributed file system [Lam97] and a trace data comparison tool.

2.2 Project Goals

The central research topic of the OMIS project is to investigate on-line monitoring methodolo-
gies for parallel systems and to achieve a deeper understanding of the issues involved in tool
interfaces for parallel and distributed computing. Especially the interaction of the monitor with
all other components of the system (hardware, operating system, application programs) and
its possible and necessary interconnections with them will be carefully studied. Furthermore,
adaptability is a big concern. Although the project will lead to a realization for a concrete set
of tools, programming libraries, and operating systems, we concentrate on the question of how
to keep the interface specification abstract enough to guarantee its applicability to various other
environments.

The detailed list of goals comprises research oriented issues, design and implementation
issues, and standardization issues. The project is driven by people who were already involved
in the design of TOPSYs thus making it possible to take profit of existing long year experiences
in that field.

The major objective is to define a tool/monitor-interface that meets three main requirements:
First, it should be extensive and complete in the sense that the functionality of all common types
of tools (including of course THE TOOL-SET) will be guaranteed. Second, as there will be new
tool functionalities in the future or even completely new tools, the interface must be extendible
in a well defined manner. Also other research groups must be able to use the approach and
adapt it to their needs. Third, the approach should exhibit a high adaptability to current and
future programming paradigms. The spectrum reaches from message passing to shared memory,
remote procedure call, and client/server programming concepts.
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From the discussion in section 2.1 we see that the monitoring system is a main issue for
every tool environment with on-line tools like e.g. THE TOOL-SET and the CC series tools. As
already mentioned earlier, it must offer the following functionality:

e It must be able to extract data describing the current state of the HW/SW-system (hard-
ware, operating system, application programs) on request, on a regular basis, and on an
event driven basis.

e It must be adaptable in the sense that the user can define which data should be monitored
(e.g. the occurrence of user-specified conditions).

e It must be able to detect events that are specified by the user; this implies a high degree
of configurability.

e It must be able to modify and influence the HW /SW-system (e.g. assign values to variables,
stop and restart process execution)

The central goal of the on-line monitoring interface specification OMIS is to define a standard-
ized tool/monitor-interface and to provide means to efficiently design and implement monitoring
systems that fulfill the above mentioned requirements. With an OMIS compliant monitoring
system being connected to a running HW/SW system, several tools from possibly different de-
velopers can concurrently watch and manipulate the execution of application programs. Tool
interoperability and integration of future tools into existing environments are the most impor-
tant features OMIS is able to support. In addition, we will reach the goal of having uniform
environments where identical tools exist for a variety of target architectures.

2.3 History and Future of OMIS

A first version of OMIS was published in February 1996 in newsgroups and at workshops
[LWSB96, LWOB97]. We received valuable feedback from other tool designer groups giving
us details what type of interface is necessary to meet their special requirements. From that
we produced the current refinement of the document, i.e. OMIS 2.0 [LWSB97]. We would be
grateful to also get feedback on the current project status.

Starting from a sophisticated specification document two further goals have to be achieved.
First, we are currently implementing an OMIS compliant monitoring system (OCM) that serves
as a basis for THE TOOL-SET. The design phase started in January 1996 and was completed
by end of 1996 (see [Gei96, Uem96, Zel96] for details). The first implementation phase will
concentrate on PVM as programming model and Solaris 2.5, HPUX, and LINUX as operating
systems running on their corresponding target hardware. In the next step we will support MPI
as further programming model and AIX and IRIX as additional operating systems. Thus, we
will eventually have an on-line monitor for PVM running on workstation clusters where tools
developed at LRR-TUM and at other sites can be used concurrently with the same application
programs.

If the approach proves to be powerful enough and proves to be a viable basis for making tool
design and implementation easier and less time consuming, we will support OMIS to become
a new standard in the world of tools for parallel systems. The parallel processing group at
LRR-TUM will coordinate extensions to OMIS being brought in by other research groups. Thus
a reliable standard will exist, for which other groups can do both, develop tools and implement
compliant monitoring systems for specific parallel architectures.
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2.4 Integration of OMIS with other projects

Since OMIS 1.0 was released it was considered to be integrated into the following projects:

e The DOSMOS project (Distributed Objects Shared MemOry System) by Lionel Brunie,
Laurent Lefevre, Olivier Reymann at Ecole Normale Supérieure of Lyon, France [BLR96].

DOSMOS provides the user with a distributed shared memory environment that is based
on shared objects of the programming language C.

e The<BEAM project by Stefan Petri (formerly Technische Universitit Braunschweig, now
LRR-TUM) and Bettina Schnor (now at Universitiat Liibeck) [PSLS96].

{FBEAM is a system to support load balancing and fault tolerance on a cluster of workstations
by migration and checkpoints of running processes. Thomas Gottschalk at Technische
Universitit Braunschweig made a first integration approach [PSL96].

e The GRADE project by Peter Kacsuk at KFKI MSZKI,Research Institute of the Hungarian
Academy of Sciences, Budapest, Hungary [KCD+97, KDF96]2.

GRADE is an integrated environment for development and debugging of parallel programs.
It is based on the graphical design language GRAPNEL.

e The MAD project by Jens Volkert, Dieter Kranzlmiiller, and Sigfried Grabner [KGV96]

MAD is an evironment for debugging message passing programs that comprises several
single tools for different aspects of this issue.

Discussions with participants of these projects and many other researchers were valuable
contributions to OMIS 2.0. We would like to thank all of those people for their constant interest
in our work.

2.5 Project Policy

The project policy will be to release all software products being developed by LRR-TUM in the
framework of OMIS and THE TOOL-SET under GNU license conditions to provide a maximum
profit to the user community.

We would like to strongly encourage other researchers working in the field of parallel pro-
gramming environments and tools to participate in this project by discussing with us their
special needs or wishes and making critical comments to this proposal.

*Funded by BMBF within the WTZ project framework under number UNG-053-96.
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Chapter 3

Requirements

A general requirement is derived from the goals of the project itself. The monitoring interface
must be powerful enough to give on-line and off-line tools an efficient access to the programming
system. The sum of its functions and its conception will have to allow the integrated appli-
cation of different tools at the same time. Also it must guarantee future adaptability to more
sophisticated tools (e.g. problem domain oriented tools) and programming paradigms.

In detail, the design of the monitoring interface imposes several requirements which the
specification will have to meet. This chapter will summarize the most important of them.
Requirements can be divided into the following categories:

e functional requirements
e conceptional requirements

e efficiency requirements.

Their scope is limited to the tool/monitor-interface as this is what we would like to spec-
ify. Further requirements will arise for our implementation of an OMIS compliant monitoring
system (OCM) dedicated to a given system architecture. However, they will not influence the
tool/monitor-interface but the monitoring system’s internal structure and the monitor /program-
interface.

Functional Requirements

Functional requirements can be summarized as follows: the monitoring interface should be
versatile enough to allow all possible tools to observe and manipulate all objects of the running
program (e.g. processes, messages, variables etc.). Obviously, we can not state requirements
for tools which might be of interest in the future. Therefore, the requirement list primarily
addresses well known tool types like debuggers, performance analyzers, program flow visualizers,
checkpointing facilities, and load balancing components.

In order to achieve optimal versatility the monitoring system not only has to offer a fixed
functionality at its interface level. Instead it has to offer a language by which services can be
combined to powerful service requests. By following the event/action paradigm of the monitoring
system the user may compose complex requests by specifying a certain event to be observed and
a list of actions to be performed when the event takes place. The monitoring system acts as an
intelligent controller and manipulator that gets its instructions via the tool/monitor-interface.
The programming language of the monitoring system is defined by the form of the requests
that are sent from the tools. Similar to ordinary languages commands are expressed in form of
strings. They may be composed of several substrings with individual meanings. This feature
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supports new and more abstract functions to be realized in a tool. Depending on the application
type a tool might want to measure performance values related to semantical constructs like
e.g. iterations of a numerical algorithm or transactions in a database system. Service request
composition will guarantee the usability of the monitoring interface for future tools.

Concerning objects types that we might like to monitor we can state the following require-
ments: As implementations of monitoring systems will in the first phase be realized for dis-
tributed memory environments we will definitely be interested in execution objects and commu-
nication objects. Functions of the interface should give access to these object types on several
levels of abstraction: e.g. with execution objects we are interested in processes and threads and
would like to know more about procedures and individual statements of their code. With com-
munication objects such as messages we would like to know from which primitive data types they
are composed. Furthermore, interactive tools require these objects not only to be observable
but also need manipulation functions, e.g. for stopping of process execution.

In addition to this we also need access to hardware objects of the system. Inquiry functions
might want to have information on the amount of available or used main memory or on some
architecture characteristics like e.g. technology of installed network devices. These are observed
objects which can not be manipulated by the monitor.

Finally, the existence of the monitoring system also creates new objects, i.e. monitor objects,
which a tool must be able to interact with. Especially routines for monitor-monitor interaction
or filter mechanisms must be accessible.

The monitoring interface is now divided into two logically separate parts, one providing
the user with basic services, the other one with extensions necessary for different programming
environments (e.g. PVM, MPI). New objects will appear with extensions of the tool/monitor-
interface. These user defined objects have to be specified separately and will not be integrated
into the main part of OMIS. Later chapters will however show how to introduce these extensions.

Any of the tools will finally interact with all of these objects in one or the other way. The
interface’s task is just to provide an appropriate means for this interaction. Let us give some
examples of the type of functionality that is required by individual tools, using THE T OOL-SET
as an example:

e THE DEBUGGER!

Show process status information

Set breakpoints on reception of a message

e THE PERFORMANCE ANALYZER
Measure node idle time and process CPU utilization

Include process into measurement if certain criteria are met

e THE VISUALIZER

Show dynamically created objects
e THE LOAD BALANCER

Evaluate system’s load distribution and trigger process migration

These examples should make it evident that the design of a versatile functionality accessible
via the tool/monitor-interface is of crucial importance.

!For a brief description of what the functionality of the following four TOOL-SET-components will be, please
refer to [LWB+95]
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Conceptional Requirements

As we neither know the complete functionality of the tools in advance nor the types of tools
themselves we have to require that the monitoring interface offers enough extendibility for future
developments. In addition, new programming paradigms need to be covered that differ from
the message passing paradigm we are currently concentrating on. Shared memory programming
will be the next step but also object oriented programming and client/server programming using
interface definition languages (IDLs) might be of interest. This conceptional requirement will be
fulfilled with our specification by designing means of how to enhance the tool/monitor-interface.
The specification provides means to plug in new components that handle these future concepts.

A second conceptional requirement is imposed by the variety of tools that will use this
interface in a environment of parallel and distributed machines. We distinguish tools with and
without a graphical user interface. The first group will usually have a single point of control, e.g.
a tool environment on a workstation. From that single point of control the tool will communicate
with the monitoring system, i.e. the individual monitors on the nodes. On the other hand we will
have tools without a user interface which reside in the system in a centralized or decentralized
version. Decentralized tools are for example load balancer systems. The monitoring system
must be flexible enough to serve all these different types together with their different spatial
distribution of control.

Furthermore, different types of architectures have to be handled as well. Especially SMP
workstations and clusters of SMP workstations will be considered. With these architectures
OMIS based tools work at the same level of resolution as the operating system does: if the
assignment of a thread to an individual processor is not controllable by the program it will
neither be controllable by a tool. In this case the additional complexity is hidden and the SMP
workstation acts just like a single processor node.

Efficiency Requirements

Finally, we have efficiency requirements. Although it might seem to be an improper approach
to discuss interface specifications in terms of the efficiency of their potential implementations
we will see that there are good reasons to look at this issue here. Interaction between a monitor
and a tool must be handled by a kind of communication mechanism (e.g. message passing or
RPCs). In order to keep the overhead minimal it is necessary to have powerful basic services
and a possibility of composing service requests into a single request.

In addition to being a functional requirement, composite service requests are necessary for
efficiency reasons. They combine a sequence of requests of available basic services into a single
request. E.g. to get an overview over the system utilization, the tool could ask each monitor for
the idle time percentage. Instead, it will issue a combined request to one monitor that thereupon
sends requests to all others and returns a collective response to the calling tool. These types
of composite services are of special interest in situations where the requested information is the
result of a computation based on information gathered from different computing nodes. In this
case the monitor itself can do some pre-calculation in order to reduce communication overhead.
The syntax of requests is kept simple to keep the overhead necessary for parsing low. Complex
commands that express e.g. loops or alternatives can be realized in the extension part of the
interface specification.

In order to avoid delays due to communication, the monitoring system should also be able to
handle certain kinds of events occuring in the application program without interacting with the
tool. If for example a performance analysis system wants to measure the mean time between
sending a message and receiving the reply, it would be prohibitively expensive to inform the tool
on each event occurrence. Instead, the monitoring system should be able to start and stop a
timer autonomously. Service request composition can also support this situation.
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Part 11

Structure of the Monitoring
Interface
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Chapter 4

The System Model

This chapter describes the model of the target systems OMIS is primarily designed for and also
the embedding of an OMIS compliant monitoring system into such a system. In our example,
the environment is composed of a parallel programming library and an additional specialized
runtime library (e.g. for handling parallel I/O operations). Programs consist of a collection of
execution objects (processes, threads) which usually spawn over a set of nodes. A node from our
point of view is a computing device that offers a single system image to the user. It could e.g.
be a single processor workstation, an SMP workstation, or a cluster of workstations providing
a single system inage. Observations and manipulations below the level of the system image are
only possible if this is supported by the operating system'.

Thus, this paper does not only present an interface specification, but also specifies the kind
of environment that can be handled by the interface. As the specification exhibits a high degree
of flexibility, we expect to be able to integrate it also into other architectural environments, even
into those that differ considerably from architectures found with the message passing paradigm.
A future version of OMIS will cover shared memory environments; other architectures will be
carefully considered.

Let us now look at the components participating in such an environment. Figure 4.1 shows
an abstract view in which the individual nodes of the parallel system are not yet visible. The
application programs consist of a certain number of execution objects that cooperate by means
of communication objects provided by the parallel programming library or the operating system
(e.g. message passing between nodes, shared memory on one node). The management of the
execution objects and other organizational work is performed by special modules of the pro-
gramming environment (e.g. daemons) or directly by the operating system. Technically, this
means that there might be libraries and daemons with which the program cooperate. The
complete complex runs on the target architecture, i.e. on top of the operating system and the
hardware. The complex consisting of target architecture, programming libraries, and daemons
used is called target platform.

As soon as we add tools to this ensemble (either interactive or automatic tools) we need
additional layers. The part which joins the tools to the running program is the monitoring
system. Its role is to establish the tool/program-interaction. Consequently, this layer is located
between the application program and the tool.

Interactive tools usually reside on a host machine which is connected with the target sys-
tem?. With automatic tools like e.g. load balancers, the situation is different. They exist in a
distributed manner on the target nodes only. We will therefore call them distributed tools. Two

!For example, inquiry services might be able to determine the number of CPUs in an SMP machine although
none of them can be accessed directly to measure its load.

2Note, that with many modern parallel computers and with workstation clusters the host may actually be part
of the target machine.
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Figure 4.1: System model: embedding an OMIS compliant monitoring system into an environ-
ment with tools and a parallel programming library

further modules are of interest®. The distributed tool extension (DTE) is a set of user supplied
functions to perform certain manipulations outside of the centralized tool (e.g. calculate certain
performance metrics, write traces to local disks, etc.). Finally, we might have monitor extensions
(ME). These are extensions of the monitoring system and its specification which are dedicated
to a new software component like e.g. a parallel file system. It highly depends on the concrete
tool environment which of these three additional components are available in a given system.
However, if there is an interactive tool then there will also be in almost any case a distributed
tool extension because many activities can be handled more efficiently directly on the nodes
(e.g. preprocessing of information data).

How do the individual layers of figure 4.1 inter-operate? The monitoring system has two
interfaces: one for interaction with the different tools (tool/monitor-interface), a second one for
interaction with the program and all underlying layers which keep the program running. For
simplicity reasons we will call the latter the monitor/program-interface, although it comprises
interface parts to different modules of the system (program code, libraries, operating system).
Activities at this level are restricted to low-level inspection and manipulation requests. Obviously
the monitoring system will have to handle different information types depending on the low-level
module with which it inter-acts. Details will be discussed in later chapters.

The tool/monitor-interface is what the developer of a tool finally will use. OMIS specifies
semantics only for the on-line monitoring interface and provides means to extend this interface.
We end up with a definition of the tool/monitor-interface where the basic services provided by

3Please refer also to chapter 6 for more details on these additional components.
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the on-line monitoring interface are defined with their syntax and semantics whereas all of the
extensions are only defined with respect to their syntactical structure.

The interaction between tools and the monitoring system is handled via asynchronous pro-
cedure calls. The tool invokes a service request and either waits for results coming back from
the monitoring system or specifies a call-back to be invoked when results are available.

The interaction between the monitoring system and the monitor extensions and distributed
tool extensions takes place via function calls and activation of call-back functions.

Let us finally have a look at requirements that must be met by the target architecture in
order to successfully support the OMIS approach. First of all, the operating system must support
multi tasking. This is obligatory for the various activities that are performed by the monitoring
system while the program is running®*. The target architecture also must provide means for
the manipulation of execution objects (processes and threads)®. Otherwise only observation
would be feasible and the approach would lose its most important part. Finally, we need means
for communication between the modules belonging to monitoring system, the tools, and the
underlying target platform.

“It would be possible to link all components together and run tools and program on e.g. a mono tasking parallel
computer environment. However, there is not much sense in setting up an approach like OMIS for such a limited
architecture.

*With modern operating systems this is achieved via the proc-file-system or the ptrace-interface.
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Chapter 5

A Basic Outline of Available Services

Since a central idea of OMIS is to provide an interface that allows complex requests to be built by
combining primitive ones, the tool/monitor-interface is based on a language in order to achieve
the needed flexibility. The tool/monitor-interface basically consists of a single procedure that
can be invoked by both centralized tools and components of distributed tools. In addition, a few
other procedures are available for maintenance purposes (see Section 7.1). The main procedure
receives a string as an input parameter, interprets this string, and returns a result that is
represented as a data structure. The individual monitoring functions available by invoking this
procedure are called services; the string that is passed to the procedure (requesting the activation
of a service) is called service request, the result is called service reply.

In order to meet the efficiency requirements stated in Chapter 3, the structure of a service
request follows the event-action-paradigm, allowing the monitoring system to quickly react on
state changes in the monitored system without having to communicate with the tool. A service
request can consist of an event definition x associated with an action list y, meaning “whenever
an event matching the event definition z occurs invoke the actions in y, passing some relevant
information on the event occurrence to these actions”. If no event definition is present, the
service request is unconditional and all actions are invoked immediately and exactly once.

The interface procedure accepts requests for all nodes the monitoring system is responsible
for; therefore, a distributed tool component can request services not only for objects on its local
node, but also for any object. Likewise, the actions associated with an event can be requests
for services on objects located on a node different from the one where the event occurs. The
monitoring system automatically takes care of forwarding the requests to the proper nodes. In
addition, we allow services that are global, i.e. that involve more than one node.

The next section introduces the different classes of services available at the tool/monitor-
interface; Section 5.2 provides a basic outline of the mechanisms and the syntax used in this
interface. Section 5.3 presents two examples giving an impression of the interface’s expres-
siveness. A detailed description of the interface procedures is contained in Section 5.4. In
section 5.5 we discuss the the scope of tools, i.e the set of objects that they control. Section 5.6
finally presents some additional remarks on the tool/monitor-interface.

5.1 Classification of Monitoring Services

The services that are offered by the tool/monitor-interface can be classified according to three
different properties:

e First, we can classify services according to their input/output behavior:
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1. Information services. These services are exclusively meant for observation of the
program and the monitoring system. The result of their invocation will contain in-
formation about the current state of the monitored system (including the monitoring
system itself). Examples are “return the value of a variable x of process y” or “return
the CPU time of a process”.

2. Manipulation services. These services manipulate the objects that are listed in the
parameters of the service call. Thus, they change the internal state of the program
or the monitoring system or both. Examples are “stop a process”, “set a variable of
a process to a given value” or “raise a user! defined event”.

3. Event services. In contrast to the two classes already introduced, event services do
not have a direct reply. Instead they are used to trigger lists of manipulation services
and information services which are called action lists. An event service defines a class
of events to be observed. We call an ’event’ the situation where a specific change in
the state of an observed object occurs. Whenever an event belonging to that class
occurs it triggers the specified action list. The replies to the latter are collected and
sent back to the tool. In fact there are also reply values of an event service. They are
called event context parameters and their values are handed over to the manipulation
services and information services to be invoked. By that the latter are parameterized
and may react on events in different manners depending on the actual values of the
event context parameters.

We do not know in advance how many times an event of the given class will occur
nor when this might happen. Thus, the tool does not know how many replies might
arrive and when.

Obviously, an event service cannot be used as a complete request as its result can
only be observed in the form of results of action lists triggered by this event.

The description of services in Chapter 8 and Chapter 9 is structured according to these
classes.

The interface specification defines the way requests can be composed by using above men-
tioned categories of services. Details on the syntactical structure of requests will be given
in the next section.

Logically we have to distinguish two situations: requests that are unconditional and yield
results immediately and conditional requests where something has to be done whenever
an event of a certain class occurs. Unconditional requests are composed by a well-defined
set of manipulation services and information services of any size. Rules for the sequence
of invocation of the individual services will be introduced later. With conditional requests
we simply add one event service to an unconditional request. It specifies the condition
under which the request will be triggered.

e We already mentioned that the versatility of OMIS lies in the mechanism of extending the
specification. This divides services into two categories.

Basic services are independent of the concrete programming libraries employed for the
parallel program. They establish the core of OMIS and thus of every OMIS compliant
implementation of a monitoring system. The set of basic services in OMIS 2.0 is defined
in Chapter 8.

Extension services do not belong to the OMIS core. Instead we need an extension for every
programming library we want to use with our programs. Chapter 9 defines an extension

!The user here is a tool, not the application programmer.
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for PVM 3.3. If a tool developer wants to implement tools for e.g. the parallel file system
PIOUS he will have to provide an extension for this purpose. However, one implementation
of these additional services will be sufficient for others to also develop tools for PIOUS.

The OMIS research group will take over the task to coordinate the design and implemen-
tation of extensions being made by third parties.

e Services can be classified according to the type of objects they refer to. On the first
level, we distinguish between system objects and monitor objects. System objects are
those objects being part of the monitored application or of the hardware the application
is executed on. Currently, four different types are supported by the basic services:

1. processes,
2. threads,
3. messages and message queues, and

4. nodes of the parallel or distributed computing system.

This selection reflects of course our decision to concentrate on the message passing para-
digm in the current version of the specification. Although not yet included here we are
working towards extending OMIS for the shared memory programming paradigm. The
integration will add new objects to the above list, e.g. memory regions.

Additional objects for specific message passing libraries to be monitored appear with OMIS
extensions. Chapter 6 will discuss that in detail.

Monitor objects are those objects that are introduced by the monitoring system itself. For
example, each conditional service request is a monitor object, since it has to be stored in
the monitoring system and can be manipulated using other services. Other monitor objects
are user-defined events or timers and counters, although the latter are not included in the
basic specification.

Since this classification of the monitored system into a hierarchy of objects is a natural way
of structuring the monitoring services, we are thinking towards the future use of object oriented
paradigms for the tool/monitor-interface instead of the current one, that is object based but
does not apply inheritance. By exploiting inheritance, object oriented techniques could provide
a way to define the interface at an abstract level independent of the supported programming
paradigms and concrete libraries. Services specific to a certain programming library could then
be realized by an extension to the generic monitor that implements object classes (e.g. PVM
task, MPI processes) derived from the interface’s base classes (e.g. abstract process). See item 1
in our requests for comments (Chapter 12).

5.2 Introduction to Monitoring Services

This section is intended to give an impression of how the syntax of service requests and service
replies looks like and how unconditional and conditional requests are composed. For a complete
formal description of the request and reply syntax and semantics, please refer to Chapter 7. The
discussion here will not cover all relevant aspects. Instead it will try to introduce the concepts
that will be used.
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5.2.1 Unconditional Requests

An unconditional request, also called action list, is syntactically composed of a list of information
services and manipulation services. A simplified definition looks as follows?:

action_list n=action | action[’; ] action_list
action = service_name ’(’ parameters’)’

The individual actions of an action list are concatenated either directly or by means of
a semicolon. This distinction gets important as soon as individual actions refer to different
nodes of the target system. In this case it is possible to execute actions in parallel. A direct
concatenation by definition expresses the possibility for parallel execution whereas a semicolon
forces the monitors on the individual nodes to globally synchronize before they continue with
the next action. For example an action list “a b ; ¢” expresses that actions a and b can be
executed in parallel (if possible) but both of them have to be completed before action ¢ can be
invoked.

The service_name identifies the requested service. It may either belong to the class of basic
services or of extension services. As extensions are optional it is the task of the monitoring
system to check for available extension service identifiers and provide the tools with the necessary
information.

Of course we also need parameters for the individual actions of our list. Parameters are
defined as follows:

parameters = parameter_list | €

parameter_list = parameter | parameter’, parameter_list

parameter = integer | floating | string | token | binary
| list | ev_ctz_param

ev_ctz_param = '$ identifier

token m= identifier

list = [ parameters ]’

Each parameter is either of the standard data type integer, floating, string, or binary
or of the special data type token, list, or ev_ctx_param. The meaning of the standard data
types should be intuitively clear. Detail will be given in section 7.2.2. The special data type
token is used for addressing in a platform independent way objects of any type, i.e. system
objects and monitor objects. Finally, the data type list allows to compose lists of all other data
types including the list type itself.

Where the service name specifies the action to be invoked it is the role of the token to
determine the objects that are to be used. In the most simple case the token is directly an
identifier for an object the service works on. E.g. the token might specify a process where the
service is “stop a process”. More complex situations can be mastered by using token lists. For
the same service a token list might specify a set of processes to be stopped.

Tokens also offer an expansion mechanism. A node token used with the above service means:
stop all processes on the specified node. The node token is expanded to a list of process tokens
before the service is activated. The other direction is called localization. If we use a thread token
with the same service, the system replaces the token with the corresponding process token, i.e.
with the token of the process that runs the thread.

2A special syntactical construct to lock the monitoring system during the execution of an action list is left out
here for simplicity.
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Expansion and localization can also be mixed in a token list: a complex list might comprise
node tokens and thread tokens. It is translated into the list of tokens of the corresponding
process before activation of the service.

A special semantics is defined for empty token lists. They are expanded to a non-empty list
of tokens refering to all currently monitored objects of the type the service works on®.

Let us assume that a service needs to address all currently monitored processes in the system.
The process token input parameter of the service gets an empty token list when the request is
sent from the tool to the monitoring system. The empty token list is expanded at the moment
where the service is to be performed. By means of this just in time expansion we are able to
handle dynamically changing sets of objects (nodes, processes, etc.). A more detailed description
of the token data type can be found in section 7.2.2.

Finally, the event context parameter ev_ctx_param is used to transfer information from
event services to information services and manipulation services. A parameter of this type
describes an output parameter of an event service (e.g. $node, $time etc.). A fixed set of event
context parameters is provided by OMIS itself. Extensions are free to introduce additional
parameters.

5.2.2 Conditional Requests

We will now discuss the conditional request that adds some further rules to our request syntax.
We already mentioned that a conditonal request is composed of an event service definition and
an action list*. We define:

request = [ event_definition ]’ action_list

event_definition ::==  service_name ’(’ parameters ’)’

With conditional requests the protocol between tools and monitoring system is more com-
plicated. The tool gets a reply whenever an event matching the specification occurs and the
action list was performed. However, when the tool gets the replies, how can it identify them? A
further question is: how does the tool know whether or not the event detection was successfully
installed for this request? An answer that solves these two problems is to send a first reply to
the tool when the request is analyzed. This reply carries information on the instantiation of the
corresponding event detection as well as a token that identifies the request. When the event
finally is triggered the corresponding request is identified by the callback function invoked and
its actual result parameters.

Conditional requests can be enabled and disabled. By definition, a conditional request is
initially disabled, i.e. there must be an explicit request for activation.

For a useful semantics of the tools it is crucial that any object under investigation does not
change its state after an event has been detected and before all actions were performed (unless
— of course — actions change that state by themselves). This is ensured by defining that the
execution of an object that triggered an event has to be suspended immediately after event
recognition. It is resumed after the completion of all actions in the list.

A detailed description of issues relevant to conditional requests is given in section 7.2.3.

5.2.3 Service Replies

Service replies are very complex by nature. In case of a successfull completion of an action list
they carry result values of all the individual actions of the list being performed on the specified

3There are some more details concerning the final list of tokens that will only be introduced in later chapters.
“Thus, a request from a tool to the monitoring system is conditional or unconditional depending on the fact
whether or not an event service is specified.
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objects. E.g. one service of the action list might collect information of all processes on all nodes.
The result of this action is a list of object tokens together with the result values of the specific
service issued. Another service of the list might manipulate all processes on all nodes. As
manipulations might be successful or erroneous the service reply must also be able to transfer
this information back to the tool.

Replies of the individual services of the action list are put together to one reply for the com-
plete list which finally is sent back to the tool. Obviously, the reply is hierarchically structured
as many action and objects will be referenced.

With conditonal requests we find two additional situations that have to be covered. The first
one concerns the requests by themselves: definition, enabling, disabling, and deletion result in a
special reply sending back to the tool information on the success of these functions. The second
one refers to the occurence of an event that matches an event definition. The reply must be
assigned to the correct request issued before. This is achieved via the callback function triggered
and/or the parameters passed via this call.

Details on the reply data structure and its individual components are discussed in depth in
section 7.3.

5.3 Examples

In the following two subsections we will present short examples that will show how the moni-
toring interface supports different tools, namely a performance analysis system and a debugger.
Although the basic services and extension services will not be defined until later in this docu-
ment, their semantics should be intuitively clear in the examples. The primary goal is to give an
impression of the interface’s structure and expressiveness, rather than of its concrete services.

5.3.1 Performance Analysis of PVM Programs

Assume that a performance analysis tool wants to measure the time spent by task 4178 in the
pvm_send call. In addition, the tool may want to know the total amount of data sent by this
task, and it may want to store a trace of all barrier events. Then it may send the following
service requests to the monitoring system:

‘ No. ‘ request string ‘ result token ‘
1 | thread_has_started_lib_call([p-4178],” pvin_send”) :
timer_start([pa_t_1])
counter_add([pa_c_2],$par5h) c1
2 | thread_has_ended_lib_call([p_4178],”pvm_send”) :
timer_stop([pa-t_1]) c2
3 | thread_has_started_lib_call([],” pvm_barrier”) :
print([”pvm_barrier entered”,$node,$proc,$time]) c.3
4 | thread_has_ended_lib_call([],” pvin_barrier”) :
print([”pvm_barrier left” ,$node,$proc,$time]) c4
5 | : csrenable([c_1,c_2,c_3,c_4])

The tokens c_1...c_4 are identifiers for the conditional service requests. They are delivered by
the monitoring system as a direct reply to the request. The fifth request, which is unconditional,
does not yield such a token.

The event services used in this example are of special importance as they bridge the gap
between the universal monitoring interface and an interface adapted for the PVM programming
model. These services allow to monitor library calls of any programming library, in our example
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of the PVM package®. The service thread_has_started_lib_call is matched by any event where
an appropriate library call is started. Accordingly, thread_has_ended_lib_call is matched by
any completion of such a call.

Each event service is defined for objects on a certain level of abstraction (i.e. processes,
messages etc.). Tokens are automatically adapted to the appropriate level of abstraction by
two mechanisms called expansion and localization. For details on token hierarchies please see
section 7.2.2.

With the conditional service request c_1 we wait for the start of pvm_send calls. In this case,
we activate timer 1 for time measurement and increment counter 2 by the number of bytes to
be transferred with this call (value of parameter $par5). When the send call completes, we stop
timer 1.

Whenever a PVM barrier is entered or left, conditional services 3 and 4 transfer relevant
information directly to the tool, which may for example write them to a trace file.

The example also shows the usage of the event context parameters: the variables $parb,
$node, $thread, and $time will get concrete values before the actions they belong to are started.
These values are output values of the event services triggered.

While the events used in the example are basic services defined by this document, all the
actions (with the exception of csr_enable and print) come from a distributed tool extension.
Thus the performance analyzer can use its own semantics for integrators and counters.

5.3.2 Debugging of MPI Programs

The following example shows how the basic service requests defined by this document can be
used during debugging. Assume that the debugger wants to be notified whenever process p_1123
starts sending a message, or whenever process p_1234 reaches instruction address 0xfe08, and
that it wants to know the process identifier, the procedure stack, and the contents of all general
purpose registers. This can be achieved by using a user defined event:

‘ No ‘ request string ‘ result token ‘
1 | : user_event_create() el
thread_has_started_lib_call([p_1123],” MPI_Send”) :
user_event_raise([e-1],[],0) c-1
3 | thread_reached_addr([p-1234],0xfe08) :
user_event_raise([e-1],[],0) c2

4 | user_event_has_been_raised([e_1]) :
print([$proc])
thread_get_backtrace([$proc],0)
thread_read_int_regs([$proc],0,32) c3
5 | : csr_enable([c_3]) ; csr_enable([c_1,c_2])

At first we define a new user event which subsequently can be used for both triggering a
synthetic event and detecting the very same synthetic event. The definition yields a token for
this user defined event by which it can be referenced in the next requests.

The second request raises this event whenever an MPI send operation is performed. Similarly,
request number three defines the same event to be raised on the condition of reaching a certain
address with a thread object. Both requests act as a kind of logical OR operator for event:
whenever sending is performed or a certain address is reached a user defined event will be
raised.

SNote: This can not be achieved without modification of the PVM library. However, we expect to have this
modifications handled automatically either at link-time or during run-time.
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Request 4 defines what has to be done in this case: we want to get the process identifier of
the triggering object and its node identifier, get its procedure stack, and read its register values.

Up to now all conditional requests are disabled. At first we enable the handling of our user
defined event by activating ¢_3. The possible invokation of this event is activated by enabling
c_1 und c_2. Now the complete request sequence is active and triggers identical actions by
different events.

After the actions have been executed, the process continues execution. To stop the process
with the occurrence of the event, simply add thread_stop($proc) to the action list of request 4.

5.4 Interface Procedures

We will now give a first short introduction into the concepts of interface procedures that are
used between the tools and the monitoring system. An exact description of this topic will follow
in section 7.1.

Essentially, OMIS defines one function to handle the cooperation between tools and the mon-
itoring system. This function is called omis _request and has the following ANSI-C prototype
when provided for a C language binding:

Omis_reply omis_request(char * request,
void (* callback) (Omis_reply reply, void * param),
void * param,
Omis_flags flags);

The function is used to issue both unconditonal and conditional requests. Its behavior in
terms of blocking or non-blocking is defined by its parameter values and may be tuned to fit
various situations.

The function definition involves four basic concepts:

1. The request sent to the monitoring system is always represented by a character string.

2. A call-back function provides means for the monitoring system to transfer result data back
to the tool. This is essential for conditional requests which result in any number of replies.
The call-back function is activated whenever a reply from the monitoring system has to
be transferred.

3. Flags define behavioral variants of the omis_request function. Most important they
allow to e.g. suppress simple ok-replies or wait for for acknowledgement of proper event
activation.

4. A reply parameter is used whenever we get direct results as opposed to indirect results via
the call-back function. This reply parameter might e.g. denote reply data from uncondi-
tional requests. Any reply sent by the monitoring system occupies memory in the address
space of the tool. It can be freed via the omis_reply_free function.

For centralized tools, for which the omis_request function will be realized by some kind
of remote procedure call mechanism, we need several additional functions. Their main purpose
is to initialize a connection with the monitoring system and to wait for replies to be received.
Details are given in section 7.1.

35



5.5 The Tools’ Scope

A very important question is the scope that every tool has, i.e. the objects it can observe
and manipulate. If we were faced with static systems ounly, i.e. single user single application
environments with only one tool, the situation would be simple: the tool’s scope would just be
all objects of the running system. However, OMIS wants to provide means to handle dynamic
systems where the number of objects varies during time. New execution objects may be created
or old ones may no longer exist. Likewise nodes may be added to the environment or be deleted
from it. Also, several tools might co-exist in a tool environment and have to be managed
independently by the monitoring system. Finally, OMIS based tools should be multi application
capable, i.e. they should support a tool’s access to more than one currently running application
program.

The main concept of OMIS is that every tool at every moment has a well defined scope,
i.e. can observe and manipulate a specific set of objects. The scope of different tools may be
different. They may handle object sets that are not identical.

Concerning the ability to monitor concrete objects we define the following rules:

e After the start of a tool and its successful initialization of the cooperation with the moni-
toring system (via omis_init()) the tool has not yet an access to individual objects.

e In order to control nodes and processes the tool has to explicitly attach to every individual
object. Only after an attach operation the tool can monitor the object.

e Transient objects like threads and messages can be monitored if the tools is attached to
the corresponding 'container’ object (i.e. a process, a message queue). No attach operation
is necessary as this would be in conflict with the objects’ short life time.

e New instances of nodes and processes are not monitored automatically. Instead, the tool
has to issue a conditional service request to get informed whenever new objects of these
types are instantiated. If it wants to monitor these objects it explicitly has to attach to
them.

Above rules fix a tool’s scope. We can see that the set of objects to be monitored in the
target system is well defined. Every tool sees only what it wants to see.

Whenever two or more tools monitor the same object the monitoring system has to ensure to
properly distinguish these tools. Imagine that two tools measure the CPU time of a process. If
one of them is no longer interested in that value and disables the measurement, the monitoring
system has to guarantee that it will remain activated for the second tool. On the other hand,
as long as there are two or more identical measurements defined, the monitoring system should
be able to recognize this fact and to keep the additional overhead by this multiple definition as
low as possible.

The varying set of objects produces some logical problems for conditional service requests
especially in cases where we use object tokens like “all nodes” or “all processes” in event and
action definitions. We have to fix a semantics how to handle the situation where the object set
changes during an event definition and the corresponding action list activation. These problems
will be discussed in detail in section 8.1.2 and 8.1.1.

5.6 Remarks

There are some general remarks about the monitoring interface that should be mentioned here:
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e In principle, the interface is asynchronous. This means that with the omis_request
procedure there is no guarantee that you will receive replies in the same order in which
you have sent the requests. The behavior of the interface might be blocking or non-blocking
depending on the actual parameters. This will be discussed in detail in the next chapter.

e Parameters of services must be either constants, or (in case of an action in conditional
requests) event context parameters (i.e. $node, $time, etc.). They cannot themselves be
actions or events. Thus no recursion is possible with service requests.

e Only one event is allowed in a service request. Combinations of events can be implemented
by means of user defined events, the disable and enable services described in Section 8.2.1,
and distributed tool extensions.

The debugging example already demonstrated how to combine two events in order to have
a logical OR operation between them. Likewise it is possible to realize a “happened after”
relation. Let us reconsider the debugging example. Now, we would like to have the action
list executed when first process p_1123 started sending and afterwards process p_-1234
reaches instruction address 0xfe08.

‘ No ‘ request string ‘ result token ‘
1 | thread_reached_addr([p-1234],0xfe08) :
print([$proc])
thread_get_backtrace([$proc],0)

thread_read_int_regs([$proc],0,32) c1
2 | thread_has_started_lib_call([p_1123],” MPI_Send”) :
csr_enable([c_1]) c2

3 | : csr_enable([c_2])

The difference now is that conditional service request does not trigger a user event. Instead
it enables ¢_1. By that we have successfully specified a “happened after” relation.

Other combinations (e.g. an and operator) can be realized in a distributed tool extension
as a service that triggers a user-defined event when the proper conditions are fulfilled.

e The interface offers no direct way of passing the result parameters of one action to the
input parameters of another action. If you need this, you have to code a new service in a
distributed tool extension library that calls the actions and passes the parameters between
them.
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Chapter 6

Extending OMIS

As we have already stated before, it is not possible to define a monitoring interface that offers all
services that may be needed by any existing or future tool. Therefore, it is of utmost importance
to provide a means of extending the interface. OMIS thus includes provisions that allow new
services and also new types of objects to be added to the basic monitoring system by any
research or development group using the monitor, not just by the one that implemented it. The
additional services and the additional functions for object token conversion can be implemented
as a library of C or C++ functions that is linked with the monitor libraries.

6.1 Types of Extensions

There are three situations where linking additional code to the basic monitoring system is
profitable or even necessary:

1. Usually, different tools use very different methods to process events in the monitored
application. For instance, one performance analyzer is based on event traces, thus it wants
to write events to a file in its own proprietary trace format. Another performance analyzer
is based on distributed on-line analysis. It will therefore need services that perform this
analysis, by providing e.g. counters and interval timers, whose detailed semantics depend
on the specific tool.

Therefore, it is desirable to define new services for this kind of tool-specific data processing
and also new token types for the monitor objects provided by these services. We will
call this kind of extension a distributed tool extensions (DTE). They can also include
specialized, more complex services that are based on the basic services defined by this
document including also new events that are derived from existing events via filtering.

The principal property of distributed tool extensions is that they only use the interfaces
defined by OMIS. Therefore, they are independent of the target platform or a specific
implementation of an OMIS compliant monitoring system.

2. Some tools may also want to observe additional aspects of application objects or even new
application objects not covered by this document. These new objects may be implemented
in some specific target platforms or may come from specialized runtime libraries. For
instance, if an application uses a parallel I/O system, a tool may want to observe I/O
objects.

The code linked to the monitoring system, that provides these new services is called a
monitor extension (ME). The interfaces provided by MEs have to comply with OMIS,
however, due to their nature, monitor extensions also have to make use of interfaces specific
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to a target platform or an implementation of an OMIS compliant monitoring system. Thus,
these extensions may not be portable.

3. Finally, there are also fully distributed tools without a central user interface component,
e.g. a load balancer. For performance reasons it is profitable that the components of such
a tool can access the monitoring interface on their local node via simple procedure calls,
without the need for interprocess communication.

We call this kind of “extension” a distributed tool (DT). This kind of distributed tool will
typically consist of a set of specialized actions that are triggered either periodically or by
events in the monitored application. It is similar to a DTE with the difference, that in
a DT there is a set of requests that is defined during the initialization of the monitoring
system, while in a DTE all requests are defined by the centralized tool.

Of course, a single library can contain code of all these categories.

6.2 The Method of Extending OMIS

Once we have decided to allow new services and new object types to be linked to the moni-
toring system, the question is how to make them accessible at the monitoring interface. The
approach we are using is as follows: Each service is addressed by a unique service name, i.e.
a unique identifier string passed to the tool/monitor-interface, which is mapped to the imple-
menting function(s) using a mapping data structure built during initialization of the monitoring
system. Likewise, the type of a token is indicated by a string prefix that can be mapped to the
functions implementing token conversion using a similar data structure. We now have a couple
of requirements that must be fulfilled:

e The service names and token prefixes used by different extensions must be disjunct, oth-
erwise we will not be able to use several extensions at the same time. Being able of having
multiple extensions is extremely important, since a single version of the monitoring system
should be able to support all of the tools available in a certain environment.

e Besides having unique service names, also the function names and other externally visible
names in the code of the extension libraries must be disjunct, since different extension
libraries may be linked to the monitor.

e It must be possible to generate and use the monitoring system both with and without any
extension.

e The coordination necessary to meet the above requirements should be as light weight as
possible. Developers should be able to provide extensions without being forced to know
about all other extensions and without being forced to apply for every new service at a
central location.

We have decided to use the following strategy for extensions:

e Each service name, each token prefix, and each externally visible name in the code of an
extension library has a prefix that separates it from the names in all other extensions and
from the ones in the basic monitor.

e A research group that wants to make extensions to the monitoring system is assigned a
new prefix on request. Then this prefix is reserved exclusively for that group; thus, no
further coordination is required. Developers can assign arbitrary service names, provided
that they start with the assigned prefix.

39



e In order to realize the above strategy, the data structure mapping service names to the
functions that implement the services cannot be built statically, but must be expanded
dynamically by each extension linked to the base monitor. Therefore, each extension
library must contain an initialization function whose name is “register”, prepended by the
extension’s prefix. This routine will then register all services provided by the corresponding
extension. When a new prefix is requested, the basic monitoring system will be modified
in such a way that it invokes this initialization routine in the startup phase.

e In addition, an empty routine with the same name will be created in a dummy library.
This library is linked to the monitor as the last library. Thus no undefined symbols occur
when some extensions are currently not linked to the monitor.

The procedure of requesting a new prefix has to be done only once by those groups that plan
to extend the monitoring system. We will try to make this procedure fully automatic, e.g. by
using a WWW form or a mail server.

Services from extensions may possibly get included into the documentation of OMIS, if they
are of public interest. But in order to keep the implementation modular, they will nevertheless
be implemented in a separate library.

6.3 The Extension Interface

From the above, it is clear that for the extension scheme to work there must be a well defined
interface for extensions. Thus, there has to be a specification covering:

e the interface of the functions implementing manipulation, information and event services,
e the interface of token conversion functions,
e the interface used to register new services and token types.

These interfaces will be specified in a later version of this document, after we have collected
more experience with the implementation of an OMIS compliant monitoring system for PVM
on workstation clusters.

Note that the interface allowing extensions to use other services is already defined: services
in an extension can call omis_request to invoke other services, in just the same way as a tool
does.
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Part 111

Interface Specification
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Chapter 7

General Description

7.1 Interface Procedures
OMIS defines six procedures to access the monitoring interface:

1. omis_request: Sends a service request to the monitoring system.

2. omis_reply_free: Frees the memory occupied by a reply structure.

3. omis_init: Initializes the connection to the monitoring system.

4. omis_finalize: Shuts down the connection to the monitoring system.

5. omis_fd: Auxiliary function: returns a file descriptor to wait at for incoming messages.

6. omis_handler: Auxiliary function: polls for incoming

The first two functions are available for both centralized tools and for distributed tools,
distributed tool extensions, and monitor extensions. The other ones are only usable for central-
ized tools or distributed tools that are implemented as processes separate from the monitoring
system, since only these tools have to set up a communication connection to the monitoring
system.

The following paragraphs specify the C language version of these procedures. Other language
bindings may be specified when needed. The rest of this chapter and Chapters 8 to 9 specify in
detail the requests accepted by omis_request and the resulting replies.

7.1.1 omis_request

typedef unsigned int Omis_flags;

#define OMIS_WAIT_FOR_FIRST_REPLY 1 /* Even if a callback is specified, */
/* block until the first reply is */
/* received and return this reply */
/* as the function’s result, */
/* without calling the callback */
#define OMIS_DONT_RETURN_OK 2 /x Don’t call the callback for */
/* replies that only contain an 0K */
/* status */
#define OMIS_DONT_RETURN_EN_DIS 4 /x Don’t call the callback for */
/* replies indicating that the */
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/* request has been enabled or */
/* disabled, if the status is 0K */
#define OMIS_BUFFER_REQUEST 8 /* This request may be buffered on */
/* the sender side. The next x*/
/* request without this flag will */
/* flush the buffer. x/
#define OMIS_BUFFER_REPLIES 16 /* The replies for this request may */
/* be buffered locally on the sender */
/* side. The buffer will be flushed */
/* after an implementation dependent */
/* period of time */
#define OMIS_DEBUG 32 /* This flag can be used to switch */
/* on debugging output for this */
/* request. The kind of debugging */
/* output produced is */
/* implementation dependent */

Omis_reply omis_request(char * request,
void (* callback) (Omis_reply reply, void * param),
void * param,
Omis_flags flags);

This function provides a tool’s only access to the tool/monitor-interface. Basically, it accepts a
service request as a string in parameter request, sends it to the monitoring system and passes
the reply back to the calling program. Thus, if tool and monitoring system are implemented as
different processes, a call to omis_request is actually a remote procedure call.

The detailed behaviour of omis_request depends on the value of flags and whether or not
callback is a NULL pointer. If callback is NULL, the function sends the provided service
request to the monitoring system and blocks until the reply to this request is available. The
reply structure is then passed back to the caller as the function’s result. As only one reply can be
passed back in this way, this mode of calling omis_request only makes sense for unconditional
service requests.

If callback is not NULL, the behavior of omis_request is determined by the bits set in
flags. If flags is zero, the provided service request is sent to the monitoring system and the
function immediately returns to its caller with a NULL result. Later, whenever a reply for
this request is sent back by the monitoring system, the specified call-back function is invoked,
getting the reply structure and the value of param as its parameters.

Setting the OMIS_WAIT_FOR_FIRST_REPLY flag in flags results in the function to
block until the first reply is received by the monitoring system and to return this reply as the
function’s result. Subsequent replies will be passed to the call-back function. This mode is useful
for conditional service requests, since the first reply indicates whether or not the event definition
could be processed correctly, while the other replies contain the results of the request’s action
list.

If OMIS_.DONT RETURN_OK is set in flags, the call-back function should not be
invoked when a reply only consists of status values indicating that the service has been executed
correctly, but does not provide any further information. When this flag is set, the monitoring
system can drastically optimize its internal communication, especially for conditional service
requests where the action list only contains manipulation services. However, an implementation
is free to ignore this flag.
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If OMIS DONT RETURN_EN_DIS is set in flags, the call-back function should not
be invoked for replies indicating that the service request has been enabled or disabled, except
in those cases where an error occured. This flag only has an effect if request is a conditional
service request. If the tool needs not be notified on the enabling and disabling of the request
sent, setting this flag can decrease the amount of communication between monitoring system
and tool.

The remaining flags control whether buffering of requests and replies is allowed. If the flag
OMIS_BUFFER _REQUEST is set, the request may be buffered until omis_request is called
with this flag being reset. This allows an implementation to transfer several service requests
to the monitoring system in a single communication step. If OMIS_BUFFER _REPLIES is
set, replies may be buffered by the monitoring system. An implementation must ensure that
the buffers are flushed within an adaquate interval of time. Both flags may be ignored by an
implementation.

Finally, a flag OMIS_DEBUG is provided for debugging. Its intended purpose is to gen-
erate debugging output for that sepcific request. However, whether or not such output will be
produced, and which information will be presented depends on the specific implementation of
the monitoring system. Debugging output will be passed to the error handler (see omis_init
below) in a reply structure with a status field equal to OMIS_OK.

The exact data structure of Omis_reply and the syntax of the request strings are specified
in separate sections throughout the rest of this document part.

7.1.2 omis_reply_free

void omis_reply_free(Omis_reply reply)

This function returns the memory occupied by reply to the system. It is safe to pass a NULL
pointer to this function.

7.1.3 omis_init

Omis_status omis_init(int *argc, char *x*argv,
void (* error_handler) (Omis_reply reply),
int *tool_id)

omis_init establishes a connection between a tool process and the monitoring system. Its
parameters are pointers to the tool’s argument count (argc) and argument vector (argv), a
pointer to a handler function for asynchronous errors (error_handler), and pointer to an integer
identifier used for tools consisting of more than one process (tool_id). The result is an error
code as defined in Section 7.3.1.

The parameters argc and argv are used to pass the tools command line options to omis_init.
The function will then extract all options from argv that are needed for correctly starting the
distributed monitoring system. The arguments used will be removed from the argument vector
pointed to by argv, *argc will be adjusted correspondingly. Since the start-up of the monitoring
system heavily depends on the target platform, and there is currently no standardized way to
perform a connection between parts of a distributed application, we follow the approach taken
by the MPI forum and do not standardize the startup procedure. This means that whether
or not omis_init starts the monitoring system (if it is not already running) and the specific
meaning of the arguments in argv will be implementation dependent. The only requirement
is that after a successful completion of omis_init, the tool can issue service requests to the
tool/monitor-interface using omis_request. omis_init only establishes the connection to the
monitoring system, it does not attach the montoring system to any node or process.
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If non-NULL, error_handler specifies an error handling function, which will be invoked
when some error occurs that is not correlated with a specific request (request specific errors
are reported in the request’s reply). The handler will receive a reply structure with only
one Omis_service_result element containing an error code and a description (see Section 7.3
for details on reply structures). The handler will also receive debugging output, if the flag
OMIS_DEBUG is set for a request (see omis_request above). Debugging output is indicated
in the reply structure by a status field equal to OMIS_OK.

The last argument, tool_id is an in-out parameter that is only necessary for distributed tools
implemented as a set of processes separate from the monitoring system. In this case, one of these
processes has to play the role of a master. It has to pass a pointer to a variable containing a 0 for
tool_id. After completion of the omis_init call, this variable contains a unique tool identifier.
The master then has to pass this identifier to all the slaves, which in turn call omis_init with
the supplied identifier. In this way, the monioring system knows that the processes form a single
tool rather than different ones. Note however, that the ability for different tools to attach to
the monitoring system at the same time is not required by this specification. A centralized tool
can simply pass a NULL pointer to tool_id.

Typically, the main function of a centralized tool will pass pointers to its argument count
and argument vector and an error handler to omis_init:

main(int argc, char x*argv)

{
if (omis_init(&argc, &argv, err_handler, NULL) != OMIS_OK) {
<< Error handling >>
}

}

The startup of a distributed tool implemented as separate processes will look like this:

master process: slave processes:
main(int argc, char x*argv) main(int argc, char x*argv)
{ {
int id = O; int id;
if (omis_init(&argc,&argv, << receive id from master >>
err_handler,&id) if (omis_init(&argc,&argv,
1= OMIS_OK) { err_handler,&id)
<< Error handling >> '= OMIS_OK) {
} << Error handling >>
<< send id to slaves >> }
} }

7.1.4 omis_finalize

Omis_status omis_finalize()
This function must be called by any tool before it exits in order to shut down the connection
between the tool and the monitoring system in a well defined way. When omis_finalize is

called, the monitoring systems deletes all conditional service requests defined by that tool. It
also detaches from all objects to which it has been attached by that tool.
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Whether or not omis_finalize also terminates the monitoring system and/or the monitored
application depends on the specific implementation, but should be controllable by the arguments
passed to omis_init.

7.1.5 omis_fd

int omis_fd()

omis_fd returns a file descriptor that can be used to block a tool process until a message from
the monitoring system arrives, e.g. by passing the file descriptor to a select system call. If the
function cannot execute correctly, it returns -1. A rationale and an example for this function is
given in the next subsection.

Note that on non-UNIX systems the return type of this function may vary.

7.1.6 omis_handler

void omis_handler ()

omis_handler polls the communication channel to the monitoring system for incoming messages
and handles them properly. Although in an ideal world, this function (and also omis_fd) should
not be visible at the interface, it is nevertheless necessary, since tools usually provide their own
main loop waiting for input events and handling them. The message handling, including the
invocation of call-back functions must somehow be included into this main loop, if the tool uses
call-back functions for omis_request. If the tool always uses NULL for the callback argument
of omis_request, there is no need to ever use omis_fd or omis_handler.

The following two examples show the proper use of omis_fd and omis_handler. The first
example considers a simple command line oriented tool:

#include <sys/types.h>
#include <sys/select.h>
#include "omis.h"

int main(int argc, char **argv)
{

fd_set fds;

int mon_£fd;

char input_buf[80];

/* Initialize connection to monitoring system */
omis_init(&argc, &argv);

/* Get OMIS file descriptor */
mon_fd = omis_£fd();

do {
/* Build file descriptor set containing the OMIS file
descriptor and the stdin file descriptor */
FD_ZERO (&£fds) ;
FD_SET (mon_fd,&fds) ;
FD_SET(0,&fds) ;

/* Block until there is some input */
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select (mon_fd+1, &fds, NULL, NULL, NULL);
/* Read from stdin, if there is something to read */
if (FD_ISSET(0,&fds)) {

scanf ("%s",input_buf) ;
/* decode input_buf and execute commands */

/* Handle OMIS messages */
omis_handler();

} while (strcmp(input_buf,"quit"));

omis_finalize(); /* shut down connection */

The select system call and the if statement in this example ensure that OMIS messages can be
handled whenever they arrive, since they prevent the tool process from blocking in the scanf
function. Such a blocking would mean that replies cannot be passed to call-back functions until
the blocking is released, which may cause a problem to the tool.

The next example shows how a tool based on X windows can use OMIS:

void cb(XtPointer closure, int *source, XtInputId *id)

{

omis_handler();

int main(int argc, char **argv)

{

¥

int omis_£fd;
XtAppContext app;

/* initialize X window stuff x*/
. = XtAppInitialize(&app, ..., &argc, &argv, ...);

omis_init(&argc, &argv); /* initialize mon. system */

/* Add OMIS file descriptor as an additional input source
to the X window main loop. */
XtAppAddInput (app, omis_fd(),
(XtPointer)XtInputReadMask,
(XtInputCallbackProc)cb, NULL);

XtAppMainLoop(app) ; /* X window main loop */

Here, the OMIS file descriptor is passed as an additional input source to the X window system,
that will call the cb function when there is some input to process. Note that since XtApp-
MainLoop never returns, some X window call-back function must invoke omis_finalize before
the tool exits.
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7.2 Service Requests

7.2.1 String Syntax

A service request is a string that complies with the following syntax:

request = [ event_definition ] ;" action_list

event_definition ::=  service_name (" parameters ’)’

action_list = wunlocked_al | locked_al

locked_al n={" unlocked_al '}’

unlocked_al n= action | action[’; | unlocked_al

action = service_name ’(’ parameters’)’

service_name = identifier

parameters = parameter_list | €

parameter_list = parameter | parameter’, parameter_list

parameter = integer | floating | string | token | binary
| list | ev_ctz_param

ev_ctz_param = $ identifier

token n= identifier

list = [’ parameters |’

The symbols integer, floating, string, and identifier represent integers, floating point num-
bers, quoted strings, and identifiers. The syntax of these elements follows the syntax of the
corresponding elements in the C programming language.

The symbol token represents an abstract object identifier. binary is a binary data string
consisting of ASCII coded number (the data length), immediately followed by a ’'#’ character,
immediately followed by the indicated number of Bytes in 8-Bit binary format.

list denotes an (untyped) list of entities; ev_ctz_param can be used in actions to refer to event
context parameters. There is a set of standard parameters specified in Section 7.2.4 and a set
of event specific parameters for each event service which is defined in Chapters 8 and 9.

The semantics of the different data types used in the request language is specified in Sec-
tion 7.2.2. The semantics of the input parameter_list of a service depends on the concrete service
and is specified in Chapters 8 and 9.

7.2.2 Data Types

This section specifies the data types that values in OMIS request and reply strings may have.
Note that these are not data types of any programming language, and that the values of these
data types only exist in string form. They have already shortly been introduced in Section 7.2.1.

OMIS defines five primitive data types: integer, floating, string, binary, and token. The
first three types represent integer numbers, floating point numbers and quoted strings. Since
the numbers only exist as strings, there is no need to specify the precision; it may in principle
be arbitrary. However, except for a few target systems, integers will fit into 32 Bits and floating
point numbers into a 64-Bit IEEE floating point format.

The binary data type has been included to support tools such as visualizers that have
to acquire very large amounts of data, where a conversion into ASCII strings would cause an
inacceptable performance problem. A value of this data type consists of an ASCII coded number
(the data length), immediately followed by a '#’ character, immediately followed by the indicated
number of Bytes in 8-Bit binary format. Since the binary data may contain NUL characters,
you have to be careful when operating on request or reply strings that contain binary data.
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Note, however, that only services that may optionally be implemented in an OMIS compliant
monitoring system use this data type.

The token data type is an abstract data type used to identify objects, e.g. processes, threads,
or messages. It is specified in more detail in the next subsection.

Based on these primitive data types, OMIS defines one structured data type, the list. A list
is an ordered collection of elements, which may have different primitive data types. However,
most lists are homogeneous, i.e. contain only elements of a single primitive type.

The Token Data Type

The token data type is used in OMIS to provide a platform independent way of addressing
objects being observed. Any object that can be observed or manipulated is represented by a
token. OMIS defines seven basic classes of objects:

. nodes

. processes

. threads

. message queues

1
2
3
4. messages
)
6. user defined events
7

. conditional service requests

Objects belonging to the first five classes (system objects) have a natural hierarchy, which is,
however, not based on inheritance, but on the relation ’contains’. This hierarchy is shown in
Fig. 7.1. Note that the relation between message queues and processes or threads depends on
the target system, i.e. on whether the threads in a process have individual message queues or
share a single queue. There may also be platforms, where message queues are first class objects
(e.g. mailboxes). In this case, message queues are only related to nodes.

Legend

Expansion

Localization

Hierarchy depends
on target platform

Figure 7.1: Object hierarchy in OMIS

According to this hierarchy, tokens and lists of tokens are implicitly converted to the to-
ken class a service works on. There are two types of conversions: localization and expansion.
Localization converts a token a of class A into a token b of class B, where B is on an upper
level in the hierarchy than A. This means that b refers to an object that contains the object
addressed by a. Expansion converts a token a of class A into a set of tokens b of class B, where
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B is on a lower level than A in the hierarchy. This set contains the tokens of all objects of class
B contained in the object referred to by a to which the monitoring system is attached. Since
expansion may result in a token being replaced by several new tokens, it is only performed for
tokens contained in a list. Empty token lists are used as a universal object: if converted to a
list of tokens of class B, an empty list is expanded to the set of tokens of all objects of class B
to which the monitoring system is attached.

Since objects may be created and deleted dynamically, the point in time when the conversion
is performed has an influence on the result. The following constraints are defined by OMIS:

1. Conversions required by action lists must be performed each time the action list is executed.
For the action lists of conditional requests this means that conversion is not performed
when the request is defined, but when the monitoring system has detected the occurrence
of an event matching the request’s event definition and executes the action list.

2. From a logical point of view, conversions required by the arguments of the event definition
part of a conditional service request are performed each time the monitoring system detects
the occurrence of some event and matches it againes the request’s event definition®.

3. All conversions done for the same execution of a request (including the event definition)
must be consistent. So in the following example

node_get_info([],1) proc_get_info([],1)

if a new process on a new node is added to the monitored system between the execution
of the two services, proc_get_info must not return information on that process, since
otherwise the two conversions of the empty token list would be inconsistent. If, however,
a new process on an already attached node is added, the expansion of the second token
list may include that process.

This could be achieved by performing all conversions in an atomic way at the beginning of
the action list’s execution, but can also be realized by a more efficient caching strategy: A
conversion between two adjacent object classes in Fig. 7.1 is performed when it is needed
for the first time. The result is then reused each time the same conversion step is required
again.

Note that if an object terminates during the execution of an action list, there is a chance
for a service to receive a token of a nonexistent object. However, due to the chosen method
of error handling (see Section 7.2.3) this does not induce a problem, since the service will
only fail for that particular object.

The token data type is an abstract data type, so tools should not make any assumption on
the structure and the contents of the token string. In particular, tools should not assume that
the tokens are identical to the identifiers used within the parallel programming library. The only
structural detail specified by OMIS is the encoding of the token class which is as follows: The
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class of a token is encoded in a prefix terminated by an underscore (’.”). The followig prefixes
are defined:

n an implementation, however, this matching and the conversion need not be performed explicitly, but can
be achieved by a proper instrumentation of the monitored application.
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nodes: n_

processes: p-
threads: 't
message queues: 'q.’
messages: ‘m_’
user defined events: e’
conditional service requests: ’c_’
undefined token: u’

Extensions may define additional token classes. These tokens start with the prefix of the exten-
sion, followed by an underscore, a one-character token class specifier and another underscore.
For example, a group token as defined in the PVM extension starts with 'pvm_g_’.

7.2.3 Semantics of Requests

In contrast to other monitoring interfaces, OMIS allows a service to be invoked on an object
regardless of the state of that object. This means that e.g. the registers of a thread can be read
without having to explicitly stop the thread in advance. On some target platforms, however,
invoking a service on a running thread may include a temporary suspension of that thread, so
explicitly suspending the thread may increase the performance when a larger number of services
is requested.

The following subsections provide more details on the execution semantics of unconditional
and conditional service requests.

Unconditional Requests

Each service contained in an action list will be executed on all the objects passed to the service as
a token or token list, after proper conversion of the token(s). Since OMIS is used in a distributed
environment, the executions of an action list’s services on the different objects cannot be ordered
totally, i.e. some of these executions may be concurrent or unordered. The following conditions
hold for all action lists:

1. If al and a2 are services operating on lists of objects? and 11 and 12 are already converted
lists of the proper token class, then the following ordering relation is required for each
sequence al(11) a2(12) in an action list:

if ol is an object in 11 and 02 an object in 12 and ol and 02 are located on the same
node, then al is executed on ol before a2 is executed on 02.

7.7

2. A semicolon (’;’) in an action list acts as a barrier, i.e. all actions left to the semicolon are
completely executed before the execution of any action right to the semicolon is started.

3. Services do not have delayed side effects. This means that when a service has been exe-
cuted, all the modifications it performs on the monitored system have been fully completed.
This ensures, for instance, that services following a thread_suspend service will find the
threads already suspended.

Tools should not assume any other ordering constraints to hold. Especially, a service may be
executed on the objects passed to it in a token list in an order different from that indicated by
the order of tokens in this list. Note that an object should not occur twice in a token list (which
might also happen due to token expansion, see Section 7.2.2). In this situation, it is undefined
whether the service will be executed once or twice for that object.

2Services that operate only on single objects may be viewed as working on a one-element object list for the
purpose of this discussion
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By default, action lists are interruptible, i.e. the execution of different action lists may be
interleaved by the monitoring system. This allows action lists triggered by different events or
sent by different tools to be executed concurrently in the parallel or distributed system. To
enforce mutual exclusion of action lists when necessary, OMIS defines a locking mechanism,
which is activated by enclosing an action list in braces (’{’ and ’}’). Locking an action list A
ensures that on the subset of nodes that is touched by A no other action list is active while A
is executed.

Conditional Requests

In contrast to unconditional service requests, the action list of a conditional request is not
executed immediately, but each time when the monitoring system detects an event matching
the event definition given in the request. The following items define the semantics of conditional
requests:

1. When a conditional service request is passed to the monitoring system, it will immediately
return a reply indicating whether or not the request could be installed properly. This reply
will contain the token identifying the request.

2. Conditional service requests are disabled by default, i.e. they will be ignored by the mon-
itoring system until they are explicitly enabled using the csr_enable service.

3. When a conditional request is deleted, or when it is enabled or disabled and the flag
DONT_RETURN_EN_DIS is not set in OMIS_request, the monitoring system will
send a reply indicating this change of state.

4. When the monitoring system detects some event and the conditional request is enabled,
the event is matched against the event definition of the request. If the match succeeds,
the following steps are performed:

(a) The monitoring system takes measures to ensure that the object associated with the
event will not undergo relevant state changes between the detection of the event and
the completion of the action list execution. Usually, this is achieved by a temporary
suspension of execution objects, i.e. threads, which is released upon completion of all
action lists associated with that event. In order to permanently stop any threads, the
action list must invoke the thread_stop service.

A detailed specification, which threads will be suspended during the execution of
action lists is given in the specification of event services for the different object classes.

(b) Information on the detected event is stored in the event context parameters, which
are specified in Section 7.2.4 and in the specifications of the individual event services.

(c) The request’s action list is executed as described in the previous subsection.

Error Handling

Since OMIS requests can result in a list of services being executed on a (possibly distributed)
set of objects, there is a chance that some of these executions fail, while others succeed. In
principle, there are three possible strategies to handle partial failure of a request:

1. The execution of a request is abandoned as soon as the first error is detected and a single
error code is returned. This is the most simple strategy. However, the severe disadvantage
is that in the case of an error, the system being observed is left in an unknown state.
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2. Each request behaves as a transaction, i.e. it either is executed completely successfully or
fails without having modified the state of the system being observed. Although from the
users’ point of view this is the most desirable strategy, its implementation would result in
an overhead making the monitoring system useless.

3. Therefore, OMIS uses a mixed approach: when an error is detected while executing a
single service on a single object, an error code and an error description is appended to
the reply. Execution of this service on this object is then abandoned, trying to undo all
manipulations that may already have been done to the object. If undoing is not possible in
some cases, this must be indicated by setting a special bit (OMIS_FATAL) in the error
code. The execution of the request is then continued. This means that a single service on
a single object should behave as a transaction, whenever possible.

The used strategy avoids the overhead of global transactions, while ensuring that a tool issuing
a request can always infere which modifications to the system’s state have been performed and
which have not (except in the case of fatal errors).

7.2.4 Event Context Parameters

The following list specifies the general event context parameters, i.e. parameters that are set on
occurrence of any event. They may be used to pass information on the event to the action list
of a conditional service request. In addition to the parameters defined below, individual event
services may provide also other parameters, which are defined in the description of the event
service.

token node; Contains the token of the node where the event took place.

token proc; The token of the process where the event took place. If the event cannot be
attributed to a process, proc contains an undefined token.

token thread; The token of the thread where the event took place. If the event cannot be
attributed to a thread, thread contains an undefined token.

floating time; This parameter contains a wall-clock time stamp indicating when the event
has happened. An exact comparison between time stamps is only possible for events that
occured on the same node, however, two successive events may have equal time stamps due
to the limited clock resolution. Clocks on different nodes are at least to be synchronized
at start-up-time up to a precision in the order of the message transfer time between nodes.
The time stamps do not represent absolute time, i.e. the absolute time for which the time
stamp is zero is not specified. The unit of the time stamp is seconds; the resolution of
time stamps is platform dependent.

token csr; This parameter contains a token providing a self-reference to the conditional service
request. It can be used to manipulate the service request from within its action list (e.g.
to delete the request after it has been executed).

7.3 Service Replies

7.3.1 Reply Structure

The reply returned by omis_request (either as a function result of by passing it to the callback
function) is a data structure conforming to the following C type declaration:
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/*

**x Status values

*/

typedef int Omis_status;

#define OMIS_OK 0 /* no error */

#define OMIS_CSR_DEFINED 2 /* cond. request has been defined */
#define OMIS_CSR_ENABLED 4 /* cond. request has been enabled */
#define OMIS_CSR_DISABLED 6 /* cond. request has been disabled */
#define OMIS_CSR_DELETED 8 /* cond. request has been deleted */
#define OMIS_CSR_TRIGGERED 10 /* cond. request has been triggered */
#define OMIS_FIRST_ERROR 16 /* lowest status code for error */
#define OMIS_SYNTAX_ERROR 16 /* syntax error in request string */
#define OMIS_UNKNOWN_SERVICE 18 /* service name is unknown */

#define OMIS_UNSUPPORTED_SERVICE 20 /* service is not supported */
#define OMIS_UNKNOWN_ECP 22 /* event context par. is unknown */
#define OMIS_UNKNOWN_OBJECT 24 /* object is unknown/not existent */
#define OMIS_TYPE_MISMATCH 26 /* type mismatch in parameters */
#define OMIS_PARAMETER_ERROR 28 /* illegal parameter value */

#define OMIS_OS_ERROR 30 /* error from operating system */
#define OMIS_NO_PERMISSION 32 /* operation not permitted */

#define OMIS_NO_MEMORY 34 /* out of memory */

#define OMIS_INTERNAL_ERROR 36 /* internal error in mon. sys. */

#define OMIS_UNSPECIFIED_ERROR 1000 /* generic error code */
#define OMIS_FATAL 1 /* object state modified */

/*

**x Result for a single object or identical results for a set of objects
*/

typedef struct {

char *obj_list; /* List of objects where result belong to */
Omis_status status; /* Status for this set of objects */
char *result; /* Result for this set of objects */

} Omis_object_result;

/*
**x Result of a single service
*/

typedef Omis_object_result *0Omis_service_result;

/*
*% Full reply of a service request
*/

typedef Omis_service_result *0Omis_reply;
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The reply is of type Omis_reply, which is a pointer to a NULL-terminated array, whose
element type is Omis_service_result. The first element (with index 0) of this array is a reply
for the request as a whole where the request is regarded as a passive object. This element is
used for the following purposes:

1.

3.

It returns errors that occur during any steps needed to prepare the execution of the re-
quest’s action list. This includes any syntactical and semantical checks done when the
request is defined.

. For conditional requests, it contains the conditional request token needed for the services

manipulating the request.

It indicates any change in state of conditional service requests.

The other elements of a reply contain the results of those parts of the request that have been
executed. The element with index 1 points to the results of the first action in the request’s
action list, element 2 to the results of the second one (if any) and so on.

There are three different types of replies, that can be distinguished by the status field of the
Omis_object_result structure pointed to by the reply’s first element.

1.

If the status field contains a value above or equal to OMIS_FIRST_ERROR, an error
has been detected during checks made prior to the request’s execution. In this case, the
reply has only one non-NULL element.

. If the status field is equal to either OMIS_CSR_DEFINED, OMIS _ CSR_ENABLED,

OMIS_CSR_DISABLED or OMIS_CSR_DELETED, the reply contains the results of
the definition, enabling, disabling or deletion of a conditional service request. In this case,
the reply has a second element that contains the status message generated by the event ser-
vice. For OMIS_CSR_DEFINED, the result element of the first Omis_object_result
structure will contain the conditional request’s token. However, if the event service failed

and the conditional request therefore has not been stored by the monitoring system, the
result element will be NULL.

Note that OMIS_CSR_ENABLED and OMIS_CSR_DISABLED will be generated
both when the request is explicitly enabled or disabled, and when the set of actually
monitored objects changes by attaching to or detaching from objects.

. If the status is OMIS_OK or OMIS_CSR_TRIGGERED, the following elements of the

reply contain the results of the execution of all actions in the action list of the unconditional
or conditional request.

Since the results of actions may consist of several sub-results for different objects, the type
Omis_service_result is a pointer to an array of Omis_object_result structures. The end of
this array is marked by an entry with obj_list == INULL; the other fields of this end marker
don’t have any meaning. The principal semantics of the Omis_object_result structures is:

e obj_list points to a string containig a comma-separated list of object tokens that specifies

the objects this part of the result belongs to.

e status is the status for the objects defined in obj_list. If the bit OMIS_FATAL is set

in an error status, the state of the objects in obj_list has been changed in an inconsistent
way due to the error. If an error message is returned where the flag is not reset, the
objects’ states have not been changed by the failing service.
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e result points to a string containing the (identical) result of an action’s execution for the
objects in obj_list, if status doesn’t indicate an error. Otherwise, result points to a
string containing a more detailed error description that may be presented to the user. If
there is no result or error description, result may be NULL.

If the reply does not belong to a service operating on objects (as it is the case for element 0
of the Omis_reply array), obj_list must point to an empty string and the rest of the above
description holds analogously. For the other cases, Omis_object_result allows to unify identical
results for different objects in order to save memory and communication time. This is important
especially for the status replies which are usually the same for all objects. Having one status
field for each single object a service worked on would result in a huge overhead. However each
implementation of an OMIS compliant monitoring system is free to decide whether or not this
unification is done. Since OMIS uses a hierarchical approach to identify objects, the obj_lists
may in principle contain objects of different granularity. For instance, if a service is invoked for
all threads in the observed system by specifying an empty token list as its parameter, and the
result is the same for each thread, there are several possibilities for the result structure:

e Ounly a single entry with obj_list pointing to an empty string.
e Several entries with obj_list pointing to a single node token.

e Only a single entry with obj_list being the list of tokens of all threads in the observed
system.

In order to not overly complicate the tools using OMIS, the scheme is restricted according to
the following description:

1. In Omis_object_result structures returning a real result (i.e. those having status ==
OMIS_OK and either belong to an information service or a manipulation service with a
non-void return type), obj_list must point to a non-empty list of tokens of the type the
service works on. This ensures that any information returned is always accompanied with
an explicit list of the objects it refers to.

2. In a reply generated when a conditional request is triggered successfully, the first structure
Omis_object_result in the result has status == OMIS_TRIGGERED, and obj_list
points to a one-element list defining the object where the event occured.

3. In all other cases, the obj_lists may be a partial expansion of the object list given as an
argument of the service. Furthermore, the last Omis_object_result structure (prior to
the end marker) may have status == OMIS_OK with obj_list pointing to an empty
string and result == NULL), indicating that for all of the objects not mentioned in
previous entries the service has been executed successfully.

Note that except for case 3, objects specified explicitely in the parameter list of a service will
never be summarized by using tokens of containing objects in the obj_list.

The exact syntax for the strings pointed to by obj_list and result is specified in Chapter 7.2,
the semantics of the result strings depends on the service and is specified in Chapters 8 and 9.

7.3.2 String Syntax

The syntax of the strings pointed to by the obj_list and result fields of an Omis_object_result
strucure (see Section 7.3.1) is as follows:
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obj_list n= token_list | e
token_list = token | token’) token_list
result = parameter_list | error_description

The symbol error_description denotes an arbitrary character sequence, which can provide a
detailed description of an error situation.

7.3.3 Reply Examples

Fig. 7.2 to Fig. 7.4 illustrate different forms of replies. For the sake of clarity, the illustrations
don’t show pointers to strings. Instead, the strings are directly shown in the pointer fields in
the representation used in the C language.

First, consider an unconditional request of the form

: proc_get_info([], ...) thread_manipulate([], ...)

where proc_get_info is an information service for processes, while thread_manipulate is a
manipulation service for threads. When no errors are encountered during the execution of this
request, a possible reply may look as those shown in Fig. 7.2. Note that the empty token list
passed to proc_get_info must be expanded in the reply, while the empty token list passed to
thread_manipulate need not. The reason for this is the fact that the first service returns a
real result, i.e. has a non-void return type, whereas the latter one has a return type of void
and therefore only returns a status value. Fig. 7.3 shows how a reply may look like when errors
occur.
Now, consider a conditional request:

proc_has_done_something([], ...) : node_get_name([$node])

When this request is passed to the monitoring system, three different kinds of replies may be
received as shown in Fig. 7.4. The reply generated when the event is detected indicates the
object (i.e. process in this example) where the event occurred in the obj_list component of the
reply’s first Omis_service_result structure.

When the tool now attaches to a new process, say p-32, a reply as shown in Fig. 7.5 will
be generated, except for the case when the OMIS_DONT _RETURN_EN _DIS flag has been
set when defining the above conditional request. If the preparations necessary to monitor the
event in the new process fails, this reply contains a corresponding status and an error message.

7.4 Description Method for Services

Throughout the service descriptions in Chapters 8 and 9, we will use ANSI-C-like prototypes
to define the input parameters and the result strings, since this type of description is much
more clear than presenting a grammar or BNF for the syntax of the request and reply strings.
In addition to the types integer, floating, and string, binary and token, we will use the type-
identifier any which stands for any of these types. To define more complex parameters, we will
use typedef’s and/or C-struct’s®. Lists of values are specified by the type name followed by a
"x’denoting zero or more repetitions of that type. The resulting string is then simply the linear
layout of a value having the specified type. L.e. a struct corresponds to several values separated
by commas, while a list (indicated by '*’) corresponds to several values of its component type,
that are again separated by commas, but are enclosed in brackets (’[" and ']’).

3These constructs are only used in this document to define the structure of request and reply strings, they are
not part of the tool/monitor-interface itself.
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OMIS OK |NULL
/_> NULL

"p_1p 2p 3" | oMISOK | "10,0.37"
"p_4" OMIS OK | "35,1.326"

—
NULL\ﬁ> NULL
" OMIS OK |NULL
—

NULL

" OMIS OK |NULL

NULL
o—— = o— |
-~ "p_1p 2" [oMIS OK |"10, 0.37"
(- "p 3" OMIS OK |"10, 0.37"
NULL "p_4" OMIS_OK |"35, 1.326"
NULL

"t 123t 23" | OMIS OK | NULL
"p_3" OMIS OK | NULL
NULL

Figure 7.2: Two possible replies for an unconditional request without errors

OMIS_OK |NULL
/_> NULL

P
o—=>| oe—+— = |"p 1p 3'"|OMIS OK "10, 0.37"
— "p_2" OMIS_OS _ERROR|"Exec format error"
NULL "p_4" OMIS_OK "35, 1.326"
NULL

"t 324" |OMIS_PARAMETER_ERROR NULL

" OMIS_OK NULL

Figure 7.3: Reply for an unconditional request with errors
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a) reply for definition:

— =] o———  |" OMIS DEFINED | "c_123"
— NULL
NULL\>
OMIS OK | NULL
NULL

b) reply for enable (analogous for disable/delete):

*~—— o |"" OMIS ENABLED NULL
[ NULL
NULL\\\\\\‘—_c>
" OMIS OK | NULL
NULL

c) reply when event has been detected:

o—=| e |"p 21"| OMIS TRIGGERED | NULL
- NULL
NULL-\\\\\\~{>
"n 5" | OMIS_OK | "donald"
NULL

Figure 7.4: Replies for a conditional request

The return type given in the prototype specifies the result of the service for a single object,
i.e. the information contained in the result field of a single Omis_object_result structure in
the service’s reply.

A simple example will clarify this: Assume the following definition of a synchronous service:

struct {
string name;
integer state;
integer priority;
floating cpu_time;
b

proc_get_info (token* proc_list, integer flags);

This says that proc_get_info has two input parameters, the first one is a (probably empty) list
of tokens, the second one is a single integer. For each object, i.e. process the service operates on,
a string consisting of four comma-separated elements is returned, where element 1 is a quoted
string, elements 2 and 3 are integers and elements 4 is a floating point number. Therefore, a
correct request for this service could be:

proc_get_info([p_31,p_45,p_54], 5)
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*~—— o |"" OMIS ENABLED NULL
[ NULL
NULL\\\\\\‘_[>
"p_32"| OMIS OK | NULL
NULL

Figure 7.5: Reply for a conditional request when new object is monitored

A valid reply could look as shown in Fig. 7.6.

OMIS_OK |NULL
f‘> NULL

o+ |"p 31" |omIis oK ["\"foo\",12,0,12.7"
NULL "p_45" |omis ok |"\"bar\",1,10,0.65"
"p_54" |omiIs ok |"\"foo\",9,0,1.1e4"

NULL

Figure 7.6: Reply example

A few synchronous services return results where some components are optional. In this case,
the elements are placed in square brackets in the type definition. An input parameter of the
service then determines which components will actually be present. The real proc_get_info
service is of this type, i.e. the definition of this service really looks more like:

struct {
[string name;] // present if bit O is set in flags
[integer state;] // present if bit 1 is set in flags

[integer priority;] // present if bit 2 is set in flags
[floating cpu_time;] // present if bit 3 is set in flags
}

proc_get_info (token* proc_list, integer flags);

This means that all components of proc_get_info are optional. The flags parameter is a bit-
vector that determines which of them will be present in the result. For example, the reply for
the request

proc_get_info([p_31,p_45,p_54]1, 5)

could be (since bits 0 and 2 are set in flags) as in Fig. 7.7.

Notice that due to the filtering, the replies for the processes with tokens p_31 and p_54 are
now the same, so they have been unified to a single reply string. However, this behavior is not
required, i.e. it is also allowed that separate (identical) replies are generated.

Event services always have only a status value as their normal result, which is returned when
a conditional service is defined, enabled, disabled or deleted. However, event services also have
an additional type of results, namely the parameters that can be accessed by the actions when
a matching event is detected. To define the types of these results, we use a notation that looks
like this:
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OMIS_OK |NULL
fb NULL

——= |
o~ |"p 45" OMIS_ oK | "\"bar\",10"
NULL "p_54,p_31" | omis oK | "\"foo\",0"
NULL

Figure 7.7: Reply example

void proc_has_done_something(token* proc_list, integer param)
--> struct {

integer first_result;

string second_result;

integer third_result;

¥

The type of data returned as the normal result of the event service is given in the C-like pro-
totype (it is always void since event services return only a status). The so called event context
parameters, which contain information on a detected event, are defined as a struct after the -—>
symbol. These event context parameters can be passed to the actions in the request’s action_list
by specifying $event_context_parameter_name as an input parameter for the action. Note that
event context parameters are never defined as being optional. However, an implementation may
choose not to compute an event context parameter, if it is not used in the action list.
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Chapter 8

Specification of the Basic Services

In the following subsections we will present a list of all basic services currently defined by OMIS.
As you can see from the service descriptions, the goal of OMIS is to define a basis for building
higher-level monitoring systems. For instance, OMIS does not include the generation of event
traces, but it provides a very easy and powerful mechanism for the monitoring of events. So
if you need some kind of event trace, you only have to provide the functions for writing the
events to a peripheral as a distributed tool extension, but you don’t have to implement the
event detection. Similar, OMIS services operate on the machine level, i.e. they use addresses
or pointers rather than symbolic names for referring to programming objects. Thus, an OMIS
compliant monitor is not forced to work with a symbol table generated during compilation of
the monitored application. But, of course, it is possible to add extensions that make use of these
symbol tables.

8.1 System Objects

System objects are those objects in the monitored system that do not belong to the monitor
itself. Currently, we distinguish between

e nodes (Section 8.1.1),

e processes (Section 8.1.2),

e threads (Section 8.1.3), and

e messages and message queues (Section 8.1.4).

The following section specify the services for these classes of objects. In these sections
we distinguish between required services that have to be provided by any implementation and
optional services which need not be implemented by an OMIS compliant monitoring system.
The services are marked with (R) and (O), respectively. In addition, there are some services
that are marked with a (P), denoting that they are partially required, i.e. only some of the
services functionality is required.

Additional system objects and services are defined in an extension for the PVM programming
model (see Chapter 9).

8.1.1 Nodes

OMIS is intended to be usable for a wide range of hardware platforms. The coarse grain model of
the monitored hardware platform is a set of nodes interconnected by some network. However, a
node need not be a single processor. A node may also be a multiprocessor system. The criterion
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to draw the borderline between processors and nodes is that for a user or a programmer nodes
are distinguishable from each other, while processors on the same node are not. In other words:
nodes are those components of the hardware platform that have a single system image. This
implies that processors on the same node have a (at least virtually) shared memory, but the
reverse implication is not necessarily true.

Manipulation Services

The services in this section of course do not manipulate the hardware, but change the monitored
hardware system by adding or removing nodes to be monitored. These services not only allow
an incremental start-up of the monitoring system, but also provide support for programming
environments that allow applications to extend the set of nodes they are currently executing on.
An application thread may extend the set of nodes either explicitly, as in PVM, where it must
use a library call pvm_addhosts, or implicitly by creating a process on a node not used before.
In any case, this event can be monitored using the thread_adds_node service. By using the
services specified below, the monitoring system can be programmed to automatically extend
itself to the new nodes.

Likewise, an application’s node set may also shrink due to an explicit request from an
application thread (e.g. by calling pvin_delhosts). This event can be monitored using the
thread_removes_node service. An action associated with that event may detach the monitor-
ing system from that node.

1. node_attach ......... .. .. .. . attach to a node. (0)

void
node_attach(token* node_list)

Calling this service results in the monitoring system attaching itself to the nodes specified
in node_list. The node token(s) required as an argument may be obtained from the
event context parameters of node_has_been_added, from a service in an extension (e.g.
pvm_vm_get_nodelist), or from some other OMIS based tool, using a communication
mechanism outside the scope of OMIS. Note that there is also a service node_attach2 to
attach to a node specified by its name.

This is the only service that may legally receive a token of an unattached node as its
parameter. If the node is already attached, the service does nothing.

2. node_attach2 ....... ... .. .. i attach to a new node. (0)

token
node_attach2(string node_name)

Calling this service results in the monitoring system attaching itself to a new node specified
by its name. The exact meaning of node_name’s contents is platform dependent. Usually,
the string will either contain an internet address (for workstation clusters) or a node
number (for parallel computers). If the node is already attached, the service does nothing.

Note that since the service is a constructor in the sense of object oriented programming,
it does not operate on node tokens although it is a node service.

3. node_detach ...... ... ... ... detach from a node. (0)

void
node_detach(token* node_list)
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Calling this service results in the monitoring system detaching itself from the nodes spec-

ified in node_list and in turn also from
conditional requests defined for the deta

all processes located on these nodes. Note, that
ched objects will not be deleted automatically —

the events simply will no longer be detected. Any subsequent service request (other than
node_attach or node_attach2) for a detached node will result in an error.

Information Services

Currently, there is only a single service that returns static and dynamic information on the nodes

to which the monitoring system is attached:

1. node_get_info

(P)

Return information on a node.

typedef struct { // Information on network link
string net_type; // Type of network interface, e.g. Ethernet,
// ATM
string net_ipaddr; // IP address of the node in this network
integer net_bandwidth; // Vendor defined total network bandwidth
// (in KBytes/s)
floating net_bench; // Relative network performance measured
// by some implementation specific
// loopback benchmark
} netinfo;
typedef struct {
// Static node information
// These components are present if bit 0
// is set in flags:
//
[string name;] // Name of this node. Usually, this is the
// host name (R)
// These components are present if bit 1
// is set in flags:
//
[string os_name;] // Name of node’s operating system (R)
[string os_version;] // 08 version (R)
[string os_release;] // 0S release (R)
[string os_nodename;] // Host name of this node (R)
[integer os_boottime;] // 0S boot time in seconds since Jan. 1st,
// 1970, 0:00 (0)
// These components are present if bit 2
// is set in flags:
//
[string cpu_arch;] // CPU architecture (R)
[integer cpu_num;] // Number of installed CPUs on this
// node (R)
[integer cpu_maxproc;] // Max. number of processes on this node
/7 (D)
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[integer cpu_clock;] // CPU clock frequency (in MHz) (0)
[floating cpu_intbench;] // Relative integer performance measured
// by some implementation specific
// benchmark (0)
[floating cpu_fpbench;] // Relative floating point performance
// measured by some implementation
// specific benchmark (0)

// These components are present if bit 3
// is set in flags:

//
[integer mem_numpages;] // Number of physical memory pages (0)
[integer mem_pagesize;] // Size of a page in Bytes (0)
[floating mem_bench;] // Relative memory performance measured by

// some implementation specific
// benchmark (0)

// These components are present if bit 4
// is set in flags:

//
[integer dsk_num;] // Number of local disks (0)
[integer dsk_size;] // Total size of disk space (in pages of
// size mem_pagesize) (0)
[integer dsk_tmpsize;] // Total size of tmp disk space (in
// pages) (0)
[integer dsk_swapsize;] // Total size of swap space (in pages) (0)
[floating dsk_bench;] // Relative disk performance measured by

// some implementation specific
// benchmark (0)

// These components are present if bit 5
// is set in flags:

//
[integer net_numlinks;] // Number of high-speed network links (0)
[netinfo* net_info;] // Additional information for each network

// link. The number of entries in this
// list equals net_numlinks (0)

// These components are present if bit 6
// is set in flags:
//
[integer usr_maxlogins;] // Max. number of user logins (0)
} Node_static_info;
typedef struct {
// Dynamic node information

// These components are present if bit 7
// is set in flags:
//

[integer os_ctxtswitch;] // Number of context switches per
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// second (0)

[integer os_execs;] // Number of calls to ’exec’ per
// second (0)
[integer os_syscalls;] // Number of system calls per second (0)

// These components are present if bit 8
// is set in flags:

//
[integer cpu_rql;] // Length of process run queue (R)
[integer cpu_dwj;] // Number of processes waiting for disk
// 1/0 (0)
[integer cpu_pwj;] // Number of processes in page wait (0)
[integer cpu_slj;] // Number of processes sleeping in
// core (0)
[integer cpu_swj;] // Number of runnable processes swapped
// out (0)
[floating cpu_rqll;] // CPU load (run queue length) avaraged
// over one minute (R)
[floating cpu_rql5;] // CPU load avaraged over 5 minutes (R)
[floating cpu_rqll5;] // CPU load avaraged over 15 minutes (R)

// These components are present if bit 9
// is set in flags:
//
[integer mem_freepages;] // Number of free physical memory
// pages (0)
[integer mem_usedpages;] // Number of used physical memory
// pages (0)
[integer mem_freeswap;] // Number of free pages in swap area (0)

// These components are present if bit 10
// is set in flags:

//
[integer vm_swap;] // Total number of process swaps per

// second (0)
[integer vm_swapin;] // Number of processes swapped in per

// second (0)
[integer vm_swapout;] // Number of processes swapped out per

// second (0)
[integer vm_page;] // Total number of paging per second (0)
[integer vm_pagein;] // Number of pages paged in per second (0)
[integer vm_pageout;] // Number of pages paged out per

// second (0)

// These components are present if bit 11
// is set in flags:

//

[integer dsk_rawrd;] // Number of physical reads to raw disk
// device per second (0)

[integer dsk_rawwr;] // Number of physical writes to raw disk
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[integer
[integer
[integer

[integer

[integer
[integer

[integer
[integer
[integer
[integer

[integer

[integer
[integer
[integer
[integer

dsk_nfsrd;]
dsk_nfswr;]
dsk_sysrd;]

dsk_syswr;]

net_lpkt;]
net_fpkt;]

net_fpktrcv;]
net_fpktsnd;]
net_spkt;]

net_spktrcv;]

net_spktsnd;]

usr_numlocal;]
usr_localact;]
usr_numremote;]
usr_remoteact;]

} Node_dynamic_info;

struct {

Node_static_info statinfo;
Node_dynamic_info dyninfo;

}

//
//
//
//
//
//
//
//
//

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

//
//
//
//
//
//
//

device per second (0)

Number of NFS block reads per
second (0)

Number of NFS block writes per
second (0)

Number of ’read’ system calls per
second (0)

Number of ’write’ system calls per
second (0)

These components are present if bit 12
is set in flags:

Number of local packets per second (0)
Number of fast packets (ETH, ATM, ...)
per second (0)
Number of fast
second (0)
Number of fast
second (0)
Number of slow packets
per second (0)

Number of slow packets
second (0)

Number of slow packets
second (0)

packets received per

packets sent per
(Modem, ...)
received per
sent per

These components are present if bit 13
is set in flags:

Number of local user logins (0)

Is a local user active? (0)

Number of remote user logins (0)
Is a remote user active? (0)

node_get_info(token* node_list, integer flags)

Detailed information on nodes is provided by the node_get_info service. As with the
other information services, the bit-vector flags defines which kind of information has to
be retrieved. By calling node_get_info([],0), the tokens for all nodes currently observed
by the monitoring system can be retrieved.

The values contained in Node_dynamic_info, which are measured in some units per
second may be averaged over a couple of seconds. The exact interval used for averaging is
implementation dependent, but should be between one and fifteen seconds.

For those components labelled as optional, an implementation should return the value -1
or an empty string, if the information is not available on the specific target system.
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8.1.2 Processes

Since OMIS aims at defining a very general monitoring interface, it is based on a multithreaded
execution model. In this model, threads are the entities actually executing code, while processes
only serve as a container for threads. The term ’container’ indicates the twofold role of a process:
It defines the execution environment, e.g. the address space, for its threads, but it may also be
viewed as an active component defined by the union of all its threads. A process cannot exist
alone; there is always at least one thread in the process. So a process creation always implies
also a thread creation. Threads executing in the same process share a common address space.

This model is applicable to a wide range of platforms. Currently, three different types of
platforms can be distinguished:

1. Platforms without support for multithreading: On these systems, each process contains
exactly one thread. The token conversion rules defined in Section 7.2.2 allow process and
thread tokens to be used interchangeably, so a tool does not have to distinguish between
threads and processes.

2. Multithreaded, multiprocess platforms: They exactly fit into the process model of OMIS.

3. Multithreaded platforms without the notion of a process: There are some platforms that
only support threads, but don’t provide virtual address spaces (e.g. the Parsytec computers
running the PARIX operating system). On these platforms, a process in the sense of OMIS
is defined by all threads created due to the invocation of a single executable program, and
the memory areas allocated for that program. The service proc_get_loader_info has
been provided especially for these platforms.

Manipulation Services
The following services are provided to manipulate the behavior of processes.

1. proc_create .............. ..o, create a new process on a node. (0)

token
proc_create(token* node_list, string exec, string* argv,
string* envp, string* io)

The proc_create service creates a new process (e.g. a PVM task) on each node in
node_list and returns its process token. The monitoring system automatically attaches to
the process, which is created in a stopped state, so you have to use the thread_continue
service to start it. The parameter exec defines the executable’s path name, argv is the
vector of command line arguments (not including the name of the executable again).

envp is a list of strings defining the environment seen by the new process. Each string
consists of the name of an environment variable, immediately followed by a '=’ sign and
the value of that variable. If envp is the empty list, the process inherits the environment
from the monitoring system.

io is a list of strings defining file names used to redirect the standard [O-streams of the new
process. The first element in io defines the file to be used for the process’ first [O-stream
(stdin for C/UNIX), the second element for the next IO-stream and so on. An empty
string denotes that the corresponding stream will not be redirected, i.e. will be inherited
from the monitoring system. If io is the empty list, no 1O-stream will be redirected.

This service is optional, since some programming libraries (e.g. MPI-1) do not allow pro-
cesses to be created dynamically. Note that since the service is a constructor in the sense
of object oriented programming, it operates on node tokens although it is a process service.
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2. proc_attach ........ ... ... attach to a process. (0)

void
proc_attach(token* proc_list)

The proc_attach service attaches the monitoring system to all processes specified in
proc_list. This may also include attaching the monitoring system to new nodes. The pro-
cess token(s) required as an argument may be obtained from the event context parameters
of proc_has_been_created, from a service in an extension (e.g. pvm_vm_get_proclist),
or from some other OMIS based tool, using a communication mechanism outside the scope
of OMIS. Note that there is also a service proc_attach3 to attach to a process specified
by its local process identifier on a specific node.

This is the only service that may legally receive a token of an unattached process as its
parameter. If the process is already attached, the service does nothing.

Attaching to a process implies attaching to all existing and future threads of that pro-
cess. The rationale for this behavior is as follows: Thread creation should be an extremely
lightweight operation. Forcing an explicit attach operation for each thread would result
in an unacceptable overhead. In addition, in virtually all multithreaded systems, a stan-
dard implementation of a monitoring system will result in an automatic attachment to all
threads in an attached process, so defining that new threads are unattached by default
would put a huge burden on OMIS implementations. Finally, threads share a common
execution environment, while processes do not, so it may be even more natural to regard
them as a unit for the purpose of monitoring, although the different handling of processes
and threads may seem to be inconsistent.

. proc_attach3 .............. ... ... attach to a process on a node. (0)

token
proc_attach3(token* node_list, integer pid, string exec)

The proc_attach3 service attaches the monitoring system to the process given by its
local identifier pid on each node in node_list. Note that for operating systems like UNIX
specifying a node list with more than one node may be not useful, nevertheless, a token
list is used as a parameter for conistency reasons.

exec specifies the path to the executable of the process to be attached. This information is
needed to access symbol tables or linker information of the process to be attached. When
an empty string is passed for exec, the monitoring system will try to determine the path
by itself. Depending on the concrete plattform, this may or may not be possible.

Like proc_create, this service is a constructor in the sense of object oriented programming,

so it operates on node tokens although it is a process service.

.proc.detach ........ .. ... detach from a process. (0)

void
proc_detach(token* proc_list)

The proc_detach service detaches the monitoring system from the processes specified in
proc_list and all of its threads. When a process is detached, it is no longer included in
the set of monitored processes and the monitoring system removes any instrumentation,
i.e. any modifications done to the process in order to detect events. Note however, that
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conditional requests defined for the detached processes will not be deleted automatically
— the events simply will no longer be detected. Any subsequent service request (other
than proc_attach or proc_attach3) for a detached process will result in an error.

. proc_send signal ............. ...l send a signal to a process. (0)
void proc_send_signal(token* proc_list, integer sig)

Sends the signal sig to all processes in proc_list. According to the Posix semantics of
signals, the signal may be delivered to an arbitrary thread in each of these processes.

. proc_set_priority ................. ... change priority of a process. (0)

void
proc_set_priority(token* proc_list, integer val)

Changes the scheduling priority of the processes in proc_list to val. On systems where
there is more than one scheduler, the service refers to the priority defined by the parallel
programming library, which also defines the range and semantics of val.

The service usually should not allow to raise a process’ priority above its initial one,
however, if the priority has been lowered using proc_set_priority it should allow to raise
it to the initial one again. However, the exact behavior can be platform dependent.

. proc_write_memory .................. write into the memory of a process. (R)

void
proc_write_memory(token* proc_list, integer addr,
integer blocklength, integer stride, integer* val)

Writes the contents of the integer list val into the memory of all processes defined by
proc_list. val contains the raw data to be written, i.e. a list of Bytes; the monitoring
system does not perform any processing (e.g. byte swapping) of this data. The data will
be written in contiguous blocks of Byte-size blocklength, where the address of the first
block is addr and stride is the separation between the start of two subsequent blocks
in Bytes. Thus, the first blocklength Bytes in val will be written to addresses addr

addr+blocklength—1, the next blocklength Bytes to addresses addr-+stride ...
addr-+stride+blocklength—1 and so on. stride must not be smaller than blocklength.

. proc_write_memory_bin ............. write into the memory of a process. (0)

void
proc_write_memory_bin(token* proc_list, integer addr,
integer blocklength, integer stride, binary val)

This service is identical to proc_write_memory with the exception that it expects the
data to be written in a binary format.

. proc_migrate .............. . ... migrate a process to another node. (0)

void
proc_migrate(token* proc_list, token node)
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This service migrates all of the processes defined by proc_list to an other node, which is
given by its node token.

10. proc_checkpoint ................ ... ... ... save checkpoint of a process. (0)

void
proc_checkpoint (token* proc_list, string name)

Creates a consistent checkpoint of all processes in proc_list and saves it to disk. name
is an identifier for this checkpoint used for a later restore. The format of the checkpoint
file(s) and the way they are stored on disk(s) is implementation dependent.

11. proc_restore .................iiiii... restore a process from a checkpoint. (0)
struct {
token* procs; // the process tokens of the restored processes
integer num_procs; // number of processes restored
b

proc_restore(string name)

Restores a set of processes from a previously saved checkpoint with the identifier name.
The processes will be restored on their original hosts, but they will get new process tokens.
The list of these tokens is returned as the result of the service. The monitoring system
will automatically attach to all of these processes..

Information Services

The following services can be used to obtain information on an application’s processes:

1. proc_get_info ........... . ... ...l get information on processes. (P)
typedef struct { // Static info. Independent of time.
//
// Required components:
//
[integer global_id;] // Global id of this process, as

// defined by the programming library

// used, e.g. the PVM task id

// present if bit O is set in flags
[string* argv;] // Argument vector,

// i.e. pathname and parameters

// present if bit 1 is set in flags

//
// Optional components:
//
[integer uid;] // ID of the user owning this process
// present if bit 2 is set in flags
[integer gid;] // ID of the group owning this process
// present if bit 3 is set in flags
[string* user_argv;] // Argument vector provided by the

// user at start of this process. It may
// differ from argv if the programming
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[string* envp;]

[token parent;]

[token message_queue;]

} Proc_static_info;

typedef struct {

[token node;]

[integer local_id;]

[integer scheduling_state;]

[floating total_time;]

[integer priority;]

[floating system_time;]

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
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library removes or adds options when
starting a process.

present if bit 4 is set in flags
Environment of this process.

See proc_create for a description.
present if bit 5 is set in flags
Token of the process’ parent process
present if bit 6 is set in flags
Token of the process’ (logical)
message queue if the process’ threads
share a single queue, undefined token
otherwise (see message services). See
the section on message queues for a
discussion.

present if bit 7 is set in flags

Dynamic info. Changes over time.
All times are returned in seconds,
all sizes in Bytes.

Required components:

Token of the node where this
process is located.

Note that this may be dynamic due
to process migration.

present if bit 8 is set in flags
Local id of this process,

e.g. UNIX pid.

Note that this may be dynamic due
to process migration.

present if bit 9 is set in flags
Current scheduling state:

0: running, 1: sleeping/blocked,
2: ready/runnable, 3: zombie,

4: stopped/suspended

present if bit 10 is set in flags
Sum of user and system time of the
process since it started

present if bit 11 is set in flags

Optional components:

Current scheduling priority

see proc_set_priority

present if bit 12 is set in flags
System time of the process since
it started

present if bit 13 is set in flags



[integer memory_size;] // Current process size

// present if bit 14 is set in flags
[integer resident_size;] // Amount of main memory currently used

// present if bit 15 is set in flags
[integer max_resident_size;] // Maximum amount of main memory used

// since process started

// present if bit 16 is set in flags
[integer int_resident_size;] // Integral of main memory size used

// since process started

// (unit: Bytes * seconds)

// present if bit 17 is set in flags
[integer minor_page_faults;] // Number of page faults since process

// started that did not require physical

// 1/0

// present if bit 18 is set in flags
[integer major_page_faults;] // Number of page faults since process

// started that did require physical I/0

// present if bit 19 is set in flags

[integer swaps;] // Number of times the process has been
// swapped out of main memory since it
// started
// present if bit 20 is set in flags
[integer file_input;] // number of file inputs since process
// started
// present if bit 21 is set in flags
[integer file_output;] // number of file outputs since process
// started

// present if bit 22 is set in flags
[integer vol_cont_switch;] // number of voluntary context switches
// since process started
// (e.g. wait for resource)
// present if bit 23 is set in flags
[integer invol_cont_switch;] // number of involuntary context
// switches since process started
// (time slice exceeded)
// present if bit 24 is set in flags
} Proc_dynamic_info;
struct {
Proc_static_info statinfo;
Proc_dynamic_info dyninfo;
}

proc_get_info(integer* proc_list, integer flags)

Detailed information about a set of processes can be obtained by the proc_get_info ser-
vice. proc_list defines the processes that have to be inspected. The second parameter
flags is a bit set that allows to mask each kind of information individually. E.g. if flags is
equal to 514 (0x202), the processes’ argv vector (i.e. name and command line parameters,
bit 1) and their node local identifiers (bit 9) will be returned. So it is possible to get all
relevant process information with a single service request, but still a monitoring system
only needs to retrieve the information that is really needed.
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When specifying proc_get_info([],0), no further information about processes is returned.
However, the reply will contain a full expansion of the empty process list, i.e. will provide
the tool with the tokens of all monitored processes.

. proc_read_memory ........................ read the memory of a process. (R)

integerx*
proc_read_memory(token* proc_list, integer addr,
integer blocklength, integer stride, integer count)

For each process in proc_list, this service reads count contiguous memory blocks from
the process’ memory and returns the contents as a list of bytes. The result is a raw
memory image, i.e. a sequence of Byte values; the monitoring system does not perform
any processing (e.g. Byte swapping) of this data. Each memory block read is of Byte-size
blocklength, addr is the address of the first block, and stride is the separation between
the start of two subsequent blocks in Bytes. Thus, the first blocklength Bytes of the
result will be read from addresses addr ... addr+blocklength—1, the next blocklength
Bytes from addresses addr+stride ... addr+stride+blocklength—1 and so on. stride
must not be smaller than blocklength.

. proc_read_memory bin .................... read the memory of a process. (0)

binary
proc_read_memory_bin(token* proc_list, integer addr,
integer blocklength, integer stride, integer count)

This service has exactly the same semantics as proc_read_memory, however, it returns
its result in a binary format.

4. proc_get_loader_info ........... return the loader information of a process. (P)

typedef struct {

string path_name; // The (full) path name of that load module
string member_name; // Member name, if module is an archive
integer code_start; // Start address of code segment
integer code_len; // Length of code segment in Bytes
integer data_start; // Start address of data segment
integer data_len; // Length of data segment in Bytes
integer bss_start; // Start address of BSS segment
integer bss_len; // Length of BSS segment in Bytes
} Loader_info;
struct {

integer num_load modules; // Number of load modules
Loader_info* loader_info; // loader info for each load module
}

proc_get_loader_info(token* proc_list)

On some parallel computers, e.g. the Parsytec GC/PowerPlus running PARIX, programs
are relocated when they are loaded by the operating system. Debuggers therefore need
to know the start addresses and the lengths of the program’s segments. The service
proc_get_loader_info returns this information for each load module of a process contained
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in proc_list. This service may also be used with operating systems where code (e.g.
libraries) can be loaded dynamically.

The first element in the loader_info list will contain the information on the process’ main
module (i.e. the statically linked part of its executable). Any implementation must at
least provide this part of the information; additional list elements providing information
on dynamically loaded libraries are optional. If the target system does not relocate the
code of a process (as it is the case with UNIX), a result with all start addresses equal to
zero and all lengths equal to the total address space of the target system is permissible.

Event Services

The following services notify the caller on certain events related to the monitored processes.
When one of these events is detected, all threads in the process that generated the event are
temporarily suspended until all action lists associated with the event have been executed.

Note that only the service specific event context parameters are specified in this section. The
common event context parameters contain further information on the detected event, especially
the tokens of the node and process where the event occurred.

1. proc_has_terminated ................ ... ... .. A process has terminated. (R)
void
proc_has_terminated(token *proc_list)
--> void // no service specific event context parameters

Event proc_has_terminated is raised when a process in proc_list has terminated. There
is no guarantee that the process is still accessible when the event is detected. However,
implementations should try to detect this event before the process becomes inaccessible,
whenever possible.

2. proc_has_been_stopped ............... A process has been stopped by the
monitoring system. (R)

void
proc_has_been_stopped(token *proc_list)
--> void // no service specific event context parameters

This event is raised when all threads of a process in proc_list have been stopped by the
monitoring system (using the thread_stop service).

3. proc_has_been _continued ........... A process has been continued by the
monitoring system. (R)

void

proc_has_been_continued(token* proc_list)
--> void // no service specific event context parameters

This event is raised when all threads of a process in proc_list has been continued again
by the monitoring system (using the thread_continue service).

4. proc_has been _scheduled .................... Process has been scheduled. (0)
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void
proc_has_been_scheduled(token *proc_list)
--> void // no service specific event context parameters

On machines where process scheduling is observable, this event is raised each time a process
in proc_list is scheduled by the operating system, i.e. it gets the CPU for one time-slice.

. proc_has _been _descheduled ............... Process has been descheduled. (0)

void
proc_has_been_descheduled(token *proc_list)
-=> void // no service specific event context parameters

On machines where process scheduling is observable, this event is raised each time a process
in proc_list is descheduled by the operating system, i.e. releases the CPU, either since its
time-slice elapsed or the process voluntarily blocked for some reason.

. proc_will_ be_migrated ................. A process is going to be migrated. (0)
void
proc_will_be_migrated(token* proc_list)
-=> struct {

integer dest_node; // destination node of migration

¥

This event will be raised before the system is going to migrate a process in proc_list. The
event context parameters include the process’ destination node. This service allows a tool
to perform some cleanup work before a process is migrated.

. proc_has_been_migrated .. A process has been migrated to another node. (0)
void
proc_has_been_migrated(token* proc_list)

--> void // no service specific event context parameters

This event is raised, after a process in proc_list has been migrated to another node. This
service allows a tool to perform some initialization work after a process has been migrated.
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8.1.3 Threads

Threads are the only objects in the monitored system that actually execute code. See Sec-
tion 8.1.2 for a discussion of the relation between threads and processes.

Manipulation Services

The following services are provided to manipulate the behavior of threads. Note that there are
no services to attach to a thread, since threads are automatically attached. See proc_attach
for a rationale.

1. thread_detach ............. ... .. . i detach from a thread. (0)

void
thread_detach(token* thread_list)

The thread_detach service detaches the monitoring system from the threads specified in
thread_list. When a thread is detached, it is no longer included in the set of monitored
threads. Note however, that conditional requests defined for the detached threads will not
be deleted automatically — the events simply will no longer be detected. Any subsequent
service request for a detached thread will result in an error.

Note that there is no way to re-attach to the detached thread, except for detaching and
re-attaching the thread’s process. The rationale for this service is that some programming
libraries create threads for their internal usage, which should not be influenced by the
monitoring system. Thus, it should be possible to detach from these threads.

2. thread StOp ... .o stop a thread. (P)

void
thread_stop(token* thread_list)

This service stops all threads specified by thread_list. This is achieved by putting each
thread into a stopped state, where it no longer gets any CPU cycles. From this state,
the thread can only be released with the thread_continue service. The operation is
idempotent, i.e. invoking it on an already stopped thread will in no way change the thread’s
state.

Every implementation of OMIS must provide the ability to stop all threads of a process.
Stopping individual threads of a process is an optional feature.

3. thread_continue ................ ... . ... oo continue a thread. (P)

void
thread_continue (token* thread_list)

This service removes all threads specified by thread_list from the stopped state. The
operation is idempotent, i.e. invoking it on a thread that is not stopped will in no way
change the thread’s state. Note that the thread only starts executing again when there
is no other reason preventing its execution (e.g. it may still be suspended due to a call
to thread_suspend or because action lists associated with an event that occured in this
thread are executed).

Every implementation of OMIS must provide the ability to continue all threads of a process.
Continuing individual threads of a process is an optional feature.
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4. thread_suspend ............................ temporarily suspend a thread. (R)

void
thread_suspend(token* thread_list)

This service suspends all threads specified by thread_list. Like thread_stop, the threads
are put into a suspended state where they no longer get any CPU cycles. However, the sus-
pended state is logically different from the stopped state, i.e. a suspended thread cannot be
resumed with thread_continue. Furthermore, thread_suspend is not idempotent, i.e.
there is a suspend count which means that a thread suspended twice must also be resumed
twice. Finally, when threads are to be suspended, thread_suspend may actually prevent
an arbitrary superset of these threads from executing, provided that the implementation
guarantees that they will again get the CPU when there is no longer any thread in the
suspended state.

The rationale for having both thread_stop / thread_continue and thread_suspend /
thread_resume is the different use of these services. thread_stop and thread_continue
are used e.g. for debugging when a thread has to be stopped for a longer period of time (vis-
ible for the user of a tool and for other tools), while thread _suspend and thread_resume
are used e.g. to ensure that the state of some threads do not change during the execution
of an action list or a sequence of unconditional requests (invisible for the user of a tool
and for other tools). Since on some platforms suspending a single thread may be extremly
complicated if not impossible, an implementation is free to suspend more than the speci-
fied threads, e.g. all threads in the same process. High quality implementations should of
course try to be as little intrusive as possible.

. thread_resume ........ ... .. .. i resume a thread. (R)

void
thread_resume (token* thread_list)

This service decrements the suspend count for all threads specified by thread_list. When
the count is zero for a thread, that thread is removed from the suspended state. However,
an implementation is free to still prevent these threads from executing until there is no
longer any thread in a suspended state. In any case, execution of the thread may still be
prevented by a previous call to thread_stop or the execution of an action list associated
with an event in that thread.

See thread _suspend for a rationale.

. thread_send_signal ............................. send a signal to a thread. (0)

void
thread_send_signal (token* thread_list, integer sig)

On systems that allow signals to be sent to individual threads, this service sends the signal
sig to all threads in thread_list.

7. thread_set_priority ................ .. ... ..., change priority of a thread. (0)

void
thread_set_priority(token* thread_list, integer val)
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On systems providing a priority based thread scheduling, this service changes the schedul-
ing priority of the threads in thread_list to val.

8. thread_write_int_regs .............. write into a thread’s integer registers. (R)

void
thread_write_int_regs(token* thread_list, integer reg, integer* val)

Writes the values in val into the integer registers reg, reg+1, ... of all threads specified in
thread _list. The register numbers and their bit-length depend on the node architecture;
they are defined in the node processors’ ABI (Application Binary Interface).

9. thread_write fp.regs ........ write into a thread’s floating point registers. (R)

void
thread_write_fp_regs(token* thread_list, integer reg, floating* val)

Writes the values in val into the floating point registers reg, reg+1, ... of all threads
specified in thread_list. The register numbers and their bit-length depend on the node
architecture; they are defined in the node processors’ ABI (Application Binary Interface).

10. thread_goto ......... ... ... i set the PC of a thread. (0)

void
thread_goto(token* thread_list, integer addr)

Sets the program counter (PC) of the threads specified by thread_list to the value addr.
On some processors (e.g. Sparc) this also includes initialization of pipeline registers. The
service has the effect of executing a jump instruction to that address in the current context
of the specified threads. Note that this service only manipulates the threads’ program
counter, it does not continue the threads if they are stopped.

11. thread call ............................... save and set the PC of a thread. (0)

void
thread_call(token* thread_list, integer addr)

Like thread_goto, this service sets the program counter (PC) of the threads specified by
thread_list to the value addr. However, it first saves the current PC (i.e. the return
address) in a way conforming to the node processors’ calling conventions, effectively per-
forming a subroutine call in the current context of the specified threads. The tool must
ensure that the proper parameters for the called subroutine (if any) are already loaded into
the proper registers and/or memory locations. Note that this service only manipulates the
threads’ registers and stack, it does not continue the threads if they are stopped.

Information Services

The following services can be used to obtain information on an application’s threads:

1. thread get_info ............................... get information on threads. (P)
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typedef struct {

[token process;]

[integer global_id;]

[integer root_funct;]
[token parent;]

[token message_queue;]

[integer stack_size;]
} Thread_static_info;

typedef struct {

[token node;]

[integer local_id;]

[integer scheduling_state;]

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
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Static info. Independent of time.
Required components:

Token of the process containing
this thread

present if bit O is set in flags
Global id of this thread, as
defined by the programming library
used

present if bit 1 is set in flags

Optional components:

Address of the thread’s root function
present if bit 2 is set in flags
Token of the thread’s parent thread
present if bit 3 is set in flags
Token of the thread’s (logical)
message queue, if threads in the same
process have separate queues,
undefined token otherwise. See

the section on message queues for a
discussion.

present if bit 4 is set in flags
Stack size of the thread

present if bit 5 is set in flags

Dynamic info. Changes over time.
All times are returned in seconds,
all sizes in Bytes.

Required components:

Token of the node where this
thread is located.

Note that this may be dynamic due
to process/thread migration.
present if bit 6 is set in flags
Local id of this thread, as defined
by the node operating system.
Note that this may be dynamic due
to process/thread migration.
present if bit 7 is set in flags
Current scheduling state:

0: running, 1: sleeping/blocked,
2: ready/runnable, 3: zombie,

4: stopped/suspended

present if bit 8 is set in flags



[floating total_time;] // Sum of user and system time of the
// thread since it started
// present if bit 9 is set in flags

//
// Optional components:
//
[integer priority;] // Current scheduling priority

// see thread_set_priority
// present if bit 10 is set in flags
[floating system_time;] // System time of the thread since
// it started
// present if bit 11 is set in flags
} Thread_dynamic_info;
struct {
Thread_static_info statinfo;
Thread_dynamic_info dyninfo;
}
thread_get_info(token* thread_list, integer flags)

Detailed information about a set of threads can be obtained by the thread_get_info
service. thread_list defines the threads that have to be inspected. The second parameter
flags is a bit set that allows to mask each kind of information individually. E.g. if flags is
equal to 5, for each thread the address of its root function (i.e. the address of the top level
function executed by that thread) and the token of the process containing that thread will
be returned. So it is possible to get all relevant thread information with a single service
request, but still a monitoring system only needs to retrieve the information that is really
needed.

When specifying thread_get_info([],0), no further information about threads is returned.
However, the reply will contain a full expansion of the empty thread list, i.e. will provide
the tool with the tokens of all attached threads in the monitored processes.

. thread_get_backtrace .... determine a thread’s procedure stack backtrace. (R)

typedef struct {

integer pc; // Program counter / return address
integer fp; // Frame pointer

} Stack_element;

struct {

integer num_frames;
Stack_element* stack;
}
thread_get_backtrace(token* thread_list, integer depth)

The service thread_get_backtrace returns the current procedure stack backtrace of all
threads specified by thread_list. The backtrace consists of a list of pairs for each active
procedure invocation. Each pair contains the procedure’s frame pointer and the current
execution address in that procedure. The record for the most recent procedure invocation
is returned as the first element of the list. The parameter depth determines the maximum
depth of the backtrace, i.e. at most the first depth entries of the backtrace will be returned.
If depth is zero, the complete backtrace will be returned. This service is mainly used for
debugging or performance analysis based on sampling.
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3. thread read_int_regs ................... read integer registers of a thread. (R)

integerx*
thread_read_int_regs(token *thread_list, integer reg, integer num)

Reads num integer registers starting at register reg in each of the threads specified by
thread list and returns their contents. The register numbers and their bit-length depend
on the node architecture; they are defined in the node processors’ application binary
interface (ABI).

4. thread read fp.regs .............. read floating point registers of a thread. (R)

floating*
thread_read_fp_regs(token *thread_list, integer reg, integer num)

Reads num floating point registers starting at register reg in each of the threads specified
by thread_list and returns their contents. The register numbers and their bit-length
depend on the node architecture; they are defined in the node processors’ application
binary interface (ABI).

Event Services

The following services notify the caller on certain thread related events that occur in the mon-
itored application. When one of these events is detected, the thread that generated the event
will be temporarily suspended until all action lists associated with the event have been executed.
When this thread is suspended, most implementations will at the same time also suspend all
other threads within the same process, since this is the default behavior of the underlying
operating system mechanisms. However, OMIS does not guarantee this behavior, since there
are platforms where it cannot be achieved. Since threads use a common memory, this results
in a chance that other threads change the memory contents before or while the action lists
are executed. To avoid this behavior, enclose the action list in a thread_suspend($proc) /
thread_resume($proc) pair. A high quality implementation should try to stop all thread in
the process as soon as possible in this case, thus reducing (but not totally eliminating) this
problem.

Note that only the service specific event context parameters are specified in this section. The
common event context parameters contain further information on the detected event, especially
the tokens of the node, process and thread where the event occurred.

1. thread_adds_node A thread adds a new node to its application’s node set. (0)

void
thread_adds_node(token* thread_list)
--> struct {
token new_node; // token of the node that is being added

The service thread_adds_node reports when a thread in thread_list adds a processing
node to its application’s node set. The event is raised before the thread can perform any
operations concerning the new node (e.g. start a process). The event context parameter
new_node contains the token of the new node. Thus, node_attach may be used in the
action list to attach the monitoring system to that node.
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2. thread_removes_node A thread removes a new node from its application’s node set.

void
thread_removes_node (token* thread_list)
--> struct {
token rem_node; // token of the node that is being removed
}

The service thread_removes_node reports when a thread in thread_list removes a pro-
cessing node from its application’s node set. The event is raised before the node is actually
removed. Note that depending on the target platform, the monitor on the node may be
killed when the node is removed, so the actions attached to this event service in a condi-
tional request are the last services that can be safely executed for that node. Usually, the
actions will include a node_detach service.

3. thread_creates_proc ..................... A thread creates a new process. (0)

void
thread_creates_proc(token* thread_list)
--> struct {
token new_proc; // token of the process that is being created

}

The service thread_creates_proc reports when a thread in thread_list creates a new
process. The event is raised immediately before the initial thread of the new process
starts its execution. The event context parameter new_proc contains the token of the
new process. Thus, proc_attach may be used in the action list to attach the monitoring
system to that process.

If the programming model of the monitored thread allows to create processes on a remote
node without a need to first explicitly add this node to the application’s node set (as it has
to be done for instance in PVM), the creation of a process on a node not yet used before
will first raise a thread_adds_node event, followed by a thread_creates_proc event.

The thread_creates_proc is only guaranteed to be raised when the thread creates the
process by ’legal’ means of the programming library used. This means that if e.g. a PVM
task creates a new process via a fork system call, process creation may not be detected.

4. thread_creates_thread .................... A thread creates a new thread. (0)
void
thread_creates_thread(token* thread_list)
-=> struct {
token new_thread; // token of the thread that is being created
}

The service thread_creates_thread reports when a thread in thread_list creates a new
thread. The event is raised immediately before the new thread starts its execution. The
event context parameter new_thread contains the token of the new thread. Note that if
the thread is created in an already attached process, the monitoring system will automat-
ically attach to the new thread. See proc_attach for a rationale.

This event is also raised for the initial thread of a new process. Thus, if both events
are monitored and a thread creates a new process, first thread_creates_process will be
raised, followed by thread_creates_thread.
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10.

. thread_has_terminated ......................... A thread has terminated. (R)

void
thread_has_terminated(token* thread_list)
--> void // no service specific event context parameters

Event thread _has_terminated is raised when a thread in thread list has terminated.
There is no guarantee that the thread is still accessible when the event is detected.

. thread_received_signal ........................ A thread received a signal. (0)

void
thread_received_signal(token *thread_list, integer *sig_list)
--> struct {

integer sig; // signal number

}

This event is raised whenever a thread in thread_list received a signal in sig list. It
provides the signal number as an additional event context parameter.

. thread_has_blocked .............. .. .. .. .. ..... A thread has blocked. (0)
void
thread_has_blocked(token* thread_list)
--> void // no service specific event context parameters

This event is raised when a thread in thread_list has blocked e.g. in a blocking commu-
nication or synchronization call.

. thread_has_been_unblocked ............... A thread has been unblocked. (0)
void
thread_has_been_unblocked(token* thread_list)
--> void // no service specific event context parameters

This event is raised when the blocking condition (e.g. due to a communication or synchro-
nization call) of a thread in thread_list has been removed again.

. thread_has_been_stopped ............. A thread has been stopped by the

monitoring system. (R)

void
thread_has_been_stopped(token* thread_list)
--> void // no service specific event context parameters

This event is raised when a thread in thread list is stopped by the monitoring system
(using the thread_stop service).

thread _has been_continued ......... A thread has been continued by the
monitoring system. (R)
void
thread_has_been_continued(token* thread_list)
--> void // no service specific event context parameters
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11.

12.

13.

14.

15.

This event is raised when a thread in thread_list is continued by the monitoring system
(using the thread_continue service).

thread_has_been_scheduled ................. Thread has been scheduled. (0)

void
thread_has_been_scheduled(token *thread_list)
--> void // no service specific event context parameters

On machines where thread scheduling is observable, this event is raised each time a thread
in thread list is scheduled by the operating system, i.e. it gets the CPU for one time-slice.

thread_has been_descheduled ............. Thread has been descheduled. (0)

void
thread_has_been_descheduled(token *thread_list)
--> void // no service specific event context parameters

On machines where thread scheduling is observable, this event is raised each time a thread
in thread _list is descheduled by the operating system, i.e. releases the CPU, either since
its time-slice elapsed or the thread voluntarily blocked for some reason.

thread reached_addr .............. A thread reaches a given code address. (R)
void
thread_reached_addr(token* thread_list, integer address)
--> void // no service specific event context parameters

The event is raised whenever a thread in thread_list is about to execute the machine in-
struction at the given address. This service will mainly be used to implement breakpoints
for debugging purposes.

thread _executed_insn .............. A thread has executed an instruction. (0)
void
thread_executed_insn(token *thread_list)
--> void // no service specific event context parameters

This event is raised whenever a thread in thread_list has finished execution of a machine
instruction. This service can be used to implement single stepping and execution tracing
of threads.

thread_executed_insn_call .......... A thread has executed an instruction
(call is single instruction) (0)

void
thread_executed_insn_call(token *thread_list)
--> void // no service specific event context parameters

This event is raised whenever a thread in thread_list has finished execution of a machine
instruction. In contrast to thread executed_insn this service regards a subroutine call
as a single instruction, i.e. when a thread executes a call instruction, the event is raised
not before the called subroutine returns. The main use of this service is single stepping
and execution tracing of threads.
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16.

17.

thread_has_started_lib_call ............ A thread has invoked a call to the

programming library. (R)
thread _has ended_lib_call ....... A thread has returned from a call to the
programming library. (R)
void
thread_has_started_lib_call(token* thread_list, string lib_call_name)
-=> struct {
any parl; // the event context parameters are the input
any par?2; // parameters of the library call
}
void

thread_has_ended_lib_call(token* thread_list, string 1lib_call_name)
--> struct {
any parl; // the event context parameters are the result
any par2; // parameters of the library call

These events are raised whenever a thread in thread _list is calling the specified routine of
the parallel programming library (e.g. PVM). thread_has_started_lib_call is raised just
before the routine is executed, while thread_has_ended_lib_call is raised just after the
routine returns. In both cases, the event is not been raised if the routine has been called
by another routine in the programming library, but only when it has been called directly
by the application code.

The services are provided for all routines in the programming library; the value of the
lib_call_name parameter specifies the routine’s name. The service specific event context
parameters of these services are the input or output parameters of the called library routine.
They are named parl, par2, and so on. The number and the types of these parameters
depend both on the programming library used and the selected library call. They are
defined in the specification of the extension handling the specific programming library.

The reason for this two-step approach is to avoid dependencies between the on-line mon-
itoring interface specification and the supported programming library. It separates the
real task of these services, namely to detect calls to the programming library, from library
specific aspects. Moreover, these services could be generated automatically for a specific
programming library from a specification of the library’s function prototypes (see known
problem no. 4 in Chapter 13).

thread_has started sys_call .......... A thread has invoked a system call. (0)
end sys.call .................... A thread has returned from a system call. (0)

void
thread_has_started_sys_call(token* thread_list, string sys_call_name)
--> struct {

any parl; // the event context parameters are the input

any par2; // parameters of the system call
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void
thread_has_ended_sys_call(token* thread_list, string sys_call_name)
--> struct {
any parl; // the event context parameters are the result
any par2; // parameters of the system call

These events are raised whenever a thread in thread_list is calling the specified system
call of the node operating system. thread_has_started_sys_call is raised just before the
system call is executed, while thread _has_ended_sys_call is raised just after the system
call returns.

The services are provided for all system calls of the processing nodes’ operating system(s);
the value of the sys_call_name parameter specifies the name of the system call. The ser-
vice specific event context parameters of these services are the input or output parameters
of the system call. They are named parl, par2, and so on. The number and the types of
these parameters depend both on the operating system and the selected system call. They
are defined in the specification of the extension handling the specific operating system.

18. thread_has_received_tagged msg ................ A thread has received a
tagged message. (0)

void
thread_has_received_tagged_msg(token* thread_list, integer* tag_list)
-=> struct {

token msg; // Token of received message

token sender; // Token of thread that sent the message
integer size; // Size of the message

integer monitor_tag; // Tag added by the monitoring system

This service reports the receipt of a message by a thread in thread list, iff the message
has been tagged by the monitoring system and either the tag is contained in tag_list or
tag_list is an empty list. See message_tag for more information on message tags.
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8.1.4 Messages

In order to support the monitoring of message passing systems, OMIS includes services operating
on messages and message queues. Both messages and message queues are handled as abstract
data structures, i.e. their exact structure and implementation is not visible at the monitoring
interface, since it depends on the particular target platform. Services allowing to construct
messages or to view the contents of a message therefore must be contained in an extension for
that platform.

The model of a message passing system used by OMIS is that messages are sent by a thread
to a message queue from which they may be read by the receiver. OMIS does not make any
assumption on the relation between that message queue and the receiver. Basically, there are
three possibilities for this relation:

1. The message queue may be associated with a single receiver thread. In this case, we have
direct message passing between threads. The message queue belonging to a thread can be
obtained via the thread_get_info service.

2. The message queue may be associated with a receiver process. Here, the message is received
by an arbitrary thread in that process. In this case, proc_get_info returns the token of
the message queue associated with a process.

3. The message queue may have a mailbox semantics, i.e. any process may read the message
from the queue. For such a platform, an extension must provide a service returning the
message queue tokens for the existing mailboxes.

On singlethreaded systems, the first two cases coincide. The fact that in cases 1 and 2 the
model uses only a single message queue per receiver (thread or process) does not restrict the
applicability of OMIS for systems that have separate queues for e.g. differently tagged messages
or messages originating from different senders. In these cases, the different queues can always
be merged into a single (logical) queue, which again can be easily separated into the original
ones.

Manipulation Services
The services in this group will allow to modify message queues and single messages.

1. message_insert_into_queue ....... Insert a message into a message queue. (0)

void
message_insert_into_queue(token msg, token queue, integer pos)

For debugging message passing errors, the service message_insert_into_queue allows to
insert a message msg at a given position pos in a message queue queue. Both message
and message queue are specified by a token. The token of a process’ or thread’s message
queue can be determined by the proc_get_info and thread_get_info services; the message
token is usually taken from the result of the message_create service.

The parameter pos defines the position of the message in the message queue (as returned
by message_queue_get_info) after which the new message will be inserted. If pos is 0,
the message is inserted at the beginning of the queue, if pos is -1, the message is inserted
at the end of the queue. The service does not duplicate the specified message msg before
it is inserted into the given queue, so the caller must ensure that the message is not already
contained in a message queue. Otherwise, unexpected behavour may result.

Each implementation of this service must at least provide the ability to insert a message
at the end of a message queue.
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2. message_queue_remove ........ Remove a message from a message queue. (0)

void
message_queue_remove (token queue, token msg)

This service removes the specified message msg from the given message queue queue (but
does not destroy the message). If msg is not in queue, an error will be returned. The
service may be used mainly for debugging message passing errors and for program testing.

3. message_queue_clear ................. ... .. ... Clear a message queue. (0)

void
message_queue_clear (token* queue_list)

This service deletes all messages from the message queues given in queue_list.

4. MeSSaZe tAZ ... Add a tag to a message (0)

void
message_tag(token* msg_list, integer tag)

To support debugging of message passing programs, OMIS defines services that use a spe-
cial message tag. This tag is independent of any message tag defined by the programming
model. In fact, it is invisible for both the programming library and the application. How-
ever, there are monitoring services to set this tag, to read its value and to trigger some
actions when a message with a given monitor tag is received.

This tag may be used for different purposes. For example, during debugging, the user may
be interested in how a message that is sent by a process is processed by another one. By
tagging the message, the monitoring system can stop the receiver, when it receives exactly
that message, regardless of the number of preceding messages in the receiver’s message
queue. When the receiver is stopped, the user can examine how the message is processed,
e.g. by single stepping. In addition, tags can also be used to implement distributed event
detection.

The message_tag service puts the specified tag (which must be different from 0) into
the messages specified by their tokens in msg_list. It will mainly be used as an action
in combination with a thread_has_started_lib_call event for a ’send’ library call that
provides the message token as an event context parameter.

5. message._create ................iiiiiiiiiiiia. Create a new message. (0)

token
message_create()

This service creates a new message and returns the message token. The message may
then be initialized with message_copy or with a service provided by an extension for the
specific programming library.

6. MESSAZE _COPY v tvvententeee e e Copy a message. (0)

void
message_copy(token src, token dst)
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This service copies the message specified by src into the (existing) message specified by
dst.

7. message_destroy ... Destroy a message. (0)

void
message_destroy(token* msg_list)

This service destroys the messages given in msg_list. The caller must take care not to
destroy messages that are still accessible by the monitored application.

Information Services

Currently, this group contains only one service:

1. message_queue_get_info ......... Return information on a message queue. (0)

typedef struct {

[token msg; ] // Token of this message
// present if bit O is set in flags
[token sender;] // Token of thread that sent this message
// present if bit 1 is set in flags
[integer size;] // Size of the message

// present if bit 2 is set in flags
[integer monitor_tag;] // Tag added by the monitoring system
// 0 --> message has not been tagged
// by the monitoring system
// present if bit 3 is set in flags
} Message_info;
struct {
integer queue_length; // number of messages in queue
Message_info* messages;
+

message_queue_get_info(token* queue_list, integer flags)

This service returns information on the message queues specified in queue_list. In analogy
to process_get_info a bit set mechanism allows to select the kind of information to be
retrieved. A component in Message_info will only be returned, if the corresponding bit
in flags is set.

Event Services

Only one event service is especially provided for the monitoring of message passing programs.
Other events, such as the beginning and the end of send or receive library calls, can be mon-
itored using the thread_has_started_lib_call and thread_has_ended_lib_call services (see
Section 8.1.3). When the event defined below is detected, the monitoring system ensures that
no message is removed from the message queue until all action lists have been executed. However,
messages may still be appended to the queue.

Note that only the service specific event context parameters are specified in this section. The
common event context parameters contain further information on the detected event, especially
the token of the node where the event occurred.
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1. message queue_has been extended .. A message has been appended to a

message queue. (0)
void
message_queue_has_been_extended(token* queue_list)
--> struct {
token queue; // Token of this message queue
token msg; // Token of appended message
token sender; // Token of thread that sent this message
integer size; // Size of the message
integer monitor_tag; // Tag added by the monitoring system
// 0 --> message has not been tagged
// by the monitoring system
}

This event is raised when a message is inserted into a queue contained in queue_list.
The token of the process and thread the message queue belongs to are contained in the
standard event context parameters. This event is essential for tools based on event traces
that need information on the size or contents of the message queue.
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8.2 Monitor Objects

Currently, OMIS defines two types of objects in the monitoring system: user defined events and
conditional service requests. The latter are monitor objects, since they have to be stored in the
monitoring system, and they can be manipulated by other services. Other monitor objects may
be added by distributed tool extensions, e.g. timers, counters, etc.

In addition, there are some services that cannot be associated with a specific monitor object.
They are introduced in Section 8.2.3.

8.2.1 Conditional Service Requests

Manipulation Services

1. csr_enable ......... Enable a previously defined conditional service request. (R)
csr_disable ........ Disable a previously defined conditional service request. (R)
void

csr_enable(token* csr_list)

void
csr_disable(token* csr_list)

These services will enable or disable the previously defined conditional service requests
specified by csr_list. csr_list is a list of conditional service request tokens, which are
returned as the immediate result of a conditional service request. Since all conditional
service requests are initially disabled, they must be enabled explicitly. The services can
also be used for temporarily disabling breakpoints or performance measurements. Since
they can be used as actions, it is possible to start and stop monitoring of an event based on
the occurrence of another event. In this way, the detection of complex distributed events
or conditional performance measurements are possible.

2. csr_delete .......... Delete a previously defined conditional service request. (R)
void csr_delete(token* csr_list)

This service deletes the conditional service requests specified by the tokens in csr_list.

8.2.2 User Defined Events
Manipulation Services

1. user_event_create .......................... Create a user defineded event. (R)

token
user_event_create()

An OMIS compliant monitoring system allows tools to define their own events via this
service. Once the event has been defined, it can be raised using the user_event_raise
service.

2. user_event_raise .............. ... i Raise a user defined event. (R)
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void
user_event_raise(token user_event, any* params, integer resume)

This service will raise the user defined event specified by its token that has been returned by
a previous call to user_event_create. params is a list of parameters that will be copied
to the service specific event context parameters of the user_event_has_been_raised event
service. The size of this list, i.e. the number of parameters is arbitrary.

If the service is contained in the action list of a conditional service request, the resume
parameter determines what happens to the object where the event occured that lead to
the execution of this action list. If resume is zero, the object will not be allowed to change
its state until all action lists associated with the user event have been executed. In this
case, the standard event context parameters of user_event_has_been_raised will specify
that object as being the source of the event.

If resume is non-zero, the object may change its state before (and even while) the ac-
tion lists associated with the user event are executed. In this case, or if the service is
contained in an unconditional service request, the standard event context parameters of
user_event_has _been_raised will specify an undefined object as being the source of the
event.

3. user_event_destroy ........................ Destroy a user defined event. (R)

void
user_event_destroy(token user_event)

This service is used to destroy a user defined event given by its token when it is no longer
needed. Any subsequent call to user_event_raise for this event will result in an error. The
tool is responsible for deleting all conditional service requests referring to the destroyed
user defined event.

Event Services

1. user_event_has_been _raised ........ A user defined event has been raised. (R)
void
user_event_has_been_raised(token user_event)
-=> struct {
parl; // parameters specified in the call to raise_event
par2;
}

The service user_event_has been_raised gives notice that the specified user event has
been raised using user_event_raise service. The service specific event context parameters
contain the values of the elements in the params list passed to user_event_raise. parl
contains the value of the first element of that list, par2 the value of the second one and
so on. The number of service specific event context parameters depends on the length of
the params list.

User defined events can, for instance, be used to realize action lists that can be triggered
by different events, without having to define the action list twice. If you want to trigger a
list A of actions with event E1 or event E2, you can specify:
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user_event_create() // returns token e_321
El: user_event_raise(e_321, [1, 1)

E2: user_event_raise(e_321, []1, 1)
user_event_has_been_raised(e_321): A

In addition, user defined events allow to chain actions. For instance, you could provide
some service filter(var, val, user_event) in a distributed tool extension that raises a
user defined event, iff var == val. If we assume that the fourth parameter returned by
the start_lib_call(tid_list, ” MPI_Send”) service is the destination process token, then
in the following situation

user_event_create() // returns token e_23
thread_has_started_lib_call([p_2], "MPI_Send"): filter($par4, p_5, e_23)
user_event_has_been_raised(e_23): A

action list A will be executed, iff process p_2 sends to process p_5.

Finally, user defined events can also be used for additional code instrumentation.

8.2.3 Miscellaneous

Synchronous Services

Loprint ... Return arguments. (R)
struct {
integer numargs; // number of elements in following list
any* args; // copy of argument list
}

print(any* args)

Sometimes a tool wants to be directly notified about an event occurrence and its param-
eters. For this purpose, the service print is available. It simply returns its arguments in
its result structure.

2. VErSION ... Return version information. (R)
struct {
integer omis_major; // Major version of OMIS specification
// the monitoring system complies to.
integer omis_minor; // Minor version of OMIS
string ocm_ident; // String identifying the implementation

// of the OMIS compliant monitoring system
// (vendor specific)

integer ocm_major; // Major version of monitoring system
// (defined by vendor)
integer ocm_minor; // Minor version of monitoring system
// (defined by vendor)
}
version()

This service returns version information on the monitoring system. This includes the
proper version of the OMIS specification (i.e. omis_major = 2, omis_minor = 0 for this
version), and a vendor-defined name and version numbers for monitor implementation.
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3. extensions .............. ... ...l Return a list of available extensions. (R)

struct {
integer numext; // number of elements in following list
string* extension; // the prefix used for this extension

}

extensions ()

This service allows to ask which monitor extensions or distributed tool extensions are
available in a monitor. It returns the list of the prefixes used for the services of the available
extensions. Thus, tools can decide whether the necessary extensions are available, and they
may handle the cases where less important extensions are missing.

4. ServiCes ...l Return a list of available services. (R)
struct {
integer numfully; // number of elements in following list
stringx fully_impl; // names of fully implemented services
integer numpart; // number of elements in following list
string* part_impl; // names of partially implemented services
}

services(string extension)
This service allows to obtain the names of all services which are fully or partially imple-

mented by the extension defined by its prefix string. If extension is the empty string, the
names of all services provided by the basic monitoring system are returned.
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Chapter 9

Specification of a PVM Extension

9.1 Data Types

The PVM extension defines one new token class: the group token. The prefix 'pvm_g_’ is used
to characterize group tokens. The expansion operation on a group token leads to a list of all
attached processes that are in the specified group. There are no localization operations: groups
cannot be localized on a specific node; likewise, since a PVM task can be member of several
groups, it is not possible to uniquely convert a process token into a group token.

In addition, there is another implicit object in PVM: the user’s virtual machine, consisting
of a set of nodes and several application processes (tasks) running on these nodes. Since in PVM
there can be only one virtual machine per user, there is no need to introduce a token for this
object, however, there are services for this object class.

9.2 System Objects

9.2.1 Virtual Machine
Information Services

1. pvm_vm_get_nodelist ................ get all nodes of the virtual machine. (R)

typedef struct {

token node; // Token of this node
integer tid; // PVM task id of PVM daemon on this node
} nodeinfo;
struct {
integer num; // Number of elements in the following list

// i.e. number of nodes in the virtual machine
nodeinfo* nodes; // Information on each node

¥

pvm_vm_get_nodelist ()
This service returns information on the nodes currently being in the user’s virtual machine.

The information for each node includes the node’s token and the PVM task id of the PVM
daemon located on this node.

2. pvm_vm _get_proclist ............. get all processes in the virtual machine. (R)

typedef struct {
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token proc; // The process token

token thread; // The token of the process’ (only) thread
} taskinfo;
struct {

integer num; // Number of elements in the following list

// i.e. number of PVM tasks in the virtual machine
taskinfo* tasks; // List of process/thread tokens of all PVM tasks

}
pvm_vm_get_proclist ()

This service returns the list of tokens of all processes (i.e. PVM tasks) currently existing
in the user’s virtual machine, together with the token of the (only) thread in each of these
processes.

9.2.2 Processes

Information Services

1. pvm_proc_get_buffers ..... Get information on a process’ message buffers. (0)

typedef struct {

integer bufid; // The buffer ID as specified by PVM
token msg; // The message token for this buffer
} Buffer;
struct {
integer numbufs; // Number of elements in following list
Buffer* bufs; // List of all existing message buffers in process

}

pvm_proc_get_buffers(token* proc_list)

This service returns information on a process’ PVM message buffers. The first element
in the returned list specifies the active receive buffer, the second one the active send
buffer. The following entries contain message buffers saved by the PVM pvm_setrbuf
and pvm_setsbuf library calls.

9.2.3 Threads
Event Services

1. thread_has_started_lib_call ............ A thread has invoked a PVM call. (R)
thread_has ended_lib_call ....... A thread has returned from a PVM call. (R)

The PVM extension allows to use these services for all documented PVM calls. The values
of the input and output parameters of these calls can be accessed via the event context
parameters.

In this version of the specification of the PVM extension, we will not give an exact definition
of this service for each PVM call, but rather explain the general concepts. As a convention,
$par0 represents the function result, $parl its first parameter and so on. This implies
that not all event context parameters have defined values for both services, e.g. $par0 will
be undefied for any call to thread_has_started_lib_call. If the function parameters have
simple types, the corresponding event context parameters have the analogous type, e.g.
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integer for parameters of type int, short, ... Function parameters with more complex
types may not be accessible via an event context parameter.

However, for some calls there are event context parameters that do not correspond to an
explicit parameter of the call. For the communication and packing/unpacking functions
there is an event context parameter containing the token of the manipulated message,
which is an implicit parameter of these calls. For send and receive functions another event
context parameter contains the length of the message.

As an example, here is the specification of the services for the pvm_send function. Later
versions of this document will contain such a specification for each PVM call.

start pvm_send:

integer parl; // tid of destination process
integer par2; // message tag

token par3; // destination process

token  par4; // message being sent

integer parb; // message length

end pvm_send:
integer parO; // return value of function

9.2.4 Messages

The following services are provided to access messages in applications based on the PVM pro-
gramming library. Note that the term 'message’ here means an abstract message in the sense of
OMIS, which is very similar, but not fully identical to a PVM ’'message buffer’.

Manipulation Services

1. pvm_message pack .......... ... ... .. i Pack a PVM message. (0)

void
pvm_message_pack(token msg, token sender, int tag,
string fmt, any* cont)

This service initializes or overwrites an existing message given by its token msg with the
specified message data. sender is the token of the sender process; tag is the PVM message
tag. fmt is a format string as specified in the documentation of pvm_packf, cont is a list
of values whose types must conform with the specification given in fint.

When the service exits successfully, the specified message will look exactly as if sent by
process sender with the specified tag and contents.

Information Services

1. pvim_message_unpack ............... ... ...... Unpack a PVM message. (0)
struct {
integer tag; // PVM tag of this message
token sender; // Token of sender process
integer num; // Number of elements in following list
any* cont; // Message contents
}

pvm_message_unpack(token msg, string fmt)
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This service returns the PVM specific information on a message. The message contents
returned is acquired by unpacking the message using the given format string fmt, which
must conform to the the documentation of pvimm_unpackf. The result of unpacking is
stored in the untyped list cont. When fmt is an empty string, cont will also be empty.

Note that since PVM does not store information on the data types packed into a message,
a tool calling pvim_message_unpack must acquire this information from other sources
(e.g. from the user, or by a detailed monitoring of the packing and exchange of messages)

9.2.5 Groups

Information Services

1. pvm_group_get_info ................... Get information on a PVM group. (0)
struct {
[string name;] // Group name

// present if bit O is set in flags
[integer nummemb;] // Number of group members
// present if bit 1 is set in flags
[token* members;] // Token of processes that are member of the
// group
// present if bit 2 is set in flags
[integer numwait;] // Number of members waiting at the group’s
// barrier
// present if bit 3 is set in flags
[token* waiting;] // Token of processes waiting at the group’s
// barrier
// present if bit 4 is set in flags
[integer expected;] // Number of expected calls to pvm_barrier (only
// valid if numwait > 0)
// present if bit 5 is set in flags
}
pvm_group_get_info(token* group_list, integer flags)

This service returns information on the PVM groups matching the token list group_list.
The bit field flags determines which information will be contained in the result. Notice
that the reply of the call group_list([],0) will contain the list of the tokens of all existing
groups in the user’s virtual machine.

Since in PVM there is a one-to-one correspondence between groups and barriers, the
service pvm_group_get_info will also provide information on the barrier associated with
the specified group(s), namely the number of processes waiting at the barrier, the list of
waiting processes and the number of expected calls to pvm_barrier, as specified in the
count parameter of that PVM call.
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Part 1V

Concepts for an Implementation
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Chapter 10

The Design of an OMIS Compliant
Monitoring System

A detailed design document of the OMIS compliant monitoring system OCM will be provided
when the implementation is finished. The OCM will be provided as a reference implementation
of OMIS and will be released unter the GNU license conditions.
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Chapter 11

Time Schedule of Implementation

Start of implementation: January, 1997

Four researchers and three students of LRR-TUM are currently working on the implementation
of OCM. Implementation will be finished in fall 1997.

OMIS Version 1.0: February 1, 1996

The first version of OMIS serves as a basis for the design of an OMIS compliant monitoring
system and for adaptation of OMIS based tools.

Start of design phase: January, 1996

A group of six researchers and students at LRR-TUM worked out the design of the OMIS
compliant monitoring system OCM based on PVM as programming paradigm and networks of
workstations as target architecture.
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Part V

Diverse

107



108



Chapter 12

Requests for Comments

In this chapter we summarize important open questions of the OMIS project. We would like
to encourage any reader of this document to send us his/her comments, ideas, suggestions etc.
Please refer to open questions by indicating their number.

1 Should the tool/monitor-interface be designed in a really object oriented manner instead
of the current object based one, i.e. should we employ inheritance? This could have some
advantages:

— The on-line monitoring interface specification could be defined in terms of even more
abstract object classes. The actual object classes needed for a specific parallel pro-
gramming library would then be derived from these ones and inherit their meth-
ods (i.e. services). For instance, we could have abstract processes with services like
stop, continue, user_time, and so on. A UNIX process class, derived from this ab-
stract process class, would inherit these services and could define additional ones, e.g.
send signal or set_priority. A PVM task could be derived from a UNIX process
and provide additional services such as message_buffer.

This scheme would replace the current scheme of OMIS extensions by the more com-
mon scheme of creating derived classes.

— When object oriented techniques are also used for the monitors’ implementation,
its portability with respect to different programming libraries could probably be in-
creased. If a significant part of the code for a concrete object could be inherited
from the abstract base classes, support for different programming libraries could be
implemented in relatively small monitor extensions.

2 Should we consider to provide OMIS also for shared memory environments? Since the
hardware model already accounts for SMPs, it might be not very difficult to do so. How-
ever, support for (virtual) shared memory programming models requires additional services
that still have to be defined.

3 Should we have a more powerful request language? At the moment, we only provide the
combination of events and actions, and synchronization points in the execution of action
lists. A lot of other constructs could be useful, e.g.:

— a more flexible mix of parallel and serial execution within one action list,

— definition of asynchronous services as an action, i.e. when an event occurs, define a
new event-action pair, where the definition may use output parameters of the first
event.

— parameter passing between actions.
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— conditions (filters) that control the execution of action lists.

However, each of these features adds significant complexity to the request parser, thereby
increasing the monitor’s intrusiveness. Thus, we have to find a suitable compromise.
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Chapter 13

Known Problems

In this chapter we summarize important known problems of the OMIS project, which mostly
concern the implementation of an OMIS compliant monitoring system. We would like to en-
courage any reader of this document to send us his/her comments, ideas, suggestions etc. Please
refer to known problems by indicating their number.

3 For efficiency reasons, some actions (e.g. updating a timer that measures the time a task
spends in a receive call) must be executed within the context of the observed task. If we
introduce a UNIX process switch here, the overhead would make the whole measurement
useless. But, some actions can not be executed in the task that produces an event, e.g.
most actions related to debugging that are based on the ptrace system call.

In summary, there are four possible combinations:

— An event can be detected either in an application task or in the monitor process.

— An action can be executed either in the application task or in the monitor process.

It is not fully clear yet how to support all combinations with a uniform and orthogonal
interface.

One solution would be to have additional flags for the registration of a new service. One
of these flags must specify whether the service is an event (asynchronous basic service) or
an action (synchronous or manipulation basic service). For an event, another flag could
indicate whether it is detected in the monitor process or in the application process. For
an action, the flags could indicate whether it has to be executed in the monitor process or
in the application process, or can be executed in both of them. The base monitor could
then automatically pass the event to another process, if necessary.

4 The thread_has started_lib_call and thread_has ended_lib_call services should be
generic, in order to reduce the dependency between the monitoring system and the parallel
programming library. We plan to have a description file containing ANSI-C prototypes of
all observable library calls. This file must also define which parameters are input and which
are output parameters. In addition, it has to specify, how the values of these parameters
are translated into the data types available in OMIS. This file could look like:

int pvm_recv(int tid, int msgtag) // C prototype

start { // parameters passed to actions of
integer tid; // start_lib_call
integer msgtag;
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end { // parameters passed to actions of
integer pvm_recv; // end_lib_call (result of function)

int pvm_...

This file could also contain routines for translation of parameters, or for providing ex-
tra information on implicit parameters of the library calls (e.g. the message buffer in
pvm_send).

We intend to have some kind of translator that automatically generates the wrapping
functions containing the instrumentation, and inserts them into the PVM library. In
addition, the translator could also generate information for the monitoring process that
could allow to monitor these library calls using traps, e.g. if an instrumented library is not
available when debugging an application.

It is not yet known, whether these goals can be achieved and how this generic scheme can
be implemented.

In order to make an OMIS compliant monitor compatible with other tools using the hoster
and tasker interfaces of PVM (e.g. resource managers), we should mirror these interfaces.
It is not yet known, how this can be achieved. A possible way for the hoster interface would
be to intercept the calls to pvm_reg _hoster. In this way, the monitor knows to which
tasks it must forward the information on new hosts or tasks. However, for the tasker
interface, no such solution is possible, since the tasker usually wants to be the parent
process of the newly created task, but the monitoring system also needs to be the parent.

As a result, tools requiring the use of the tasker interface can only be used at the same
time, if they both use OMIS.

Since OMIS specifies (optional) services for process migration, a monitoring system imple-
menting these services must also take care of properly handling requests when performing
a migration. There are at least two situations that have to be handled:

1. There are active conditional service requests for the process that is to be migrated.
The current specification of OMIS seems to imply that migration must not affect
these services. This means that the monitoring system must somehow transfer the
necessary monitoring activities and the associated management data to the process’
destination node. It is not yet clear how this scheme can be implemented.

2. The execution of an action list is requested (either by an unconditional request or by
the triggering of a conditional request), while a process named in that action list is
migrated. In this situation, it is not clear what should happen. Basically, there are
three possible solutions:

(a) Block request processing until migration has finished. This scheme will com-
pletely hide migration from the tools. However, it may result in poor performance
of the monitoring system and even may lead to deadlocks.

(b) Try to process the request on both the source and the destination node. In these
cases, a single service invoked for a single object may return two results (of which
usually one will be an error message). If the tool is aware of this behavior, this
may be a suitable solution.

(c) Return an error. This is probably the least attractive possibility.
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We will address these issues in the near future when we will explore the interaction of
monitoring and process migration.
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Glossary

Throughout the text of the specification we use the following technical terms.

Basic Service A service of an OMIS compliant monitoring system that is defined in Part 8
of this specification.

Conditional Service Request A service request of an OMIS compliant monitoring system
that is composed from an event service (called the event definition) and an list consisting of
information and/or manipulation services (called the action list). The action list will be executed
whenever an event matching the event definition is detected by the monitoring system. Thus,
an arbitrary number of service replies may result from a conditional service request.

Distributed Tool (DT) A distributed tool is spread over all nodes of our node set and
usually has no user interface.

Distributed tool extension (DTE) Part of a centralized interactive tool which is replicated
and runs on every node involved in direct cooperation with the monitor on that node. Used for
preprocessing of data or organization of special distributed functionalities.

Event-Action-Paradigm The monitoring system’s behavior is programed with a language
that follows the event-action-paradigm of our monitoring concept. Every request to the mon-
itoring system is composed of an event definition followed by the definition of one or several
actions. The semantics is that the actions are invoked whenever the event takes place. Follow-
ing the event-action-paradigm transfers the monitoring system into an autonomous component
that observes and manipulates programs.

Event Context Parameters Event context parameters are reply values of asynchronous
services such as e.g. the current time, the node where the event occured etc. They are not
meant for being delivered to the tool directly. Instead they are used as input parameters for
manipulation services and synchronous services.

Event Service A service that asks the monitoring system to detect a certain class of events
in the monitored system. Event services are used in conditional service requests to trigger the
execution of an action list whenever an event of the given class is detected.

Information Service A service that returns information on monitored objects or the moni-
toring system, without modifying their state.

Manipulation Service A service that manipulates objects in the application or the monitor-
ing system. These services usually only return an error status.
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Monitor We call a (single) monitor that part of the monitoring system which is located on a
single node of the parallel system (either a workstation or a node of a parallel machine). It may
be composed of processes and libraries linked to various other software modules. Interaction
between these parts may use all available mechanisms.

Monitor Extension (ME) An extension to a monitoring system offering new services for
the monitoring of system objects not yet considered in that monitoring system.

Monitoring System A monitoring system is the collection of all software parts in a dis-
tributed system which observe and modify the program execution, the underlying operating
system, and the hardware and communicate with one or more tools.

Monitor/monitor-communication Interaction between monitors on separate nodes of the
system.

Monitor/program-interface This is the interface of a monitor with the object it should
observe. For simplicity reasons this is called monitor/program-interface. However, the monitor
interacts not only with the program but with all of the hardware/software instances which get
the program running, i.e. the parallel programming library (e.g. PVM), the operating system,
and the hardware. Access to specialized runtime libraries like e.g. PFSLib for parallel file access
is controlled via monitor extensions.

Node Component of a multi-computer system that provides a single system image. Nodes
may consist of serveral processors, however, observation and manipulation of these individual
processors is usually not possible, since from an application’s they are indistinguishable from
each other.

OCM An OMIS Compliant Monitoring system for a specific target platform.

OMIS The On-line Monitoring Interface Specification.

Service The functions offered by an OMIS compliant monitoring system, i.e. the commands
that can be invoked at the tool/monitor-interface. Services are the building blocks from which

service requests are constructed.

Service Reply Data structure sent back from the monitoring systemrepresenting an answer
to a service request.

Service Request String sent to the monitoring system requesting the execution of a set of
services. See Conditional/Unconditional Service Request.

Target Architecture The system on which the monitoring system, the programs, and all pro-
gramming libraries that are necessary for the application programs are running. It is composed
of the hardware and the operating system.

Target Platform The system on which the monitoring system and the programs are running.

It is composed of the hardware, the operating system, and all programming libraries that are
necessary for the application programs.
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Tool/monitor-interface The tool/monitor-interface is responsible for interaction between
tools and monitors. This interface is the main subject of the on-line monitoring interface speci-
fication.

Unconditional Service Request A service request of an OMIS compliant monitoring system
that is composed only from information and/or manipulation services. The services will be
executed immediately and exactly once by the monitoring system. Thus, an unconditional
service request will result in exactly one reply being returned.
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History

Version 2.0: July 15, 1997

Current version. Published as a technical report at TUM [LWSB97]. Considerable changes were
performed.

Version 1.0: February 1, 1996

Published as a technical report at TUM [LWSBY6].

Pre-Version 0.9 beta: November 30, 1995

Second draft version which served as a dicussion basis for a birds-of-a-feather meeting at the
Supercomputing’95 conference in San Diego, California, USA, December 1995. The session was
moderated by Arndt Bode and Vaidy Sunderam.
Pre-Version 0.9 alpha: August 31, 1995

First draft version which served as a discussion basis for a birds-of-a-feather meeting at the
European PVM Users’ Group Meeting in Lyon, September 1995. The session was moderated
by Roland Wismiiller.

Kick-off meeting: July, 1995
Initiators: Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wismiiller
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Changes

Version 2.0 (July 15, 1997)

OMIS is no longer oriented towards PVM. Instead it tries to cover all common message
passing programming models without preferring one or the other. In future it will also be
extended to work with shared memory systems.

Several cooperations were started since OMIS 1.0 was released. We had intensive discus-
sions with other researchers who would like to employ an OMIS compliant monitoring
system for their own tool environments.

Design and implementation of an OMIS compliant monitoring system (OCM) were started
in 1996. The text gives some details.

The system model was clarified with respect to target architecture and target platforms.
Execution objects and node objects are defined more clearly (see Chapter 4).

The technical terms synchronous and asynchronous service had been replaced (see Chap-
ter 5).

The technical terms information service, manipulation service, event service, conditional
and unconditional request have been introduced (see Chapter 5).

The list of objects was enhanced by threads (see Chapter 5).
Examples in Chapter 5 were re-written according to the new syntax.

Some technical terms have been renamed to make their intended meaning more clear and
to avoid confusion (see Glossary).

An extensive specification of the semantics of service requests and replies has been added
to the document (see Chapter 7). This also includes the specification of error handling.

The procedural interface has been extended and revised. It is more flexible and should be
rather complete now (see Section 7.1).

Syntax and semantics of service requests have been modified in order to simplify the usage
of OMIS and to make it more general (see Section 7.2 to 7.2.4):

— The OMIS 2.0 interface offers location transparency, i.e. services no longer have to be
prefixed with a list of node numbers. Instead, services now get as a parameter a list
of objects they shall work on. The nodes a service will be executed on are uniquely
defined by this object list.

— Objects like nodes, processes etc. are no longer addressed by some concrete ID (e.g. a
PVM task ID), but by an abstract token generated by the monitoring system. In this
way, objects can be identified in both a globally unique and platform independent
way.
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— OMIS 2.0 now defines a hierarchy of application objects, that allows a conversion
between the different object types, e.g. expanding a node token into a list of tokens
for all processes on that node (see Section 7.2.2).

— Tokens are now also used to identify monitor objects, especially conditional service
requests. Thus, services no longer have to be preceded with a request ID. Instead, a
request token is returned upon successful definition of conditional request. Requests
containing actions modifying their own request (e.g. deleting it in order to implement
a temporary breakpoint) are still possible by using a special event context parameter
(see Section 7.2.4). Dependency cycles between conditional requests may also be
broken via user defined events.

— To support tools extracting large amounts of data from an application, a new data
type “binary string” has been added to avoid the overhead of converting to/from an
ASCII representation.

— The specification no longer requires an atomic multicast protocol to be used for the
distribution of requests touching multiple nodes. Instead, less restrictive requirements
on the ordering of service execution have been specified (see Section 7.2.3). To enforce
exclusive execution of a request, action lists can now be locked.

— The specification on ordering constraints on the individual actions in an action list
has been revised. There is no longer a parallel action lists where even actions on the
same node may be executed in parallel or in any order different from the specified
one. Instead, execution of services on the same node is now guaranteed to be sequen-
tial; parallelism can occur between nodes. The separator ’;’ can be used anywhere
within an action list to denote a barrier-like synchronization (see Section 7.2.3). The

separator ’,” has been removed.

— Event context parameters now are referenced by name rather than by number to
increase ease-of-use.

— The colon separating the event definition from the action list in a request now is even
required for unconditional requests. This simplifies parsing considerably.

e The format of service replies has been changed completely. Instead of a single linear string
that has to be parsed by the tool, a more structured representation is used now. A reply
consist of a sequence of sub-replies, one for each service contained in the request. Each of
these sub-replies is again a sequence of results, one for each object the service operated
on. Identical results may be merged into a single entry (see Section 7.3).

e The way how the monitoring system connects to an application program has been changed
in order to remove the previous dependency on the notion of a virtual machine (as in PVM).
In OMIS 2.0, a tool must explicitly attach to all the nodes and processes it wants to be
monitored. This scheme also implies that, if multiple tools connect to the same monitoring
system, each of these tools has its own specific view of the observed system. In the course
of this change, we also had to change the handling of creation and deletion of processes
and nodes (see Section 8.1.1, 8.1.2, and 8.1.3).

e There is a large couple of changes in the description of the specific monitoring services:

— The naming of services is more systematic now. A prefix indicates the type of object
the service is working on. In addition, names are chosen in a way that indicates the
kind of service (i.e. information service, manipulation service, event service).

— The set of process services of OMIS 1.0 has been carefully analyzed and split into
separate services for processes and threads. Thus, OMIS 2.0 can also be used for
multithreaded systems.
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— Some parameter lists have been extended (e.g. block length and stride for memory
accesses, length of stack backtrace, etc.).

— Specifications are now more accurate and complete. This mostly concerns the services
node_get_info, proc_get_info, and thread_get_info.

— Finally, the set of services has been split into a basic set that is independent of the
parallel programming library used (see Chapter 8), and a PVM extension providing
services to support PVM (see Chapter 9).

e The sections on implementation concepts have been removed from this document. When
our implementation of the OMIS compliant monitoring is finished, a design document will
be prepared as a separate report.

Version 1.0 (February 1, 1996)
First version of the OMIS document.
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