
T U M
I N S T I T U T F Ü R I N F O R M A T I K

CAWAR - Formalizing a Framework for
Ubiquitous Computing Applications

Michael Fahrmair, Christian Leuxner, Wassiou Sitou, Bernd
Spanfelner

ABCDEFGHIJKLMNO
TUM-I0830
August 08

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-08-I0830-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c©2008

Druck: Institut f ür Informatik der
Technischen Universit ät M ünchen

CAWAR – Formalizing a Framework for
Ubiquitous Computing Applications

Michael Fahrmair1,

Christian Leuxner2, Wassiou Sitou2 and Bernd Spanfelner2

1 DoCoMo Communications Laboratories Europe GmbH

Landsbergerstr. 312, D-80687 Munich, Germany

fahrmair@docomolab-euro.com

2 Technische Universität München, Departement of Informatics

Boltzmannstr. 3, D-85748 Garching, Germany

{leuxner|sitou|spanfeln}@in.tum.de

August 21, 2008

Abstract

The concept of Ubiquitous Computing, also called Ubicomp for brevity, describes
a new paradigm on the usage of computer based systems. As opposed to most
“conventional” computer based systems, Ubicomp applications are character-
ized by an enhanced usability, thus enabling users to benefit from computer
usage and support in as many situations as possible. The computer as an ap-
parent tool steps into the background, while the actual needs and wishes of the
current user step into the foreground.

The notion of context awareness – and related terms such as context adaptation
or adaptation for short – constitute enabling technologies for realizing computer
systems according to the Ubicomp paradigm. Since usability issues are at the
heart of Ubicomp applications, the adaptive systems try to gather information
of their environment in order to automatically infer the wishes and needs of a
user. Assumptions concerning these needs are in turn used to trigger system
reactions on behalf of the user. This adaptation mechanism can be seen as an
additional system feature, which raises the complexity of the overall system.
Since the adaptation essentially relies on assumptions concerning the user and
its environment, we suggest a special methodological and technical treatment
of these aspects within the development process.

In this work, we mainly focus on the technical aspects of the topic and introduce
a framework for realizing Ubicomp applications. The framework relies on a so
called adaptation model, which describes the adaptive system behavior of the
application. The adaptation model, or K-Model for short, explicitly expresses
the assumptions concerning the user and the system environment. We investi-
gate the intuitions before providing formal definitions of adaptation and related
concepts, which serve as the formal foundations for the Cawar framework.

Contents

1 Introduction

2 Informal definitions

2.1 Context . 2
2.2 Context adaptation . 3
2.3 Context adaptive system. 3
2.4 Calibration . 4
2.5 K-Model – calibrateable context adaptation model 5
2.6 Common architecture . 8
2.7 CAWAR framework in a nutshell . 10

3 Formal definitions

3.1 Foundations. 13
3.2 Formalizing adaptation as feedback filter . 15
3.3 Adaptation . 15
3.4 Context adaptation . 17
3.5 Calibration . 18
3.6 Formalizing the framework infrastructure . 22
3.7 Formalizing the context adaptation model . 26

4 Conclusion

Bibliography. 30

1

1 Introduction

Ubiquitous Computing is a paradigm for the usage of computer based systems,
that combines a lot of aspects with a common direction towards a better usabil-
ity of systems. The term was first used by Mark Weiser [Wei91] in 1991. Within
this article, Weiser describes the future of computing as an accumulation of sys-
tems, which are distributed everywhere in our environment and collaborate in
order to provide a user the most exciting computing experience. During years it
became apparent, that this fiction includes a wide range of technical challenges.
Obviously, there is a need to facilitate ad-hoc communication. This furthermore
requires appropriate communication mechanisms as well as ontologies to allow
for a common understanding of systems.

Beyond these technical questions, it soon has been recognized that applications
could contribute to Weiser’s vision as well. Applications that incorporate their
usage context in order to relief users from excessive interactions have the po-
tential of providing a better usability – even in situations where conventional
computer based systems can not be used at all. Commonly, those applications
are denoted as being context aware.

Basically, there is no concise definition for context aware applications. This
circumstance is down to the fact, that an definite characteristic, which discrim-
inates context aware applications from say reactive system, can not be found.
Eventually, also context aware applications are systems reacting on inputs.

However, there is a methodological reason for taking the notion of context
awareness into account. When considering context aware applications, people
usually do not cite a trivially small system that switches on the lights if a mo-
tion is detected1. People rather cite applications that incorporate at least some
complex situations of use, like driving a car or the accomplishment of a surgery.
Systems being used in such situations, have two particularities that complicate
their engineering: i) the detection of a complex situation like a certain phase
within a surgery is not trivial and depends on a variety of influences within
the operational environment. The system has to sense and interpret plenty of
contextual information, which is prone to misinterpretation and errors. ii) in
addition to the already complex system functionality an additional management
functionality is required, which realizes the logic for deciding on the effects of
some context conditions being detected. The design of this adaptation logic
requires additional engineering efforts.

Within this document, we propose an approach for structuring behavioral as-
pects of context aware systems by means of a formal modeling technique. We
introduce a technical framework, that enables to explicitly model the decision
logic concerning the adaptive aspects of the system behavior. This structuring
principle makes the overall system complexity more manageable due to sepa-
ration of concerns. We exploit services for describing the system functionality
and its dynamics along the dimension of context. The resulting system model

1although there is no good reason to disapprove with such an example

2 Ch. 2 : Informal definitions

describes structural aspects, the communication and the workflow concerning
the retrieval and processing of data, and also the interaction with the environ-
ment. We will give a detailed introduction to the so called K-Model, which is an
approach to modeling the above mentioned aspects, and its formal foundation.

The remainder of this paper is structured as follows: in section 2 we informally
introduce all relevant concepts related to the Cawar framework. Notions such
as context, adaptation and the architecture underlying the Cawar framework
are discussed. Afterwards, we define the introduced concepts by means of an
appropriate formalism in section 3. We choose the Focus theory [BS01] for
this purpose, because it provides practical modeling techniques for treating the
aspects of system structure and interface behavior on a mathematical basis.
Finally, section 4 draws a conclusion.

2 Informal definitions

Before going into the details of formalizing the Cawar framework and its under-
lying concepts in section 3, some important on-topic concepts are introduced in
the following. The generic definitions in this section are mandatory for the un-
derstanding of this paper and hopefully provide a common understanding of all
considered terms. Most of the informal definitions are picked up and formalized
by means of the Focus theory in the subsequent section 3.

2.1 Context

It’s no wonder that the notion of context constitutes a very central issue in
conjunction with context aware systems. We define context according to the
following definition.

Definition

☞ Context denotes the sufficiently exact characterization of a system’s appli-
cation situation. The situation comprises all information, which is relevant
for automatically adapting the system behavior. Moreover, the information
must be observable, i.e. it is revealed by at least one interface

In other words, context constitutes an abstract model of the systems environ-
ment. For the success of context aware systems it is crucial, that this model
is thoroughly engineered. We experienced that context aware systems are of-
ten equated with location based systems. The latter change their behavior
according to their actual location or the location of the user. However, as
argued in [SBHW99], there is more to context than location. Since the fo-
cus of this paper is on the formalization of the Cawar framework – and not
on the adequate engineering of a system’s context – we refer the reader to
[Sch02, FLSS08, SFS06, SS07] for further details concerning the elicitation and
design of context.

2.2 Context adaptation 3

2.2 Context adaptation

As indicated by figure 1, the concept of context adaptation can be understood as
a process consisting of the four steps context acquisition, situation identification,
adaptation decision and adaptation realization.

Context

information

1
.
S
te
p

Real world

(situation)

Adaptation

decision
2. Step

Change in

behavior
3. Step

Acquisition of

information

Situation

identification
Application

Feedback via

technical system

Fig. 1: Process of context adaptation

Our informal definition for the notion of context adaptation reads as follows:

Definition

☞ Context adaptation denotes the automated adjustment of the observable
behavior of a system. Context constitutes the basis of decision-making for
this adjustment. Adjusting a system’s behavior is thereby always associated
with changing its (global) state.

Automated in here means, that the adaptation itself is accomplished without
any explicit user interactions. To emphasize this: it seems obvious that con-
text adaptivity contributes very little without being executed automatically.
The reason for this observation is, that – beside being able to recognize and
evaluate different usage situations – context adaptive systems need to make
the appropriate adaptation decisions on their own. A certain level of autonomy
is necessary to satisfy the usability requirements typically imposed for those
systems, namely to be usable in as many situations as possible.

The following example illustrates this requirement: consider a driver, which is
currently unable to read an incoming message on his car’s on-board display,
e.g. due to a critical traffic situation. This driver is neither capable to navigate
through a user menu in order to activate the speech output; the system is
supposed to activate this function by itself – automated.

2.3 Context adaptive system

The definition of context adaptive systems given in the following, is sufficiently
exact for the purpose of this paper. However, it does not provide a criterion for

4 Ch. 2 : Informal definitions

definitely delimiting systems exposing an adaptive behavior from those which
do not. We will investigate the notion of context adaptive system behavior in an
upcoming publication. In short, this definition explains that adaptive behavior
formally cannot be considered without referring to a subject (person or other
technical system), which experiences the adaptivity by observing more or less
non-deterministic system reactions. The degree of observed non-determinism
depends on “how well” the subject knows the interface and the I/O behavior
of the total system, i.e. whether the subject is able to observe (some of) the
implicit system inputs received over sensors.

Since the purpose of this section is to establish a common understanding of re-
lated terms, we are content with the simplified definition given in the following.

Definition

☞ A context adaptive system (CAS) is an interactive system, that is able to
observe the domain it shares an interface with. The CAS adjusts its struc-
ture or observable behavior in order to react to changes in this domain
and to satisfy constraints imposed by those changes – even without the
explicit interaction of a user. Therefore, context adaptive systems require
an explicit model of the usage context (e.g. locations, participants, ac-
tivities etc.), which comprise all domain aspects relevant for the system’s
adaptations.

Changing the system behavior is technically realized by altering, adding or re-
moving certain software components of the system and/or their communication
structure. For changing the system’s behavior, we introduce the concept of a
configuration, which we define as follows:

Definition

☞ A configuration denotes a set of interacting system components together
with their communication structure. A configuration always exposes a cer-
tain I/O behavior.

Accordingly, changing a system’s configuration means to switch from one con-
figuration to another. This process is referred to as reconfiguration. In the case
of context adaptive systems, this process is often controlled by a management
layer realizing the adaptation logic of the system on basis of context informa-
tion.

2.4 Calibration

We experienced that context adaptive systems are prone to a phenomenon
called Unwanted Behavior (UB). A detailed discussion of this phenomenon can
be found in [FSS06]. Since it originates from an inherent and potentially un-
solvable problem of systems with a certain degree of autonomy (frame problem
cf. [Den84]) we introduce a possibility to circumvent the effects of UB instead

2.5 K-Model – calibrateable context adaptation model 5

of giving a solution to it. We call this approach calibration and define the term
as follows:

Definition

☞ The calibration of a context adaptive system denotes the manual adap-
tation of the system’s adaptation logic itself. The calibration is typically
accomplished off-line, i.e. after an execution of the system, and requires
some expertise concerning the logic of adaptation.

A prerequisite for calibrating an adaptive system is, that the adaptive behavior
of the system is explicitly modeled – in our case by means of a calibrateable
adaptation model or K-Model for short (cf. section 2.5). An explicit representa-
tion of the adaptation logic as a K-Model enables the adaptation of the model
itself. Since deficiencies of a model in general can not be recognized from the
model itself (cf. [Den84, Sim69]), a higher instance (e.g. a human) is necessary
for analyzing this adaptation model. Consider this instance to be another tech-
nical system; this instance is prone to UB as well so that the problem is merely
delegated to the next instance and so on. In consequence, we argue that the
last instance eventually has to be a human being in order to enable an effec-
tive deficiency detection and handling, respectively. Clearly, the question “are
humans subject to Unwanted Behavior?” is indeed philosophic and beyond the
scope of this technical report.

In essence, calibration provides a possibility to correct system behavior from
“outside” the considered system. The calibration might be accomplished after
an UB occurred or as soon as an UB can be predicted due to knowledge about
the adaptive behavior and upcoming situations, respectively. It seems obvious,
that an understandable representation of the adaptive system behavior facili-
tates such an UB prediction. Calibration in our approach relies on a very special
feature of the K-Model. The model contains a description of itself. It is used at
runtime as a pattern to implement the specified system by finding and bind-
ing software components in accordance to the K-Model. The K-Model is also
communicated to the user (or at least an assigned technician), which ideally
identifies the model-parts responsible for the UB – and changes the adapta-
tion model accordingly. The system afterwards reconfigures according to the
changed specification and hopefully exposes the desired behavior. See [FSS05]
for a detailed discussion of the calibration mechanism.

2.5 K-Model – calibrateable context adaptation model

The K-Model constitutes a modeling technique for constructing the adaptation
logic of context adaptive systems within a structured model. The basic elements
of each K-Model are services. Since there are a lot of interpretations concerning
the notion of services, we first of all clarify our understanding of the term
within the context of this technical report. We use the term from a technical
perspective: a service denotes a proxy, which exposes a potentially partial I/O

6 Ch. 2 : Informal definitions

behavior and represents a set of service-fulfilling components with the same
syntactic and semantic interface. We use services to achieve a loose coupling
between software components. That is, an indirection is introduced between two
interacting components by means of services: components only communicate
via service proxies, which transparently forward the received messages to their
service fulfilling components. In other words: services only describe behavior
that is exhibited or required. Components are technical entities (hardware or
software) that do the actual work to provide a service. This understanding is
clearly related to the notion of web services.

The advantage of this additional abstraction layer is, that we only consider
required system functionality, without having to deal with the realization of that
functionality. This allows us to use different components as service realizations –
depending on their availability or quality of service (QoS). On that abstraction
level, we can flexibly add or remove functionality as required by the current
usage situation.

Basic elements

The K-Model makes use of four basic elements: sensors, context elements, inter-
preters, and actuators. By restricting their combination a structured description
of any complex system behavior can be expressed. The elements themselves rep-
resent services with a predefined syntactic interface.

Sensors

Sensor

Sensors are responsible for retrieving information from in- and outside the sys-
tem. Therefore, they write sensed information to dedicated buffers called con-
text elements. Sensors qualify to model physical sensors (e.g. thermometer, light
sensor) as well as internal or external software entities (e.g. remote web services)
or even human beings (terminal inputs can be regarded as context, too). The
graphical representation of a sensor is a bottom-up triangle.

Context elements
Context

Context elements are buffers for storing arbitrary information. They decou-
ple any of the other three service types, since the latter are only allowed to
communicate via context elements. Context elements represent uninterpreted
sensor data as well as linked or interpreted information or even decisions. Their
graphical representation is a parallelogram.

Interpreters

Interpreter

Interpreters are information processing entities. They read from context el-

2.5 K-Model – calibrateable context adaptation model 7

ements and store their output to context elements. The corresponding I/O-
transformation depends on the interpreter’s logic and may be arbitrary complex
(e.g. rule engines, neuronal networks) and can be used for decision making for
prospective adaptations. Their graphical representation is a diamond.

Actuators
Actuator

Actuators are responsible for realizing the system’s adaptations by interacting
with the core system and the environment, respectively. They read context ele-
ments, which contain information originating from interpreters and/or sensors,
and subsequently execute the necessary adaptation decisions on basis of this
information. Hence, their incoming context is also called “adaptation context”.
Their graphical representation is a rectangle.

The following definition outlines the main characteristics of a K-Model. The
“activator” constitutes a special actuator within the Cawar framework, which
discovers and binds services to their service-fulfilling components at runtime.

Definition

☞ A K-Model denotes the model of a calibrateable context adaption. This
model comprises an activator, which controls a set of services composed of
sensors, interpreters, actuators and context elements [FSS05].

K-Model structure

We defined some modeling constraints for K-Models. A very central design
decision is, that every sensor, interpreter and actuator is only allowed to com-
municate via context elements. This ensures a decoupling of the elements and
guarantees local consistency of information, in case certain K-Model elements
are exchanged or removed.

The K-Model describes the workflow of information processing within the adap-
tation logic. Sensors acquire the information necessary for adapting to the sys-
tem environment. This information is stored as sensor context. Interpreters
process (aggregate, accumulate) this information. Some interpreters only com-
bine information or draw conclusions from information, that results in fur-
ther/augmented information about the environment or the current situation.
This context is called intermediate context. Finally, some interpreters render
a decision concerning the possible system reactions and possible adaptations.
This information is called adaptation context or adaptation result (cf. fig. 2).

The elements of a K-Model may be connected as described in the following:
a unidirectional edge describes a flow of information between at least two ele-
ments. A sensor is only allowed to write to exactly one context element. Context
elements are connected to at most one data source, but may be read by an arbi-
trary number of information sinks. Interpreters can handle any number of input

8 Ch. 2 : Informal definitions

Actuator

Context

Sensor

Interpreter

Data

Sources

Data

Processing

Adaptation

Decision

Adaptation

Result

Context

Data

Adaptation

Application

Step 1 Step 2 Step 3

Context

Context Context

Sensor

Sensor

Context

Fig. 2: Graphical notation and typical workflow of K-Models

and output connections and actuators can deal with any number of inputs. How-
ever, we recommend to delegate the preliminary processing to interpreters and
to forward only one prepared context element to an actuator.

Dashed lines within K-Models have a special meaning. Each element has a
so called meta context. This meta context describes the syntactic interface,
quality os service and specified behavior of the element (syType) and its exact
meaning (smType). It is crucial to understand the difference. The syType is
sufficient to describe the exact behavior of the element (note that this embraces
its behavior). The smType is used to distinguish technically identical entities.
For instance consider two thermometers. Both may have the same syType.
Nevertheless it is of fundamental difference if one is placed in a room or it
measures the outside temperature. This difference is captured in the smType
(further details are given in section 2.7). A dashed line describes a data flow
to an element’s meta context, not the element itself. Thus, by altering the
element’s description it is also possible to change its realization. We use this
mechanism inter alia for controlling the reconfiguration. That is, we eventually
change the set of service-fulfilling components, which should be bound to the
element underlying the meta context.

2.6 Common architecture for adaptive systems

Although there exist a couple of approaches and frameworks for designing sys-
tems exposing an adaptive behavior, certain commonalities of the corresponding
system architectures can be identified. Most architectures base on the idea, that
the observable behavior of the system can be changed at runtime. However, we
do not consider systems, which are able to “learn” any new behavioral pat-
terns. We assume all behavioral variants, which the system might expose, to
be specified at design time. In other words, the system is not able to change
its overall behavior. It only changes the currently observable part of the former,

2.6 Common architecture 9

thus creating the illusion of dynamically changing its behavior. This process
is technically realized by a filter, which mediates the communication between
the system and its environment appropriately. To emphasize this: our architec-
ture is based on the idea, that the system can not partake in any meaningful
interaction with entities, whose interface it does not know in advance.

Environment

Filter

Core System

Adaptation / Filter Logic UI Calibration

Influence by

environment observations
Direct interaction

Fig. 3: Common adaptation architecture

Figure 3 illustrates the common architecture for context adaptive systems. The
system core comprises the sum of all system behaviors. In order to guarantee
the availability of some, the corresponding components must be installed on the
main device the system is running on. Additional components may be found
and bound in the environment as long as their syType and smType are known
and can be matched to the system specification.

Essentially, the adaptation layer provides the filter for mediating the commu-
nication between the system and its environment. This filter is responsible for
adapting the system behavior. All behavioral patterns the system might expose
are specified within the adaptation layer by means of a K-Model. The layer can
be decomposed into the following subsystems:

User Interface – UI The user interface is intended for any direct user interac-
tions. That is, any information a user explicitly inputs to the system (e.g.
press “send email” button) or any output that should be forwarded to the
user (e.g. display email on screen) is mediated by the UI.

Adaptation/filter logic This subsystem comprises the logic for all possible
adaptations the system is able to accomplish. The UI is part of this subsys-
tem, because it may be subject to adaptations as well. The logic specifies,
which part of the overall system behavior should be exposed under certain
predefined circumstances (situations). The adaptation behavior is influ-
enced by inputs via the UI and contextual inputs measured by sensors.
The layer controls the observable system behavior by discovering and de-
ploying the components within the system core and the proximate system
environment.

10 Ch. 2 : Informal definitions

Calibration The calibration enables a manual adaptation of the filter logic.
This mechanism is necessary to circumvent the occurrence of Unwanted
Behavior caused by the frame problem (cf. section 2.4). The calibration is
eventually triggered off-line by experienced users or system administrators
over a dedicated user interface.

The system environment comprises anything not subsumed within the core sys-
tem and the adaptation layer, respectively. Prominent examples are physical
conditions (e.g. weather, location), users and other participants as well proxi-
mate components (e.g. printers, screens) discovered at runtime.

2.7 CAWAR framework in a nutshell

The Cawar framework is a generic approach to support all kinds of adaptation
in reconfigurable systems. Selected aspects of this framework, which are nec-
essary for the understanding of how context adaptation models are technically
realized, are outlined in the following sections.

Framework overview

In this section a short overview about the overall Cawar (Context aware
architectures) framework is given, while the two subsequent sections discuss
certain framework concepts in more detail. The framework principally consists
of the following elements:

1. A set of components comprising the technical implementation of typical
infrastructure functionality, i.e. context storage, discovery, etc.

2. A set of low level interfaces (API), that provide the most generic ab-
straction of context management, i.e. sensors produce context, actuators
consume context, etc.

3. A reference architecture that suggests a basic generic pattern of how a
context adaptive system can be designed in a completely reconfigurable
way – formally, context adaptation can be understand as a self reconfigur-
ing filter (cf. section 3.4). Following that pattern, any implementation of a
context adaptive application can serve as a framework for bootstrapping
any other context adaptive application.

Components, interfaces and architecture together form a basic framework for
context awareness and adaptive applications. To develop a certain application,
the framework merely must be fed with the desired specification of system
behavior in form of a K-Model. Furthermore, the components fulfilling the re-
spective services must be loosely combined with the framework according to
the K-Model. Such components for example can also be detected at runtime.

The framework initialization is conducted by a designated actuator component
named model activator, which expects a list of all required services (logical

2.7 CAWAR framework in a nutshell 11

service descriptions) as well as their corresponding components (technical real-
izations or references) from the context itself. Such a description is e.g. given by
a XML file representing the adaptation behavior of the considered system, i.e.
the K-Model. This model has to be previously read by a special sensor and writ-
ten into an appropriate context element. The context comprising the K-Model
can be further processed – allowing for self introspection and self adaptation
– before it is ultimately deployed by the model activator. The latter finally
reorganizes the services (sensors, interpreters, etc.) as well as their correspond-
ing component bindings, thus reconfiguring the system in order to technically
implement the K-Model.

������
����������� 	
������������

���� ����������� �
���� ����������������

�� !����"� � ��������� � ��������� �� !����"�

������	#�����$��%���%�#�&�� �
�

�
�

� �
Fig. 4: Meta model describing the principle structure of the K-Model

The underlying meta model of any K-Model, which describes the principle com-
position of its logical service architecture, i.e. its grammar, is illustrated in fig-
ure 4. A concrete K-Model, containing the particular services which constitute
the adaptive behavior of a considered application, is indeed an instance of the
depicted meta model, which can be read by the model activator for initializing
the context adaptive system as mentioned above.

Syntactical and semantical types

All services contained in a K-Model are specified by a logical service description
(meta context). Each description thereby contains a syntactical (syType) and
semantical (smType) description of its underlying service. Both types are used
to match a suitable technical component that could implement the specified
service. In other words, syType and smType specify, which components the
service could possibly route messages to.

SyType describes any higher level protocol the service implementing compo-
nent should understand – using the standardized low level interfaces of sensors,
interpreters, actuators and context elements, including at least the data format

12 Ch. 2 : Informal definitions

accepted (interface). Moreover, it could contain any other technical informa-
tion needed to reduce the number of matching components, e.g. specification
of behavior, QoS parameters, billing information etc. SyType contains infor-
mation, that is needed by the activator in order to contact and bind possible
candidates. An example constitutes a reference to a single component instance,
which guarantees that this component is bound to the corresponding service.

SmType in contrast describes the meaning or usage intention of a certain com-
ponent instance, besides its technical characteristics. This description is used to
distinguish between several instances of technically identical components. Con-
sider several identical temperature sensors or terminals, which are connected to
the same adaptive system. Clearly, these devices might perform different “roles”
with respect to the actual context, e.g. outside temperature, inside tempera-
ture, kitchen terminal or entrance terminal. An activator needs to distinguish,
which component instance should be bound to a sensor, that feeds a context
element with a meaning of “outside temperature” – expressed by that context
element’s smType. A syntactical description is insufficient in this case, since it
could match more than one component instance. Instead, one of the available
sensors needs to have been marked with a meaning of “outside temperature”
as well. Semantical marking is part of the context and one of the main tasks of
calibration.

It should be mentioned that the real “meaning” (smType) of a component is
only generated by observation in a larger correlation with other entities, and can
not be grounded in a symbolic description of the component instance alone. An
indication of this fact is a component instance, that – though it has a constant
behavior – can have different meanings in two different observation contexts.
To give an example: the same camera instance, that shows i) the entrance
of a building for one observer, could show in the same picture ii) a certain
street segment for another observer, or iii) the weather conditions for a third
observer, iv) the water level of the nearby river and so on. Another example
constitutes a temperature sensor on the outside of a package. The sensor can
be intended to measure the outside temperature (compared to the package’s
inside temperature), but at the same time measures the inside temperature for
the owner of a storage house, in which the package is currently stored in.

Application subsystem

A context adaptive system built with the Cawar framework typically consists
of three subsystems: i) the adaptation subsystem embracing all parts, which
are subject to the frame problem and therefore need to remain totally reconfig-
urable, ii) the system environment containing all service fulfilling components,
which are not permanently available due to resource restrictions, and iii) the
application subsystem comprising a single system bootstrapper (system seed).
Each application usually has its own system seed that can be installed and
un-installed separately. A system seed package typically includes:

13

1. a boot sensor

2. an optional boot actuator

3. an applications fixed set of guaranteed components

Usually, the application core system initialized by the system seed contains only
a boot sensor specification and an administration component implementing that
boot sensor. The administration component, usually a GUI, connects to the ap-
plication origin server and from there downloads or updates a K-model XML
file for the application and any necessary basic system components, that run in
the domain of the application. These basic system components are necessary for
providing a required minimal functionality of the system. This may include at
least the necessary framework components, as well as a default context server,
which handles the initial service communication by storing the messages to (per-
sistent) context elements. Following the principles in this section, the minimal
functionality can of course be extended on the fly, in case the corresponding
resources for fulfilling additional services become available.

We refer to [MDF+04] for a conceptual introduction of the Cawar framework,
whereas a description of its technical realization can be found in [MFSS05].

3 Formal definitions

3.1 Foundations

Context adaptive systems are a subset of reactive systems. Hence, we do not
introduce a new formalism for describing the system properties characterizing
these systems. We rather demonstrate how related concepts like context adap-
tation can be formalized by means of an existing formalisms. This approach
has two major benefits: on the one hand we can make use of a well understood
formalism, which is furthermore already established. Consequently, interested
readers do not have to acquire another formalism for understanding the de-
scribed concepts.

The basis of our formalism is the Focus theory [BS01]. This theory treats
systems as a composition of components C communicating via a set of channels
CH. Components access channels via ports. A port is denoted by a channel
identifier ch ∈ CH and a reading operator (?) or a writing operator (!).

In a FOCUS specification all logical variables are typed. A type is nothing else
than a set. Types are used to specify the set of messages M that can be sent
along a channel ch or to constrain the set of possible internal states. They
are also used to restrict the domains of variables. TYPE thereby denotes the
set of all types. Given some type T ∈ TYPE , CAR(T) denotes the set of data
elements of type T . CAR(T) is called the carrier set for type T . We furthermore
define a function type : CH → TCH that returns the type of a channel.

14 Ch. 3 : Formal definitions

Streams

For any set of messages M , we use M ω to denote the set of all streams over
M , in other words, the set of all sequences consisting only of messages from the
set M . Moreover, M ∗ denotes the set of all finite streams over M , and M ∞

denotes the set of all infinite streams over M . The set of infinite streams can be
characterized by the set of functions F with F : N+ → M , whereby N+ denotes
the natural numbers without 0. This means that the set of all streams is defined
by M ω = M ∗ ∪ M ∞.

In order to model time-sensitive components, we need a way to express the
timing of messages. For this purpose, we introduce the concept of timed streams.
A timed stream differs from an ordinary (untimed) stream, in that it contains
the history of messages transmitted within a certain time frame. A timed stream
is represented by a set of function Ftime, with Ftime : N+ → M ∗. Ftime(t) is
the finite sequence of messages communicated within the time interval t. For
any set of messages M , by M ω, M ∞, and M ∗ we denote, respectively, the set
of all timed streams over M , the set of all infinite timed streams over M , and
the set of all finite timed streams over M . The set of all infinite timed streams
is defined by M ∞

def
= (M ∗)∞. Hence, M ∞ denotes all infinite sequence over

finite sequences over M .

Channel assignments

For each set of typed channels, the channel assignment is the association of a
channel and a stream, formally

−−→
CH

def
= {x ∈ (CH → M ∞) | ∀ ch ∈ CH : x(ch) ∈ CAR(type(ch))∞}

A channel assignment x ∈
−−→
CH therefore assigns to each channel ch ∈ CH a

timed stream of messages of type(ch).

Components

With the definitions given above, we are now able to define components. Let
K ⊆ CH be a given set of channels, then the set of components C (K) using
these channels K is defined by

C (K)
def
= {(I , O, F) ∈ (P(K)×P(K)× (

−−−→
P(K) → P(

−−−→
P(K))) | F ∈

−→
I → P(

−→
O)}

The behavior F of a component is therefore a relation between input- and
output streams. I is the set of typed input streams, O the set of typed output

streams. F(x) is the set of all output histories for a x ∈
−→
I that a component

with behavior F is able to produce (nondeterminism is allowed).

The composition operator ⊗ for composing components is defined as

∀C1 = (I1, O1, F1), C2 = (I2, O2, F2) ∈ C (CH) : C1 ⊗ C2 = (I , O, F)

3.2 Formalizing adaptation as feedback filter 15

so that

I = (I1 ∪ I2)\(O1 ∪ O2) and
O = (O1 ∪ O2)\(I1 ∪ I2) and

F ∈
−→
I → P(

−→
O)

with

∀ x ∈
−→
I : F(x) = {y′ ∈

−→
O : ∃ y ∈

−−−−−−−−−−−−→
I1 ∪ I2 ∪ O1 ∪ O2 :

(y|O = y′) ∧ (y|I = x) ∧ (y|O1
= F1(y|I1)) ∧ (y|O2

= F2(y|I2))}

x|Q denotes the restriction of the assignment x to the channels in set Q.

3.2 Formalizing adaptation as feedback filter

The formalization of the adaptation basically splits into two parts:

• A definition of adaptation as a feedback filter

• A definition of the entities sensor, context, interpreter and actuator.

The basic formalization uses component networks that communicate via chan-
nels as a notion for systems or subsystems. The component behavior is specified
by relations between input and output channels. Adaptation in this context can
be explained as a change of such a network. Components or channels may be
removed or added resulting in a changed system behavior.

As already mentioned, models are abstractions that are based on static assump-
tions. Thus, real dynamics can not be modeled. It can only be approximated
by static assumptions. This is equal to the observation of unwanted behavior
as a result of the frame problem (see [FSS06] for further details). Therefore
dynamics is emulated by static models. Only observation from outside creates
the illusion of dynamics.

By specifying a static model which switches between the visibility of differ-
ent parts of the static overall behavior, dynamics can be created. Therefore, a
system exposing an adaptive behavior formally must be regarded as a super-
position of all its possible structures, functions and observable behaviors. The
actual adaptation is then achieved by a filter, which exposes only certain parts
of this superposition. Hence, these adaptations change the currently observable
part of the overall system behavior.

As shown in figure 5 by using a filter all scenarios of changing the structure can
be emulated.

3.3 Adaptation

Before starting with formalizing the filter and later context controlled filters, we
introduce the helper function filterj : {0, 1, . . . , n} ω × MSG ω → MSG ω, which

16 Ch. 3 : Formal definitions

A

I3I3

I2I2

I1I1

AA

O3

O2

O1

A

O3

O2

O1

A

C

B

A

C

B F

F

F

F

F

F

i) Adding/removing a component

ii) Changing an output channel

iii) Changing an input channel

BA F

iv) Manipulating a stream of messages

y : Mx : M

Added B

O2 for O1

I2 for I1

Change y

Fig. 5: Emulation of dynamics by filters

is defined as

a = j ⇒ filterj(a&p, b&i) = b&filterj(p, i)
a 6= j ⇒ filterj(a&p, b&i) = filterj(p, i)

& thereby denotes a basic operator on streams, which is used in the infix nota-
tion and has the following signature:

& : M × M ω → M ω

Given a stream s and a single message m, m&s describes the stream resulting
from appending the message m to the head of the stream s. Another basic
operator on streams is the concatenation operator. We use this binary operator

⌢ : M ω × M ω → M ω

3.4 Context adaptation 17

in infix notation as well. The concatenation of two streams produces a stream
that starts with the messages of the first stream, followed by the messages of
the second stream.

With this in mind, the function filterj reads a stream of messages b&i and gets
a control sequence a&p. If the first item a of the control sequence has the value
of the filter-id j , then the first message b of the message stream is forwarded;
otherwise it is ignored.

An output filter for a system as shown in figure 5 i) can be defined as the
combination of filters FA0 for each output channel o of the system:

FA0

in i : MSG ω

out o : MSG ω

∃ p ∈ {0, 1} ω : o ⊒ filter1(p, i)

The equation within the body of specification FA0 denotes, that the filtered
stream received on input channel i is a prefix of the stream send over output
channel o. The oracle p represents a highly nondeterministic filter behavior.
It generates a stream consisting of the control messages 0 and 1, which are
produced in an arbitrary order. If the current message of p is a 1, then a
message received on channel i is forwarded to channel o, otherwise the message
is ignored. The following communication histories of the channels i, p and o
illustrate the functioning of filter FA0.

i : abcdefghijklmnopqrst

p : 01010101010101010101

o : bdfhjlnprt

Multiple channels that should be filtered can be regarded to be multiplexed into
one channel first. This is advantageous when we formalize calibration to avoid
messing up different channels.

3.4 Context adaptation

Context adaptation denotes an adaptation, which is controlled by messages of
the system environment known as context. Therefore, context adaptation is the
extension of the general adaptation with the oracle p being replaced by external
inputs.

18 Ch. 3 : Formal definitions

System F

Context

Fig. 6: Context adaptation as a context-controlled filter

A filter component FA0 is extended by a set of control channels s ⊆ CH . The
control channels are fed by components that represent the environment. This
results in the following filter FA1.

FA1

in i : MSG ω; s : 0, 1 ω

out o : MSG ω

#o = #({1} S© (s|#i))

o ⊒ filter1(s|#i , i)

The first equation states, that the number of messages send over channel o
(#o) complies with the number of messages with value “1” received on the
control channel s with respect to the length of the input messages (s|#i). The
context adaptation can now be constructed by an adequate combination of
several filters.

3.5 Calibration

Calibration is the adaptation of the adaptation as described in Section 2.4. This
can also be demonstrated on the formalism as proposed in figure 7.

• The adaptation behavior is determined by the information of the control
channels.

• Calibration adapts the behavior that is observable at the control channels.
Therefore the context is adapted.

This second adaptation is modeled as context adaptation as well. The infor-
mation that feeds the control channels for the calibration is called calibration
context.

This ensures that the first adaptation becomes adaptable. However the second
one remains static and may be again subject to the frame problem. This is the
case if the information on the control channels for the second adaptation is an
interpretation made by the system rather being directly from an user.

3.5 Calibration 19

Fig. 7: Adaptation of adaptation

Fig. 8: Using calibration context for adapting the filter

Sometimes it is useful to automatize the calibration e.g., to construct multi
user or learning systems. Due to the frame problem the automatic calibration
requires a possibility of manual calibration as well. In a formal view, this could
be done by concatenating calibrations. However this would render the formal-
ization to be not generic. Therefore the calibration is constructed in a way to be
able to be applied recursively. Thus the two context adaptations are combined
as shown in figure 9.

Now the control information for the adaptation of the main system and the
control information to select them originate from one context. Thus, context
can be used to adapt parts of the context (from a system’s point of view). To
enable full adaptability it would be required that alternatives could be chosen
for the control channels, which control the calibration. This is adequate to a
change of different input channels. Of course, this is not possible with the filter

20 Ch. 3 : Formal definitions

Fig. 9: Combination of context and calibration context

FA1. We therefore introduce the filter FA2(n):

FA2(n)

in i1, . . . , in : MSG ω; s : 0, 1, . . . , n ω

out o1, . . . , on : MSG ω

∀ k ∈ {1, . . . , n} : #ok = #({k} S© (s|#ik))

∀ k ∈ {1, . . . , n} : ok ⊒ filterk(s|#ik , ik)

To enable a choice out of multiple input channels, a merge function is integrated
into the filter component resulting in FA3(n):

FA3(n)

in i1, . . . , in : MSG ω; s : 0, 1, . . . , n ω

out o : MSG ω

∀ k ∈ {1, . . . , n} : filterk(s|#ik , ik) ⊒ filterk({1, . . . , n} S© s, o)

All outputs are multiplexed to one output channel. It is important to notice
that even no output is possible (“0” on the control channel). The following
example should clarify that.

3.5 Calibration 21

Given n = 2, i ′1 = filter(s, i1), i ′2 = filter(s, i2) and s′ = {1, 2} S© s
then FA3(n) works as follows:

i1 : abcdefghijklmnopqrst...

i ′1 : behknqt...

i2 : ABCDEFGHIJKLM...

i ′2 : CFIL...

s : 012012012012012012012012...

s′ : 1212121212121212...

o : bCeFhIkL...

The new filter FA3(n) is suitable to replace any other filters mentioned before
in any scenario in figure 5. However, rather a set of channels with an identical
syntactic interface is controlled than a single channel. But, FA3 either is able
to calibrate itself by feedback or another context adaption. To enable both at
the same time a combination of at least two FA3 is needed. Both need to be
controlled via the same control channel. The control information must comprise
the information for the controlling of the feedback loop as well as for the con-
trolling of the other channel sets that are not fed back. The Filter FA4(k,n1,...,nk)

therefore is:

FA4(k,n1,...,nk)

in i11, . . . , i1n1
, . . . , iknk

: MSG ω;
s : {(s1, . . . , sk) | s1 ∈ {0, 1, . . . , n1}, . . . , sk ∈ {0, 1, . . . , nk}}

ω

out o1, . . . , on : MSG ω

∀m ∈ {1, . . . , k} : FA3(im1
, . . . , imnm

, elemstrmm(s), om)

with

elemstrmj : {(s1, .., sk) | s1 ∈ {0, .., n1}, .., sk ∈ {0, .., nk}}
ω → {0, .., nk}

ω

being a helper function with

0 < j ≤ k ⇒ elmstrmj((s1, . . . , sk)⌢x) = sj
⌢elemstrmj(x)

that extracts the control information for a set of channels ik1, . . . , iknk
out of the

complete control channel s and sends it to a FA3 filter for that set of channels
controlling the associated output ok .

An example for a filter FA4 may be the following:

22 Ch. 3 : Formal definitions

For k = 2 (two sets of channels), n1 = 2, n2 = 2 and s′ = elemstrm1{s}
as well as o1 for self calibration being fed back to s an example behavior
is:

s : (1,0) (1,1) (2,2) (2,1)...

s′ : 1122...

i11 : (1,0) (1,1) (2,0) (1,0)...

i12 : (2,0) (2,0) (2,2) (2,1)...

i21 : abcdefghijklmno...

i22 : ABCDEFGHI...

o1 : (1,0) (1,1) (2,2) (2,1)...

o2 : bCd...

Figure 10 shows the filter FA4 with the control of the calibration via a fed back
channel (3). This channel defines which alternative channels for the control
of the calibration of the adaptation is used (2). These channels control the
adaptation of the system (1). The active channel of the calibration control is
fed back to the calibration control channel. This allows the calibration control
to hand over to an alternative channel.

System

F
4

Context

Alternative

outputs

(=possible adaptations)

Alternative

control channlel

(=possible calibrations)

1

2

Control chanel for

control channels

(=selfcalibration)

3
Alternative control channels

for self calibration

(virtually muxed to i
11

and i
12

)

4

s=o
1

i
11

i
12

i
21

i
22

i
23

o
2

Fig. 10: Calibration with recursive feedback channel

3.6 Formalizing the framework infrastructure

In this section the calibrateable context adaptation will be formally defined.
We will examine the following questions:

• How can potentially infinite alternative components be merged onto a

3.6 Formalizing the framework infrastructure 23

finite technical realization?

• How can the three process segments (obtaining context, making decisions
and implementation of decisions) be mapped onto the formalization?

• How are the steps mapped onto sensors, interpreters, actuators and con-
text elements?

Specification vs. implementation

The specification of the system must be complete and thus the complete be-
havior must be defined. But it is not necessary to claim all implementations of
aspects of the system to be available at design time. If this was the case there
would be a problem especially with the calibration if users add new behavior.

Instead, the model is defined with as few abstractions as possible. This model
comprises all observable pieces of behavior and a mechanism to change between
them. This is what adaptation actually is. Using a context, it is possible to
have parts of the system being unimplemented at design time. Via the context
adaptation it is possible to ensure that always adequate behavior is exhibited.
This comprises that the behavior can be mapped on available resources (the
availability of implementations is context as well).

To allow for runtime implementation, or at least to allow for binding imple-
mentations at runtime, there are some well known techniques in software en-
gineering: dynamic binding of methods or dynamic loading of libraries. The
most flexible technique are services (web services), which allows for exchanging
component implementations.

Services and partial reconfigurability

Reconfiguration in software engineering is the (re-)arrangement of the commu-
nication structure of a predefined set of component implementations to archive
a certain goal (to implement a function or satisfy a requirement). This is equiv-
alent to changing the component implementation. (Web-)Services are an ade-
quate technique to allow for component exchange. Services separate the compo-
nent functionality from its implementation. Applications are only specified via
their logical dependencies. At runtime, a suitable configuration with the set of
implemented components is chosen and bound to the logical architecture. This
is known as Design@Runtime [FSS00].

For the formal specification of services it is possible to use the basic model and to
extend it with a structureless component (service) as proposed in [FSS00]. This
allows to describe the behavior of a component according to the signature and
to explicit bind it to a component implementation that realizes this behavior.
A service is defined by using a partial behavior F ′

i of a component in relation
to the partial sets I ′

i ⊆ I , O′

i ⊆ O of the signature where the partial behavior
must not interfere.

24 Ch. 3 : Formal definitions

Definition

☞ A component C = (I , O, F) implements a service if there is a service
D = (ID, OD, FD) with ID ⊆ I , OD ⊆ O such that for a function

F ′ :
−→
I ′ → P(

−→
O′) with I ′ = I \ ID and O′ = O \ OD holds:

Given FD :
−→
ID → P(

−→
OD), then

F ′ :
−→
I ′ → P(

−→
O′) ⇒ F = FD ⊗ F ′ ∧ ID ∩ I ′ = ∅ ∧ OD ∩ O′ = ∅.

This implies that all services that are implemented by a component make use
of disjoint channels. This idea allows the exchange of implementations but does
not explain how this is done.

Definition

☞ An agent is an instance of a component C = (I , O, F) and has a unique
identifier a ∈ ID. The set of all agents over a set of channels K ⊆ CH is
defined as:
A(K)

def
= {(a, I , O, F) ∈ ID × P(K) × P(K) ×

−−−→
P(K) → P(

−−−→
P(K))) :

F ∈
−→
I → P(

−→
O)}

a ∈ A(CH) with a = (id, ID , OD, FD) defines a single agent.

This definition helps in distinguishing between components and implementa-
tions. This is required to be able to distinguish between two instances of an
identical implementation of a component. We can now draw the line to the
formal definition of adaptation. An exchange of a technical component can be
treated as a switch of alternative input or output channels. In fact this is two
adaptations: an adaptation of the input channels for the service consumer and
another adaptation of the output channels of the service provider.

Service

Expand

Expand

Adaptation 1

Merge

Merge

Adaptation 2

Service

Consumer
Service provider

Service provider

FA2

FA2

FA4

i1

i2

o11

o12

iR21

iR11

iR22

iR12

oR1

oR2

Control channel

Fig. 11: Service as two adaptations

3.6 Formalizing the framework infrastructure 25

Figure 11 shows a service and the two mentioned adaptations. By reproducing
the inputs, the input adaptation can be done by FA2 filters. The output channels
can be handled by a FA4 filter. Only the control channel has to be prepared
(corresponding information has to be extracted). With this considerations a
service is defined by the specification D(n, m, k).

D(n,m,k)

in i1, . . . , in : MSG ω; | calling channels 1. . . n

iR11, . . . , iRkm : MSG ω; | backward channels 1. . . m of 1. . . k components

s : {0, 1, . . . , k} ω | binding to 1. . . k service providers or 0

out o11, . . . , okm : MSG ω; | filtered output channels 1. . . n to 1. . . m

| service consuming components

oR1, . . . , oRm : MSG ω | filtered and merged backward channels

∀ j ∈ {1, . . . , n} : FA2(k)(

k
︷ ︸︸ ︷

ij , . . . , ij , s, oj1, ojk) | calling channels are dupli-

| cated and activated for

| one of 1. . . k targets

∀ h ∈ {1, . . . , m} : FA3(k)(iR1h , . . . , iRkh , s, oRh) | back channels of 1. . . k ser-

| vice providers are activated

A service is a proxy component that redirects calls to one of k alternative service
providing components and answers as if the caller component only communi-
cates with one service providing component.

Definition

☞ The set of services D is defined as the set of components C = (ID ∪
S , OD, D(| ID |, | OD |, k)), k ∈ {0..., | a |}
which allows for access to the set of agents S = (id, I , O, F) of all compo-
nents implementing a partial behavior FD C = (I , O, F) with C = CD⊗C1

and CD = (ID, OD, FD). Further defines d ∈ D with d = (ID, OD, FD, k) a
single service.

Definition

☞ The reconfiguration behavior of a service is defined by the stream of mes-
sages of the control channel. Therefore reconfiguration can be conceived as
another component.

The logical architecture is an invariant over a reconfigurable system. Therefore,
only partial reconfiguration is possible where the functional dependencies are
not touched. This partial reconfigurability is suitable to suffice requirements
about availability of functionality in adaptive systems which depend on extern
resources and not on concrete implementations. This is true as long as a combi-
nation of services can be found that allows for implementing the defined (parts

26 Ch. 3 : Formal definitions

of the) behavior.

Activator and total reconfiguration

Sometimes partial reconfiguration is not enough to ensure usefulness of the
system. Therefore an super component is introduced that reads a description
for behavior from the outside and represents it by means of internal behavior.

Definition

☞ A service is reconfigurable if the component that represents the service can
be activated via a control channel

A service that is deactivated is not bound to a component and messages (except
control messages) are dropped. The controlling of such reconfigurable services
is like the controlling of the calibration. The activator service is defined by the
following specification.

AC({d1(I1,O1,F1,n1), ...,dk(Ik,Ok,Fk,nk)} ∈ P(D))

in sall : {(s1, . . . , sk) | s1 ∈ {0, 1, . . . , n1}, . . . , sk ∈ {0, 1, . . . , nk}}
ω

out sD0 : {0, 1, . . . , n1}
ω, . . . , sDk{0, 1, . . . , nk}

ω

∀m ∈ {0, . . . , k} : sDm = elemstrm(sall)

Definition

☞ The activator constructs control information from a control channel for all
services including the activator service, which is implemented by itself.

If all dependencies of the components of a given set of agents are specified in
terms of services, the activator could emulate as well the change of the logical
architecture as the change of component implementations. The activator can be
modeled as a component – and thus can be denoted as context (cf. section 3.5).

3.7 Formalizing the context adaptation model

The modeling of context adaptive systems by means of the formalization is
quite complex and does not reflect appropriately the three steps in adaptation.
To solve this issue, we will have to make some further investigations.

The activator only has to be able to adapt services that are part of the adap-
tation logic, and not of the core system (cf. section 2.7). This implies that only
services are affected that participate in obtaining, processing and using context.
These are exactly the sensors, interpreters, actuators and context elements from
the K-Model in section 2.5.

3.7 Formalizing the context adaptation model 27

Control channel

s
all

Context Activator1

Activator2

Activator

Service

(D0)

D2

Context
s
all

s
1D0

s
1D1

s
1D2

s
2D0

s
2D1

s
2D2

s
D0

s
D2

s
D1

D1

F
A4

Fig. 12: Calibrateable adaptation with activator

The K-Model was conceived to require decoupling of components. They should
only be able to communicate via context. This results in a unified interface.
Therefore the calibrateable context adaptation may be constructed by these
four service types and independently of the application.

Context elements

Context elements can be formalized by the following specification, whereby for
all subsequent specifications CTX ⊂ MSG and T ⊂ N.

Fctx

in i : (CTX × T) ω, r : T ω

out o : CTX ω

∀ k, j ∈ {0, . . . ,#i}; k < j ; (c1, t1), (c2, T2) ∈ CTX × T :

(c1, t1) = pos(i, k) ∧ (c2, t2) = pos(i, j) ⇒ t1 < t2

o ⊒ gen(i, r)

28 Ch. 3 : Formal definitions

The function gen : (CTX × T) ω × T ω → CTX ω is a helper function defined
by

gen(i, a&r) = choose(expand(i, 0,⊥), a)&gen(i, r)

which selects the context from the input stream i according to a certain time
stamp and arranges i to an output stream, that corresponds to an input stream
r of time stamps.

The helping function choose : (CTX × T) ω × T → CTX with

t1 = t ⇒ choose((c1, t1)&e, t) = c1

t1 > t ⇒ choose((c1, t1)&e, t) = choose(e, t)
t1 < t ⇒ choose((c1, t1)&e, t) =⊥

selects the value of the context at a certain time stamp.

Another function expand : (CTX × T) ω × T × CTX → (CTX × T) ω with

t1 = t ⇒ expand((c1, t1)&i, t, c) = (c1, t1)&expand(i, t + 1, c1)
t1 > t ⇒ expand((c1, t1)&i, t, c) = (c, t)&expand((c1 , t1)&i, t + 1, c)

extends a stream of context information and timestamps by intermediate re-
sults. Context information is repeated until another context information with
higher time stamp is available (e.g., (a,1),(b,3) becomes (a,1),(a,2),(b,3)).

After all, the helper function pos : CTX ω × T → CTX defined by

p > 1 ⇒ pos(a&i, p) = pos(i, p − 1)
p = 1 ⇒ pos(a&i, p) = a

returns the element at the specified position within a stream.

Sensors

Sensors are defined by the following specification Fsen(n):

Fsen(n)

out o1, . . . , on : (CTX × T) ω

According to this specification, sensors expose an arbitrary partial component
behavior, that may generate context information at their corresponding output
channels.

29

Actuators

Actuators in turn are defined by the specification Fact(n).

Fact(n)

in i1, . . . , in : CTX ω

out r1, . . . , rn : T

∀ k ∈ {1, . . . , n} : #ik = #rk

Actuators are arbitrary components, which can request context information
from a context element. They need to be able to generate time stamp informa-
tion.

Interpreters

Interpreters are defined by the specification Fint(n,m)

Fint(n,m)

in i1, . . . , in : CTX ω

out r1, . . . , rn : T , o1, . . . , om : (CTX × T) ω

∀ k ∈ {1, . . . , n} : #ik = #rk

Interpreters integrate the functionality of sensors and actuators. They are used
to interpret context information and to generate new context information from
the given one.

4 Conclusion

In this document we have described a formal model for the notion of calibrate-
able context adaptation and provided an overview of important issues and how
they could be solved. The objective was to provide a formal framework for
constructing context aware systems. We informally introduced and motivated
several notions related to context awareness. With the informal notions in mind,
we described the so called K-Model, which allows to structurally describe the
adaptation logic of context aware systems. We proposed to separate those sys-
tems into two parts in order to reduce the overall complexity and to explicitly
present relevant parts of their decision making to users. One part comprises the
adaptation logic and the other part constitutes the system core.

The intuitive description was used to formalize adaptation as a filter. Metaphor-
ically speaking, this filter acts like a window or magnifying glass. The filter

References 30

“scrolls” over the overall behavior of the system, thereby only exposing a cer-
tain portion at a particular time. This technique is used for simulating dynamic
behavior. Depending on the situation of use, the window selects the appropriate
part of the overall system behavior by changing its position. In consequence,
another part of the overall system behavior becomes observable. We formalized
this approach by means of the Focus theory for specifying interactive systems.

The K-Model provides a structural view on adaptation and describes the in-
formation flow, which is responsible for the decision making in order to adapt
to changing environment conditions. To emphasize this, the K-Model does not
provide the exact information for determining how decisions are made. Further
work directs to issues concerning how situations are assessed, which conclusions
are drawn and, finally, how decisions are made. The K-Model as a framework
allows to incorporate this information in a syntactic form (cf. syType in sec-
tion 2.7) by using it as part of the behavioral specifications of an entity. On
the other hand – since the Cawar framework is intended to support the im-
plementation of context aware applications – it is more convenient to specify
the overall behavior of the system in a top-down approach. This overall spec-
ification can afterwards be mapped to an appropriate K-Model describing the
structure and communication between the involved entities of the adaptation
logics.

References

[BS01] M. Broy and K. Stølen. Specification and Development of Interactive
Systems: Focus on Streams, Interfaces, and Refinement. Springer,
2001.

[Den84] Daniel C. Dennett. Cognitive wheels: The frame problem of ai.
Minds, Machines, and Evolution, pages 128–151, 1984. Cambridge
University Press.

[FLSS08] Michael Fahrmair, Christian Leuxner, Wassiou Sitou, and Bernd
Spanfelner. Adaptation design in ubiquitous computing. techreport,
2008.

[FSS00] Michael Fahrmair, Chris Salzmann, and Maurice Schoenmakers.
Carp@ - a reflection based tool for observing jini services.
In Proceedings of the 1st OOPSLA Workshop on Reflection and
Software Engineering, pages 209–227, London, UK, 2000. Springer-
Verlag.

[FSS05] M. Fahrmair, W. Sitou, and B. Spanfelner. An engineering approach
to adaptation and calibration. In Modeling and Retrieval of Context
MRC 2005. Springer LNCS 3946, 2005.

[FSS06] M. Fahrmair, W. Sitou, and B. Spanfelner. Unwanted behavior and
its impact on adaptive systems in ubiquitous computing. In 14th

31 References

Workshop on Adaptivity and User Modeling in Interactive Systems
– LWA/ABIS, 2006.

[MDF+04] E. Mohyeldin, M. Dillinger, M. Fahrmair, P. Dornbusch, and
W. Sitou. Interworking between link layer and application layer
adaptations in a reconfigurable wireless middleware. In 15th IEEE
International Symposium on Personal, Indoor and Mobile Commu-
nications (PIMRC 2004, Barcelona/Spain), sep 2004.

[MFSS05] Eiman Mohyeldin, Michael Fahrmair, Wassiou Sitou, and Bernd
Spanfelner. A generic framework for context aware and adaptation
behaviour of reconfigurable systems. In The 16th Annual IEEE In-
ternational Symposium on Personal Indoor and Mobile Radio Com-
munications (PIMRC05), 11-14 September 2005, Berlin, Germany,
2005.

[SBHW99] Albrecht Schmidt, Michael Beigl, and H. Hans-W. There is more
to context than location. Computers and Graphics, 23(6):893–901,
1999.

[Sch02] Albrecht Schmidt. Ubiquitous Computing - Computing in Con-
text. PhD thesis, Computing Department, Lancaster University,
England, U.K., 11 2002.

[SFS06] Alistair Sutcliffe, Stephen Fickas, and MacKay Moore Sohlberg.
PC-RE: a method for personal and contextual requirements engi-
neering with some experience. Requirements Engineering, 11(No.
4):157–173, 2006.

[Sim69] Herbert A. Simon. The sciences of the artificial. MIT Press, Cam-
bridge, MA, USA, 1969.

[SS07] W. Sitou and B. Spanfelner. Towards requirements engineering for
context adaptive systems. In The thirty-first Annual International
Computer Software & Application Conference (COMPSAC). Vol-
ume 2 - Workshop Papers, 2007.

[Wei91] M. Weiser. The computer for the 21st century. Scientific American,
265(3):94–104, September 1991.

