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Abstract. The tree transformation language tl is introduced which in-
corporates full MSO-pattern-matching, arbitrary navigation through the
input, and named procedures with accumulating parameters. Thus, tl

essentially captures all features offered by existing document processing
languages such as Xslt, fxt, or XDuce. It is proved that tl, despite its
expressiveness, still allows for effective inverse type inference. This result
is obtained by means of a translation of tl transformers into composi-
tions of (stay) macro tree transducers.

1 Introduction

The extensible markup language (Xml) has developed into the de facto standard
for data exchange on the Internet [1]. Conceptually, an Xml document is a
textual representation of a finite labeled unranked tree. In a given application
context, however, not every such (representation of a) tree is meaningful. Even
more, certain applications may rely on inputs conforming to a specific “type”. A
description of the type of Xml documents can either be given by a document type

definition (DTD) or is provided by an Xml Schema specification [16]. DTD’s as
well as schemas correspond to (certain) regular tree grammars [26, 28]. In this
paper we adopt this view and use regular tree languages as Xml types.

Since Xml is used as a generic exchange format for data on the Internet,
Xml documents rather than being statically known, are often produced on-the-
fly by applications such as, e.g., converters between document formats or search
engines returning their results in Xml. In this paper we address the problem
of statically type checking Xml processors. That is, given a transformation f ,
a type Tin of input documents and a type Tout of output documents, we want
to guarantee that for all t ∈ Tin the result f(t) is in Tout. Conformance to an
output type is especially important when the output becomes input for a sub-
sequent Xml processor. Thus, powerful static type checking allows to detect
programming errors at an early stage. In general, type checking algorithms are
specific to a given transformation language and strongly depend on the oper-
ations used by the language for querying and navigating the input document.
Even though there are many different Xml query and transformation languages,
their “tree transformation core” can be subsumed by a small number of basic
operations. Milo et al. [25] proposed the k-pebble tree transducer (k-ptt) as such



a core model for tree transformations. Specifying a tree translation using a k-
ptt, however, can be cumbersome because the model is quite low-level. Also, its
expressiveness is not yet completely clear. Here we take a different approach: We
choose our transformation model as expressive as possible (‘high-level’), while
still allowing for effective type inference. We introduce the small but power-
ful transformation language tl which comprises virtually all features present
in existing domain specific languages for document processing. In particular,
tl provides full MSO (Monadic Second-Order logic) pattern matching and ar-
bitrary navigation through the input tree. This generalizes restricted pattern
languages such as XPath (for Xslt [10, 21] and XQuery [8]) or fxgrep patterns
(for fxt [6, 27]). Moreover, tl offers a notion of named procedures together with
accumulating parameters. These make it straightforward to express powerful fold

operations over forests which behave differently for different occurrences of the
same elements as provided, e.g., by XDuce [20].

Let us take a look at an example of a tl transformation. Consider an Xml
description of new mails where a spam filter has marked each dubious message
header by a spam element:

<mailbox>

<mail><subject>As seen on TV</subject></mail>

<spam>99%</spam>

<mail><subject>Adding to your spam load:-)</subject></mail>

<mail><subject>Make money</subject></mail>

<spam>95%</spam>

</mailbox>

Imagine that we want to obtain the following list of spam mails where the
spam element has been moved inside of the mail:

<mail><spam>99%</spam><subject>As seen on TV</subject></mail>

<mail><spam>95%</spam><subject>Make money</subject></mail>

We can express this transformation in tl by the following rules:

q0(x1 ∈ labmailbox) ⇒ q0(x1/x2)
q0(x1 ∈ labmail ∧ spam(x1)) ⇒ mail〈copyT (x1; x2) copyF (x1/x2)〉 q0(x1; x2)
q0(x1 ∈ labmail ∧ ¬spam(x1)) ⇒ q0(x1; x2)
q0(x1 ∈ labspam) ⇒ q0(x1; x2)
q0(x1 ∈ labǫ) ⇒ ǫ

Here, the MSO formulas to the left describe the nodes in the input tree where
the corresponding rule is applicable. In particular, we have used the abbreviation
spam(x1) for the sub-formula ∃z. x1; z ∧ z ∈ labspam denoting all nodes x1 having
a right sibling z labeled with spam. Similarly, x1/x2 in the right-hand side of a
rule selects the first child of x1 (and x1;x2 the right sibling); these nodes are
further processed by the copyT () and copyF () transformations, respectively:

copyT (x1 ∈ labα) ⇒ α〈copyF (x1/x2)〉
copyF (x1 ∈ labǫ) ⇒ ǫ
copyF (x1 6∈ labǫ) ⇒ copyT (x1 = x2) copyF (x1; x2)

for every possible input tag α. The same transformation can be expressed in
Xslt [10, 21] as:
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<?xml version=’1.0’?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match=’mail[name(following-sibling::*[1])="spam"]’>

<mail>

<xsl:copy-of select="following-sibling::spam[1]"/>

<xsl:copy-of select="*"/>

</mail>

</xsl:template>

<xsl:template match="spam|mail"/>

</xsl:stylesheet>

The first rule refers to mail elements which are immediately followed by
spam elements and produces a mail element whose content is given by two copy-
instructions. The first produces a copy of the spam sibling, while the second
produces a copy of each of the children. The second rule prevents the processor
from producing output for spam and other mail elements. A built-in default rule
ensures that for all other elements output is produced by recursively processing
their child nodes using the transformation rules.

Similarly in fxt [4], the transformation can be written as:

<fxt:spec>

<fxt:pat>//*[# %spam]/mail</fxt:pat>

<mail>

<fxt:copyContent select="1"/>

<fxt:copyContent/>

</mail>

<fxt:pat>//.</fxt:pat>

<fxt:apply/>

</fxt:spec>

The pattern in the first rule specifies, analogously to the Xslt example, that
the rule applies to spam mails. Here the pattern //*[# %spam]/mail selects mail
elements followed by an element spam. Supplementary, the extra marker “%” at
spam gives a reference to the next spam sibling for later use in the subsequent
transformation. The child nodes of mail are copied by the fxt:copyContent

instruction. The second rule is applicable to all other elements and is similar to
the Xslt default rule. It specifies that output is produced by recursively applying
the transformation rules to the child nodes of those elements.

Thus, abstracting away syntactic sugar such as various built-ins for copy-
ing parts of the input, both Xslt and fxt essentially are rule-based recursive
transformer languages which use (more or less expressive) pattern languages for
restricting the applicability of rules as well as for selecting the nodes to be further
processed. These features easily can be simulated by tl.

The key idea of our type checking algorithm is to simulate tl transforma-
tions by compositions of macro tree transducers (mtt’s). The macro tree trans-
ducer [14] is an extensively studied model of syntax directed semantics [18].
In particular, macro tree translations (and compositions thereof) can be type
checked by using inverse type inference. The latter means that, given an output
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type Tout, the set τ−1(Tout) of possible input trees is again a regular tree lan-
guage, and can be obtained effectively. Since regular tree languages are closed
under complement and have decidable inclusion, we obtain a type checking al-
gorithm. In fact, this approach was used by Engelfriet and Maneth in [13] in
order to show that k-ptt’s can be type checked: They prove that any k-ptt can
be decomposed into a composition of k+1 mtt’s. In order to compare this to our
decomposition of tl-transformations, let us take a closer look at a k-pebble tree
transducer. While traversing an input tree, a k-ptt can mark nodes using up to
k different pebbles. In the proposed implementation of XPath pattern matching
through k-ptt’s, the number of used pebbles corresponds to the number of nodes
in the pattern. This means that the number of mtt’s used in the decomposition
of Engelfriet and Maneth increases when patterns get more complicated. The
complexity, on the other hand, of inverse type inference of a composition of k
mtt’s depends sensitively on the number k. On the contrary, we show that every
tl transformation can essentially be realized by a composition of three mtt’s
only — no matter how complicated the used patterns are.

This paper is organized as follows: In the next section we introduce the notion
of 2-way macro tree transducers. In the third section we introduce the notion
of a tl transformer and prove that every such transformation can be realized
by a composition of (stay) mtt’s. The following section investigates determinis-
tic variants of tl. Then we show that tl transformers can be effectively type
checked. Finally, we present related work and conclude.

2 Trees and Macro Tree Transducers

A ranked alphabet is a finite set Σ together with a mapping rankΣ : Σ → N.
For σ ∈ Σ and k ≥ 0 we also write σ(k) to denote that rankΣ(σ) = k, and we
define the set Σ(k) = {σ ∈ Σ | rankΣ(σ) = k}. The set TΣ of ranked trees over

Σ is recursively defined to consist of all

t ::= a(t1, . . . , tk)

where a ∈ Σ(k) and t1, . . . , tk ∈ TΣ . If k = 0, we also write a instead of a().
Alternatively, each tree can be considered as a mapping t : N (t) → Σ where
N (t) ⊆ N∗ is the set of nodes of t. This set is recursively defined by:

N (a(t1, . . . , tk)) = {ǫ} ∪ {iu | i = 1, . . . , k ∧ u ∈ N (ti)}.

Thus, the empty sequence ǫ denotes the root node of t, and ui denotes the i-th
child of the node u. Now, for a node u ∈ N (t) and t = a(t1, . . . , tk) with a ∈ Σ(k),
k ≥ 0, and t1, . . . , tk ∈ TΣ , t(u) = a if u = ε, and otherwise t(u) = ti(u

′) where
1 ≤ i ≤ k and u′ ∈ N (t) such that u = iu′. The lexicographical order on N∗

induces a total ordering “<” on the nodes of t which is also called document

order. The subtree of t rooted at a node v ∈ N (t) (denoted by t/v) is defined by
t/ǫ = t and t/iv = ti/v if t = a(t1, . . . , tk) and 1 ≤ i ≤ k.
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Definition 1 A 2-way macro tree transducer (2-mtt for short) is a tuple M =
(Q,Σ,∆, q0, R) where Q is a ranked alphabet of states, Σ and ∆ are ranked
input and output alphabets, respectively, q0 ∈ Q(1) is the initial state, and R is
a finite set of rules of the form

a : q(π, y1, . . . , ym) → t

where a ∈ Σ(k), q ∈ Q(m+1), m, k ≥ 0, and the right-hand side t is of the form:

t ::= q′(π−, t1, . . . , tn)
| q′(π, t1, . . . , tn)
| q′(πj, t1, . . . , tn)
| b(t1, . . . , tl)
| yi

where q′ ∈ Q(n+1), n ≥ 0, j ∈ {1, . . . , k}, b ∈ ∆(l), and 1 ≤ i ≤ m.

Note that q′(πj, . . . ) in a right-hand side denotes a transition into state q′ at
the j-th child of the current node; correspondingly π denotes the current node
and π− denotes the parent of the current node. The 2-mtt is called 0-pmtt in [13].

If R does not contain subterms of the form q′(π−, t1, . . . , tn), then M is
called stay macro tree transducer (s-mtt) [13]. If, additionally, there are also no
subterms q′(π, t1, . . . , tn), then the definition is equivalent to the classical notion
of a macro tree transducer (mtt). If no states have accumulating parameters, we
obtain 2-way top-down tree transducers (2-top), stay top-down tree transducers

(s-top), and (ordinary) top-down tree transducers (top), respectively.
For a given input tree t ∈ TΣ , a state q ∈ Q(k+1) of the 2-mtt M can be

considered as function [[q]]t which takes a node v ∈ N∗ of t and a list T =
T1, . . . , Tk of sets Ti ⊆ T∆ as actual parameters and returns a set of output
trees. This function is defined as the least fixpoint of the constraints:

[[q]]t(v, T ) ⊇ [[t′]]t v η if t(v) = a ∧ a : q(π) → t′ ∈ R
and η(yi) = Ti for i = 1, . . . , k

[[yj ]]t v η ⊇ η(yj)
[[a(t1, . . . , tm)]]t v η ⊇ a([[t1]]t v η, . . . , [[tm]]t v η)

[[p(π, t1, . . . , tn)]]t v η ⊇ [[p]]t(v, [[t1]]t v η, . . . , [[tn]]t v η)
[[p(π−, t1, . . . , tn)]]t vi η ⊇ [[p]]t(v, [[t1]]t v η, . . . , [[tn]]t v η)

[[p(πi, t1, . . . , tn)]]t v η ⊇ [[p]]t(vi, [[t1]]t v η, . . . , [[tn]]t v η) if vi ∈ N (t)

where η is a mapping from symbols yi, i = 1, . . . , k of formal parameters to
actual parameters, i.e., sets Ti ⊆ T∆. Moreover for a constructor a ∈ ∆(k),
we have used the notation a(T1, . . . , Tk) for sets Ti ⊆ T∆ to represent the set:
a(T1, . . . , Tk) = {a(s1, . . . , sk) | si ∈ Ti}. In case of 2-mtt’s or s-mtt’s, this
definition might indeed be circular. Then the least fixpoint of these equations
is obtained by starting with the empty set for each call [[q]]t(v, T ) and then
successively iterating up to termination.

The transduction defined by M then is given by:

τM = {(t, s) | t ∈ TΣ , s ∈ [[q0]]t (ǫ)}.
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The class of all transductions induced by 2-mtt’s (s-mtt’s, mtt’s, 2-top’s, s-top’s,
top’s) is denoted by 2-mtt (s-mtt, mtt, 2-top, s-top, top).

Note that we have not fixed any particular order in which recursive occur-
rences of [[..]] are to be evaluated. This is called the “unrestricted” derivation
mode in [15]; the class of translations remains unchanged if we use the OI
(outside-in, or lazy) derivation mode. If for every pair (a, q), we have exactly
one rule and [[q0]]t(ǫ) 6= ∅ for every t ∈ TΣ , the transducer is called total deter-

ministic which we indicate by the prefix dt. The total deterministic variant is
essentially equivalent to macro attributed tree transducers of [22, 18]. Note that
total deterministic transducers in fact compute total functions, i.e., for every
tree t, [[q0]]t(ǫ) contains exactly one element. Moreover, in the total deterministic
case the order of derivation does not influence the class of translations.

The type of tree substitution supported through the use of parameters can
be captured by a class of functions called yield. The yield function interprets
special leaf labels α1, . . . , αm as variables and the special symbols σm (of rank
m+ 1) as formal substitution operations. Formally, yield is defined as yield0;
for n ≥ 0, yieldn has n extra arguments y = y1, . . . , yn and is defined as:

yieldn (αj , y) =

{

yj if j ≤ n
⊥ otherwise

yieldn (σm(t0, t1, . . . , tm), y) = yieldm(t0,yieldn(t1, y), . . . ,yieldn(tm, y))

yieldn (a(t1, . . . , tk), y) = a(yieldn(t1, y), . . . ,yieldn(tk, y))

where m ≥ 0, 1 ≤ j ≤ m, a ∈ Σ for some input ranked alphabet Σ, and ⊥ is a
new nullary symbol denoting the illegal use of a non-existing formal parameter
(and hence it stands for “undefined”). Thus, given m and Σ, yield is a total

function from trees over Σ ∪ {α
(0)
1 , . . . , α

(0)
m } ∪ {σ

(1)
1 , . . . , σ

(m+1)
m } to trees over

Σ ∪ {⊥(0)}. The function yield can be realized by a total deterministic mtt (in
fact, even by a total deterministic 2-top; see, e.g., Lemma 36 of [13]).

Treating Up Moves for Parameters. In this section it is shown how a 2-top
can be transformed into a transducer that does not use up instructions (π−) in
its right-hand sides, but which additionally uses parameters (i.e., a stay mtt).
Since the result is well known, we merely point to the corresponding literature
and give a short explanation of the proof.

Lemma 2 [13] 2-top ⊆ s-mtt and dt2-top ⊆ dtmtt.

The intuition behind the proofs is this one: Instead of moving up to a node
u that has already been processed, we generate, at u, all possible state calls and
pass them as parameters to any further calls. This is done in a recursive, stack
like fashion. In this way an up move into a state q can be simulated by selecting
the parameter yj that corresponds to q. In the total deterministic case even the
stay moves can be eliminated, by computing the corresponding tree (or deleting
the corresponding rule if there is a circularity).

Dealing with Stay Moves. Stay moves can be eliminated if we process the
input tree in the following way. We add above each symbol σ in the input tree an
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arbitrary number of monadic σ̄’s. Let us denote this translation by monΣ , where
Σ is a ranked alphabet, and denote by mon the class of all such translations (for
all alphabets Σ). Obviously, monΣ can be realized by an s-top. Then, as shown
in Lemma 27 of [13], every s-mtt (with input alphabet Σ) can be simulated
by the composition of monΣ followed by an mtt. In fact, the proof given there
preserves the number of parameters, and therefore we obtain a similar result for
top-down tree transducers, as stated in the next lemma.

Lemma 3 [13] s-mtt ⊆ mtt ◦ mon and s-top ⊆ top ◦ mon.

Eliminating Parameters. As mentioned before, yield mappings realize the
type of tree substitution inherent in the use of parameters in a transducer. For
macro tree transducers this relationship is expressed by the fact that dtmtt =
yield◦dttop (proved in [15]). In the partial case, the yield function as defined
before is not sufficient. But introducing a new “failure” symbol • which serves as
right-hand side for any state and input symbol solves the problem. In this way,
yield can evaluate a tree containing failure symbols, if these are in parameter
positions which are deleted. For this to work we extend the input alphabet of
yield with a new nullary symbol • without, however, adding rules for •. The
resulting function (and class of functions) is denoted yield•.

Lemma 4 2-mtt ⊆ yield• ◦ 2-top and dt(2-mtt) ⊆ yield ◦ dt(2-top).

Proof. The idea is essentially the same as in the proof of Theorem 3.26 in [15].
Let M = (Q,Σ,∆, q0, R) be a 2-mtt. We construct the 2-top T = (Q′, Σ,∆′,
q0, R

′) such that yield• ◦ τT = τM . For every q ∈ Q(k+1) and a ∈ Σ, let the rule
a : q(π) → • be in R′ and for every rule a : q(π, y1, . . . , yk) → t in R let
the rule a : q(π) → [t] be in R′ where [.] is defined as:

[a(t1, . . . , tk)] = a([t1], . . . , [tk])
[yi] = αi
[q(π, t1, . . . , tn)] = σn(q(π), [t1], . . . , [tn])
[q(π−, t1, . . . , tn)] = σn(q(π

−), [t1], . . . , [tn])
[q(πi, t1, . . . , tn)] = σn(q(πi), [t1], . . . , [tn])

Note that, due to the rules a : q(π) → •, the tree • is contained in [[q]]t(v) for all
t ∈ TΣ and v ∈ N (t). We claim that for all t ∈ TΣ , v ∈ N (t), q ∈ Q, Ti ⊆ T∆,

[[q]]t(v, T1, . . . , Tk) = yieldk([[q]]t (v), T1, . . . , Tk)

The proof is by fixpoint induction. For this, we simultaneously prove by struc-
tural induction on subterms of right-hand sides s:

[[s]]t v η = yieldk([[[s]]]t v ∅, η(y1), . . . , η(yk))

In the case that M is total deterministic, the construction can be simplified
by removing the rules a : q(π) → • from the 2-top T . This makes T total
deterministic and allows to use the original total function yield. ⋄
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The combination of Lemma 4 with Lemma 2 gives us the following decom-
positions of 2-way macro tree transducers.

Lemma 5 2-mtt ⊆ yield• ◦ s-mtt and dt(2-mtt) ⊆ yield ◦ dtmtt.

3 Forests, Queries and Transformations

An Xml document is usually represented as forest. A forest (over Σ) consists of
a sequence of trees, written t1t2 · · · , and a tree consists of a root node (labeled
by some label a ∈ Σ) and a forest f (the children), written as a〈f〉 . A forest can
also conveniently be viewed as a binary tree: Take the first child relation as left
child and the next sibling relation as right child (thus, the forest a〈ǫ〉 ǫ becomes
the binary tree a(ǫ, ǫ)). In fact, in the sequel we will use this binary tree view
of a forest. Then, for a forest f , N (f) is the set of nodes of the corresponding
binary tree, and for a node u its label is f(u). In the sequel, we therefore do no
longer distinguish between forests and specific binary trees, namely those where
all symbols are either binary (for labeling forest nodes) or equal to the nullary
symbol ǫ (denoting the empty forest).

Forests, as sequences, support concatenation. We will later need a symbolic
way to represent concatenation and introduce therefore the function app which
interprets the special symbol “@” (of rank 2) as concatenation. It is defined for
binary trees. For better readability @ is written in infix notation. For a binary
ranked input alphabet Σ, app is the total function from trees t over Σ ∪ {@(2)}
to trees over Σ defined as app(t) = app1(t, ǫ) where

app1(ǫ, t) = t

app1(a(t1, t2), t) = a(app1(t1, ǫ),app1(t2, t))

app1(t1 @ t2, t) = app1(t1,app1(t2, t))

Obviously, the function app can be realized by a total deterministic mtt.

An MSO formula φ (over alphabet Σ) is given by the grammar:

φ ::= x;x′ | x/x′ | x ∈ laba | x ∈ X |
φ1 ∨ φ2 | ¬φ |
∃x. φ | ∃X. φ

Here, x and X are individual and set variables, respectively. Individual variables
x range over nodes of a tree in TΣ and set variablesX over node sets. The binary
relation symbols “;” and “/” denote next sibling and first child in the forest,
respectively. The set laba denotes all nodes labeled with the symbol a ∈ Σ.
As usual, we feel free to use abbreviations such as “x1 ∧ x2” and ∀x. φ in
example formulas. For a given forest f , assignments ρ1, ρ2 of (supersets of) the
individual and set variables occurring free in a formula φ, to nodes and node
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sets, respectively, the satisfiability assertion ρ1, ρ2 |=f φ as usual is defined by:

ρ1, ρ2 |=f x;x
′ iff ρ1(x

′) = ρ1(x) 2
ρ1, ρ2 |=f x/x

′ iff ρ1(x
′) = ρ1(x) 1

ρ1, ρ2 |=f x ∈ laba iff f(ρ1(x)) = a and a ∈ Σ
ρ1, ρ2 |=f x ∈ X iff ρ1(x) ∈ ρ2(X)
ρ1, ρ2 |=f φ1 ∨ φ2 iff ρ1, ρ2 |=f φ1 or ρ1, ρ2 |=f φ2

ρ1, ρ2 |=f ¬φ iff not ρ1, ρ2 |=f φ
ρ1, ρ2 |=f ∃x. φ iff ρ1 ⊕ {x 7→ v}, ρ2 |=f φ for some v ∈ N (f)
ρ1, ρ2 |=f ∃X. φ iff ρ1, ρ2 ⊕ {X 7→ V } |=f φ for some V ⊆ N (f)

where “⊕” is the operation which updates/extends an environment with the
new bindings to the right. If φ does not contain free occurrences of set variables
X , we also omit variable assignment ρ2 in satisfiability assertions. If the only
free variables are x1, . . . , xk, φ can be considered as a k-ary query which, for
each forest f , returns the set of all tuples (v1, . . . , vk) ∈ N (f)k such that {x1 7→
v1, . . . , xk 7→ vk} |=f φ. It is possible to implement k-ary queries by extending
the classical construction of [30, 31] which constructs from a closed MSO formula
(i.e., one without free variables) a finite tree automaton. For our applications,
the most interesting queries are unary or binary, i.e., where k = 1 or k = 2,
respectively. Unary queries are a suitable abstraction of match patterns which
allow to determine which alternative action for a state q should be selected
at a given node v [29]. Binary queries, on the other hand, are a powerful and
convenient technique to select, depending on some given node (the current node),
suitable next nodes where the transformation should proceed [5].

Before the result of [30] (adapted to unary and binary queries) is stated,
we need to define the notion of finite (bottom-up) tree automaton. Here we
are only interested in binary trees over Σ = Σ(2) ∪ {ǫ(0)} for some set Σ(2)

of binary symbols. Then, a (bottom-up finite state) tree automaton is a tuple
A = (S,Σ, δ, F ) where S is a set of states, F ⊆ S is a set of final states, and
δ ⊆ ({ǫ}×S)∪Σ(2)×S×S×S is the transition relation. A transition (a, s, s1, s2)
denotes that if A arrives in s1, s2 for two trees t1, t2, respectively, then it can
arrive in state s for the tree a(t1, t2). A run of A on a tree t ∈ TΣ is a mapping
r : N (t) → S which is defined inductively for u ∈ N (t) as follows: if u is a
leaf then r(u) ∈ {s ∈ S | (ǫ, s) ∈ δ}, and otherwise r(u) ∈ {s ∈ S | ∃s1, s2 ∈
S such that (a, s1, s2, s) ∈ δ and s1 ∈ r(u1) and s2 ∈ r(u2)}. The tree language
accepted by A consists of the trees t ∈ TΣ for which there is an accepting run,
i.e., a run r with r(ε) ∈ F .

Lemma 6 Let φ1, . . . , φk and ψ1, . . . , ψm be sequences of unary and binary
MSO formulas, respectively. Then a tree automaton A = (S,Σ, δ, F ) can be
constructed together with sequences U1, . . . , Uk ⊆ S and B1, . . . , Bm ⊆ S2 such
that for every forest f the following holds:

1. {x1 7→ v} |=f φi iff there is an accepting run r of A on t such that r(v) ∈ Ui;
2. {x1 7→ v1, x2 7→ v2} |=f ψj iff there is an accepting run r of A on t such that

(r(v1), r(v2)) ∈ Bj .
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Definition 7 A tl transformer F is a tuple (Q,Σ,∆, q0, R) where Q is a finite
set of states, q0 ∈ Q is the initial state, Σ and ∆ are the input and output
alphabets, respectively. The finite set R contains rules of the form:

q(φ, y1, . . . , yk) ⇒ A

where an action A is recursively defined by:

A ::= ǫ | A A | a〈A〉 A | yj | q
′(ψ,A1, . . . , Am)

Here, φ and ψ are MSO formulas with free variables x1 and x1, x2, respectively.

For a given input forest f ∈ TΣ , a state q ∈ Q of a tl transformer can be
considered as function [[q]]f which takes a node v ∈ N∗ of f and a list F =
F1, . . . , Fk of sets Fi ⊆ T∆ of actual parameters and returns a set of output
forests. This function is defined as the least fixpoint of:

[[q]]f (v, F ) ⊇ [[A]]f v η

if v |=f φ, q(φ, y1, . . . , yk) ⇒ A and η(yi) = Fi for i = 1, . . . , k where

[[ǫ]]f v η ⊇ {ǫ}
[[yj ]]f v η ⊇ η(yj)

[[A1A2]]f v η ⊇ ([[A1]]f v η) ([[A2]]f v η)
[[a〈A1〉 A2]]f v η ⊇ a〈[[A1]]f v η〉 ([[A2]]f v η)

[[q′(ψ,A1, . . . , Am)]]f v η ⊇ ([[q′]]f (v1, F
′)) . . . ([[q′]]f (vl, F

′))
for F ′ = [[A1]]f v η, . . . , [[Am]]f v η
if {v1<...<vl} = {v′ |{x1 7→ v, x2 7→ v′} |=f ψ}

Note that we have denoted the concatenation of sets F1, . . . , Fm by juxtaposi-
tion, i.e., F1 . . . Fm = {s1 . . . sm | si ∈ Fi}. The translation induced by the tl

transformer then is given by:

τF = {(f, s) ∈ TΣ × T∆ | s ∈ [[q0]]f (ǫ)}.

According to this definition, a 2-mtt on forests is a (particularly simple) tl

transformer where the match patterns φ only test for the label of the current
node, i.e., are of the form x1 ∈ laba for some a. Moreover, the navigation patterns
only allow to stay at the same node (x1 = x2), to proceed to the first or second
son (x1/x2 and x1;x2, respectively) or to the father of the current node (x2/x1∨
x2;x1).

A 2-mtt is essentially able to implement a tl transformation — given that
the input has been decorated so that the 2-mtt can decide at each node whether
a pattern matches or not. For this decoration, we use a bottom-up followed
by a top-down relabeling. A (total deterministic) top-down relabeling is a total
deterministic top-down tree transducer, each rule of which is of the form a :
q(π) → b(q1(π1), . . . , qk(πk)) where a is an input symbol of rank k and b is an
output symbol of rank k. The class of (total deterministic) top-down and bottom-
up relabelings is denoted by t-rel and b-rel, respectively (see, e.g., [12]).
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The idea of the implementation of a tl-transformation through (a composi-
tion of) stay mtt’s is as follows Let T be a tl-transducer. According to Lemma
6, we assume that the unary and binary MSO queries contained in T have been
compiled into one nondeterministic automaton P together with a set Uφ of states
of P for each occurring unary query φ and a relation Bψ on the states for each
occurring binary query.

1. In a bottom-up relabeling each node v is decorated with the two sets S1 and
S2 of states of P that can be assigned to the left and right descendent of v
in all possible runs of P .

2. Each node v additionally receives its child number together with the set T (v)
of states of P indicating which unary patterns φ match at v. This relabeling
can be implemented by means of a top-down relabeling.

3. The 2-mtt works as follows: If a tl expression q(ψ,A) is evaluated for a
node v, the 2-mtt successively proceeds to the root where it returns a (rep-
resentation of) the list of the forests obtained by recursively applying the
transformation q to all v′ where (v, v′) satisfies ψ.

Lemma 8 tl ⊆ app ◦ 2-mtt ◦ t-rel ◦ b-rel

Proof. Let T = (Q,Σ,∆, q0, R) be an tl-transducer. According to Lemma 6,
we assume that the unary and binary MSO queries contained in T have been
compiled into one nondeterministic automaton P = (S,Σ, δ, F ) together with
one set Uφ ⊆ S for each occurring unary query φ and one relation Bψ ⊆ S2 for
each occurring binary query. For each forest f , let S(f) ⊆ S denote the set of
states s such that there is a run r of P on f with r(ǫ) = s. Recall that S(f) can
also be recursively defined by:

S(ǫ) = {s ∈ S | (ǫ, s) ∈ δ}

S(a〈f1〉 f2) = {s ∈ S | ∃ si ∈ S(fi) : (a, s, s1, s2) ∈ δ}

The implementation of T is done in three steps:

1. Each node v of the input forest f labeled with symbol a ∈ Σ is relabeled with
(a, S(f/v1), S(f/v2)). According to the recursive definition of the sets S(f ′),
this can be done by means of a total deterministic bottom-up relabeling.

2. Each node v additionally receives its child number together with the set

T (v) = {r(v) | r accepting run for f}

as label. Thus, now internal nodes v with original label a should have labels
(a, j, T (v), S(v1), S(v2)) whereas leaf nodes v receive the labels (ǫ, j, T (v)).
Here, j = 0 if v = ǫ, i.e., if v is the root of f . Otherwise, v = v′j for
some v′, i.e., j equals the last direction in v. Since the resulting trees use
a richer alphabet of leaf labels (not just “ǫ”) than forests, we write the
resulting terms as binary trees again. The second relabeling This relabeling
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can be implemented by means of a total deterministic top-down relabeling.
Top = (B,A,Σ′, b0,F , RTop) where B = {0, 1, 2} × 2S with the rules:

bj,T0((a, S1, S2)(x1, x2)) → (a, j, T, S1, S2)(b1,T1(x1), b2,T2(x2))

where T = {s ∈ T0 | (a, s, s1, s2) ∈ δ, si ∈ Si} and Ti = {si ∈ Si |
(a, s, s1, s2) ∈ δ, s ∈ T, s3−i ∈ S3−i}, and

bj,T0(ǫ) → (ǫ, j, T )

where T = {s ∈ T0 | (ǫ, s) ∈ δ}. Note, that our bottom-up relabeling followed
by a top-down relabeling can jointly be considered as top-down relabeling
with regular look-ahead, which is semantically equivalent to a MSO definable
relabeling [12, 7].

3. We construct from the tl transformer T a 2-mtt M = (Q′, Σ′, ∆,R′) where
Σ′ ⊆ Σ×{0, 1, 2}×2S×2S×2S as above and Q′ = Q∪Down∪Up. Besides
the states of the tl transformer, we introduce sets Down and Up of auxiliary
states (procedures) which implement the matching of the tl transformer’s
navigation patterns.
For each tl rule

q(φ, y1, . . . , yk) ⇒ A

there will be rules

(a, j, T, S1, S2) : q(π, y1, . . . , yk) → [A]j
(ǫ, j, T ) : q(π, y1, . . . , yk) → [A]j

in R′ whenever Uφ∩T 6= ∅ where the new right-hand sides are determined by
means of the transformation [ . ]j , j ∈ {0, 1, 2}, which is recursively defined
by:

[ǫ]j = ǫ
[yi]j = yi
[a〈A1〉 A2]j = a([A1]j , [A2]j)
[A1 A2]j = [A1]j @ [A2]j

[q′(ψ,A1, . . . , Ak)]0 = down
q′

ψ,h(π, [A1]0, . . . , [Ak]0)

[q′(ψ,A1, . . . , Ak)]j = up
j,q′

ψ,h(π
−, [A1]j , . . . , [Ak]j ,

down
q′

ψ,h(π, [A1]j , . . . , [Ak]j)) for j ∈ {1, 2}

where the relation h ⊆ S2 is defined by:

h = {(s, s) | s ∈ T }.

In general, we have found a match iff h ∩ Bψ 6= ∅. Here a state down
q′

ψ,h is
meant to traverse the subtree at the current node v and return (a represen-
tation of) the list of results obtained by applying the state q′ to all nodes

v1, . . . , vk in document order which complete the binary match. A state up
j,q′

ψ,h
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is meant to visit the ancestor of the current node v and to traverse from there
the left or right sibling of v — depending on the node at which the up state
has been called.

(a, 0, T, S1, S2) : up
1,q′

ψ,h(π, y1, . . . , yk, yk+1) →

q′(π, y1, . . . , yk) @ yk+1 @ down
q′

ψ,g1
(π2, y1, . . . , yk)

(a, j, T, S1, S2) : up
1,q′

ψ,h(π, y1, . . . , yk, yk+1) → up
j,q′

ψ,h1
(π−, y1, . . . , yk,

q′(π, y1, . . . , yk) @ yk+1 @ down
q′

ψ,g1
(π2, y1, . . . , yk))

(a, 0, T, S1, S2) : up
2,q′

ψ,h(π, y1, . . . , yk, yk+1) →

q′(π, y1, . . . , yk) @ down
q′

ψ,g2
(π1, y1, . . . , yk) @ yk+1

(a, j, T, S1, S2) : up
2,q′

ψ,h(π, y1, . . . , yk, yk+1) → up
j,q′

ψ,h2
(π−, y1, . . . , yk,

q′(π, y1, . . . , yk) @ down
q′

ψ,g2
(π1, y1, . . . , yk) @ yk+1)

given that h1∩Bψ 6= ∅ for up
1,q′

ψ,h or h2∩Bψ 6= ∅ for up
2,q′

ψ,h , respectively. Here,

hi = {(s, s′) ∈ S × T | ∃ (s, si) ∈ h, s3−i ∈ S3−i : (a, s′, s1, s2) ∈ δ}
gi = {(s, s3−i) ∈ S × S3−i | ∃ s′ ∈ T, (s, si) ∈ h : (a, s′, s1, s2) ∈ δ}

Assume that the formal location π refers to the node v′ in the input. Assume
further that some node v (where the currently simulated tl-rule is to be ap-
plied) is a descendent of the i-th child vi of v′. Then hi computes the relation
between the states at v and the states at v′ — given the corresponding re-
lation h between the states at v and the states at vi. In particular, (v, v′)
is a match of ψ iff hi ∩ Bψ 6= ∅. Likewise depending on h, gi computes the
relation between the states at v and the states at the sibling v3−i of vi.

If hi ∩Bψ = ∅, i.e., the pair (v, v′) is not a match of ψ, we have:

(a, 0, T, S1, S2) : up
1,q′

ψ,h(π, y1, . . . , yk, yk+1) →

yk+1 @ down
q′

ψ,g1
(π2, y1, . . . , yk)

(a, j, T, S1, S2) : up
1,q′

ψ,h(π, y1, . . . , yk, yk+1) → up
j,q′

ψ,h1
(π−, y1, . . . , yk,

yk+1 @ down
q′

ψ,g1
(π2, y1, . . . , yk))

(a, 0, T, S1, S2) : up
2,q′

ψ,h(π, y1, . . . , yk, yk+1) →

down
q′

ψ,g2
(π1, y1, . . . , yk) @ yk+1

(a, j, T, S1, S2) : up
2,q′

ψ,h(π, y1, . . . , yk, yk+1) → up
j,q′

ψ,h2
(π−, y1, . . . , yk,

down
q′

ψ,g2
(π1, y1, . . . , yk) @ yk+1)

If hi∩Bψ = ∅, i.e., the pair (v, v′) is not a match of ψ, we have the same rule
as above with the only difference that q′(π, y1, . . . , yk) is not concatenatet to
the result.
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The down transitions concatenate the matches (transformed with q′) to the
result and the transformation continues with the children:

(ǫ, j, T ) : down
q′

ψ,h(π, y1, . . . , yk) → q′(π, y1, . . . , yk)

(a, j, T, S1, S2) : down
q′

ψ,h(π, y1, . . . , yk) → q′(π, y1, . . . , yk) @

down
q′

ψ,g′1
(π1, y1, . . . , yk) @

down
q′

ψ,g′2
(π2, y1, . . . , yk)

if the current node is a match, i.e. h ∩Bψ 6= ∅. Here,

g′i = {(s, si) ∈ S × Si | ∃ (s, s′) ∈ h, s3−i ∈ S3−i : (a, s′, s1, s2) ∈ δ}

Thus, assume that the node v is no proper descendent of v′ where h describes
a relation between the states at v and the states at v′. Then g′i describes the
corresponding relation between the states at v and the states at the i-th
child of v′.
If no match is found, i.e., h∩Bψ = ∅, the transformation continues with the
children:

(ǫ, j, T ) : down
q′

ψ,h(π, y1, . . . , yk) → ǫ

(a, j, T, S1, S2) : downq
′

ϕ,h(π, y1, . . . , yk) → down
q′

ψ,g′1
(π1, y1, . . . , yk) @

down
q′

ψ,g′2
(π2, y1, . . . , yk)

Correctness:

Let t ∈ TΣ′ be an arbitrary but fixed input tree. For two nodes v1 and v2 of t
labeled with t(vi) = ( , , Ti, , ) for i = 1, 2, the relation gt(v1, v2) ⊆ T1 × T2

relates states in T1 at v1 and T2 at v2 which are possibly connected through a
common run r on t of the match automaton P . This relation is defined by

(s1, s2) ∈ gt(v1, v2) iff ∃ accepting run r : s1 = r(v1) and s2 = r(v2)

Claim 1:

app([[down
q
ψ,h]]t(v, T )) = app([[q]]t(u1, T )) . . . app([[q]]t(ul, T ))

for all t ∈ TΣ′ , v, u1, . . . , ul ∈ N (t), q ∈ Q, and a list T = T1, . . . , Tk of actual
parameters Ti ∈ T∆ where u1 < . . . < ul are exactly the nodes u′ in document
order occurring in the subtree t/v of t rooted at v such that

gt(v, u
′) ◦ h ∩ Bψ 6= ∅

The proof is by induction on the depth n of the subtree t/v. For n = 0, consider
the node u′ = v. Then [[down

q
ψ,h]]t(v, T ) either equals [[q]]t applied to v and T

given that h ∩ Bψ 6= ∅, or equals ǫ otherwise. Since gt(v, u
′) is the identity

relation, the assertion follows. If n > 0, v is not a leaf of t and therefore has two
children vi = vi, i = 1, 2. Let us first consider the case where h∩Bφ = ∅. Then,
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all descendents u′ of v with gt(v, u
′) ◦ h ∩ Bψ 6= ∅ either are descendents of v1

or of v2. Accordingly, the sequence of nodes u1, . . . , ul is the concatenation of
two sequences u1, . . . , ul′ and ul′+1, . . . , ul where the nodes in the first sequence
are descendents of v1 and the others are descendents of v2. By inspecting the
definition of g′i and gt, we verify that gt(v, u

′) ◦ h = gt(vi, u
′) ◦ g′i whenever u′ is

a descendent of vi. Therefore by induction hypothesis,

app([[down
q
ψ,g′1

]]t(v1, T )) = app([[q]]t(u1, T )) . . . app([[q]]t(ul′ , T )) and

app([[down
q

ψ,g′2
]]t(v2, T )) = app([[q]]t(ul′+1, T )) . . . app([[q]]t(ul, T ))

Since by definition,

[[down
q
ψ,h]]t(v, T ) = [[down

q

ψ,g′1
]]t(v1, T ) @ [[down

q

ψ,g′2
]]t(v2, T )

the assertion of the claim follows. It remains to consider the case where h∩Bφ 6=
∅. Then v = u1. For the remaining sequence u2, . . . , ul we may argue as before
that

app([[down
q
ψ,g′1

]]t(v1, T ) @ [[down
q
ψ,g′2

]]t(v2, T ))

= app([[q]]t(u2, T )) . . . app([[q]]t(ul, T ))

Since now by definition,

[[down
q
ψ,h]]t(v, T ) = [[q]]t(v, T ) @ [[down

q

ψ,g′1
]]t(v1, T ) @ [[down

q

ψ,g′2
]]t(v2, T )

the assertion of Claim 1 again follows.

Assume that the node v of t is a descendent of the node vj which in turn
is the j-th child of the node v′. Assume further that h = gt(v, vj) and that the
value of the parameter Tk+1 satisfies:

app(Tk+1) = app([[q]]t(u1, T )) . . .app([[q]]t(ul, T ))

where u1 < . . . < ul are the descendents u′ of vj with

gt(v, u
′) ∩Bψ 6= ∅

Thus the sequence u1 < . . . < ul consists of all descendents u′ of vj in document
order such that (v, u′) is a match of ψ in t. Assume t(v′) = (a, i, T, S1, S2).
Consider the call [[up

j,q
ψ,h]]t(v

′, T , Tk+1). Now let hj , gj be defined according to

the possible right-hand side of up
j,q
ψ,h and the label of t(v′). Moreover, define

T ′
k+1 as the new value of the k + 1-st accumulating parameter in the recursive

call for the father of v′ (in case i > 0) or the complete right-hand side (in case
i = 0). Thus,

T ′
k+1 =















[[q]]t(v
′, T ) @ Tk+1 @ [[down

q
ψ,g1

]]t(v2, T ) if j = 1 ∧ h1 ∩Bψ 6= ∅
Tk+1 @ [[down

q
ψ,g1

]]t(v2, T ) if j = 1 ∧ h1 ∩Bψ = ∅
[[q]]t(v

′, T ) @ Tk+1 @ [[down
q
ψ,g2

]]t(v1, T ) if j = 2 ∧ h2 ∩Bψ 6= ∅

Tk+1 @ [[down
q
ψ,g2

]]t(v1, T ) if j = 2 ∧ h2 ∩Bψ = ∅
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We claim:

Claim 2:

1. hj = gt(v, v
′) and gj = gt(v, v3−j) for j = 1, 2.

2. T ′
k+1 satisfies the same property as Tk+1 – but now for the whole subtree

rooted at v′, i.e.,

app(T ′
k+1) = app([[q]]t(u1, T )) . . .app([[q]]t(um, T ))

where u1 < . . . < um are the descendents u′ of v′ with

gt(v, u
′) ∩Bψ 6= ∅

The first item of the claim follows from the property of h by inspection of
the definitions of the hj and gj. For the second item, we recall from Claim 1
that the call [[down

q
ψ,gj

]]t(v3−j , T ) returns (the representation of) the list of all

calls [[q]]t(u
′, T ) where gt(v3−j , u

′) ◦ gj ∩Bψ 6= ∅. From the definitions of gj and
gt, we verify that

gt(v3−j , u
′) ◦ gj = gt(v, u

′)

We conclude that the sequence of u′ in the subtree rooted at v3−j precisely equals
the sequence of all v′ ≤ v3−j such that (v, u′) is a match of ψ. This completes
the proof of Claim 2.

The correctness proof for our translation now proceeds by fixpoint induction.
Within the induction step, we have to prove by structural induction on the right-
hand sides in tl-rules that:

[[A]]t(v, T ) = app([[[A]j ]](v, T ))

The only difficult case is the simulation of calls q′(ψ,A). For that case, we it-
eratively may apply Claim 2 to the ancestors of the node v. Thus, we deduce

for h = {(s, s) | s ∈ T } that the calls: [[down
q′

ψ,h]]t(v, T ) (if v is the root of t) or

[[up
j,q′

ψ,h]]t(v
−, T , [[down

q′

ψ,h]]t(v, T )) (if v− is the father of v) result in a representa-
tion of

[[q]]t(u1, T ) . . . [[q]]t(un, T )

where u1 < . . . < un is the sequence of nodes u′ such that (v, u′) are precisely
all matches of ψ in t, i.e., gt(v, u

′) ∩Bψ 6= ∅ — which we needed to verify. If no
match is found, i.e., h ∩ Bψ = ∅, the down transition only continues with the
children. Thus, the rules of the first form return ǫ and that of the second form

compute down
q′

ψ,g′1
(π1, y1, . . . , yk) @ down

q′

ψ,g′2
(π2, y1, . . . , yk). ⋄

We obtain our main result, namely, that every tl transformation can be
realized by the composition of one stay mtt and two fixed deterministic mtt’s
that only depend on the involved ranked alphabets.

Theorem 9 tl ⊆ app ◦ yield• ◦ s-mtt.
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Proof. By Lemma 8, tl ⊆ app◦2-mtt◦t-rel◦b-rel. We now apply Lemma 5
and replace the 2-mtt by yield• ◦ s-mtt. Further, we can apply Lemma 3
in order to get rid of the stay mtt. Altogether we obtain that tl is included
in app ◦ yield• ◦ mtt ◦ mon ◦ t-rel ◦ b-rel. We observe that mon can be
moved through the relabelings onto the beginning of this composition. First, it
should be clear that mon ◦ t-rel ⊆ t-rel ◦ mon: For every rule a : q(π) →
b(q1(π1), . . . , qk(πk)) of the top-down relabeling, a new rule ā : q(π) → ā(q(π1))
is added. In this way the new transducer can take as input a tree that was
processed by mon, and will relabel the unary symbols ā by the correct symbol.
Similarly it can be shown that mon ◦ b-rel ⊆ b-rel ◦ mon. Given a b-rel we
have to add for every output symbol δ and every state q, a new state qδ. Then,
each right-hand side of the b-rel is changed from q(δ(. . . )) into qδ(δ(. . . )). Thus,
we remember in the state the most recently relabeled symbol. Now if a barred
symbol is encountered in state qδ then it is relabeled by δ̄. The application of the
two mentioned inclusions gives us tl ⊆ app◦yield•◦mtt◦t-rel◦b-rel◦mon.
It follows from Theorem 6.14 and Corollary 4.10 of [14] that mtt ◦ dtt-rel ⊆
mtt. Similarly, from Theorem 6.14 and Theorem 4.12 of [14] it follows that
mtt ◦ dtb-rel ⊆ mtt. Hence, we obtain that tl ⊆ app ◦ yield• ◦mtt ◦mon.
For the inclusion: mtt ◦mon ⊆ s-mtt, it suffices to change every rule σ̄ : l → r
of Lemma 3 into σ : l → r′, where r′ is obtained from r by changing π1 into π.
Replacing mtt ◦ mon by s-mtt, gives tl ⊆ app ◦ yield• ◦ s-mtt. ⋄

Recall that app can be realized by a total deterministic mtt, and that yield•

can be realized by a deterministic mtt. Since s-mtt ⊆ mtt ◦ mon, we obtain
from Theorem 9 the following corollary.

Corollary 10 tl ⊆ dtmtt ◦ dmtt ◦ mtt ◦ mon.

4 Type Checking TL Transformers

Recall from the introduction that, in the context of XML transformations, a
type is a regular forest language. It is a known and obvious fact that if we
view the forests of a regular forest language as binary trees, then we obtain a
(binary) regular tree language (and vice versa; see, e.g., [25]). Denote the class
of all (binary) regular tree languages by regt. It is the class of tree languages
accepted by the tree automata defined in Section 3 (above Lemma 6).

Given a transformer T , an input type I ∈ regt, and an output type O ∈
regt, we say that T type checks with respect to I and O if τT (I) ⊆ O. One way
of solving the type checking problem is to use inverse type inference: given T
and O, inverse type inference determines the tree language P = τ−1

T (O) = {t |
τT (t) ∩ O 6= ∅} where O denotes the complement of O. Clearly, T type checks
w.r.t. I and O iff I ∩P = ∅. We now show that Corollary 10 implies that inverse
type inference is possible for tl transformers. We first recall:

Lemma 11 If O is a regular tree language, then so is mon−1(O).
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Proof. Intuitively, the inverse of a translation in mon deletes all barred monadic
symbols of the form σ̄. This can be realized by a top-down transducer: For every
non-barred input symbol σ of rank k it has a rule σ : q0(π) → σ(q0(π1), ..., q0(πk))
which simply copies the node, and for every barred symbol σ̄ (of rank 1) it has a
rule σ : q0(π) → q0(π) which deletes the node. Note that any πj, j ≥ 1 occurs at
most once in the right-hand side of each rule. Such a transducer is called linear

and it is well-known that linear top-down tree transducers preserve the regular
tree languages (cf., e.g., Proposition 20.2 of [19]). ⋄

By Theorem 7.4 of [14], the inverse image of an mtt (and thus also of composi-
tions of mtt’s) applied to a regular tree language is again regular. Therefore, by
Corollary 10 and Lemma 11 we obtain:

Theorem 12 If τ is a composition of tl transformations and O is a regular
tree language, then τ−1(O) is a regular tree language.

With O the complement O is regular and therefore, by Theorem 12, also P =
τ−1(O) for every tl transformation τ . Since regular tree languages are closed
under intersection and have decidable emptiness, we conclude:

Theorem 13 Type checking for (compositions of) tl transformers is decidable.

Complexity What is the complexity of the type checking problem for tl trans-
formers? Recall from Corollary 10 that

tl ⊆ dtmtt ◦ dmtt ◦ mtt ◦ mon.

Now, how efficiently can a regular tree language O be inverse translated by a
composition on the right? In fact, let us consider only the complexity of inverse
type inference for a mtt composition on the right of the above inclusion. The
combined complexity for the type checking problem can then be obtained by
first constructing a mtt composition from the tl transformer, as shown in this
paper, and then applying the standard algorithms on regular tree languages.

Let B be the minimal tree automaton accepting O. We define the size |B|
of an automaton B to be the number of its states. It should be clear that a
tree automaton for O′ = mon−1(O) can be constructed in time linear in |B| (cf.
Lemma 11), and hence also the size of an automaton for O′ is linear in |B|.

For simplicity, let us first determine how the size of a tree automaton B (with
set of states P ) changes when being inverse-translated by a deterministic mtt
M = (Q,Σ,∆, q0, R). A direct construction for this task is given in Section 7
of [13]. The (input) automatonA constructed there has as states mappings d such
that for every q ∈ Qn+1 and n ≥ 0, d(q) is a mapping from Pn to P . Thus, the
number of states of A is |Q → Pn → P | which equals (|P ||P |n)|Q| = |P ||Q||P |n .
Let the size m of the mtt M be defined in such a way that |Q| ≤ m and n ≤ m.
Then, taking b as the number of states of B (= |P |) we can approximate |A| by
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bmb
m

= 22O(m log(b))

. For the composition of two deterministic mtt’s M and M̄
(with maximal size m) we obtain as size of the corresponding input automaton

222O(m log(b))

It remains to consider the nondeterministic mtt that occurs in the composition
above. The inverse type inference construction is similar to the one given in
Section 7 of [13]. Taking into account the inductive characterization of OI mtt’s,
given in Definition 3.16 of [14], we obtain an automaton with set of states Q→

(2P )m → 2P which has cardinality κ = 2bm2bm

= 22O(b·m)

. We are now ready
to consider the full composition of the three mtt’s above, and to determine an
approximation of the size of the input automaton. Let m be the maximum of
the sizes of the three mtt’s, and b is the size of the automaton for O. We simply
have to plug κ into the above formula for two mtt’s.

Size of tree automaton for τ−1(O) ≈ 2222
O(b·m)

.

From a practical point of view, these numbers do not suggest efficient type
checking. The problem is however difficult, and we should compare our result to
the complexity of type checking k-pebble tree transducer. In Theorem 4.8 of [24]
it is shown that if T is a k-pebble tree transducer (of size n), then even for fixed
types I and O, the type checking problem for arbitrary k is non-elementary.
Hence, using MSO to describe patterns, in place of pebbles, and describing MSO
patterns by some less expensive formalism like grammars or fxt patterns, brings
the complexity from non-elementary down to a tower of exponents of bounded
height. It remains a challenging engineering problem whether a practical type
checking algorithm can be designed and implemented along the lines we have
outlined here.

5 Deterministic TL Transformers

Since deterministic XML transformations are of great practical importance, we
investigate in this section deterministic variants of our transformation language
tl.

Intuitively, determinism means that at each moment of the computation and
for each function call there shall only be at most one rule that is applicable.
However, since the applicability of a rule of a tl transformer is determined by
the match pattern in the rule’s left-hand side, we should first require that all
match patterns for a particular input symbol and state are pairwise disjoint.
The resulting definition of determinism for tl becomes quite technical; it is
considered at the end of this section. Now we choose a different approach.

Clearly, one of the aims of a definition of determinism is to force the corre-
sponding translations to be functions. Similarly, for total determinism we want
to obtain total functions. This is precisely our definition of this notion for tl.
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Definition 14 A tl transformer T is total deterministic, if τT is a total func-
tion. The class of translations realized by total deterministic tl’s is denoted
dttl.

Clearly, such a “semantic” definition can be problematic. For instance, given
a tl transformer T , it might not even be decidable whether or not τT is a total
function. In the sequel of this section we show that this property suffices to give
a characterization in terms of a composition of total deterministic macro tree
transducers.

Recall from Corollary 10 that tl ⊆ dtmtt◦dmtt◦mtt◦mon. As mentioned
in Section 2 (in the part about stay moves), any translation in mon can be
realized by an s-top. By Theorem 7.6 of [14] (there mtt is denoted by mttOI),
mtt = top ◦ dtmtt and dmtt = dtop ◦ dtmtt. Thus, tl can be decomposed
into

dtmtt ◦ dtop ◦ dtmtt ◦ top ◦ dtmtt ◦ s-top.

Our goal is to restrict the above class of translations to total functions, and
to obtain a composition of total deterministic transducers only. Since all the
mtt’s above are total deterministic already, we can restrict our attention to the
involved top-down tree transducers. The main idea is to show that it is possible
to generate a “deterministic cut” of any (stay) top-down tree transducer. For
tops this was shown in the lemma of [11]; we now generalize this result to s-
tops. An s-top with regular look-ahead is an s-top composed with a bottom-up
relabeling.

Lemma 15 For each s-top T there exists a deterministic s-top T ′ with regular
look-ahead such that τT ′ ⊆ τT and dom(T ′) = dom(T ).

Proof. For a state p of T denote by Tp the s-top obtained from T by making p
the initial state. The basic fact needed for the proof is that the domain of Tp is
a regular tree language. Thus, we need to show that the domain of any s-top M
is regular. Clearly, dom(M) = τ−1

M (T∆), where ∆ is the output alphabet of M .
By Lemma 3, s-top ⊆ top ◦ mon. It is well known that inverses of top-down
tree transducers preserve the regular tree languages (see, e.g., Theorem 7.4 of
[14]). Since also mon−1 preserves the regular tree languages, by Lemma 11, we
obtain that dom(M) is regular.

The remainder of the proof goes along the lines of the proof of the Lemma
in [11]. Let q be a state of T , σ an input symbol of rank n, and r1, . . . , rk the
right-hand sides of all rules for q and σ. For every 1 ≤ j ≤ k and 1 ≤ i ≤ n
define

Dj(i) =
⋂

{dom(Tp)) | p(πi) occurs in rj}

∩
⋂

{dom(Tp)/i | p(π) occurs in rj}.

Clearly, if ti ∈ Dj(i) for 1 ≤ i ≤ n, then the rule rj can be applied at the root
of σ(t1, . . . , tn), and the computation can finish with a terminal tree. Since the
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sets Dj(i) are regular, we can use a bottom-up relabeling in order to add to each
input node a mapping d which assigns to each i the set of all j such that the i-th
subtree belongs to the set Dj(i). The rule of T ′ for q and (σ, d) is rj if there is
a j such that for all 1 ≤ i ≤ n, j ∈ d(i) (i.e., the i-th input subtree is in Dj(i)),
and is undefined otherwise. It should be clear that T ′ has the same domain as
T ′, and that τT ′ ⊆ τT . ⋄

Thus, we characterize the total deterministic tl transformers in terms of
total deterministic mtt’s.

Theorem 16 dttl ⊆ dtmtt3.

Proof. As mentioned above, every tl transformation can be decomposed into

τ = τM3 ◦ τT3 ◦ τM2 ◦ τT2 ◦ τM1 ◦ τT1 .

where T1 and T2 are nondeterministic top’s (with and without stay moves, re-
spectively), and all other transducers are deterministic. First, we can change each
Ti, 1 ≤ i ≤ 3 in such a way that it only generates output trees which are in the
domain of the remaining composition. To see this, note first that these domains
are regular tree languages (by Theorem 7.4 of [14] and because the domain of
a s-top is regular as shown in the proof of Lemma 15). Restricting the output
of an s-top T to a regular tree language R can be realized by a straightforward
product construction: Let A be a (nondeterministic) top-down tree automaton
accepting R. Let σ : q(π) → r be a rule of T and let p be a state of A. Then 〈q, p〉
is a state of the new s-top T ′. To obtain a rule of T ′ we try to run A, starting in
state p, on the tree r. If A arrives in state p′ at some q′(πi), then q′ is replaced
by 〈q′, p′〉. For each possible run of A on r we add a corresponding rule to T ′.
Clearly, τT ′ = {(s, t) ∈ τT | t ∈ R}. Note that for top-down tree transducers the
result already follows e.g., from the proof of Lemma 2.10(1) in [11], taking the
trivial look-ahead.

In the new composition (with T1, T2 replaced by T ′
1, T

′
2, respectively), each

intermediate tree is translated by the remainder to a final output tree. This
implies that if a computation “splits”, i.e., due to nondeterminism there are
more than one output tree for a particular input tree, then all these trees must
be translated by the remainder of the composition into the same output tree.
We now apply Lemma 15 to T ′

1, T
′
2. This gives us the deterministic s-top and

top T ′′
1 , T

′′
2 which generate one particular output tree of the original transducer,

whenever there is a choice. By the above this implies that the translation has
remained the same and hence τ is now represented by deterministic transducers
only. It remains to remove the stay moves of T ′′

1 . This can be done by taking the
parameterless case of the proof of Theorem 31 of [13]. Treating partiality of the
transducers is now trivial: since τ is a total function we know that no ‘missing
rule’ ever becomes applicable. Thus in order to obtain total transducers we can
simply add a dummy rule for each missing rule. Since dtmtt is closed under
composition with dttop by [14] we obtain the desired result. ⋄
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To show that it is decidable for a tl transformer whether or not it is total
deterministic, is left for further research. Independent of this result, however,
Theorem 16 can be used already, because it is straightforward to find (decidable)
restrictions on tl transformers which guarantee that the translations are total
functions.

As an example, consider the restriction that at each step of a successful
computation of a tl transformer T there is exactly one rule applicable to each
configuration q(u). Clearly this implies that τT is a function. This restriction can
be decided as follows. For a state q, let φ1, . . . , φk all MSO formulas that appear
in left-hand sides. Make a new transducer T ′ as follows. Let ψ be a conjunction
of all φi (positive or negated). The root node of the right-hand side is labeled
by a unary symbol I which is a set containing the indices of the φi which occur
positive in ψ. Below the I we add a tree over some new binary output symbol
b which has at its leaves all state calls that appear in right-hand side of the
positive φi’s of ψ. Now, let R be the regular tree language over b and sets I such
that there is at least one I with cardinality > 1. By Theorem 12, I = τ−1

T (R)
is regular. If I is empty, then M is deterministic. This can be decided, because
emptiness of regular tree languages is decidable.

6 Related Work

The most used and well-known transformation languages are those released or
being in preparation by W3C, aiming at standardizing the way that Xml docu-
ments are manipulated. XPath 1.0 [9] and 2.0 [3] are languages for addressing
parts of an Xml document. An XPath expression specifies how to locate a set
of nodes from the input document. Basically, this is done by successively se-
lecting nodes by means of patterns depending on one another. Xslt [10, 21] is
a rule-based language for transforming Xml documents. The transformation is
specified as a set of rules each of which consists of a match pattern and a corre-
sponding action. While the match pattern specifies the subtrees to which the rule
is applicable, the action part defines the transformation result as Xml fragment
consisting of statically specified content, parts of the subtree being transformed
and by recursively applying the transformation rules on subtrees matching the
select patterns. Xslt uses XPath expressions both for match and select pat-
terns. Like Xslt, fxt [6] is a rule-based transformation language which, however,
uses fxgrep [27] as pattern language. The syntax of fxgrep is similar to that of
XPath but based on tree automata. Selection of nodes for further processing is
by means of binary patterns [5]. Neither Xslt nor fxt provide support for type
checking.

Opposed to that, XQuery [8] is a strongly-typed functional language for
querying Xml documents which is again based on XPath. Type checking is
performed via forward type inference rules and thus possibly leads to dynamic
type errors or may fail to type check correct programs. Type inference is also
used in the XDuce [20] and CDuce [2, 17] family of functional languages. These
languages extend the pattern matching mechanism of functional languages by
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regular expression constructs. Patterns may contain variables which are bound
to parts of the matched structure. The bound forests then can be addressed in
subsequent processing. Another functional approach to Xml processing is XMλ
[23]. Here, the type information is mapped onto (extended) Haskell types. Like
XQuery and XDuce/CDuce, type inference is approximate.

Besides in [25, 13], inverse type inference has also been used by Tozawa for a
subset of Xslt which essentially consists of top-down tree transformations [32].

7 Conclusion

We have introduced the small but very expressive tree transformation language
tl which subsumes the tree transformation core of most existing Xml transfor-
mation languages. We have shown that every tl transformation can be effec-
tively decomposed into three (stay) macro tree transducers, independent of the
complexity of the transformation or the used patterns. This improves, e.g., on
a similar simulation of k-pebble tree transducers where the number of mtt’s in
the composition is linear in k. Applying the known result that regularity is pre-
served by inverse images of (stay) mtt’s, we obtain an elegant procedure for type
checking all transformers expressible in tl. It remains a challenging engineering
problem whether this decomposition gives rise to an implementation which is
sufficiently efficient on real world transformations.
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