
 

Semantics of UML 

 

Towards a System Model for UML  
The Structural Data Model 

 

 
 

Version 1.0 
 

 

Manfred Broy1 
María Victoria Cengarle1 
Bernhard Rumpe2 

 

1 Lehrstuhl für Software & Systems Engineering 
Institut für Informatik 
Technische Universität München 

2 Institut für Software Systems Engineering 
Carl-Friedrich-Gauß-Fakultät für Mathematik und Informatik 
Technische Universität Braunschweig 

 

with special thanks to 
Michelle Crane 
Jürgen Dingel 
Zinovy Diskin 
Jan Jürjens 
Bran Selic 

 



System Model for UML, Part 1: Structure   

- 2 - 

 

Table of Contents 
1 Introduction into the System Model for UML.................................................... 3 

1.1 General Approach to Semantics ...................................................................... 3 

1.2 Structuring the Semantics of UML ................................................................... 4 

1.3 The Math behind the System Model ................................................................ 6 

1.4 Static and Dynamic Issues............................................................................... 7 

1.5 What is the system model?.............................................................................. 8 

1.6 What will be next for the system model?.......................................................... 9 

2 Static Part of the System Model....................................................................... 9 

2.1 Type Names and Their Carrier Sets ................................................................ 9 

2.2 Basic Type Names and Type Name Constructors ......................................... 10 

2.3 References and Variables.............................................................................. 10 

2.4 Record Type Names and Cartesian Products................................................ 12 

2.5 Locations ....................................................................................................... 13 

2.6 Class Names and Objects ............................................................................. 14 

2.7 Subclassing ................................................................................................... 17 

2.8 Extension and Variation Point: Type system.................................................. 18 

2.9 The Data Store Structure ............................................................................... 19 

2.10 Class Variables and Constants...................................................................... 21 

2.11 Associations: Various Object Relations ......................................................... 21 

3 References .................................................................................................... 26 

4 Appendix: Rationale and Comments.............................................................. 28 

4.1 General Approach to Semantics .................................................................... 28 

4.2 Structuring the Semantics of UML ................................................................. 28 

4.3 The Math behind the System Model .............................................................. 28 

4.4 Static and Dynamic Issues............................................................................. 29 

4.5 Types ............................................................................................................. 30 

4.6 Basic Types and Type Constructors .............................................................. 30 

4.7 References and Variables.............................................................................. 31 

4.8 Record types.................................................................................................. 31 

4.9 Locations ....................................................................................................... 32 

 
 



System Model for UML, Part 1: Structure   

- 3 - 

1 Introduction into the System Model for UML 

In this document we introduce a system model as the basis for a semantic model for 
UML 2.0. The system model is supposed to form the core and foundation of the UML 
semantics definition. For that purpose the basic system is targeted towards UML.  

This document is structured as follows: In the rest of Section 1 we will discuss the 
general approach and highlight the main decisions. This section is important to 
understand the rest of this document. Section 2 contains the actual definition of the 
structural part of the system model. It is built in layers as described in Section 1. For 
brevity of the approach, we defer deeper discussions into the Appendix in Section 4.  

This document is part of a project on the formalization of the UML 2.0 in cooperation 
between the Queens University Kingston and the Technische Universitäten 
Braunschweig and München. This version 1.0 is the result of a longer effort to define 
the structure, behaviour and interaction of object-oriented, possibly distributed 
systems abstract enough to be of general value, but also in sufficient detail for a 
semantic foundation of the UML. We also wish to thank external reviewers, and 
especially Gregor von Bochmann, Gregor Engels and Sébastien Gérard for their 
help. 

1.1 General Approach to Semantics 

The semantics of any formal language consists of the following basic parts [Win93]: 

• the syntax of the language in question (here: UML) – be it graphical or textual, 

• the semantic domain, a domain well known and understood based on a well-
defined mathematic theory, and 

• the semantic mapping: a functional or relational definition that relates both, 
the elements of the syntax and the elements of the semantic domain.  

This technique of giving meaning to a language is the basic principle of semantics: 
every syntactic construct is mapped onto a semantic construct. As discussed in the 
literature, there are many flavours of these three elements.  

Normally, the set of syntactic elements and the semantic domain bear some 
structure, and the semantic mapping desirably preserves or is compatible with this 
structure. Mathematically, this aspect is crucial and is denominated compositionality. 

In [BKR96] the term system model was used the first time to describe a semantic 
domain; it defines a family of systems, describing their structural and behavioural 
issues. Each concrete syntactic instance (in our case, an individual UML diagram, or 
even a part of it) is interpreted by the semantic mapping as a predicate over the set 
of systems defined by the system model. 

As explained in [HR04] the semantic mapping does have a form: 

Sem: UML  →  ℘(Systemmodel) 



System Model for UML, Part 1: Structure   

- 4 - 

and thus functionally relates any item in the syntactic domain to a construct of the 
semantic domain. The semantics of a model m ∈ UML is therefore Sem(m). [4.1]1 

The system model described in this report identifies the set of all possible OO 
systems that can be defined using a subset of UML which we call “clean UML” as 
introduced below. 

1.2 Structuring the Semantics of UML 

The overall goal of giving semantics to a graphical modelling language is depicted in 
Fig. 1. The basic idea expressed by this diagram is as follows: The full graphical 
language is related to a simplified language by some transformations that allow us to 
get rid of some notational extensions and derived concepts by reducing them to 
constructs of the simplified language. 

 
 

 

 

Full UML 

etc.

Simplified UML System Model 

 

 

Fig. 1 General strategy for the definition of the semantics of UML 2.0  

Actually, the semantic mapping may possibly not deal with full UML in the end but 
with a cleaned subset of UML.  Concretely, to deal with the complexity of defining a 
proper semantics, we opt for a decomposition of the mapping  

Sem: UML → ℘(Systemmodel) 

in several ways: 

• Full UML is restricted to a subset (called “clean UML”) that can be treated 
semantically without overly sophisticated constructs. 

• Clean UML is mapped by transformations into a simplified UML core (see Fig. 
1, left side). In doing so, derived constructs of UML are replaced by their 
definition in terms of constructs of the core. [4.2]  

• Simplified UML, finally, is mapped to the system model using a predicative 
approach (see Fig. 1, right side). 

As mentioned above, the system model describes the “universe (set) of all possible 
semantic structures (each with its behaviour)”. The semantic mapping interprets a 
UML model as a predicate that restricts the universe to a certain set of structures, 
which represents the meaning of the UML model. 
                                            
1 Within square brackets we refer the interested reader to deeper comments in the appendix. 



System Model for UML, Part 1: Structure   

- 5 - 

In other words, our goal is to define the semantics of a comprehensive core of well-
defined concepts of UML, and not of all its notational extensions. This way of 
proceeding is called the onion approach. The system model, i.e., the right hand side 
of the semantics mapping Sem, does not address UML and its constructs, it is 
targeted towards the left hand side of Sem, namely (simplified) UML 2.0, by covering 
a number of basic concepts expressible in the UML.  [4.2] 

The system model defines a universe of interacting state machines that describe the 
behaviour of objects and embody their data structure. This universe is introduced in 
layers as shown in Fig. 2.  

 

Fig. 2 Theories that constitute the system model 

This first report focuses on the structural characteristics of the system. Other parts of 
the system model cover the state transition and the control parts; these will be 
introduced in separate reports. 

When describing the concepts, we will introduce below, precisely, some decisions 
have to be made that can be left open or do not even occur when staying informal. 
We clearly identify those decisions either directly, or mark them as a “variation point” 
or as a possible “extension point” and leave it to the user of the system model to 
adopt a variation or extension. 

The rectangles in Fig. 2 contain mathematical concepts, whereas arrows show a 
relationship among concepts that could be paraphrased as “is defined in terms of”.  
For instance, type names (not to be confused with the syntactic entity of types of a 
programming language) and values are used to define, on the one hand, classes and 
objects and, on the other, threads and stacks. 

Math: Sets, Numbers, Functions, Relations, Functionals 

Types, Values 

Classes, Objects 
Associations, 

Links 

State machines 

Store 

Data- Control- Event-

Streams 
untimed timed continuous 

Threads, Stack 

System model 



System Model for UML, Part 1: Structure   

- 6 - 

1.3 The Math behind the System Model 

A precise description of the system model calls for a precise instrument.  For our 
purposes, mathematics is exactly appropriate because of its power and flexibility. 
Admittedly, sometimes mathematics is not quite intuitive and thus needs readers to 
cope with it. Using UML itself to describe semantics of UML might seem, on the 
contrary, a pragmatic approach.  This approach is somewhat meta-circular and 
necessarily calls for a kind of bootstrap, typically mathematics again.  Moreover, 
understanding the semantics of UML in terms of UML itself, demands a very good 
knowledge of the language whose semantics is about to be formally given.  Besides, 
UML does not conveniently provide the appropriate mechanisms we need.  Because 
of these reasons we decided to use only mathematics.  Of course, whenever 
appropriate, we use diagrams to illustrate some mathematically defined concepts, but 
the diagrams do not replace the mathematical formulas. [4.3] 

The following principles have proven to be useful when defining the system model: 

1. Pure math is used to define the system model. Its sub-theories are built on: 
numbers, sets, relations, and functions. Additional theories are built in layered 
form; see Fig. 2.  That is, only notation and mathematical definitions and neither 
new syntax nor language are introduced or used in the system model.  Diagrams 
are occasionally used to clarify things, but do not formally contribute to the system 
model. 

2. The system model does not constructively define its elements, but introduces the 
elements and characterises their properties.  That is, abstract terms are used 
whenever possible.  For instance, instead of using a record to define the structure 
of an object, we can use an abstract set and a number of selector functions. 
Properties of the set are then defined through such selectors. This however might 
pose a problem to “constructivists” who want everything constructively developed. 
Based on our background and knowledge, we claim that we could transform this 
system model into a constructive version, but that would be more awkward to 
read and less intuitive, as it costs a lot more machinery, like fixed points, etc. 

3. Everything important is given an appropriate name.  For instance, in order to deal 
with classes, there is a “universe of class names” UCLASS, and similarly there is 
also a “universe of type names” UTYPE, which however is just a set of names 
(and not types); see Sects. 2.6 and 2.1 below. 

4. To our best knowledge any underlying assumptions were avoided, according to 
the slogan: What is not explicitly specified needs not hold. If we for instance do 
not explicitly state that two sets are disjoint, these two sets might have elements 
in common: e.g., we do not enforce the set of type names UTYPE and the set of 
values UVAL to be disjoint (but also do not take advantage of a possible overlap); 
see Sect. 2.1 below.  Sometimes these loose (underspecified) ends are helpful to 
specialise the system model and are there on purpose.2  If you need a property, 
(a) check whether it is there, (b) if absent, check whether it can be inferred as 

                                            
2 Note that this would not have been possible when defining the system model in a constructive way. 



System Model for UML, Part 1: Structure   

- 7 - 

emerging property, (c) if not, do you really need it?, and (d), if yes, you may add it 
as an additional restriction.  

5. Generally, deep embedding (or explicit representation) is used. This means the 
semantics of the embedded language, i.e., UML, is completely formalised within 
the supporting language, in our case, mathematics.3  As a consequence, the 
system model does not have and does not need a type system itself.  However, it 
characterises the type system of UML. 

6. Dynamic sets, like the set of actually existing object identifiers in a certain 
snapshot of a system execution, are modelled in two parts: A universe of object 
identifiers describes the maximal set (which is infinite), and a finite set of existing 
object identifiers is part of the system state.   

7. Specific points, where the system model could be further strengthened, have 
been marked as “extension” and “variation points”. Extensions deal with additional 
elements that can be defined upon the system model. Extension points allow us 
to show additional machinery that need not present in each modelled system. 
Prominent examples of such extensions are the existence of a predefined top-
level class called “Object” or an enhanced type system, including e.g., templates.   

8. Variations describe changes of definitions, that lead to a slightly different system 
model . Variation points allow us to describe specialized variants of the system 
model, that may not be generally valid, but hold for a large part of possible 
systems. Prominent examples are single inheritance hierarchies or type-safe 
overriding of operations in subclasses, which are not given in UML in general.  

1.4 Static and Dynamic Issues 

An object-oriented system can basically be described using one of various existing 
paradigms. We opted for the paradigm of a global state machine4 in order to 
accommodate a global (and maybe distributed) state space. A UML model will be 
interpreted thus as a single state machine encompassing, among other things, the 
meaning of the state transition diagrams within the model.  The system model, thus, 
defines a universe of state machines. A state machine is given by its state space, its 
initial states, and its state transition function. [4.4] Please note that our notion of state 
machine is more basic and does not directly relate to the state machines/state 
transition diagrams the UML provides. 

The types and classes of a UML model are static, i.e., they do not change over the 
lifetime of a system. This information is called the static information of a state 
machine. The set of existing objects and the values of the attributes as well as some 
of the relations are dynamic, i.e., they may change in transition steps. This latter is 

                                            
3 Shallow embedding, on the contrary, means that the mapping from the interpreted to the interpreting 
language is defined in some suitable meta-language. 

4 The term “state machine” refers to the members of the universe defined by the system model.  This 
term is conceptually similar to UML’s state transition diagrams, but not formally related. One may also 
think of an “abstract implementation” when referring to such a state machine. 



System Model for UML, Part 1: Structure   

- 8 - 

called the dynamic information of a state machine and is coded in the states of the 
state machine. The set of invoked and not (fully) executed methods is administrated 
in the control part of a state machine. 

Summarising, a state machine of the system model is constituted of the following 
elements: 

• Static part: class names and type names definitions [4.4] 

• Dynamic part: set of created objects and the state of their attributes [4.4] 

• Control part: invoked methods [4.4] 

• State transition function: defined in terms of the control part (not treated in this 
report) [4.4] 

• Interface abstraction: encapsulation of the local state. 

Changes to the static part, that arise when e.g., the UML model evolves or is 
reconfigured,5 are not considered in this report. 

In the next section we detail the static part of any global state machine of the system 
model. 

1.5 What is the system model? 

A system model provides a means to define the semantics of any UML model.  In 
precise mathematical terms, the states of a state machine of the system model are 
defined in terms of a larger number of mathematically defined elements that are 
subsequently introduced.  

 

Formally, when speaking about a state machine of the system model, we speak of an 
instance sm∈SYSMOD.  More precisely, a universe UTYPE of type names (as will be 
introduced in Sect. 2 below) defined for sm∈SYSMOD, is not necessarily unique; it is 
shorthand for sm.UTYPE meaning that UTYPE is the universe of type names of the 

                                            
5 The changes meant here are closely related to the schema evolution of databases. 

Definition: The system model SYSMOD is the universe of state machines 
whose 

• states are triples (DataStore, ControlStore, EventStore), where 
o the DataStore, defined below, depends on the static structure, and 
o the ControlStore and the EventStore are defined in separate 

documents; 

• state transition function is also defined in a separate document. 



System Model for UML, Part 1: Structure   

- 9 - 

state machine sm.  We simply abbreviate to UTYPE whenever sm is clear from the 
context. 

1.6 What will be next for the system model? 

This document contains the structural part of the system model. The next two parts, 
each in a separate document, will deal with control (processes, communication, etc.) 
and with a state-based/interaction definition for the system model.  

Parallel to having designed the system model, we are now going into the process of 
using it to define semantics for the most important notations of the UML. Along with 
this process of defining UML semantics, we hope to be able to enhance the system 
model defined in these three parts further, to lay a solid and also generally 
acceptable semantic basis for the UML.    

2 Static Part of the System Model 

In this section, we introduce the fundamental static part of the state machines in the 
system model that will serve to define the semantics of UML models. 

Formally, the static part of a state machine in the system model is composed of, 
among other things: [4.5] 

• UTYPE, the universe of type names, 

• UVAL, the universe of values, 

• UCLASS, the universe of class names, and 

• UOID, the universe of object identifiers. 

Recall Fig. 2, whose elements are defined and put in relationships below. Please 
note that we do not further prescribe what “names” are but take them as primitives. 

2.1 Type Names and Their Carrier Sets 

A type name identifies a carrier set, which contains simple or complex data elements 
called members or values of (or associated with) the type name. Members of all type 
names are gathered in the universe UVAL of values. Formally, [4.5] 

 

 

Definition 

• UTYPE is the universe of type names 

• UVAL is the universe of values 

• CAR: UTYPE→℘(UVAL) maps type names to associated carrier sets 

• For T ∈ UTYPE and e ∈ CAR(T) the pair (T, e) denotes a typed element 
of type name T 



System Model for UML, Part 1: Structure   

- 10 - 

Variation Point: In a very general fashion, we do not enforce carrier sets to be 
disjoint or values to know to which carrier set they belong. For certain type names we 
may even assume that their carrier sets are identical or in a subset relation. [4.5] 

Remark: As an aside, note that, in a proper typing system, families of types, together 
with their functions, form algebras with specific signatures. For details see the 
concept of abstract data types [Bro98].  

2.2 Basic Type Names and Type Name Constructors 

We assume a number of basic type names for basic values are given. We only 
require type names for Boolean and integer values.  

  

We introduce a notion of equivalence of type names and write T1 ≈ T2 to express 
that T1 and T2 represent the same carrier sets, i.e., CAR(T1) = CAR(T2). [4.6]  

We moreover assume the typical operations on values associated with basic type 
names such as, e.g., logical connectives or arithmetic operators. 

A special type name is Void, whose carrier set is unitary. [4.6] 

 

Variation Point: Further basic type names – e.g., Real, Character or String and their 
subtyping relation, if any – are neither assumed nor detailed. 

Type name constructors are simply functions that take one or more type names as 
argument and build a new type name. In the following sections, a number of type 
name constructors are introduced. 

2.3 References and Variables 

A reference is either Nil or an identifier for one value in the carrier set of a given type 
name. Let T be an arbitrary type name. Then Ref T is a type name whose carrier set 
consists of an infinite set of references including the distinguished reference Nil. 

Definition 

• Void ∈ UTYPE 

• CAR(Void) = {void} with void ∈ UVAL 

Definition    

• Bool, Int ∈ UTYPE,  

• CAR(Boolean) = {true,false} with true, false ∈ UVAL and true ≠ false 

• CAR(Int) =  ⊆ UVAL is the set of integer values 

• ≈ ⊆ UTYPE × UTYPE is an equivalence relation on type names 



System Model for UML, Part 1: Structure   

- 11 - 

Given any type name T, the carrier set of type name Ref T has a very limited set of 
operations.  References basically allow for comparison (i.e., test for equality), and 
dereferencing, and provide the special reference Nil.  Given a reference r ∈ CAR(Ref 
T), its dereference deref(r) ∈ CAR(T) is defined iff r ≠ Nil.  

  

Remark: The existence of the mathematically defined function deref from references 
to values does have an interesting effect. As mathematical functions do not change 
over time, references in Ref T for any type name T always refer to the same value. 
For this reason, we introduce below the concept of locations whose contents can 
change. 

Variation Point: Comparison of references can be extended to include a “less than” 
relation, and even operations on references can be added in order to get a pointer 
arithmetic.  For our purposes, however, these further relations and operations on 
references are not necessary. 

In order to model records, objects, parameters and local variables of method calls 
and of executions, we introduce a notion of variable names, e.g., used to model 
attribute names in objects and names of local variables and parameters in methods.  
[4.7]  

 

 

 

Definition 

• UVAR is the universe of variables names (also called attributes) 

• Each pair (T, u) with T ∈ UTYPE and u ∈ UVAR the denotes a typed 
variable of type T 

• We denote typed variables also by u : T 

Definition of references 

• Ref: UTYPE → UTYPE 

• Nil ∈ CAR(Ref T) ⊆ UVAL for any T ∈ UTYPE 

• deref:  CAR(Ref T) → CAR(T) for any T ∈ UTYPE    
with dom(deref) =  CAR(Ref T) \ {Nil}  

• deref: UTYPE → UTYPE 
with deref(Ref T) = T 

Notation 

• *r = deref( r)  
 



System Model for UML, Part 1: Structure   

- 12 - 

2.4 Record Type Names and Cartesian Products 

Type names can be composed into record type names. In addition to constructing 
new values from given ones, record values (i.e., values in the carrier set of a record 
type name) also provide selection functions for each part of a record value. In name-
tagged records, these tag names provide proper names for the selection functions. 
[4.8] 

 

Any type names can be composed into record type names.  The variables ai are 
called the attributes of the record type name.  Notice that, as Rec is defined on 
(finite) sets of pairs, the definition of Rec does not rely on the ordering of its 
attributes, thus Rec {a:T, b:S} and Rec {b:S, a:T} are the same type name. If S and T 
are distinct type names, then so are Rec {a:S} and Rec {a:T}. If, however, S and T 
have overlapping carrier sets, then Rec {a:S} and Rec {a:T} have common record 
values in their carrier sets. 

Note that, although we do not explicitly forbid that a type name is both of form Ref T 
and Rec S, it can often implicitly inferred. E.g., if a≠b, then from attr(Rec{a:Int}) = {a} 
and attr(Rec{b:Int})={b} we infer that both record type names are not equal. 
Furthermore, records [a=3] and [b=3] are also distinct values. 

Cartesian products (also called “cross products”) over values and the carrier sets of 
the record type names introduced above do share some common structure. 
However, they also differ significantly enough, so that we do not identify them. 
Records have indexed value entries, whereas Cartesian products have an ordered 
list of values. Although in programming Cartesian products can be mimicked by 

Definition of records 

• Rec: ℘f(UVAR × UTYPE) → UTYPE 
where the variable names are all different 

Notation 

• Rec({(a1,T1),(a2,T2),…,(an,Tn)}) is denoted by Rec {a1:T1,a2:T2,…,an:Tn}  
Definition 

• CAR(Rec {a1 : T1, ..., an : Tn}) = 
       { r : UVAR → UVAL │ r(ai) ∈ CAR(Ti), 1≤i≤n } 

• attr: UTYPE → UVAR  [4.8] 
attr(Rec {a1 : T1, ..., an : Tn}) = {a1, ..., an} 
attr(Ref T) = attr(T) for a reference type Ref T 
attr(T) = {} for any other type 

• proj: UVAR → UVAL → UVAL with 
proj(ak)(r) = r(ak)          if r ∈ CAR(Rec {a1 : T1, ..., an : Tn}) and 1≤k≤n 
proj(ak)(r) = proj(ak) (*r)  if r ∈ CAR(Ref T) and ak ∈ attr(T) 

Notation 

• proj(ak)(r) is also denoted by r.ak  if r ∈ CAR(T) and ak ∈ attr(T) 
proj(ak)(r) is also denoted by r->ak if r ∈ CAR(Ref T) and ak ∈ attr(T) 



System Model for UML, Part 1: Structure   

- 13 - 

records quite well, in our system model we need a Cartesian product for example to 
model parameters of messages and methods. 

In the following, we use List(.), Stack(.) and Queue(.), which are just mathematical 
constructs and not type extensions for the UML. We allow ourselves to build finite 
lists over arbitrary mathematical elements, using [1, …, n] for lists, len(.) for the 
length of a list, list(index) for item selection, and other common operators. 

 

The mappings between tuples and records are inverse. Note that both, tuples and 
records, need the list of attribute names: rec needs the ordered list [a1,…an] to map 
the values to the appropriate attributes, and prod needs the list to restore the order 
given in the tuple (which is not present in the record). 

2.5 Locations 

Static and dynamic parts are to be kept strictly apart. We thus introduce an explicit 
concept of locations for mutable values. The value stored at the location depends on 
the state of the state machine (see below). A location is an abstract representation of 
a part of the system store.  [4.9] 

 

 

For any type name T, we denote by Loc T the type name whose associated values 
are locations for values associated with type name T. Note that we allow arbitrary 
combinations of types such as Loc Ref T or Ref Loc T.  

Definition of Cartesian products 

• Prod: List(UTYPE) → UTYPE 

• CAR(Prod{T1, ..., Tn})  =  ×(1≤k≤n) CAR(Tk) 

• The empty list leads to a special unit type “Prod{}” whose carrier has one 
single value “()”  

Notation 

• We use Prod{T1, ..., Tn} as a synonym for the type and write: 

o (p1,…,pn) ∈ CAR(Prod{T1,...,Tn}) for a tuple of values (pi∈CAR(Ti)) 

• There are two mappings between tuples and corresponding records: 
o rec[a1,…an] (v1,…vn)  =  [a1=v1,…an=vn]  
o prod[a1,…an] ([a1=v1,…an=vn])  = (v1,…vn)  

Definition of locations 

• ULOC ⊆ UVAL is the universe of locations 

• Loc: UTYPE → UTYPE 
Loc T denotes the type of locations that store data of type T 

• CAR(Loc T) ⊆ ULOC 



System Model for UML, Part 1: Structure   

- 14 - 

By ULOC ⊆ UVAL we allow locations to be passed around and stored like ordinary 
values. The dereferencing of the location to the contained value is done in the 
context of the state represented by a store as defined below. 

Note that by the explicit introduction of locations, the difference to references is made 
very clear. A reference points to a value and this relation is static, i.e., independent of 
the state of the system. A location contains a value (or its content) and is dependent 
on the state. 

The function rvalue that retrieves the information stored in a location, as opposed to 
deref, is state dependant and thus its definition is delayed until the dynamic part of 
the state machines of the system model has been introduced.  [4.9] 

2.6 Class Names and Objects 

Given a number of more traditional mathematical prerequisites, we now build the 
notion of objects and classes on top, basically by extending the operations available 
on certain type names and by restricting the way the elements associated to certain 
type names are structured and be used. 

A class name defines attributes and methods, and may be related (by relationships) 
to other class names. Let C be a class name. We do not currently consider methods 
defined in class names, i.e., we consider them gathered in method suites and deal 
with them later. 

 

Fig. 3 Typical structure of an object 

 

 

 

oid: Ref Rec {self: C, a1: Loc T1, ..., an: Loc Tn} 

a1 = l1 ∈   
      CAR(Loc T1) 

an = ln ∈  
    CAR(Loc Tn)

Rec {a1:Loc T1, ..., an:Loc Tn}

v1∈CAR(T1) 

vn∈CAR(Tn) 

*oid 
a1 

an 

Dynamic Store 

static structure that does not change only values in the 

Example: Structure of an Object 

store change 



System Model for UML, Part 1: Structure   

- 15 - 

As Fig. 3 shows, we have a two stage dereferencing from the object identifier to the 
actually mutable attribute values. The object identifier at first references the static 
structure, which contains a number of locations for the attribute values in the data 
store. 

Class names have a special structure associated.  Each class denotes a set of object 
identifiers, characterised by a type name of the form: 

   C = Ref Rec {self: C, a1: Loc T1, ..., an : Loc Tn}, 

and their associated values, which are called objects, are associated to a type name 
of the form: 

  *C = Rec {self: C, a1: Loc T1, ..., an : Loc Tn} 

Thus a class name is a type name as well.  

CAR(C) denotes the set of object identifiers for the class C. A single dereferencing of 
those identifiers leads to object structures:  

CAR(C) ⊆ UOID 

CAR(*C) = { *oid | oid ∈ CAR(C) } ⊆ INSTANCE 

(UOID and INSTANCE are formally defined below.)  Object identifiers uniquely point 
to object structures (formally records) and we do not have dangling references, so 
there is a bijection between object identifiers and object structures, i.e., dereferencing 
(*.) is bijective (when disregarding Nil).  

Finally, we do not allow objects to share locations6. So for any two object identifiers 
o1 ∈ CAR(C1), o2 ∈ CAR(C2) and attribute names a ∈ attr(*C1), b ∈ attr(*C2) we have 
a(*o1) ≠ b(*o2) for any a and b with Loc-types. 

Note that UOID contains references to all possible objects and, in a similar way, 
INSTANCE contains all possible objects in a data store.  

Through the dereferencing function object identifiers know about the objects they 
dereference. However, objects also have some knowledge about themselves. This 
means, an object knows its identifier and its class. As a consequence of this 
definition each object belongs exactly to one class. 

 

                                            
6 Reusing object locations of terminated objects leads to a sharing of locations in implementations for 
pure storage optimization and need not be modelled in the conceptually abstract system model. 



System Model for UML, Part 1: Structure   

- 16 - 

 

Fig. 4 illustrates our semantic universe. 

 

Fig. 4 Overall picture of the semantic universe 

 

Definition of classes and instances:  

• Ref Rec {self: C, c1 : T1, ..., ck : Tk, a k+1: Loc T k+1, ..., an : Loc Tn}, is a class 
name 

• UCLASS ⊆ UTYPE is the universe of class names,  

• UOID = ∪ C ∈ UCLASS CAR(C)  is the universe of object identifiers,  

• INSTANCE = ∪ C ∈ UCLASS CAR(*C)  is the set of objects, 

where for each C ∈ UCLASS there are unique ai, Ti such that  
C = Ref Rec {self: C, a1: Loc T1, ..., an:Loc Tn}, 

and for all oid ∈ UOID the object identifier fits: 
*oid.self = oid 

• classOf: INSTANCE → UCLASS   

with object ∈ CAR(classOf(object))  

• classOf: UOID → UCLASS   
with classOf(oid) = classOf(*oid) 

UTYPE

ReferenceTypes  
LocTypes  

UCLASS

UVAL
ULOC

RecordValues

INSTANCE

RecordTypes 

References  

UOID

deref  deref   

CAR   
CAR  

CAR  



System Model for UML, Part 1: Structure   

- 17 - 

2.7 Subclassing 

Subclassing (also called Inheritance) is a basic feature in object-oriented 
programming. To indicate that a class C' inherits from a class C, we introduce binary 
subclass relation “sub“ on the universe of types  which implies a number of 
conditions on related classes: 

 

The above definition is sufficient to capture subclassing on the structural side. 
However, it also leaves quite a few things open. For instance the binary relation sub 
is not enforced to be antisymmetric7 (although no implementation language supports 
this today).  

From the definition, we can see that in UML a subclass can have an arbitrarily 
different record structure. Furthermore, subclassing is not based on a structural 
definition: two classes C1 and C2 may have the same attributes, but still be in no 
relationship at all. 

The substitution principle [LW94] enforces object identifiers of subclass C1 to be 
special cases of class C. That can easily be modelled by introducing a set inclusion 
on object identifiers, since we do not pass around objects, but identifiers we do not 
need the set inclusion on objects, but on the identifiers. 

With this technique on defining a subset relation on object identifiers instead of 
objects, we get a great simplification on the mimicked typing system. Furthermore, it 
allows us to redefine attribute structures in subclasses without a loss of the 
substitution principle.  

Remark: Multiple inheritance allows a class to inherit features from more than one 
class. While a constructive class definition inherits from several classes, a relational 
point of view just resolves that as several binary inheritance relationships and is 
therefore already covered in our definition. 

To avoid name conflicts that arise when attributes of different superclasses (or of a 
superclass and of the extension) are homonyms, we require that all attribute 
definitions introduce different names. Semantically, this convention means no 
restriction, because attribute access is always resolved statically at runtime and there 
is no dynamic lookup on attributes. 

                                            
7 A binary R ⊆ S × S is called antisymmetric if ∀s1,s2∈S: s1 R s2 ∧ s2 R s1 ⇒ s1 = s2.  A classical 
example for such an R is the “less than or equal to” relation on natural numbers. 

Definition of subclassing:  

• sub ⊆ UCLASS × UCLASS is the transitive and reflexive “subclass” 
relation 

• Oid: UCLASS → UTYPE is a type constructor for the type of object 
identifiers for class C including its subclasses 

defined by CAR(Oid(C))  = ∪ C1 sub C CAR(C1)  ⊆ UOID 



System Model for UML, Part 1: Structure   

- 18 - 

Variation point: In procedural languages, redefinition of attributes in subclasses is 
not possible without a loss of type safety. As a semantic variation, we may enforce 
type safety, by requiring subclasses to keep their attributes and these attributes to 
keep their names and therefore types. Therefore a subclass only extends the record 
structure of its superclass: 

 for any classes C1 sub C2 we have attr(C2) ⊆ attr(C1) 

Extension point “dynamic reclassification”: Notice that, an object may be 
regarded as instance of more than one class along the subtyping hierarchy. Thus an 
object may be dynamically reclassified by its context according to the given subclass 
hierarchy. However, this only changes the external viewpoint of an object, but neither 
its internal structure (existing attributes) nor its behaviour.   

In UML 2.0 dynamic reclassification for classes is introduced in a very general way. 
The system model does not reflect this capability of reclassification, because we 
assume that this concept should be mapped to the system model through 
introduction of additional infrastructure. E.g. possible implementations of dynamic 
reclassification go along building an additional superclass that contains all attributes 
and a flag which behaviour is currently active. Even more flexibility becomes 
possible, when chance of dynamic behaviour is realised through delegation of 
behaviour to other objects.  

2.8 Extension and Variation Point: Type system 

Further constructs for building type names are possible. For instance, an array type  
name or a subtyping structure beyond the subclassing concept inherent in OO may 
be available. We also did not deal with parametric polymorphism, for example, which 
was introduced in Java 1.5 in form of instantiable templates within the system model. 
A type system is an enhanced syntactic concept and should therefore be handled 
together with the concrete syntax of the models. 

The store model that we introduce does not provide and, as it is a purely semantic 
construct, does not need any explicit visibility or hiding mechanisms. In particular, it 
does not describe which activities may change which attributes. Although it is 
recommended from engineering practice to prevent foreign objects from changing an 
attribute (and thus use private attributes only), passing references can be modelled. 
This allows in/out-parameters, but enables and even encourages capsule leaks. 

Any attribute attr with type Loc Loc T contains a location for a location. Locations are 
ordinary values and can be stored, passed around, as well as used for reading and 
writing. Furthermore, the located place of value T in the store can be changed as 
well. 



System Model for UML, Part 1: Structure   

- 19 - 

2.9 The Data Store Structure 

In the system model, we abstract away a number of details, such as storage layout 
and physical distribution. We use an abstract global store to denote the state of an 
object system. Even if there is no such concept in the real (distributed) system, all 
instances are organised in this single global store. 

Intituively, the data store models the state of a system at a certain point in time. At 
each point of time the store contains real objects for a finite subset of the universe 
UOID of all object identifiers. Time progress is modelled by state transitions of the 
state machine mentioned in Sect. 1.4, which is defined in a separate document. 

Please note that even though we have conceptually defined a global data store, we 
do not enforce the existence of such a globally defined state in the implementation. 
We also allow interleaving, as well as concurrent activities, as can be seen in the 
next behavioural part of the system model. This will be detailed further when we 
define the dynamic parts, such as control store, stack and processes.    

A data store is a snapshot of the data state of a running system. Stores contain 
assignments to locations and describe the currently instantiated set of objects.  

  

There are quite a number of restrictions on DataStore: 

The elements of DataStore contain partial mappings since only a finite number of 
locations may actually be in use in any snapshot of the computation. Furthermore, 
the locations used in the existing objects correspond to the locations used in the 
store at that moment. Therefore both the set oids(store), which contains the existing 
object identifiers of the DataStore store, and the set locations(store), which contains 
the existing locations of store, are finite. 

It is necessary to have a number of retrieval and update functions for the data store 
at hand. Those are defined below: 

Definition of the data store:  
In the system model, let   

• DataStore = ℘(UOID) × (ULOC → UVAL)  the set of snapshot values   

• oids: DataStore → ℘(UOID) the set of existing objects 
where oids((s,m)) = s 

• locations: DataStore → ULOC the set of used locations 
where locations((s,m)) = dom(m) 



System Model for UML, Part 1: Structure   

- 20 - 

 

Again various restrictions on the use of retrieval and update functions apply. This 
involves the use of values of appropriate type, attributes that actually exist in a class, 
etc. Furthermore, a number of properties can be derived e.g., from selected values 
from the typing information. However, we refrain from defining these restrictions at 
the moment. 

At each point in time, i.e., in each state of the state machine, when the instance 
exists, we assume that its attributes are present and the values in these locations do 
have defined values (including Nil), but it is not necessarily the case that we do know 
about these values. They may be left underspecified. In particular it may be that, after 
creation of an instance, its attributes still need to be initialised. Please note that is a 
nice modelling technique used e.g., in verification systems to avoid to explicitly 
handle a pseudo-value “undefined” [NPW02]. It also resembles reality, e.g., when 
there is an un-initialized variable of type “int”. When accessing the value, we do know 
that it contains an integer, but we do not have any clue which one it is.    

On the assumption that we can use a consistent global state for all instances at each 
point of time, even if they are in computational activities, we can model the global 
data state of an object system by this data store. 

Definition DataStore functions:  
For the data store, let these retrieval functions be defined: 

• val: DataStore × ULOC → UVAL retrieving the value for a given location 
val((s,m), loc)  =  m(loc) 

• val: DataStore × UOID × UVAR → UVAL retrieving the value for a given 
object and attribute 
val((s,m), oid, at)  =  m(*oid.at) 

• vals: DataStore × UOID → (UVAR → UVAL) retrieving the mapping of 
attribute name to value for a given object  
vals((s,m), oid)  =  { f | dom(f) = attr(classOf(oid)) ∧  
      ∀at∈dom(f): f(at) = m(*oid.at) } 

Furthermore, the following updates can be used to define changes: 

• addobj: DataStore × OID × (ULOC → UVAL) → DataStore   adding an 
new object 
addobj((s,m), oid, f)  =  (s∪{oid},  m⊕f) 

• setval: DataStore × ULOC × UVAL → DataStore   setting the value for a 
location 
setval((s,m), loc, v)  =  (s, m⊕[loc=v]) 

• setval: DataStore × UOID × UVAR × UVAL → DataStore  setting the value 
for a given object and attribute 
setval((s,m), oid, at, v)  =  (s, m⊕[*oid.at=v]) 

As shorthands, we use  
  ds(loc)   for  val(ds,loc) 
  ds[loc = v]  for  setval(ds,loc,v) 
  ds(oid.at)  for  val(ds,oid,at) 
  ds[oid.at = val] for  setval(oid,at,val)



System Model for UML, Part 1: Structure   

- 21 - 

2.10 Class Variables and Constants  

While attributes are by far the most commonly used elements to store values, there 
are three further types of elements present in the object-oriented universe. 

Constants on one hand are values with a name, such that the name can be used 
instead of the value. We do not need to represent constants explicitly in the system 
model: Their associated values are present in the universe of values and the 
mapping of names to values as well as their visibility is not part of the system model, 
but part of the mapping from UML to the system model. 

A second concept that we have not explicitly represented so far is the concept of 
static attributes. These are attributes that can be regarded as shared between all 
objects of the class. Indeed they exist independently of any object, but can only be 
accessed from within a limited scope. While the system model does not cope with 
visibility of a static attribute, it is prepared to incorporate the static attribute by 
assigning a location to it that is not part of any object. This way the system model is 
able to deal with static attributes. 

Please also note that a different, but also convenient way to include a static attribute 
into all objects of a class is to include its location in all objects uniformly, thus 
allowing objects to share the location.  

2.11 Associations: Various Object Relations  

One of the core elements of UML is the concept of an association. Associations are 
relations between object identifiers. While most of them are binary, associations may 
be of any arity, may be qualified in various ways and may have additional attributes 
on their own. Furthermore, associations can be “owned” by one or more of the 
participating objects/classes or it me stand on it’s own, not owned by any of the 
related objects. In implementations a basic mechanism for managing those relations 
is to use direct links or Collection classes, but there are other possibilities as well. To 
allow for different variants of realisations of associations, we use a generalised, 
extensible approach: We use relationship identifiers to extract links from the store 
and allow for a variety of realisations of these functions. This approach is very 
flexible, as it, on the one hand, abstracts away from the owner of associations as well 
as the form how associations are stored and, on the other hand, does not restrict any 
possible form of an association. As a disadvantage of this approach, we cannot 
capture all forms of associations in one uniform characterisation, but do provide a 
number of standard patterns that cover the most important cases. If no standard case 
applies, e.g. for a new stereotype of an association, then the stereotype developer 
has to describe his interpretation of the stereotype directly in the terms of the system 
model given below. For simplicity, we demonstrate this approach by defining variants 
of binary associations below.  

In general any association has a name R, a signature given by a list of classes 
(C1,…,Cn), possibly additional attributes of that association and a relation retrieval 
function relOf(R): DataStore → ℘f (CAR(Oid C1) × … × CAR(Oid Cn) × UVALk). 



System Model for UML, Part 1: Structure   

- 22 - 

Note that the use of CAR(Oid C1) includes relations between objects of subclasses of 
Ci, which is usually intended by associations, but not covered if we would have used 
carrier sets CAR(Ci) of objects belonging directly to Ci.  

Please also note that with this approach it is possible to model qualified associations 
by interpreting one (or more) of the additional attributes as the qualifier as well as to 
model non-unique associations by introducing a value as distinguishing flag. Some 
example for association mappings are given below by starting with a binary 
association.  

As a third, you should also note that associations usually define certain restrictions 
on their changeability. This cannot be stated within the state part of the system 
model, but only when sequences of DataStores are used to compare behaviour over 
time.  

As said, the retrieval function relOf is depends on the concrete realisation of the 
association. Even after quite a number of years of studying OO formalisations, there 
is so far not really a satisfying approach describing all variants of association 
implementations. Therefore, we provide this abstract function and impose certain 
properties on the function, without discussing the internal storage structure. The only 
decision we made so far is that associations are somehow contained within the store, 
i.e., they are somehow part of objects and locations and association relations do not 
extend the store. This is pretty much in the spirit of the system model, where higher-
level concepts are explained using lower level concepts. 

 

Please note that we do not constrain the relationship between UASSOC and UTYPE. 
In particular one might regard each association manifesting itself as type 
(UASSOC⊆UTYPE) or only a few associations being realised as types. This for 
example allows us to model simple relations as attributes only, without having to 
attach a type to them within the system model as shown below. 

Extension point: Many associations are binary without any additional attributes. For 
those we can use  

binaryRelOf: UASSOC → DataStore → ℘f (CAR(Oid A) × CAR(Oid B))   

as a retrieval function to derive the actual links. 

Definition of associations:  
In the system model, let   

• UASSOC be the universe of association names and 

• relOf(R): UASSOC → DataStore →    
         ℘f (CAR(Oid C1) × … × CAR(Oid Cn) × UVALk)   
the retrieval function to derive the actual links for an n-ary association 
based on the current store. 



System Model for UML, Part 1: Structure   

- 23 - 

Extension point: The above given retrieval does not yet regard ordering, which is 
necessary for handling associations with the ordering stereotype, nor qualified 
associations, nor does it handle the possibility that a pair of objects is linked several 
times (multiple associations). An appropriate extension for ordering is given by the 
more detailed retrieval function  

orderedBinaryRelOf: UASSOC → DataStore →    
              CAR(Oid A) → CAR(List(Oid B))  

Similarily, for a qualified relation we define: 

qualifiedBinaryRelOf: UASSOC → DataStore →    
         ℘f (CAR(Oid A) × CAR(Oid B) × CAR(Q)), 

where type name Q is the qualifier that identifies unique B-objects starting in an A-
object.  

Variation and extension point: Retrieval functions are not further specified yet, 
because they may have quite a number of different realisations. For clarification, we 
define a few below, covering standard cases and provide them as variation points. 
However, more variations are possible, such as allowing us to introduce our own 
variants. Therefore, this is also an extension point.  

 

The following definition for a binary *-to-*-association works quite similarly for n-ary 
associations with arbitrary n: 

Defining a simple binary relation “SimpR”:  
The simplest kind of association “SimpR” from A to B is realised unidirectionally 
in class A through an attribute “simpR” to link to the other side:  

• The structure of *A looks like Rec(…, simpR: Loc B, ... ) and  

• the retrieval function is defined by:  

binaryRelOf(SimpR) (ds) =    
       { (x,y)∈ (CAR(Oid A) × CAR(Oid B))  |  y = ds(x.simpR) }  

To illustrate that, one might think of a transformation of the following kind, to 
realise SimpR: 

A BSimpR 1

A B
simpR: B

Model:

Realized through:

A BSimpR 1

A B
simpR: B

Model:

Realized through:



System Model for UML, Part 1: Structure   

- 24 - 

 

 

The above two definitions demonstrate that the issue of owning a link can quite 
generally be covered through the use of abstraction functions. In the first definition, 
the objects own the links, in the second, the links are separated from the objects. Of 
course also combinations are possible, as shown in the following third definition.  

Defining a *-to-*-binary relation “Med”:  
*-to-*-association “Med” uses an intermediate class also called “Med” to store its 
links. It does not include the association state in any of the objects of A or B:  

• *Med looks like Rec(…, a: Loc A, b: Loc B, ...) and the  

• retrieval function is defined by: 

binaryRelOf(Med) (ds) = { (x,y)∈ (CAR(Oid A) × CAR(Oid B)) |   
    ∃ m∈ CAR(Med):  x = ds(m.a) ∧ y = ds(m.b)  }  

To illustrate this, one might think of a transformation of the following kind, to 
realise Med: 

A BMed

A B

Model:

Realized through: Med
a: A
b: B

**A BMed

A B

Model:

Realized through: Med
a: A
b: B

**

 



System Model for UML, Part 1: Structure   

- 25 - 

 

Variation and extension point: If collections are used in an implementation the 
corresponding retrieval functions are an abstraction of what collections actually store. 
Note that these functions are mathematical constructs that make the intentions of 
collection classes explicit, but need not be actually implemented.  

It is important to note that the effect e.g. of an action on the links of an association 
can be described by using the retrieval function, without having to actually look at the 
actual representation in the system model. It is not even necessary to provide such a 
representation, but suffices to know there is one. This principle comes from abstract 
types in algebra, where the changes on data structures are also purely defined on 
the effect on access functions. 

Defining a redundant binary relation “Med”:  
The *-to-1-association “Med” has redundant links. Participating objects  from A, 
directly point to B objects. From B the association is realized using an external 
collection:  

• let us assume class Collection(A) provides a function    
  vals: DataStore × CAR(Collection(A)) → ℘f ( CAR(Oid A) )  

• then our retrieval function is simply defined by: 

binaryRelOf(Med) (ds) =    
  { (x,y)∈ (CAR(Oid A) × CAR(Oid B)) | y = ds(x.med) } 

or as an equivalent alternative by:    

binaryRelOf(Med) (ds) =    
  { (x,y)∈ (CAR(Oid A) × CAR(Oid B)) | x ∈ vals(ds,y.med) }  

As the realization is a redundant data structure, we enforce the consistency 
constraint that both sets are equal. To illustrate this situation, one might think of a 
transformation of the following kind, to realise Med: 

A BMed

A B

Model:

Realized through:

Collection(A)

1*

1*

1*

A BMed

A B

Model:

Realized through:

Collection(A)

1*

1*

1*
 



System Model for UML, Part 1: Structure   

- 26 - 

3 References 

 
[AHU83] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures 

and Algorithms. Addison Wesley Publishing Company, 1983. 

[BG92] Gérard Berry and Georges Gonthier. The ESTEREL Synchronous 
Programming Language: Design, Semantics, Implementation. Science of 
Computer Programming, 19(2):87—152. Elsevier North-Holland, 1992. 

[BKR96] M. Broy, C. Klein, B. Rumpe. A stream-based mathematical model for 
distributed information processing systems – SysLab system model –. In: 
Proceedings of the first International Workshop on Formal Methods for 
Open Object-based Distributed Systems. Chapman-Hall. 1996.  

[BS01] Manfred Broy and Ketil Stølen. Specification and Development of 
Interactive Systems: Focus on Streams, Interfaces, and Refinement. 
Springer, 2001. 

[EHS97] Jan Ellsberger, Dieter Hogrefe, and Amardeo Sarma. SDL: Formal Object-
Oriented Language for Communication Systems. Prentice Hall, 1997. 

[GR95] Radu Grosu and Bernhard Rumpe. Concurrent Timed Port Automata. 
Technical Report TUM-I9533, Technische Universität München, 1995. 

[HR04] D. Harel, B. Rumpe. Meaningful Modeling: What’s the Semantics of 
“Semantics”? In: Computer, Volume 37, No. 10, pp 64-72. IEEE, October 
2004.  

[Hoa78] C.A.R. Hoare. Communicating Sequential Processes. Communications of 
the ACM, 21(8):666—677. ACM Press, 1978.  

[Kah74] Gilles Kahn. The Semantics of a simple language for Parallel 
Programming. In IFIP Congress’74 (Proceedings), pages 471—475. North 
Holland Publishing, 1974. 

[Kat93] Randy H. Katz. Contemporary Logic Design. Addison Wesley Publishing 
Company, 1993. 

[LP99]     J. Lilius and I. Porres. Formalising UML state machines for model checking. 
In R. B. France and B. Rumpe, editors, The Unified Modeling           
Language (UML 1999), volume 1723 of Lecture Notes in Computer           
Science, pages 430-445. Springer, Berlin Heidelberg New York, 1999. 

[LW94] Liskov and J. Wing. Family Values: A Behavioral Notion of Subtyping. ACM 
Transactions on Programming Languages and Systems, November 1994. 

[Mil80] Robin Milner. A Calculus of Communicating Systems. In vol. 92 of Lecture 
Notes in Computer Science. Springer, 1980. 

[NPW02] Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel. Isabelle/HOL. 
Springer, Berlin. 2002.  



System Model for UML, Part 1: Structure   

- 27 - 

[OMG04] Object Management Group. Unified Modeling Language: Superstructure, 
version 2.0, formal/05-07-04. 

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages: An 
Introduction. MIT Press, 1993. 



System Model for UML, Part 1: Structure   

- 28 - 

4 Appendix: Rationale and Comments 

4.1 General Approach to Semantics 

The semantic mapping is of the form: 

Sem: UML  →  ℘(Systemmodel) 

and functionally relates any item in the syntactic domain to a construct of the 
semantic domain.  The semantics of a model m ∈ UML is therefore Sem(m).  Due to 
compositionality, given any two models m,n∈UML combined into a complex one m⊕n 
(for any composition operator ⊕ of the syntactic domain), the semantics of m⊕n is 
defined by Sem(m⊕n) = Sem(m) ∩ Sem(n). In the same way, n∈UML is a (structural 
or behavioural) refinement of m∈UML, exactly if Sem(n)⊆Sem(m). Formally, 
refinement is the nothing else than “n is providing at least the information about the 
system that m does”. These general mechanisms provide a great advantage, as they 
simplify any reasoning about composition and refinement operators. 

4.2 Structuring the Semantics of UML 

UML provides a number of derived operators which do not enhance the expressivity 
of the language but the comfort of its use. Derived constructs can be defined in terms 
of constructs of the core as, e.g., state hierarchy of UML’s state transition diagrams 
can be neglected without losing expressivity. 

The onion approach described in Sect. 1.2 can be used in two ways: It is 
undoubtedly good if and when the UML sublanguages can be organised into a 
hierarchy – one sublanguage is more concrete than another one.  However, the UML 
(sub)languages mostly present different views on the same whole, thus making the 
onion metaphor less adequate. Nevertheless, transformations within a sublanguage 
that replace derived constructs, e.g., flattening hierarchical states of a state transition 
diagram, make the task easier since we have to deal only with a subset of the 
language. 

The various views on a system that can be offered by the different UML 
sublanguages are all mapped onto predicates on the system model. That is, the 
system model supports both view integration and model consistency verification. 

4.3 The Math behind the System Model 

Actually, there is a crucial difference between the precise properties of the elements 
in the system model and their representation. Different representations of the same 
system model are possible, of course, but there is a necessity to define syntax, 
semantic domain, and semantic mapping in a precise way. To concentrate on the 
essentials, we use the abstract syntax of the UML. Whereas the UML itself is 
graphical in nature, we do not deal with pixels forming boxes. Abstract syntax can, for 
example, be described using “metamodelling”, but for a variety of reasons it is not 
suitable for us. In particular, it is neither elegant to deal with when defining semantics 



System Model for UML, Part 1: Structure   

- 29 - 

because we need to build an infrastructure above meta-models anyway, nor is it as 
formal as necessary, which would force us to formalize meta-modeling techniques 
first. We instead rely on a mathematical version. In the literature, Z, B, CSP, or other 
already existing formal languages are used, usually permitting a good description of 
a specific part of UML while unable to describe other parts. Mathematics however, is 
the most powerful tool, flexible and general, and actually needed in order to give 
semantics to UML 2.0. 

We also put some emphasis on advantageous semantic and algebraic properties of 
the system model. As an example, in the system model, interface abstraction 
distributes over system composition and is thus called a morphism. This might give 
rise to mirroring this property in UML, thus enhancing the UML 2.0. 

4.4 Static and Dynamic Issues 

An object-oriented system can basically be described using one of various existing 
paradigms. One paradigm is that of a set of communicating state machines, another 
that of a single, called global, state machine. In this latter case, the global state 
machine, if detailed enough, is perfectly appropriate to model parallel, independent 
and distributed computations. 

In principle, a system of communicating, elementary state machines could be 
considered more convenient than a single, global machine for describing the 
semantics of UML models.  It is also possible to construct a global state machine by 
integrating elementary ones; however, this is a non-trivial operation.  Therefore, it is 
more appropriate to employ the concept/metaphor of one state machine at a higher, 
non-elementary level.  In fact, we introduce a composition operator on state 
machines representing fragments of larger systems, such that these state machines 
can be composed, leading to larger state machines. 

The static information contained in the static part of the global state machine includes 
the definition of classes including (the definition of) their methods; this is not explicitly 
treated in this report. Also, references are defined as static.  

The dynamic information contained in the dynamic part (i.e., in the states) of the 
global state machine includes references and the values of their locations. 

The control structure contained in the control part of the global state machine may 
include, besides the invoked methods, also signals and actions emitted by UML’s 
state transition diagrams or interactions, dispatched and not yet delivered messages 
passed from one object to another one, actions of an activity diagram, etc.  These 
issues will be dealt with when defining the semantic mapping for each one of the 
languages of UML. 

The state transition function may record some useful information, for instance, when 
a state transition took place and what triggered the transition. 

In the database realm, the static part is called “schema”, and the dynamic part is the 
“instance”. The schema instantiation is changeable while the schema itself is not. 
Schema changes (usually called “schema evolution” in the literature) are not 



System Model for UML, Part 1: Structure   

- 30 - 

considered, as they usually do not occur within a running system, but when evolving 
and/or reconfiguring it.  

4.5 Types 

The word “type” simultaneously has two meanings. On the one hand, within a UML 
model, a type is a name lacking a formal semantics and intuitively understood as a 
type of any (object-oriented) programming language, whose members do not own an 
identity, and which is characterised by the operations it has associated. On the other 
hand, within the system model we also have a notion of type used to conveniently 
describe sets of various kinds (far beyond the UML notion of type). 

Although we do not deal with peculiarities of various type systems, strong or weak 
typing, etc., we outline the underlying type system, as we need to map the type 
information of UML to this type system. 

The universe UTYPE of type names in the system model is not detailed further. 
Although T ∈ UTYPE models a type, T actually stands for a name, and in short we 
say type T for it. In that respect, we use a deep embedding of the type system of 
UML, by representing it through type names and a universe of values only. By deep 
embedding, we mean that we do not map types of the UML to a type system of the 
underlying mathematical structure, but explicitly model types as first-class elements.   

Carrier sets need not be disjoint. This notion of type allows the subsumption of object 
types and value types as well as reference types. We may however enforce values 
(or just members of certain types) to have a single (or most specific) type, for 
instance by means of a function 

typeOf: UVAL → UTYPE, 
a partial assignment of a type for each value. In ordinary object-oriented 
programming languages, objects usually have an assigned type (even though there 
is subtyping, the assigned type is the class the object is instance of), but special 
values like Nil usually do not. 

A variant to a typeOf function, especially suited when no default type is to be 
assigned to values and the carrier sets are not disjoint, is the introduction of values 
paired with their type information (e,T) such that e ∈ CAR(T).  So for instance the 
number 3 can be regarded as an integer value in (3,Int) or as a real value in (3,Real). 

4.6 Basic Types and Type Constructors 

The value void is usually needed for giving semantics to procedures or methods with 
no return value.  This is customary in the semantics of programming languages. 

Type constructors, as we have introduced them in Sect. 2, allow us to build a 
language of types. For example, we can introduce a record constructor Rec{.,.} and 
state that any two record types are equivalent if they have the same constituents 
independent of their order: Rec{A,B} ≈ Rec{B,A}.  This of course demands a certain 



System Model for UML, Part 1: Structure   

- 31 - 

discipline when defining CAR, so that two equivalent types indeed have the same 
carrier set associated. 

There are a number of other approaches, for instance the constructor Rec(.,.) (note 
the use of parenthesis instead of curly braces) may be such that the ordering of its 
arguments do matter.  Then, Rec(A,B) and Rec(B,A) are different (i.e., not 
equivalent) types, but we may state them to be isomorphic.  This can mean that the 
associated carrier sets are not identical but related by a bijection. For our purposes, 
however, this concept of isomorphism is imprecise as long as we do not speak about 
algebras but only about type names. 

4.7 References and Variables 

Formally, deref can be defined as a type dependent function 

deref: T:UTYPE → CAR(Ref T) → CAR(T) 

or as function with an additional restriction 

deref: UVAL → UVAL 
such that any  v ∈ CAR(Ref T), v ≠ Nil,  is mapped to  deref(v) ∈ CAR(T) 

or as a family of functions deref = (derefT)T∈UTYE indexed by types with 

derefT:  CAR(Ref T) → CAR(T) 

In ordinary programming languages, variables shadow each other when a new 
variable with the same name is introduced in an inner scope. We assume static 
binding, thus each variable name can be statically resolved (as opposed to dynamic 
binding, by which the resolution of a variable name depends not on the environment 
of its definition but on the environment of its use, and thus variable resolution can 
only occur at run time). In other words, in the modelling languages we deal with, we 
assume that a consistent, model-wide redefinition of variable names is possible in 
such a way that each variable is used only once. Then variable shadowing does not 
occur, and need not be dealt with in the system model.  

4.8 Record types 

Record types are a classical concept to represent the state space of classes and 
their objects.  In particular, in name-tagged records, these functions do have 
appropriate names, resembling attribute names. 

If values have types associated by the function typeOf (see Sect. 4.5), then the 
function returning the attributes of a record type can be extended to values as 
follows:  

attr: UVAL → ℘(UVAR) 
attr(v) = attr(typeOf(v)) 



System Model for UML, Part 1: Structure   

- 32 - 

4.9 Locations 

In implementation-oriented terms, locations are also often called lvalues. In each 
system state, a value (also often called rvalue, the content of the location at a given 
point in time) is associated with it. In an expression “x := x+1”, the first occurrence of 
the variable x denotes its location while the second one its rvalue that is derived from 
the store by knowing the location to look at. 

We could also work with an approach where we do not introduce variable identities 
explicitly. Such an approach would be slightly simpler, but less expressive. So far we 
do not use the extra expressivity explicitly, however. Another possibility would be to 
unify locations and references (using in our setting always a combined “Ref Loc” as 
pointer).     

 


