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Rotating a list of length k corresponds to breaking streams into k equally
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mized. For this purpose we use a recently introduced algorithm for thek-splittable machine scheduling problem. The running time of this al-
gorithm is only linear in the number of streams but exponential in the

number of machines. We suggest an improvement to this algorithm for
the case of identical machines (servers), and prove that our modification
reduces the running time significantly. This enables us to compute opti-

mal allocations for several hundreds of servers, although this problem is
known to be NP-hard.
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study the average and maximum delay experienced by HTTP requests

for various traffic allocation policies and traffic patterns. Our simula-
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puted by machine scheduling algorithms, we observe further significant
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1 Introduction

The Internet’s Domain Name System (DNS) is responsible for resolv-

ing URLs like “www.uni-dortmund.de” into IP addresses. Increasingly,

this service is also being used to perform load distribution among dis-

tributed Web servers. Busy sites are replicated over multiple servers,

with each server running on a different end system, and each having

a different IP address. Thus a set of IP addresses is associated with one

canonical hostname. The DNS database contains this set of IP addresses.

When clients make a DNS query to such an address, the server returns

the entire set of addresses but rotates the ordering of addresses within

each reply. Because a client typically sends its HTTP request message

to the address listed first, the traffic is distributed among all replicated

servers (cf. [7]).

One can view the requests that are directed to the same URL as traf-

fic streams. The rotation of address lists basically splits these streams

into equally sized pieces. Suppose the request streams are formed by a

sufficiently large number of clients. Then the arrivals of requests can

be described by a stochastic process, e.g., a Poisson process. In the

scenario that we consider there are n streams and m identical servers.

Let �j denote the rate of stream j 2 [n℄, i.e., the expected number of

requests in some specified time interval. Under this assumption, ro-

tating a list of k servers corresponds to splitting stream j into k sub-

streams each of which having rate �j=k. The following slightly more

sophisticated stochastic splitting policy would possibly achieve a bet-

ter load balancing. Suppose, the DNS attaches a vector pj1; : : : ; pjk withPi pji = 1 to the list of each stream j. In this way, every individual re-

quest in stream j can be directed to the ith server on this list with prob-

ability pji . This policy breaks Poisson stream j into k Poisson streams of

rate pj1�j; : : : ; pjk�j, respectively.

The focus of this paper does not lie on the issue of how exactly to im-

plement such strategies within the DNS implementation. Instead, our

goal is to study the impacts of different allocation strategies a few step

ahead of current DNS implementations. In particular, we shall com-

pare the following allocation strategies.

– simple random allocation, i.e., each stream is mapped as a whole to

a randomly selected server;

– random k-split allocation, i.e., each stream is broken into k equally

sized pieces each of which is assigned to a random server;
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– LL heuristic k-split allocation, i.e., streams are broken into k equally

sized pieces that are allocated to the servers using the well-known

Least Loaded (LL) heuristic from machine scheduling;

– optimal k-split allocation, i.e., a scheduling algorithm computes the

sizes of the pieces as well as the mapping of these pieces to the

servers in such a way that the maximum load over all servers is min-

imized.

The optimal k-split allocation is computed using a variant of a recently

presented algorithm for the k-splittable machine scheduling problem.

Suppose a set of jobs [n℄ = f1; : : : ; ng need to be scheduled on a set

of machines [m℄ = f1; : : : ;mg. The jobs have the sizes �1; : : : ; �n. In

this paper, we assume that the machines are identical. Every job can

be broken into at most k pieces. We identify data streams with jobs and

servers with machines. The objective is to find a mapping of the pieces

of the jobs to the machines so that the makespan, i.e., the maximum

load over all machines is minimized.

Scheduling with bounded splittability was introduced by Shachnai

and Tamir [10]. They prove that the problem is NP-hard and present

approximation algorithms. Krysta et al. [6] presented an exact algo-

rithm for the k-splittable machine scheduling problem with running

time O(mm+m=k + n). Thus the problem can be solved in polynomial

time for any fixed number of machines. It is well known that the clas-

sical unsplittable scheduling problem is NP-hard already for two ma-

chines. Thus the result from [6] proves that bounded splittability re-

duces the complexity of the problem for a fixed number of machines.

At this point, we want to remark that the algorithms in [6, 10] do not

only work for identical but also for uniformly related machines, i.e.,

for machines of different speeds. In this paper, we focus on the spe-

cial case of identical machines. Furthermore, we want to remark that

the above and all following bounds on the running time refer to algo-

rithms that compute feasible allocations for any given upper bound on

the makespan. These algorithms, in turn, can be used to compute the

optimal makespan by applying binary search techniques.

When implementing the algorithm from [6], we learned that the ex-

ponential term in the running time let us only compute optimal assign-

ments for relatively small numbers of machines. For some randomly

generated instances with less than 40 machines the algorithm did not

terminate in reasonable time. It was obvious, however, that, in the case

of identical machines, one could exploit symmetries to speed up the al-

gorithm. Clearly, because of the NP-hardness of the problem, the best
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one can hope for is to soften the exponential influence of the number

of the machines. The theoretical contribution of this paper is an upper

bound of O �(2m)m=(k�1)+1(m=k) + n�
on the running time of an exact algorithm for the k-splittable schedul-

ing problem on identical machines. Observe that this result yields the

first complete tradeoff on the influence of different degrees of splitta-

bility on the running time ranging from polynomial time in the case ofk = 
(m) to exponential time when k = O(1).
In Section 2, we present this improved algorithm and its analysis.

Furthermore, we give some experimental results for different input dis-

tributions showing that the improved algorithm can be used to com-

pute optimal solutions for several hundred machines very efficiently.

In Section 3, we present our comparative study of different traffic al-

location strategies applied to a simple network topology in which we

measure average and maximum delays of HTTP requests. For a brief

summary of these results, we refer the reader to the Conclusions pre-

sented in Section 4.

2 An improved algorithm for k-splittable scheduling

In this section, we present an improved algorithm for k-splittable schedul-

ing on identical machines. Let xi;j denote the fraction of job j that shall

go to machine i. We assume that a value z for the makespan (maximum

load) is given and we are seeking for an algorithm that either computes

an assignment satisfying maxi2[m℄Pj2[n℄ �jxij � z or returns that there

is no k-splittable assignment with maximum load z. Given such an al-

gorithm, the original optimization problem can be solved in a polyno-

mial number of iterations by applying binary search techniques over

the rational numbers [5, 9]. The binary search works despite the possi-

bility of irrational splits because the optimal solution can be proved to

be rational [6].

First, let us describe the original algorithm from [6]. Then we will

introduce a small modification to this algorithm that, however, leads to

a dramatic reduction of the running time.

The original algorithm. The main difficulty in obtaining an algorithm

for k-splittable problems is that there is an unbounded number of pos-

sible ways to cut a job into pieces. The analysis in [6], however, shows

that any optimal assignment can be transformed into an assignment
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fulfilling certain conditions so that the search space for optimal cuts

and assignments can be bounded in such a way that only O(mm+ mk�1 )
assignments need to be taken into consideration.

In order to describe this algorithm, let us switch to a generalization

of the k-splittable scheduling problem in which each job j comes with

its own splittability kj � 2. Initially kj = k, for every j 2 [n℄. Let 
i
denote the free capacity of machine i. Initially 
i (i 2 [m℄) corresponds

to the given makespan z, but during the course of the algorithm these

numbers are reduced appropriately whenever a new job is assigned to

the corresponding machine. The algorithm consists of two phases, A

and B.

Phase A is defined recursively. We pick exactly one job and assign a

piece of this job to one of the machines. Let j 2 [n℄ denote the assigned

job, let �j � �j denote the size of the assigned piece, and let i 2 [m℄
denote the machine to which we assign the job. Then, after we have

assigned the piece of job j to machine i, we are left with a subproblem

in which kj is decreased by one and 
i as well as �j are decreased by �j .

This subproblem is solved recursively.

It remains to specify how to choose the first job, the size of the as-

signed piece, and the machine. The bulkiness of a job j is defined as�j=(kj�1). The algorithm chooses the bulkiest job j and (using a back-

tracking approach) it tries all ways to choose a machine i and cut a

piece from job j such that machine i is saturated, i.e., the capacity of

this machine drops to zero. There is one exception from this rule: Since

the splittability kj of a job is decreased whenever a piece is cut off, a re-

maining piece can eventually become unsplittable. Since this remain-

ing piece will be infinitely bulky, it will be scheduled next. In this case,

all machines that can accommodate this piece need to be tried.

Phase B starts as soon as the bulkiest job j is too small to saturate

any subset of kj�1 machines, that is when �j=(kj�1) � minf
i : i 2 Ig,

where I is the set of the remaining machines with (residual) capacities
i. In this case all remaining jobs can be assigned using a simple greedy

heuristic known as McNaughton’s rule [8].

Phase B takes only O(m + n) time. Phase A can take much longer

due to the backtracking over all possible choices for the machines. The

depth of the search tree is bounded above by m + mk�1 because each

fully assigned job saturates at least k � 1 machines so that the number

of machines with positive capacity is zero after at most m+ mk�1 rounds.

The number of possible choices for the machines to which a job can be
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assigned is at most m. Consequently, the total size of the search space

and, hence, the running time of phase A is at most O(mm+ mk�1 ).
The difficult part of the analysis of this algorithm is its correctness.

We refer the reader to [6] for a detailed proof.

The improved algorithm. We change the algorithm only in a small as-

pect, that is, we reduce the size of the search space by exploiting sym-

metries. One can consider all machines with the same remaining ca-

pacity as belonging to one equivalence class. Obviously, one does not

need to backtrack over machines in the same class. In the considered

case of identical machines, all empty machines (i.e., machines with re-

maining capacity z) fall into the same equivalent class. In contrast, the

partially filled machines (i.e., machines with capacity in (0; z)) typically

build equivalence classes of size one.

In order to simplify the implementation, we only exploit the sym-

metry among the empty machines. To be more precise, we pick jobs in

the order of their bulkiness and for each job one of the following three

cases is applied. Let j denote the index of the job being considered.

1) If kj � 2 then we saturate one of the machines, selecting a machine

from the class of the empty machines first and then trying all ma-

chines with reduced capacity.
2) If kj = 1 then we put the remaining piece job j to a machine i with
i � �j , first trying all partially filled machines and then one of the

empty machines.

3) If
�jkj�1 � mini2[m℄(
i) then Phase B (McNaughton) is initiated.

Obviously, our modification does not affect the correctness of the

algorithm but it reduces the running time. One might object, however,

that exploiting the symmetries cannot help too much as the assign-

ment of jobs to machines destroys these symmetries rapidly. Neverthe-

less, the following theorem states that the running time is improved

dramatically.

Theorem 1. The running time of the improved algorithm for the k-split-

table traffic allocation problem is O �(2m)m=(k�1)+1(m=k) + n�, for

every k 2 f2; : : : ;mg.

Proof. At first, we investigate the size of the search tree that is explored

within phase A. Observe that case 1 can be applied at most m times as

each application of this case saturates one machine. Furthermore, case

2 can be applied to a job only after case 1 has been applied for k � 1
6
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Fig. 1. The pictures show the running time of the original (left) and the modified algo-
rithm (right) for three input distributions. The scale of the left picture is 106 msec, the
scale of the right picture is 104 msec. The modified algorithm took less than 5 minutes
for every instance for which it was tested. The original algorithm did not terminate in
reasonable time for several instances. The average for this algorithm was taken only
over those instances for which the algorithm terminated within 5 minutes.

times to the same job. Thus, the number of partially filled machines

that can be generated in case 2 is at most q = j mk�1k, and the number of

rounds executed within phase A is bounded above by ` = bm+ mk�1
.

With each path from the root to a leaf of this search tree, we can

associate a 0-1 string of length ` as follows. A “0” at position i in this

string means that one of the empty machines is chosen on level i of the

search tree and a “1” means that a partially filled machine is chosen.

If the length of the path is less than `, then we add additional zeroes

at the end of the string. The number of different ways to choose such

a 0-1 string of length ` with at most q occurrences of “1” is
Pqp=0 �p̀� �(q + 1)�q̀�.

Now fix one of these 0-1 strings. This string might correspond to

several paths in the search tree. Next we bound the number of these

paths. If the string is fixed then the only freedom is to determine which

of the partially filled machines to take on those tree levels marked with

“1”. The number of of different ways to choose these partially filled ma-

chines is at most q! because q is an upper bound on the number of par-

tially filled machines generated by the algorithm on any path and ev-

ery allocation of a job to such a machine reduces this number by one.

(More precisely, an allocation of a piece of a job due to case 1 to a par-

tially filled machine decreases the number of partially filled machines
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existing at that time, and an allocation to a partially filled machine due

to case 2 reduces the total number of partially filled machines gener-

ated on this path.) Thus the number of paths corresponding to any

given 0-1 string is at most q!.
As a consequence, the number of paths and, hence, the number of

leafs in the search tree is at most(q + 1) q̀! q! = (q + 1) `!(`� q)!� (q + 1) ` q� �1 + mk � 1� �m+ mk � 1�m=(k�1)� �1 + mk � 1� (2m)m=(k�1) :
The number of nodes in the tree can be estimated by the number of

leafs times ` = O(m), and each such node can be explored in constant

time. Furthermore, the number of steps in the McNaughton phase isO(m+n). Thus the overall running time isO �(2m)m=(k�1)+1(m=k) + n�.

This completes the proof of Theorem 1.

Observe that the theorem yields a complete tradeoff on the influ-

ence of the different degrees of splittability on the running time. In par-

ticular, the following result was not known before.

Corollary 1. For any constant 
 > 0 and k � maxf2; m
 g, k-splittable

scheduling on identical machines is solvable in polynomial time.

2.1 Experimental comparison of the two algorithms

We have implemented both the original algorithm and its modification

in order to compare there running times. The number of jobs (streams)

was chosen to be 50 times the number of machines (servers). This com-

bination of the parameters generated the hardest instances for both al-

gorithms, and it also seems to be a realistic setting for the investigated

scenario of balancing Web traffic. The sizes of the jobs were generated

according to different probability distributions: the uniform distribu-

tion, the exponential distribution, and the Pareto distribution with pa-

rameter � = 1:1. The motivation for the latter choice is that similar

distributions were observed in studies of Web traffic, see, e.g., [3]. The
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Fig. 2. The maximum running time of the modified algorithm observed in 100 in-
stances.

plots of the running time for the different distributions are given in Fig-

ure 1. These times were obtained by averaging over 100 instances.

The plots show very clearly that the modified algorithm performs

substantially better than the original one. In comparison to the original

algorithm, the modified algorithm needs to backtrack only very rarely.

In fact, most of the instances could be solved by the modified algo-

rithm completely without backtracking. The Pareto distribution proved

to generate the hardest instances. Other choices for the parameter �
showed similar behavior. Under the exponential distribution both the

algorithms perform best. The improved algorithm shows a very simi-

lar behavior for the Pareto and the uniform distribution. This can be

explained by the fact that these two distributions produce a similar

number of large jobs, i.e., jobs that cannot be immediately allocated

by the McNaughton rule. In comparison, the exponential distribution

produces only very few of these jobs. A further positive result is that the

observed deviations in the running time of the modified algorithm is

quite small. This is shown in a striking fashion by Figure 2.

3 Server load balancing results

3.1 A simple setup

Looking for a more sophisticated splitting scheme in order to improve

load balancing in the server farm scenario, we implemented the four
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Fig. 3. The topology of the simulated Network model.

different strategies simple random allocation, random k-split alloca-

tion, LL-heuristic k-split allocation, and optimal k-split allocation as

described in the Introduction.

These strategies were evaluated in simulations using the network

simulator by Scalable Simulation Framework Research Network (SSFNet)
version 1.4.0. We refer the reader to [11, 2] for details. The topology

of the network simulated (shown in Fig. 3) consisted of n hosts (the

Clients), a router withn+m interfaces and anothermhosts (the Servers).

For each host on the client side, the bit rate of the interface (of the

host-router link) was set to 107 bits/s with the link latency of 0:0. The

bit-rates of the interfaces of the router and the buffer sizes were cho-

sen sufficiently large to not to cause any bottleneck in the traffic flow.

Bit rates of the hosts on the server side were set to 108 bits/s. For each

host on the client side, the number of pages in a single session and the

number of objects in a single page were set to 1. The inter-session time,

inter-page time and inter-request time (time between two consecutive

requests for different objects in a single page) were all set to 0. In this

way, every host (on the Client side) sent out a more or less continuous

request stream, and all hosts have the same rate. Now the rates �j’s were

realized by grouping these basically identical 200 request streams into

40 groups of possibly different sizes. Thus, 40 traffic streams (groups)

were simulated using around 200 hosts (clients). The sizes of the groups

and, hence, the rates �1; : : : ; �40 were generated according to different

probability distributions. The number of servers was chosen to be 20.

10



0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

de
la

y 
(s

)

Plot of Maximum delay for Exponential distribution − (k = 3)

KspOpt
Rand
KspRand
LLoad

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

de
la

y 
(s

)

Plot of Average delay for Exponential distribution − (k = 3)

KspOpt
Rand
KspRand
LLoad

Fig. 4. Maximum and Average delay of the network when the group sizes are exponen-
tially distributed (for 10 simulation runs).

The use of the probability vectors generated by the different alloca-

tion strategies was realized by associating a new probability attribute

(p) with each client-server link in the traffic pattern [11, 2]. This was

done by modifying the source code of SSFNet at the HTTP level. Us-

ing these probability vectors ,the traffic of each group was directed to

the servers with the corresponding probability applied to individual re-

quests. In this way, we obtained substreams of rates pj1�j; : : : ; pjk�j as

described in the Introduction.

Figure 4 describes the maximum and the average delays experienced

by the network in 10 simulation runs, where the group sizes were expo-

nentially distributed. By delay, we mean the time span between a client

initiating a request and the same client receiving the last byte of the an-

swer. We analyzed the delays as follows: First, the average delay within

each group was computed. Then the maximum of these averages gave

the maximum delay experienced by any group in the network and the

average of these averages gave the average delay for all the groups in the

network. These delays were measured after running the simulations for

1500 seconds, i. e., roughly 1500 sessions for each client.

A comparison between the various strategies clearly shows that the

delays for HTTP requests when using the allocation of the optimal and

heuristic k-split algorithm are much less as compared to the delays ex-

perienced when using the allocation of the randomized schemes. This

improvement is larger when looking at the maximum rather than the

average delay of HTTP requests. This is not surprising as both the heuris-

tic as well as the optimal algorithm aim at minimizing the maximum

load over all servers. In contrast, the random strategies produce an al-
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Fig. 5. Maximum delay of the network when the group sizes are Pareto distributed.

location in which a few of the servers are unlucky and receive a larger

share of the load, which affects the maximum delay more than the av-

erage delay.

Besides to traffic patterns generated by the exponential distribu-

tion, we also tested patterns generated by the Pareto distribution with

different choices for parameter � of this distribution, see Figure 5. We

chose the Pareto distribution since it frequently shows up in various

web traffic analyses as Zipf’s law.

Not surprisingly, if � is small, then the experiments show quite large

deviations. In principle, however, the results for the Pareto distribution

are not significantly different from the ones for the exponential distri-

bution. Again heuristic and optimal allocation are superior against the

random allocations, and the measured differences between heuristic

and optimal allocations are quite small.

Over all experiments we observed that splitting data streams into

sub-

streams reduces the average as well as the maximum delays of HTTP

requests significantly. We also studied different choices for the splitta-

bility parameter k. It turns out that setting k = 3 is a good choice. The

results obtained for k = 2 are slightly worse. On the other hand, the

improvements for k � 4 in comparison to k = 3 seem to be so small

that they were completely covered by the stochastic variations in the

randomly generated traffic patterns and other effects due to the com-

plexity of the simulation environment.
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3.2 Approaching Reality

Encouraged by our results with the rather simplistic simulation setup

described above, we decided to move on to more realistic setups and

check if our algorithm still performs well. Several aspects were targeted

for improvements in further simulation runs:

– The delays between clients and servers are too small. In reality, the

RTTs vary from as little as 0.1msec (clients and servers reside within

the same LAN segment) up to several hundreds of milliseconds (e. g.,

client is in Europe and server is in New Zealand)

– The delays between clients and servers should be variable, as nor-

mally the clients are distributed across the world hence suffer dif-

ferent delays (see the two examples above)

– The existence of only a single router between clients and servers is

unrealistic for most traffic.

– The assumption that all clients download files of exactly the same

size again and again, without any delays between a download and

its subsequent request, is extremely unrealistic as well. The research

community has examined the statistical nature of WWW traffic, and

the pattern of the traffic imposed by the clients on the servers should

follow appropriate traffic models [3, 1].

– Having almost arbitrarily large queues in the routers is unrealistic.

As router memory needs to be extremely fast, it is very expensive

thus the queue length in a router is rather limited. Sooner or later

this results in packets being dropped when the interface which the

queue belongs to gets overloaded. These packet drops will cause the

TCP (transmission control protocol) to retransmit the lost data and

effect performance losses.

However, changing all these parameters in one single step seemed

not to be a clever move. We think that it makes more sense instead to

record at which points “nearer to reality” the algorithm performs how

well compared to the three heuristics. The final goal was to test the al-

gorithm and the three heuristics in a simulation setup where all the

above aspects were addressed.

3.3 Increased link delays

Obviously, near-zero length transmission delays on the links result in

a much quicker transmission time, especially for small files. During
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longer downloads, more possibilities arise that several TCP connec-

tions run in parallel, thus compete for bandwidth and therefore apply

TCP’s congestion control mechanism. Of course it would be interesting

to see what role the congestion control can play. For the same reason,

we chose to decrease the queue length of the routers, as dropped pack-

ets activate the congestion control mechanisms.

Since we wanted to study the effect of these changed network pa-

rameters, we decided to keep most the setup from the simulations so

far—i. e. we grouped 200 uniform clients into 40 groups, and assigned

vectors to each client containing the probabilities for accessing the 20

servers. The file sizes were set to 10 MBytes and the clients were in-

structed to issue a request as soon as the last one had completed, just

as before.
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Fig. 6. Response delays (left) and download bandwidths (right) for the scenario with
increased link delays. Pareto-distributed groups sizes, � = 1:0; k = 4

Our algorithm also wins in the case of increased transmission de-

lays. We refer to figure 6 as an example. When analyzing the time spans

between a request being issued and the head of the answer being re-

ceived, we can see that our algorithm wins over the other heuristics.

This is also true when we look at the time span between the reception

of the first byte and the last byte of the answer.

3.4 Using a realistic workload model

Next, we investigated how our algorithm would perform if we did not

simulate artifical traffic where each client constantly downloads large

files of equal sizes, but instead where the behaviour of a real human

end user surfing the web is simulated.
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It needs to be considered that if each of the clients follows a statisti-

cal model for the downloads, it does not impose a constant server load

any more. Instead, it can be inactive for rather long periods of time. To

offset this drop in the server load, the number of clients has to be in-

creased. After doing some experiments, we chose to increase the num-

ber of clients to 2500 and to reduce the number of servers to 10.

Since now the file sizes were randomly distributed, the pure down-

load times are not comparable as they were before. A kind of resort

could be to calculate the download times for each file. Alas, this would

discriminate agains small file sizes due to TCP’s slow start mechanism,

which arranges that a connection starts with a very low bandwidth and

then adjusts to the available bandwidth over the course of the time.

We offset this fact by ignoring connection data for objects smaller than

20 000 bytes (20� the chosen MSS—maximum segment size).
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Fig. 7. Response delays for the web workload scenario. Pareto-distributed groups, � =1:0. Left side: k = 4, right side: k = 2. Note the high variability across the figures.

The simulation results we got were somewhat mixed. When com-

paring the bandwidths for our four balancing methods, we found al-

most no difference in the distribution of the bandwidths (although a

very small advantage might perhaps be credited to our algorithm and

the least load heuristic over the randomized schemes). At this point it

needs to be stressed out that having a server farm of 10 servers for as lit-

tle as 2 000 clients accessing web pages, albeit the only pages, is vastly

overdimensioned. Certainly, an even greater number of clients would

have been more realistic and favorable—however, a single SSFNet sim-

ulation run involving 2500 clients already needed 110 to 180 minutes

of CPU time on a Sun Fire 880 and consumed 800 MBytes to 1.5 GBytes
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of RAM. Obviously, increasing the number of clients would have in-

creased the consumption of these resources too much.

When comparing the maximum delays between the client issuing

the request and the client receiving the first byte of the response, we

get results that seem to give the credit for the best method again to our

algorithm. Note, however, that the high statistical variability may shuf-

fle around this order (see figure 7).

3.5 Small “Real world” simulations

The setup for the realistic simulations was chosen similar to the setup

for the realistic web workload model: Again, we use 10 servers that are

accessed by 2500 clients. However, the topology of the network is more

complex in order to model reality.

The servers are connected to the same router, which represents the

router of the server farm. This server-side router is connected over a

single link of 2Gbit/sec to another router. This link represents the out-

bound connection of the provider owning the servers; the router at the

other end represents its so-called upstream provider. 1

As before, the clients are bundled into 50 groups. Each group rep-

resents an autonomous system (AS) 2 that hosts a number of clients

accessing the servers of the server farm. Each group is simulated by

a router that is connected to the router of the server farm’s upstram

provider via a 1 Gbps link. The link delays are randomised following an

exponential distribution.

Over various simulation runs, we only can say that virtually no per-

formance difference between the scheduling schemes can be observed.

This holds regardless of the value for k (we investigated 2; 3; 4 and 6) or

the chosen distribution (equally sized jobs, exponentially distributed,

uniformly distributed, or Pareto-distributed with � 2 f0:5; 1; 2:0g).

3.6 Large “Real world” simulations

We wanted to verify our suspicion that this result should mainly be

attributed to the lack of workload imposed by too little clients on too

many servers. Thus we increased the client-to-server ratio dramatically.

We created two network scenarios with the same topology as above,

1 An upstream provider is an ISP that connects its customers, which may be ISPs
themselves, to the rest of the internet (perhaps via another upstream provider).

2 The Internet is grouped into autonomous systems that have the sole administrative
power over their own parts of the network.
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with the exception that now we increased the number of clients to 8 000,

the number of groups to 100, and reduced the number of servers even

further down to 8. We used k = 3 and had the group sizes Pareto-

distributed with � = 1:0.
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ance for 8000 clients, 8 servers, with a “real-world” setup

Due to the extremely long simulation run time (over 12 hours for a

simulated time of 1 hour; just the simulation initialization phase took

around 10 minutes) and the extremely high RAM consumption (more

than 2 GBytes), we only had resources to do a comparison based on just

two simulation runs for each assignment method.

Finally we got the picture-book results that we were hoping for (see

figures 8 and 9): Here our algorithm clearly wins over the heuristic meth-

ods. When comparing the medians of the average bandwidth achieved,

it clearly declasses even the least-load scheme. However, more simu-
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lation should be performed on this before we can safely rule out the

possibility of this being nothing but a statistical fluctuation.

4 Conclusions

We studied average and maximum delay experienced by HTTP requests

for various traffic allocation policies and traffic patterns. Our simula-

tion results show that splitting data streams into a small number of

pieces can reduce the maximum as well as the average latency of HTTP

requests significantly. This improvement is obvious even if streams are

simply broken into k equally sized pieces that are simply mapped to

the servers at random.

Besides to random allocations we devised and studied allocation

strategies that carefully allocate pieces of jobs to machines with the ob-

jective to minimize the maximum load over all servers. These strategies

lead to a further clear improvement in the maximum as well as the av-

erage latency of HTTP requests. It turned out, however, that the differ-

ences between the latencies obtained by the simple LL heuristic and

the latencies obtained by an optimal k-splittable allocation are not sig-

nificant.

There are several questions left open by our analysis. Certainly, some

more test runs with the very large network setup would be interesting.

It also could make sense to make the simulation environment even

more realistic by studying even more complex network topologies. A

second interesting topic are dynamic allocation schemes that use split-

tability to realize a smooth rather than an abrupt adaptation to dynam-

ically changing traffic patterns. These are topics that we plan to inves-

tigate in future work.
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