
OMIS | On-Line Monitoring Interface Speci�cation 1Version 2.0http://wwwbode.informatik.tu-muenchen.de/�omis/email: omis@informatik.tu-muenchen.deThomas Ludwig, Roland Wism�uller,Vaidy Sunderam�, Arndt BodeLehrstuhl f�ur Rechnertechnik und RechnerorganisationInstitut f�ur Informatik (LRR-TUM)Technische Universit�at M�unchenD-80290 M�unchen, Germanytel.: +49-89-2105-2042 or -8243 or -8240fax: +49-89-2105-8232email: fludwig,wismuell,bodeg@informatik.tu-muenchen.de�Emory UniversityMathematics & Computer ScienceAtlanta, Georgia 30322tel.: +1-404-727-5926, fax: +1-404-727-5611email: vss@mathcs.emory.eduJuly 15, 1997
1This work is partly funded by the German Science Foundation, Contract: SFB 342, TP A1

AbstractThe On-line Monitoring Interface Speci�cation (OMIS) aims at de�ning an openinterface for connecting on-line software development tools to parallel programs run-ning in a distributed environment. Interactive tools like debuggers and performanceanalyzers and automatic tools like load balancers are typical representatives of theconsidered class of tools.The current situation is characterized by the fact that tools either follow the o�-lineparadigm by only having access to trace data and not to the running program orelse they are on-line oriented but su�er from the following de�ciencies: they do notsupport interoperability in the sense that di�erent tools can be used simultaneously| not even tools from the same developer. Furthermore, no uniform environmentexists where the same tools can be used for parallel programs running on di�erenttarget architectures.A reason for this situation can be found in a lack of systematic development of moni-toring systems, i.e. systems which provide a tool with necessary runtime informationabout the application programs and make it possible to even manipulate the programrun.The goal of the OMIS project is to specify an interface which is appropriate for alarge set of di�erent tools. Having an agreed on on-line monitoring interface facili-tates the development of tools in the way that tool implementation and monitoringsystem implementation are now decoupled. Bringing n tools to m target platforms(consisting of hardware, operating system, programming libraries etc.) will be re-duced in complexity from n x m to n + m. In addition, it will eventually bepossible to simultaneously use tools of di�erent developers and to compose uniformtool environments.As a second step following this speci�cation the research group at LRR-TUM hasdesigned an OMIS compliant monitoring system (OCM) which is currently being im-plemented. It will be available for the PVM and MPI programming models runningon networks of workstations. A set of interactive and automatic tools will be madeavailable for OCM.The present document de�nes the goals of the OMIS project and lists necessaryrequirements for such a monitoring system. It is an improved and enhanced versionof OMIS 1.0 which was published in February 1996. We will describe the systemmodel OMIS is primarily intended for and give an outline of available services of theinterface. A special section will give details on how to extend OMIS, as this is anindispensable feature for future tool development.We would appreciate to get further feedback on the design of OMIS. If you wouldlike to see special issues incorporated into this speci�cation document you are in-vited to contact the authors (omis@informatik.tu-muenchen.de). If you would liketo participate in the implementation or would like to use OCM for your own tooldevelopment please feel free to ask us!

ContentsI The OMIS Project 101 Motivation 122 Project Goals 152.1 Background . 152.2 Project Goals . 162.3 History and Future of OMIS . 172.4 Integration of OMIS with other projects . 182.5 Project Policy . 183 Requirements 19II Structure of the Monitoring Interface 234 The System Model 255 A Basic Outline of Available Services 285.1 Classi�cation of Monitoring Services . 285.2 Introduction to Monitoring Services . 305.2.1 Unconditional Requests . 315.2.2 Conditional Requests . 325.2.3 Service Replies . 325.3 Examples . 335.3.1 Performance Analysis of PVM Programs 335.3.2 Debugging of MPI Programs . 345.4 Interface Procedures . 355.5 The Tools' Scope . 365.6 Remarks . 366 Extending OMIS 386.1 Types of Extensions . 386.2 The Method of Extending OMIS . 396.3 The Extension Interface . 40III Interface Speci�cation 417 General Description 437.1 Interface Procedures . 437.1.1 omis request . 435

7.1.2 omis reply free . 457.1.3 omis init . 457.1.4 omis �nalize . 467.1.5 omis fd . 477.1.6 omis handler . 477.2 Service Requests . 497.2.1 String Syntax . 497.2.2 Data Types . 497.2.3 Semantics of Requests . 527.2.4 Event Context Parameters . 547.3 Service Replies . 547.3.1 Reply Structure . 547.3.2 String Syntax . 577.3.3 Reply Examples . 587.4 Description Method for Services . 588 Speci�cation of the Basic Services 638.1 System Objects . 638.1.1 Nodes . 638.1.2 Processes . 698.1.3 Threads . 788.1.4 Messages . 898.2 Monitor Objects . 938.2.1 Conditional Service Requests . 938.2.2 User De�ned Events . 938.2.3 Miscellaneous . 959 Speci�cation of a PVM Extension 979.1 Data Types . 979.2 System Objects . 979.2.1 Virtual Machine . 979.2.2 Processes . 989.2.3 Threads . 989.2.4 Messages . 999.2.5 Groups . 100IV Concepts for an Implementation 10210 The Design of an OMIS Compliant Monitoring System 10411 Time Schedule of Implementation 105V Diverse 10712 Requests for Comments 10913 Known Problems 111Acknowledgements 1146

Glossary 115History 118Changes 119References 121

7

Preface to this Document VersionThis document version is an enhancement and improvement of OMIS 1.0 which was publishedin February 1996. Critical feedback from various persons and recognition of several problemshave lead to OMIS 2.0. There is no change of the basic principles of the interface speci�cation.However, services were renamed for better consistency and sometimes extensions were made tomeet requirements with speci�c tool scenarios.Part I describes motivation, project goals, and requirements of the project. Part II comprisesa description of the structure of the monitoring interface. It describes the underlying systemmodel, what services are, and how to extend OMIS. Part III gives a detailed description ofservices provided by the monitoring interface.We would like to encourage people to send us feedback on the \Requests for Comments" andalso maybe on \Known Problems". Any further ideas, comments, criticism etc. are also welcome(omis@informatik.tu-muenchen.de).Please see also chapter History for the document history.

8

9

Part IThe OMIS Project

10

11

Chapter 1MotivationParallel processing is a key technology of the 21th century both for commercial/industrial appli-cations and for research. Current needs of computational power can only be satis�ed by usingparallel and distributed architectures like multiprocessor and multicomputer systems. For al-ready several years also clusters and networks of workstations (COWs, NOWs) play an importantrole, as often only their aggregate power can meet user requirements. We can distinguish sys-tems by their architectural concepts like e.g. coupling of processing elements (busses, switchesetc.) or memory organization (distributed memory, shared memory). Various programmingparadigms can be used for implementing software for these systems, message passing and usageof shared memory segments being the most popular amongst them.In order to reduce the complexity of software development we need powerful tools throughoutthe life cycle of parallel and distributed software. Ideally, they should cover all issues fromspeci�cation to production runs of the programs. They are essential in order to achieve a highe�ciency with software engineering, where quality of code and time to market are the mostimportant factors.The present report refers to tools where the program is already operational, i.e. where the�rst prototype is running. Starting from this phase we usually apply tools that cooperate withthe running program by observing and modifying its behavior. Debuggers are examples for suchtools. The tools get their information by a so called monitoring system. It establishes a softwarelayer that connects the running program system (consisting of hardware, operating system, andapplication program processes) to the tools or tool environments and guarantees observationand manipulation capabilities.Due to its intermediate position, the monitoring system has two interfaces: one towards thetool, the other one towards the running program. Up to now, not much attention was put onthese interfaces, especially on the issue of proposing standards for them. There are some fewapproaches undertaken to �x at least the tool/monitoring system interface. The p2d2 debuggingconcept by Hood/Becker/Cheng [Hoo96] and the Universal Measurement Architecture (UMA)approach by the X/Open group [Gro95a, Gro95b] are examples for this.On most systems we can �nd simple tools for debugging and runtime management like e.g.processor allocation. More powerful tools or special tools like for example load balancing fa-cilities or support for fault tolerance mechanisms do rarely exist. In addition, only very fewtool environments support design, implementation, and maintenance of parallel software in aconsistent manner. Also, tools of di�erent vendors do not interoperate because they are basedon e.g. di�erent monitoring techniques or trace data formats or just use proprietary program-ming libraries or special adaptations of publicly available programming libraries. Usually, theprogrammer can use only one tool at a time or must even specially adapt his program beforeapplying another tool. Finally, there are no uniform tool environments in the sense that an12

application developer could use the same set of tools on di�erent target architectures. Thus,it is not astonishing that the results of the Second Pasadena Workshop on System Softwareand Tools for High Performance Computing Environments [SMP95] stress a considerable lackof sophisticated tools and tool environments.Let us now have a closer look at the types of tools that would be required. Tools thatsupport an investigation of the running parallel program can be divided into on-line and o�-line tools. O�-line tools exclusively support post-mortem inspection of the program behavior.The drawback of this approach is its lack of interactive program manipulation facilities and itsdelay between problem recognition and problem correction. On-line tools, however, supportinteractive program manipulation with an immediate feedback to the user, thus shortening thetime spent for debugging and performance analysis. In addition, special automatic tools like e.g.load balancer systems, must necessarily interact with the running program. An o�-line conceptis not feasible for them.Both tool approaches are based on di�erent classes of information which are collected bydi�erent mechanisms. O�-line tools typically o�er information that was collected during aprogram run (trace data) or after program completion (core dump). Trace data is gathered witha monitor component being introduced into the program, the runtime libraries, the operatingsystem, or even the hardware. The monitor's task is restricted to only collecting informationabout the system behavior and forwarding it to a �le for storage. In addition, as we do notknow in advance which information the user would like to evaluate, all possibly interesting datahave to be transferred to this �le. We prefer to call this mechanism \recording" instead of\monitoring". For long program runs or �ne grained information this is not a feasible approachas it requires to collect an enormous amount of data.With on-line tools the situation is more complex. In addition to the above mentioned data(trace data, core dump) we need information about the current program state. Moreover, asthe user evaluates this data immediately, additional tasks have to be added to the monitor'sresponsibility: �rst, it must be adaptable in the sense that new evaluations can be activatedwhile others will be stopped. (This, however, decreases dramatically the amount of data whichhas to be transferred to the tools.) Second, the monitor must be able to manipulate the program,e.g. to stop a task or to force it to single step mode. A software component which supplies thisclass of functionality will be called on-line monitor. The goal of this report is to lay the basisfor the design (and also the implementation) of on-line monitors for parallel environments withdistributed memory. We would like to stress here that a monitoring system for on-line toolsusually provides a superset of the functionality that is required by o�-line tools.Currently, several on-line tools are already available for the above mentioned environments,but most of them are proprietary solutions of parallel computer manufacturers. Public domainor copy-left tools are for the most part only available for programming libraries like e.g. PVMor implementations of MPI. Any activity in this �eld is hindered by the fact that for every newtool, for every new hardware, and for every new implementation of a programming library anew monitoring system has to be developed.Without a reasonable standard, new tools must also have new monitoring systems even iftheir functionality is not completely disjunct to already existing tools. Finally, the missingstandard makes the integral use of a set of tools impossible as they are currently always basedon di�erently implemented monitoring concepts which are incompatible to each other.Having an agreed on on-line monitoring interface, di�erent tool developer groups could designand implement new interactive and automatic tools whereas other groups could do implemen-tations of the monitors for various hardware/software environments. The amount of e�ort forhaving n tools on m systems (being composed of hardware, operating system, and runtimelibrary of the programming environment) would be reduced from n x m to n + m, thus bring-13

ing more tools onto more parallel and distributed systems which �nally would ease softwaredevelopment on these architectures. A further implication of having standardized monitoringsystems is that �nally we will reach the goal of having uniform environments, i.e. tools whichare identical for a variety of target architectures.If we compare di�erent tools we will �nd that they use a considerable part of the monitorinterface that is identical for all of the tools. For some tools like e.g. an interactive performanceanalyzer and an automatic load balancer system the functionality might even coincide. For thatreason it is desirable to design a monitoring system that can be adapted to di�erent underlyinghardware/software environments and can be expanded for connecting it to new tools.The goal of the OMIS1 project that will be presented in this report is to provide a viable basisfor better tools with respect to integration of the individual tools into a single environment. It isan approach to de�ne a powerful interface between tools for parallel and distributed computingand monitoring systems that control computers and applications. Eventually, OMIS will helpto build uni�ed tool environments, where the same set of tools runs on a big variety of targetplatforms. The goal of this report is to specify OMIS and to explain, how it can be applied toreach the described goals.The approach presented in this document version will in its current phase concentrate onsystems with distributed memory architecture and programs being implemented with messagepassing libraries. However, the concepts introduced are not contradictory to the shared mem-ory programming paradigm. Necessary enhancements to our approach for covering also theseenvironments will be included in the next document version.

1OMIS is an acronym for On-line Monitoring Interface Speci�cation.14

Chapter 2Project Goals2.1 BackgroundThe OMIS project being described in this paper has not been started as an isolated projectalthough there might be a real necessity for such an approach. It is embedded into researchand development activities at the Lehrstuhl f�ur Rechnertechnik und Rechnerorganisation atTechnische Universit�at M�unchen (LRR-TUM). Before going into details with OMIS let us givesome information on the background.During the last nine years the parallel processing group at LRR-TUM has been working inthe �eld of interactive and automatic on-line tools for parallel programming. Starting pointwas the Topsys project which was funded by a special research grant of the German ScienceFoundation. Topsys stands for TOols for Parallel SYStems; for detailed information pleaserefer to [Bod94, BBB+90, BB91, Lud93b].Within the framework of Topsys we developed a set of tools for Intel iPSC hypercubecomputers. A debugger [BW95], a performance analyzer [BHL90], and a program
ow visual-izer [BB92] were the main interactive components. In addition, we investigated tools for auto-matic load balancing [Lud93a]. The environment was based on our proprietary programmingmodel MMK (multiprocessor multitasking kernel) [BL90]. Tools were using on-line monitoringsystems which were realized with identical functionality in both, hardware and software [BLT90].Already in parallel to Topsys we designed and implemented tools within the frameworksof other projects and direct industry cooperations. Examples are an adaptation of Topsys toworkstation clusters (cooperation with SUN Microsystems), adaptions of the performance anal-ysis tool in the Esprit project PREPARE (an on-line version) and the Esprit project HAMLET(an o�-line version) as well as smaller cooperations with e.g. INTEL, Siemens, Genias, andothers. (For more details please refer to the annual report of LRR-TUM1.)For already several years a very important cooperation links LRR-TUM and PARSYTEC,a German vendor of parallel supercomputers and embedded systems. Within that project wedesigned and implemented versions of our debugging and performance analysis tools especiallyadapted for PARSYTEC parallel systems [Han94, OW95, WOKH96]. Both tools are successorsof former Topsys tools and became an integral part of the PARIX parallel programming systemfor PowerXplorer systems in 1994. In 1996 we adapted the debugging tool to the new CCsystems running EPX, a special version of PARIX for embedded systems. Again, the maine�ort concerned an appropriate port of the underlying monitoring system to the now used AIXoperating system.Within the framework of the Prepare project we developed a special monitoring system forHPF programs together with a dedicated performance analysis tool.1http://wwwbode.informatik.tu-muenchen.de/archiv/diverses/jber94/jb.ps.gz and .../jber95/jber.ps.gz15

Currently, the research groups of Karl/Hellwagner at LRR-TUM are developing an SCI-basednetworking platform that will exploit the distributed shared memory programming paradigm(DSM) [AHKL96, HKL97a, HKL97b]. As soon as the architecture is in a stable state, tooldevelopment will start based on the OMIS approach.In the last years a change in paradigm took place: distributed memory multiprocessorssystems are no longer the only vehicles of parallel processing. In addition, workstation clus-ters, SMPs, clusters of SMPs, and DSM systems enjoy an increasing popularity. The styleof programming did not change signi�cantly. However, the environment structure increasescomplexity: time sharing replaces or adds to space sharing, thus making it necessary to haveappropriate development tools. The main di�erence is the step from single user/single programenvironments to multiuser/multiprogram environments.As a reaction to that, the parallel processing group at LRR-TUM started two new projectsin 1995 namely the OMIS project and The Tool-set project (see [LWB+95]). Before goinginto details with the project goals of OMIS let us give a quick overview on the latter project.Its global goal is to design and implement an integrated environment of various tools to makecluster computing easier. The implementation will initially be based on PVM which representsa current de facto standard for parallel programming. The PVM library and runtime environ-ment is available for all major workstation brands as well as for all important multiprocessorand multicomputer systems. PVM supports the main aspects of distributed computing: workdistribution (by process management mechanisms) and cooperation (by message passing mecha-nisms). In the �rst project phase, The Tool-set will be made available for workstation clustersonly. Adaptions to genuine parallel architectures and the MPI programming model will followin the future. The Tool-set will comprise a set of interactive and automatic on-line tools suchas a debugger, a performance analyzer, a program
ow visualizer, a tool for deterministic pro-gram execution, a dynamic load balancer, a consistent check-pointing facility [Ste96a, Ste96b],a distributed �le system [Lam97] and a trace data comparison tool.2.2 Project GoalsThe central research topic of the OMIS project is to investigate on-line monitoring methodolo-gies for parallel systems and to achieve a deeper understanding of the issues involved in toolinterfaces for parallel and distributed computing. Especially the interaction of the monitor withall other components of the system (hardware, operating system, application programs) andits possible and necessary interconnections with them will be carefully studied. Furthermore,adaptability is a big concern. Although the project will lead to a realization for a concrete setof tools, programming libraries, and operating systems, we concentrate on the question of howto keep the interface speci�cation abstract enough to guarantee its applicability to various otherenvironments.The detailed list of goals comprises research oriented issues, design and implementationissues, and standardization issues. The project is driven by people who were already involvedin the design of Topsys thus making it possible to take pro�t of existing long year experiencesin that �eld.The major objective is to de�ne a tool/monitor-interface that meets three main requirements:First, it should be extensive and complete in the sense that the functionality of all common typesof tools (including of course The Tool-set) will be guaranteed. Second, as there will be newtool functionalities in the future or even completely new tools, the interface must be extendiblein a well de�ned manner. Also other research groups must be able to use the approach andadapt it to their needs. Third, the approach should exhibit a high adaptability to current andfuture programming paradigms. The spectrum reaches from message passing to shared memory,remote procedure call, and client/server programming concepts.16

From the discussion in section 2.1 we see that the monitoring system is a main issue forevery tool environment with on-line tools like e.g. The Tool-set and the CC series tools. Asalready mentioned earlier, it must o�er the following functionality:� It must be able to extract data describing the current state of the HW/SW-system (hard-ware, operating system, application programs) on request, on a regular basis, and on anevent driven basis.� It must be adaptable in the sense that the user can de�ne which data should be monitored(e.g. the occurrence of user-speci�ed conditions).� It must be able to detect events that are speci�ed by the user; this implies a high degreeof con�gurability.� It must be able to modify and in
uence the HW/SW-system (e.g. assign values to variables,stop and restart process execution)The central goal of the on-line monitoring interface speci�cation OMIS is to de�ne a standard-ized tool/monitor-interface and to provide means to e�ciently design and implement monitoringsystems that ful�ll the above mentioned requirements. With an OMIS compliant monitoringsystem being connected to a running HW/SW system, several tools from possibly di�erent de-velopers can concurrently watch and manipulate the execution of application programs. Toolinteroperability and integration of future tools into existing environments are the most impor-tant features OMIS is able to support. In addition, we will reach the goal of having uniformenvironments where identical tools exist for a variety of target architectures.2.3 History and Future of OMISA �rst version of OMIS was published in February 1996 in newsgroups and at workshops[LWSB96, LWOB97]. We received valuable feedback from other tool designer groups givingus details what type of interface is necessary to meet their special requirements. From thatwe produced the current re�nement of the document, i.e. OMIS 2.0 [LWSB97]. We would begrateful to also get feedback on the current project status.Starting from a sophisticated speci�cation document two further goals have to be achieved.First, we are currently implementing an OMIS compliant monitoring system (OCM) that servesas a basis for The Tool-set. The design phase started in January 1996 and was completedby end of 1996 (see [Gei96, Uem96, Zel96] for details). The �rst implementation phase willconcentrate on PVM as programming model and Solaris 2.5, HPUX, and LINUX as operatingsystems running on their corresponding target hardware. In the next step we will support MPIas further programming model and AIX and IRIX as additional operating systems. Thus, wewill eventually have an on-line monitor for PVM running on workstation clusters where toolsdeveloped at LRR-TUM and at other sites can be used concurrently with the same applicationprograms.If the approach proves to be powerful enough and proves to be a viable basis for making tooldesign and implementation easier and less time consuming, we will support OMIS to becomea new standard in the world of tools for parallel systems. The parallel processing group atLRR-TUM will coordinate extensions to OMIS being brought in by other research groups. Thusa reliable standard will exist, for which other groups can do both, develop tools and implementcompliant monitoring systems for speci�c parallel architectures.
17

2.4 Integration of OMIS with other projectsSince OMIS 1.0 was released it was considered to be integrated into the following projects:� The DOSMOS project (Distributed Objects Shared MemOry System) by Lionel Brunie,Laurent Lefevre, Olivier Reymann at Ecole Normale Sup�erieure of Lyon, France [BLR96].DOSMOS provides the user with a distributed shared memory environment that is basedon shared objects of the programming language C.� The P Beam project by Stefan Petri (formerly Technische Universit�at Braunschweig, nowLRR-TUM) and Bettina Schnor (now at Universit�at L�ubeck) [PSLS96].P Beam is a system to support load balancing and fault tolerance on a cluster of workstationsby migration and checkpoints of running processes. Thomas Gottschalk at TechnischeUniversit�at Braunschweig made a �rst integration approach [PSL96].� TheGrade project by Peter Kacsuk at KFKI MSZKI,Research Institute of the HungarianAcademy of Sciences, Budapest, Hungary [KCD+97, KDF96]2.Grade is an integrated environment for development and debugging of parallel programs.It is based on the graphical design language Grapnel.� The Mad project by Jens Volkert, Dieter Kranzlm�uller, and Sigfried Grabner [KGV96]Mad is an evironment for debugging message passing programs that comprises severalsingle tools for di�erent aspects of this issue.Discussions with participants of these projects and many other researchers were valuablecontributions to OMIS 2.0. We would like to thank all of those people for their constant interestin our work.2.5 Project PolicyThe project policy will be to release all software products being developed by LRR-TUM in theframework of OMIS and The Tool-set under GNU license conditions to provide a maximumpro�t to the user community.We would like to strongly encourage other researchers working in the �eld of parallel pro-gramming environments and tools to participate in this project by discussing with us theirspecial needs or wishes and making critical comments to this proposal.

2Funded by BMBF within the WTZ project framework under number UNG-053-96.18

Chapter 3RequirementsA general requirement is derived from the goals of the project itself. The monitoring interfacemust be powerful enough to give on-line and o�-line tools an e�cient access to the programmingsystem. The sum of its functions and its conception will have to allow the integrated appli-cation of di�erent tools at the same time. Also it must guarantee future adaptability to moresophisticated tools (e.g. problem domain oriented tools) and programming paradigms.In detail, the design of the monitoring interface imposes several requirements which thespeci�cation will have to meet. This chapter will summarize the most important of them.Requirements can be divided into the following categories:� functional requirements� conceptional requirements� e�ciency requirements.Their scope is limited to the tool/monitor-interface as this is what we would like to spec-ify. Further requirements will arise for our implementation of an OMIS compliant monitoringsystem (OCM) dedicated to a given system architecture. However, they will not in
uence thetool/monitor-interface but the monitoring system's internal structure and the monitor/program-interface.Functional RequirementsFunctional requirements can be summarized as follows: the monitoring interface should beversatile enough to allow all possible tools to observe and manipulate all objects of the runningprogram (e.g. processes, messages, variables etc.). Obviously, we can not state requirementsfor tools which might be of interest in the future. Therefore, the requirement list primarilyaddresses well known tool types like debuggers, performance analyzers, program
ow visualizers,checkpointing facilities, and load balancing components.In order to achieve optimal versatility the monitoring system not only has to o�er a �xedfunctionality at its interface level. Instead it has to o�er a language by which services can becombined to powerful service requests. By following the event/action paradigm of the monitoringsystem the user may compose complex requests by specifying a certain event to be observed anda list of actions to be performed when the event takes place. The monitoring system acts as anintelligent controller and manipulator that gets its instructions via the tool/monitor-interface.The programming language of the monitoring system is de�ned by the form of the requeststhat are sent from the tools. Similar to ordinary languages commands are expressed in form ofstrings. They may be composed of several substrings with individual meanings. This feature19

supports new and more abstract functions to be realized in a tool. Depending on the applicationtype a tool might want to measure performance values related to semantical constructs likee.g. iterations of a numerical algorithm or transactions in a database system. Service requestcomposition will guarantee the usability of the monitoring interface for future tools.Concerning objects types that we might like to monitor we can state the following require-ments: As implementations of monitoring systems will in the �rst phase be realized for dis-tributed memory environments we will de�nitely be interested in execution objects and commu-nication objects. Functions of the interface should give access to these object types on severallevels of abstraction: e.g. with execution objects we are interested in processes and threads andwould like to know more about procedures and individual statements of their code. With com-munication objects such as messages we would like to know from which primitive data types theyare composed. Furthermore, interactive tools require these objects not only to be observablebut also need manipulation functions, e.g. for stopping of process execution.In addition to this we also need access to hardware objects of the system. Inquiry functionsmight want to have information on the amount of available or used main memory or on somearchitecture characteristics like e.g. technology of installed network devices. These are observedobjects which can not be manipulated by the monitor.Finally, the existence of the monitoring system also creates new objects, i.e. monitor objects,which a tool must be able to interact with. Especially routines for monitor-monitor interactionor �lter mechanisms must be accessible.The monitoring interface is now divided into two logically separate parts, one providingthe user with basic services, the other one with extensions necessary for di�erent programmingenvironments (e.g. PVM, MPI). New objects will appear with extensions of the tool/monitor-interface. These user de�ned objects have to be speci�ed separately and will not be integratedinto the main part of OMIS. Later chapters will however show how to introduce these extensions.Any of the tools will �nally interact with all of these objects in one or the other way. Theinterface's task is just to provide an appropriate means for this interaction. Let us give someexamples of the type of functionality that is required by individual tools, using The Tool-setas an example:� The Debugger1Show process status informationSet breakpoints on reception of a message� The Performance AnalyzerMeasure node idle time and process CPU utilizationInclude process into measurement if certain criteria are met� The VisualizerShow dynamically created objects� The Load BalancerEvaluate system's load distribution and trigger process migrationThese examples should make it evident that the design of a versatile functionality accessiblevia the tool/monitor-interface is of crucial importance.1For a brief description of what the functionality of the following four Tool-set-components will be, pleaserefer to [LWB+95]
20

Conceptional RequirementsAs we neither know the complete functionality of the tools in advance nor the types of toolsthemselves we have to require that the monitoring interface o�ers enough extendibility for futuredevelopments. In addition, new programming paradigms need to be covered that di�er fromthe message passing paradigm we are currently concentrating on. Shared memory programmingwill be the next step but also object oriented programming and client/server programming usinginterface de�nition languages (IDLs) might be of interest. This conceptional requirement will beful�lled with our speci�cation by designing means of how to enhance the tool/monitor-interface.The speci�cation provides means to plug in new components that handle these future concepts.A second conceptional requirement is imposed by the variety of tools that will use thisinterface in a environment of parallel and distributed machines. We distinguish tools with andwithout a graphical user interface. The �rst group will usually have a single point of control, e.g.a tool environment on a workstation. From that single point of control the tool will communicatewith the monitoring system, i.e. the individual monitors on the nodes. On the other hand we willhave tools without a user interface which reside in the system in a centralized or decentralizedversion. Decentralized tools are for example load balancer systems. The monitoring systemmust be
exible enough to serve all these di�erent types together with their di�erent spatialdistribution of control.Furthermore, di�erent types of architectures have to be handled as well. Especially SMPworkstations and clusters of SMP workstations will be considered. With these architecturesOMIS based tools work at the same level of resolution as the operating system does: if theassignment of a thread to an individual processor is not controllable by the program it willneither be controllable by a tool. In this case the additional complexity is hidden and the SMPworkstation acts just like a single processor node.E�ciency RequirementsFinally, we have e�ciency requirements. Although it might seem to be an improper approachto discuss interface speci�cations in terms of the e�ciency of their potential implementationswe will see that there are good reasons to look at this issue here. Interaction between a monitorand a tool must be handled by a kind of communication mechanism (e.g. message passing orRPCs). In order to keep the overhead minimal it is necessary to have powerful basic servicesand a possibility of composing service requests into a single request.In addition to being a functional requirement, composite service requests are necessary fore�ciency reasons. They combine a sequence of requests of available basic services into a singlerequest. E.g. to get an overview over the system utilization, the tool could ask each monitor forthe idle time percentage. Instead, it will issue a combined request to one monitor that thereuponsends requests to all others and returns a collective response to the calling tool. These typesof composite services are of special interest in situations where the requested information is theresult of a computation based on information gathered from di�erent computing nodes. In thiscase the monitor itself can do some pre-calculation in order to reduce communication overhead.The syntax of requests is kept simple to keep the overhead necessary for parsing low. Complexcommands that express e.g. loops or alternatives can be realized in the extension part of theinterface speci�cation.In order to avoid delays due to communication, the monitoring system should also be able tohandle certain kinds of events occuring in the application program without interacting with thetool. If for example a performance analysis system wants to measure the mean time betweensending a message and receiving the reply, it would be prohibitively expensive to inform the toolon each event occurrence. Instead, the monitoring system should be able to start and stop atimer autonomously. Service request composition can also support this situation.21

22

Part IIStructure of the MonitoringInterface

23

24

Chapter 4The System ModelThis chapter describes the model of the target systems OMIS is primarily designed for and alsothe embedding of an OMIS compliant monitoring system into such a system. In our example,the environment is composed of a parallel programming library and an additional specializedruntime library (e.g. for handling parallel I/O operations). Programs consist of a collection ofexecution objects (processes, threads) which usually spawn over a set of nodes. A node from ourpoint of view is a computing device that o�ers a single system image to the user. It could e.g.be a single processor workstation, an SMP workstation, or a cluster of workstations providinga single system inage. Observations and manipulations below the level of the system image areonly possible if this is supported by the operating system1.Thus, this paper does not only present an interface speci�cation, but also speci�es the kindof environment that can be handled by the interface. As the speci�cation exhibits a high degreeof
exibility, we expect to be able to integrate it also into other architectural environments, eveninto those that di�er considerably from architectures found with the message passing paradigm.A future version of OMIS will cover shared memory environments; other architectures will becarefully considered.Let us now look at the components participating in such an environment. Figure 4.1 showsan abstract view in which the individual nodes of the parallel system are not yet visible. Theapplication programs consist of a certain number of execution objects that cooperate by meansof communication objects provided by the parallel programming library or the operating system(e.g. message passing between nodes, shared memory on one node). The management of theexecution objects and other organizational work is performed by special modules of the pro-gramming environment (e.g. daemons) or directly by the operating system. Technically, thismeans that there might be libraries and daemons with which the program cooperate. Thecomplete complex runs on the target architecture, i.e. on top of the operating system and thehardware. The complex consisting of target architecture, programming libraries, and daemonsused is called target platform.As soon as we add tools to this ensemble (either interactive or automatic tools) we needadditional layers. The part which joins the tools to the running program is the monitoringsystem. Its role is to establish the tool/program-interaction. Consequently, this layer is locatedbetween the application program and the tool.Interactive tools usually reside on a host machine which is connected with the target sys-tem2. With automatic tools like e.g. load balancers, the situation is di�erent. They exist in adistributed manner on the target nodes only. We will therefore call them distributed tools. Two1For example, inquiry services might be able to determine the number of CPUs in an SMP machine althoughnone of them can be accessed directly to measure its load.2Note, that with many modern parallel computers and with workstation clusters the host may actually be partof the target machine. 25

$Id: sys-model.fig,v 1.4 1997/01/26 13:57:58 ludwig Exp $

tool/monitor-interface

monitor/program-interface

hardware

operating system

tool A
tool B

tool Cdistributed tool

on-line monitoring interface

distributed tool
extension

(DTE)

monitor
extension

(ME)

parallel
programming

library

specialized
runtime
library

monitoring system

application program

Figure 4.1: System model: embedding an OMIS compliant monitoring system into an environ-ment with tools and a parallel programming libraryfurther modules are of interest3. The distributed tool extension (DTE) is a set of user suppliedfunctions to perform certain manipulations outside of the centralized tool (e.g. calculate certainperformance metrics, write traces to local disks, etc.). Finally, we might have monitor extensions(ME). These are extensions of the monitoring system and its speci�cation which are dedicatedto a new software component like e.g. a parallel �le system. It highly depends on the concretetool environment which of these three additional components are available in a given system.However, if there is an interactive tool then there will also be in almost any case a distributedtool extension because many activities can be handled more e�ciently directly on the nodes(e.g. preprocessing of information data).How do the individual layers of �gure 4.1 inter-operate? The monitoring system has twointerfaces: one for interaction with the di�erent tools (tool/monitor-interface), a second one forinteraction with the program and all underlying layers which keep the program running. Forsimplicity reasons we will call the latter the monitor/program-interface, although it comprisesinterface parts to di�erent modules of the system (program code, libraries, operating system).Activities at this level are restricted to low-level inspection and manipulation requests. Obviouslythe monitoring system will have to handle di�erent information types depending on the low-levelmodule with which it inter-acts. Details will be discussed in later chapters.The tool/monitor-interface is what the developer of a tool �nally will use. OMIS speci�essemantics only for the on-line monitoring interface and provides means to extend this interface.We end up with a de�nition of the tool/monitor-interface where the basic services provided by3Please refer also to chapter 6 for more details on these additional components.26

the on-line monitoring interface are de�ned with their syntax and semantics whereas all of theextensions are only de�ned with respect to their syntactical structure.The interaction between tools and the monitoring system is handled via asynchronous pro-cedure calls. The tool invokes a service request and either waits for results coming back fromthe monitoring system or speci�es a call-back to be invoked when results are available.The interaction between the monitoring system and the monitor extensions and distributedtool extensions takes place via function calls and activation of call-back functions.Let us �nally have a look at requirements that must be met by the target architecture inorder to successfully support the OMIS approach. First of all, the operating system must supportmulti tasking. This is obligatory for the various activities that are performed by the monitoringsystem while the program is running4. The target architecture also must provide means forthe manipulation of execution objects (processes and threads)5. Otherwise only observationwould be feasible and the approach would lose its most important part. Finally, we need meansfor communication between the modules belonging to monitoring system, the tools, and theunderlying target platform.

4It would be possible to link all components together and run tools and program on e.g. a mono tasking parallelcomputer environment. However, there is not much sense in setting up an approach like OMIS for such a limitedarchitecture.5With modern operating systems this is achieved via the proc-�le-system or the ptrace-interface.27

Chapter 5A Basic Outline of Available ServicesSince a central idea of OMIS is to provide an interface that allows complex requests to be built bycombining primitive ones, the tool/monitor-interface is based on a language in order to achievethe needed
exibility. The tool/monitor-interface basically consists of a single procedure thatcan be invoked by both centralized tools and components of distributed tools. In addition, a fewother procedures are available for maintenance purposes (see Section 7.1). The main procedurereceives a string as an input parameter, interprets this string, and returns a result that isrepresented as a data structure. The individual monitoring functions available by invoking thisprocedure are called services; the string that is passed to the procedure (requesting the activationof a service) is called service request, the result is called service reply.In order to meet the e�ciency requirements stated in Chapter 3, the structure of a servicerequest follows the event-action-paradigm, allowing the monitoring system to quickly react onstate changes in the monitored system without having to communicate with the tool. A servicerequest can consist of an event de�nition x associated with an action list y, meaning \wheneveran event matching the event de�nition x occurs invoke the actions in y, passing some relevantinformation on the event occurrence to these actions". If no event de�nition is present, theservice request is unconditional and all actions are invoked immediately and exactly once.The interface procedure accepts requests for all nodes the monitoring system is responsiblefor; therefore, a distributed tool component can request services not only for objects on its localnode, but also for any object. Likewise, the actions associated with an event can be requestsfor services on objects located on a node di�erent from the one where the event occurs. Themonitoring system automatically takes care of forwarding the requests to the proper nodes. Inaddition, we allow services that are global, i.e. that involve more than one node.The next section introduces the di�erent classes of services available at the tool/monitor-interface; Section 5.2 provides a basic outline of the mechanisms and the syntax used in thisinterface. Section 5.3 presents two examples giving an impression of the interface's expres-siveness. A detailed description of the interface procedures is contained in Section 5.4. Insection 5.5 we discuss the the scope of tools, i.e the set of objects that they control. Section 5.6�nally presents some additional remarks on the tool/monitor-interface.5.1 Classi�cation of Monitoring ServicesThe services that are o�ered by the tool/monitor-interface can be classi�ed according to threedi�erent properties:� First, we can classify services according to their input/output behavior:
28

1. Information services. These services are exclusively meant for observation of theprogram and the monitoring system. The result of their invocation will contain in-formation about the current state of the monitored system (including the monitoringsystem itself). Examples are \return the value of a variable x of process y" or \returnthe CPU time of a process".2. Manipulation services. These services manipulate the objects that are listed in theparameters of the service call. Thus, they change the internal state of the programor the monitoring system or both. Examples are \stop a process", \set a variable ofa process to a given value" or \raise a user1 de�ned event".3. Event services. In contrast to the two classes already introduced, event services donot have a direct reply. Instead they are used to trigger lists of manipulation servicesand information services which are called action lists. An event service de�nes a classof events to be observed. We call an 'event' the situation where a speci�c change inthe state of an observed object occurs. Whenever an event belonging to that classoccurs it triggers the speci�ed action list. The replies to the latter are collected andsent back to the tool. In fact there are also reply values of an event service. They arecalled event context parameters and their values are handed over to the manipulationservices and information services to be invoked. By that the latter are parameterizedand may react on events in di�erent manners depending on the actual values of theevent context parameters.We do not know in advance how many times an event of the given class will occurnor when this might happen. Thus, the tool does not know how many replies mightarrive and when.Obviously, an event service cannot be used as a complete request as its result canonly be observed in the form of results of action lists triggered by this event.The description of services in Chapter 8 and Chapter 9 is structured according to theseclasses.The interface speci�cation de�nes the way requests can be composed by using above men-tioned categories of services. Details on the syntactical structure of requests will be givenin the next section.Logically we have to distinguish two situations: requests that are unconditional and yieldresults immediately and conditional requests where something has to be done wheneveran event of a certain class occurs. Unconditional requests are composed by a well-de�nedset of manipulation services and information services of any size. Rules for the sequenceof invocation of the individual services will be introduced later. With conditional requestswe simply add one event service to an unconditional request. It speci�es the conditionunder which the request will be triggered.� We already mentioned that the versatility of OMIS lies in the mechanism of extending thespeci�cation. This divides services into two categories.Basic services are independent of the concrete programming libraries employed for theparallel program. They establish the core of OMIS and thus of every OMIS compliantimplementation of a monitoring system. The set of basic services in OMIS 2.0 is de�nedin Chapter 8.Extension services do not belong to the OMIS core. Instead we need an extension for everyprogramming library we want to use with our programs. Chapter 9 de�nes an extension1The user here is a tool, not the application programmer.29

for PVM 3.3. If a tool developer wants to implement tools for e.g. the parallel �le systemPIOUS he will have to provide an extension for this purpose. However, one implementationof these additional services will be su�cient for others to also develop tools for PIOUS.The OMIS research group will take over the task to coordinate the design and implemen-tation of extensions being made by third parties.� Services can be classi�ed according to the type of objects they refer to. On the �rstlevel, we distinguish between system objects and monitor objects. System objects arethose objects being part of the monitored application or of the hardware the applicationis executed on. Currently, four di�erent types are supported by the basic services:1. processes,2. threads,3. messages and message queues, and4. nodes of the parallel or distributed computing system.This selection re
ects of course our decision to concentrate on the message passing para-digm in the current version of the speci�cation. Although not yet included here we areworking towards extending OMIS for the shared memory programming paradigm. Theintegration will add new objects to the above list, e.g. memory regions.Additional objects for speci�c message passing libraries to be monitored appear with OMISextensions. Chapter 6 will discuss that in detail.Monitor objects are those objects that are introduced by the monitoring system itself. Forexample, each conditional service request is a monitor object, since it has to be stored inthe monitoring system and can be manipulated using other services. Other monitor objectsare user-de�ned events or timers and counters, although the latter are not included in thebasic speci�cation.Since this classi�cation of the monitored system into a hierarchy of objects is a natural wayof structuring the monitoring services, we are thinking towards the future use of object orientedparadigms for the tool/monitor-interface instead of the current one, that is object based butdoes not apply inheritance. By exploiting inheritance, object oriented techniques could providea way to de�ne the interface at an abstract level independent of the supported programmingparadigms and concrete libraries. Services speci�c to a certain programming library could thenbe realized by an extension to the generic monitor that implements object classes (e.g. PVMtask, MPI processes) derived from the interface's base classes (e.g. abstract process). See item 1in our requests for comments (Chapter 12).5.2 Introduction to Monitoring ServicesThis section is intended to give an impression of how the syntax of service requests and servicereplies looks like and how unconditional and conditional requests are composed. For a completeformal description of the request and reply syntax and semantics, please refer to Chapter 7. Thediscussion here will not cover all relevant aspects. Instead it will try to introduce the conceptsthat will be used.
30

5.2.1 Unconditional RequestsAn unconditional request, also called action list, is syntactically composed of a list of informationservices and manipulation services. A simpli�ed de�nition looks as follows2:action list ::= action j action [';'] action listaction ::= service name '(' parameters ')'The individual actions of an action list are concatenated either directly or by means ofa semicolon. This distinction gets important as soon as individual actions refer to di�erentnodes of the target system. In this case it is possible to execute actions in parallel. A directconcatenation by de�nition expresses the possibility for parallel execution whereas a semicolonforces the monitors on the individual nodes to globally synchronize before they continue withthe next action. For example an action list \a b ; c" expresses that actions a and b can beexecuted in parallel (if possible) but both of them have to be completed before action c can beinvoked.The service name identi�es the requested service. It may either belong to the class of basicservices or of extension services. As extensions are optional it is the task of the monitoringsystem to check for available extension service identi�ers and provide the tools with the necessaryinformation.Of course we also need parameters for the individual actions of our list. Parameters arede�ned as follows:parameters ::= parameter list j �parameter list ::= parameter j parameter ',' parameter listparameter ::= integer j
oating j string j token j binaryj list j ev ctx paramev ctx param ::= '$' identi�ertoken ::= identi�erlist ::= '[' parameters ']'Each parameter is either of the standard data type integer,
oating, string, or binaryor of the special data type token, list, or ev ctx param. The meaning of the standard datatypes should be intuitively clear. Detail will be given in section 7.2.2. The special data typetoken is used for addressing in a platform independent way objects of any type, i.e. systemobjects and monitor objects. Finally, the data type list allows to compose lists of all other datatypes including the list type itself.Where the service name speci�es the action to be invoked it is the role of the token todetermine the objects that are to be used. In the most simple case the token is directly anidenti�er for an object the service works on. E.g. the token might specify a process where theservice is \stop a process". More complex situations can be mastered by using token lists. Forthe same service a token list might specify a set of processes to be stopped.Tokens also o�er an expansion mechanism. A node token used with the above service means:stop all processes on the speci�ed node. The node token is expanded to a list of process tokensbefore the service is activated. The other direction is called localization. If we use a thread tokenwith the same service, the system replaces the token with the corresponding process token, i.e.with the token of the process that runs the thread.2A special syntactical construct to lock the monitoring system during the execution of an action list is left outhere for simplicity. 31

Expansion and localization can also be mixed in a token list: a complex list might comprisenode tokens and thread tokens. It is translated into the list of tokens of the correspondingprocess before activation of the service.A special semantics is de�ned for empty token lists. They are expanded to a non-empty listof tokens refering to all currently monitored objects of the type the service works on3.Let us assume that a service needs to address all currently monitored processes in the system.The process token input parameter of the service gets an empty token list when the request issent from the tool to the monitoring system. The empty token list is expanded at the momentwhere the service is to be performed. By means of this just in time expansion we are able tohandle dynamically changing sets of objects (nodes, processes, etc.). A more detailed descriptionof the token data type can be found in section 7.2.2.Finally, the event context parameter ev ctx param is used to transfer information fromevent services to information services and manipulation services. A parameter of this typedescribes an output parameter of an event service (e.g. $node, $time etc.). A �xed set of eventcontext parameters is provided by OMIS itself. Extensions are free to introduce additionalparameters.5.2.2 Conditional RequestsWe will now discuss the conditional request that adds some further rules to our request syntax.We already mentioned that a conditonal request is composed of an event service de�nition andan action list4. We de�ne:request ::= [event de�nition] ':' action listevent de�nition ::= service name '(' parameters ')'With conditional requests the protocol between tools and monitoring system is more com-plicated. The tool gets a reply whenever an event matching the speci�cation occurs and theaction list was performed. However, when the tool gets the replies, how can it identify them? Afurther question is: how does the tool know whether or not the event detection was successfullyinstalled for this request? An answer that solves these two problems is to send a �rst reply tothe tool when the request is analyzed. This reply carries information on the instantiation of thecorresponding event detection as well as a token that identi�es the request. When the event�nally is triggered the corresponding request is identi�ed by the callback function invoked andits actual result parameters.Conditional requests can be enabled and disabled. By de�nition, a conditional request isinitially disabled, i.e. there must be an explicit request for activation.For a useful semantics of the tools it is crucial that any object under investigation does notchange its state after an event has been detected and before all actions were performed (unless| of course | actions change that state by themselves). This is ensured by de�ning that theexecution of an object that triggered an event has to be suspended immediately after eventrecognition. It is resumed after the completion of all actions in the list.A detailed description of issues relevant to conditional requests is given in section 7.2.3.5.2.3 Service RepliesService replies are very complex by nature. In case of a successfull completion of an action listthey carry result values of all the individual actions of the list being performed on the speci�ed3There are some more details concerning the �nal list of tokens that will only be introduced in later chapters.4Thus, a request from a tool to the monitoring system is conditional or unconditional depending on the factwhether or not an event service is speci�ed. 32

objects. E.g. one service of the action list might collect information of all processes on all nodes.The result of this action is a list of object tokens together with the result values of the speci�cservice issued. Another service of the list might manipulate all processes on all nodes. Asmanipulations might be successful or erroneous the service reply must also be able to transferthis information back to the tool.Replies of the individual services of the action list are put together to one reply for the com-plete list which �nally is sent back to the tool. Obviously, the reply is hierarchically structuredas many action and objects will be referenced.With conditonal requests we �nd two additional situations that have to be covered. The �rstone concerns the requests by themselves: de�nition, enabling, disabling, and deletion result in aspecial reply sending back to the tool information on the success of these functions. The secondone refers to the occurence of an event that matches an event de�nition. The reply must beassigned to the correct request issued before. This is achieved via the callback function triggeredand/or the parameters passed via this call.Details on the reply data structure and its individual components are discussed in depth insection 7.3.5.3 ExamplesIn the following two subsections we will present short examples that will show how the moni-toring interface supports di�erent tools, namely a performance analysis system and a debugger.Although the basic services and extension services will not be de�ned until later in this docu-ment, their semantics should be intuitively clear in the examples. The primary goal is to give animpression of the interface's structure and expressiveness, rather than of its concrete services.5.3.1 Performance Analysis of PVM ProgramsAssume that a performance analysis tool wants to measure the time spent by task 4178 in thepvm send call. In addition, the tool may want to know the total amount of data sent by thistask, and it may want to store a trace of all barrier events. Then it may send the followingservice requests to the monitoring system:No. request string result token1 thread has started lib call([p 4178],"pvm send") :timer start([pa t 1])counter add([pa c 2],$par5) c 12 thread has ended lib call([p 4178],"pvm send") :timer stop([pa t 1]) c 23 thread has started lib call([],"pvm barrier") :print(["pvm barrier entered",$node,$proc,$time]) c 34 thread has ended lib call([],"pvm barrier") :print(["pvm barrier left",$node,$proc,$time]) c 45 : csr enable([c 1,c 2,c 3,c 4])The tokens c 1...c 4 are identi�ers for the conditional service requests. They are delivered bythe monitoring system as a direct reply to the request. The �fth request, which is unconditional,does not yield such a token.The event services used in this example are of special importance as they bridge the gapbetween the universal monitoring interface and an interface adapted for the PVM programmingmodel. These services allow to monitor library calls of any programming library, in our example33

of the PVM package5. The service thread has started lib call is matched by any event wherean appropriate library call is started. Accordingly, thread has ended lib call is matched byany completion of such a call.Each event service is de�ned for objects on a certain level of abstraction (i.e. processes,messages etc.). Tokens are automatically adapted to the appropriate level of abstraction bytwo mechanisms called expansion and localization. For details on token hierarchies please seesection 7.2.2.With the conditional service request c 1 we wait for the start of pvm send calls. In this case,we activate timer 1 for time measurement and increment counter 2 by the number of bytes tobe transferred with this call (value of parameter $par5). When the send call completes, we stoptimer 1.Whenever a PVM barrier is entered or left, conditional services 3 and 4 transfer relevantinformation directly to the tool, which may for example write them to a trace �le.The example also shows the usage of the event context parameters: the variables $par5,$node, $thread, and $time will get concrete values before the actions they belong to are started.These values are output values of the event services triggered.While the events used in the example are basic services de�ned by this document, all theactions (with the exception of csr enable and print) come from a distributed tool extension.Thus the performance analyzer can use its own semantics for integrators and counters.5.3.2 Debugging of MPI ProgramsThe following example shows how the basic service requests de�ned by this document can beused during debugging. Assume that the debugger wants to be noti�ed whenever process p 1123starts sending a message, or whenever process p 1234 reaches instruction address 0xfe08, andthat it wants to know the process identi�er, the procedure stack, and the contents of all generalpurpose registers. This can be achieved by using a user de�ned event:No request string result token1 : user event create() e 12 thread has started lib call([p 1123],"MPI Send") :user event raise([e 1],[],0) c 13 thread reached addr([p 1234],0xfe08) :user event raise([e 1],[],0) c 24 user event has been raised([e 1]) :print([$proc])thread get backtrace([$proc],0)thread read int regs([$proc],0,32) c 35 : csr enable([c 3]) ; csr enable([c 1,c 2])At �rst we de�ne a new user event which subsequently can be used for both triggering asynthetic event and detecting the very same synthetic event. The de�nition yields a token forthis user de�ned event by which it can be referenced in the next requests.The second request raises this event whenever an MPI send operation is performed. Similarly,request number three de�nes the same event to be raised on the condition of reaching a certainaddress with a thread object. Both requests act as a kind of logical OR operator for event:whenever sending is performed or a certain address is reached a user de�ned event will beraised.5Note: This can not be achieved without modi�cation of the PVM library. However, we expect to have thismodi�cations handled automatically either at link-time or during run-time.34

Request 4 de�nes what has to be done in this case: we want to get the process identi�er ofthe triggering object and its node identi�er, get its procedure stack, and read its register values.Up to now all conditional requests are disabled. At �rst we enable the handling of our userde�ned event by activating c 3. The possible invokation of this event is activated by enablingc 1 und c 2. Now the complete request sequence is active and triggers identical actions bydi�erent events.After the actions have been executed, the process continues execution. To stop the processwith the occurrence of the event, simply add thread stop($proc) to the action list of request 4.5.4 Interface ProceduresWe will now give a �rst short introduction into the concepts of interface procedures that areused between the tools and the monitoring system. An exact description of this topic will followin section 7.1.Essentially, OMIS de�nes one function to handle the cooperation between tools and the mon-itoring system. This function is called omis request and has the following ANSI-C prototypewhen provided for a C language binding:Omis_reply omis_request(char * request,void (* callback)(Omis_reply reply, void * param),void * param,Omis_flags flags);The function is used to issue both unconditonal and conditional requests. Its behavior interms of blocking or non-blocking is de�ned by its parameter values and may be tuned to �tvarious situations.The function de�nition involves four basic concepts:1. The request sent to the monitoring system is always represented by a character string.2. A call-back function provides means for the monitoring system to transfer result data backto the tool. This is essential for conditional requests which result in any number of replies.The call-back function is activated whenever a reply from the monitoring system has tobe transferred.3. Flags de�ne behavioral variants of the omis request function. Most important theyallow to e.g. suppress simple ok-replies or wait for for acknowledgement of proper eventactivation.4. A reply parameter is used whenever we get direct results as opposed to indirect results viathe call-back function. This reply parameter might e.g. denote reply data from uncondi-tional requests. Any reply sent by the monitoring system occupies memory in the addressspace of the tool. It can be freed via the omis reply free function.For centralized tools, for which the omis request function will be realized by some kindof remote procedure call mechanism, we need several additional functions. Their main purposeis to initialize a connection with the monitoring system and to wait for replies to be received.Details are given in section 7.1.
35

5.5 The Tools' ScopeA very important question is the scope that every tool has, i.e. the objects it can observeand manipulate. If we were faced with static systems only, i.e. single user single applicationenvironments with only one tool, the situation would be simple: the tool's scope would just beall objects of the running system. However, OMIS wants to provide means to handle dynamicsystems where the number of objects varies during time. New execution objects may be createdor old ones may no longer exist. Likewise nodes may be added to the environment or be deletedfrom it. Also, several tools might co-exist in a tool environment and have to be managedindependently by the monitoring system. Finally, OMIS based tools should be multi applicationcapable, i.e. they should support a tool's access to more than one currently running applicationprogram.The main concept of OMIS is that every tool at every moment has a well de�ned scope,i.e. can observe and manipulate a speci�c set of objects. The scope of di�erent tools may bedi�erent. They may handle object sets that are not identical.Concerning the ability to monitor concrete objects we de�ne the following rules:� After the start of a tool and its successful initialization of the cooperation with the moni-toring system (via omis init()) the tool has not yet an access to individual objects.� In order to control nodes and processes the tool has to explicitly attach to every individualobject. Only after an attach operation the tool can monitor the object.� Transient objects like threads and messages can be monitored if the tools is attached tothe corresponding 'container' object (i.e. a process, a message queue). No attach operationis necessary as this would be in con
ict with the objects' short life time.� New instances of nodes and processes are not monitored automatically. Instead, the toolhas to issue a conditional service request to get informed whenever new objects of thesetypes are instantiated. If it wants to monitor these objects it explicitly has to attach tothem.Above rules �x a tool's scope. We can see that the set of objects to be monitored in thetarget system is well de�ned. Every tool sees only what it wants to see.Whenever two or more tools monitor the same object the monitoring system has to ensure toproperly distinguish these tools. Imagine that two tools measure the CPU time of a process. Ifone of them is no longer interested in that value and disables the measurement, the monitoringsystem has to guarantee that it will remain activated for the second tool. On the other hand,as long as there are two or more identical measurements de�ned, the monitoring system shouldbe able to recognize this fact and to keep the additional overhead by this multiple de�nition aslow as possible.The varying set of objects produces some logical problems for conditional service requestsespecially in cases where we use object tokens like \all nodes" or \all processes" in event andaction de�nitions. We have to �x a semantics how to handle the situation where the object setchanges during an event de�nition and the corresponding action list activation. These problemswill be discussed in detail in section 8.1.2 and 8.1.1.5.6 RemarksThere are some general remarks about the monitoring interface that should be mentioned here:
36

� In principle, the interface is asynchronous. This means that with the omis requestprocedure there is no guarantee that you will receive replies in the same order in whichyou have sent the requests. The behavior of the interface might be blocking or non-blockingdepending on the actual parameters. This will be discussed in detail in the next chapter.� Parameters of services must be either constants, or (in case of an action in conditionalrequests) event context parameters (i.e. $node, $time, etc.). They cannot themselves beactions or events. Thus no recursion is possible with service requests.� Only one event is allowed in a service request. Combinations of events can be implementedby means of user de�ned events, the disable and enable services described in Section 8.2.1,and distributed tool extensions.The debugging example already demonstrated how to combine two events in order to havea logical OR operation between them. Likewise it is possible to realize a \happened after"relation. Let us reconsider the debugging example. Now, we would like to have the actionlist executed when �rst process p 1123 started sending and afterwards process p 1234reaches instruction address 0xfe08.No request string result token1 thread reached addr([p 1234],0xfe08) :print([$proc])thread get backtrace([$proc],0)thread read int regs([$proc],0,32) c 12 thread has started lib call([p 1123],"MPI Send") :csr enable([c 1]) c 23 : csr enable([c 2])The di�erence now is that conditional service request does not trigger a user event. Insteadit enables c 1. By that we have successfully speci�ed a \happened after" relation.Other combinations (e.g. an and operator) can be realized in a distributed tool extensionas a service that triggers a user-de�ned event when the proper conditions are ful�lled.� The interface o�ers no direct way of passing the result parameters of one action to theinput parameters of another action. If you need this, you have to code a new service in adistributed tool extension library that calls the actions and passes the parameters betweenthem.

37

Chapter 6Extending OMISAs we have already stated before, it is not possible to de�ne a monitoring interface that o�ers allservices that may be needed by any existing or future tool. Therefore, it is of utmost importanceto provide a means of extending the interface. OMIS thus includes provisions that allow newservices and also new types of objects to be added to the basic monitoring system by anyresearch or development group using the monitor, not just by the one that implemented it. Theadditional services and the additional functions for object token conversion can be implementedas a library of C or C++ functions that is linked with the monitor libraries.6.1 Types of ExtensionsThere are three situations where linking additional code to the basic monitoring system ispro�table or even necessary:1. Usually, di�erent tools use very di�erent methods to process events in the monitoredapplication. For instance, one performance analyzer is based on event traces, thus it wantsto write events to a �le in its own proprietary trace format. Another performance analyzeris based on distributed on-line analysis. It will therefore need services that perform thisanalysis, by providing e.g. counters and interval timers, whose detailed semantics dependon the speci�c tool.Therefore, it is desirable to de�ne new services for this kind of tool-speci�c data processingand also new token types for the monitor objects provided by these services. We willcall this kind of extension a distributed tool extensions (DTE). They can also includespecialized, more complex services that are based on the basic services de�ned by thisdocument including also new events that are derived from existing events via �ltering.The principal property of distributed tool extensions is that they only use the interfacesde�ned by OMIS. Therefore, they are independent of the target platform or a speci�cimplementation of an OMIS compliant monitoring system.2. Some tools may also want to observe additional aspects of application objects or even newapplication objects not covered by this document. These new objects may be implementedin some speci�c target platforms or may come from specialized runtime libraries. Forinstance, if an application uses a parallel I/O system, a tool may want to observe I/Oobjects.The code linked to the monitoring system, that provides these new services is called amonitor extension (ME). The interfaces provided by MEs have to comply with OMIS,however, due to their nature, monitor extensions also have to make use of interfaces speci�c38

to a target platform or an implementation of an OMIS compliant monitoring system. Thus,these extensions may not be portable.3. Finally, there are also fully distributed tools without a central user interface component,e.g. a load balancer. For performance reasons it is pro�table that the components of sucha tool can access the monitoring interface on their local node via simple procedure calls,without the need for interprocess communication.We call this kind of \extension" a distributed tool (DT). This kind of distributed tool willtypically consist of a set of specialized actions that are triggered either periodically or byevents in the monitored application. It is similar to a DTE with the di�erence, that ina DT there is a set of requests that is de�ned during the initialization of the monitoringsystem, while in a DTE all requests are de�ned by the centralized tool.Of course, a single library can contain code of all these categories.6.2 The Method of Extending OMISOnce we have decided to allow new services and new object types to be linked to the moni-toring system, the question is how to make them accessible at the monitoring interface. Theapproach we are using is as follows: Each service is addressed by a unique service name, i.e.a unique identi�er string passed to the tool/monitor-interface, which is mapped to the imple-menting function(s) using a mapping data structure built during initialization of the monitoringsystem. Likewise, the type of a token is indicated by a string pre�x that can be mapped to thefunctions implementing token conversion using a similar data structure. We now have a coupleof requirements that must be ful�lled:� The service names and token pre�xes used by di�erent extensions must be disjunct, oth-erwise we will not be able to use several extensions at the same time. Being able of havingmultiple extensions is extremely important, since a single version of the monitoring systemshould be able to support all of the tools available in a certain environment.� Besides having unique service names, also the function names and other externally visiblenames in the code of the extension libraries must be disjunct, since di�erent extensionlibraries may be linked to the monitor.� It must be possible to generate and use the monitoring system both with and without anyextension.� The coordination necessary to meet the above requirements should be as light weight aspossible. Developers should be able to provide extensions without being forced to knowabout all other extensions and without being forced to apply for every new service at acentral location.We have decided to use the following strategy for extensions:� Each service name, each token pre�x, and each externally visible name in the code of anextension library has a pre�x that separates it from the names in all other extensions andfrom the ones in the basic monitor.� A research group that wants to make extensions to the monitoring system is assigned anew pre�x on request. Then this pre�x is reserved exclusively for that group; thus, nofurther coordination is required. Developers can assign arbitrary service names, providedthat they start with the assigned pre�x. 39

� In order to realize the above strategy, the data structure mapping service names to thefunctions that implement the services cannot be built statically, but must be expandeddynamically by each extension linked to the base monitor. Therefore, each extensionlibrary must contain an initialization function whose name is \register", prepended by theextension's pre�x. This routine will then register all services provided by the correspondingextension. When a new pre�x is requested, the basic monitoring system will be modi�edin such a way that it invokes this initialization routine in the startup phase.� In addition, an empty routine with the same name will be created in a dummy library.This library is linked to the monitor as the last library. Thus no unde�ned symbols occurwhen some extensions are currently not linked to the monitor.The procedure of requesting a new pre�x has to be done only once by those groups that planto extend the monitoring system. We will try to make this procedure fully automatic, e.g. byusing a WWW form or a mail server.Services from extensions may possibly get included into the documentation of OMIS, if theyare of public interest. But in order to keep the implementation modular, they will neverthelessbe implemented in a separate library.6.3 The Extension InterfaceFrom the above, it is clear that for the extension scheme to work there must be a well de�nedinterface for extensions. Thus, there has to be a speci�cation covering:� the interface of the functions implementing manipulation, information and event services,� the interface of token conversion functions,� the interface used to register new services and token types.These interfaces will be speci�ed in a later version of this document, after we have collectedmore experience with the implementation of an OMIS compliant monitoring system for PVMon workstation clusters.Note that the interface allowing extensions to use other services is already de�ned: servicesin an extension can call omis request to invoke other services, in just the same way as a tooldoes.

40

Part IIIInterface Speci�cation

41

42

Chapter 7General Description7.1 Interface ProceduresOMIS de�nes six procedures to access the monitoring interface:1. omis request: Sends a service request to the monitoring system.2. omis reply free: Frees the memory occupied by a reply structure.3. omis init: Initializes the connection to the monitoring system.4. omis �nalize: Shuts down the connection to the monitoring system.5. omis fd: Auxiliary function: returns a �le descriptor to wait at for incoming messages.6. omis handler: Auxiliary function: polls for incomingThe �rst two functions are available for both centralized tools and for distributed tools,distributed tool extensions, and monitor extensions. The other ones are only usable for central-ized tools or distributed tools that are implemented as processes separate from the monitoringsystem, since only these tools have to set up a communication connection to the monitoringsystem.The following paragraphs specify the C language version of these procedures. Other languagebindings may be speci�ed when needed. The rest of this chapter and Chapters 8 to 9 specify indetail the requests accepted by omis request and the resulting replies.7.1.1 omis requesttypedef unsigned int Omis_flags;#define OMIS_WAIT_FOR_FIRST_REPLY 1 /* Even if a callback is specified, *//* block until the first reply is *//* received and return this reply *//* as the function's result, *//* without calling the callback */#define OMIS_DONT_RETURN_OK 2 /* Don't call the callback for *//* replies that only contain an OK *//* status */#define OMIS_DONT_RETURN_EN_DIS 4 /* Don't call the callback for *//* replies indicating that the */43

/* request has been enabled or *//* disabled, if the status is OK */#define OMIS_BUFFER_REQUEST 8 /* This request may be buffered on *//* the sender side. The next *//* request without this flag will *//* flush the buffer. */#define OMIS_BUFFER_REPLIES 16 /* The replies for this request may *//* be buffered locally on the sender *//* side. The buffer will be flushed *//* after an implementation dependent *//* period of time */#define OMIS_DEBUG 32 /* This flag can be used to switch *//* on debugging output for this *//* request. The kind of debugging *//* output produced is *//* implementation dependent */Omis_reply omis_request(char * request,void (* callback)(Omis_reply reply, void * param),void * param,Omis_flags flags);This function provides a tool's only access to the tool/monitor-interface. Basically, it accepts aservice request as a string in parameter request, sends it to the monitoring system and passesthe reply back to the calling program. Thus, if tool and monitoring system are implemented asdi�erent processes, a call to omis request is actually a remote procedure call.The detailed behaviour of omis request depends on the value of
ags and whether or notcallback is a NULL pointer. If callback is NULL, the function sends the provided servicerequest to the monitoring system and blocks until the reply to this request is available. Thereply structure is then passed back to the caller as the function's result. As only one reply can bepassed back in this way, this mode of calling omis request only makes sense for unconditionalservice requests.If callback is not NULL, the behavior of omis request is determined by the bits set in
ags. If
ags is zero, the provided service request is sent to the monitoring system and thefunction immediately returns to its caller with a NULL result. Later, whenever a reply forthis request is sent back by the monitoring system, the speci�ed call-back function is invoked,getting the reply structure and the value of param as its parameters.Setting the OMIS WAIT FOR FIRST REPLY
ag in
ags results in the function toblock until the �rst reply is received by the monitoring system and to return this reply as thefunction's result. Subsequent replies will be passed to the call-back function. This mode is usefulfor conditional service requests, since the �rst reply indicates whether or not the event de�nitioncould be processed correctly, while the other replies contain the results of the request's actionlist.If OMIS DONT RETURN OK is set in
ags, the call-back function should not beinvoked when a reply only consists of status values indicating that the service has been executedcorrectly, but does not provide any further information. When this
ag is set, the monitoringsystem can drastically optimize its internal communication, especially for conditional servicerequests where the action list only contains manipulation services. However, an implementationis free to ignore this
ag.
44

If OMIS DONT RETURN EN DIS is set in
ags, the call-back function should notbe invoked for replies indicating that the service request has been enabled or disabled, exceptin those cases where an error occured. This
ag only has an e�ect if request is a conditionalservice request. If the tool needs not be noti�ed on the enabling and disabling of the requestsent, setting this
ag can decrease the amount of communication between monitoring systemand tool.The remaining
ags control whether bu�ering of requests and replies is allowed. If the
agOMIS BUFFER REQUEST is set, the request may be bu�ered until omis request is calledwith this
ag being reset. This allows an implementation to transfer several service requeststo the monitoring system in a single communication step. If OMIS BUFFER REPLIES isset, replies may be bu�ered by the monitoring system. An implementation must ensure thatthe bu�ers are
ushed within an adaquate interval of time. Both
ags may be ignored by animplementation.Finally, a
ag OMIS DEBUG is provided for debugging. Its intended purpose is to gen-erate debugging output for that sepci�c request. However, whether or not such output will beproduced, and which information will be presented depends on the speci�c implementation ofthe monitoring system. Debugging output will be passed to the error handler (see omis initbelow) in a reply structure with a status �eld equal to OMIS OK.The exact data structure of Omis reply and the syntax of the request strings are speci�edin separate sections throughout the rest of this document part.7.1.2 omis reply freevoid omis_reply_free(Omis_reply reply)This function returns the memory occupied by reply to the system. It is safe to pass a NULLpointer to this function.7.1.3 omis initOmis_status omis_init(int *argc, char ***argv,void (* error_handler)(Omis_reply reply),int *tool_id)omis init establishes a connection between a tool process and the monitoring system. Itsparameters are pointers to the tool's argument count (argc) and argument vector (argv), apointer to a handler function for asynchronous errors (error handler), and pointer to an integeridenti�er used for tools consisting of more than one process (tool id). The result is an errorcode as de�ned in Section 7.3.1.The parameters argc and argv are used to pass the tools command line options to omis init.The function will then extract all options from argv that are needed for correctly starting thedistributed monitoring system. The arguments used will be removed from the argument vectorpointed to by argv, *argc will be adjusted correspondingly. Since the start-up of the monitoringsystem heavily depends on the target platform, and there is currently no standardized way toperform a connection between parts of a distributed application, we follow the approach takenby the MPI forum and do not standardize the startup procedure. This means that whetheror not omis init starts the monitoring system (if it is not already running) and the speci�cmeaning of the arguments in argv will be implementation dependent. The only requirementis that after a successful completion of omis init, the tool can issue service requests to thetool/monitor-interface using omis request. omis init only establishes the connection to themonitoring system, it does not attach the montoring system to any node or process.45

If non-NULL, error handler speci�es an error handling function, which will be invokedwhen some error occurs that is not correlated with a speci�c request (request speci�c errorsare reported in the request's reply). The handler will receive a reply structure with onlyone Omis service result element containing an error code and a description (see Section 7.3for details on reply structures). The handler will also receive debugging output, if the
agOMIS DEBUG is set for a request (see omis request above). Debugging output is indicatedin the reply structure by a status �eld equal to OMIS OK.The last argument, tool id is an in-out parameter that is only necessary for distributed toolsimplemented as a set of processes separate from the monitoring system. In this case, one of theseprocesses has to play the role of a master. It has to pass a pointer to a variable containing a 0 fortool id. After completion of the omis init call, this variable contains a unique tool identi�er.The master then has to pass this identi�er to all the slaves, which in turn call omis init withthe supplied identi�er. In this way, the monioring system knows that the processes form a singletool rather than di�erent ones. Note however, that the ability for di�erent tools to attach tothe monitoring system at the same time is not required by this speci�cation. A centralized toolcan simply pass a NULL pointer to tool id.Typically, the main function of a centralized tool will pass pointers to its argument countand argument vector and an error handler to omis init:main(int argc, char **argv){ if (omis_init(&argc, &argv, err_handler, NULL) != OMIS_OK) {<< Error handling >>}...}The startup of a distributed tool implemented as separate processes will look like this:master process: slave processes:main(int argc, char **argv) main(int argc, char **argv){ {int id = 0; int id;if (omis_init(&argc,&argv, << receive id from master >>err_handler,&id) if (omis_init(&argc,&argv,!= OMIS_OK) { err_handler,&id)<< Error handling >> != OMIS_OK) {} << Error handling >><< send id to slaves >> }... ...} }7.1.4 omis �nalizeOmis_status omis_finalize()This function must be called by any tool before it exits in order to shut down the connectionbetween the tool and the monitoring system in a well de�ned way. When omis �nalize iscalled, the monitoring systems deletes all conditional service requests de�ned by that tool. Italso detaches from all objects to which it has been attached by that tool.46

Whether or not omis �nalize also terminates the monitoring system and/or the monitoredapplication depends on the speci�c implementation, but should be controllable by the argumentspassed to omis init.7.1.5 omis fdint omis_fd()omis fd returns a �le descriptor that can be used to block a tool process until a message fromthe monitoring system arrives, e.g. by passing the �le descriptor to a select system call. If thefunction cannot execute correctly, it returns -1. A rationale and an example for this function isgiven in the next subsection.Note that on non-UNIX systems the return type of this function may vary.7.1.6 omis handlervoid omis_handler()omis handler polls the communication channel to the monitoring system for incoming messagesand handles them properly. Although in an ideal world, this function (and also omis fd) shouldnot be visible at the interface, it is nevertheless necessary, since tools usually provide their ownmain loop waiting for input events and handling them. The message handling, including theinvocation of call-back functions must somehow be included into this main loop, if the tool usescall-back functions for omis request. If the tool always usesNULL for the callback argumentof omis request, there is no need to ever use omis fd or omis handler.The following two examples show the proper use of omis fd and omis handler. The �rstexample considers a simple command line oriented tool:#include <sys/types.h>#include <sys/select.h>#include "omis.h"int main(int argc, char **argv){ fd_set fds;int mon_fd;char input_buf[80];/* Initialize connection to monitoring system */omis_init(&argc, &argv);/* Get OMIS file descriptor */mon_fd = omis_fd();do {/* Build file descriptor set containing the OMIS filedescriptor and the stdin file descriptor */FD_ZERO(&fds);FD_SET(mon_fd,&fds);FD_SET(0,&fds);/* Block until there is some input */47

select(mon_fd+1, &fds, NULL, NULL, NULL);/* Read from stdin, if there is something to read */if (FD_ISSET(0,&fds)) {scanf("%s",input_buf);/* decode input_buf and execute commands */...}/* Handle OMIS messages */omis_handler();} while (strcmp(input_buf,"quit"));omis_finalize(); /* shut down connection */}The select system call and the if statement in this example ensure that OMIS messages can behandled whenever they arrive, since they prevent the tool process from blocking in the scanffunction. Such a blocking would mean that replies cannot be passed to call-back functions untilthe blocking is released, which may cause a problem to the tool.The next example shows how a tool based on X windows can use OMIS:void cb(XtPointer closure, int *source, XtInputId *id){ omis_handler();}int main(int argc, char **argv){ int omis_fd;XtAppContext app;/* initialize X window stuff */... = XtAppInitialize(&app, ..., &argc, &argv, ...);omis_init(&argc, &argv); /* initialize mon. system *//* Add OMIS file descriptor as an additional input sourceto the X window main loop. */XtAppAddInput(app, omis_fd(),(XtPointer)XtInputReadMask,(XtInputCallbackProc)cb, NULL);XtAppMainLoop(app); /* X window main loop */}Here, the OMIS �le descriptor is passed as an additional input source to the X window system,that will call the cb function when there is some input to process. Note that since XtApp-MainLoop never returns, some X window call-back function must invoke omis �nalize beforethe tool exits. 48

7.2 Service Requests7.2.1 String SyntaxA service request is a string that complies with the following syntax:request ::= [event de�nition] ':' action listevent de�nition ::= service name '(' parameters ')'action list ::= unlocked al j locked allocked al ::= 'f' unlocked al 'g'unlocked al ::= action j action [';'] unlocked alaction ::= service name '(' parameters ')'service name ::= identi�erparameters ::= parameter list j �parameter list ::= parameter j parameter ',' parameter listparameter ::= integer j
oating j string j token j binaryj list j ev ctx paramev ctx param ::= '$' identi�ertoken ::= identi�erlist ::= '[' parameters ']'The symbols integer,
oating, string, and identi�er represent integers,
oating point num-bers, quoted strings, and identi�ers. The syntax of these elements follows the syntax of thecorresponding elements in the C programming language.The symbol token represents an abstract object identi�er. binary is a binary data stringconsisting of ASCII coded number (the data length), immediately followed by a '#' character,immediately followed by the indicated number of Bytes in 8-Bit binary format.list denotes an (untyped) list of entities; ev ctx param can be used in actions to refer to eventcontext parameters. There is a set of standard parameters speci�ed in Section 7.2.4 and a setof event speci�c parameters for each event service which is de�ned in Chapters 8 and 9.The semantics of the di�erent data types used in the request language is speci�ed in Sec-tion 7.2.2. The semantics of the input parameter list of a service depends on the concrete serviceand is speci�ed in Chapters 8 and 9.7.2.2 Data TypesThis section speci�es the data types that values in OMIS request and reply strings may have.Note that these are not data types of any programming language, and that the values of thesedata types only exist in string form. They have already shortly been introduced in Section 7.2.1.OMIS de�nes �ve primitive data types: integer,
oating, string, binary, and token. The�rst three types represent integer numbers,
oating point numbers and quoted strings. Sincethe numbers only exist as strings, there is no need to specify the precision; it may in principlebe arbitrary. However, except for a few target systems, integers will �t into 32 Bits and
oatingpoint numbers into a 64-Bit IEEE
oating point format.The binary data type has been included to support tools such as visualizers that haveto acquire very large amounts of data, where a conversion into ASCII strings would cause aninacceptable performance problem. A value of this data type consists of an ASCII coded number(the data length), immediately followed by a '#' character, immediately followed by the indicatednumber of Bytes in 8-Bit binary format. Since the binary data may contain NUL characters,you have to be careful when operating on request or reply strings that contain binary data.49

Note, however, that only services that may optionally be implemented in an OMIS compliantmonitoring system use this data type.The token data type is an abstract data type used to identify objects, e.g. processes, threads,or messages. It is speci�ed in more detail in the next subsection.Based on these primitive data types, OMIS de�nes one structured data type, the list. A listis an ordered collection of elements, which may have di�erent primitive data types. However,most lists are homogeneous, i.e. contain only elements of a single primitive type.The Token Data TypeThe token data type is used in OMIS to provide a platform independent way of addressingobjects being observed. Any object that can be observed or manipulated is represented by atoken. OMIS de�nes seven basic classes of objects:1. nodes2. processes3. threads4. messages5. message queues6. user de�ned events7. conditional service requestsObjects belonging to the �rst �ve classes (system objects) have a natural hierarchy, which is,however, not based on inheritance, but on the relation 'contains'. This hierarchy is shown inFig. 7.1. Note that the relation between message queues and processes or threads depends onthe target system, i.e. on whether the threads in a process have individual message queues orshare a single queue. There may also be platforms, where message queues are �rst class objects(e.g. mailboxes). In this case, message queues are only related to nodes.
Expansion

Localization

thread

process

node

*
*

message queue

message

*

Legend

Hierarchy depends*
on target platformFigure 7.1: Object hierarchy in OMISAccording to this hierarchy, tokens and lists of tokens are implicitly converted to the to-ken class a service works on. There are two types of conversions: localization and expansion.Localization converts a token a of class A into a token b of class B, where B is on an upperlevel in the hierarchy than A. This means that b refers to an object that contains the objectaddressed by a. Expansion converts a token a of class A into a set of tokens b of class B, where50

B is on a lower level than A in the hierarchy. This set contains the tokens of all objects of classB contained in the object referred to by a to which the monitoring system is attached. Sinceexpansion may result in a token being replaced by several new tokens, it is only performed fortokens contained in a list. Empty token lists are used as a universal object: if converted to alist of tokens of class B, an empty list is expanded to the set of tokens of all objects of class Bto which the monitoring system is attached.Since objects may be created and deleted dynamically, the point in time when the conversionis performed has an in
uence on the result. The following constraints are de�ned by OMIS:1. Conversions required by action lists must be performed each time the action list is executed.For the action lists of conditional requests this means that conversion is not performedwhen the request is de�ned, but when the monitoring system has detected the occurrenceof an event matching the request's event de�nition and executes the action list.2. From a logical point of view, conversions required by the arguments of the event de�nitionpart of a conditional service request are performed each time the monitoring system detectsthe occurrence of some event and matches it againes the request's event de�nition1.3. All conversions done for the same execution of a request (including the event de�nition)must be consistent. So in the following examplenode_get_info([],1) proc_get_info([],1)if a new process on a new node is added to the monitored system between the executionof the two services, proc get info must not return information on that process, sinceotherwise the two conversions of the empty token list would be inconsistent. If, however,a new process on an already attached node is added, the expansion of the second tokenlist may include that process.This could be achieved by performing all conversions in an atomic way at the beginning ofthe action list's execution, but can also be realized by a more e�cient caching strategy: Aconversion between two adjacent object classes in Fig. 7.1 is performed when it is neededfor the �rst time. The result is then reused each time the same conversion step is requiredagain.Note that if an object terminates during the execution of an action list, there is a chancefor a service to receive a token of a nonexistent object. However, due to the chosen methodof error handling (see Section 7.2.3) this does not induce a problem, since the service willonly fail for that particular object.The token data type is an abstract data type, so tools should not make any assumption onthe structure and the contents of the token string. In particular, tools should not assume thatthe tokens are identical to the identi�ers used within the parallel programming library. The onlystructural detail speci�ed by OMIS is the encoding of the token class which is as follows: Theclass of a token is encoded in a pre�x terminated by an underscore (' '). The followig pre�xesare de�ned:1In an implementation, however, this matching and the conversion need not be performed explicitly, but canbe achieved by a proper instrumentation of the monitored application.
51

nodes: 'n 'processes: 'p 'threads: 't 'message queues: 'q 'messages: 'm 'user de�ned events: 'e 'conditional service requests: 'c 'unde�ned token: 'u 'Extensions may de�ne additional token classes. These tokens start with the pre�x of the exten-sion, followed by an underscore, a one-character token class speci�er and another underscore.For example, a group token as de�ned in the PVM extension starts with 'pvm g '.7.2.3 Semantics of RequestsIn contrast to other monitoring interfaces, OMIS allows a service to be invoked on an objectregardless of the state of that object. This means that e.g. the registers of a thread can be readwithout having to explicitly stop the thread in advance. On some target platforms, however,invoking a service on a running thread may include a temporary suspension of that thread, soexplicitly suspending the thread may increase the performance when a larger number of servicesis requested.The following subsections provide more details on the execution semantics of unconditionaland conditional service requests.Unconditional RequestsEach service contained in an action list will be executed on all the objects passed to the service asa token or token list, after proper conversion of the token(s). Since OMIS is used in a distributedenvironment, the executions of an action list's services on the di�erent objects cannot be orderedtotally, i.e. some of these executions may be concurrent or unordered. The following conditionshold for all action lists:1. If a1 and a2 are services operating on lists of objects2 and l1 and l2 are already convertedlists of the proper token class, then the following ordering relation is required for eachsequence a1(l1) a2(l2) in an action list:if o1 is an object in l1 and o2 an object in l2 and o1 and o2 are located on the samenode, then a1 is executed on o1 before a2 is executed on o2.2. A semicolon (';') in an action list acts as a barrier, i.e. all actions left to the semicolon arecompletely executed before the execution of any action right to the semicolon is started.3. Services do not have delayed side e�ects. This means that when a service has been exe-cuted, all the modi�cations it performs on the monitored system have been fully completed.This ensures, for instance, that services following a thread suspend service will �nd thethreads already suspended.Tools should not assume any other ordering constraints to hold. Especially, a service may beexecuted on the objects passed to it in a token list in an order di�erent from that indicated bythe order of tokens in this list. Note that an object should not occur twice in a token list (whichmight also happen due to token expansion, see Section 7.2.2). In this situation, it is unde�nedwhether the service will be executed once or twice for that object.2Services that operate only on single objects may be viewed as working on a one-element object list for thepurpose of this discussion 52

By default, action lists are interruptible, i.e. the execution of di�erent action lists may beinterleaved by the monitoring system. This allows action lists triggered by di�erent events orsent by di�erent tools to be executed concurrently in the parallel or distributed system. Toenforce mutual exclusion of action lists when necessary, OMIS de�nes a locking mechanism,which is activated by enclosing an action list in braces ('f' and 'g'). Locking an action list Aensures that on the subset of nodes that is touched by A no other action list is active while Ais executed.Conditional RequestsIn contrast to unconditional service requests, the action list of a conditional request is notexecuted immediately, but each time when the monitoring system detects an event matchingthe event de�nition given in the request. The following items de�ne the semantics of conditionalrequests:1. When a conditional service request is passed to the monitoring system, it will immediatelyreturn a reply indicating whether or not the request could be installed properly. This replywill contain the token identifying the request.2. Conditional service requests are disabled by default, i.e. they will be ignored by the mon-itoring system until they are explicitly enabled using the csr enable service.3. When a conditional request is deleted, or when it is enabled or disabled and the
agDONT RETURN EN DIS is not set in OMIS request, the monitoring system willsend a reply indicating this change of state.4. When the monitoring system detects some event and the conditional request is enabled,the event is matched against the event de�nition of the request. If the match succeeds,the following steps are performed:(a) The monitoring system takes measures to ensure that the object associated with theevent will not undergo relevant state changes between the detection of the event andthe completion of the action list execution. Usually, this is achieved by a temporarysuspension of execution objects, i.e. threads, which is released upon completion of allaction lists associated with that event. In order to permanently stop any threads, theaction list must invoke the thread stop service.A detailed speci�cation, which threads will be suspended during the execution ofaction lists is given in the speci�cation of event services for the di�erent object classes.(b) Information on the detected event is stored in the event context parameters, whichare speci�ed in Section 7.2.4 and in the speci�cations of the individual event services.(c) The request's action list is executed as described in the previous subsection.Error HandlingSince OMIS requests can result in a list of services being executed on a (possibly distributed)set of objects, there is a chance that some of these executions fail, while others succeed. Inprinciple, there are three possible strategies to handle partial failure of a request:1. The execution of a request is abandoned as soon as the �rst error is detected and a singleerror code is returned. This is the most simple strategy. However, the severe disadvantageis that in the case of an error, the system being observed is left in an unknown state.
53

2. Each request behaves as a transaction, i.e. it either is executed completely successfully orfails without having modi�ed the state of the system being observed. Although from theusers' point of view this is the most desirable strategy, its implementation would result inan overhead making the monitoring system useless.3. Therefore, OMIS uses a mixed approach: when an error is detected while executing asingle service on a single object, an error code and an error description is appended tothe reply. Execution of this service on this object is then abandoned, trying to undo allmanipulations that may already have been done to the object. If undoing is not possible insome cases, this must be indicated by setting a special bit (OMIS FATAL) in the errorcode. The execution of the request is then continued. This means that a single service ona single object should behave as a transaction, whenever possible.The used strategy avoids the overhead of global transactions, while ensuring that a tool issuinga request can always infere which modi�cations to the system's state have been performed andwhich have not (except in the case of fatal errors).7.2.4 Event Context ParametersThe following list speci�es the general event context parameters, i.e. parameters that are set onoccurrence of any event. They may be used to pass information on the event to the action listof a conditional service request. In addition to the parameters de�ned below, individual eventservices may provide also other parameters, which are de�ned in the description of the eventservice.token node; Contains the token of the node where the event took place.token proc; The token of the process where the event took place. If the event cannot beattributed to a process, proc contains an unde�ned token.token thread; The token of the thread where the event took place. If the event cannot beattributed to a thread, thread contains an unde�ned token.
oating time; This parameter contains a wall-clock time stamp indicating when the eventhas happened. An exact comparison between time stamps is only possible for events thatoccured on the same node, however, two successive events may have equal time stamps dueto the limited clock resolution. Clocks on di�erent nodes are at least to be synchronizedat start-up-time up to a precision in the order of the message transfer time between nodes.The time stamps do not represent absolute time, i.e. the absolute time for which the timestamp is zero is not speci�ed. The unit of the time stamp is seconds; the resolution oftime stamps is platform dependent.token csr; This parameter contains a token providing a self-reference to the conditional servicerequest. It can be used to manipulate the service request from within its action list (e.g.to delete the request after it has been executed).7.3 Service Replies7.3.1 Reply StructureThe reply returned by omis request (either as a function result of by passing it to the callbackfunction) is a data structure conforming to the following C type declaration:54

/*** Status values*/typedef int Omis_status;#define OMIS_OK 0 /* no error */#define OMIS_CSR_DEFINED 2 /* cond. request has been defined */#define OMIS_CSR_ENABLED 4 /* cond. request has been enabled */#define OMIS_CSR_DISABLED 6 /* cond. request has been disabled */#define OMIS_CSR_DELETED 8 /* cond. request has been deleted */#define OMIS_CSR_TRIGGERED 10 /* cond. request has been triggered */#define OMIS_FIRST_ERROR 16 /* lowest status code for error */#define OMIS_SYNTAX_ERROR 16 /* syntax error in request string */#define OMIS_UNKNOWN_SERVICE 18 /* service name is unknown */#define OMIS_UNSUPPORTED_SERVICE 20 /* service is not supported */#define OMIS_UNKNOWN_ECP 22 /* event context par. is unknown */#define OMIS_UNKNOWN_OBJECT 24 /* object is unknown/not existent */#define OMIS_TYPE_MISMATCH 26 /* type mismatch in parameters */#define OMIS_PARAMETER_ERROR 28 /* illegal parameter value */#define OMIS_OS_ERROR 30 /* error from operating system */#define OMIS_NO_PERMISSION 32 /* operation not permitted */#define OMIS_NO_MEMORY 34 /* out of memory */#define OMIS_INTERNAL_ERROR 36 /* internal error in mon. sys. */#define OMIS_UNSPECIFIED_ERROR 1000 /* generic error code */#define OMIS_FATAL 1 /* object state modified *//*** Result for a single object or identical results for a set of objects*/typedef struct {char *obj_list; /* List of objects where result belong to */Omis_status status; /* Status for this set of objects */char *result; /* Result for this set of objects */} Omis_object_result;/*** Result of a single service*/typedef Omis_object_result *Omis_service_result;/*** Full reply of a service request*/typedef Omis_service_result *Omis_reply;
55

The reply is of type Omis reply, which is a pointer to a NULL-terminated array, whoseelement type is Omis service result. The �rst element (with index 0) of this array is a replyfor the request as a whole where the request is regarded as a passive object. This element isused for the following purposes:1. It returns errors that occur during any steps needed to prepare the execution of the re-quest's action list. This includes any syntactical and semantical checks done when therequest is de�ned.2. For conditional requests, it contains the conditional request token needed for the servicesmanipulating the request.3. It indicates any change in state of conditional service requests.The other elements of a reply contain the results of those parts of the request that have beenexecuted. The element with index 1 points to the results of the �rst action in the request'saction list, element 2 to the results of the second one (if any) and so on.There are three di�erent types of replies, that can be distinguished by the status �eld of theOmis object result structure pointed to by the reply's �rst element.1. If the status �eld contains a value above or equal to OMIS FIRST ERROR, an errorhas been detected during checks made prior to the request's execution. In this case, thereply has only one non-NULL element.2. If the status �eld is equal to eitherOMIS CSR DEFINED,OMIS CSR ENABLED,OMIS CSR DISABLED orOMIS CSR DELETED, the reply contains the results ofthe de�nition, enabling, disabling or deletion of a conditional service request. In this case,the reply has a second element that contains the status message generated by the event ser-vice. For OMIS CSR DEFINED, the result element of the �rst Omis object resultstructure will contain the conditional request's token. However, if the event service failedand the conditional request therefore has not been stored by the monitoring system, theresult element will be NULL.Note that OMIS CSR ENABLED and OMIS CSR DISABLED will be generatedboth when the request is explicitly enabled or disabled, and when the set of actuallymonitored objects changes by attaching to or detaching from objects.3. If the status isOMIS OK orOMIS CSR TRIGGERED, the following elements of thereply contain the results of the execution of all actions in the action list of the unconditionalor conditional request.Since the results of actions may consist of several sub-results for di�erent objects, the typeOmis service result is a pointer to an array of Omis object result structures. The end ofthis array is marked by an entry with obj list == NULL; the other �elds of this end markerdon't have any meaning. The principal semantics of the Omis object result structures is:� obj list points to a string containig a comma-separated list of object tokens that speci�esthe objects this part of the result belongs to.� status is the status for the objects de�ned in obj list. If the bit OMIS FATAL is setin an error status, the state of the objects in obj list has been changed in an inconsistentway due to the error. If an error message is returned where the
ag is not reset, theobjects' states have not been changed by the failing service.56

� result points to a string containing the (identical) result of an action's execution for theobjects in obj list, if status doesn't indicate an error. Otherwise, result points to astring containing a more detailed error description that may be presented to the user. Ifthere is no result or error description, result may be NULL.If the reply does not belong to a service operating on objects (as it is the case for element 0of the Omis reply array), obj list must point to an empty string and the rest of the abovedescription holds analogously. For the other cases, Omis object result allows to unify identicalresults for di�erent objects in order to save memory and communication time. This is importantespecially for the status replies which are usually the same for all objects. Having one status�eld for each single object a service worked on would result in a huge overhead. However eachimplementation of an OMIS compliant monitoring system is free to decide whether or not thisuni�cation is done. Since OMIS uses a hierarchical approach to identify objects, the obj listsmay in principle contain objects of di�erent granularity. For instance, if a service is invoked forall threads in the observed system by specifying an empty token list as its parameter, and theresult is the same for each thread, there are several possibilities for the result structure:� Only a single entry with obj list pointing to an empty string.� Several entries with obj list pointing to a single node token.� Only a single entry with obj list being the list of tokens of all threads in the observedsystem.� ...In order to not overly complicate the tools using OMIS, the scheme is restricted according tothe following description:1. In Omis object result structures returning a real result (i.e. those having status ==OMIS OK and either belong to an information service or a manipulation service with anon-void return type), obj list must point to a non-empty list of tokens of the type theservice works on. This ensures that any information returned is always accompanied withan explicit list of the objects it refers to.2. In a reply generated when a conditional request is triggered successfully, the �rst structureOmis object result in the result has status == OMIS TRIGGERED, and obj listpoints to a one-element list de�ning the object where the event occured.3. In all other cases, the obj lists may be a partial expansion of the object list given as anargument of the service. Furthermore, the last Omis object result structure (prior tothe end marker) may have status == OMIS OK with obj list pointing to an emptystring and result == NULL), indicating that for all of the objects not mentioned inprevious entries the service has been executed successfully.Note that except for case 3, objects speci�ed explicitely in the parameter list of a service willnever be summarized by using tokens of containing objects in the obj list.The exact syntax for the strings pointed to by obj list and result is speci�ed in Chapter 7.2,the semantics of the result strings depends on the service and is speci�ed in Chapters 8 and 9.7.3.2 String SyntaxThe syntax of the strings pointed to by the obj list and result �elds of anOmis object resultstrucure (see Section 7.3.1) is as follows: 57

obj list ::= token list j �token list ::= token j token ',' token listresult ::= parameter list j error descriptionThe symbol error description denotes an arbitrary character sequence, which can provide adetailed description of an error situation.7.3.3 Reply ExamplesFig. 7.2 to Fig. 7.4 illustrate di�erent forms of replies. For the sake of clarity, the illustrationsdon't show pointers to strings. Instead, the strings are directly shown in the pointer �elds inthe representation used in the C language.First, consider an unconditional request of the form: proc_get_info([], ...) thread_manipulate([], ...)where proc get info is an information service for processes, while thread manipulate is amanipulation service for threads. When no errors are encountered during the execution of thisrequest, a possible reply may look as those shown in Fig. 7.2. Note that the empty token listpassed to proc get info must be expanded in the reply, while the empty token list passed tothread manipulate need not. The reason for this is the fact that the �rst service returns areal result, i.e. has a non-void return type, whereas the latter one has a return type of voidand therefore only returns a status value. Fig. 7.3 shows how a reply may look like when errorsoccur.Now, consider a conditional request:proc_has_done_something([], ...) : node_get_name([$node])When this request is passed to the monitoring system, three di�erent kinds of replies may bereceived as shown in Fig. 7.4. The reply generated when the event is detected indicates theobject (i.e. process in this example) where the event occurred in the obj list component of thereply's �rst Omis service result structure.When the tool now attaches to a new process, say p 32, a reply as shown in Fig. 7.5 willbe generated, except for the case when the OMIS DONT RETURN EN DIS
ag has beenset when de�ning the above conditional request. If the preparations necessary to monitor theevent in the new process fails, this reply contains a corresponding status and an error message.7.4 Description Method for ServicesThroughout the service descriptions in Chapters 8 and 9, we will use ANSI-C-like prototypesto de�ne the input parameters and the result strings, since this type of description is muchmore clear than presenting a grammar or BNF for the syntax of the request and reply strings.In addition to the types integer,
oating, and string, binary and token, we will use the type-identi�er any which stands for any of these types. To de�ne more complex parameters, we willuse typedef's and/or C-struct's3. Lists of values are speci�ed by the type name followed by a'*', denoting zero or more repetitions of that type. The resulting string is then simply the linearlayout of a value having the speci�ed type. I.e. a struct corresponds to several values separatedby commas, while a list (indicated by '*') corresponds to several values of its component type,that are again separated by commas, but are enclosed in brackets ('[' and ']').3These constructs are only used in this document to de�ne the structure of request and reply strings, they arenot part of the tool/monitor-interface itself. 58

NULLNULL

NULL

"p_1,p_2,p_3"

"p_4"

OMIS_OK

OMIS_OK

"10, 0.37"

"35, 1.326"

"10, 0.37"

"10, 0.37"OMIS_OK

OMIS_OK

NULL

"" OMIS_OK NULL

NULL

"" OMIS_OK NULL

NULL

"" OMIS_OK NULL

"35, 1.326"OMIS_OK

NULL

NULL

"p_1,p_2"

"p_3"

"p_4"

"t_123,t_23"

NULL

NULLOMIS_OK

OMIS_OK"p_3"Figure 7.2: Two possible replies for an unconditional request without errors

""

""

NULL

OMIS_OS_ERROR

OMIS_OK

OMIS_OK

OMIS_OK

OMIS_PARAMETER_ERROR

OMIS_OK NULL

NULL

NULL

NULL

"p_1,p_3"

NULL

NULL

"10, 0.37"

"Exec format error"

"35, 1.326"

"p_2"

"p_4"

"t_324"

Figure 7.3: Reply for an unconditional request with errors
59

OMIS_OK

NULL

"donald""n_5"

a) reply for definition:

b) reply for enable (analogous for disable/delete):

NULL

"" OMIS_OK

NULL

""

NULL
NULL

NULL

"" OMIS_OK

NULL

"" OMIS_DEFINED "c_123"

NULL
NULL

OMIS_ENABLED NULL

OMIS_TRIGGERED NULL

NULL

NULL

c) reply when event has been detected:

"p_21"

Figure 7.4: Replies for a conditional requestThe return type given in the prototype speci�es the result of the service for a single object,i.e. the information contained in the result �eld of a single Omis object result structure inthe service's reply.A simple example will clarify this: Assume the following de�nition of a synchronous service:struct {string name;integer state;integer priority;floating cpu_time;}proc_get_info (token* proc_list, integer flags);This says that proc get info has two input parameters, the �rst one is a (probably empty) listof tokens, the second one is a single integer. For each object, i.e. process the service operates on,a string consisting of four comma-separated elements is returned, where element 1 is a quotedstring, elements 2 and 3 are integers and elements 4 is a
oating point number. Therefore, acorrect request for this service could be:proc_get_info([p_31,p_45,p_54], 5) 60

NULL

OMIS_OK

NULL

""

NULL
NULL

OMIS_ENABLED NULL

"p_32"Figure 7.5: Reply for a conditional request when new object is monitoredA valid reply could look as shown in Fig. 7.6.
NULL

NULL

OMIS_OK

OMIS_OK

OMIS_OK

"\"foo\",12,0,12.7"

"\"bar\",1,10,0.65"

"\"foo\",9,0,1.1e4"

NULL

"" OMIS_OK NULL

"p_31"

"p_45"

"p_54"Figure 7.6: Reply exampleA few synchronous services return results where some components are optional. In this case,the elements are placed in square brackets in the type de�nition. An input parameter of theservice then determines which components will actually be present. The real proc get infoservice is of this type, i.e. the de�nition of this service really looks more like:struct {[string name;] // present if bit 0 is set in flags[integer state;] // present if bit 1 is set in flags[integer priority;] // present if bit 2 is set in flags[floating cpu_time;] // present if bit 3 is set in flags}proc_get_info (token* proc_list, integer flags);This means that all components of proc get info are optional. The
ags parameter is a bit-vector that determines which of them will be present in the result. For example, the reply forthe requestproc_get_info([p_31,p_45,p_54], 5)could be (since bits 0 and 2 are set in
ags) as in Fig. 7.7.Notice that due to the �ltering, the replies for the processes with tokens p 31 and p 54 arenow the same, so they have been uni�ed to a single reply string. However, this behavior is notrequired, i.e. it is also allowed that separate (identical) replies are generated.Event services always have only a status value as their normal result, which is returned whena conditional service is de�ned, enabled, disabled or deleted. However, event services also havean additional type of results, namely the parameters that can be accessed by the actions whena matching event is detected. To de�ne the types of these results, we use a notation that lookslike this: 61

NULL

"" OMIS_OK NULL

NULL

"\"bar\",10"

"\"foo\",0"

NULL

OMIS_OK

OMIS_OK

"p_45"

"p_54,p_31"Figure 7.7: Reply examplevoid proc_has_done_something(token* proc_list, integer param)--> struct {integer first_result;string second_result;integer third_result;}The type of data returned as the normal result of the event service is given in the C-like pro-totype (it is always void since event services return only a status). The so called event contextparameters, which contain information on a detected event, are de�ned as a struct after the -->symbol. These event context parameters can be passed to the actions in the request's action listby specifying $event context parameter name as an input parameter for the action. Note thatevent context parameters are never de�ned as being optional. However, an implementation maychoose not to compute an event context parameter, if it is not used in the action list.

62

Chapter 8Speci�cation of the Basic ServicesIn the following subsections we will present a list of all basic services currently de�ned by OMIS.As you can see from the service descriptions, the goal of OMIS is to de�ne a basis for buildinghigher-level monitoring systems. For instance, OMIS does not include the generation of eventtraces, but it provides a very easy and powerful mechanism for the monitoring of events. Soif you need some kind of event trace, you only have to provide the functions for writing theevents to a peripheral as a distributed tool extension, but you don't have to implement theevent detection. Similar, OMIS services operate on the machine level, i.e. they use addressesor pointers rather than symbolic names for referring to programming objects. Thus, an OMIScompliant monitor is not forced to work with a symbol table generated during compilation ofthe monitored application. But, of course, it is possible to add extensions that make use of thesesymbol tables.8.1 System ObjectsSystem objects are those objects in the monitored system that do not belong to the monitoritself. Currently, we distinguish between� nodes (Section 8.1.1),� processes (Section 8.1.2),� threads (Section 8.1.3), and� messages and message queues (Section 8.1.4).The following section specify the services for these classes of objects. In these sectionswe distinguish between required services that have to be provided by any implementation andoptional services which need not be implemented by an OMIS compliant monitoring system.The services are marked with (R) and (O), respectively. In addition, there are some servicesthat are marked with a (P), denoting that they are partially required, i.e. only some of theservices functionality is required.Additional system objects and services are de�ned in an extension for the PVM programmingmodel (see Chapter 9).8.1.1 NodesOMIS is intended to be usable for a wide range of hardware platforms. The coarse grain model ofthe monitored hardware platform is a set of nodes interconnected by some network. However, anode need not be a single processor. A node may also be a multiprocessor system. The criterion63

to draw the borderline between processors and nodes is that for a user or a programmer nodesare distinguishable from each other, while processors on the same node are not. In other words:nodes are those components of the hardware platform that have a single system image. Thisimplies that processors on the same node have a (at least virtually) shared memory, but thereverse implication is not necessarily true.Manipulation ServicesThe services in this section of course do not manipulate the hardware, but change the monitoredhardware system by adding or removing nodes to be monitored. These services not only allowan incremental start-up of the monitoring system, but also provide support for programmingenvironments that allow applications to extend the set of nodes they are currently executing on.An application thread may extend the set of nodes either explicitly, as in PVM, where it mustuse a library call pvm addhosts, or implicitly by creating a process on a node not used before.In any case, this event can be monitored using the thread adds node service. By using theservices speci�ed below, the monitoring system can be programmed to automatically extenditself to the new nodes.Likewise, an application's node set may also shrink due to an explicit request from anapplication thread (e.g. by calling pvm delhosts). This event can be monitored using thethread removes node service. An action associated with that event may detach the monitor-ing system from that node.1. node attach : attach to a node. (O)voidnode_attach(token* node_list)Calling this service results in the monitoring system attaching itself to the nodes speci�edin node list. The node token(s) required as an argument may be obtained from theevent context parameters of node has been added, from a service in an extension (e.g.pvm vm get nodelist), or from some other OMIS based tool, using a communicationmechanism outside the scope of OMIS. Note that there is also a service node attach2 toattach to a node speci�ed by its name.This is the only service that may legally receive a token of an unattached node as itsparameter. If the node is already attached, the service does nothing.2. node attach2 : attach to a new node. (O)tokennode_attach2(string node_name)Calling this service results in the monitoring system attaching itself to a new node speci�edby its name. The exact meaning of node name's contents is platform dependent. Usually,the string will either contain an internet address (for workstation clusters) or a nodenumber (for parallel computers). If the node is already attached, the service does nothing.Note that since the service is a constructor in the sense of object oriented programming,it does not operate on node tokens although it is a node service.3. node detach : detach from a node. (O)voidnode_detach(token* node_list) 64

Calling this service results in the monitoring system detaching itself from the nodes spec-i�ed in node list and in turn also from all processes located on these nodes. Note, thatconditional requests de�ned for the detached objects will not be deleted automatically {the events simply will no longer be detected. Any subsequent service request (other thannode attach or node attach2) for a detached node will result in an error.Information ServicesCurrently, there is only a single service that returns static and dynamic information on the nodesto which the monitoring system is attached:1. node get info : Return information on a node. (P)typedef struct { // Information on network linkstring net_type; // Type of network interface, e.g. Ethernet,// ATMstring net_ipaddr; // IP address of the node in this networkinteger net_bandwidth; // Vendor defined total network bandwidth// (in KBytes/s)floating net_bench; // Relative network performance measured// by some implementation specific// loopback benchmark} netinfo;typedef struct { // Static node information// These components are present if bit 0// is set in flags://[string name;] // Name of this node. Usually, this is the// host name (R)// These components are present if bit 1// is set in flags://[string os_name;] // Name of node's operating system (R)[string os_version;] // OS version (R)[string os_release;] // OS release (R)[string os_nodename;] // Host name of this node (R)[integer os_boottime;] // OS boot time in seconds since Jan. 1st,// 1970, 0:00 (O)// These components are present if bit 2// is set in flags://[string cpu_arch;] // CPU architecture (R)[integer cpu_num;] // Number of installed CPUs on this// node (R)[integer cpu_maxproc;] // Max. number of processes on this node// (O)65

[integer cpu_clock;] // CPU clock frequency (in MHz) (O)[floating cpu_intbench;] // Relative integer performance measured// by some implementation specific// benchmark (O)[floating cpu_fpbench;] // Relative floating point performance// measured by some implementation// specific benchmark (O)// These components are present if bit 3// is set in flags://[integer mem_numpages;] // Number of physical memory pages (O)[integer mem_pagesize;] // Size of a page in Bytes (O)[floating mem_bench;] // Relative memory performance measured by// some implementation specific// benchmark (O)// These components are present if bit 4// is set in flags://[integer dsk_num;] // Number of local disks (O)[integer dsk_size;] // Total size of disk space (in pages of// size mem_pagesize) (O)[integer dsk_tmpsize;] // Total size of tmp disk space (in// pages) (O)[integer dsk_swapsize;] // Total size of swap space (in pages) (O)[floating dsk_bench;] // Relative disk performance measured by// some implementation specific// benchmark (O)// These components are present if bit 5// is set in flags://[integer net_numlinks;] // Number of high-speed network links (O)[netinfo* net_info;] // Additional information for each network// link. The number of entries in this// list equals net_numlinks (O)// These components are present if bit 6// is set in flags://[integer usr_maxlogins;] // Max. number of user logins (O)} Node_static_info;typedef struct { // Dynamic node information// These components are present if bit 7// is set in flags://[integer os_ctxtswitch;] // Number of context switches per66

// second (O)[integer os_execs;] // Number of calls to 'exec' per// second (O)[integer os_syscalls;] // Number of system calls per second (O)// These components are present if bit 8// is set in flags://[integer cpu_rql;] // Length of process run queue (R)[integer cpu_dwj;] // Number of processes waiting for disk// I/O (O)[integer cpu_pwj;] // Number of processes in page wait (O)[integer cpu_slj;] // Number of processes sleeping in// core (O)[integer cpu_swj;] // Number of runnable processes swapped// out (O)[floating cpu_rql1;] // CPU load (run queue length) avaraged// over one minute (R)[floating cpu_rql5;] // CPU load avaraged over 5 minutes (R)[floating cpu_rql15;] // CPU load avaraged over 15 minutes (R)// These components are present if bit 9// is set in flags://[integer mem_freepages;] // Number of free physical memory// pages (O)[integer mem_usedpages;] // Number of used physical memory// pages (O)[integer mem_freeswap;] // Number of free pages in swap area (O)// These components are present if bit 10// is set in flags://[integer vm_swap;] // Total number of process swaps per// second (O)[integer vm_swapin;] // Number of processes swapped in per// second (O)[integer vm_swapout;] // Number of processes swapped out per// second (O)[integer vm_page;] // Total number of paging per second (O)[integer vm_pagein;] // Number of pages paged in per second (O)[integer vm_pageout;] // Number of pages paged out per// second (O)// These components are present if bit 11// is set in flags://[integer dsk_rawrd;] // Number of physical reads to raw disk// device per second (O)[integer dsk_rawwr;] // Number of physical writes to raw disk67

// device per second (O)[integer dsk_nfsrd;] // Number of NFS block reads per// second (O)[integer dsk_nfswr;] // Number of NFS block writes per// second (O)[integer dsk_sysrd;] // Number of 'read' system calls per// second (O)[integer dsk_syswr;] // Number of 'write' system calls per// second (O)// These components are present if bit 12// is set in flags://[integer net_lpkt;] // Number of local packets per second (O)[integer net_fpkt;] // Number of fast packets (ETH, ATM, ...)// per second (O)[integer net_fpktrcv;] // Number of fast packets received per// second (O)[integer net_fpktsnd;] // Number of fast packets sent per// second (O)[integer net_spkt;] // Number of slow packets (Modem, ...)// per second (O)[integer net_spktrcv;] // Number of slow packets received per// second (O)[integer net_spktsnd;] // Number of slow packets sent per// second (O)// These components are present if bit 13// is set in flags://[integer usr_numlocal;] // Number of local user logins (O)[integer usr_localact;] // Is a local user active? (O)[integer usr_numremote;] // Number of remote user logins (O)[integer usr_remoteact;] // Is a remote user active? (O)} Node_dynamic_info;struct {Node_static_info statinfo;Node_dynamic_info dyninfo;}node_get_info(token* node_list, integer flags)Detailed information on nodes is provided by the node get info service. As with theother information services, the bit-vector
ags de�nes which kind of information has tobe retrieved. By calling node get info([],0), the tokens for all nodes currently observedby the monitoring system can be retrieved.The values contained in Node dynamic info, which are measured in some units persecond may be averaged over a couple of seconds. The exact interval used for averaging isimplementation dependent, but should be between one and �fteen seconds.For those components labelled as optional, an implementation should return the value -1or an empty string, if the information is not available on the speci�c target system.68

8.1.2 ProcessesSince OMIS aims at de�ning a very general monitoring interface, it is based on a multithreadedexecution model. In this model, threads are the entities actually executing code, while processesonly serve as a container for threads. The term 'container' indicates the twofold role of a process:It de�nes the execution environment, e.g. the address space, for its threads, but it may also beviewed as an active component de�ned by the union of all its threads. A process cannot existalone; there is always at least one thread in the process. So a process creation always impliesalso a thread creation. Threads executing in the same process share a common address space.This model is applicable to a wide range of platforms. Currently, three di�erent types ofplatforms can be distinguished:1. Platforms without support for multithreading: On these systems, each process containsexactly one thread. The token conversion rules de�ned in Section 7.2.2 allow process andthread tokens to be used interchangeably, so a tool does not have to distinguish betweenthreads and processes.2. Multithreaded, multiprocess platforms: They exactly �t into the process model of OMIS.3. Multithreaded platforms without the notion of a process: There are some platforms thatonly support threads, but don't provide virtual address spaces (e.g. the Parsytec computersrunning the PARIX operating system). On these platforms, a process in the sense of OMISis de�ned by all threads created due to the invocation of a single executable program, andthe memory areas allocated for that program. The service proc get loader info hasbeen provided especially for these platforms.Manipulation ServicesThe following services are provided to manipulate the behavior of processes.1. proc create : create a new process on a node. (O)tokenproc_create(token* node_list, string exec, string* argv,string* envp, string* io)The proc create service creates a new process (e.g. a PVM task) on each node innode list and returns its process token. The monitoring system automatically attaches tothe process, which is created in a stopped state, so you have to use the thread continueservice to start it. The parameter exec de�nes the executable's path name, argv is thevector of command line arguments (not including the name of the executable again).envp is a list of strings de�ning the environment seen by the new process. Each stringconsists of the name of an environment variable, immediately followed by a '=' sign andthe value of that variable. If envp is the empty list, the process inherits the environmentfrom the monitoring system.io is a list of strings de�ning �le names used to redirect the standard IO-streams of the newprocess. The �rst element in io de�nes the �le to be used for the process' �rst IO-stream(stdin for C/UNIX), the second element for the next IO-stream and so on. An emptystring denotes that the corresponding stream will not be redirected, i.e. will be inheritedfrom the monitoring system. If io is the empty list, no IO-stream will be redirected.This service is optional, since some programming libraries (e.g. MPI-1) do not allow pro-cesses to be created dynamically. Note that since the service is a constructor in the senseof object oriented programming, it operates on node tokens although it is a process service.69

2. proc attach : attach to a process. (O)voidproc_attach(token* proc_list)The proc attach service attaches the monitoring system to all processes speci�ed inproc list. This may also include attaching the monitoring system to new nodes. The pro-cess token(s) required as an argument may be obtained from the event context parametersof proc has been created, from a service in an extension (e.g. pvm vm get proclist),or from some other OMIS based tool, using a communication mechanism outside the scopeof OMIS. Note that there is also a service proc attach3 to attach to a process speci�edby its local process identi�er on a speci�c node.This is the only service that may legally receive a token of an unattached process as itsparameter. If the process is already attached, the service does nothing.Attaching to a process implies attaching to all existing and future threads of that pro-cess. The rationale for this behavior is as follows: Thread creation should be an extremelylightweight operation. Forcing an explicit attach operation for each thread would resultin an unacceptable overhead. In addition, in virtually all multithreaded systems, a stan-dard implementation of a monitoring system will result in an automatic attachment to allthreads in an attached process, so de�ning that new threads are unattached by defaultwould put a huge burden on OMIS implementations. Finally, threads share a commonexecution environment, while processes do not, so it may be even more natural to regardthem as a unit for the purpose of monitoring, although the di�erent handling of processesand threads may seem to be inconsistent.3. proc attach3 : attach to a process on a node. (O)tokenproc_attach3(token* node_list, integer pid, string exec)The proc attach3 service attaches the monitoring system to the process given by itslocal identi�er pid on each node in node list. Note that for operating systems like UNIXspecifying a node list with more than one node may be not useful, nevertheless, a tokenlist is used as a parameter for conistency reasons.exec speci�es the path to the executable of the process to be attached. This information isneeded to access symbol tables or linker information of the process to be attached. Whenan empty string is passed for exec, the monitoring system will try to determine the pathby itself. Depending on the concrete plattform, this may or may not be possible.Like proc create, this service is a constructor in the sense of object oriented programming,so it operates on node tokens although it is a process service.4. proc detach : detach from a process. (O)voidproc_detach(token* proc_list)The proc detach service detaches the monitoring system from the processes speci�ed inproc list and all of its threads. When a process is detached, it is no longer included inthe set of monitored processes and the monitoring system removes any instrumentation,i.e. any modi�cations done to the process in order to detect events. Note however, that70

conditional requests de�ned for the detached processes will not be deleted automatically| the events simply will no longer be detected. Any subsequent service request (otherthan proc attach or proc attach3) for a detached process will result in an error.5. proc send signal : send a signal to a process. (O)void proc_send_signal(token* proc_list, integer sig)Sends the signal sig to all processes in proc list. According to the Posix semantics ofsignals, the signal may be delivered to an arbitrary thread in each of these processes.6. proc set priority : change priority of a process. (O)voidproc_set_priority(token* proc_list, integer val)Changes the scheduling priority of the processes in proc list to val. On systems wherethere is more than one scheduler, the service refers to the priority de�ned by the parallelprogramming library, which also de�nes the range and semantics of val.The service usually should not allow to raise a process' priority above its initial one,however, if the priority has been lowered using proc set priority it should allow to raiseit to the initial one again. However, the exact behavior can be platform dependent.7. proc write memory : : : : : : : : : : : : : : : : : : write into the memory of a process. (R)voidproc_write_memory(token* proc_list, integer addr,integer blocklength, integer stride, integer* val)Writes the contents of the integer list val into the memory of all processes de�ned byproc list. val contains the raw data to be written, i.e. a list of Bytes; the monitoringsystem does not perform any processing (e.g. byte swapping) of this data. The data willbe written in contiguous blocks of Byte-size blocklength, where the address of the �rstblock is addr and stride is the separation between the start of two subsequent blocksin Bytes. Thus, the �rst blocklength Bytes in val will be written to addresses addr... addr+blocklength�1, the next blocklength Bytes to addresses addr+stride ...addr+stride+blocklength�1 and so on. stride must not be smaller than blocklength.8. proc write memory bin : : : : : : : : : : : : : write into the memory of a process. (O)voidproc_write_memory_bin(token* proc_list, integer addr,integer blocklength, integer stride, binary val)This service is identical to proc write memory with the exception that it expects thedata to be written in a binary format.9. proc migrate : migrate a process to another node. (O)voidproc_migrate(token* proc_list, token node)71

This service migrates all of the processes de�ned by proc list to an other node, which isgiven by its node token.10. proc checkpoint : save checkpoint of a process. (O)voidproc_checkpoint(token* proc_list, string name)Creates a consistent checkpoint of all processes in proc list and saves it to disk. nameis an identi�er for this checkpoint used for a later restore. The format of the checkpoint�le(s) and the way they are stored on disk(s) is implementation dependent.11. proc restore : restore a process from a checkpoint. (O)struct {token* procs; // the process tokens of the restored processesinteger num_procs; // number of processes restored}proc_restore(string name)Restores a set of processes from a previously saved checkpoint with the identi�er name.The processes will be restored on their original hosts, but they will get new process tokens.The list of these tokens is returned as the result of the service. The monitoring systemwill automatically attach to all of these processes..Information ServicesThe following services can be used to obtain information on an application's processes:1. proc get info : get information on processes. (P)typedef struct { // Static info. Independent of time.//// Required components://[integer global_id;] // Global id of this process, as// defined by the programming library// used, e.g. the PVM task id// present if bit 0 is set in flags[string* argv;] // Argument vector,// i.e. pathname and parameters// present if bit 1 is set in flags//// Optional components://[integer uid;] // ID of the user owning this process// present if bit 2 is set in flags[integer gid;] // ID of the group owning this process// present if bit 3 is set in flags[string* user_argv;] // Argument vector provided by the// user at start of this process. It may// differ from argv if the programming72

// library removes or adds options when// starting a process.// present if bit 4 is set in flags[string* envp;] // Environment of this process.// See proc_create for a description.// present if bit 5 is set in flags[token parent;] // Token of the process' parent process// present if bit 6 is set in flags[token message_queue;] // Token of the process' (logical)// message queue if the process' threads// share a single queue, undefined token// otherwise (see message services). See// the section on message queues for a// discussion.// present if bit 7 is set in flags} Proc_static_info;typedef struct { // Dynamic info. Changes over time.// All times are returned in seconds,// all sizes in Bytes.//// Required components://[token node;] // Token of the node where this// process is located.// Note that this may be dynamic due// to process migration.// present if bit 8 is set in flags[integer local_id;] // Local id of this process,// e.g. UNIX pid.// Note that this may be dynamic due// to process migration.// present if bit 9 is set in flags[integer scheduling_state;] // Current scheduling state:// 0: running, 1: sleeping/blocked,// 2: ready/runnable, 3: zombie,// 4: stopped/suspended// present if bit 10 is set in flags[floating total_time;] // Sum of user and system time of the// process since it started// present if bit 11 is set in flags//// Optional components://[integer priority;] // Current scheduling priority// see proc_set_priority// present if bit 12 is set in flags[floating system_time;] // System time of the process since// it started// present if bit 13 is set in flags73

[integer memory_size;] // Current process size// present if bit 14 is set in flags[integer resident_size;] // Amount of main memory currently used// present if bit 15 is set in flags[integer max_resident_size;] // Maximum amount of main memory used// since process started// present if bit 16 is set in flags[integer int_resident_size;] // Integral of main memory size used// since process started// (unit: Bytes * seconds)// present if bit 17 is set in flags[integer minor_page_faults;] // Number of page faults since process// started that did not require physical// I/O// present if bit 18 is set in flags[integer major_page_faults;] // Number of page faults since process// started that did require physical I/O// present if bit 19 is set in flags[integer swaps;] // Number of times the process has been// swapped out of main memory since it// started// present if bit 20 is set in flags[integer file_input;] // number of file inputs since process// started// present if bit 21 is set in flags[integer file_output;] // number of file outputs since process// started// present if bit 22 is set in flags[integer vol_cont_switch;] // number of voluntary context switches// since process started// (e.g. wait for resource)// present if bit 23 is set in flags[integer invol_cont_switch;] // number of involuntary context// switches since process started// (time slice exceeded)// present if bit 24 is set in flags} Proc_dynamic_info;struct {Proc_static_info statinfo;Proc_dynamic_info dyninfo;}proc_get_info(integer* proc_list, integer flags)Detailed information about a set of processes can be obtained by the proc get info ser-vice. proc list de�nes the processes that have to be inspected. The second parameter
ags is a bit set that allows to mask each kind of information individually. E.g. if
ags isequal to 514 (0x202), the processes' argv vector (i.e. name and command line parameters,bit 1) and their node local identi�ers (bit 9) will be returned. So it is possible to get allrelevant process information with a single service request, but still a monitoring systemonly needs to retrieve the information that is really needed.74

When specifying proc get info([],0), no further information about processes is returned.However, the reply will contain a full expansion of the empty process list, i.e. will providethe tool with the tokens of all monitored processes.2. proc read memory : read the memory of a process. (R)integer*proc_read_memory(token* proc_list, integer addr,integer blocklength, integer stride, integer count)For each process in proc list, this service reads count contiguous memory blocks fromthe process' memory and returns the contents as a list of bytes. The result is a rawmemory image, i.e. a sequence of Byte values; the monitoring system does not performany processing (e.g. Byte swapping) of this data. Each memory block read is of Byte-sizeblocklength, addr is the address of the �rst block, and stride is the separation betweenthe start of two subsequent blocks in Bytes. Thus, the �rst blocklength Bytes of theresult will be read from addresses addr ... addr+blocklength�1, the next blocklengthBytes from addresses addr+stride ... addr+stride+blocklength�1 and so on. stridemust not be smaller than blocklength.3. proc read memory bin : read the memory of a process. (O)binaryproc_read_memory_bin(token* proc_list, integer addr,integer blocklength, integer stride, integer count)This service has exactly the same semantics as proc read memory, however, it returnsits result in a binary format.4. proc get loader info : : : : : : : : : : : return the loader information of a process. (P)typedef struct {string path_name; // The (full) path name of that load modulestring member_name; // Member name, if module is an archiveinteger code_start; // Start address of code segmentinteger code_len; // Length of code segment in Bytesinteger data_start; // Start address of data segmentinteger data_len; // Length of data segment in Bytesinteger bss_start; // Start address of BSS segmentinteger bss_len; // Length of BSS segment in Bytes} Loader_info;struct {integer num_load_modules; // Number of load modulesLoader_info* loader_info; // loader info for each load module}proc_get_loader_info(token* proc_list)On some parallel computers, e.g. the Parsytec GC/PowerPlus running PARIX, programsare relocated when they are loaded by the operating system. Debuggers therefore needto know the start addresses and the lengths of the program's segments. The serviceproc get loader info returns this information for each load module of a process contained75

in proc list. This service may also be used with operating systems where code (e.g.libraries) can be loaded dynamically.The �rst element in the loader info list will contain the information on the process' mainmodule (i.e. the statically linked part of its executable). Any implementation must atleast provide this part of the information; additional list elements providing informationon dynamically loaded libraries are optional. If the target system does not relocate thecode of a process (as it is the case with UNIX), a result with all start addresses equal tozero and all lengths equal to the total address space of the target system is permissible.Event ServicesThe following services notify the caller on certain events related to the monitored processes.When one of these events is detected, all threads in the process that generated the event aretemporarily suspended until all action lists associated with the event have been executed.Note that only the service speci�c event context parameters are speci�ed in this section. Thecommon event context parameters contain further information on the detected event, especiallythe tokens of the node and process where the event occurred.1. proc has terminated : A process has terminated. (R)voidproc_has_terminated(token *proc_list)--> void // no service specific event context parametersEvent proc has terminated is raised when a process in proc list has terminated. Thereis no guarantee that the process is still accessible when the event is detected. However,implementations should try to detect this event before the process becomes inaccessible,whenever possible.2. proc has been stopped : : : : : : : : : : : : : : : A process has been stopped by themonitoring system. (R)voidproc_has_been_stopped(token *proc_list)--> void // no service specific event context parametersThis event is raised when all threads of a process in proc list have been stopped by themonitoring system (using the thread stop service).3. proc has been continued : : : : : : : : : : : A process has been continued by themonitoring system. (R)voidproc_has_been_continued(token* proc_list)--> void // no service specific event context parametersThis event is raised when all threads of a process in proc list has been continued againby the monitoring system (using the thread continue service).4. proc has been scheduled : Process has been scheduled. (O)
76

voidproc_has_been_scheduled(token *proc_list)--> void // no service specific event context parametersOn machines where process scheduling is observable, this event is raised each time a processin proc list is scheduled by the operating system, i.e. it gets the CPU for one time-slice.5. proc has been descheduled : : : : : : : : : : : : : : : Process has been descheduled. (O)voidproc_has_been_descheduled(token *proc_list)--> void // no service specific event context parametersOn machines where process scheduling is observable, this event is raised each time a processin proc list is descheduled by the operating system, i.e. releases the CPU, either since itstime-slice elapsed or the process voluntarily blocked for some reason.6. proc will be migrated : : : : : : : : : : : : : : : : : A process is going to be migrated. (O)voidproc_will_be_migrated(token* proc_list)--> struct {integer dest_node; // destination node of migration}This event will be raised before the system is going to migrate a process in proc list. Theevent context parameters include the process' destination node. This service allows a toolto perform some cleanup work before a process is migrated.7. proc has been migrated : : A process has been migrated to another node. (O)voidproc_has_been_migrated(token* proc_list)--> void // no service specific event context parametersThis event is raised, after a process in proc list has been migrated to another node. Thisservice allows a tool to perform some initialization work after a process has been migrated.

77

8.1.3 ThreadsThreads are the only objects in the monitored system that actually execute code. See Sec-tion 8.1.2 for a discussion of the relation between threads and processes.Manipulation ServicesThe following services are provided to manipulate the behavior of threads. Note that there areno services to attach to a thread, since threads are automatically attached. See proc attachfor a rationale.1. thread detach : detach from a thread. (O)voidthread_detach(token* thread_list)The thread detach service detaches the monitoring system from the threads speci�ed inthread list. When a thread is detached, it is no longer included in the set of monitoredthreads. Note however, that conditional requests de�ned for the detached threads will notbe deleted automatically { the events simply will no longer be detected. Any subsequentservice request for a detached thread will result in an error.Note that there is no way to re-attach to the detached thread, except for detaching andre-attaching the thread's process. The rationale for this service is that some programminglibraries create threads for their internal usage, which should not be in
uenced by themonitoring system. Thus, it should be possible to detach from these threads.2. thread stop : stop a thread. (P)voidthread_stop(token* thread_list)This service stops all threads speci�ed by thread list. This is achieved by putting eachthread into a stopped state, where it no longer gets any CPU cycles. From this state,the thread can only be released with the thread continue service. The operation isidempotent, i.e. invoking it on an already stopped thread will in no way change the thread'sstate.Every implementation of OMIS must provide the ability to stop all threads of a process.Stopping individual threads of a process is an optional feature.3. thread continue : continue a thread. (P)voidthread_continue(token* thread_list)This service removes all threads speci�ed by thread list from the stopped state. Theoperation is idempotent, i.e. invoking it on a thread that is not stopped will in no waychange the thread's state. Note that the thread only starts executing again when thereis no other reason preventing its execution (e.g. it may still be suspended due to a callto thread suspend or because action lists associated with an event that occured in thisthread are executed).Every implementation of OMIS must provide the ability to continue all threads of a process.Continuing individual threads of a process is an optional feature.78

4. thread suspend : temporarily suspend a thread. (R)voidthread_suspend(token* thread_list)This service suspends all threads speci�ed by thread list. Like thread stop, the threadsare put into a suspended state where they no longer get any CPU cycles. However, the sus-pended state is logically di�erent from the stopped state, i.e. a suspended thread cannot beresumed with thread continue. Furthermore, thread suspend is not idempotent, i.e.there is a suspend count which means that a thread suspended twice must also be resumedtwice. Finally, when threads are to be suspended, thread suspend may actually preventan arbitrary superset of these threads from executing, provided that the implementationguarantees that they will again get the CPU when there is no longer any thread in thesuspended state.The rationale for having both thread stop / thread continue and thread suspend /thread resume is the di�erent use of these services. thread stop and thread continueare used e.g. for debugging when a thread has to be stopped for a longer period of time (vis-ible for the user of a tool and for other tools), while thread suspend and thread resumeare used e.g. to ensure that the state of some threads do not change during the executionof an action list or a sequence of unconditional requests (invisible for the user of a tooland for other tools). Since on some platforms suspending a single thread may be extremlycomplicated if not impossible, an implementation is free to suspend more than the speci-�ed threads, e.g. all threads in the same process. High quality implementations should ofcourse try to be as little intrusive as possible.5. thread resume : resume a thread. (R)voidthread_resume(token* thread_list)This service decrements the suspend count for all threads speci�ed by thread list. Whenthe count is zero for a thread, that thread is removed from the suspended state. However,an implementation is free to still prevent these threads from executing until there is nolonger any thread in a suspended state. In any case, execution of the thread may still beprevented by a previous call to thread stop or the execution of an action list associatedwith an event in that thread.See thread suspend for a rationale.6. thread send signal : send a signal to a thread. (O)voidthread_send_signal(token* thread_list, integer sig)On systems that allow signals to be sent to individual threads, this service sends the signalsig to all threads in thread list.7. thread set priority : change priority of a thread. (O)voidthread_set_priority(token* thread_list, integer val)79

On systems providing a priority based thread scheduling, this service changes the schedul-ing priority of the threads in thread list to val.8. thread write int regs : : : : : : : : : : : : : : write into a thread's integer registers. (R)voidthread_write_int_regs(token* thread_list, integer reg, integer* val)Writes the values in val into the integer registers reg, reg+1, ... of all threads speci�ed inthread list. The register numbers and their bit-length depend on the node architecture;they are de�ned in the node processors' ABI (Application Binary Interface).9. thread write fp regs : : : : : : : : write into a thread's
oating point registers. (R)voidthread_write_fp_regs(token* thread_list, integer reg, floating* val)Writes the values in val into the
oating point registers reg, reg+1, ... of all threadsspeci�ed in thread list. The register numbers and their bit-length depend on the nodearchitecture; they are de�ned in the node processors' ABI (Application Binary Interface).10. thread goto : set the PC of a thread. (O)voidthread_goto(token* thread_list, integer addr)Sets the program counter (PC) of the threads speci�ed by thread list to the value addr.On some processors (e.g. Sparc) this also includes initialization of pipeline registers. Theservice has the e�ect of executing a jump instruction to that address in the current contextof the speci�ed threads. Note that this service only manipulates the threads' programcounter, it does not continue the threads if they are stopped.11. thread call : save and set the PC of a thread. (O)voidthread_call(token* thread_list, integer addr)Like thread goto, this service sets the program counter (PC) of the threads speci�ed bythread list to the value addr. However, it �rst saves the current PC (i.e. the returnaddress) in a way conforming to the node processors' calling conventions, e�ectively per-forming a subroutine call in the current context of the speci�ed threads. The tool mustensure that the proper parameters for the called subroutine (if any) are already loaded intothe proper registers and/or memory locations. Note that this service only manipulates thethreads' registers and stack, it does not continue the threads if they are stopped.Information ServicesThe following services can be used to obtain information on an application's threads:1. thread get info : get information on threads. (P)
80

typedef struct { // Static info. Independent of time.//// Required components://[token process;] // Token of the process containing// this thread// present if bit 0 is set in flags[integer global_id;] // Global id of this thread, as// defined by the programming library// used// present if bit 1 is set in flags//// Optional components://[integer root_funct;] // Address of the thread's root function// present if bit 2 is set in flags[token parent;] // Token of the thread's parent thread// present if bit 3 is set in flags[token message_queue;] // Token of the thread's (logical)// message queue, if threads in the same// process have separate queues,// undefined token otherwise. See// the section on message queues for a// discussion.// present if bit 4 is set in flags[integer stack_size;] // Stack size of the thread// present if bit 5 is set in flags} Thread_static_info;typedef struct { // Dynamic info. Changes over time.// All times are returned in seconds,// all sizes in Bytes.//// Required components://[token node;] // Token of the node where this// thread is located.// Note that this may be dynamic due// to process/thread migration.// present if bit 6 is set in flags[integer local_id;] // Local id of this thread, as defined// by the node operating system.// Note that this may be dynamic due// to process/thread migration.// present if bit 7 is set in flags[integer scheduling_state;] // Current scheduling state:// 0: running, 1: sleeping/blocked,// 2: ready/runnable, 3: zombie,// 4: stopped/suspended// present if bit 8 is set in flags81

[floating total_time;] // Sum of user and system time of the// thread since it started// present if bit 9 is set in flags//// Optional components://[integer priority;] // Current scheduling priority// see thread_set_priority// present if bit 10 is set in flags[floating system_time;] // System time of the thread since// it started// present if bit 11 is set in flags} Thread_dynamic_info;struct {Thread_static_info statinfo;Thread_dynamic_info dyninfo;}thread_get_info(token* thread_list, integer flags)Detailed information about a set of threads can be obtained by the thread get infoservice. thread list de�nes the threads that have to be inspected. The second parameter
ags is a bit set that allows to mask each kind of information individually. E.g. if
ags isequal to 5, for each thread the address of its root function (i.e. the address of the top levelfunction executed by that thread) and the token of the process containing that thread willbe returned. So it is possible to get all relevant thread information with a single servicerequest, but still a monitoring system only needs to retrieve the information that is reallyneeded.When specifying thread get info([],0), no further information about threads is returned.However, the reply will contain a full expansion of the empty thread list, i.e. will providethe tool with the tokens of all attached threads in the monitored processes.2. thread get backtrace : : : : determine a thread's procedure stack backtrace. (R)typedef struct {integer pc; // Program counter / return addressinteger fp; // Frame pointer} Stack_element;struct {integer num_frames;Stack_element* stack;}thread_get_backtrace(token* thread_list, integer depth)The service thread get backtrace returns the current procedure stack backtrace of allthreads speci�ed by thread list. The backtrace consists of a list of pairs for each activeprocedure invocation. Each pair contains the procedure's frame pointer and the currentexecution address in that procedure. The record for the most recent procedure invocationis returned as the �rst element of the list. The parameter depth determines the maximumdepth of the backtrace, i.e. at most the �rst depth entries of the backtrace will be returned.If depth is zero, the complete backtrace will be returned. This service is mainly used fordebugging or performance analysis based on sampling.82

3. thread read int regs : : : : : : : : : : : : : : : : : : : read integer registers of a thread. (R)integer*thread_read_int_regs(token *thread_list, integer reg, integer num)Reads num integer registers starting at register reg in each of the threads speci�ed bythread list and returns their contents. The register numbers and their bit-length dependon the node architecture; they are de�ned in the node processors' application binaryinterface (ABI).4. thread read fp regs : : : : : : : : : : : : : : read
oating point registers of a thread. (R)floating*thread_read_fp_regs(token *thread_list, integer reg, integer num)Reads num
oating point registers starting at register reg in each of the threads speci�edby thread list and returns their contents. The register numbers and their bit-lengthdepend on the node architecture; they are de�ned in the node processors' applicationbinary interface (ABI).Event ServicesThe following services notify the caller on certain thread related events that occur in the mon-itored application. When one of these events is detected, the thread that generated the eventwill be temporarily suspended until all action lists associated with the event have been executed.When this thread is suspended, most implementations will at the same time also suspend allother threads within the same process, since this is the default behavior of the underlyingoperating system mechanisms. However, OMIS does not guarantee this behavior, since thereare platforms where it cannot be achieved. Since threads use a common memory, this resultsin a chance that other threads change the memory contents before or while the action listsare executed. To avoid this behavior, enclose the action list in a thread suspend($proc) /thread resume($proc) pair. A high quality implementation should try to stop all thread inthe process as soon as possible in this case, thus reducing (but not totally eliminating) thisproblem.Note that only the service speci�c event context parameters are speci�ed in this section. Thecommon event context parameters contain further information on the detected event, especiallythe tokens of the node, process and thread where the event occurred.1. thread adds node A thread adds a new node to its application's node set. (O)voidthread_adds_node(token* thread_list)--> struct {token new_node; // token of the node that is being added}The service thread adds node reports when a thread in thread list adds a processingnode to its application's node set. The event is raised before the thread can perform anyoperations concerning the new node (e.g. start a process). The event context parameternew node contains the token of the new node. Thus, node attach may be used in theaction list to attach the monitoring system to that node.83

2. thread removes node A thread removes a new node from its application's node set.voidthread_removes_node(token* thread_list)--> struct {token rem_node; // token of the node that is being removed}The service thread removes node reports when a thread in thread list removes a pro-cessing node from its application's node set. The event is raised before the node is actuallyremoved. Note that depending on the target platform, the monitor on the node may bekilled when the node is removed, so the actions attached to this event service in a condi-tional request are the last services that can be safely executed for that node. Usually, theactions will include a node detach service.3. thread creates proc : A thread creates a new process. (O)voidthread_creates_proc(token* thread_list)--> struct {token new_proc; // token of the process that is being created}The service thread creates proc reports when a thread in thread list creates a newprocess. The event is raised immediately before the initial thread of the new processstarts its execution. The event context parameter new proc contains the token of thenew process. Thus, proc attach may be used in the action list to attach the monitoringsystem to that process.If the programming model of the monitored thread allows to create processes on a remotenode without a need to �rst explicitly add this node to the application's node set (as it hasto be done for instance in PVM), the creation of a process on a node not yet used beforewill �rst raise a thread adds node event, followed by a thread creates proc event.The thread creates proc is only guaranteed to be raised when the thread creates theprocess by 'legal' means of the programming library used. This means that if e.g. a PVMtask creates a new process via a fork system call, process creation may not be detected.4. thread creates thread : A thread creates a new thread. (O)voidthread_creates_thread(token* thread_list)--> struct {token new_thread; // token of the thread that is being created}The service thread creates thread reports when a thread in thread list creates a newthread. The event is raised immediately before the new thread starts its execution. Theevent context parameter new thread contains the token of the new thread. Note that ifthe thread is created in an already attached process, the monitoring system will automat-ically attach to the new thread. See proc attach for a rationale.This event is also raised for the initial thread of a new process. Thus, if both eventsare monitored and a thread creates a new process, �rst thread creates process will beraised, followed by thread creates thread.84

5. thread has terminated : A thread has terminated. (R)voidthread_has_terminated(token* thread_list)--> void // no service specific event context parametersEvent thread has terminated is raised when a thread in thread list has terminated.There is no guarantee that the thread is still accessible when the event is detected.6. thread received signal : A thread received a signal. (O)voidthread_received_signal(token *thread_list, integer *sig_list)--> struct {integer sig; // signal number}This event is raised whenever a thread in thread list received a signal in sig list. Itprovides the signal number as an additional event context parameter.7. thread has blocked : A thread has blocked. (O)voidthread_has_blocked(token* thread_list)--> void // no service specific event context parametersThis event is raised when a thread in thread list has blocked e.g. in a blocking commu-nication or synchronization call.8. thread has been unblocked : : : : : : : : : : : : : : : A thread has been unblocked. (O)voidthread_has_been_unblocked(token* thread_list)--> void // no service specific event context parametersThis event is raised when the blocking condition (e.g. due to a communication or synchro-nization call) of a thread in thread list has been removed again.9. thread has been stopped : : : : : : : : : : : : : A thread has been stopped by themonitoring system. (R)voidthread_has_been_stopped(token* thread_list)--> void // no service specific event context parametersThis event is raised when a thread in thread list is stopped by the monitoring system(using the thread stop service).10. thread has been continued : : : : : : : : : A thread has been continued by themonitoring system. (R)voidthread_has_been_continued(token* thread_list)--> void // no service specific event context parameters85

This event is raised when a thread in thread list is continued by the monitoring system(using the thread continue service).11. thread has been scheduled : : : : : : : : : : : : : : : : : Thread has been scheduled. (O)voidthread_has_been_scheduled(token *thread_list)--> void // no service specific event context parametersOn machines where thread scheduling is observable, this event is raised each time a threadin thread list is scheduled by the operating system, i.e. it gets the CPU for one time-slice.12. thread has been descheduled : : : : : : : : : : : : : Thread has been descheduled. (O)voidthread_has_been_descheduled(token *thread_list)--> void // no service specific event context parametersOn machines where thread scheduling is observable, this event is raised each time a threadin thread list is descheduled by the operating system, i.e. releases the CPU, either sinceits time-slice elapsed or the thread voluntarily blocked for some reason.13. thread reached addr : : : : : : : : : : : : : : A thread reaches a given code address. (R)voidthread_reached_addr(token* thread_list, integer address)--> void // no service specific event context parametersThe event is raised whenever a thread in thread list is about to execute the machine in-struction at the given address. This service will mainly be used to implement breakpointsfor debugging purposes.14. thread executed insn : : : : : : : : : : : : : : A thread has executed an instruction. (O)voidthread_executed_insn(token *thread_list)--> void // no service specific event context parametersThis event is raised whenever a thread in thread list has �nished execution of a machineinstruction. This service can be used to implement single stepping and execution tracingof threads.15. thread executed insn call : : : : : : : : : : A thread has executed an instruction(call is single instruction) (O)voidthread_executed_insn_call(token *thread_list)--> void // no service specific event context parametersThis event is raised whenever a thread in thread list has �nished execution of a machineinstruction. In contrast to thread executed insn this service regards a subroutine callas a single instruction, i.e. when a thread executes a call instruction, the event is raisednot before the called subroutine returns. The main use of this service is single steppingand execution tracing of threads. 86

16. thread has started lib call : : : : : : : : : : : : A thread has invoked a call to theprogramming library. (R)thread has ended lib call : : : : : : : A thread has returned from a call to theprogramming library. (R)voidthread_has_started_lib_call(token* thread_list, string lib_call_name)--> struct {any par1; // the event context parameters are the inputany par2; // parameters of the library call...}voidthread_has_ended_lib_call(token* thread_list, string lib_call_name)--> struct {any par1; // the event context parameters are the resultany par2; // parameters of the library call...}These events are raised whenever a thread in thread list is calling the speci�ed routine ofthe parallel programming library (e.g. PVM). thread has started lib call is raised justbefore the routine is executed, while thread has ended lib call is raised just after theroutine returns. In both cases, the event is not been raised if the routine has been calledby another routine in the programming library, but only when it has been called directlyby the application code.The services are provided for all routines in the programming library; the value of thelib call name parameter speci�es the routine's name. The service speci�c event contextparameters of these services are the input or output parameters of the called library routine.They are named par1, par2, and so on. The number and the types of these parametersdepend both on the programming library used and the selected library call. They arede�ned in the speci�cation of the extension handling the speci�c programming library.The reason for this two-step approach is to avoid dependencies between the on-line mon-itoring interface speci�cation and the supported programming library. It separates thereal task of these services, namely to detect calls to the programming library, from libraryspeci�c aspects. Moreover, these services could be generated automatically for a speci�cprogramming library from a speci�cation of the library's function prototypes (see knownproblem no. 4 in Chapter 13).17. thread has started sys call : : : : : : : : : : A thread has invoked a system call. (O)end sys call : A thread has returned from a system call. (O)voidthread_has_started_sys_call(token* thread_list, string sys_call_name)--> struct {any par1; // the event context parameters are the inputany par2; // parameters of the system call...} 87

voidthread_has_ended_sys_call(token* thread_list, string sys_call_name)--> struct {any par1; // the event context parameters are the resultany par2; // parameters of the system call...}These events are raised whenever a thread in thread list is calling the speci�ed systemcall of the node operating system. thread has started sys call is raised just before thesystem call is executed, while thread has ended sys call is raised just after the systemcall returns.The services are provided for all system calls of the processing nodes' operating system(s);the value of the sys call name parameter speci�es the name of the system call. The ser-vice speci�c event context parameters of these services are the input or output parametersof the system call. They are named par1, par2, and so on. The number and the types ofthese parameters depend both on the operating system and the selected system call. Theyare de�ned in the speci�cation of the extension handling the speci�c operating system.18. thread has received tagged msg : : : : : : : : : : : : : : : : A thread has received atagged message. (O)voidthread_has_received_tagged_msg(token* thread_list, integer* tag_list)--> struct {token msg; // Token of received messagetoken sender; // Token of thread that sent the messageinteger size; // Size of the messageinteger monitor_tag; // Tag added by the monitoring system}This service reports the receipt of a message by a thread in thread list, i� the messagehas been tagged by the monitoring system and either the tag is contained in tag list ortag list is an empty list. See message tag for more information on message tags.

88

8.1.4 MessagesIn order to support the monitoring of message passing systems, OMIS includes services operatingon messages and message queues. Both messages and message queues are handled as abstractdata structures, i.e. their exact structure and implementation is not visible at the monitoringinterface, since it depends on the particular target platform. Services allowing to constructmessages or to view the contents of a message therefore must be contained in an extension forthat platform.The model of a message passing system used by OMIS is that messages are sent by a threadto a message queue from which they may be read by the receiver. OMIS does not make anyassumption on the relation between that message queue and the receiver. Basically, there arethree possibilities for this relation:1. The message queue may be associated with a single receiver thread. In this case, we havedirect message passing between threads. The message queue belonging to a thread can beobtained via the thread get info service.2. The message queue may be associated with a receiver process. Here, the message is receivedby an arbitrary thread in that process. In this case, proc get info returns the token ofthe message queue associated with a process.3. The message queue may have a mailbox semantics, i.e. any process may read the messagefrom the queue. For such a platform, an extension must provide a service returning themessage queue tokens for the existing mailboxes.On singlethreaded systems, the �rst two cases coincide. The fact that in cases 1 and 2 themodel uses only a single message queue per receiver (thread or process) does not restrict theapplicability of OMIS for systems that have separate queues for e.g. di�erently tagged messagesor messages originating from di�erent senders. In these cases, the di�erent queues can alwaysbe merged into a single (logical) queue, which again can be easily separated into the originalones.Manipulation ServicesThe services in this group will allow to modify message queues and single messages.1. message insert into queue : : : : : : : Insert a message into a message queue. (O)voidmessage_insert_into_queue(token msg, token queue, integer pos)For debugging message passing errors, the service message insert into queue allows toinsert a message msg at a given position pos in a message queue queue. Both messageand message queue are speci�ed by a token. The token of a process' or thread's messagequeue can be determined by the proc get info and thread get info services; the messagetoken is usually taken from the result of the message create service.The parameter pos de�nes the position of the message in the message queue (as returnedby message queue get info) after which the new message will be inserted. If pos is 0,the message is inserted at the beginning of the queue, if pos is -1, the message is insertedat the end of the queue. The service does not duplicate the speci�ed message msg beforeit is inserted into the given queue, so the caller must ensure that the message is not alreadycontained in a message queue. Otherwise, unexpected behavour may result.Each implementation of this service must at least provide the ability to insert a messageat the end of a message queue. 89

2. message queue remove : : : : : : : : Remove a message from a message queue. (O)voidmessage_queue_remove(token queue, token msg)This service removes the speci�ed messagemsg from the given message queue queue (butdoes not destroy the message). If msg is not in queue, an error will be returned. Theservice may be used mainly for debugging message passing errors and for program testing.3. message queue clear : Clear a message queue. (O)voidmessage_queue_clear(token* queue_list)This service deletes all messages from the message queues given in queue list.4. message tag : Add a tag to a message (O)voidmessage_tag(token* msg_list, integer tag)To support debugging of message passing programs, OMIS de�nes services that use a spe-cial message tag. This tag is independent of any message tag de�ned by the programmingmodel. In fact, it is invisible for both the programming library and the application. How-ever, there are monitoring services to set this tag, to read its value and to trigger someactions when a message with a given monitor tag is received.This tag may be used for di�erent purposes. For example, during debugging, the user maybe interested in how a message that is sent by a process is processed by another one. Bytagging the message, the monitoring system can stop the receiver, when it receives exactlythat message, regardless of the number of preceding messages in the receiver's messagequeue. When the receiver is stopped, the user can examine how the message is processed,e.g. by single stepping. In addition, tags can also be used to implement distributed eventdetection.The message tag service puts the speci�ed tag (which must be di�erent from 0) intothe messages speci�ed by their tokens in msg list. It will mainly be used as an actionin combination with a thread has started lib call event for a 'send' library call thatprovides the message token as an event context parameter.5. message create : Create a new message. (O)tokenmessage_create()This service creates a new message and returns the message token. The message maythen be initialized withmessage copy or with a service provided by an extension for thespeci�c programming library.6. message copy : Copy a message. (O)voidmessage_copy(token src, token dst)90

This service copies the message speci�ed by src into the (existing) message speci�ed bydst.7. message destroy : Destroy a message. (O)voidmessage_destroy(token* msg_list)This service destroys the messages given in msg list. The caller must take care not todestroy messages that are still accessible by the monitored application.Information ServicesCurrently, this group contains only one service:1. message queue get info : : : : : : : : : Return information on a message queue. (O)typedef struct {[token msg;] // Token of this message// present if bit 0 is set in flags[token sender;] // Token of thread that sent this message// present if bit 1 is set in flags[integer size;] // Size of the message// present if bit 2 is set in flags[integer monitor_tag;] // Tag added by the monitoring system// 0 --> message has not been tagged// by the monitoring system// present if bit 3 is set in flags} Message_info;struct {integer queue_length; // number of messages in queueMessage_info* messages;}message_queue_get_info(token* queue_list, integer flags)This service returns information on the message queues speci�ed in queue list. In analogyto process get info a bit set mechanism allows to select the kind of information to beretrieved. A component in Message info will only be returned, if the corresponding bitin
ags is set.Event ServicesOnly one event service is especially provided for the monitoring of message passing programs.Other events, such as the beginning and the end of send or receive library calls, can be mon-itored using the thread has started lib call and thread has ended lib call services (seeSection 8.1.3). When the event de�ned below is detected, the monitoring system ensures thatno message is removed from the message queue until all action lists have been executed. However,messages may still be appended to the queue.Note that only the service speci�c event context parameters are speci�ed in this section. Thecommon event context parameters contain further information on the detected event, especiallythe token of the node where the event occurred.91

1. message queue has been extended : : A message has been appended to amessage queue. (O)voidmessage_queue_has_been_extended(token* queue_list)--> struct {token queue; // Token of this message queuetoken msg; // Token of appended messagetoken sender; // Token of thread that sent this messageinteger size; // Size of the messageinteger monitor_tag; // Tag added by the monitoring system// 0 --> message has not been tagged// by the monitoring system}This event is raised when a message is inserted into a queue contained in queue list.The token of the process and thread the message queue belongs to are contained in thestandard event context parameters. This event is essential for tools based on event tracesthat need information on the size or contents of the message queue.

92

8.2 Monitor ObjectsCurrently, OMIS de�nes two types of objects in the monitoring system: user de�ned events andconditional service requests. The latter are monitor objects, since they have to be stored in themonitoring system, and they can be manipulated by other services. Other monitor objects maybe added by distributed tool extensions, e.g. timers, counters, etc.In addition, there are some services that cannot be associated with a speci�c monitor object.They are introduced in Section 8.2.3.8.2.1 Conditional Service RequestsManipulation Services1. csr enable : : : : : : : : : Enable a previously de�ned conditional service request. (R)csr disable : : : : : : : : Disable a previously de�ned conditional service request. (R)voidcsr_enable(token* csr_list)voidcsr_disable(token* csr_list)These services will enable or disable the previously de�ned conditional service requestsspeci�ed by csr list. csr list is a list of conditional service request tokens, which arereturned as the immediate result of a conditional service request. Since all conditionalservice requests are initially disabled, they must be enabled explicitly. The services canalso be used for temporarily disabling breakpoints or performance measurements. Sincethey can be used as actions, it is possible to start and stop monitoring of an event based onthe occurrence of another event. In this way, the detection of complex distributed eventsor conditional performance measurements are possible.2. csr delete : : : : : : : : : : Delete a previously de�ned conditional service request. (R)void csr_delete(token* csr_list)This service deletes the conditional service requests speci�ed by the tokens in csr list.8.2.2 User De�ned EventsManipulation Services1. user event create : Create a user de�neded event. (R)tokenuser_event_create()An OMIS compliant monitoring system allows tools to de�ne their own events via thisservice. Once the event has been de�ned, it can be raised using the user event raiseservice.2. user event raise : Raise a user de�ned event. (R)
93

voiduser_event_raise(token user_event, any* params, integer resume)This service will raise the user de�ned event speci�ed by its token that has been returned bya previous call to user event create. params is a list of parameters that will be copiedto the service speci�c event context parameters of the user event has been raised eventservice. The size of this list, i.e. the number of parameters is arbitrary.If the service is contained in the action list of a conditional service request, the resumeparameter determines what happens to the object where the event occured that lead tothe execution of this action list. If resume is zero, the object will not be allowed to changeits state until all action lists associated with the user event have been executed. In thiscase, the standard event context parameters of user event has been raised will specifythat object as being the source of the event.If resume is non-zero, the object may change its state before (and even while) the ac-tion lists associated with the user event are executed. In this case, or if the service iscontained in an unconditional service request, the standard event context parameters ofuser event has been raised will specify an unde�ned object as being the source of theevent.3. user event destroy : Destroy a user de�ned event. (R)voiduser_event_destroy(token user_event)This service is used to destroy a user de�ned event given by its token when it is no longerneeded. Any subsequent call to user event raise for this event will result in an error. Thetool is responsible for deleting all conditional service requests referring to the destroyeduser de�ned event.Event Services1. user event has been raised : : : : : : : : A user de�ned event has been raised. (R)voiduser_event_has_been_raised(token user_event)--> struct {par1; // parameters specified in the call to raise_eventpar2;...}The service user event has been raised gives notice that the speci�ed user event hasbeen raised using user event raise service. The service speci�c event context parameterscontain the values of the elements in the params list passed to user event raise. par1contains the value of the �rst element of that list, par2 the value of the second one andso on. The number of service speci�c event context parameters depends on the length ofthe params list.User de�ned events can, for instance, be used to realize action lists that can be triggeredby di�erent events, without having to de�ne the action list twice. If you want to trigger alist A of actions with event E1 or event E2, you can specify:94

user_event_create() // returns token e_321E1: user_event_raise(e_321, [], 1)E2: user_event_raise(e_321, [], 1)user_event_has_been_raised(e_321): AIn addition, user de�ned events allow to chain actions. For instance, you could providesome service �lter(var, val, user event) in a distributed tool extension that raises auser de�ned event, i� var == val. If we assume that the fourth parameter returned bythe start lib call(tid list, "MPI Send") service is the destination process token, thenin the following situationuser_event_create() // returns token e_23thread_has_started_lib_call([p_2], "MPI_Send"): filter($par4, p_5, e_23)user_event_has_been_raised(e_23): Aaction list A will be executed, i� process p 2 sends to process p 5.Finally, user de�ned events can also be used for additional code instrumentation.8.2.3 MiscellaneousSynchronous Services1. print : Return arguments. (R)struct {integer numargs; // number of elements in following listany* args; // copy of argument list}print(any* args)Sometimes a tool wants to be directly noti�ed about an event occurrence and its param-eters. For this purpose, the service print is available. It simply returns its arguments inits result structure.2. version : Return version information. (R)struct {integer omis_major; // Major version of OMIS specification// the monitoring system complies to.integer omis_minor; // Minor version of OMISstring ocm_ident; // String identifying the implementation// of the OMIS compliant monitoring system// (vendor specific)integer ocm_major; // Major version of monitoring system// (defined by vendor)integer ocm_minor; // Minor version of monitoring system// (defined by vendor)}version()This service returns version information on the monitoring system. This includes theproper version of the OMIS speci�cation (i.e. omis major = 2, omis minor = 0 for thisversion), and a vendor-de�ned name and version numbers for monitor implementation.95

3. extensions : Return a list of available extensions. (R)struct {integer numext; // number of elements in following liststring* extension; // the prefix used for this extension}extensions()This service allows to ask which monitor extensions or distributed tool extensions areavailable in a monitor. It returns the list of the pre�xes used for the services of the availableextensions. Thus, tools can decide whether the necessary extensions are available, and theymay handle the cases where less important extensions are missing.4. services : Return a list of available services. (R)struct {integer numfully; // number of elements in following liststring* fully_impl; // names of fully implemented servicesinteger numpart; // number of elements in following liststring* part_impl; // names of partially implemented services}services(string extension)This service allows to obtain the names of all services which are fully or partially imple-mented by the extension de�ned by its pre�x string. If extension is the empty string, thenames of all services provided by the basic monitoring system are returned.

96

Chapter 9Speci�cation of a PVM Extension9.1 Data TypesThe PVM extension de�nes one new token class: the group token. The pre�x 'pvm g ' is usedto characterize group tokens. The expansion operation on a group token leads to a list of allattached processes that are in the speci�ed group. There are no localization operations: groupscannot be localized on a speci�c node; likewise, since a PVM task can be member of severalgroups, it is not possible to uniquely convert a process token into a group token.In addition, there is another implicit object in PVM: the user's virtual machine, consistingof a set of nodes and several application processes (tasks) running on these nodes. Since in PVMthere can be only one virtual machine per user, there is no need to introduce a token for thisobject, however, there are services for this object class.9.2 System Objects9.2.1 Virtual MachineInformation Services1. pvm vm get nodelist : : : : : : : : : : : : : : : : get all nodes of the virtual machine. (R)typedef struct {token node; // Token of this nodeinteger tid; // PVM task id of PVM daemon on this node} nodeinfo;struct {integer num; // Number of elements in the following list// i.e. number of nodes in the virtual machinenodeinfo* nodes; // Information on each node}pvm_vm_get_nodelist()This service returns information on the nodes currently being in the user's virtual machine.The information for each node includes the node's token and the PVM task id of the PVMdaemon located on this node.2. pvm vm get proclist : : : : : : : : : : : : : get all processes in the virtual machine. (R)typedef struct { 97

token proc; // The process tokentoken thread; // The token of the process' (only) thread} taskinfo;struct {integer num; // Number of elements in the following list// i.e. number of PVM tasks in the virtual machinetaskinfo* tasks; // List of process/thread tokens of all PVM tasks}pvm_vm_get_proclist()This service returns the list of tokens of all processes (i.e. PVM tasks) currently existingin the user's virtual machine, together with the token of the (only) thread in each of theseprocesses.9.2.2 ProcessesInformation Services1. pvm proc get bu�ers : : : : : Get information on a process' message bu�ers. (O)typedef struct {integer bufid; // The buffer ID as specified by PVMtoken msg; // The message token for this buffer} Buffer;struct {integer numbufs; // Number of elements in following listBuffer* bufs; // List of all existing message buffers in process}pvm_proc_get_buffers(token* proc_list)This service returns information on a process' PVM message bu�ers. The �rst elementin the returned list speci�es the active receive bu�er, the second one the active sendbu�er. The following entries contain message bu�ers saved by the PVM pvm setrbufand pvm setsbuf library calls.9.2.3 ThreadsEvent Services1. thread has started lib call : : : : : : : : : : : : A thread has invoked a PVM call. (R)thread has ended lib call : : : : : : : A thread has returned from a PVM call. (R)The PVM extension allows to use these services for all documented PVM calls. The valuesof the input and output parameters of these calls can be accessed via the event contextparameters.In this version of the speci�cation of the PVM extension, we will not give an exact de�nitionof this service for each PVM call, but rather explain the general concepts. As a convention,$par0 represents the function result, $par1 its �rst parameter and so on. This impliesthat not all event context parameters have de�ned values for both services, e.g. $par0 willbe unde�ed for any call to thread has started lib call. If the function parameters havesimple types, the corresponding event context parameters have the analogous type, e.g.98

integer for parameters of type int, short, ... Function parameters with more complextypes may not be accessible via an event context parameter.However, for some calls there are event context parameters that do not correspond to anexplicit parameter of the call. For the communication and packing/unpacking functionsthere is an event context parameter containing the token of the manipulated message,which is an implicit parameter of these calls. For send and receive functions another eventcontext parameter contains the length of the message.As an example, here is the speci�cation of the services for the pvm send function. Laterversions of this document will contain such a speci�cation for each PVM call.start pvm_send:integer par1; // tid of destination processinteger par2; // message tagtoken par3; // destination processtoken par4; // message being sentinteger par5; // message lengthend pvm_send:integer par0; // return value of function9.2.4 MessagesThe following services are provided to access messages in applications based on the PVM pro-gramming library. Note that the term 'message' here means an abstract message in the sense ofOMIS, which is very similar, but not fully identical to a PVM 'message bu�er'.Manipulation Services1. pvm message pack : Pack a PVM message. (O)voidpvm_message_pack(token msg, token sender, int tag,string fmt, any* cont)This service initializes or overwrites an existing message given by its token msg with thespeci�ed message data. sender is the token of the sender process; tag is the PVM messagetag. fmt is a format string as speci�ed in the documentation of pvm packf, cont is a listof values whose types must conform with the speci�cation given in fmt.When the service exits successfully, the speci�ed message will look exactly as if sent byprocess sender with the speci�ed tag and contents.Information Services1. pvm message unpack : Unpack a PVM message. (O)struct {integer tag; // PVM tag of this messagetoken sender; // Token of sender processinteger num; // Number of elements in following listany* cont; // Message contents}pvm_message_unpack(token msg, string fmt)99

This service returns the PVM speci�c information on a message. The message contentsreturned is acquired by unpacking the message using the given format string fmt, whichmust conform to the the documentation of pvm unpackf. The result of unpacking isstored in the untyped list cont. When fmt is an empty string, cont will also be empty.Note that since PVM does not store information on the data types packed into a message,a tool calling pvm message unpack must acquire this information from other sources(e.g. from the user, or by a detailed monitoring of the packing and exchange of messages)9.2.5 GroupsInformation Services1. pvm group get info : : : : : : : : : : : : : : : : : : : Get information on a PVM group. (O)struct {[string name;] // Group name// present if bit 0 is set in flags[integer nummemb;] // Number of group members// present if bit 1 is set in flags[token* members;] // Token of processes that are member of the// group// present if bit 2 is set in flags[integer numwait;] // Number of members waiting at the group's// barrier// present if bit 3 is set in flags[token* waiting;] // Token of processes waiting at the group's// barrier// present if bit 4 is set in flags[integer expected;] // Number of expected calls to pvm_barrier (only// valid if numwait > 0)// present if bit 5 is set in flags}pvm_group_get_info(token* group_list, integer flags)This service returns information on the PVM groups matching the token list group list.The bit �eld
ags determines which information will be contained in the result. Noticethat the reply of the call group list([],0) will contain the list of the tokens of all existinggroups in the user's virtual machine.Since in PVM there is a one-to-one correspondence between groups and barriers, theservice pvm group get info will also provide information on the barrier associated withthe speci�ed group(s), namely the number of processes waiting at the barrier, the list ofwaiting processes and the number of expected calls to pvm barrier, as speci�ed in thecount parameter of that PVM call.
100

101

Part IVConcepts for an Implementation

102

103

Chapter 10The Design of an OMIS CompliantMonitoring SystemA detailed design document of the OMIS compliant monitoring system OCM will be providedwhen the implementation is �nished. The OCM will be provided as a reference implementationof OMIS and will be released unter the GNU license conditions.

104

Chapter 11Time Schedule of ImplementationStart of implementation: January, 1997Four researchers and three students of LRR-TUM are currently working on the implementationof OCM. Implementation will be �nished in fall 1997.OMIS Version 1.0: February 1, 1996The �rst version of OMIS serves as a basis for the design of an OMIS compliant monitoringsystem and for adaptation of OMIS based tools.Start of design phase: January, 1996A group of six researchers and students at LRR-TUM worked out the design of the OMIScompliant monitoring system OCM based on PVM as programming paradigm and networks ofworkstations as target architecture.

105

106

Part VDiverse

107

108

Chapter 12Requests for CommentsIn this chapter we summarize important open questions of the OMIS project. We would liketo encourage any reader of this document to send us his/her comments, ideas, suggestions etc.Please refer to open questions by indicating their number.1 Should the tool/monitor-interface be designed in a really object oriented manner insteadof the current object based one, i.e. should we employ inheritance? This could have someadvantages:{ The on-line monitoring interface speci�cation could be de�ned in terms of even moreabstract object classes. The actual object classes needed for a speci�c parallel pro-gramming library would then be derived from these ones and inherit their meth-ods (i.e. services). For instance, we could have abstract processes with services likestop, continue, user time, and so on. A UNIX process class, derived from this ab-stract process class, would inherit these services and could de�ne additional ones, e.g.send signal or set priority. A PVM task could be derived from a UNIX processand provide additional services such as message bu�er.This scheme would replace the current scheme of OMIS extensions by the more com-mon scheme of creating derived classes.{ When object oriented techniques are also used for the monitors' implementation,its portability with respect to di�erent programming libraries could probably be in-creased. If a signi�cant part of the code for a concrete object could be inheritedfrom the abstract base classes, support for di�erent programming libraries could beimplemented in relatively small monitor extensions.2 Should we consider to provide OMIS also for shared memory environments? Since thehardware model already accounts for SMPs, it might be not very di�cult to do so. How-ever, support for (virtual) shared memory programming models requires additional servicesthat still have to be de�ned.3 Should we have a more powerful request language? At the moment, we only provide thecombination of events and actions, and synchronization points in the execution of actionlists. A lot of other constructs could be useful, e.g.:{ a more
exible mix of parallel and serial execution within one action list,{ de�nition of asynchronous services as an action, i.e. when an event occurs, de�ne anew event-action pair, where the de�nition may use output parameters of the �rstevent.{ parameter passing between actions.109

{ conditions (�lters) that control the execution of action lists.However, each of these features adds signi�cant complexity to the request parser, therebyincreasing the monitor's intrusiveness. Thus, we have to �nd a suitable compromise.

110

Chapter 13Known ProblemsIn this chapter we summarize important known problems of the OMIS project, which mostlyconcern the implementation of an OMIS compliant monitoring system. We would like to en-courage any reader of this document to send us his/her comments, ideas, suggestions etc. Pleaserefer to known problems by indicating their number.3 For e�ciency reasons, some actions (e.g. updating a timer that measures the time a taskspends in a receive call) must be executed within the context of the observed task. If weintroduce a UNIX process switch here, the overhead would make the whole measurementuseless. But, some actions can not be executed in the task that produces an event, e.g.most actions related to debugging that are based on the ptrace system call.In summary, there are four possible combinations:{ An event can be detected either in an application task or in the monitor process.{ An action can be executed either in the application task or in the monitor process.It is not fully clear yet how to support all combinations with a uniform and orthogonalinterface.One solution would be to have additional
ags for the registration of a new service. Oneof these
ags must specify whether the service is an event (asynchronous basic service) oran action (synchronous or manipulation basic service). For an event, another
ag couldindicate whether it is detected in the monitor process or in the application process. Foran action, the
ags could indicate whether it has to be executed in the monitor process orin the application process, or can be executed in both of them. The base monitor couldthen automatically pass the event to another process, if necessary.4 The thread has started lib call and thread has ended lib call services should begeneric, in order to reduce the dependency between the monitoring system and the parallelprogramming library. We plan to have a description �le containing ANSI-C prototypes ofall observable library calls. This �le must also de�ne which parameters are input and whichare output parameters. In addition, it has to specify, how the values of these parametersare translated into the data types available in OMIS. This �le could look like:int pvm_recv(int tid, int msgtag) // C prototypestart { // parameters passed to actions ofinteger tid; // start_lib_callinteger msgtag;} 111

end { // parameters passed to actions ofinteger pvm_recv; // end_lib_call (result of function)}int pvm_...This �le could also contain routines for translation of parameters, or for providing ex-tra information on implicit parameters of the library calls (e.g. the message bu�er inpvm send).We intend to have some kind of translator that automatically generates the wrappingfunctions containing the instrumentation, and inserts them into the PVM library. Inaddition, the translator could also generate information for the monitoring process thatcould allow to monitor these library calls using traps, e.g. if an instrumented library is notavailable when debugging an application.It is not yet known, whether these goals can be achieved and how this generic scheme canbe implemented.5 In order to make an OMIS compliant monitor compatible with other tools using the hosterand tasker interfaces of PVM (e.g. resource managers), we should mirror these interfaces.It is not yet known, how this can be achieved. A possible way for the hoster interface wouldbe to intercept the calls to pvm reg hoster. In this way, the monitor knows to whichtasks it must forward the information on new hosts or tasks. However, for the taskerinterface, no such solution is possible, since the tasker usually wants to be the parentprocess of the newly created task, but the monitoring system also needs to be the parent.As a result, tools requiring the use of the tasker interface can only be used at the sametime, if they both use OMIS.6 Since OMIS speci�es (optional) services for process migration, a monitoring system imple-menting these services must also take care of properly handling requests when performinga migration. There are at least two situations that have to be handled:1. There are active conditional service requests for the process that is to be migrated.The current speci�cation of OMIS seems to imply that migration must not a�ectthese services. This means that the monitoring system must somehow transfer thenecessary monitoring activities and the associated management data to the process'destination node. It is not yet clear how this scheme can be implemented.2. The execution of an action list is requested (either by an unconditional request or bythe triggering of a conditional request), while a process named in that action list ismigrated. In this situation, it is not clear what should happen. Basically, there arethree possible solutions:(a) Block request processing until migration has �nished. This scheme will com-pletely hide migration from the tools. However, it may result in poor performanceof the monitoring system and even may lead to deadlocks.(b) Try to process the request on both the source and the destination node. In thesecases, a single service invoked for a single object may return two results (of whichusually one will be an error message). If the tool is aware of this behavior, thismay be a suitable solution.(c) Return an error. This is probably the least attractive possibility.
112

We will address these issues in the near future when we will explore the interaction ofmonitoring and process migration.

113

AcknowledgementsExternal Discussion PartnersDuring the issue of OMIS version 1.0 and OMIS version 2.0 we received much valuable feedbackfrom many cooperation and discussion partners. There are plannings to integrate OMIS/OCMwith the following projects:� The SMiLE project (Shared Memory in a LAN-like Environment) by Hermann Hellwagnerand Wolfgang Karl at LRR-TUM.� The DOSMOS project (Distributed Objects Shared MemOry System) by Lionel Brunie,Laurent Lefevre, Olivier Reymann at Ecole Normale Sup�erieure of Lyon, France.� The P Beam project by Stefan Petri (formerly Technische Universit�at Braunschweig, Ger-many, now LRR-TUM) and Bettina Schnor (now at Universit�at L�ubeck, Germany).� TheGrade project by Peter Kacsuk at KFKI MSZKI,Research Institute of the HungarianAcademy of Sciences, Budapest, Hungary.� TheMad project by Jens Volkert, Dieter Kranzlmller, and Sigfried Grabner at Departmentof Computer Science at University Linz, Austria.We thank all researchers in these groups for there constant interest in our work and theinput they gave us. Further critical referees of OMIS 1.0 have been:Helmar Burkhart, G�unter Dehner, Jack Dongarra, Wolfgang Gentzsch, Je� Hollingsworth,Rusty Lusk, Barton Miller, Rod Oldehoeft, Douglas M. Pase, Je�rey Vetter.We thank you for your e�ort with reading our document and giving us feedback on theproposed project. We tried to make correction according to your suggestions.We apologize for any name that might be mssing in this list. We promise to correct this assoon as we detect it.The OMIS/OCM TeamWe would like to thank our students Manfred Geischeder, Michael Uemminghaus, and Hans-G�unter Zeller for their participation in the design phase of the OCM implementation.J�org Trinitis is currently in charge of managing this implementation. Many thanks to himfor his activities.Our students Alexander Fichtner, Matthias Hilbig, Carsten Isert, and Andreas Schmidt arecurrently very busy with implementing all the modules. We appreciate their support.Many people at the chair were involved in discussions about details of OMIS, OCM, andThe Tool-set that will be attached to the monitoring system. We thank all of them for theirfeedback they gave to us. Special thanks to Michael Oberhuber, who was heavily involved indiscussing the speci�cation in its �rst phase. 114

GlossaryThroughout the text of the speci�cation we use the following technical terms.Basic Service A service of an OMIS compliant monitoring system that is de�ned in Part 8of this speci�cation.Conditional Service Request A service request of an OMIS compliant monitoring systemthat is composed from an event service (called the event de�nition) and an list consisting ofinformation and/or manipulation services (called the action list). The action list will be executedwhenever an event matching the event de�nition is detected by the monitoring system. Thus,an arbitrary number of service replies may result from a conditional service request.Distributed Tool (DT) A distributed tool is spread over all nodes of our node set andusually has no user interface.Distributed tool extension (DTE) Part of a centralized interactive tool which is replicatedand runs on every node involved in direct cooperation with the monitor on that node. Used forpreprocessing of data or organization of special distributed functionalities.Event-Action-Paradigm The monitoring system's behavior is programed with a languagethat follows the event-action-paradigm of our monitoring concept. Every request to the mon-itoring system is composed of an event de�nition followed by the de�nition of one or severalactions. The semantics is that the actions are invoked whenever the event takes place. Follow-ing the event-action-paradigm transfers the monitoring system into an autonomous componentthat observes and manipulates programs.Event Context Parameters Event context parameters are reply values of asynchronousservices such as e.g. the current time, the node where the event occured etc. They are notmeant for being delivered to the tool directly. Instead they are used as input parameters formanipulation services and synchronous services.Event Service A service that asks the monitoring system to detect a certain class of eventsin the monitored system. Event services are used in conditional service requests to trigger theexecution of an action list whenever an event of the given class is detected.Information Service A service that returns information on monitored objects or the moni-toring system, without modifying their state.Manipulation Service A service that manipulates objects in the application or the monitor-ing system. These services usually only return an error status.115

Monitor We call a (single) monitor that part of the monitoring system which is located on asingle node of the parallel system (either a workstation or a node of a parallel machine). It maybe composed of processes and libraries linked to various other software modules. Interactionbetween these parts may use all available mechanisms.Monitor Extension (ME) An extension to a monitoring system o�ering new services forthe monitoring of system objects not yet considered in that monitoring system.Monitoring System A monitoring system is the collection of all software parts in a dis-tributed system which observe and modify the program execution, the underlying operatingsystem, and the hardware and communicate with one or more tools.Monitor/monitor-communication Interaction between monitors on separate nodes of thesystem.Monitor/program-interface This is the interface of a monitor with the object it shouldobserve. For simplicity reasons this is called monitor/program-interface. However, the monitorinteracts not only with the program but with all of the hardware/software instances which getthe program running, i.e. the parallel programming library (e.g. PVM), the operating system,and the hardware. Access to specialized runtime libraries like e.g. PFSLib for parallel �le accessis controlled via monitor extensions.Node Component of a multi-computer system that provides a single system image. Nodesmay consist of serveral processors, however, observation and manipulation of these individualprocessors is usually not possible, since from an application's they are indistinguishable fromeach other.OCM An OMIS Compliant Monitoring system for a speci�c target platform.OMIS The On-line Monitoring Interface Speci�cation.Service The functions o�ered by an OMIS compliant monitoring system, i.e. the commandsthat can be invoked at the tool/monitor-interface. Services are the building blocks from whichservice requests are constructed.Service Reply Data structure sent back from the monitoring systemrepresenting an answerto a service request.Service Request String sent to the monitoring system requesting the execution of a set ofservices. See Conditional/Unconditional Service Request.Target Architecture The system on which the monitoring system, the programs, and all pro-gramming libraries that are necessary for the application programs are running. It is composedof the hardware and the operating system.Target Platform The system on which the monitoring system and the programs are running.It is composed of the hardware, the operating system, and all programming libraries that arenecessary for the application programs. 116

Tool/monitor-interface The tool/monitor-interface is responsible for interaction betweentools and monitors. This interface is the main subject of the on-line monitoring interface speci-�cation.Unconditional Service Request A service request of an OMIS compliant monitoring systemthat is composed only from information and/or manipulation services. The services will beexecuted immediately and exactly once by the monitoring system. Thus, an unconditionalservice request will result in exactly one reply being returned.

117

HistoryVersion 2.0: July 15, 1997Current version. Published as a technical report at TUM [LWSB97]. Considerable changes wereperformed.Version 1.0: February 1, 1996Published as a technical report at TUM [LWSB96].Pre-Version 0.9 beta: November 30, 1995Second draft version which served as a dicussion basis for a birds-of-a-feather meeting at theSupercomputing'95 conference in San Diego, California, USA, December 1995. The session wasmoderated by Arndt Bode and Vaidy Sunderam.Pre-Version 0.9 alpha: August 31, 1995First draft version which served as a discussion basis for a birds-of-a-feather meeting at theEuropean PVM Users' Group Meeting in Lyon, September 1995. The session was moderatedby Roland Wism�uller.Kick-o� meeting: July, 1995Initiators: Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wism�uller

118

ChangesVersion 2.0 (July 15, 1997)� OMIS is no longer oriented towards PVM. Instead it tries to cover all common messagepassing programming models without preferring one or the other. In future it will also beextended to work with shared memory systems.� Several cooperations were started since OMIS 1.0 was released. We had intensive discus-sions with other researchers who would like to employ an OMIS compliant monitoringsystem for their own tool environments.� Design and implementation of an OMIS compliant monitoring system (OCM) were startedin 1996. The text gives some details.� The system model was clari�ed with respect to target architecture and target platforms.Execution objects and node objects are de�ned more clearly (see Chapter 4).� The technical terms synchronous and asynchronous service had been replaced (see Chap-ter 5).� The technical terms information service, manipulation service, event service, conditionaland unconditional request have been introduced (see Chapter 5).� The list of objects was enhanced by threads (see Chapter 5).� Examples in Chapter 5 were re-written according to the new syntax.� Some technical terms have been renamed to make their intended meaning more clear andto avoid confusion (see Glossary).� An extensive speci�cation of the semantics of service requests and replies has been addedto the document (see Chapter 7). This also includes the speci�cation of error handling.� The procedural interface has been extended and revised. It is more
exible and should berather complete now (see Section 7.1).� Syntax and semantics of service requests have been modi�ed in order to simplify the usageof OMIS and to make it more general (see Section 7.2 to 7.2.4):{ The OMIS 2.0 interface o�ers location transparency, i.e. services no longer have to bepre�xed with a list of node numbers. Instead, services now get as a parameter a listof objects they shall work on. The nodes a service will be executed on are uniquelyde�ned by this object list.{ Objects like nodes, processes etc. are no longer addressed by some concrete ID (e.g. aPVM task ID), but by an abstract token generated by the monitoring system. In thisway, objects can be identi�ed in both a globally unique and platform independentway. 119

{ OMIS 2.0 now de�nes a hierarchy of application objects, that allows a conversionbetween the di�erent object types, e.g. expanding a node token into a list of tokensfor all processes on that node (see Section 7.2.2).{ Tokens are now also used to identify monitor objects, especially conditional servicerequests. Thus, services no longer have to be preceded with a request ID. Instead, arequest token is returned upon successful de�nition of conditional request. Requestscontaining actions modifying their own request (e.g. deleting it in order to implementa temporary breakpoint) are still possible by using a special event context parameter(see Section 7.2.4). Dependency cycles between conditional requests may also bebroken via user de�ned events.{ To support tools extracting large amounts of data from an application, a new datatype \binary string" has been added to avoid the overhead of converting to/from anASCII representation.{ The speci�cation no longer requires an atomic multicast protocol to be used for thedistribution of requests touching multiple nodes. Instead, less restrictive requirementson the ordering of service execution have been speci�ed (see Section 7.2.3). To enforceexclusive execution of a request, action lists can now be locked.{ The speci�cation on ordering constraints on the individual actions in an action listhas been revised. There is no longer a parallel action lists where even actions on thesame node may be executed in parallel or in any order di�erent from the speci�edone. Instead, execution of services on the same node is now guaranteed to be sequen-tial; parallelism can occur between nodes. The separator ';' can be used anywherewithin an action list to denote a barrier-like synchronization (see Section 7.2.3). Theseparator ',' has been removed.{ Event context parameters now are referenced by name rather than by number toincrease ease-of-use.{ The colon separating the event de�nition from the action list in a request now is evenrequired for unconditional requests. This simpli�es parsing considerably.� The format of service replies has been changed completely. Instead of a single linear stringthat has to be parsed by the tool, a more structured representation is used now. A replyconsist of a sequence of sub-replies, one for each service contained in the request. Each ofthese sub-replies is again a sequence of results, one for each object the service operatedon. Identical results may be merged into a single entry (see Section 7.3).� The way how the monitoring system connects to an application program has been changedin order to remove the previous dependency on the notion of a virtual machine (as in PVM).In OMIS 2.0, a tool must explicitly attach to all the nodes and processes it wants to bemonitored. This scheme also implies that, if multiple tools connect to the same monitoringsystem, each of these tools has its own speci�c view of the observed system. In the courseof this change, we also had to change the handling of creation and deletion of processesand nodes (see Section 8.1.1, 8.1.2, and 8.1.3).� There is a large couple of changes in the description of the speci�c monitoring services:{ The naming of services is more systematic now. A pre�x indicates the type of objectthe service is working on. In addition, names are chosen in a way that indicates thekind of service (i.e. information service, manipulation service, event service).{ The set of process services of OMIS 1.0 has been carefully analyzed and split intoseparate services for processes and threads. Thus, OMIS 2.0 can also be used formultithreaded systems. 120

{ Some parameter lists have been extended (e.g. block length and stride for memoryaccesses, length of stack backtrace, etc.).{ Speci�cations are now more accurate and complete. This mostly concerns the servicesnode get info, proc get info, and thread get info.{ Finally, the set of services has been split into a basic set that is independent of theparallel programming library used (see Chapter 8), and a PVM extension providingservices to support PVM (see Chapter 9).� The sections on implementation concepts have been removed from this document. Whenour implementation of the OMIS compliant monitoring is �nished, a design document willbe prepared as a separate report.Version 1.0 (February 1, 1996)First version of the OMIS document.

121

Bibliography[AHKL96] Georg Acher, Hermann Hellwagner, Wolfgang Karl, and Markus Leberecht. A PCI-SCI Bridge for Building a PC-Cluster with Distributed Shared Memory. In Proceed-ings The Sixth International Workshop on SCI-based High-Performance Low-CostComputing, pages 1{8, Santa Clara, CA, September 1996. SCIzzL.[BB91] T. Bemmerl and A. Bode. An Integrated Environment for Programming DistributedMemory Multiprocessors. In A. Bode, editor, Distributed Memory Computing - 2ndEuropean Conference, EDMCC2, volume 487 of Lecture Notes in Computer Science,pages 130{142, M�unchen, April 1991. Springer-Verlag.[BB92] Arndt Bode and Peter Braun. Monitoring and Visualization in TOPSYS. In G. Kot-sis and G. Haring, editors, Proc. of Workshop on Monitoring and Visualization ofParallel Processing Systems, pages 97 { 118, Moravany nad V�ahom, CSFR, 1992.Elsevier, Amsterdam (1993).[BBB+90] H.J. Beier, T. Bemmerl, A. Bode, et al. TOPSYS - Tools for Parallel Systems.Research report SFB 342/9/90 A, Technische Universit�at M�unchen, January 1990.[BHL90] T. Bemmerl, O. Hansen, and T. Ludwig. PATOP for Performance Tuning of Par-allel Programs. In H. Burkhart, editor, Proceedings of the CONPAR 90 - VAPP IVJoint International Conference on Vector and Parallel Processing, Zurich, Switzer-land, pages 840-851, Berlin, September 1990. Springer. Lecture Notes in ComputerScience, 457.[BL90] T. Bemmerl and T. Ludwig. MMK | A Distributed Operating System Kernelwith Integrated Dynamic Loadbalancing. In H. Burkhart, editor, Proceedings ofthe CONPAR 90 - VAPP IV Joint International Conference on Vector and ParallelProcessing, Zurich, Switzerland, pages 744-755, Berlin, September 1990. Springer.Lecture Notes in Computer Science, 457.[BLR96] L. Brunie, L. Lefevre, and O. Reymann. Execution Analysis of DSM Applications:A Distributed and Scalable Approach. In SPDT'96, Symposium on Parallel andDistributed Tools, pages 51{60. ACM Sigmetrics, may 1996.[BLT90] T. Bemmerl, R. Lindhof, and T. Treml. The Distributed Monitor System of TOP-SYS. In H. Burkhart, editor, Proceedings of the CONPAR 90 { VAPP IV JointInternational Conference on Vector and Parallel Processing, Zurich, Switzerland,volume 457 of Lecture Notes in Computer Science, pages 756-765, Berlin, Septem-ber 1990. Springer.[Bod94] A. Bode. Parallel Program Analysis and Visualization. In J. Dongarra andB. Tourancheau, editors, Environments and Tools for Parallel Scienti�c Computing,pages 246-253. SIAM, 1994. 122

[BW95] T. Bemmerl and R. Wism�uller. On-line Distributed Debugging on Scalable Mul-tiprocessor Architectures. Future Generation Computer Systems, (11):375-385,November 1995.http://wwwbode.informatik.tu-muenchen.de/~wismuell/pub/fgcs95.ps.gz.[Gei96] M. Geischeder. Development of the Program/Monitor-Interface for an OMISCompliant Monitoring System. Master's thesis, Technische Universit�at M�unchen,M�unchen, October 1996.[Gro95a] X/Open Group. System Management: Universal Measurement Architecture Guide.X/Open Company Linited, Reading, UK, 1995.[Gro95b] X/Open Group. Systems management: UMA Measurement Layer Interface (MLI).X/Open Company Linited, Reading, UK, 1995.[Han94] O. Hansen. A Tool for Optimizing Programs on Massively Parallel Computer Ar-chitectures. In High-Performance Computing and Networking, Volume II, volume797 of Lecture Notes in Computer Science, pages 350 - 356, M�unchen, April 1994.Springer Verlag.[HKL97a] Hermann Hellwagner, Wolfgang Karl, and Markus Leberecht. Enabling a PC Clusterfor High-Performance Computing. SPEEDUP Journal, 11(1), June 1997.[HKL97b] Hermann Hellwagner, Wolfgang Karl, and Markus Leberecht. Fast CommunicationMechanisms{Coupling Hardware Distributed Shared Memory and User-Level Mes-saging. In Proc. International Conference on Parallel and Distributed ProcessingTechniques and Applications (PDPTA'97), pages 1294-1301, Las Vegas, Nevada,June 30{July 3 1997.[Hoo96] R. Hood. The p2d2 Project: Building a Portable Distributed Debugger. In Proc.of SPDT'96: SIGMETRICS Symposium on Parallel and Distributed Tools, pages127-136, Philadelphia, Pennsylvania, USA, May 1996. ACM Press.[KCD+97] P. Kacsuk, J.C. Cunha, G. Dozsa, J. Lourenco, T. Antao, and T. Fadgyas. GRADE:A Graphical Development and Debugging Environment for Parallel Programs. Par-allel Computing Journal, 22(13):1747-1770, February 1997.[KDF96] P. Kacsuk, G. Dozsa, and T. Fadgyas. Designing Parallel Programs by the GraphicalLanguage GRAPNEL. Microprocessing and Microprogramming, (41):625-643, 1996.[KGV96] D. Kranzlmueller, S. Grabner, and J. Volkert. The Tools of the Monitoring And De-bugging Environment. In 2nd European School of Computer Science, Parallel Pro-gramming Environments for High Performance Computing, Institut IMAG-INRIA(Projet APACHE), 1996.[Lam97] S. Lamberts. Parallele verteilte Dateisysteme in Rechnernetzen, volume 7 of Re-search Report Series/Lehrstuhl fr Rechnertechnik und Rechnerorganisation (LRR-TUM), Technische Universitt Mnchen. Shaker, Aachen, 1997.[Lud93a] T. Ludwig. Load Management on Multiprocessor Systems. In A. Bode and M. DalCin, editors, Parallel Computer Architectures | Theory, Hardware, Software, Ap-plications, pages 87-101. Springer, Berlin, 1993. Lecture Notes in Computer Science,732.
123

[Lud93b] T. Ludwig. UPAS | Universally Programmable Architecture and Basic Software.In P. P. Spies, editor, Euro-ARCH '93, Munich, Germany, pages 660-671, Berlin,1993. Springer. Informatik aktuell.[LWB+95] T. Ludwig, R. Wism�uller, R. Borgeest, S. Lamberts, C. R�oder, G. Stellner, andA. Bode. The Tool-set { An Integrated Tool Environment for PVM. In SecondEuropean PVM Users' Group Meeting, Lyon, France, September 1995.http://wwwbode.informatik.tu-muenchen.de/~wismuell/pub/europvm95.ps.gz.[LWOB97] T. Ludwig, R. Wism�uller, M. Oberhuber, and A. Bode. An Open Interface forthe On-Line Monitoring of Parallel and Distributed Programs. Intl. Journal ofSupercomputer Applications and High Performance Computing, 11(2), to appear1997.[LWSB96] T. Ludwig, R. Wism�uller, V. Sunderam, and A. Bode. OMIS | On-line MonitoringInterface Speci�cation (Version 1.0). Technical Report TUM-I9609, SFB-Bericht Nr.342/05/96 A, Technische Universit�at M�unchen, Munich, Germany, February 1996.http://wwwbode.informatik.tu-muenchen.de/~omis/OMIS/Version-1.0/version-1.0.ps.gz.[LWSB97] T. Ludwig, R. Wism�uller, V. Sunderam, and A. Bode. OMIS | On-line MonitoringInterface Speci�cation (Version 2.0). Technical Report TUM-I9733, SFB-BerichtNr. 342/22/97 A, Technische Universit�at M�unchen, Munich, Germany, July 1997.http://wwwbode.informatik.tu-muenchen.de/~omis/OMIS/Version-2.0/version-2.0.ps.gz.[OW95] M. Oberhuber and R. Wism�uller. DETOP - An Interactive Debugger for PowerPCBased Multicomputers. In P. Fritzson and L. Finmo, editors, Parallel Programmingand Applications, pages 170-183. IOS Press, May 1995.http://wwwbode.informatik.tu-muenchen.de/~wismuell/pub/zeus95.ps.gz.[PSL96] Stefan Petri, Bettina Schnor, and Horst Langend�orfer. P Beam { Fehlertoleranzf�ur verteilte Anwendungen mittels Migration und Checkpointing. In Clemens H.Cap, editor, Workstations und ihre Anwendungen, Proceedings der Fachtagung SI-WORK'96, pages 91{102, Universit�at Z�urich, Institut f�ur Informatik, May 1996.vdf Hochschulverlag AG an der ETH Z�urich.[PSLS96] Stefan Petri, Bettina Schnor, Horst Langend�orfer, and Jens Steinborn. ConsistentGlobal Checkpoints for Distributed Applications on Clusters of Unix Workstations.In Herrmann G. Matthies and Josef Sch�ule, editors, Paralleles und Verteiltes Rech-nen { Beitr�age zum 4. Workshop �uber Wissenschaftliches Rechnen, pages 77{86,TU Braunschweig, October 1996. TU Braunschweig, Shaker Verlag.[SMP95] T. Sterling, P. Messina, and J. Pool. Findings of the Second Pasadena Workshopon System Software and Tools for High Performance Computing Environments.Technical report, Center of Excellence in Space Data and Information Sciences,NASA Goddard Space Flight Center, Greenbelt, Maryland, 1995.[Ste96a] G. Stellner. CoCheck: Checkpointing and Process Migration for MPI. In Proceedingsof the International Parallel Processing Symposium, pages 526{531, Honolulu, HI,April 1996. IEEE Computer Society Press, 10662 Los Vaqueros Circle, P.O. Box3014, Los Alamitos,CA 90720-1264.
124

[Ste96b] G. Stellner. Methoden zur Sicherungspunkterzeugung in parallelen und verteilenSystemen, volume 2 of Research Report Series/Lehrstuhl fr Rechnertechnik undRechnerorganisation (LRR-TUM), Technische Universitt Mnchen. Shaker, Aachen,1996.[Uem96] M. Uemminghaus. Communication and Request Processing in OMIS Compliant-Monitoring Systems. Master's thesis, Technische Universit�at M�unchen, M�unchen,October 1996.[WOKH96] R. Wism�uller, M. Oberhuber, J. Krammer, and O. Hansen. Interactive debuggingand performance analysis of massively parallel applications. Parallel Computing,22(3):415-442, March 1996.http://wwwbode.informatik.tu-muenchen.de/~wismuell/pub/pc95.ps.gz.[Zel96] H.-G. Zeller. Information and Event/Action Management in OMIS Compliant Mon-itoring Systems. Master's thesis, Technische Universit�at M�unchen, M�unchen, Octo-ber 1996.

125

SFB 342: Methoden und Werkzeuge f�ur die Nutzung parallelerRechnerarchitekturenbisher erschienen :Reihe A Liste aller erschienenen Berichte von 1990-1994auf besondere Anforderung342/01/95 A Hans-Joachim Bungartz: Higher Order Finite Elements on Sparse Grids342/02/95 A Tao Zhang, Seonglim Kang, Lester R. Lipsky: The Performance of Par-allel Computers: Order Statistics and Amdahl's Law342/03/95 A Lester R. Lipsky, Appie van de Liefvoort: Transformation of the Kro-necker Product of Identical Servers to a Reduced Product Space342/04/95 A Pierre Fiorini, Lester R. Lipsky, Wen-Jung Hsin, Appie van de Liefvoort:Auto-Correlation of Lag-k For Customers Departing From Semi-MarkovProcesses342/05/95 A Sascha Hilgenfeldt, Robert Balder, Christoph Zenger: Sparse Grids: Ap-plications to Multi-dimensional Schr�odinger Problems342/06/95 A Maximilian Fuchs: Formal Design of a Model-N Counter342/07/95 A Hans-Joachim Bungartz, Stefan Schulte: Coupled Problems in Microsys-tem Technology342/08/95 A Alexander Pfa�nger: Parallel Communication onWorkstation Networkswith Complex Topologies342/09/95 A Ketil St�len: Assumption/Commitment Rules for Data-
ow Networks -with an Emphasis on Completeness342/10/95 A Ketil St�len, Max Fuchs: A Formal Method for Hardware/Software Co-Design342/11/95 A Thomas Schnekenburger: The ALDY Load Distribution System342/12/95 A Javier Esparza, Stefan R�omer, Walter Vogler: An Improvement ofMcMillan's Unfolding Algorithm342/13/95 A Stephan Melzer, Javier Esparza: Checking System Properties via IntegerProgramming342/14/95 A Radu Grosu, Ketil St�len: A Denotational Model for Mobile Point-to-Point Data
ow Networks342/15/95 A Andrei Kovalyov, Javier Esparza: A Polynomial Algorithm to Computethe Concurrency Relation of Free-Choice Signal Transition Graphs342/16/95 A Bernhard Sch�atz, Katharina Spies: Formale Syntax zur logischen Kern-sprache der Focus-Entwicklungsmethodik342/17/95 A Georg Stellner: Using CoCheck on a Network of Workstations342/18/95 A Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wism�uller:Workshop on PVM, MPI, Tools and Applications
126

Reihe A342/19/95 A Thomas Schnekenburger: Integration of Load Distribution into ParMod-C342/20/95 A Ketil St�len: Re�nement Principles Supporting the Transition fromAsynchronous to Synchronous Communication342/21/95 A Andreas Listl, Giannis Bozas: Performance Gains Using Subpages forCache Coherency Control342/22/95 A Volker Heun, Ernst W. Mayr: Embedding Graphs with BoundedTreewidth into Optimal Hypercubes342/23/95 A Petr Jan�car, Javier Esparza: Deciding Finiteness of Petri Nets up toBisimulation342/24/95 A M. Jung, U. R�ude: Implicit Extrapolation Methods for Variable Coe�-cient Problems342/01/96 A Michael Griebel, Tilman Neunhoe�er, Hans Regler: Algebraic MultigridMethods for the Solution of the Navier-Stokes Equations in ComplicatedGeometries342/02/96 A Thomas Grauschopf, Michael Griebel, Hans Regler: Additive Multilevel-Preconditioners based on Bilinear Interpolation, Matrix Dependent Geo-metric Coarsening and Algebraic-Multigrid Coarsening for Second OrderElliptic PDEs342/03/96 A Volker Heun, Ernst W. Mayr: Optimal Dynamic Edge-Disjoint Embed-dings of Complete Binary Trees into Hypercubes342/04/96 A Thomas Huckle: E�cient Computation of Sparse Approximate Inverses342/05/96 A Thomas Ludwig, Roland Wism�uller, Vaidy Sunderam, Arndt Bode:OMIS | On-line Monitoring Interface Speci�cation342/06/96 A Ekkart Kindler: A Compositional Partial Order Semantics for Petri NetComponents342/07/96 A Richard Mayr: Some Results on Basic Parallel Processes342/08/96 A Ralph Radermacher, Frank Weimer: INSEL Syntax-Bericht342/09/96 A P.P. Spies, C. Eckert, M. Lange, D. Marek, R. Radermacher, F. Weimer,H.-M. Windisch: Sprachkonzepte zur Konstruktion verteilter Systeme342/10/96 A Stefan Lamberts, Thomas Ludwig, Christian R�oder, Arndt Bode: PFS-Lib { A File System for Parallel Programming Environments342/11/96 A Manfred Broy, Gheorghe S�tef�anescu: The Algebra of Stream ProcessingFunctions342/12/96 A Javier Esparza: Reachability in Live and Safe Free-Choice Petri Nets isNP-complete342/13/96 A Radu Grosu, Ketil St�len: A Denotational Model for Mobile Many-to-Many Data-
ow Networks342/14/96 A Giannis Bozas, Michael Jaedicke, Andreas Listl, Bernhard Mitschang,Angelika Reiser, Stephan Zimmermann: On Transforming a SequentialSQL-DBMS into a Parallel One: First Results and Experiences of theMIDAS Project342/15/96 A Richard Mayr: A Tableau System for Model Checking Petri Nets witha Fragment of the Linear Time � -Calculus
127

Reihe A342/16/96 A Ursula Hinkel, Katharina Spies: Anleitung zur Spezi�kation von mo-bilen, dynamischen Focus-Netzen342/17/96 A Richard Mayr: Model Checking PA-Processes342/18/96 A Michaela Huhn, Peter Niebert, Frank Wallner: Put your Model Checkeron Diet: Veri�cation on Local States342/01/97 A Tobias M�uller, Stefan Lamberts, Ursula Maier, Georg Stellner:Evaluierung der Leistungsf"ahigkeit eines ATM-Netzes mit parallelenProgrammierbibliotheken342/02/97 A Hans-Joachim Bungartz and Thomas Dornseifer: Sparse Grids: RecentDevelopments for Elliptic Partial Di�erential Equations342/03/97 A Bernhard Mitschang: Technologie f"ur Parallele Datenbanken - Berichtzum Workshop342/04/97 A nicht erschienen342/05/97 A Hans-Joachim Bungartz, Ralf Ebner, Stefan Schulte: Hierarchis-che Basen zur e�zienten Kopplung substrukturierter Probleme derStrukturmechanik342/06/97 A Hans-Joachim Bungartz, Anton Frank, Florian Meier, Tilman Neunho-e�er, Stefan Schulte: Fluid Structure Interaction: 3D Numerical Simu-lation and Visualization of a Micropump342/07/97 A Javier Esparza, Stephan Melzer: Model Checking LTL using ConstraintProgramming342/08/97 A Niels Reimer: Untersuchung von Strategien f�ur verteiltes Last- undRessourcenmanagement342/09/97 A Markus Pizka: Design and Implementation of the GNU INSEL-Compilergic342/10/97 A Manfred Broy, Franz Regensburger, Bernhard Sch�atz, Katharina Spies:The Steamboiler Speci�cation - A Case Study in Focus342/11/97 A Christine R�ockl: How to Make Substitution Preserve Strong Bisimilarity342/12/97 A Christian B. Czech: Architektur und Konzept des Dycos-Kerns342/13/97 A Jan Philipps, Alexander Schmidt: Tra�c Flow by Data Flow342/14/97 A Norbert Fr�ohlich, Rolf Schlagenhaft, Josef Fleischmann: PartitioningVLSI-Circuits for Parallel Simulation on Transistor Level342/15/97 A Frank Weimer: DaViT: Ein System zur interaktiven Ausf�uhrung undzur Visualisierung von INSEL-Programmen342/16/97 A Niels Reimer, J�urgen Rudolph, Katharina Spies: Von FOCUS nach IN-SEL - Eine Aufzugssteuerung342/17/97 A Radu Grosu, Ketil St�len, Manfred Broy: A Denotational Model forMobile Point-to-Point Data-
ow Networks with Channel Sharing342/18/97 A Christian R�oder, Georg Stellner: Design of Load Management for Par-allel Applications in Networks of Heterogenous Workstations342/19/97 A Frank Wallner: Model Checking LTL Using Net Unfoldings342/20/97 A Andreas Wolf, Andreas Kmoch: Einsatz eines automatischen Theorem-beweisers in einer taktikgesteuerten Beweisumgebung zur L�osung einesBeispiels aus der Hardware-Veri�kation { Fallstudie {
128

Reihe A342/21/97 A Andreas Wolf, Marc Fuchs: Cooperative Parallel Automated TheoremProving342/22/97 A T. Ludwig, R. Wism�uller, V. Sunderam, A. Bode: OMIS - On-line Mon-itoring Interface Speci�cation (Version 2.0)

129

SFB 342 : Methoden und Werkzeuge f�ur die Nutzung parallelerRechnerarchitekturenReihe B342/1/90 B Wolfgang Reisig: Petri Nets and Algebraic Speci�cations342/2/90 B J�org Desel: On Abstraction of Nets342/3/90 B J�org Desel: Reduction and Design of Well-behaved Free-choice Systems342/4/90 B Franz Abstreiter, Michael Friedrich, Hans-J�urgen Plewan: DasWerkzeug runtime zur Beobachtung verteilter und paralleler Programme342/1/91 B Barbara Paech1: Concurrency as a Modality342/2/91 B Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier- Toolbox -Anwenderbeschreibung342/3/91 B Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop �uberParallelisierung von Datenbanksystemen342/4/91 B Werner Pohlmann: A Limitation of Distributed Simulation Methods342/5/91 B Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually SharedMemory Scheme: Formal Speci�cation and Analysis342/6/91 B Dominik Gomm, Ekkart Kindler: Causality Based Speci�cation andCorrectness Proof of a Virtually Shared Memory Scheme342/7/91 B W. Reisig: Concurrent Temporal Logic342/1/92 B Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-of-SupportChristian B. Suttner: Parallel Computation of Multiple Sets-of-Support342/2/92 B Arndt Bode, Hartmut Wedekind: Parallelrechner: Theorie, Hardware,Software, Anwendungen342/1/93 B Max Fuchs: Funktionale Spezi�kation einer Geschwindigkeitsregelung342/2/93 B Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: Ein Lit-eratur�uberblick342/1/94 B Andreas Listl; Thomas Schnekenburger; Michael Friedrich: Zum En-twurf eines Prototypen f�ur MIDAS

130

