
Online Evaluation of Regular Tree Queries

Alexandru Berlea
Technische Universität München, Germany

berlea@in.tum.de

ABSTRACT
Regular tree queries (RTQs) are a class of queries consid-
ered especially relevant for the expressiveness and evalua-
tion of XML query languages. The algorithms proposed so
far for evaluating queries online, while scanning the input
data rather than by explicitly building the tree representa-
tion of the input beforehand, only cover restricted subsets of
RTQs. In contrast, we introduce here an efficient algorithm
for the online evaluation of unrestricted RTQs. We prove
our algorithm is optimal in the sense that it finds matches
at the earliest possible time for the query and the input
document at hand. The time complexity of the algorithm
is quadratic in the input size in the worst case and linear in
many practical cases. Preliminary experimental evaluation
of our practical implementation are very encouraging.

1. INTRODUCTION
Most XML applications build the tree representation of their
XML input data in the main memory before processing it.
This approach is not suitable for handling very large XML
documents or settings in which the XML data is received
linearly via some communication channel, rather than being
completely available in advance. For these applications, spe-
cial algorithms have to be developed, which view the XML
data as a stream of events, rather than as a tree. An event
contains a small piece of information, e.g. a start-tag or an
end-tag. An application receiving the stream performs its
task online, by reacting to the events. The advantage of this
event-driven approach is that it allows one to buffer only the
relevant parts of the input, saving thus time and memory.
In particular, it allows the construction of the XML tree in
memory and its subsequent processing, being thus at least
as expressive as the tree-based approach.

A fundamental task in XML applications is locating ele-
ments in XML input data which have a desired property.
Here, we call these elements matches and the process of lo-
cating them querying.

In this paper we consider the online evaluation of regular tree
queries (RTQs) [33]. Providing efficient algorithms for this
class is on the one hand side particularly important from the
efficiency point of view, as it includes an important fragment
of XPath [48], the most widely used XML query language.
This fragment, known as Core XPath [17], mainly featuring
location paths and filters using location paths but without
arithmetics and data value comparisons, is considered very
relevant for the efficiency of the evaluation of full XPath

queries. On the other hand side, RTQs are of particular im-
portance for XML processing as they form a class of queries,
which has established itself as a benchmark for comparing
expressiveness of different XML query languages [37]. This
class is equally expressive with the class of queries specifi-
able by using monadic second order logic (MSO) and many
other formalisms [36, 16, 35, 34, 28].

The research interest in querying XML streams has been
very vivid recently and there is a very rich literature on this
topic. Related work is reviewed in Sec. 6. Most of the re-
lated work on the online evaluation of XML queries considers
only restricted fragments of Core XPath and are typically
covered already by first order logic, possibly extended with
regular path expressions, i.e. regular expressions describing
the string of labels on the path from the root to the match
nodes.

In contrast, we introduce an algorithm for the online eval-
uation of unrestricted RTQs. RTQs not only can express
all of Core XPath, but they also allow a more convenient
and precise specification of complex horizontal and vertical
contextual conditions which are not possible or are difficult
to express in XPath.

The algorithm presented here is based on a pushdown tree
automaton whose transitions are guided by the events in
the input data stream. Despite the large expressiveness of
the queries, the algorithm is highly efficient as proven by the
complexity analysis. The algorithm has been completely im-
plemented in the freely available XML querying tool Fxgrep
[32] and preliminary experimental results presented here also
suggest a very good efficiency in practice. Additional merits
of the algorithm are as follows.

Unrestricted
Typically, algorithms for online evaluation for a specific query
language restrict the language in order to guarantee the
correct application or adaption of existing algorithms in
an event-based setting. In particular, algorithms based on
pushdown tree automata for evaluating RTQs have been pre-
sented for the online evaluation of so-called “right-ignoring”
RTQs [33]. These are quite restricted of queries for which all
information needed to decide whether an element is a match
has been seen by the time the end-tag of the element is en-
countered. In contrast, our algorithm works for arbitrary
RTQs.

1

11

111 112

12

121

13

131 132113 122 133

14

1111 1121 1211 1311 1321

b cb

a a a

c

a

b

Figure 1: The tree representation of an XML document

Adaptive
Some approaches to online query processing, mostly based
exclusively on the static analysis of queries, are conserva-
tive: a query which can be evaluated using the available
memory resources for the input document at hand fails to
be answered only because there might be other input docu-
ments in which the necessary memory can grow arbitrarily
large. In contrast, our construction is adaptive: it adjusts
its memory consumption to the requirements of the query
and the input data stream at hand. The following example
illustrates how the amount of memory necessary to answer
a query depends on the query and on the input data.

Example 1. Consider an XML document whose tree rep-
resentation is depicted in Fig. 1. Each location in the tree
corresponds to an event in the stream of events, as depicted
below. We identify locations by strings of numbers, s.t. the
time ordering of the events corresponds to the lexicographic
order of the locations:

1 11 111 1111 112 1121 113 12 121 1211 122 . . .
<a> <a> <c> </c> <a> . . .

Consider for example the XPath query //a/b locating b

nodes which have as father an a node. The node 111 is
a match in our input. This can be detected as early as at
location 111, as the events following 111 can not change the
fact of 111 being a match.

The query //a[c]/b locates b nodes which have a node a as
father and a c sibling. The node 111 is again a match but
this becomes clear only after seeing that the a parent has
also a child c at location 112. One has thus to remember
111 as a potential match between the events 111 and 112.
As the events after 112 can not change the fact of 111 being
a match, 111 can be reported and discarded at 112.

Finally, as an extreme case consider the query /*[not(d)]//*

locating all descendant nodes of the root element if this has
no child node d. Any node in the input is a potential match
until seeing the last child of the root element. In our exam-
ple all nodes have to be remembered as potential matches up
to the last event 14. Note thus that any algorithm evaluat-
ing a query needs in the worst case linear space in the input
size. However, many practical queries require a quite small
amount of memory as compared to the size of the input (as
argued in Sec. 5.3 and Sec. 5.4).

Optimal
The previous example also illustrates that for each element
there is an earliest point in time at which one can tell whether
it is a match or not. In this paper we prove the optimality

of our algorithm: matches are detected as soon as possible
for a given query on a given input data stream.

The paper is organized as follows. In Sec. 2 we introduce
a set of useful notions and notations. In Sec. 3 we present
the regular tree queries. Sec. 4 introduces pre-order au-
tomata. These are used by our algorithm for query eval-
uation on XML streams presented in Sec. 5 which further
addresses its correctness, optimality, complexity and perfor-
mance. Related work is discussed in Sec. 6. We conclude in
Sec. 7.

2. PRELIMINARIES
Basically, XML elements are most naturally represented as
ordered, labeled unranked trees: each element node may
have an arbitrary number of successors. However, for the
clarity of the presentation, it is more convenient to use an
encoding of XML documents as binary trees. In this encod-
ing every element node has two successors. The left suc-
cessor contains the children of the XML element, while the
right one contains its right siblings. For example, the bi-
nary representation of the XML tree in Fig. 1 is presented
in Fig. 5 in Appendix B. Note that this binary encoding
conserves the document order: a depth first search visits
the XML elements in the same order in both encodings.

Formally, the set of binary trees over an alphabet Σ, denoted
as TΣ is defined by t ∈ TΣ iff t = λ or t = a〈t1, t2〉 with a ∈
Σ and t1, t2 ∈ TΣ, where λ denotes the empty tree. The
nodes of a tree t, N(t) ⊆ {1, 2}∗ are defined byN(a〈t1, t2〉) =
{ε}∪{1w | w ∈ N(t1)}∪{2w | w ∈ N(t2)} and N(λ) = {ε},
where ε denotes the empty string. Note that the document
order corresponds to the lexicographic order of the nodes.
Also note that for the representation of XML documents Σ
is the set of all Unicode strings, thus an infinite set. The
subtree of t located at node w, denoted as t[w] is defined by:
t[ε] = t and a〈t1, t2〉[iw] = ti[w]. A tree t defines a label-
ing function t : N(t) 7→ Σ ∪ {λ} as follows: t(w) = a iff
t[w] = a〈t1, t2〉 and t(w) = λ iff t[w] = λ. The node encod-
ing the first XML element in the sequence of XML siblings
containing the element encoded by a node n, denoted as
first(n), is defined by: first(ε) = ε, first(w1) = w1 and
first(w2) = first(w). The last XML sibling of a node w in
a tree t, denoted as last(w) (the tree will always be obvious
from the context), is defined by last(w) = w if t[w] = λ and
last(w) = last(w2) otherwise. The set of ancestors of n is
ancestors(n) = {w | ww1 = n for some w1 6= ε}.

A (unary) query is a function p : TΣ 7→ 2{1,2}
∗

s.t. ∀t ∈
TΣ p(t) ⊆ N(t). The elements of p(t) are the matches of
query p on input tree t.

Let prect(w) be the set of nodes preceding a node w in
document order in a tree t, formally defined as prect(w) =
{w1 ∈ N(t)|w1 < w}, where “<” denotes lexicographic com-
parison. The set of right-completions of a tree t ∈ TΣ at
node w ∈ N(t) is defined as RightCompl t(w) = {t1 ∈ TΣ |
prect(w) = prect1(w) and ∀w1 ∈ prect(w) t1(w1) = t(w1)}.
Given a query p on input t, w ∈ N(t) is an early detection
location for w1 ∈ N(t) iff ∀t1 ∈ RightCompl t(w) w1 ∈ p(t1).
An algorithm for answering a query p is optimal if ∀t ∈ TΣ

and ∀w1 ∈ p(t), w1 is detected at its first early detection
location in document order, which we call earliest detection

location. The definition of an earliest detection location w
ensures thus that there is no location before w at which
all relevant information for deciding whether w1 is a match
has been seen, and there is no location after w containing
relevant information.

Example 2. Reconsider Example 1. Given the query //a/b,
the earliest detection location of node 111 is 111. As for the
query //a[c]/b the earliest detection location of node 111 is
112. Finally, for the query /*[not(d)]//* there is no early
detection location for any match node. These matches can
not be detected until the last location in the input has been
reached.

3. REGULAR TREE QUERIES
A regular tree grammar over an alphabet Σ is a tuple G =
(X,P, x0), with a finite set of variables X, a finite set of
productions P ⊆ (X×Σ×X×X) ∪ (X×X×X) ∪ X and
x0 ∈ X a start variable. For (x, a, x1, x2) ∈ P , (x, x1, x2) ∈
P and x ∈ P we write x → a〈x1, x2〉, x → ∗〈x1, x2〉 and
x → λ respectively. We shorten “x → a〈x1, x2〉 or x →
∗〈x1, x2〉” to “x→ (a | ∗)〈x1, x2〉”. In the rest of the paper
we use notations as above to denote elements of a grammar
G which is always unambiguously identified in the context.

A variable x of a grammar G defines a relation Derivx ⊆
TΣ×TX by: (λ, x) ∈ Derivx iff x→ λ and (a〈t1, t2〉, x〈t′1, t′2〉) ∈
Derivx iff x → (a | ∗)〈x1, x2〉 and (ti, t

′
i) ∈ Derivxi for i ∈

{1, 2}. A variable x specifies a set of trees [[x]] = {t ∈ TΣ |
∃(t, t′) ∈ Derivx}.

Productions of the form x→ ∗〈x1, x2〉 are necessary in order
to be able to specify variables x s.t. [[x]] = TΣ since Σ is in
general infinite or not a priori known (as in the case of XML
input without schema information). Moreover, such univer-
sal variables are essential for the convenient specification of
queries.

The set UnivG = {x | [[x]] = TΣ} is the largest set s.t. x ∈
UnivG iff x→ λ, x→ ∗〈x1, x2〉 and x1, x2 ∈ UnivG, and can
be computed in linear time. Testing whether [[x]] = TΣ can
be thus performed very efficiently. Note the contrast with
the universality problem of regular tree grammars over finite
alphabets which has exponential computational complexity.
Anyway, the algorithm that we are going to introduce is
orthogonal w.r.t. to the universality test for variables1.

A grammar G defines the language LG = [[x0]]. If ∃(t, t′) ∈
Derivx0 with t′(w) = x we say that t[w] may be derived from
x w.r.t. G. A variable x� specifies a (regular tree) query
px� : the matches for px� on an input tree t are defined as
px�(t) = {w ∈ N(t) | ∃(t, t′) ∈ Derivx0 with t′(w) = x�}.
If ∃(t, t′) ∈ Derivx0 with t′(w) = x� we say that w is a
match of px� w.r.t. t′.

Example 3. Consider the grammar G with start variable
x0 defined by the following productions:
1A more refined universality test is possible for example
when schema information for the input is available, case in
which the alphabet is finite. Furthermore, optimizations of
our algorithm are conceivable in the presence of schema in-
formation; however they are outside the scope of this paper.

x> → ∗〈x>, x>〉 (1)
x> → λ (2)
xc → c〈x>, x>〉 (3)
xb → b〈x>, xc〉 (4)

x0 → a〈xb, x>〉 (5)
x0 → ∗〈x0, x>〉 (6)
x0 → ∗〈x>, x0〉 (7)

Productions (1) and (2) ensure that [[x>]] = TΣ. Production
(3) makes xc account for XML elements c with arbitrary
content and arbitrary following XML siblings. Production
(4) makes xb account for XML elements b with arbitrary
content and followed by an XML element c. Production (5)
allows x0 to generate XML elements a with a first XML child
element b and followed by arbitrary elements. Productions
(6) and (7) allows these a elements to be located arbitrar-
ily deep under the root. The query pxb locates thus XML
elements b having as parent an XML element a and as next
sibling an XML element c.

Obviously, a regular tree grammar G = (X,P, x0) is equiva-
lent with a non-deterministic top-down tree automaton with
states X, transitions P and start state x0. A tree t′ is a non-
deterministic run of G on a tree t iff (t, t′) ∈ Derivx0 . Given
an automaton G, the regular tree query px can be thus seen
as a distinguished state of the automaton. These queries
were proven to be equally expressive with queries definable
in MSO on tree structures [16]. RTQs have thus the same
expressive power as MSO queries, while being efficiently im-
plementable, even in an event-based setting as we show in
the Sec. 5.

Note that we decided for an existential semantics of our
queries in order to cope with the non-determinism of the au-
tomaton, as needed in order to allow flexible specifications,
rather then requiring the specification via deterministic tree
automata, which would be an unnecessary complication of
query specifications. We also decided for an all-matches
semantics, i.e. all nodes w as in the definition are to be re-
ported as matches, rather than, say, the first in document
order. This is reasonable, because a user query typically is
aimed at finding all locations with the specified properties,
as for instance in XPath.

While very expressive, RTQs are not easily usable for users
not-familiar with grammar formalisms. Alternatively, queries
can be specified using the more intuitive Fxgrep [32] pattern
language which is automatically translated to RTQs2. Fx-
grep and XPath, are syntactically similar, but have different
expressiveness. Fxgrep contains Core XPath and addition-
ally allows the specification of very precise ordering con-
straints for nodes in patterns. In particular, any node in a
pattern can be provided with two regular expressions over
patterns to be fulfilled by the sequence of the node’s left
and right siblings, respectively. This allows for example the
identification of nodes by their XML schema like types, even
in the absence of schema information. For details on Fxgrep
we refer the interested reader to [32].

4. PRE-ORDER AUTOMATA
2The translation is straightforward but is outside of the
scope here; details are given in [31, 7].

a
qw

qw1 = enter(qw, a)

t1 t2

qlast(w1) = runA(qw1, t1)

qw2 = leave((qw, qlast(w1)), a)

qlast(w) = runA(qw2, t2)

<a>

Figure 2: The processing model of a POA

A (deterministic) pre-order automaton3 (POA) over an al-
phabet Σ is a tuple A = (Q, enter, leave, F, q0) consisting
of a set of states Q, two total transition functions enter :
Q × Σ 7→ Q and leave : Q2 × Σ 7→ Q, a set of final states
F ⊆ Q and a start state q0 ∈ Q. A POA A defines a func-
tion runA : Q× TΣ 7→ Q, which maps an input state qi and
an input tree t to an output state qo = runA(qi, t). In the
following we denote the state in which an automaton reaches
a node w by qw. The processing model of A is illustrated
in Fig. 2 on a subtree of the input t, t[w] = a〈t1, t2〉, which
encodes an XML a element.

Given our binary encoding, the output state may be seen
as a refinement of the information qw available when reach-
ing the a element with information acquired by visiting its
children (t1) and its right siblings (t2). The enter transition
(triggered by the corresponding event <a>) is used to com-
pute the start state for the left subtree t1. The output state
qlast(w1) for t1 is computed recursively as runA(qw1, t1). Af-
ter finishing visiting t1 (signalized by the event after
scanning the content of the a element), the input state qw2

for t2 is computed via the leave transition using the cur-
rent state qlast(w1) and qw. The start states qw for the el-
ements opened and not yet closed have thus to be remem-
bered while scanning the content of an element. This can be
easily done by using a stack to account for the fact that the
XML elements occur in a last opened first closed manner.
Finally, the output state for t[w] is obtained by recursively
processing t2, starting with state qw2. Summarizing, for-
mally, ∀q ∈ Q, ∀t ∈ TΣ

runA(q, t) =

8
<
:

q, if t = λ

runA(leave((q, runA(enter(q, a), t1)), a), t2),
if t = a〈t1, t2〉

The language accepted by A is LA = {t ∈ TΣ | runA(q0, t) ∈
F}. The run of an automaton A can be easily implemented
in an event-based manner, as presented in Appendix A.

It can be shown that POAs are equally expressive with reg-
ular tree grammars, and thus with deterministic bottom-
up tree automata, but much more concise than these lat-
ter. We next give a construction which given a grammar
G constructs a POA AG, s.t. LG = LAG . The idea of
the construction is to let the state in which the automaton
reaches a node w denote the variables from which w might
be derived w.r.t. G when considering information from the
already visited part of the tree. Consider that the automa-
ton reaches node w in input t with t(w) = a and it knows
so far that t[w] might be derived from some variable x2

w.r.t. G as depicted in Fig. 3. By seeing the label a it
finds the variables x3 from which t[w1] might be derived

3The name is due to the fact that a run of such an automaton
performs a pre-order traversal over the input tree.

λ

x2

x1

x3

x4

x5

w

w2

first(w)

w1

last(w1)

a

Figure 3: Variables involved at enter and at leave transi-
tions

as {x3 | x2 → (a | ∗)〈x3, x5〉 for some x5}. Suppose further
that after recursively processing t[w1], we know that its last
node (last(w1)) might be derived from x4 (implying that
x4 → λ). To find out from which variables might be derived
t[w2], however, rather than x4 we need to know from which
variable at w1 this x4 has originated. For this purpose, we
have to associate variables x4 for a node with the generat-
ing variable x3 at w1. That is, rather than variables, our
states will contain pairs of variables of the form (x4, x3).
Now, when proceeding to t[w2], and considering the vari-
ables x2 and x3 from which w and w1 respectively might be
derived, the variables x5 from which t[w2] might be derived
are computed as {x5 | x2 → (a | ∗)〈x3, x5〉}.

Formally, given a grammar G = (X,P, x0), the POA AG =

(Q, enter, leave, F, qε) withQ = X2 is defined by:

qε = {(x0, x0)}
enter(qw, a) = {(x3, x3) | (x2, x1) ∈ qw , x2 → (a | ∗)〈x3, x5〉}
leave((qw, qlast(w1)), a) =

{(x5, x1) | (x2, x1) ∈ qw, (x4, x3) ∈ qlast(w1), x4 → λ,
x2 → (a | ∗)〈x3, x5〉}

F = {q ∈ Q | (x, x0) ∈ q, x→ λ}

The proof that LG = LAG is straightforward by structural
induction.

5. QUERY EVALUATION
Note that a naive direct algorithm for answering RTQs fol-
lowing the definition in Sec. 3 would have to individually
consider all derivations w.r.t. to the underlying grammar.
In the presence of recursive rules as needed for example to
implement deep matching, as e.g. offered by the “//” oper-
ator, the number of derivations of a given input might be
exponential in the size of the input data. In contrast, the
algorithm automaton construction for the online evaluation
that we introduce in this section has quadratic time com-
plexity in the size of the input data in the very unlikely
worst case and linear in many practical cases, and also a
competitive space complexity.

5.1 Automata Construction
Let G = (X,P, x0) be a regular tree grammar and px� a
regular tree query based on G. We construct a POA Apx� =

(Q′, enter′, leave′, F ′, q′ε) which we will use to answer the
query px� over an input tree t.

The construction is an extension of the construction of the
automaton AG presented in the previous section. Rather
than pairs from X2 as before, the states of Apx� running

over t are functions from X2 to pairs from 2N(t)×{true , false}.
A mapping q′w(x2, x1) = (M, b) denotes:

(1) that x2 and x1 are as in the state qw in which AG
reaches node w;

(2) that the nodes in M might be matches w.r.t. deriva-
tions in which w is labeled with x2 and first(w) with
x1; and,

(3) that if b is true then it depends only on the content of
w whether there exists a derivation w.r.t. G in which
w is labeled with x2.

The construction which ensures these invariants is as follows.
To ensure (1) we let the domain of the states of Apx� be

constructed as the in the case of the states of AG:

dom(q′ε) = {(x0, x0)}
dom(enter′(q′w, a)) = enter(dom(q′w), a)

dom(leave′((q′w, q
′
last(w1)), a)) =

leave((dom(q′w), dom(q′last(w1))), a)

F ′ = {q′ ∈ Q′ | (x, x0) ∈ dom(q′), x→ λ}
The invariants (2) and (3) are ensured by the following,
in which whenever we write q(x) for some function q we
implicitly assume that x ∈ dom(q). Initially q′0(x0, x0) =
(∅, true). The enter′ transition at node w is defined by
[enter′(q′w, a)](x3, x3) = (M, b) iff M is the smallest set and
b the smallest boolean value (assuming false < true) s.t.:

∀q′w(x2, x1) = (M1, b1) with x2 → (a | ∗)〈x3, x5〉 and [[x5]] = TΣ

it holds that b1 ≤ b
M1 ⊆M if b1
w ∈M if b1 and x2 = x�

The leave′ transition at node w is defined by
[leave′((q′w, q

′
last(w1)), a)](x5, x1) = (M, b) where M and b

are the smallest values s.t.:

∀q′w(x2, x1) = (M1, b1) with q′last(w1)(x4, x3) = (M2, b2),
x4 → λ and x2 → (a | ∗)〈x3, x5〉
it holds that b1 ≤ b

M1 ∪M2 ⊆M
w ∈M if x2 = x�

The correctness of the construction w.r.t. invariants (1)-(3)
is presented immediately below.

Locating Matches
Correctness and completeness
The invariants (1)-(3) ensure that w is an early detection
location for some match node w1 iff q′w(x2, x1) = (M, true),
[[x2]] = TΣ and w1 ∈ M for some x2 and x1. The formal
proof is given in the following theorem.

Theorem 1. Let t be an input tree, px� an input query
and Apx� an automaton constructed as above. We have that

q′w(x2, x1) = (M, true) and [[x2]] = TΣ iff ∀t2 ∈ RightCompl t(w)
and ∀w1 ∈M ∃(t2, t′) ∈ Derivx0 with t′(w1) = x�.

1

1

1

2

2

2

w

Figure 4: Locating matches

Proof. We start by proving the correctness. Let q′w(x2, x1) =
(M, true), [[x2]] = TΣ and t2 ∈ RightCompl t(w). As Apx� is

deterministic it reaches node w in the same state q′w for both
t and t2. Further, since [[x2]] = TΣ we have that t2[w] ∈ [[x2]].
We further use the following lemma which is proven in Ap-
pendix D:

Lemma 1. If q′w(x2, x1) = (M, true) and
t[w] ∈ [[x2]] then ∀w1 ∈ M ∃(t, t′) ∈ Derivx0

with t′(w) = x2 and t′(w1) = x�.

It immediately follows that ∀w1 ∈ M ∃(t2, t′) ∈ Derivx0

with t′(w1) = x�.

Now we prove the completeness. Let w be an early detection
location for a match node w1 and consider that Apx� reaches

a node w as depicted in Fig. 4. The part of the input already
visited and the part yet to be visited are depicted in dark
and light gray respectively. Let t2 ∈ RightCompl t(w) be
obtained by replacing each of the trees located at the nodes
in frontier(w) = {w} ∪ {w′2 | w′ ∈ ancestors(w)} (the sub-
trees depicted in light gray) with some arbitrary trees from
TΣ. Further, let M be a set of nodes as in the hypothesis and
let w1 ∈M . By the hypothesis ∃t′ s.t. (t2, t

′) ∈ Derivx0 and
t′(w1) = x�. It follows that ∀w′ ∈ N(t2) t2[w′] ∈ [[t′(w′)]]
and in particular ∀w′ ∈ frontier (w) t2[w′] ∈ [[t′(w′)]]. Since
the latter trees were chosen arbitrarily and independently of
each other it follows that ∀w′ ∈ frontier (w) [[t′(w′)]] = TΣ.
By instantiating the variables from x1 to x5 in the definitions
of the transitions with the corresponding labels in t′ it now
straightforwardly follows q.e.d.

Optimality
Every node w as in the theorem is an early detection location
for any w1 ∈ M . As the nodes w are visited in document
order it immediately follows that the match nodes w1 are
detected at their earliest detection location. An algorithm
implementing a run of Apx� can thus report matches as soon

as the minimal necessary information from the input stream
has been scanned. This is highly desirable for all querying
applications and particularly for real-time applications such
as monitoring or routing.

Besides allowing true matches to be reported as soon as pos-
sible, the construction also discards false matches as soon as
possible. On performing the enter′ transition when reach-

ing an element, all potential matches M1 for which no suit-
able production is found in the grammar are (implicitly) not
propagated any further; the absence of any production indi-
cates that the potential matches are incompatible with the
current element. Accordingly, our construction deals very
consciously with time and space resources.

In the following subsection we show that the construction
can be implemented very efficiently.

5.2 Implementation
In the previous subsection we have defined a pre-order au-
tomaton and shown how this can be used to evaluate online
queries. In this subsection we show how this can be effi-
ciently implemented by using a demand-driven construction
of the automaton: the states and the transitions are com-
puted as they are needed while scanning the input stream,
rather than eagerly, in advance. An eager construction of
the automaton has no practical advantages over the lazy one
and has on the other hand the disadvantage of an exponen-
tial blowup of the number of states to be considered.

The complete algorithm implementing the query evaluation
in an event-based setting is presented in Listing 1. Basi-
cally, enterNodeHandler and leaveNodeHandler are imple-
mentations of the enter′ and leave′ transitions of Apx� and

are callback functions for start and end tag events respec-
tively. The functions startDocHandler and endDocHandler

are called on beginning and ending the scan of the input
respectively. We suppose here that enterNodeHandler and
leaveNodeHandler receive as argument not only the label of
the current element but also the corresponding node identi-
fier. For the case in which the node identifier is not provided
by the event-based parser, note that it can be easily propa-
gated along by the event handlers.

We basically solve the equations given in the definition of
the enter′ and leave′ transitions in an accumulative manner
and compute the transitions lazily, as mentioned above. As
an abbreviation we use the accumulative update operator ⊕
defined by:

(q⊕ [α 7→ (M, b)])(β) =

8
<
:

q(β) , if β 6= α

(M ∪M1, b or b1) ,
if β = α and q(β) = (M1, b1)

Note the conditional expression in line 15 and line 28 by
which matches are not unnecessarily propagated beyond their
earliest detection location in the implementation, in contrast
to the automaton construction where we ignored this only
for the sake of presentation clarity. This has an additional
positive influence on the memory complexity of the algo-
rithm.

A run of Apxb for the query pxb presented in Example 3 is
given in Appendix B.

5.3 Complexity
Let |D| be the size of the input data, i.e. the number of
nodes in the input tree and |P | the number of productions
in the grammar underlying the input query. Let potmax be
the maximum number of potential match nodes at any given

1 Stack s ;
2 S t a t e q ;
3

4 s t a r t D o c H a n d l e r (){q : = q′0 ; }
5

6 e n t e r N o d e H a n d le r (Node w , L a b e l a){
7 s . push (q) ;
8

9 q1 = ∅
10 f o r (x2, x1) ∈ dom(q) with q(x2, x1) = (M, b)
11 f o r x2 → (a | ∗)〈x3, x5〉
12 i f x2 = x� then M : = M ∪ {w} ;
13 b1 : = b & ([[x5]] = TΣ) ;
14 i f b1 & ([[x3]] = TΣ) then r e p o r t M a t c h e s (M) ;
15 q1 = : q1 ⊕ [(x3, x3) 7→ (b1 & ([[x3]] 6= TΣ) ? M : ∅, b1)] ;
16

17 q : = q1 ; }
18

19 l e a v e N o d e H a n d l e r (Node w , L a b e l a){
20 qfather = s . pop () ;
21

22 q1 = ∅
23 f o r (x4, x3) ∈ dom(q) with q(x4, x3) = (M1, b1) ∧ x4 → λ
24 i f b1 then r e p o r t M a t c h e s (M1) ;
25 f o r (x2, x1) ∈ dom(qfather) with qfather(x2, x1) = (M, b)∧
26 x2 → (a | ∗)〈x3, x5〉
27 i f (x2 = x�) & !(b & ([[x5]] = TΣ)) then M : = M ∪ {w} ;
28 q1 : = q1 ⊕ [(x5, x1) 7→ (b1 ? M : (M1 ∪M), b)] ;
29

30 q : = q1 ;}
31

32 endDocHandler (){
33 f o r (x, x0) ∈ dom(q) with q(x, x0) = (M, true) and x→ λ
34 r e p o r t M a t c h e s (M)}

Listing 1: Skeleton for the event-driven query evaluation

time during the scan of the input data and let dommax be
the maximal size of the domain of all states during the run
of Apx� .

In enterNodeHandler at node w, the outer loop is executed
for every (x2, x1) ∈ dom(q), that is O(dommax) times, and
the inner loop for every production x2 → (a | ∗)〈x3, x5〉,
that is O(|P |) times. All operations in the loop body (lines
12 to 15) can be executed in time O(potmax). A call to
enterNodeHandler amounts thus to O(dommax ·|P |·potmax)
time. In leaveNodeHandler, the outer loop is executed
O(dommax) times and the inner loop is executed O(dommax·
|P |) times. Each operation within the loop takes O(potmax)
time. A call to leaveNodeHandler amounts thus toO(dom2

max·
|P | · potmax) time.

As leaveNodeHandler and enterNodeHandler are called once
for every node, the overall time complexity of event driven
evaluation of queries is thus in time O(|D| · dom2

max · |P | ·
potmax). The value of dommax can be seen as a measure
of the non-determinism of the underlying grammar and is
limited by |X|2 where |X| is the number of variables in the
grammar. The value of dommax and the value of |P | only
depend on the query and not on the input document. The
value of |X| basically corresponds to the number of nodes
referred to by the query and |P | to the total number of
qualifiers for nodes, hence they are usually small. Corre-
spondingly, the algorithm scales well with the size of the
query as presented in the next section.

Note that the potmax parameter only depends on the query
and the input document at hand, and not on the algorithm

used to answer the query. In this sense potmax is an objective
measure of the suitability of a query for online evaluation on
a given input. The worst case is the unlikely case in which all
nodes are potential matches until the end of the document
in which case potmax = |D|. This lead for our algorithm
to quadratic time complexity in the size of the input. In
general, however, in many practical cases the number of po-
tential matches is much less than the total number of nodes
(potmax � |D|) and can be assimilated with a constant. In
this case we obtain a time linear in the size of the document,
as suggested by our experimental results.

As for the space complexity, let d be the maximal depth
of the input document. During the scan of the document
we store at each location the mappings q for all ancestor
locations up to the root, which correspond to the opened and
not yet closed elements at the current location. For every
level, q has up to dommax elements, each being mapped to
an M which stores up to potmax locations and a boolean
value b. We obtain the worst case space complexity O(d ·
dom2

max · potmax). Many of the practical queries need only
a small amount of memory, as the information relevant to
whether a node is a match is typically located in the relative
proximity of the node (implying that potmax is small). Also,
while the depth of the document equals |D| in the worst
case (in which the input tree is degenerated to string), in
practice the depth of large documents can be considered a
small constant.

5.4 Experimental Results
To evaluate our algorithm in practice we implemented it in
the SML programming language [27] as a part of the Fxgrep
XML querying tool (version 4.6.4) which supports all fun-
damental features of the XML specification (e.g. attributes,
text nodes, white spaces and processing instruction nodes)
and provides a pattern-based front end, which makes the
specification of queries more intuitive. All experiments were
conducted on a 1.6 GHz Pentium M processor with 2 GB of
RAM running Linux version 2.6.11. To run Fxgrep we used
the SML of New Jersey [45] runtime environment version
110.0.7.

The first set of experiments was performed using the XMark
benchmark set [43]. The XML input data was generated by
the XMark data generator using factors 0.05, 0.1, 0.2 and
0.4. We restricted ourselves to the XMark queries express-
ible by Fxgrep; the remainder of the XMark queries basically
either reorganize the input rather than just selecting nodes,
or use value-based joins or arithmetic predicates. The re-
sults are presented in Table 1. A linear time increase in the
size of the input can be observed for all tested queries. Re-
markably, the query features tested by XMark: exact match-
ing (Q1), ordered access (Q2 and Q4), regular path expres-
sions (Q6 and Q7), full text (Q14), long path traversals (Q15

and Q16) and missing elements (Q17) do not significantly
influence the evaluation times of Fxgrep. Instead, the eval-
uation time for Fxgrep is mainly dependent on how long
potential matches are carried around until they are either
confirmed or discarded. In the XMark queries, this time is
relatively small, as the context information on whether a
node is a match is contained in a relatively small fragment
of the input situated around the node.

Fxgrep SPEX
P1 P2 P3 P1 P2 P3

3M 1.90 2.64 4.93 5.70 13.85 2580.39
16M 2.06 3.98 5.95 9.11 100.75 ∞
32M 2.10 4.49 6.09 10.40 264.98 ∞
62M 2.16 5.19 6.68 11.22 364.46 ∞

Table 3: Relative evaluation times

Fxgrep is especially expressive at specifying precise contex-
tual conditions. To account for this we performed a second
set of experiments in which we used fragments of the Pro-
tein Sequence Database [41], an XML document of over 700
MB size, containing around 25 million nodes with a maxi-
mal depth of 7 and an average depth of approximately 5. We
compared the performance with other XML querying tools
which use both online and in-memory evaluation. Despite
the large number of proposals for online evaluation of XML
queries, there are surprisingly few tools publicly available.
Furthermore, most of the proposals for which public imple-
mentations exist impose serious limitations on Core XPath
(see Sec. 6 on related work). A more mature implementation
we were able to experiment with was SPEX (version 1.0) [39]
which basically covers Core XPath. As a reference for the in-
memory evaluation we used Xalan-Java (version 2.7.0) [47]
as a popular XSLT processor (which also provides a com-
mand line XPath processor) and Saxon (version 8.7.1) [21]
as a popular XQuery processor. SPEX, Xalan and Saxon
are all implemented in Java and were run in Sun’s runtime
environment version 1.5.0.

Even though the querying capabilities of Fxgrep go beyond
those of Core XPath, for the comparison we had to limit
ourselves to queries expressible in Core XPath. The queries
used check for increasingly more context information as fol-
lows (their description in XPath is given in Appendix C)
:

P1 finds authors of protein entries which contain a refer-
ence mentioning the year “2000”.

P2 finds authors as for P1 but additionally requires that
the protein entries containing them be followed by a
protein entry the description of which contains the
word “iron”.

P3 finds authors as for P1 but asks the protein entries
containing them to be followed by two entries as in
P2.

The results are presented in Table 2. The evaluation times
for Fxgrep increased linearly with the input document size
for all queries, as in the case the first set of experiments. In
contrast, the evaluation times of the other XML processors
showed a linear increase only for P1, whereas their perfor-
mance significantly degraded as the input size increased for
P2 and P3. Their performance also apparently degraded as
queries become more refined, from P1 to P3, whereas the
∞ signs denotes that the evaluation did not finish after 7
hours.

An absolute interpretation of the times listed in Table 2

Q1 Q2 Q4 Q6 Q7 Q14 Q15 Q16 Q17

5.5M 3.72 3.78 3.72 3.70 3.77 3.94 3.63 3.70 3.79
12M 7.33 7.41 7.47 7.69 7.60 7.97 7.35 7.47 7.69
23M 14.74 14.88 15.04 14.99 15.28 16.00 14.70 15.65 15.36
45M 29.24 29.75 29.79 29.79 30.38 31.83 29.23 29.74 30.55

Table 1: Evaluation times (in seconds) for XMark queries

Fxgrep SPEX Saxon Xalan
P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

3M 3.55 4.94 9.23 2.06 5.00 8843.61 1.86 2.16 2.20 2.36 3.01 2.98
16M 17.68 34.16 51.01 9.44 104.38 ∞ 3.98 21.09 21.44 8.14 32.77 33.38
32M 36.03 76.98 104.55 18.91 481.47 ∞ 6.54 61.60 64.12 17.11 86.62 87.53
62M 66.55 160.21 206.27 38.47 1249.02 ∞ 11.35 189.15 262.34 33.05 276.70 366.45

Table 2: Evaluation times (in seconds) for increasingly refined queries for the Protein Database

is admittedly quite difficult, mainly because Fxgrep uses
an SML runtime environment whereas the other XML tools
uses a Java runtime environment. Java is generally known
to perform better; for example, our XML parser is between
2 and 4 times slower as compared with state of the art Java
parsers. A relevant measure for event-driven evaluators is
obtained by dividing the evaluation time by the time needed
by the underlying parser in order to generate the events; this
accounts for the different paces at which events are made
available in different runtime environments. The relative
performance of Fxgrep was in all our test cases superior to
that of SPEX as one can observe in Table 3.

As for memory usage, Fxgrep needed for all runs a space of
under 30 MB including the SML runtime system and could
be thus executed also on systems with little memory. SPEX
needed for P1 under 20 MB including the Java runtime envi-
ronment but needed a heap larger than 64 MB to process Q2

on input size above 32 MB. Saxon and Xalan needed a heap
size 5 and 10 times larger than the XML input data, respec-
tively, which limits their applicability for processing XML
documents above 100 MB on systems with current average
RAM size.

6. BIBLIOGRAPHICAL NOTES
RTQs can be evaluated using pushdown forest automata
as presented in [33, 31]. The original construction generally
requires to build the whole input tree in memory. The event-
based query evaluation is addressed there only for right-
ignoring queries. The restriction of right-ignoring queries is
quite severe, as for instance they do not allow to capture
XPath patterns with filters on the nodes in the path such as
e.g. //a[c]/b. In this paper we have lifted this restriction.
Rather than a priori handling only a restricted subset of
queries, we have shown here how arbitrary RTQs can be
evaluated in an event-driven manner.

A basic task in XML processing is XML validation. The
problem of validating XML streams is addressed in [44, 11,
26]. XML schema languages are basically regular tree lan-
guages4, hence conformance to such a schema can be checked

4The correlation between the most popular available schema
languages and regular tree languages has been studied by
Murata et al. [29].

by a pre-order automaton. As presented in Sec. 4 this can
be performed efficiently on XML streams in the event-based
manner.

Conventional attribute grammars (AGs) and compositions
thereof are proposed by Nakano and Nishimura in [30, 38] as
a means of specifying tree transformations. A deforestation
method is first used to derive one AG from a composition
of AGs. An algorithm is presented which allows an event-
driven evaluation of the attribute values of the resulting AG.
Specifying transformations, or in particular queries, using
AGs is however quite elaborate even for simple context-
dependent queries. The deforestation method used restricts
the AGs to use attributes of non-terminal symbols at most
once in a rule and the maximum nesting depth of the input
trees to a statically fixed value.

More suited for XML are attribute grammars based on (ex-
tended) regular tree grammars as considered in XML Stream
Attribute Grammars (XSAGs) [22] and TransformX [42].
The restricted class of L-attributed AGs is considered: the
attribute values are required to be “right-ignoring”, which
ensures their straightforward evaluation in a single pass in
document order. Another restriction is that of unambigu-
ousity which basically means that there is at most one deriva-
tion with respect to the grammar and which ensures that
attributes can be unambiguously specified and evaluated.
While XSAGs are targeted at ensuring scalability and have
the expressiveness of deterministic pushdown transducers,
the TransformX AGs allow the specification of the attribu-
tion functions in a Turing-complete programming language
(Java). In both cases, for the evaluation of the attribute
grammars pushdown transducers are used. The pushdown
transducers used in TransformX validate the input accord-
ing to the grammar in a similar manner to the pre-order
automata. Additionally, a sequence of attribution functions
is generated as specified by the attribute grammar. A sec-
ond transducer uses this sequence and performs the speci-
fied computation. For the identification of the non-terminals
from which nodes are derived in the (unique) parse tree, as
needed for the evaluation of the AGs in [22, 42], pre-order
automata can be used. The unambiguousness restriction of
the attribute grammars allows one to proceed as in the case
of right-ignoring queries. That is, the non-terminal corre-
sponding to the current node can be directly determined as

the (single) non-terminal in the current automaton state, as
it does not depend on the events after the current one.

Most research work dealing with querying of XML streams
consider subsets of XPath as a query language. Some of
them deal with XQuery, which is in fact more than a lan-
guage for node selection as it allows the transformation of
the input. In the following we are mainly interested in the
node selection capabilities of the considered languages.

A number of approaches handle the problem of querying
XML streams in the context of selective dissemination of
information (SDI), also known as XML message brokering
[9, 1, 13, 14, 2, 18, 19, 8]. In this scenario a large number
of users subscribe to a dissemination system by specifying a
query which acts like a filter for the documents of interest.
Given an input document, the system simultaneously eval-
uates all user queries and distributes it to the users whose
queries lead to at least one match. Strictly speaking, the
queries are not answered. The documents which contain
matches are dispatched but the location of the matches is not
reported. XFilter [1] handle XPath patterns without nested
XPath patterns as filters. These can be expressed with reg-
ular expressions, hence they are evaluated using finite string
automata. YFilter [13] improves on XFilter by eliminating
redundant processing by sharing common paths in patterns.
In [14] the querying capabilities of YFilter are extended to
handle filters comparing attributes or text data of elements
with constants and nested path expressions are allowed to
occur basically only for the last location step. Green et al.
[18] consider regular path expressions without filters. A lazy
construction of the deterministic finite automaton resulting
from multiple XPath expressions is used in order to avoid
the exponential blow-up in the number of states for a large
number of queries. XPush [19] also handles nested path ex-
pressions and addresses the problem of sharing both path
navigation and filter evaluation among multiple patterns.
XTrie [8] considers a query language which allows the speci-
fication of nested path expressions and, besides, an order in
which they are to be satisfied. Even though Fxgrep is not
targeted at SDI, note that it basically exceeds the essential
capabilities of all previously mentioned query languages.

The query language of XSM [25] handles only XPath pat-
terns without deep matching (//). XSQ [40] deals with
XPath patterns in which at most one filter can be speci-
fied for a node and filters cannot occur inside another filter.
The filters only allow the comparison of the text content of
a child element or an attribute with a constant. STX [6]
is basically a restriction of the XSLT transformation lan-
guage to what can be handled locally by considering only
the visited part of the tree and selecting nodes from the re-
maining part of the tree. Sequential XPath [12] presents a
subset of XPath, handling only right-ignoring XPath pat-
terns, which can be implemented without the need of any
buffering. FluXQuery [23] considers only XPath without
filters and deep matching. In [24] techniques for rewriting
XQuery expressions are presented in order to support their
online evaluation.

Some of the approaches to online XML querying are, in con-
trast to ours, non-progressive: matches are reported only
when reaching the end of the input stream. One of them is

the already mentioned XPush. Other such approaches are
ViteX [10], considering Core XPath and Chaos [5] which
considers both forward and backward XPath axes.

SPEX [39] basically covers Core XPath and is based on a
network of transducers. Each transducer in the network pro-
cesses the input stream and transmits it augmented with
computed information to its successors. The number of
transducers is linear in the query size. The complexity of an-
swering queries depends on whether filters are allowed and
is polynomial in both the size of the query and of the input.
XStreamQuery [15] is an XQuery engine based on a pipeline
of SAX-like event handlers augmented with the possibility
of returning feedback to the producer. TurboXPath [20]
introduces an algorithm for answering XPath queries con-
taining both arithmetic and structural filters which is nei-
ther directly based on automata nor on transducer networks.
The time complexity of the algorithm is not addressed. The
space complexity for different fragments of TurboXPath is
addressed in [3] and [4]. To the best of our knowledge, in
contrast to our work, none of the approaches above address
the time-optimality of their match reporting.

Optimizations based on the availability of XML schema in-
formation for the input are considered in [25], YFilter [14],
XPush [19], FluXQuery [23] and Raindrop [46]. Schema-
based optimizations of our approach as mentioned in Sec. 3
are considered for future work.

7. CONCLUSION
We have presented an automata construction which can be
used for the online evaluation of RTQs. We have introduced
a formalism which allows to define the optimality of query
evaluation w.r.t. to the time points at which matches are de-
tected and formally proven that our construction is optimal
in this respect. Further, we have introduced an implementa-
tion of our construction and analyzed its performance based
on its theoretical time and space complexity. The algorithm
has been used in the freely available Fxgrep XML query
language. The efficiency of our approach has been tested
in practice by experimental results comparing Fxgrep with
other online and in-memory XML querying tools.

8. REFERENCES
[1] M. Altinel and M. J. Franklin. Efficient Filtering of

XML Documents for Selective Dissemination of
Information. In Procedings of the 28th International
Conference on Very Large Data Bases (VLDB 2000),
Sept. 2000.

[2] I. Avila-Campillo, T. J. Green, A. Gupta, D. Suciu,
and M. Onizuka. XMLTK: An XML Toolkit for
Scalable XML Stream Processing. In Workshop on
Programming Language Technologies for XML
(PLAN-X), 2002. PLAN-X 2002.

[3] Z. Bar-Yossef, M. Fontoura, and V. Josifovski. On the
Memory Requirements of XPath Evaluation over XML
Streams. In Proceedings of the 20th Symposium on
Principles of Database Systems (PODS 2004), 2004.

[4] Z. Bar-Yossef, M. Fontoura, and V. Josifovski.
Buffering in Query Evaluation over XML Streams. In
Proceedings of the 21st Symposium on Principles of
Database Systems (PODS 2005), 2005.

[5] C. Barton, P. Charles, D. Goyal, M. Raghavachari,
M. Fontoura, and V. Josikovski. Streaming XPath

Processing with Forward and Backward Axes. In
Proceedings of the International Conference on Data
Engineering (ICDE 2003), 2003.

[6] O. Becker. Transforming XML on the Fly. In XML
Europe 2003, 2003.

[7] A. Berlea. Efficient XML Processing with Tree
Automata. PhD thesis, Technical University of
Munich, Munich, 2005.

[8] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi.
Efficient Filtering of XML Documents with XPath
Expressions. In Proceedings of the International
Conference on Data Engineering (ICDE 2002), 2002.

[9] J. Chean, D. J. DeWitt, F. Tian, and Y. Wang.
NiagaraCQ: a Scalable Continuous Query System for
Internet Databases. In Proceedings of the
International Conference on Management of Data
(SIGMOD 2000), 2000.

[10] Y. Chen, S. B. Davidson, and Y. Zheng. An Efficient
XPath Query Processor for XML Streams. In
Proceedings of the International Conference on Data
Engineering (ICDE 2006), 2006.

[11] C. Chitic and D. Rosu. On Validation of XML
Streams using Finite State Machines. In WebDB ’04:
Proceedings of the 7th International Workshop on the
Web and Databases, pages 85–90, New York, NY,
USA, 2004. ACM Press.

[12] A. Desai. Introduction to Sequential XPath. In XML
Conference 2001, Dec. 2001.

[13] Y. Diao, P. Fischer, M. J. Franklin, and R. To.
YFilter: Efficient and Scalable Filtering of XML
Documents. In Proceedings of the International
Conference on Data Engineering (ICDE 2002), Feb.
2002.

[14] Y. Diao and M. Franklin. YFilter: Query Processing
for High-Volume XML Message Brokering. In
Proceedings of the 29th International Conference on
Very Large Data Bases (VLDB 2003), 2003.

[15] L. Fegaras. The Joy of SAX. In Proceedings of the
First International Workshop on XQuery
Implementation, Experience and Perspectives, June
2004.

[16] M. Frick, M. Grohe, and C. Koch. Query Evaluation
on Compressed Trees. In Proceedings of the 18th IEEE
Symposium on Logic in Computer Science, pages
188–197, 2003.

[17] G. Gottlob, C. Koch, and R. Pichler. The Complexity
of XPath Query Evaluation. In Proceedings of the
Eighteenth Symposium on Principles of Database
Systems (PODS 2003), June 2003.

[18] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu.
Processing XML Streams with Deterministic
Automata. In Proceedings of International Conference
on Database Theory (ICDT 2003), pages 173–189,
2003.

[19] A. Gupta and D. Suciu. Stream Processing of XPath
Queries with Predicates. In Proceedings of the
International Conference on Management of
Data(SIGMOD 2003), 2003.

[20] V. Josifovski, M. Fontoura, and A. Barta. Querying
XML Streams. The VLDB Journal, 14(2):197–210,
2005.

[21] M. Kay. Saxon. Software Documentation, 2005.

[22] C. Koch and S. Scherzinger. Attribute Grammars for
Scalable Query Processing on XML Streams. In
Database Programming Languages (DBPL), pages
233–256, 2003.

[23] C. Koch, S. Scherzinger, N. Schweikardt, and
B. Stegmaier. Schema-based Scheduling of
Event-Processors and Buffer Minimization for Queries
on Structured Data Streams. In Proceedings of the
30th International Conference on Very Large Data
Bases (VLDB 2004), 2004.

[24] X. Li and G. Agrawal. Efficient evaluation of xquery
over streaming data. In VLDB ’05: Proceedings of the
31st international conference on Very large data bases,
pages 265–276. VLDB Endowment, 2005.

[25] B. Ludäscher, P. Mukhopadhyay, and
Y. Papakonstantinou. A Transducer-Based XML
Query Processor. In Proceedings of the 28th
International Conference on Very Large Data Bases
(VLDB 2002), 2002.

[26] W. Martens, F. Neven, and T. Schwentick. Which xml
schemas admit 1-pass preorder typing? In Proceedings
of International Conference on Database Theory
(ICDT 2005), 2005.

[27] R. Milner, M. Tofte, R. Harper, and D. MacQueen.
The Definition of Standard ML (Revised). MIT Press,
1997.

[28] M. Murata. Extended Path Expressions for XML. In
Proceedings of the 17th Symposium on Principles of
Database Systems (PODS 2001), 2001.

[29] M. Murata, D. Lee, and M. Mani. Taxonomy of XML
Schema Languages Using Formal Language Theory. In
Extreme Markup Languages 2001, Montreal, Canada,
Aug. 2001.

[30] K. Nakano and S. Nishimura. Deriving Event-Based
Document Transformers from Tree-Based
Specifications. In M. van den Brand and D. Parigot,
editors, Electronic Notes in Theoretical Computer
Science, volume 44. Elsevier Science Publishers, 2001.

[31] A. Neumann. Parsing and Querying XML Documents
in SML. PhD thesis, University of Trier, Trier, 2000.

[32] A. Neumann and A. Berlea. fxgrep 4.6.1.
http://www2.informatik.tu-
muenchen.de/~berlea/Fxgrep/,
2005.

[33] A. Neumann and H. Seidl. Locating Matches of Tree
Patterns in Forests. In V. Arvind and R. Ramamujan,
editors, Foundations of Software Technology and
Theoretical Computer Science, (18th FST&TCS),
volume 1530 of Lecture Notes in Computer Science,
pages 134–145, Heidelberg, 1998. Springer.

[34] F. Neven. Extensions of Attribute Grammars for
Structured Document Queries. Journal of Computer
and System Sciences, 70(2):221–257, 2005.

[35] F. Neven and J. V. D. Bussche. Expressiveness of
Structured Document Query Languages Based on
Attribute Grammars. Journal of the ACM,
49(1):56–100, 2002.

[36] F. Neven and T. Schwentick. Query Automata. In
Proceedings of the Eighteenth Symposium on
Principles of Database Systems, May 31 - June 2,
1999, Philadelphia, Pennsylvania, pages 205–214.
ACM Press, 1999.

[37] F. Neven and T. Schwentick. Automata- and
logic-based pattern languages for tree-structured data.
In K.-D. S. L. Bertossi, G. Katona and B. Thalheim,
editors, Semantics in Databases, volume 2582 of
Lecture Notes in Computer Science, pages 160–178,
Heidelberg, 2003. Springer.

[38] S. Nishimura and K. Nakano. XML stream
transformer generation through program composition
and dependency analysis. Science of Computer
Programming, 54(2–3):257–290, 2005.

[39] D. Olteanu, T. Furche, and F. Bry. Evaluating
Complex Queries against XML Streams with
Polynomial Combined Complexity. In Proc. of 21st
Annual British National Conference on Databases
(BNCOD21), July 2004.

[40] F. Peng and S. S. Chawathe. XPath Queries on
Streaming Data. In Proceedings of the International
Conference on Management of Data(SIGMOD 2003),
2003.

[41] Protein Information Ressource: The Protein Sequence
Database. http://pir.georgetown.edu/home.shtml.

[42] S. Scherzinger and A. Kemper. Syntax-directed
Transformations of XML Streams. In Workshop on
Programming Language Technologies for XML
(PLAN-X) 2005, 2005.

[43] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. XMark: A Benchmark for
XML Data Management. In Proceedings of the
International Conference on Very Large Data Bases
(VLDB), pages 974–985, Hong Kong, China, August
2002.

[44] L. Segoufin and V. Vianu. Validating Streaming XML
Documents. In Symposium on Principles of Database
Systems, pages 53–64, 2002.

[45] Standard ML of New Jersey. http://www.smlnj.org/,
2006.

[46] H. Su, E. A. Rundensteiner, and M. Mani. Semantic
query optimization for xquery over xml streams. In
VLDB ’05: Proceedings of the 31st international
conference on Very large data bases, pages 277–288.
VLDB Endowment, 2005.

[47] The Apache XML Project: Xalan-Java 2.7.0. Software
Documentation, 2006.

[48] XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath, Nov. 1999.

APPENDIX
A. EVENT-DRIVEN RUN OF A POA
Stack s , q ;

s t a r t D o c H a n d l e r (){
/∗ c a l l e d b e f o r e s t a r t i n g r e a d i n g the st ream ∗/
q : = q0 ; }

e n t e r N o d e H a n d le r (L a b e l a){
/∗ c a l l e d when a s t a r t−tag <a> i s r e a d ∗/
s . push (q) ;
q : = enter(q, a) ; }

l e a v e N o d e H a n d l e r (L a b e l a){
/∗ c a l l e d when an end−tag i s r e a d ∗/
qfather = s . pop () ;
q : = leave((qfather , q), a) ; }

endDocHandler (){ /∗ on e n d i n g r e a d i n g the st ream ∗/
i f q ∈ F then output (” I n p u t a c c e p t e d . ”)
e l s e output (” I n p u t r e j e c t e d . ”) ; }

Listing 2: Event-driven run of a POA

B. SAMPLE RUN OF A POA
Example 4. Consider the query pxb presented in Exam-

ple 3. The run of Apxb as implemented by Listing 1 is pre-
sented in Fig. 5 where true and false are abbreviated as t and
f respectively. The match node 11 is recognized at its earli-
est detection location 1121 in the mapping q1121(x>, x>) =
(t, {11}). Similarly, 1221 is recognized at its earliest detec-
tion location 122121.

a

q
1
2
=
{

(x
0
,
x
0
)

7→
(t

,
∅
)

(x
>

,
x
0
)
7→

(t
,
∅
)

(x
>

,
x
>

)
7→

(t
,
∅
)

}
a

q
1
=
{

(x
0
,
x
0
)

7→
(t

,
∅
)

(x
>

,
x
>

)
7→

(f
,
∅
)

(x
b
,
x

b
)

7→
(t

,
∅
)

}

a

q
ε
=
{

(x
0
,
x
0
)
7→

(t
,
∅
)

}

b

q
1
1
2
1
=
{

(x
0
,
x
0
)

7→
(t

,
∅
)

(x
>

,
x
>

)
7→

(t
,
{
1
1
}
)

}

q
1
2
2
1
=
{

(x
0
,
x
0
)

7→
(t

,
∅
)

(x
>

,
x
>

)
7→

(t
,
∅
)

(x
b
,
x

b
)

7→
(t

,
∅
)

}

q
1
2
2
1
2
1
=
{

(x
0
,
x
0
)

7→
(t

,
∅
)

(x
>

,
x
>

)
7→

(t
,
{
1
2
2
1
}
)

}

q
1
1
=
{

(x
0
,
x
0
)

7→
(t

,
∅
)

(x
>

,
x
>

)
7→

(f
,
∅
)

(x
b
,
x

b
)

7→
(t

,
∅
)

}

q
1
1
2
2
=
{

(x
0
,
x
0
)

7→
(t

,
∅
)

(x
>

,
x
>

)
7→

(f
,
∅
)

(x
>

,
x

b
)

7→
(t

,
∅
)

}

q
1
2
1
1
=
{

(x
0
,
x
0
)

7→
(t

,
∅
)

(x
>

,
x
>

)
7→

(t
,
∅
)

}

q
1
2
1
2
=
{

(x
0
,
x
0
)

7→
(t

,
∅
)

(x
>

,
x
>

)
7→

(t
,
∅
)

(x
c
,
x

b
)

7→
(t

,
{
1
2
1
}
)

}

q
1
2
2
=
{

(x
0
,
x
0
)

7→
(t

,
∅
)

(x
>

,
x
0
)
7→

(t
,
∅
)

(x
>

,
x
>

)
7→

(f
,
∅
)

}

q
2
=
{

(x
0
,
x
0
)
7→

(t
,
∅
)

(x
0
,
x
>

)
7→

(t
,
∅
)

}

q
1
1
1
=
{

(x
0
,
x
0
)

7→
(t

,
∅
)

(x
>

,
x
>

)
7→

(f
,
∅
)

}

λ
λ

b

λ

λλ

c
λ

q
1
2
1
=
{

(x
0
,
x
0
)

7→
(t

,
∅
)

(x
>

,
x
>

)
7→

(t
,
∅
)

(x
b
,
x

b
)

7→
(t

,
∅
)

}
b λ

λ

a

c

q
1
1
2
=
{

(x
0
,
x
0
)

7→
(t

,
∅
)

(x
>

,
x
>

)
7→

(f
,
∅
)

(x
c
,
x

b
)

7→
(t

,
{
1
1
}
)

}

q
1
2
2
1
1
=
{

(x
0
,
x
0
)

7→
(t

,
∅
)

(x
>

,
x
>

)
7→

(t
,
∅
)

}

q
1
2
2
1
2
2
=
{

(x
0
,
x
0
)

7→
(t

,
∅
)

(x
>

,
x
>

)
7→

(t
,
∅
)

(x
>

,
x

b
)

7→
(t

,
∅
)

}

q
1
2
2
1
2
=
{

(x
0
,
x
0
)

7→
(t

,
∅
)

(x
>

,
x
>

)
7→

(t
,
∅
)

(x
c
,
x

b
)

7→
(t

,
{
1
2
2
1
}
)

}

λ

Figure 5: Sample run

C. XPATH PATTERNS USED FOR THE PRO-
TEIN DATABASE

The XPath patterns are in Table 4.

D. PROOF OF Lemma 1
We use the notations from Theorem 1. Lemma 1 is proven
immediately using the following more general lemma:

Lemma 2. If qn(x, xfirst) = (M, true) and t[n] ∈ [[x]]
then:

(a) ∃(t, t′) ∈ Derivx0 with t′(first(n)) = xfirst and t′(n) =
x

(b) ∀n1 ∈ M ∃(t, t′) ∈ Derivx0 with t′(first(n)) = xfirst,
t′(n) = x and t′(n1) = x�.

The proof is by induction on the document order of the
nodes. The base case is for the root node, and qε = q′0.
Let qε(x, xfirst) = (M, true) and t[ε] ∈ [[x]]. Since qε =
q′0 = {(x0, x0) 7→ (∅, true)} and t[ε] = t, it follows that
x = xfirst = x0, t ∈ [[x0]] and immediately (a) and trivially
(b).

As for the induction step we distinguish the cases in which
n is (A) a first or (B) a second child in the binary encoding
. As far as possible, we use variable names as in Fig. 3.

In case (A) let qw1(x3, xfirst) = (M, true) and t[w1] ∈
[[x3]]. By the definition of the enter′ transition it follows
that x3 = xfirst and qw(x2, x1) = (Mfather, true), x2 →
(t(w) | ∗)〈x3, x5〉 and [[x5]] = TΣ for some x2, x1 and x5.
From t[w1] ∈ [[x3]], [[x5]] = TΣ and x2 → (t(w) | ∗)〈x3, x5〉 it
follows that t[w] ∈ [[x2]]. From qw(x2, x1) = (Mfather, true)
and t[w] ∈ [[x2]] it follows by the induction hypothesis that
∃(t, t′) ∈ Derivx0 with t′(first(w)) = x1, t′(w) = x2 and
t′(n) = x� ∀n ∈ Mfather. From t[w1] ∈ [[x3]] it follows
that ∃(t[w1], t1) ∈ Derivx3 . From [[x5]] = TΣ it follows
that t[w2] ∈ [[x5]] and thus ∃(t[w2], t2) ∈ Derivx5 . From
∃(t, t′) ∈ Derivx0 with t′(first(w)) = x1 and t′(w) = x2,
∃(t[w1], t1) ∈ Derivx3 , t[w2] ∈ [[x5]] and x2 → (t(w) | ∗)〈x3, x5〉
it follows that ∃(t, t′′) ∈ Derivx0 , with t′′ obtained by re-
placing in t′ the subtrees t′[w1] and t′[w2] with t1 and t2

respectively, s.t. t′′(first(w1)) = t′′(w1) = xfirst = x3 and
t′′(n1) = x� ∀n1 ∈ Mfather. Now, considering the enter′

transitions, either M = Mfather or M = Mfather∪{w} and
x2 = x� and thus t′′(n1) = x� ∀n1 ∈ M , which concludes
the proof of (A).

In case (B) let qw2(x5, x1) = (M, true) and t[w2] ∈ [[x5]].
By the definition of the leave′ transition it follows that
qw(x2, x1) = (M1, true), qlast(w1)(x4, x3) = (M2, b), x2 →
(t(w) | ∗)〈x3, x5〉, x4 → λ and M = M1 ∪ M2 ∪ (x2 =
x� ? {w} : ∅) for some x2, x4 and x3. From (x4, x3) ∈
dom(qlast(w1)) and x4 → λ it easily follows by induction on
the number of XML right siblings of w1 that t[w1] ∈ [[x3]].
From t[w1] ∈ [[x3]], t[w2] ∈ [[x5]] and x2 → (t(w) | ∗)〈x3, x5〉
it follows that t[w] ∈ [[x2]]. From qw(x2, x1) = (M1, true)
and t[w] ∈ [[x2]] it follows by the induction hypothesis that
∃(t, t′) ∈ Derivx0 with t′(first(w)) = x1 and t′(w) = x2.
From t[w1] ∈ [[x3]] it follows that ∃(t[w1], t1) ∈ Derivx3 .
From t[w2] ∈ [[x5]] it follows that ∃(t[w2], t2) ∈ Derivx2 .

Similarly as in case (A) it follows by replacing the subtrees
t′[w1] and t′[w2] in t′ with t1 and t2 that ∃(t, t′′) ∈ Derivx0

with t′′(first(w2)) = t′′(first(w)) = x1 and t′′(w2) = x5.
This concludes the proof of(a). For the proof of (b) let
n1 ∈ M . From M = M1 ∪ M2 ∪ (x2 = x� ? {w} : ∅)
it follows that either (i) n1 ∈ M , or (ii) n1 ∈ M2 \ M1,
or (iii) n1 = w and x2 = x�. In case (i) n1 ∈ M it
follows from qw(x2, x1) = (M1, true) by the induction hy-
pothesis that ∃(t, t′) ∈ Derivx0 with t′(first(w)) = x1,
t′(w) = x2 and t′(n1) = x�. With t1 and t2, as in case
(a) it follows q.e.d. In case (ii) n1 ∈ M2 \ M1 it follows
from qlast(w1)(x4, x3) = (M2, b) and x4 → λ by the induc-

tion hypothesis that ∃(t, t1) ∈ Derivx0 with t1(w1) = x3,
t1(last(w1)) = x4 and t1(n1) = x�. From n1 ∈ M2 \M1 it
easily follows by induction that w1 ≤ n1 < last(w1). With
t′ and t2 as in case (a) it follows q.e.d. In case (iii) n1 = w
and x2 = x� it follows with t′, t1 and t2 as in case (a) q.e.d.

P1 //ProteinEntry//refinfo[.//year[contains(.,’2000’)]]//author

P2 //ProteinEntry[following-sibling::ProteinEntry[.//description[contains(.,’iron’)]]]//refinfo[.//year[contains(.,’2000’)]]//author

P3 //ProteinEntry[following-sibling::ProteinEntry[.//description[contains(.,’iron’)]]

[following-sibling::ProteinEntry[.//description[contains(.,’iron’)]]]]//refinfo[.//year[contains(.,’2000’)]]//author

Table 4: XPath patterns used in the Protein Database experiments

