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Assumption/Commitment Rulesfor Data-
ow Networks | with anEmphasis on CompletenessKetil St�lenInstitut f�ur Informatik, TU M�unchen, D-80290 M�unchenOctober 30, 1995AbstractDuring the last 15 years a large number of speci�cation techniques based on theso-called assumption/commitment paradigm have been proposed. The formulation ofveri�cation rules for the composition of such speci�cations is known to be a di�cult task.Most rules published so far impose strong constraints on the type of properties that canbe expressed by the assumptions. Moreover, if completeness results are provided at allthey are normally quite weak. We investigate these problems in the context of a modelfor data-
ow networks.1 IntroductionAn assumption/commitment speci�cation can be thought of as a pair of predicates (A;C),where the assumption A describes the environment in which the speci�ed component issupposed to run, and the commitment C states requirements which any correct implemen-tation must ful�ll whenever it is executed in an environment which satis�es the assumption.The actual formulation of assumption/commitment speci�cations is highly dependent onthe underlying communication paradigm. This has led to a rich 
ora of speci�cation tech-niques based on the assumption/commitment format. See [MC81], [Jon83], [ZdBdR84],[BK84], [Pnu85], [Sta85], [Sti88], [AL90], [Pan90], [St�91], [XH91], [PJ91], [AL93], [SDW93],[Col94a], [JT95] for examples.The formulation of veri�cation rules for the composition of assumption/commitment spec-i�cations is a non-trivial issue. The main reason is that the component speci�cations canbe mutually dependent | a fact which easily leads to circular reasoning. Nevertheless, alarge number of rules have been proposed. In the sequel we refer to such veri�cation rulesas assumption/commitment rules.Most rules published so far impose strong constraints on the properties that can be ex-pressed by the assumptions. For example it is usual to require that the assumptions aresafety properties [Jon83], [AL90], [PJ91], or admissible [SDW93]. Moreover, if the rules arepublished with completeness results, these results are normally quite weak in the sense thatonly some of the properties we would like such rules to have are captured. For example itis usual to prove some variation of relative completeness [St�91], [Col94a] | a result whichonly captures some of the expectations to an assumption/commitment rule.We study these problems in the context of a model for data-
ow networks. We distinguishbetween two speci�cation formats, namely simple and general speci�cations. The �rst formatcan only be used when the assumption is independent of the component's behavior. For bothformats we propose veri�cation rules. We prove that these rules are sound, and, moreover,that they are complete in a certain strong sense.There are basically two styles in which assumption/commitment rules are formulated.3



Premise1...Premisen(A1; C1)  P1(A2; C2)  P2(A;C)  P1 k P2 Premise1...Premisen(A;C)  (A1; C1) k (A2; C2)In the �rst style (see rule to the left), used already by [Hoa69], P1, P2 are components, andP1 k P2 represents their parallel composition. Moreover, denotes the satisfaction relation.In the second style (see rule to the right), used by [AL90] and also employed in this paper,P1, P2 and P are eliminated by lifting the operators for parallel composition and satisfactionfrom components to speci�cations.The rest of the paper is split into six main sections. Section 2 introduces our semantic model.Then in Section 3 simple assumption/commitment speci�cations are introduced, and weformulate an assumption/commitment rule with respect to a feedback operator. In Section4 we do the same for general speci�cations. Then in Section 5 the assumption/commitmentrules of the previous two sections are generalized to handle �nite data-
ow networks. Section6 contains a brief summary and relates our approach to other approaches known from theliterature. Finally, there is an appendix containing detailed proofs.2 Semantic ModelWe model the communication history of a channel by a timed stream. A timed stream is a�nite or in�nite sequence of messages and time ticks. A time tick is represented by p. Inany timed stream the interval between two consecutive ticks represents the same least unitof time. A tick occurs in a stream at the end of each time unit. An in�nite timed streamrepresents a complete communication history of a channel, a �nite timed stream representsa partial communication history of a channel. Since time never halts, any in�nite timedstream is required to contain in�nitely many ticks. Moreover, since we do not want a streamto end in the middle of a time unit, we require that any timed stream is either empty, in�niteor ends with a tick.By N, N+, N1 and B we denote respectively the natural numbers, N n f0g, N [ f1g andthe Booleans. Given a set D of messages, D! denotes the set of all �nite and in�nite timedstreams over D, and D1 denotes the subset consisting of only in�nite timed streams. Givena timed stream s and j 2 N1, s#j denotes the shortest pre�x of s containing j ticks if jis less than the number of ticks in s, and s otherwise. Note that s#1 = s. This operatoris overloaded to tuples of timed streams in a point-wise style, i.e., for any tuple of timedstreams t, t#j denotes the tuple we get by applying #j to each component of t. By v wedenote the usual pre�x ordering on streams. Thus, s v r i� the stream s is a pre�x of(or equal to) the stream r. Also this operator is overloaded to tuples of timed streams ina point-wise way, i.e., given two n-tuples of streams t and v, it holds that t v v i� eachcomponent of t is a pre�x of the corresponding component of v.Given two tuples a and c consisting of n respectively m streams, by a � c we denote the tupleconsisting of n+m streams having a as a pre�x and c as a su�x.A function � 2 (D1)n ! (D1)m is pulse-driven i�i#j = s#j ) �(i)#(j+1) = �(s)#(j+1):Pulse-drivenness means that the input until time j completely determines the output untiltime j + 1. The arrow p! is used to distinguish pulse-driven functions from functions thatare not pulse-driven. 4
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yFigure 1: � �Given a pulse-driven function � 2 (D1)n p! (D1)m, where n � m, let � � be the functionwe get by connecting the m output channels to the m last input channels, i.e., with respectto Figure 1, by connecting the m output channels y to the m last input channels x. We referto � as the feedback operator. Formally� �(z) = y , �(z � y) = y:Due to the pulse-drivenness it is easy to prove that for any z there is a unique y such that�(z � y) = y. This means that � � is well-de�ned. Moreover, it is also straightforward toverify that � � is pulse-driven.For any set of functions F � (D1)n p! (D1)m, �F denotes the set characterized byf� 2 (D1)(n�m) p! (D1)m j 8� : 9� 0 2 F : �(�) = � � 0(�)g:Throughout this paper, unless anything else is explicitly stated, any free occurrence of i, o,z or y in a formula should be understood to be universally quanti�ed over tuples of in�nitetimed streams. Moreover, any free occurrence of j should be understood to be universallyquanti�ed over N1.3 Simple Assumption/Commitment Speci�cationsWe now introduce the �rst of the two formats for assumption/commitment speci�cations,namely what we refer to as simple assumption/commitment speci�cations. We �rst de�newhat a simple assumption/commitment speci�cation is. We then formulate an assump-tion/commitment rule with respect to a simple feedback operator. We show that this rulecan handle liveness properties in the assumptions. Then we discuss the completeness ofthis rule. We �rst show that relative completeness only captures some of the expectationsto this rule. We then investigate more closely what these expectations are. Based on thisinvestigation we formulate a stronger completeness property and show that our rule satis�esthis property.A simple assumption/commitment speci�cation of a component with n input channels andm output channels is a pair (A;C), where A and C are predicates on tuples of timed streamsA 2 (D1)n ! B; C 2 (D1)n � (D1)m ! B:A and C characterize the assumption and the commitment, respectively.The denotation of a simple assumption/commitment speci�cation (A;C) is the set of alltype-correct, pulse-driven functions that behaves in accordance with the commitment for5



any input history satisfying the assumption. In other words, the set of all functions � 2(D1)n p! (D1)m such thatA(i)) C(i; �(i)):Throughout this paper, for any assumption/commitment speci�cation S, we use [[ S ]] to de-note its denotation, and AS and CS to denote its assumption and commitment, respectively.The feedback operator � is lifted from pulse-driven functions to speci�cations in the obviousway: [[ � (A;C) ]] def= � [[ (A;C) ]]. A speci�cation S2 is said to re�ne a speci�cation S1 i�[[ S2 ]] � [[ S1 ]]. We then write S1  S2. Since any behavior of S2 is required to be abehavior of S1, this concept of re�nement is normally referred to as behavioral re�nement.We now formulate an assumption/commitment rule with respect to the � operator. Tosimplify the rule, for any predicate P 2 (D1)n ! B, let hP i denote the element of (D!)n !B such that8r 2 (D!)n : hP i(r), 9s 2 (D1)n : r v s ^ P (s):The following rule is obviously sound1Rule 1 :A1(z) ^ (A2(z � y)) C2(z � y; y))) C1(z; y)(A1; C1) � (A2; C2)However, this rule is not very helpful from a practical point of view. It only translates theconclusion into the underlying logic without giving much hint about how a proof should beconstructed.By introducing an invariant I 2 (D1)q � (D!)m ! B a more useful rule can be formulatedRule 2 :A1(z)) I(z; y#0)I(z; y#j)) hA2i(z � y#j)I(z; y#j) ^ hC2i(z � y#j ; y#(j+1))) I(z; y#(j+1))8k 2 N : I(z; y#k)) I(z; y)I(z; y) ^ C2(z � y; y)) C1(z; y)(A1; C1) � (A2; C2)It is here assumed that z and y vary over q- respectively m-tuples of in�nite timed streams,and that each free occurrence of j varies over N1. In the sequel we often refer to A1 asthe overall assumption and to A2 as the component assumption (and accordingly for thecommitments).Lemma 1 Rule 2 is sound.Proof: It follows from the �rst premise that the invariant holds initially. By induction onj, it then follows from the second and third premise that the invariant holds at any �nitetime, in which case the fourth premise implies that the invariant holds at in�nite time. Theconclusion then follows by the �fth premise.A detailed proof can be found in Section A.3 of the appendix. 2Note that we have not imposed any constraints on the type of properties that can be expressedby the assumptions. Rule 2 allows all environment restrictions to be listed in the assumptionsindependent of whether these restrictions are safety properties or not. Moreover, the rule1With respect to Figure 1, z represents the q external input channels, and y represents the m outputchannels which are also fed back to x. 6



does not depend on that the assumptions are split into safety and liveness parts. Thus, Rule2 allows assumption/commitment speci�cations to be reasoned about in a natural way.The main reason why Rule 2 can deal with arbitrary liveness properties in the assumptions isthat it makes a clear distinction between induction hypotheses and component assumption.Without this distinction | in other words, if we had used the component assumption asinduction hypotheses, which is common in the case of assumption/commitment rules, thecomponent assumption would be required to satisfy the same type of admissibility propertywhich is imposed on the invariant by the fourth premise. As a consequence, we would only beable to handle restricted types of liveness properties in the component assumption, namelythose having this admissibility property.To show how Rule 2 can be used to handle liveness properties in the assumptions, we presenta small example. For this purpose, we �rst have to introduce some operators on streams.An untimed stream is a �nite or in�nite sequence of messages. It di�ers from a timed one inthat it has no occurrences of ticks. Given an untimed stream r and a positive natural numbern; #r denotes the length of r (1 if r is in�nite) and r(n) denotes the n'th element of r ifn � #r. These operators are overloaded to timed streams in a straightforward way. Giventhat for any timed stream r, r denotes the result of removing all ticks in r, then #r def= #rand r(n) def= r(n).Example 1 Liveness in the assumptions:Consider the two speci�cations S1 and S2, whereAS1(z) def= #z =1;CS1(z; y) def= #y =1^ 8j 2 N+ : y(j) =Pj�1k=1 z(k);AS2(z � x) def= #x = #z =1;CS2(z � x; y) def= y(1) = 0 ^ y(j + 1) = z(j) + x(j)^8j 2 N+ : #y#j = minf#x#(j�1);#z#(j�1)g+ 1:We assume all channels are of type natural number. Since AS1 and AS2 can be falsi�ed onlyby in�nite observations, they characterize pure liveness properties. S1 �rst outputs a 0 andthereafter, each time S1 receives a natural number n along its only input channel z, the sumof n and the sum of all the numbers previously received.S2, on the other hand, �rst outputs a 0, and thereafter the sum of each pair (n;m), wheren is the j'th number received on z and m is the j'th number received on x. This explainsthe two �rst conjuncts of CS2 . The delay along y is required to be exactly one time unitwith respect to the most recently received number. This timing constraint is expressed bythe third conjunct. We may use Rule 2 to prove thatS1  �S2by de�ningI(z; y) def= #z =1^8j 2 N+ : #z#(j�1) < #z#j ^ y#j 6= y#(j+1) ) #y#j < #y#(j+1)In [AL90] it is shown that any assumption/commitment speci�cation satisfying a certainrealizability constraint can be translated into an equivalent speci�cation, whose assumptionis a safety property, by placing the liveness assumptions in the commitment. A similarresult holds for our speci�cations. With respect S1 and S2 both assumptions would thenbecome equivalent to true; moreover we could use true as invariant, in which case the �rstfour premises would follow trivially. However, the veri�cation of the �fth premise would thenbecome more complicated. 2 7



It can be proved that Rule 2 is relative (semantic) complete with respect to componentsmodeled by non-empty sets of pulse-driven functions.Lemma 2 Given a non-empty set F � (D1)(q+m) p! (D1)m and assume that �F �[[ S1 ]]. Then there is a speci�cation S2 and a predicateI 2 (D1)q � (D!)m ! Bsuch that the �ve premises of Rule 2 are valid and F � [[ S2 ]].Proof: Let AS2(z � x) def= true, CS2(z � x; y) def= 9� 2 F : �(z � x) = y, I(z; y) def= true. Thevalidness of the �rst four premises follows trivially. That the �fth premise is valid followsfrom the fact that each pulse-driven function has a unique �x-point with respect to �. 2The completeness result characterized by Lemma 2 just says that whenever we have a data-
ow network �F , which satis�es some overall speci�cation S1, then we can construct aspeci�cation S2, which is satis�ed by F , and use Rule 2 to prove that S1  �S2. Sincewe are free to construct S2 as we like, this is a weak completeness result. As shown by theproof, true can be used both as component assumption and invariant. Since the validness ofthe �rst four premises follows trivially this result does not test the special features of Rule2. Thus, it is clear that Lemma 2 only captures some of the expectations we have to anassumption/commitment rule.Before we can prove a more interesting result, we have to �gure out exactly what theseexpectations are. First of all, we do not expect opposition when we claim that, from apractical point of view, an assumption/commitment rule is only expected to work when allspeci�cations concerned are implementable. For example (true; false) is not a very interestingspeci�cation because any component behavior is disallowed2. This speci�cation is obviouslyinconsistent in the sense that its denotation is empty, and it is clearly not implementable(modulo our concept of re�nement  and components modeled by non-empty sets of pulse-driven functions). In fact, any speci�cation, which disallows any component behavior for atleast one input history satisfying the assumption, is trivially not implementable.This is not, however, the only way in which a simple assumption/commitment speci�ca-tion can be unimplementable | it can also be unimplementable because it disallows pulse-drivenness.Example 2 Disallowing pulse-drivenness:Consider the speci�cation S, whereAS(i) def= true;CS(i; o) def= (i = hpi1 ^ o = hpi1) _ (i 6= hpi1 ^ o = 1_hpi1):The operator _ is used to extend a stream with a new �rst element (later it will also beused to concatenate streams), and hpi1 denotes an in�nite timed stream consisting of onlyticks. Assume � 2 [[ S ]]. For any input history i 6= hpi1 it holds thati#0 = hpi1#0:The pulse-drivenness of � implies�(i)#1 = �(hpi1)#1:2Remember that the complete communication history of a channel along which no message is sent isan in�nite stream of ticks. Thus, this speci�cation also disallows the empty behavior | the behavior of acomponent that does nothing. 8



But then, � 2 [[ S ]] implies 1 = p. Thus, S is inconsistent. Nevertheless, S allows an outputbehavior for any input behavior satisfying the assumption. Thus, S is inconsistent becauseit disallows pulse-drivenness. 2We say that a simple assumption/commitment speci�cation S is consistent if [[ S ]] 6= ;.A simple assumption/commitment speci�cation as de�ned above may have a commitmentthat is not fully realizable with respect to input histories satisfying the assumption or partialinput histories that have not yet falsi�ed the assumption.Example 3 Not fully realizable:Consider the speci�cation S, whereAS(i) def= true; CS(i; o) def= o = hpi1 _ i = o = h1;pi1:It is here assumed that h1;pi1 denotes the timed stream we get by concatenating in�nitelymany copies of the �nite stream consisting of a 1 followed by a p. Since �i:hpi1 2 [[ S ]], itfollows that S is consistent.To see that the commitment is not fully realizable with respect to input histories satisfyingthe assumption, let � 2 [[ S ]]. Sincehpi1#0 = h1;pi1#0;the pulse-drivenness of � implies�(hpi1)#1 = �(h1;pi1)#1;in which case it follows from the formulation of S that�(hpi1) = hpi1 = �(h1;pi1):Thus, the second disjunct of the commitment is not realizable by any pulse-driven function(and therefore also not realizable by any implementation modulo  ). 2Such speci�cations can be avoided by requiring thathASi(i#j) ^ hCSi(i#j ; o#(j+1))) 9� 2 [[ S ]] : �(i)#(j+1) = o#(j+1):Thus, at any (possibly in�nite) time j, if the environment assumption has not yet beenfalsi�ed, then any behavior allowed by the commitment until time j + 1 is matched bya function in the speci�cation's denotation. We say that a simple speci�cation is fullyrealizable if it satis�es this constraint. Note that only unrealizable paths are eliminated bythis constraint. It does not reduce the set of liveness properties that can be expressed bythe assumption or the commitment.Example 4 Fully realizable speci�cation:For example, given that for any message m and timed stream s, m c
s returns the result ofremoving any element in s di�erent from m, then the speci�cation S whereAS(i) def= #1 c
i =1; CS(i; o) def= #2 c
o =1is both consistent and fully realizable. Both the assumption and the commitment are livenessproperties since they can only be falsi�ed by in�nite observations. 2Nevertheless, from a practical point of view, any claim that simple speci�cations shouldalways be fully realizable is highly debatable. Of course, when someone comes up with a9



speci�cation as the one in Example 3, it is most likely true that he has speci�ed somethingelse than he intended to specify. However, there are other situations where speci�cationsthat are not fully realizable can be simpler than their fully realizable counterparts.Example 5 Implicit constraints:Consider for example the speci�cation S whereAS(i) def= true; CS(i; o) def= { = o:Since S allows behaviors where messages are output before they are received, or without therequired delay of at least one time unit, S is not fully realizable. For example, leti = a_hpi1; o = a_ hpi1:Assume there is a � 2 [[ S ]] such that �(i) = o. We prove that this assumption leads to acontradiction. The commitment implies �(hpi1) = hpi1. Since i#0 = hpi1#0 it followsthat � is not pulse-driven. This contradicts that � 2 [[ S ]]. The speci�cation S0, whereAS0(i) def= true; CS0(i; o) def= o = { ^ 8j 2 N : o#(j+1) v {#j ;is fully realizable and equivalent to S in the sense that [[ S ]] = [[ S0 ]].2Of course, in this small example it does not really matter. Nevertheless, in nontrivial casesspeci�cations can be considerably shortened by leaving out constraints already imposedvia the semantics. On the other hand, speci�cations with such implicit constraints willmore often be misunderstood and lead to mistakes because the implicit constraints are over-seen. The debate on implicit constraints is to some degree related to the debate on whetherspeci�cations split into safety and liveness conditions should be machine-closed or not [AS85],[DW90], [AAA+91], [DW91]. We do not take any standpoint to this here.To check whether a consistent speci�cation (A;C1) can be re�ned into a fully realizablespeci�cation (A;C2) is normally easy | it is enough to check that A ^ C2 ) C1. To checkthe opposite, namely whether (A;C2)  (A;C1), can be non-trivial. In that case, so-calledadaptation rules are needed. In most practical situations the following adaptation rule issu�cientA(i) ^ (8j 2 N1 : 8s : A(i#j _s)) 9r : C(i#j _s; o#(j+1)_r))) C 0(i; o)(A;C 0) (A;C)Example 6 Adaptation:For example, this rule can be used to prove that the speci�cation S of Example 3 is are�nement of the fully realizable equivalent speci�cation S0 whereAS0(i) def= true; CS0(i; o) def= o = hpi1:Assume i = o = h1;pi1. S0 can be deduced from S by the adaptation rule if we can �ndan s and a j 2 N1 such that for all ro#(j+1)_r 6= hpi1 ^ :(i#j _s = o#(j+1)_r = h1;pi1)For example, this is the case if s = hpi1 and j = 0. 210



Example 7 Adaptation:With respect to Example 5, the adaptation rule can also be used to prove that the speci�-cation S is a re�nement of the equivalent speci�cation S0. To see that, let i; o and j be suchthat o#(j+1) 6v i#j . S0 can be deduced from S by the adaptation rule if we can �nd an s suchthat for all r(i#j _s) 6= (o#(j+1)_r):Clearly, this is the case if s = hpi1. 2An interesting question at this point is of course: how complete is this adaptation rule| for example, is it adaptation complete in the sense that it can be used to re�ne anyconsistent fully realizable speci�cation into any semantically equivalent speci�cation underthe assumption that we have a complete set of deduction rules for our assertion language?Unfortunately, the answer is \no".Example 8 Incompleteness:To see that, �rst note that the speci�cation S whereAS(i) def= true; CS(i; o) def= o 6= i;is inconsistent.To prove this, assume � 2 [[ S ]]. � is pulse-driven which implies that � has a unique �x-point,i.e., there is a unique s such that �(s) = s. This contradicts that � 2 [[ S ]]. Moreover, since8j 2 N; s : 9r : o#(j+1)_r 6= i#j _s;it follows that the adaptation rule cannot be used to adapt S. A slightly weaker, consistentversion of S is S0 whereAS0(i) def= true; CS0(i; o) def= o 6= i _ o = hpi1:Since �i:hpi1 2 [[ S0 ]] it follows that S0 is consistent. That the adaptation rule cannot beused to adapt S0 follows by the same argument as for S. Moreover, since any � 2 [[ S0 ]] hashpi1 as its �x-point, it follows from the pulse-drivenness of � that for example any behavior(i; o) such that o does not start with a p is not realizable by a function in the denotation ofS. Thus, S is not fully realizable. 2To adapt such speci�cations without explicitly referring to pulse-driven functions is prob-lematic, if at all possible. However, by referring directly to the denotation of a speci�cation,we get the following rule, which is obviously adaptation complete.A(i) ^ � 2 [[ (A;C) ]]) C 0(i; �(o))(A;C 0) (A;C)Of course this type of adaptation can also be built into Rule 2. It is enough to replace theantecedent of the third premise byI(z; y#j) ^ 9� 2 [[ (A2; C2) ]] : �(z � y) = y:However, in our opinion, assumption/commitment rules should not be expected to be adapta-tion complete. Firstly, as shown above, by building adaptation into assumption/commitmentrules, the rules become more complicated | at least if adaptation completeness is to beachieved. Secondly, for many proof systems, adaptation completeness is not achievable.11



Roughly speaking, adaptation completeness is only achievable if the assertion language isrich enough to allow the semantics of a speci�cation to be expressed at the syntactic level.For example, with respect to our rules, it seems to be necessary to refer to pulse-driven func-tions at the syntactic level in order to achieve adaptation completeness. Instead, we arguethat assumption/commitment rules should only be expected to work when the speci�cationsare fully realizable. Adaptation should be conducted via separate rules. If these adaptationrules are adaptation complete, then this can be proved. If not, we may still prove that theassumption/commitment rules satisfy interesting completeness properties with respect tofully realizable speci�cations | which basically amounts to proving these properties underthe assumption that adaptation complete adaptation rules are available.We are by no means the �rst to make this distinction between adaptation rules and ordinaryrules. In fact, since the early days of Hoare-logic, it has been common to distinguish betweensyntax-directed proof-rules involving composition modulo some programming construct andpure adaptation rules. See for example the discussion on adaptation completeness in [Zwi89].Given that the speci�cations are consistent and fully realizable, at a �rst glance one mightexpect the completeness property of interest to be:� whenever the conclusion holds, then we can �nd an invariant I such that the �vepremises of Rule 2 are valid.However, this is too strong. Consider the single premise of Rule 1. The main contributionof Rule 2 is that whenever the �rst four premises of Rule 2 are valid, then the premise ofRule 1 can be simpli�ed toI(z; y) ^ C2(z � y; y)) C1(z; y):The second premise of Rule 2 makes sure that the invariant implies the component assump-tion A2. Moreover, as shown in the proof of Lemma 3 below, Rule 2 allows us to build theoverall assumption into the invariant. Thus, this formula is basically \equivalent" toA1(z) ^ A2(z � y) ^ C2(z � y; y)) C1(z; y):As a consequence, it can be argued that Rule 2 characterizes su�cient conditions underwhich ) in the antecedent of Rule 1's premise can be replaced by ^. In other words, themain contribution of Rule 2 with respect to Rule 1 is to make sure that for any overall inputhistory satisfying the overall assumption, the component assumption is not falsi�ed. In fact,this is not only a feature of Rule 2 | it seems to be a feature of assumption/commitmentrules for simple speci�cations. For example, in the rely/guarantee method [Jon83] onlysimple speci�cations can be expressed (simple in the sense that the pre- and rely-conditionsdo not depend upon the speci�ed component's behavior). Moreover, the rule for parallelcomposition makes sure that if the environment behaves in accordance with the overall pre-and rely-conditions, then the two components behave in accordance with their respectivepre- and rely-conditions.Thus, since for example S1  �S2, given thatAS1(i) def= CS1(i; o) def= CS2(i; o) def= true; AS2(i) def= false;although[[ S2 ]] = (D1)(q+m) p! (D1)m;the completeness property proposed above is too strong. It has to be weakened into� whenever the conclusion holds, and z � �(z) satis�es the component assumption A2 for12



any input history z satisfying the overall assumption A1 and function � 2 [[ S1 ]], thenwe can �nd an invariant I such that the �ve premises of Rule 2 are valid.More formallyLemma 3 Given two simple speci�cations S1 and S2 such that S1  �S2. Assume that S2is consistent and fully realizable, and moreover that� 2 [[ S1 ]] ^ AS1(z)) AS2(z � �(z)):Then there is a predicate I 2 (D1)q � (D!)m ! B such that the �ve premises of Rule 2 arevalid.Proof: LetI(z; y) def= AS1(z) ^ 8k 2 N : hAS2i(z � y#k) ^ hCS2i(z � y#k; y#k):See Section A.4 of the appendix for more details. 2The proof of Lemma 3 is based on the fact that there is a canonical invariant | moreprecisely, a schema that gives an invariant that is su�ciently strong. As a consequence, ifwe �x the invariant in accordance with the proof of Lemma 3, we may simplify Rule 2 byremoving the fourth premise and replacing the second by I(z; y)) A2(z � y). However, froma practical point of view, it is debatable whether the invariant should be �xed in this way. Acanonical invariant has a simplifying e�ect in the sense that the user himself does not haveto come up with the invariant. On the other hand, it complicates the reasoning because it isthen necessary to work with a large and bulky formula when in most cases a much simplerformula is su�cient.4 General Assumption/Commitment Speci�cationsWe now introduce the second speci�cation format, namely so-called general assumption/co-mmitment speci�cations. We �rst discuss the semantics of this format. Then we reformulatethe assumption/commitment rule for simple speci�cations. We prove that this new rule issound and satis�es a completeness result similar to that for the previous rule.A general assumption/commitment speci�cation is also a pair of two predicates (A;C). Thedi�erence with respect to the simple case is that not only the commitment, but also theassumption A, may refer to the output, i.e., A is now of the same type as CA 2 (D1)n � (D1)m ! B:The denotation of a general assumption/commitment speci�cation (A;C) is the set of allfunctions � 2 (D1)n p! (D1)m such thathAi(i; �(i)#j )) hCi(i; �(i)#(j+1)):Note that, sincehAi(i; �(i)#1)) hCi(i; �(i)#(1+1))is equivalent to A(i; �(i))) C(i; �(i)), this requirement is at least as strong as the constraintimposed on the denotation of a simple speci�cation. In addition, we now also require that ifthe environment behaves in accordance with the assumption until time j, then any correctimplementation must behave in accordance with the commitment until time j + 1.13



Thus, this semantics guarantees that any correct implementation ful�lls the commitment atleast one step longer than the environment ful�lls the assumption. As will be shown, thisone-step-longer-than semantics allows Rule 2 to be restated for general speci�cations in astraightforward way.One may ask: why not impose this second constraint also in the case of simple speci�cations?The reason is that the second constraint degenerates to that for simple speci�cations whenA does not refer to the output.An alternative semantics would be the set of all functions � 2 (D1)n p! (D1)m such thathAi(i#j ; �(i)#j)) hCi(i#j ; �(i)#(j+1)):We use [[ (A;C) ]]alt to denote this set. We prefer the [[ ]] semantics because [[ ]] is morenatural as long as the two predicates A and C characterize relations on in�nite commu-nication histories. Moreover, as will be shown below, we can always restate an assump-tion/commitment speci�cation in such a way that [[ ]] and [[ ]]alt yield the same set offunctions.Lemma 4 For any general assumption/commitment speci�cation S, we have that[[ S ]] � [[ S ]]alt:Proof: Let � 2 [[ S ]] and assume hASi(i#j ; �(i)#j). It follows straightforwardly that there isan s such that hASi(i#j _s; �(i)#j), in which case we also have that hCSi(i#j _s; �(i)#(j+1)).But this implies hCSi(i#j ; �(i)#(j+1)). Thus � 2 [[ S ]]alt. 2On the other hand, in the general case, it does not hold that[[ S ]]alt � [[ S ]]:Example 9 [[ ]] versus [[ ]]alt:To see that, let S be the speci�cation such thatAS(i; o) def= i = p_o;CS(i; o) def= (i = hpi1 ^ o = hpi1) _ (9n 2 N : o = hn;pi1):Let � = �i:hpi1. ClearlyhASi(i#j ; �(i)#j), i#j = hpij :Since hCSi(hpi1#j ; hpi1#(j+1)) we have that � 2 [[ S ]]alt. On the other hand, let i =hpij+1_ h1;pi1. It clearly holds that hASi(i; �(i)#j ), but hCSi(i; �(i)#(j+1)) does not hold.Thus � 62 [[ S ]]. 2Nevertheless, it can be shown that[[ S ]]alt = [[ (AS ; 9� 2 [[ S ]]alt : �(i) = o) ]]alt;[[ (AS ; 9� 2 [[ S ]]alt : �(i) = o) ]]alt = [[ (AS ; 9� 2 [[ S ]]alt : �(i) = o) ]]:The correctness of the �rst equality follows trivially. The correctness of the second followssince each function is de�ned for any input history. Thus, we can always �nd an equivalentspeci�cation such that the di�erence between [[ ]] and [[ ]]alt does not matter.14



Under the assumption that z and y vary over q- respectively m-tuples of in�nite timedstreams, and j varies over N1, the assumption/commitment rule for the � construct can berestated as belowRule 3 :A1(z; y)) I(z; y#0)I(z; y#j)) hA2i(z � y#j ; y#j)A1(z; y) ^ I(z; y#j) ^ hC2i(z � y#j ; y#(j+1))) I(z; y#(j+1))A1(z; y) ^ 8k 2 N : I(z; y#k)) I(z; y)I(z; y#j) ^ hC2i(z � y#j ; y#(j+1))) hC1i(z; y#(j+1))(A1; C1) � (A2; C2)Contrary to earlier, the overall assumption may refer to the overall output. As a consequence,it is enough to require that the invariant and the component assumption hold at least aslong as the overall assumption is not falsi�ed. This explains the modi�cations to the thirdand fourth premise. The �fth premise has been altered to accommodate that for partialinput the overall commitment is required to hold at least one step longer than the overallassumption. The one-step-longer-than semantics is needed to prove the induction step.Lemma 5 Rule 3 is sound.Proof: An informal justi�cation has been given above. See Section A.1 of the appendix fora detailed proof. 2Rule 3 is relative, semantic complete in the same sense as Rule 2. However, as for simple spec-i�cations, this is not the completeness result we want. A general assumption/commitmentspeci�cation S is consistent i�[[ S ]] 6= ;;and fully realizable i�8� 2 [[ S ]] : 9� 0 2 [[ S ]] :hASi(i#j ; o#j) ^ o#j = �(i)#j ^ hCSi(i#j ; o#(j+1))) � 0(i)#(j+1) = o#(j+1):Thus, a general speci�cation is fully realizable i� for any complete input history i andcomplete output history o such that the assumption holds until time j and the commitmentholds until time j + 1: if there is a pulse-driven function � in the denotation of S thatbehaves in accordance with (i; o) until time j, then there is a pulse-driven function � 0 inthe denotation of S that behaves in accordance with (i; o) until time j + 1. Note thatthis constraint degenerates to the corresponding constraint for simple speci�cations if S isconsistent and does not refer to o in its assumption.In Lemma 3 we made the assumption that for any input history satisfying the overall as-sumption, each resulting �x-point satis�es the component assumption. In the case of gen-eral assumption/commitment speci�cations the overall assumption may refer to the output.Thus, it makes only sense to require that the component assumption holds at least as longas the overall assumption. Lemma 3 can then be restated as belowLemma 6 Given two general speci�cations S1 and S2 such that S1  �S2. Assume thatS2 is consistent and fully realizable, and moreover that� 2 [[ S1 ]] ^ hAS1i(z; �(z)#j)) hAS2i(z � �(z)#j ; �(z)#j):Then there is a predicate I 2 (D1)q � (D!)m ! B such that the �ve premises of Rule 3 arevalid. 15



Proof: LetI(z; y) def= hAS1i(z; y) ^ 8k 2 N : hAS2i(z � y#k; y#k) ^ hCS2i(z � y#k; y#k):See Section A.2 of the appendix for details. 25 Network RuleWe now outline how the rules introduced above can be generalized to deal with �nite data-
ow networks. For this purpose, we represent speci�cations in a slightly di�erent way.So far speci�cations have been represented by pairs of predicates. Instead of predicates wenow use formulas with free variables varying over timed in�nite streams. Each free variablerepresents the communication history of the channel named by the variable. In that case,however, we need a way to distinguish the variables representing input channels from thevariables representing output channels. We therefore propose the following format(i; o; A; C);where i is a �nite totally ordered set of input names, o is a �nite totally ordered set of outputnames, and A and C are formulas whose free variables are contained in i[ o. The sets i ando are required to be disjoint. In other words, the input and output channels have di�erentnames. As shown below, the advantage of this format is that it gives us a 
exible wayof composing speci�cations into networks of speci�cations by connecting input and outputchannels whose names are identical.Given n general speci�cations(z1 [ x1; y1; A1; C1); (z2 [ x2; y2; A2; C2); : : : ; (zn [ xn; yn; An; Cn):For each k, the sets zk; xk and yk name respectively the external input channels (thoseconnected to the overall environment), the internal input channels (those connected to theother n� 1 speci�cations in the network), and the external and internal output channels.Let z = [nk=1zk; x = [nk=1xk ; y = [nk=1yk:It is assumed that z \ x = z \ y = ; and that x � y. Moreover, it is assumed thatl 6= k ) yl \ yk = ;:We can then think of these n speci�cations as modeling a network of n components wherethe input and output channels are connected i� they have identical names. The constraintsimposed on the sets of channel names imply that two di�erent speci�cations cannot write onthe same channel. They may have read access to the same channel, however, this read accessis non-destructive in the sense that they both get a private copy of the channel's content.We represent this network byknk=1 (zk [ xk; yk; Ak ; Ck):Thus, given that z and y contain n respectively m elements, the denotation of this networkis the set of all functions
16



� 2 (D1)n p! (D1)m;where for each z, there are functions �j 2 [[ (zj [ xj ; yj ; Aj ; Cj) ]] such that3�(z) = yif y1 = �1(z1 � x1); y2 = �2(z2 � x2); : : : ; yn = �n(zn � xn):Due to the pulse-drivenness of each �j , it follows that for each z there is a unique y suchthat (z; y) is a solution of these n equations. Thus, � is well-de�ned, and it is also easy toprove that � is pulse-driven.By de�ning P [ab ] to denote the result of replacing each occurrence of a in P by b, a straight-forward generalization of Rule 3 gives:Rule 4 :A) I [yy#0 ]I [yy#j ]) (^nk=1hAki[yy#j ])A ^ I [yy#j ] ^ (^nk=1hCki[xkxk#j ykyk#(j+1) ])) I [yy#(j+1) ]A ^ 8k 2 N : I [yy#k ]) II [yy#j ] ^ (^nk=1hCki[xkxk#j ykyk#(j+1) ])) hCi[yy#(j+1) ](z; y; A;C) knk=1 (zk [ xk ; yk; Ak; Ck)The elements of z and y vary over D1, and j varies over N1.However this rule ignores one aspect, namely that we are now dealing with n speci�cationsand not only 1. For example, if n = 2, it may be the case that the invariant I only implies oneof the component assumptions, say A1, and that the second component assumption A2 canbe deduced from A1 ^ C1. This is typically the case if A2 contains some liveness constraintthat can only be deduced from C1. To accommodate this, we reformulate Rule 4 as below:Rule 5 :A) I [yy#0 ]I [yy#j ]) (^nk=1hAki[yy#j ])A ^ I [yy#j ] ^ (^nk=1hCki[xkxk#j ykyk#(j+1) ])) I [yy#(j+1) ]A ^ 8k 2 N : I [yy#k ]) II [yy#j ] ^ (^nk=1hCki[xkxk#j ykyk#(j+1) ])) hCi[yy#(j+1) ]I ^ (^nk=1Ak ) Ck)) C(z; y; A;C) knk=1 (zk [ xk ; yk; Ak; Ck)As for Rule 4, the elements of z and y vary over D1. However, j now only varies over N.For Rule 5 we may prove soundness and completeness results similar to those for Rule 3.6 ConclusionsAs we see it, the contributions of this paper are as follows� We have introduced two speci�cation formats, namely simple and general assump-tion/commitment speci�cations.3In this de�nition each totally ordered set is interpreted as a tuple.17



� For these speci�cation formats we have formulated assumption/commitment rules andproved their soundness.� We have shown that our rules handle assumptions with arbitrary liveness properties.We have argued that this is due to the fact that the rules make a clear distinctionbetween induction hypotheses and environment assumptions.� We have argued that the usual concept of relative completeness only captures some ofthe expectations we have to such rules. We have carefully investigated exactly whatthose expectations are, and based on this investigation, we have proposed a strongercompleteness requirement and proved that our rules satisfy this requirement.� For general speci�cations we have proposed a semantics that guarantees that a correctimplementation will behave in accordance with the commitment at least one step longerthan the environment behaves in accordance with the assumption.� Finally, we have outlined how the speci�cation formats and proposed rules can begeneralized to specify and prove properties of general data-
ow networks.We have had many sources of inspiration. We now relate our approach to the most important.Semantic Model: Park [Par83] employs ticks (hiatons) in the same way as us. However, hisfunctions are de�ned also for �nite streams, and in�nite streams are not required to havein�nitely many ticks. Kok [Kok87] models components by functions mapping in�nite streamsof �nite streams to non-empty sets of in�nite streams of �nite streams. The �nite streams canbe empty which means that he can represent communication histories with only �nitely manymessages. His in�nite streams of �nite streams are isomorphic to our timed streams in thesense that we use ticks to split an in�nite communication history into an in�nite sequenceof �nite streams. Two consecutive ticks correspond to an empty stream. In the style of[Bro87], we use a set of functions to model nondeterministic behavior. This in contrast tothe set valued functions of [Kok87]. Sets of functions allow unbounded nondeterminism (andthereby liveness) to be modeled in an elegant way. However, contrary to [Bro87], we usepulse-driven functions and in�nite timed streams. Thereby we get a simpler theory. Theactual formulation of pulse-drivenness has been taken from [Bro95]. We refer to [GS95] formore details on the semantic model.Speci�cation Formats: The distinction between simple and general speci�cations can alsobe found in [SDW93], [Bro94]. However, in these papers, the techniques for expressinggeneral speci�cations are more complicated. [SDW93] uses a speci�cation format based onprophecies. [Bro94] employs so-called input-choice speci�cations.The one-step-longer-than semantics used by us is strongly inspired by [AL93]. [Col94b]employs a slightly weaker semantics | the commitment is only required to hold at least aslong the assumption has not been falsi�ed.Assumption/Commitment Rules: A large number of composition rules for assumption/com-mitment speci�cations have been published. In the case of sequential systems they wereintroduced with Hoare-logic [Hoa69]. In the concurrent case such rules were �rst proposedby [Jon81], [MC81].Most rules proposed so far impose strong constraints on the properties that can occur in theassumptions. For example, it is common to require the assumptions to be safety properties[AL90], [PJ91] or admissible [SDW93]. An assumption/commitment rule handling generalliveness properties in the assumptions can be found in [Pnu85] (related rules are proposedin [Sta85], [Pan90]). However, this rule is based on the ) semantics we used for simplespeci�cations. Our rules for general speci�cations require the stronger one-step-longer-thansemantics. The rule proposed in [AL93] handles some liveness properties in the assumptions.We have not yet understood the exact relationship to our rules.[AL93] argues that from a pragmatic point of view speci�cations should always be formulatedin such a way that the assumption is a safety property. Because we have too little experience18



in using our formalism, we do not take any standpoint to this claim here. However, we haveat least shown that our assumption/commitment rules do not depend upon this restriction.[SF95] contains a case-study using the proposed formalism.Completeness: The concept of relative completeness was �rst introduced by [Coo78]. Seefor example [Apt81], [HdRLX92] for an overview of the literature on relative completeness.[Zwi89] distinguishes between three concepts of completeness, namely compositional, adapta-tion and modular completeness. Roughly speaking, a proof system is compositional completeif it is compositional and relative complete. A proof system is modular complete if it is com-positional complete and in addition adaptation complete. Our concept of completeness lies inbetween compositional and modular completeness. It can almost be understood as modularcompleteness under the assumption that adaptation complete adaptation rules are available.Expressiveness: The results presented in this paper are all of a rather semantic nature in thesense that we do not explicitly de�ne a logical assertion language. Let L be the assertionlanguage in which the assumptions, commitments and invariants are expressed. The proof ofLemma 6 depends on the formulation of a canonical invariant. This means that if L allowsthe operator #, the closure hP i for any formula P in L, the set (D1)q for any set D andnatural number q, and the usual logical operators to be expressed, then our completenessresult carry over. Examples of languages that have this expressiveness are PVS [OSR93] andHOLCF [Reg94].7 AcknowledgmentThis work is supported by the Sonderforschungsbereich 342 \Werkzeuge und Methoden f�urdie Nutzung paralleler Rechnerarchitekturen". Manfred Broy, Pierre Collette and StephanMerz have read an early draft of this paper and provided helpful comments.References[AAA+91] M. Abadi, B. Alpern, K. R. Apt, N. Francez, S. Katz, L. Lamport, and F. Schnei-der. Preserving liveness: Comments on \Safety and liveness from a methodolog-ical point of view". Information Processing Letters, 40:141{142, 1991.[AL90] M. Abadi and L. Lamport. Composing speci�cations. Technical Report 66,Digital, SRC, Palo Alto, 1990.[AL93] M. Abadi and L. Lamport. Conjoining speci�cations. Technical Report 118,Digital, SRC, Palo Alto, 1993.[Apt81] K. R. Apt. Ten years of Hoare's logic: A survey | part I. ACM Transactionson Programming Languages and Systems, 3:431{483, 1981.[AS85] B. Alpern and F. B. Schneider. De�ning liveness. Information Processing Let-ters, 21:181{185, 1985.[BK84] H. Barringer and R. Kuiper. Towards the hierarchical temporal logic speci�-cation of concurrent systems. In Proc. The Analysis of Concurrent Systems,Lecture Notes in Computer Science 207, pages 157{184, 1984.[Bro87] M. Broy. Semantics of �nite and in�nite networks of concurrent communicatingagents. Distributed Computing, 2:13{31, 1987.[Bro94] M. Broy. A functional rephrasing of the assumption/commitment speci�cationstyle. Technical Report SFB 342/10/94 A, Technische Universit�at M�unchen,1994. 19
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(6) : (A1; C1) � (A2; C2):Given(7) : � 2 [[ � (A2; C2) ]]:(6) follows if it can be shown that(8) : hA1i(z; �(z)#j)) hC1i(z; �(z)#(j+1)):Given some z 2 (D1)q . (7) and the de�nition of � imply there is a � 0 such that(9) : � 0 2 [[ (A2; C2) ]];(10) : �(z) = � � 0(z):Let (11) : y = � � 0(z):(8) follows if it can be shown that(12) : A1(z; y)) C1(z; y);(13) : 8j 2 N : hA1i(z; y#j)) hC1i(z; y#(j+1)):To prove (12), assume(14) : A1(z; y):(12) follows if it can be shown that(15) : C1(z; y):We prove by induction on k that(16) : 8k 2 N : I(z; y#k):(1); (14) imply the base-case. Assume(17) : I(z; y#l):It must be shown that(18) : I(z; y#(l+1)):(2); (17) imply(19) : hA2i(z � y#l; y#l):(9); (11); (19) imply(20) : hC2i(z � y#l; y#(l+1)):(3); (14); (17); (20) imply (18). This ends the proof of (16).22



(4); (14); (16) imply(21) : I(z; y):(2); (21) imply(22) : A2(z � y; y):(9); (11); (22) imply(23) : C2(z � y; y):(5); (21); (23) imply (15). This ends the proof of (12).To prove (13), let j 2 N and assume that(24) : hA1i(z; y#j):(13) follows if it can be shown that(25) : hC1i(z; y#j+1):In the same way as above, it follows by induction that(26) : I(z; y#j):(2); (26) imply(27) : hA2i(z � y#j ; y#j):(9); (11); (27) imply(28) : hC2i(z � y#j ; y#(j+1)):(5); (26); (28) imply (25). This ends the proof of (13).A.2 Proof of Lemma 6Assume(1) : (A1; C1) � (A2; C2);(2) : � 2 [[ (A1; C1) ]] ^ hA1i(z; �(z)#j)) hA2i(z � �(z)#j ; �(z)#j);(3) : (A2; C2) is consistent;(4) : (A2; C2) is fully realizable:It must be shown that there is a predicateI 2 (D1)q � (D!)m ! B;such that
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(5) : A1(z; y)) I(z; y#0);(6) : I(z; y#j)) hA2i(z � y#j ; y#j);(7) : A1(z; y) ^ I(z; y#j) ^ hC2i(z � y#j ; y#(j+1))) I(z; y#(j+1));(8) : A1(z; y) ^ 8k 2 N : I(z; y#k)) I(z; y);(9) : I(z; y#j) ^ hC2i(z � y#j ; y#(j+1))) hC1i(z; y#(j+1)):Let (10) : I(z; y) def= hA1i(z; y) ^ 8k 2 N : hA2i(z � y#k; y#k) ^ hC2i(z � y#k; y#k):To prove (5), assume there are z 2 (D1)q ; y 2 (D1)m such that(11) : A1(z; y):(5) follows if it can be shown that(12) : I(z; y#0):(3) implies there is a � such that(13) : � 2 [[ (A2; C2) ]]:(11) implies(14) : hA1i(z; y#0):(1); (2); (13); (14) imply(15) : hA2i(z � y#0; y#0):(13); (15) imply(16) : hC2i(z � y#0; y#0):(10); (14); (15); (16) imply (12). This ends the proof of (5).To prove (6), assume there are z 2 (D1)q ; y 2 (D1)m; j 2 N1 such that(17) : I(z; y#j):(6) follows if it can be shown that(18) : hA2i(z � y#j ; y#j):(10); (17) imply (18) if j <1. Assume(19) : j =1:(18) follows if it can be shown that 24



(20) : A2(z � y; y):(10); (17); (19) imply(21) : A1(z; y) ^ 8k 2 N : hA2i(z � y#k; y#k) ^ hC2i(z � y#k; y#(k+1))We prove by induction on k that there is an in�nite sequence �0; �1; �2; : : : of functions suchthat for all k 2 N(22) : �k 2 [[ (A2; C2) ]];(23) : y#(k+1) = �k(z � y)#(k+1):(3); (4); (21) imply the base-case. (4); (21) imply the induction step.Let � be the function such that(24) : 0 < k <1^ (z#(k�1); y#(k�1)) v w 6w (z#k; y#k)) �(w) = �(k�1)(w);(25) : �(z � y) = y:� is clearly well-de�ned. We now show that � is pulse-driven. Given v; u 2 (D1)(q+m),j 2 N such that(26) : v#j = u#j :It is enough to show that(27) : �(v)#(j+1) = �(u)#(j+1):There are two cases to consider:(28) : v#j 6v (z; y);(29) : v#j v (z; y):Assume (28). Then there is a unique 0 < l � j such that(30) : (z#(l�1); y#(l�1)) v v;(31) : (z#l; y#l) 6v v:(24); (26); (30); (31) imply(32) : �(v) = �l(v);(33) : �(u) = �l(u):(26); (32); (33) and the pulse-drivenness of the functions imply (27).Assume (29). (24); (25); (29) imply(34) : �(v) = y _ 9k 2 N : k � j ^ �(v) = �k(v);(35) : �(u) = y _ 9k 2 N : k � j ^ �(u) = �k(u):(23); (26); (29); (34); (35) and the pulse-drivenness of �k imply (27). Thus, � is pulse-driven.To prove (20), there are two cases to consider:
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(36) : � 2 [[ (A2; C2) ]];(37) : � 62 [[ (A2; C2) ]]:Assume (36). (1); (2); (21); (25); (36) imply (20).Assume (37). (22); (24); (25); (37) imply(38) : A2(z � y; y) ^ :C2(z � y; y):(38) implies (20). Thus, (20) has been proved. This ends the proof of (6).To prove (7), assume there are z 2 (D1)q ; y 2 (D1)m; j 2 N1 such that(39) : A1(z; y);(40) : I(z; y#j);(41) : hC2i(z � y#j ; y#(j+1)):(7) follows if it can shown that(42) : I(z; y#(j+1)):If j =1 then (42) follows trivially. Thus, assume j <1.(3); (4); (10); (40) imply (by arguing in the same way as for (22); (23)) there is a � such that(43) : � 2 [[ (A2; C2) ]];(44) : y#(j+1) = �(z � y)#(j+1):(44) and the pulse-drivenness of � imply(45) : � �(z)#(j+1) v y:(1); (2); (39); (43); (45) imply(46) : hA2i(z � y#(j+1); y#(j+1)):(43); (44); (46) imply(47) : hC2i(z � y#(j+1); y#(j+1)):(10); (39); (40); (46); (47) imply (42). This ends the proof of (7).To prove (8), assume there are z 2 (D1)q ; y 2 (D1)m such that(48) : A1(z; y);(49) : 8k 2 N : I(z; y#k):(8) follows if it can be shown that(50) : I(z; y):(10); (48); (49) imply (50). This ends the proof of (8).26



To prove (9), assume there are z 2 (D1)q ; y 2 (D1)m, j 2 N1 such that(51) : I(z; y#j);(52) : hC2i(z � y#j ; y#(j+1)):(9) follows if it can be shown that(53) : hC1i(z; y#(j+1)):(3); (4); (10); (51) imply (by arguing in the same way as for (22); (23)) there is a � such that(54) : � 2 [[ (A2; C2) ]];(55) : y#(j+1) = �(z � y)#(j+1):(1); (54) imply(56) : � � 2 [[ (A1; C1) ]]:(55) and the pulse-drivenness of � imply(57) : y#(j+1) v � �(z):(10); (51); (56); (57) imply (53). This ends the proof of (9).A.3 Proof of Lemma 1Assume(1) : A1(z)) I(z; y#0);(2) : I(z; y#j)) hA2i(z � y#j);(3) : I(z; y#j) ^ hC2i(z � y#j ; y#(j+1))) I(z; y#(j+1));(4) : 8k 2 N : I(z; y#k)) I(z; y);(5) : I(z; y) ^ C2(z � y; y)) C1(z; y):It must be shown that(6) : (A1; C1) � (A2; C2):Given(7) : � 2 [[ � (A2; C2) ]]:(6) follows if it can be shown that(8) : A1(z)) C1(z; �(z)):(1)-(4) imply (A:1:1)-(A:1:4)4. Moreover, (5) implies (A:1:5) for the case that j =1. Sincethe proof of (A:1:12) relies upon (A:1:5) only for the case that j = 1, it follows that (8)holds.A.4 Proof of Lemma 3Assume4By (A:1:n) we mean (n) of Section A.1 27



(1) : (A1; C1) � (A2; C2);(2) : � 2 [[ (A1; C1) ]] ^A1(z)) A2(z � �(z));(3) : (A2; C2) is consistent;(4) : (A2; C2) is fully realizable:It must be shown that there is a predicate I 2 (D1)q � (D!)m ! B such that(5) : A1(z)) I(z; y#0);(6) : I(z; y#j)) hA2i(z � y#j);(7) : I(z; y#j) ^ hC2i(z � y#j ; y#(j+1))) I(z; y#(j+1));(8) : 8k 2 N : I(z; y#k)) I(z; y);(9) : I(z; y) ^ C2(z � y; y)) C1(z; y):Let (10) : I(z; y) def= A1(z) ^ 8k 2 N : hA2i(z � y#k) ^ hC2i(z � y#k; y#k):(1)-(4), (10) imply (A:2:1)-(A:2:4), (A:2:10), in which case (5)-(9) follow by Lemma 6 and(10).
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