
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Analysis of executables for WCET concerns

Andrea Flexeder, Michael Petter and Helmut Seidl

ABCDEFGHIJKLMNO
TUM-I0838

Dezember 08

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-12-I0838-0/1.-FI

Alle Rechte vorbehalten

Nachdruck auch auszugsweise verboten

c©2008

Druck: Institut für Informatik der

Technischen Universität München

Analysis of executables for WCET concerns

Andrea Flexeder, Michael Petter and Helmut Seidl

Technische Universität München, Boltzmannstrasse 3, 85748 Garching, Germany,

{flexeder, petter, seidl}@cs.tum.edu,

WWW home page: http://www2.cs.tum.edu/˜{flexeder,petter,seidl}

Abstract. In this paper we present an analysis of assembly code for safety-

critical embedded environments. Since local and global variables are the core

concepts affecting the control flow of such programs, we first concentrate on

classifying memory accesses as candidates for local or global variables. This is

achieved by an interprocedural analysis of affine equality relations. We present

how to refine this information via a combined affine equality relation and interval

analysis. Thus, we achieve a sufficiently accurate classification of memory ac-

cesses in this class of binaries. As an application, we refine WCET analyses by

yielding alignment properties of memory accesses.

1 Introduction

Especially in the field of safety-critical real-time applications there arises the need to

verify that all timing constraints on the considered system will be adhered. The fact

that the program will meet its deadlines is as important as the functional correctness

of the program. Deriving run-time guarantees for real-time systems has thus attracted

more attention in the area of static program analysis. Since within real-time systems

tasks have timing requirements, which have to be kept to assure correct functionality,

one is interested in guaranteeing that each task finishes before its deadline. In this re-

gard it is intended to statically determine the worst-case execution time (WCET) of a

program. The only way to achieve reliable assumptions about this maximal time taking

for a certain program to execute on a specific system, is that one has to analyse the

executable, instead of the source code, written in a high-level programming language.

Because of the lack of trust in the persons designing the program analysis, customers

often only provide the executable. Additionally, the program analyser must only rely on

the executable and cannot be sure that the execution of the source code by the processor

really behaves as the code writer intends to, according to the principle WYSINWYX

[5]. Since analysing the result of the compiler, one is not dependent on a certification of

the correctness of the compiler.

Recently the gap between processor speed and memory access is growing. Thus, cache

memories are applied to provide faster access to recently referenced memory regions.

Despite this performance benefit, caches in real-time systems show up the drawback of

complicating a decent prediction of the WCET in real-time systems, because the perfor-

mance of the cache appears quite unpredictable. In order to consider the performance of

the cache, there are many program analyses which aim at ranking memory references as

mailto:flexeder@cs.tum.edu
mailto:petter@cs.tum.edu
mailto:seidl@cs.tum.edu
http://www2.cs.tum.edu

cache hits or misses [2,16,6,19]. The majority of address expressions occurring in real-

time applications result from accesses to local variables [1]. Especially in the area of

software development for avionics restrictive safety guidelines have to be kept, as e.g.

the standard DO-178B [25]. In order to conform to this standard the C code, produced

e.g. by SCADE [10], should hold a number of characteristics in order to support the

certification process. These characteristics e.g. consist of the absence of pointers, ad-

dress arithmetic and dynamic memory allocation, etc.. Thus, assembly code generated

for C code which conforms to these characteristics only contains the concept of local

and global variables. In this paper we present an interprocedural analysis on assembly

code identifying candidates for global and local variables. Additionally, we introduce

an analysis yielding alignment properties, as the alignment of memory accesses has a

crucial impact on their performance. The main goal of our interprocedural analysis, im-

plemented within the project SuReal [1], consists in yielding precise information about

local variables and alignment properties to improve WCET analyses.

The remainder of the paper is organised as follows: The next subsection describes

two approaches of executable analysis, using the call-string approach. Section 2 spec-

ifies the general set-up and the Power PC architecture our analysis builds on. The fol-

lowing section 3 addresses an analysis of affine register equalities. This information

contributes in precisely identifying and correctly addressing possible local variables.

Section 4 describes the enhancement of a conventional interval analysis on unoptimised

assembly code, which relies on affine equality relations between memory addresses and

processor registers, in order to obtain a meaningful result at all. The alignment analysis

is specified in section 5 and finally we conclude.

Related Work To efficiently determine upper bounds for the WCET of a program [2],

Wilhelm, Ferdinand et al. [11], [12], [13] describe an approach to predict the cache be-

haviour of machine programs for real-time systems. One crucial aspect in their approach

is their so-called value analysis where value ranges for processor registers and address

ranges for instructions accessing memory are computed for every program point and

execution context. By this, indirect accesses to memory can be resolved. The existing

approach of the value analysis is based on a simple interval analysis. In this process, the

uncomfortable property is that the user has to provide divers details about the underly-

ing program, e.g., the initial value of the stack pointer, the number of loop iterations for

several loops, an upper bound for the call of recursive functions, etc. These assumptions

about the program execution are required to generally find a and improve the precision

of the result [11]. Additionally, a cache analysis is performed which classifies memory

references as cache hit or miss [13], in order to use this information within the pipeline

analysis [26] to specify the execution times for instruction sequences. The aim of this

approach is to achieve reliable assumptions about the maximal time taking for a certain

real-time application to execute on a specific system. Since within their analysis frame-

work the call-string approach is taken and unrolling of loops and recursive functions is

performed, their proposal can be considered more or less as a symbolic execution of the

program.

In [3] Reps et al. describe their approach to recover information, e.g., variables and

other information about heap-allocated objects from x86 executables. As stated in [4],

2

their primary objective is to develop bug-detection and security vulnerability analyses

working on stripped executables [5]. Within their tool CodeSurfer/x86 [24][18] they

implemented several static analysis algorithms whose combination allows the recovery

of information about the contents of memory locations and the way they are manipu-

lated by the executable. Their abstraction is called abstract locations [23] and gives an

overapproximation of the values contained in memory regions, i.e., memory locations

and processor registers. Within their so-called RIC domain they keep intervals and thus

their assembly code analysis requires the call-string approach. A unification-based flow-

insensitive algorithm [22] recovers information about variables and types, in order to

refine the set of inferred abstract locations. These two analyses are run in an iterative

strategy to identify more precise abstract locations. The aim of their executable analysis

is to recover an intermediate representation from a stripped executable and additionally

detecting whether the executable conforms to a standard compilation model.

2 General Set-up

This section describes the general set-up and the architecture our analyses are based on.

PPC Architecture Here, we restrict the hardware basis for our analysis of assem-

bly code to the 32-bit Power PC architecture (PPC)[15], a three-address-machine —

and therefore each instruction may contain maximally three operands. The PPC ar-

chitecture offers 32 general purpose registers, 32 floating point registers and several

additional special purpose registers. Instructions concerning floating point registers and

special purpose registers are ignored, since we deem it improbable that such instruc-

tions will be used for address computation. The registers have a global scope valid for

all the functions within the program (i.e. registers used for parameter passing, as return

value of a function, or for handling local variables, etc.). In PPC, the registers x14 up to

x31 are declared non-volatile and used for handling local variables. The most important

convention concerns register x1 which denotes the stack pointer. As specified in the

PPC instruction set [27], only load and store operations access and if so modify mem-

ory. In the following, a memory access is denoted byMm[p]where p is an affine address

expression and m is the number of bytes of the memory operand. The instructions ad-

dressing memory can be applied to bytes, half-words, or words (4 bytes). Information

about the number of bytes accessed by each instruction argument can be deduced by the

name suffix of the instruction (b, h, w, e.g., stb, stw, sth). A matter of particular interest

are the different addressing modes for memory access instructions, which are listed in

the following table:

addr. mode description example

(xj) register indirect lwz xi, 0(xj) ⇒ xi := M4[xj]
c(xj) register indirect with immediate in-

dex

lwz xi, c(xj) ⇒ xi := M4[xj + c]

xj ,xk register indirect with index lwzux xi,xj ,xk ⇒ xi := M4[xj + xk]

In PPC, there arise three different possibilities of memory addressing: via a register

Mm[xj], via a register with a constant offset Mm[xj + c], or via the addition of two

registers Mm[xj + xk].

3

According to the PPC-ABI [28], for every function a stack frame is installed where the

necessary stack cells for the execution of the function body are allocated. This stack

grows downward from high addresses. A stack frame is allocated by a fixed scheme of

instructions for saving and restoring the function parameters (in PPC these are the reg-

isters x3, . . . ,x10) and the return value (in PPC these are register r3 and r4). According
to the calling convention [28], these so-called non-volatile registers must be saved be-

fore and restored after a function call. This can be achieved by a function prologue and

epilogue, generated by a compiler, as the following PPC assembly code illustrates.

Example 1. stack frame

01: stwu r1,-48(r1)

02: mflr r0

03: stw r0,52(r1)

04: stw r14,8(r1)

05: stw r15,12(r1)

... // function body

10: or r3,r0,r0

11: lwz r14,8(r1)

12: lwz r15,12(r1)

13: addi r1,r1,48

14: blr

Instruction 01 acquires 48 bytes memory for execut-

ing the function and sets the stack pointer register r1.
Generally in the function prologue a stack frame is

established, where a reference to the previous stack

frame is saved on the top of stack (cf. instruction 03).
According to the processor ABI [28], the first word of

the stack frame shall always point to the previously

allocated stack frame. Additionally, in the function

prologue all the non-volatile registers it uses may be

saved (cf. instructions 04, 05). After having executed

the function body, in the function epilogue the return

value is written into register r3, additionally those reg-
isters saved in the prologue code have to be restored

(cf. instructions 11, 12).

Then, the current stack frame is deallocated (cf. instruction 13) – restoring the previous
stack frame. Deallocation of a stack frame is accomplished either by loading the initial

value of the stack pointer register, which is kept on the top of stack, or by incrementing

the stack pointer by the same amount by which it was decremented in the function

prologue (cf. instruction 13). Finally, control returns to the caller via blr-instruction.

If the assembly code adheres to the coding conventions with respect to the stack

pointer register, according to the processor ABI, the value of the stack pointer before

and after function execution is the same. However, as the PPC-ABI [28] suggests, there

are non-standard calling conventions for register saving and restoring functions. These

functions are required to be statically linked into any executable. In this case it is in-

tended that after the execution of these saving and restoring functions the height of the

stack frame of the caller is modified.

4

Example 2. non-standard calling conventions

_restgpr_14_l:

01: lwz r14, -76(r11)

02: call _restgpr_15_l

_restgpr_15_l:

03: lwz r15, -72(r11)

04: call _restgpr_16_l

.

.

.

_rest_gpr_31_l:

36: lwz r0, 4(r11)

37: lwz r31, -8(r11)

38: mtspr lr, r0

39: ori r1, r11, 0

40: blr

The saving and restoring instructions for the

registers r14 − r31 are relocated into chains

of system-level routines _savegpr_X_l and

_restgpr_X_l. Example 2 illustrates the rou-

tines for restoring the non-volatile registers af-

ter a function call. In the epilogue of a func-

tion call, the callee first stores the initial value

of the caller’s stack pointer in register r11 before

_restgpr_14_l is called. This starts the chain of

instructions which restores the former registers

of the caller. Finally, in the chain’s end routine

_restgpr_31_l the stack pointer is restored by

moving the contents of r11 to r1 (cf. instruction

39). Then, control is passed back to the caller.

For our analysis of identifying local respectively global variables, first we discuss the

appearance of local and global variables in assembly code on the basis of PPC assembly.

The next example shows a simple C-program addressing global variable g and local

variable l, with the corresponding assembly code aside.

Example 3. variables in PPC assembly

int g;

int main(){

int l;

g=3;

l=5;

}

05: lis r9,10

06: li r0,3

07: stw r0,10244(r9)

08: li r0,5

09: stw r0,8(r1)

Generally the data area for local variables of a function is reserved as a region of con-

stant size on the stack. When a function is called this region for local variables is allo-

cated and it is deallocated when the function returns. In this process, the stack pointer

designates the top of the stack. Thus, each local variable is addressed by a constant off-

set relative to the stack pointer. As the initial value of the stack pointer is not fixed, but

depends on the whole history (the place a function is called), the addresses of the local

variables depend on the stack pointer. The global variables are managed in a global data

section, hence their addresses stay constant for all functions they are used in (absolute

addresses).

Thus, at machine code level, we obtain: the accesses to local variables arise indi-

rectly as Mm[x1 + c1], the accesses to global variables directly as absolute address

Mm[c2] where c1 and c2 denote constants and x1 the stack pointer. It is as well possible

that the address of a local or global variable is computed via more consecutive instruc-

tions. Consider e.g. the store instruction 15 in example 4. There, memory is addressed

via register r31 with offset 8. In order to identify if this memory access denotes a local

variable, we have to take instruction 05 into account, which states that register r31 is set

equal to the stack pointer register r1. For instruction 15, our analysis should yield that

a local variable with offset −24 to the initial value of the stack pointer is addressed. As

5

this example illustrates, it is not possible to identify whether a local or global variable is

actually addressed or not via some kind of pattern matching. Thus, we provide a general

approach for identifying variables in executables.

Program structure We restrict our framework to the analysis of the following class

of assembly code. The SW standard DO-178B [25], especially applied in the develop-

ment of aviation software, requires that the produced code is simple, deterministic and

efficient and should require as few resources as possible in terms of memory and execu-

tion time [9]. The objective of this guidelines is ensuring that SW performs its intended

function with a level of confidence in safety. In order to ease the certification process

the considered C code, which is mostly generated by e.g. SCADE [10] in the area of

safety-critical code development for avionics, should show the following characteristics

• no dynamic memory allocation

• no pointers/pointer arithmetics

• no recursion or unbounded loops

• no local arrays

which are important in the certification context. In summary the main semantical pro-

gram components of the class of assembly code we consider are local and global vari-

ables, global arrays and control structures. Thus, in this paper we introduce an analysis

of assembly code which is able to identify candidates for variables and global arrays and

yields information about their contents. On this basis we want to verify if the assem-

bly code to analyse conforms to the specified characteristics. In order to check whether

there occurs a dynamic stack modification, we introduce a conceptual frame pointer.

This frame pointer is referred to as artificial stack pointer register (xASP) and provides

a reference to the initial value of the stack pointer at the entry point of a function. Hence,

it is possible to check whether the stack frame of the caller was modified by a function

call and whether the stack frame was correctly deallocated at function exit. A dynamic

modification may be provoked, e.g., by the C-function alloca, as the following ex-

ample 4 illustrates.

Example 4. dynamic stack modification

int main(){

int x,y;

alloca(x);

y=5;

}

//int main{

01: stwu r1,-32(r1)

02: mflr r0

03: stw r31,28(r1)

04: stw r0,36(r1)

05: mr r31,r1

//alloca(x);

06: lwz r9,12(r31)

07: addi r9,r9,15

08: addi r0,r9,15

09: rlwinm r0,r0,28,4,31

10: rlwinm r0,r0,4,0,27

11: lwz r9,0(r1)

12: neg r0,r0

13: stwux r9,r1,r0

// y=5;

14: li r0,5

15: stw r0,8(r31)

//}

16: lwz r11,0(r1)

17: lwz r0,4(r11)

18: mtlr r0

19: lwz r31,-4(r11)

20: mr r1,r11

21: blr

The stack level is increased by a dynamic reservation of memory within the stack frame

of the caller of alloca. The function alloca returns a pointer to the allocated mem-

6

ory region which is automatically freed when the caller quits its stack frame. Consider

instruction stwux r9, r1, r0 (store word with update indexed) at address 13 where the

content of r9 is written into the word in memory addressed by summing the contents of

r1 and r0. Supplementary, the sum is placed into register r1. Here, the stack pointer is

decreased (value of r0 many bytes) and the address of the previous stack frame is now

stored at the word addressed by the new value of the stack pointer, i.e. on the top of

stack.

Next, we want to verify that according to the coding convention of the processor ABI,

on function exit each function correctly deallocates the stack frame it established on

function entry. First, we recall how the stack management of a procedure works. Within

the function prologue a new stack frame is established, where a region for local vari-

ables on the stack is reserved (cf. example 1). In this process the initial value of the

stack pointer is stored on the top of stack. After a dynamic stack modification the initial

stack pointer value is saved on the new top of stack (cf. instruction 13 in example 4). A

whole sequence of dynamic stack modifications causes that the initial value of the stack

pointer is stored on the new top of stack respectively after new space was allocated.

Then, within the function epilogue the initial value of the stack pointer is loaded from

the top of stack (cf. instruction 16 in example 4) and the previous stack frame is restored

(cf. instruction 20). Thus, for the verification of a correct deallocation, we explicitly as-
sume that a reference to the previous stack frame is always stored on top of stack. Now,

in order to verify that the previous stack frame is correctly restored at function exit, even

in presence of a dynamic stack modification, we must track the value saved on the top

of stack. As in case of example 4 there may be no exact value for the dynamic growth

of stack, and thus it is not possible to exactly address that memory cell denoting the

top of stack. For this purpose, we introduce an additional register xTOS , which always

denotes the top of stack within our equality relation analysis (refer to section 4). Back

to example 4, now it is possible to verify within the function epilogue (instruction 20)
that the current stack frame is deallocated correctly.

Then, after this analysis step, we have to verify that the top of stack always keeps the

initial value of the stack pointer, i.e. that this memory cell is not overwritten within

the function body. This can be achieved by considering the results of an interval anal-

ysis, providing information about the values of registers and memory locations. With

this technique it can be verified that the program shows no malicious behaviour with

respect to manipulating the top of stack and conforms to the coding conventions of the

processor ABI.

In order to verify that no pointer arithmetic is used, we propose a so-called escape

analysis, which yields the information that a stack address may be saved on the stack or

passed as parameter. This escape analysis is sketched in section 3.

After having specified the structure of the programs we handle, we describe their rep-

resentation.

Program representation The input to be analysed is a fully linked executable program

without any information about program and data allocation. As customary in data flow

analysis, the assembly-code to analyse is represented by control flow graphs. Within

our analysis framework, each function is described by a finite control flow graph Gf

7

which consists of:

• a finite set Nf of program points of function f ,

• a finite set Ef ⊆ (Nf × Nf) of edges,
• a mapping A : E → Label annotating each edge with an instruction,

• a unique entry point sf ∈ Nf of function f ,

• a unique exit point rf ∈ Nf of f .

Let X = {x1, . . . ,xk} denote the set of k registers the program operates on. Due to

the fact that processors perform their arithmetic operations modulo a power of 2, the
registers take values from the ring Z2w .

Each edge in the control flow graph is annotated by the representation of a pro-

cessor instruction. We model the concrete effect of every processor instruction within

our analyses by the following simple constructs: assignment statements, function calls,

and conditional branching. Note that some processor instructions may have side effects

modifying additional registers. Within our framework this is modelled by consecutive

assignments representing the whole effect of a processor instruction. For example, the

PPC conditional branch-instruction maymodify the link register for saving the effective

address of the instruction following the branch, and possibly the count register whose

value may be decremented. For a concrete example, consider instruction 14 up to 16
from example 6, which describe the C-construct i < 100. The semantics of all PPC

instructions is put down to the following basic statements – linear assignments of the

form xi := xj ± xk, xi := c · xj , affine assignments as xi := xj ± c, and guards

of the form xi �xj ,xi � c with � ∈ {≥, >,≤, <, ==, 6=} where c is a constant and

xi,xj ,xk are processor registers. Here, we restrict arithmetic to addition, subtraction,

and multiplication with a constant. Guards derive from those PPC instructions which

handle the branching mechanism – there the conditional expression is evaluated and its

result is placed in a single bit of the condition register (compare-instructions), subse-

quently the branch is performed according to this bit value of the condition register.

Example 5 illustrates the realisation of conditional branching in PPC assembly for an

if-else-sequence in C.

Example 5. conditional branching

z = (x>y) ? 1 : 0;

01: lwz r0,16(r1) //load x

02: lwz r9,12(r1) //load y

03: cmpw cr7,r0,r9 //place compare result in cr7

04: ble cr7,0x08 //branch if cr7 result denotes less

05: li r0,1

06: stw r0,24(r1) //save 1 in tmp memory cell

07: b 0x10

08: li r0,0

09: stw r0,24(r1) //save 0 in tmp memory cell

10: lwz r0,24(r1) //load from tmp memory cell

11: stw r0,8(r1) //save result in z

8

Furthermore, we encounter non-deterministic assignments of the form xi :=? which

represent a safe description of those instructions which cannot be handled precisely, but

have an impact on the values of registers (e.g. ecowx, eieio ...). Arithmetic instructions

as division, bit operations as, e.g., the rotate and shift instructions for shifting, rotating,

extracting, clearing, and inserting bit fields in a general way and logical instructions

(e.g and, or, nand, xor) are also represented by non-deterministic assignments. Skip-

statements model those instructions our analysis cannot deal with. They are omitted

here, because they have no effect on the underlying program state. Additionally, we

consider memory access instructions occurring in form of xi := Mm[p] or Mm[p] :=
xi where p is an affine expression. The majority of address expressions occurring in

executables of real-time applications result from accesses to local variables or one-

dimensional arrays[1]. These address expressions are mostly affine expressions and thus

it is sufficient to consider affine register relations, as described in the next section 3.

A program state assigns values from Z2w to processor registers when a certain pro-

gram point is reached at program execution. A program execution is represented as a

sequence of statements and leads to sequential transformations of the initial program

state. Taking guards into account we even obtain a set of transformations. At a program

point we consider the merge over all program executions reaching this program point.

Thus, we describe sets of states reaching program points by the collecting semantics.

To conclude, the following example 6 illustrates the control flow graph for the given

assembly code to its left.

Example 6. assembly code to CFG

int i,a[100];

for(i=0;i<100;i++)

a[i] = 3;

01: li r0, 0

02: stw r0,8(r1)

03: b 0x14

04: lwz r0,8(r1)

05: mulli r9,r0,4

06: addi r0,r1,8

07: add r9,r9,r0

08: addi r9,r9,4

09: li r0,3

10: stw r0,0(r9)

11: lwz r9,8(r1)

12: addi r0,r9,1

13: stw r0,8(r1)

14: lwz r0,8(r1)

15: cmpwi cr7,r0,99

16: ble cr7,0x04

2

1

3

12

13

5

6

7

8

9

10

11

x0 ≤ 99 x0 > 99

x0 := M4[x1 + 8];

x9 := x9 + 4;

x9 := x9 + x0;

x0 := x1 + 8;

x9 := 4 ∗ x0;

x0 := 3;

x9 := M4[x1 + 8];

x0 := x9 + 1;

M4[x1 + 8] := x0;

x0 := 0;

4

x0 := M4[x1 + 8];

M4[x9] := x0;

14

9

3 Affine Equality Relation Analysis

In this section, we present an interprocedural analysis inferring all valid affine equality

relations between the processor registers. These equality relations contribute in classify-

ing memory accesses or inferring alignment properties. Since the identification of local

variables demands tracking stack pointer modifications, we extend the register set X by

introducing the register xk+1 which represents the artificial stack pointer – for simplic-

ity denoted by xASP , henceforth. Thus, a state is modelled by a (k+2)-dimensional col-

umn vector x = (1, x1, . . . , xk+1)
T ∈ {1} × Z

k+1
2w . According to the approach of [20]

the extra 0-th component capturing the value 1 allows us modelling the semantic effects

of affine assignments through linear transformations. Every linear assignment t gives

rise to a state transformation [[xi := t]]x leading to (1, x1, . . . , xi−1, t, xi+1, . . . xk+1)
where t is a linear expression. In the case of conditional branching, the effect is given by

the set of those vectors satisfying the guard. A non-deterministic assignment [[xi :=?]]
results in the union of assigning every possible constant c ∈ Z2w to register xi. Sum-

marising, each statement induces linear transformations of the underlying program

state. This specifies our collecting semantics.

Now, we abstract sets of program states by submodules of Z
k+2
2w . We obtain all valid

affine equality relations by considering the dual module, i.e. all those vectors which are

orthogonal to the vectors from the submodule. For self-containedness, we briefly recall

a few properties of modules over Z2w , as described in detail in [21]. Z2w is not a field,

because only all odd elements are invertible, whereas every even element is a zero

divisor. A subset of Z
k+2
2w of vectors with entries in Z2w is a Z2w -module iff it is closed

under vector addition and scalar multiplication with elements from Z2w . Submodules

of Z
k+2
2w are closed under intersection and ordered by set inclusion. A subset S of a

submodule M ⊆ Z
k+2
2w is called a generator set of M iff M = {

∑m
i=1

aisi | m ≥
0, ai ∈ Z2w , si ∈ S}. M = 〈S〉 denotes that M is generated by S. The least upper

bound of two submodules M1, M2 is given by M1 ⊔M2 = 〈M1 ∪M2〉 = {m1 + m2 |
mi ∈ Mi}. The least element ⊥ is {0}, whereas the greatest element ⊤ is given by

the whole vector space Z
k+2
2w . Thus, submodules of Z

k+2
2w together with ⊔,⊑ form a

complete lattice whose height is at most (k + 2) · w. The generator set of vectors for

a Z2w -module ⊆ Z
k+2

2w is generated by at most k + 2 many vectors [21]. Thus, these

generator sets provide an effective representation of modules of vectors.

We obtain all valid affine equalities by computing the dual basis for a generator set

of vectors. An affine equality relation t over Z
k+2
2w is an equation of the form tc +

t0x0 + . . . + tk+1xk+1 = 0 for ti ∈ Z2w which is representable by the column vector

(tc, t0, . . . , tk+1)
T ∈ Z

k+2
2w . Henceforth, the set of all valid affine equality relations is

given in form of a set of vectors. A vector x ∈ Z
k+2

2w satisfies an affine equality t =
(tc, t0, . . . , tk+1)

T iff its scalar product yields x · t = 0. Thus, we obtain a valid affine

equality relation t ∈ Z
k+2
2w for a given module M iff ∀m ∈ M : m ·t = 0. We define the

function dual : 2Z
k+2

2w → 2Z
k+2

2w to compute the dual basis for a given generator set of

vectors. Consider e.g. the generator set S = 〈(1, 4, 6, 7, 9)T , (0, 0, 9, 1, 0)T 〉, given the

processor registers {x1, . . . ,x4}. The dual basis for S is given by the affine equalities

x1 = 4, 9 · x3 = x2 + 57, x4 = 9.
We set up a constraint system, whose least solution specifies the set of program states

attainable when reaching a distinguished program point. With the abstraction by genera-

10

tor sets, all affine equalities valid at a program point u are obtained by computing a dual

basis for the module of vectors valid at u. The framework for our interprocedural equal-

ity relation analysis is the following: we assume that every call node to a function f is

connected with the start node sf of the called function f . Thus, the module for the start

node of a function results from the least upper bound of all the call contexts — we take

the call-string approach of length zero (CSA-0). Encountering an unknown function

call, we must assume that any function is called. If there arise infinitely many possi-

ble targets for the function call, we lose all information about the register assignment

of the caller. However, if there is a finite set of possible targets for a function call, we

non-deterministically connect to all the function start points. Thus, at least some infor-

mation about the global register assignment could be retrieved. For this analysis we as-

sume that conditional branching is generalised to non-deterministic branching. Further-

more, we simplify the effect of load-instructions [[xi := Mm[p]]] to non-deterministic

assignments [[xi :=?]]. The effect of a store-instruction [[Mm[p] := xi]] is modelled as a

skip-statement having no effect on the values of registers. For simplicity, here we only

consider memory access instructions applied to words, i.e., m = 4: M4[p]. We set up

constraint system R♯ for CSA-0, whose values are generator sets of vectors from Z
k+2
2w :

[R0♯] R♯(smain) ⊒ [[xASP := x1]] {e0, . . . , ek+1} entry point of main

[R1♯] R♯(v) ⊒ [[xi :=?]]R♯(u) for edge (u,xi :=?, v)

[R2♯] R♯(v) ⊒ [[xi := t]] R♯(u) for edge (u,xi := t, v)

[R3♯] R♯(sf) ⊒ [[xASP := x1]] R♯(u) for edge (u, f(), _)

[R4♯] R♯(v) ⊒ combine(R♯(u), R♯(rf)) for edge (u, f(), v)

e0, . . . ek+1 denote the unit vectors. We assume that program execution always starts

with a call to the specific function main. The first constraint [R0♯] expresses that at the
entry point of main, we start with the top element of our lattice, which demonstrates

that nothing is known about the register assignment. To consistently describe mem-

ory accesses with respect to the stack pointer and verify the absence of dynamic stack

modifications, we transfer the initial value of the stack pointer x1 to the artificial stack

pointer xASP at the start node of every function. This allows for a consistent indication

of the beginning of a new stack frame throughout the whole body of a function.

Every transition to another program state induces a transformation of the module

of vectors, according to the edge annotation. The effect of a linear assignment ([R2♯])
can be realised by multiplication with a transition matrix [21] — whereas the effect of a

non-deterministic assignment [[xi :=?]] ([R1♯]) consists in the union of assigning every

possible constant value to xi which causes a loss of information about the values of xi.

Technically, this can be implemented by adding the unit vector ei as a new generator to

the given module of vectors.

Finally, constraints [R3♯] and [R4♯] describe the handling of a call to function f .

For a function call f() the assignment of the global registers within the caller has to be

propagated to the start node of the called function sf . We assume that the non-volatile

registers within the callee are initialised properly and thus, we spare to set these reg-

isters to unknown values. This is specified by constraint [R3♯]. In order to embed the

effect of a function call into the caller, we combine the module of vectors valid before

the function was called R♯(u) with the procedural effect R♯(rf). Within CSA-0, the

11

effect of f is given by the module of vectors valid at its return point rf . We define

M |G as the restriction of the vectors of the module M to those vectors which only

consist of components from G, i.e., for all vectors of M , we omit all those components

6∈ G. Henceforth, G is the set of global processor registers, for PPC i.e. {x14, . . . ,x31},
whereas L is the set of local processor registers, for PPC i.e. {x1, . . . ,x13}. This means

that the moduleM |G induces only relations between global registers. For a function call

we consider the module of the caller R♯(u)|L∪x0∪xASP
inducing only local register rela-

tions and the module of the callee R♯(rf)|G∪x0
inducing only global register relations.

Then, the tensor product ⊗ of the two modules is computed. Geometrically the tensor

product corresponds to the Cartesian product of all the points, represented by the two

modules. Thus, the function combine : 2Z
k+2

2w × 2Z
k+2

2w → 2Z
k+2

2w is defined as

combine(R♯(u), R♯(rf)) : R♯(u)|L∪x0∪xASP
⊗ R♯(rf)|G∪x0

Consider the following example:

Example 7. Here, we assume the register set {x0,x1, . . . ,x4}, where x1,x2 are global

registers, x3,x4 have local scope and x0 denotes the extra 0−th component. We con-

sider the two generator sets of vectorsM1 = 〈(1, 1, 6, 1, 2)T , (0, 0, 1, 0, 1)T 〉 andM2 =
〈(1, 0, 2, 4, 1)T , (0, 1, 2, 1, 0)T 〉. The dual basis forM1 is x1 = 1, x3 = 1, x2 = x4+4,
the affine equalities for M2 are given by x2 = x1 + 2, x3 = x1 + 4, x4 = 1. Now, we
compute M1|G∪x0

⊗ M2|L∪x0
with

M1|G∪x0
=







x0→

x1 →

x2 →





1
1
6









0
0
1











, M2|L∪x0
=







x0→

x3→

x4→





1
4
1









0
1
0











Geometrically spoken, for the tensor product, we compute the Cartesian product of all

the points of the two modules and adopt all the rays as it stands to the result module.

Geometrically, all those vectors whose 0-th component is 0 are interpreted as rays. The

tensor product yields the module 〈(1, 1, 6, 4, 1)T , (0, 0, 1, 0, 0)T , (0, 0, 0, 1, 0)T 〉, which
corresponds to the affine equalities x4 = 1, x1 = 1. 2

Here, we assume that the assembly code adheres to the calling conventions from the

processor ABI or a preceding analysis verified that the local registers were saved and

additionally restored properly. After applying the function effect, we obtain a module

of vectors implying the global register assignment of the callee and the local register

assignment of the caller.

Summing up, we provided a description of the transfer functions of constraint system

R♯, which allows us to determine all valid affine register equalities for very program

point. All right-hand sides of the inequations in constraint system R♯ denote monotonic

functions and thus R♯ has a unique least solution. The termination of the fixpoint itera-

tion over the constraint system R♯ can be guaranteed, because every descending chain

of submodules of vectors in the finite domain Z
k+2
2w will finally terminate and because

of the monotonicity of the transfer functions.

For establishing a complexity bound for the equality relation analysis, we assume a

program size of n program points, k+2 processor registers and a bit width of w. Within

the fixpoint iteration at each of the n program points, we can extend the existing module

at most w · (k + 2) times with costs of O(w · (k + 2)2) every time. In order to obtain

all valid affine equality relations for one distinguished program point, we have to solve

12

a system of linear equations over Z
k
2w , which can be performed inO(log(w) · (k +2)3)

[21]. Summarising, we arrive at a total complexity of O(n · w2 · (k + 2)3).
Additionally, our approach allows to verify that there occurs no dynamic modification

of the stack frame of the caller. For this purpose we investigate if there was a dynamic

modification of the stack frame of the callee, which could have influenced the stack

frame of the caller, as e.g. example 2 illustrates. Since we assume that the safety-critical

code we analyse adheres to the characteristics specified in section 2, our implementation

issues a warning if the stack level of the caller could have been changed by a function

call. In order to detect a modification of the stack frame of the caller after a function

call, we define the auxiliary function δ : Z
k+2

2w × 2Z
k+2

2w → (Z2w)⊥. δ checks if the

global invariant t holds for a given set of affine equalities S.

Algorithm 1 δ(t, S)

if exists c ∈ Z2w ∀x ∈ S :
P

i tixi = c

return c;
else

return ⊥;

After a function call f(), we check if the difference between the stack pointer and the

artificial stack pointer x1 − xASP (SP -ASP relation) is equal for all affine equalities

from dual(R♯(rf)). If this invariant holds, we obtain a constant c describing the SP -

ASP difference – otherwise the value⊥ is returned. If the constant is equal to zero, the

stack frame established by the callee was successfully popped from the stack and has no

influence on the stack pointer of the caller. Otherwise we issue a warning that the stack

pointer of the caller has to be increased by this offset. However, if the invariant does not

hold (⊥ is returned), it was not possible to restore the SP -ASP relation of the callee.

Again, we issue a warning which states that we would have to discard all information

about the stack pointer of the caller after the function call in order to provide save

results.

Now, we describe a may-analysis which classifies memory locations as possible local

or global variables using the previous inferred affine register equalities.

Identifying Local Variables

Since only memory access instructions (xi := Mm[p] res. Mm[p] := xi) access and if

so possibly modify memory [28], we are interested for every of these instructions which

address in memory is actually accessed. Memory accesses may originate from local

or global variables or arrays. Since we cannot distinguish accesses to variables from

constant accesses to arrays, we present a may analysis inferring candidates for local

and global variables. A memory access, e.g., Mm[xi] possibly accesses a local variable
iff there exists a constant c ∈ Z2w , such that the relation xi − xASP = c holds. This

can be achieved by verifying that the previously inferred valid affine equality relations

imply this relation. For an edge (u, s, v) where s contains a memory access expression

Mm[p] we check if δ(p − xASP , dual(R♯(u))) yields a constant c ∈ Z2w . In case of

13

a global variable we have to prove that there exists a constant c ∈ Z2w , such that the

relation p = c holds with respect to all valid affine equalities. The function memacc

accumulates candidates for local and global variables in the set L of local variables and

the set G of global variables. For every memory access Mm[p] information is provided

whether the stack or the global data region is accessed and if so exactly at which address.

Algorithm 2 memacc(R♯(u),L,G) with edge (u,xi := Mm[p] res. Mm[p] := xi, v)

if (δ(p, dual(R♯(u))) = c)

G← G ∪ {x
−c} // global variable at address c

else if (δ(p− xASP , dual(R♯(u))) = c)

L← L ∪ {xk+1+c} // local variable at address xASP + c

else // unknown memory access

If a memory location is classified as local variable with address xASP + c, the set of

local variables L is extended by this memory location. In order to provide a unique

name for this local variable with address xASP + c, we denote it by xk+1+c. When a

global variable with address c was identified, the set G is extended by a new global

variable, which is uniquely addressed by x−c, henceforth.

Consider the following example whose C-code conforms to the characteristics from

section 2.

Example 8. variable identification

int a[4]={1,2,3,4};

int main(){

int i,j;

for(i=0;i<4;i++){

j += a[i];

}

return j;

}

01: stwu r1,-32(r1)

//for(i=0;i<4;i++){

02: li r0,0

03: stw r0,12(r1)

04: b 0x17

// j += a[i];

05: lwz r0,12(r1)

06: lis r9,10

07: addi r9,r9,6556

08: rlwinm r0,r0,2,0,29

09: add r9,r0,r9

10: lwz r9,0(r9)

11: lwz r0,8(r1)

12: add r0,r0,r9

13: stw r0,8(r1)

14: lwz r9,12(r1)

15: addi r0,r9,1

16: stw r0,12(r1)

17: lwz r0,12(r1)

18: cmpwi cr7,r0,3

19: ble cr7,0x05

.

.

In this example only local variables and a global array are addressed. Our technique

of identifying local variables correctly identifies all occurring variables, i.e., the local

variables _i at address r1− 20 (complying with the C-variable i), _j at address r1− 24
(complying with the C-variable j). Instruction 10 suggests that the global data section

is accessed. For the first iteration of the loop our analysis yields that the global address

0xa199c is addressed. In order to provide information about the structure of variable _a

an interval analysis is required, taking the accesses to the single array cells into account.

This is elaborated in section 4.

Summarising, this analysis provides may-information, classifying every memory ac-

cess as stack related, global variable, or if none of these two cases applies, as an un-

known memory access. Furthermore, we obtain a normalised representation of address

expressions through our affine equality relations. That means, e.g., if a local variable is

addressed the address expression can be reduced to a constant stack pointer offset.

14

Escaping Variables So far, we have categorised memory accesses as potential local

or global variables or unknown memory accesses. We have to take into account that

the addresses of the inferred candidates for local variables may lie within the address

bounds of an array. Thus, if any element of the array is written, we have to invalidate

the values of the corresponding candidates. Consider the following example where the

address of the local variable j is passed as parameter to function f .

Example 9. escaping variables

void f(int *k){

k++;

*k=5;

}

int main(){

int i,j;

i=0;

f(&j);

return i;

}

//main:

01: .

02: .

03: li r0,0

04: stw r0,8(r1)

05: addi r0,r1,12

06: mr r3,r0

07: bl 0x11

08: lwz r0,8(r1)

09: .

10: .

//f:

11: stwu r1,-16(r1)

12: stw r3,8(r1)

13: lwz r9,8(r1)

14: addi r0,r9,4

15: stw r0,8(r1)

16: lwz r9,8(r1)

17: li r0,5

18: stw r0,0(r9)

19: addi r1,r1,16

20: blr

Function f modifies the address the formal parameter k points to (cf. instruction 14).
Thus, k then points to main‘s local variable i instead of j. Subsequently the value of i

is modified by the assignment to k (cf. instruction 18), though, i was not directly passed
to function f . Consequently, for this example the only safe assumption is to discard all

information about all the potential local variables of function main after the call to f .

Because our analysis does not ensure that the callee may only modify a small range of

stack cells within the caller.

Since our analysis of safety-critical assembly code assumes that there is neither pointers

nor address arithmetic, the situation of example 9 should not occur in the programs we

consider. Nevertheless, we want to verify if a present assembly code adheres to this

coding conventions.

Thus, it is our goal to indicate whether the address of a local variable may escape or not,

i.e., whether its address is made accessible for code outside of the current function. In

example program 9, instruction 06 causes that the address of local variable j is written

to the parameter passing register r3. Within the callee, instruction 14 performs an access

to the stack frame of the caller and modifies its contents as instruction 18 illustrates. In

order to detect such modifications of the stack frame of the caller, we want to determine

within the caller (for example 9 i.e. function main) whether the value of the operand

of any store-instruction Mm[p] := xi, i.e. xi is dependent on the stack pointer (i.e.

contains a stack address). As the first actual parameters are exchanged with the caller

via registers (in PPC, i.e., registers x3, . . . ,x10 [28]), we must also check if a stack

address is saved in one of these registers directly before a function is called.

15

Example 10. criteria for escaping stack addresses

int g;

int main(){

int e;

f(&e);

g=&e;

return &e;

}

The address of a local variable is marked as escaping the current func-

tion if it ...

• ... is passed as a parameter,

• ... is written into a global variable,

• ... is passed as return value of the current function, or

• ... is written into memory.

When storing the address of a local variable and one of these characteristics applies, we

have to treat memory as tainted. Escaping variables result in a loss of all information

about these variables whenever an unknown memory location is written or a function

was called. Unknown memory location means that our variable identification analysis

was not able to classify this memory location as stack address or global address. Now,

consider the following situation: We assume that memory is tainted and encounter a

load-instruction. Then, we have to discard all information about all the potential local

variables, because we do not know whether other stack addresses or their values may

be modified by instructions following this load-instruction. Within our implementation

we issue a warning if a stack address may escape, since we assume that there is no

pointer arithmetic and only global arrays are considered. This states that the present

assembly code may not conform the requested coding guidelines. In order to provide

information whether the address of a local variable could escape or not, we examine

store-instructions. Encountering an edge (u, Mm[p] := xi, v) in the context that the set
of affine equalities dual(R♯(v)) is valid, we are interested if xi contains the address

of a local variable, i.e., may be dependent of the artificial stack pointer. In order to

discover a stack pointer dependency, we check the invariant that the difference between

the memory access register xi and the artificial stack pointer yields a constant. If this

invariant holds δ(xi − xASP , dual(R♯(v))) 6= ⊥, the value of xi definitively shows a

dependency of the stack pointer, and thus taints memory. Additionally, we have to check

whether δ(xi, dual(R
♯(v))) yields a constant. If this is the case, a global value is saved.

Otherwise, it is not clear in any case whether a local variable is addressed or not.

Concluding, the approach of identifying escaping stack addresses is used to verify that

a given assembly code is free of pointers and address arithmetic.

4 Extended Interval Analysis

When considering the iterations of loops, the array cells within the loop are often ac-

cessed relative to a loop counter variable, which mostly turns out to be a local variable.

In order to infer bounds for the accessed memory cells, the bounds of the loop counter

are required.

Extended Interval Analysis
To provide safe lower and upper bounds for the values of processor registers, an interval

analysis is performed. Here, every state maps processor registers and local res. global

variables to intervals of possible values from Z2w . A detailed description of an interval

analysis on assembly code can be found in [12], where the case of overflows in proces-

sor arithmetic over Z2w is also addressed.

Here, we consider the extended interval domain (X ∪ L ∪ G → I)⊥ with I:

16

I = {(s, [l, u]) | l ∈ Z2w ∪ {−∞}, u ∈ Z2w ∪ {+∞}, l ≤ u, s ∈ {0, 1}}

The flag s is intended to denote the stack pointer dependency, which is definitively

not given if s = 0 — in case of an address expression, i.e., that the global data sec-

tion is addressed. If s = 1 the corresponding interval must be considered relative to

the stack pointer — for an address expression, i.e., local variables on the stack are ad-

dressed. For this interval analysis, the register set X only consists of processor registers

{x1, . . . ,x31}. For every procedure start, the stack pointer x1 has to be initialised with

the interval (1, [0, 0]). Since the value of xASP is constantly equal to interval (1, [0, 0])
we omit tracking its value within the extended interval analysis.

The least element is denoted by ⊥, the greatest element by ⊤. Two elements from I⊥

are only comparable to each other if their flag s has the same value. Then, the order-

ing ⊑ is defined as (s1, [l1, u1]) ⊑ (s2, [l2, u2]) iff s1 = s2 ∧ l1 ≤ l2 ∧ u1 ≤ u2.

Otherwise they are considered incomparable. Addition res. subtraction of two extended

intervals (s1, [l1, u1]), (s2, [l2, u2]) is realised by adding res. subtracting the two inter-

vals according to the interval semantic and the result flag s is computed by:

+ s2 = 1 s2 = 0
s1 = 1 ⊤ 1
s1 = 0 1 0

− s2 = 1 s2 = 0
s1 = 1 0 1
s1 = 0 1 0

· s2 = 0
s1 = 1 ⊤
s1 = 0 0

Multiplication with a constant ∈ Z leaves the flag unchanged iff s1 6= 1, otherwise it
leads to⊤. The least upper bound of two extended intervals (s1, [l1, u1])⊔I (s2, [l2, u2])
is defined as (s1, [l1 ⊓ l2, u1 ⊔ u2]) if s1 = s2 and ⊤ otherwise.

To conclude, this slightly modified interval analysis is the basis for inferring bounds

both for registers and memory locations. We arrive at the following constraint system

I:

[I0] I(smain) ⊒ ⊤

[I1] I(v) ⊒ I(u) ⊕ {xi 7→ ⊤} (u,xi :=?, v)

[I2] I(v) ⊒ I(u) ⊕ {xi 7→ [[t]]♯I I(u)} (u,xi := t, v)

[I3] I(sf) ⊒ I(u) ⊕ {x1 7→ (1, [0, 0])} (u, f(), _)sf entry point of f

[I4] I(v) ⊒ combineI(I(u), I(rf)) (u, f(), v)

[I5] I(v) ⊒ I(u) ⊕ {xi 7→ [[xi �xj]]
♯
I I(u)} (u,xi �xj , v)with � ∈ {≥, >,≤, <}

[I6] I(v) ⊒ I(u) ⊕ {xi 7→ [[xi � c]]♯I I(u)} (u,xi � c, v)with � ∈ {≥, >,≤, <}

Program execution starts with the entry point of main where all registers and memory

locations are set to unknown intervals [I0]. In case of a non-deterministic assignment

to register xi its interval is set to the top element of our lattice losing all information

about this register, as constraint [I1] states. For a linear assignment [I2], the linear term
on the right-hand side is evaluated according to the interval semantic [12] — this is

denoted by the semantic brackets [[]]♯I . For a guarded transition the condition is also

evaluated according to the extended interval semantic and causes that the interval for

the left-hand side variable of the condition is modified. This is stated in constraints [I5]
and [I6]. Notice, however, that the value of the right-hand side variable is only modified

if its flag is equal to the flag of the evaluated condition. For details about condition

handling in the interval domain refer to [12].

17

Example 11. Consider e.g. condition (xi > xj), where xi 7→ (1, [1, 8]) and xj 7→
(1, [2, 4]). After passing the true-edge, the interval of xi is restricted to (1, [5, 8]). For
the false-edge, we obtain xi 7→ (1, [1, 4]). Now, we assume the register assignment

xi 7→ (1, [1, 8]) and xj 7→ (0, [2, 4]) before passing the condition. Then, the interval

for xi is neither modified along the true-edge nor along the false-edge, but propagated

unchanged along both edges. 2

Constraint [I3] specifies the handling of a call to function f . Since we take CSA-0 and

assume that the local registers and variables are initialised properly before they are used,

the register assignment before a function call is transferred to the start node of the called

function. Additionally the stack pointer of the callee is reset to the interval (1, [0, 0]).
The algorithm combineI realises embedding the effect of a function call into the caller

([I4]). combineI works analogously to the algorithm combine over generator sets of

vectors from section 3.

combineI(I(u), I(rf)) :

{

I(rf)(xi) with xi 6∈ {x1,x14, . . . ,x31} ∪ L

I(u)(xi) with xi 6∈ {x2, . . . ,x13} ∪ G

The values for non-volatile registers and all the local variables within the callee I(rf)
are masked out. Likewise all the values for global registers and all the global variables

of the caller I(u). The application of the function effect results in intervals reflecting

the global variable/register assignment of the callee and the local variable/register as-

signment of the caller.

Termination of this fixpoint iteration is ensured because of the monotonicity of the

transfer functions and the fact that a register res. memory location can only hold finitely

many different values. Efficiency can only be ensured by applying suitable widening

operators [8].

Recapitulating, our extended interval analysis computes for every processor register and

memory location an approximation of all possible values (constants or offsets with re-

spect to the stack pointer) occurring during runtime. Additionally the extended interval

analysis contributes much in inferring more precise results on identifying and handling

local and global variables.

Compiler Optimisation Level

In the area of safety-critical real-time applications a compiler optimisation level of zero

or even less is often used. The output of a compilation step with optimisation level

zero causes that the values of local variables are always freshly loaded from memory.

Consider the following unoptimised assembly code 12 where two local variables i and j

in C code are addressed. When we take a closer look at instruction 04, the value of local
variable _i with address r1 + 12 (complying with local variable i in C code) is loaded

into register r0. Although the load-instruction 04 is unnecessary, because register r0
already contains the value of local variable _i at this program point, it is performed

regardless of available expressions. The interval analysis holds the interval [4,⊤] for
register r0 at instruction 04. However, the intervals for processor registers and variables
are kept separately and the inferred interval for r0 is never transferred to local variable

_i before passing instruction 04. Thus, no precise intervals for the local variables _i

and _j (memory address r1 + 8) can be inferred. Applying naive interval analysis on

zero-optimised assembly code thus mostly leads to useless results, as almost no array

bound can be found.

18

Example 12. unoptimised assembly code

int main(){

int i,j;

if(i>3)

j=i;

return -1;

}

01: lwz r0,12(r1)

02: cmpwi cr7,r0,3

03: ble cr7,0x06

04: lwz r0,12(r1)

05: stw r0,8(r1)

06: li r0,-1

The intuitive solution for this problem is to propagate the changes of intervals for pro-

cessor registers back to the variables they are buffering. Consider instruction 01: this
load-instruction means that the value of local variable _i is buffered in register r0.
Thus, after instruction 01 the value of register r0 and variable _i are equal. We say that

register r0 buffers local variable _i. To yield precise intervals for variables, we have to

provide information which register is buffering a variable.

Relating Registers and Memory Locations

In order to provide information about the coherence of memory locations and regis-

ters, we need equality relations comprising not only registers but also local and global

variables. We obtain these equalities by extending the equality relation analysis from

section 3 to include memory locations. Dealing with local and global variables entails

modifying the algorithms memacc and combine. The algorithm memacc3 now works

as follows: In case of an access to a familiar memory location, we perform an assign-

ment between the register and the variable corresponding to the memory location (this

assignment states an equality between the register and this variable). In case of an un-

known write access, we must invalidate all the information about the local variables L

in order to provide save results. An unknown read access causes a non-deterministic

assignment to the destination register.

(u,xi := Mm[p],v) (u,Mm[p] := xi,v)

δ(p, dual(R♯(u))) = c [[xi := x
−c]] R♯(u) [[x

−c := xi]] R♯(u)

δ(−xASP + p, dual(R♯(u))) = c [[xi := xk+1+c]] R♯(u) [[xk+1+c := xi]] R♯(u)

otherwise [[xi :=?]] R♯(u) ∀ l ∈ L : [[l :=?]] R♯(u)

Table 1. Side effects of algorithm memacc

Another modification in presence of local res. global variables in affine equality rela-

tion analysis affects the algorithm combine for applying a function effect. The local

variables of the caller and the callee belong to different scopes. Therefore, relations

concerning local variables of the callee must not modify relations concerning local vari-

ables of the caller. However, relations concerning global variables of the callee become

the new relations concerning global variables of the caller. Thus, the function combine

is now defined as

combine(R♯(u), R♯(rf)) : R♯(rf)|L∪x0∪xASP ∪L ⊗ R♯(u)|G∪x0∪G

In summary, the extended equality relation analysis states equalities between processor

registers and memory locations.

19

Analysis Refinement

In order to achieve more precise results, we refine our analysis framework by inter-

weaving affine equality relation analysis and interval analysis. Therefore, we consider

the reduced product [7] of the extended equality relation domain and the extended in-

terval domain. In both domains besides the processor registers X, we additionally take

into account memory locations given by L and G. Precision gains through the reduced

product approach result form the mutually improving collaboration of the two analyses.

The algorithm reduce transfers information from the equality relation domain R to the

interval domain I and vice versa. Thus, the effect of a statement s results in:

[[s]](R, I) = let R′ = [[s]]♯R, I ′ = [[s]]♯I I in reduce(R′, I ′, s)

The algorithm reduce works as follows. At every program point u, first, it is checked

whether xi buffers a memory location, i.e., xi = ml with ml ∈ L ∪ G is implied by

all affine equalities valid at u. If this is the case the interval for memory location ml is

refined by the interval inferred for xi, i.e. I
′ = I ⊕ {ml 7→ I(v)(xi)}.

In case of a store-instruction (u, M [p] := xi, v), where the target address is unknown,
the information from the interval domain affects the information of the equality domain.

Since the interval analysis may provide some information about former unknown mem-

ory accesses, we modify the effect of an unknown store-instruction from table 1. That

means that we spare to set all the inferred local variables to an unknown value. Then,

if we know that the stack section and not the global data section is affected, i.e., the

address expression p evaluates to an interval (1, [l, u]) all those local variables, whose
addresses lie in the range (1, [l, u]), have to be set to unknown values in the equality

domain {[[xk+1+l :=?]] . . . [[xk+1+u :=?]]}R♯(v) as well as within the interval domain

I(v) ⊕ {∀ l ∈ L : l 7→ ⊤}. If we can exclude that the stack is addressed, then all those
global variables, whose addresses lie in the specified range, have to be set to unknown

values. Otherwise, information both for local and global variables gets lost.

In practise, the mechanism of back propagating intervals to memory locations allows

to additionally infer an interval of possible values for each local res. global variable.

We can draw conclusions from these intervals about the destination region of basic

stack pointer-indirect memory accesses. Thus, we are able to invalidate register values

more selective when dealing with non-exact memory accesses. Reconsidering example

12 for zero-optimised assembly code, compare-instruction 02 yields that register r0
implies the extended interval (0, [4,⊤]) at instruction 04. With the help of the analysis

refinement, this interval is propagated to memory location _j after instruction 05 is

passed.

Consider the following example, which demonstrates the impact of the reduced product

approach: There is a constant memory access a[2], which is classified as a local variable
within our equality relation analysis.

20

Example 13. array access

int a[5],i,j;

a[2] = 1;

j = 5;

for(i=0; i<5;i++)

a[i] = i;

Then, we identified the write access to the whole address

range of array a. Since the address of the local variable

a[2] lies in the range of the array access in line 5, we have
to set its value unknown — both in the interval domain

and the affine equality relation domain. For subsequent

write accesses to a[2] the corresponding local variable

has to be considered again. Furthermore, the values for

the memory locations _i and _j stay untouched.

Dependent on its implementation, the interval analysis could yield very coarse results

for the address range of the array. For example 13, we could obtain e.g. these results:

• variable i in C code is identified as memory location _i at address xASP + 4
• variable j in C code is identified as memory location _j at address xASP + 12
• for _i the interval (1, [12, 32]) was inferred
• a in C code is identified as memory location _a at address xASP + [12, 32]

When we have analysed memory access instruction a[i] = i, i.e., inferred a new interval

for the value of variable _a, we must discard all information for the local variable _j in

order to provide a safe analysis – since the address of _j lies in the approximation of the

address range for _a. Thus, in case of a write access we must discard information about

all those local variables whose addresses lie in the specified address range of the write

access in order to yield correct results again. It has to be mentioned that the interval

analysis we used [12] yields precise bounds for the loop counter variable in example

13.

Concluding we present an example 14, which iteratively accesses the single elements

of a local array, and demonstrate the results our refined analysis produces.

Example 14. array access

int i,a[100];

for(i=0;i<100;i++)

a[i] = 3;

01: li r0, 0

02: stw r0,8(r1)

03: b 0x14

04: lwz r0,8(r1)

05: mulli r9,r0,4

06: addi r0,r1,8

07: add r9,r9,r0

08: addi r9,r9,4

09: li r0,3

10: stw r0,0(r9)

11: lwz r9,8(r1)

12: addi r0,r9,1

13: stw r0,8(r1)

14: lwz r0,8(r1)

15: cmpwi cr7,r0,99

16: ble cr7,0x04

The result of the preceding variable identification analysis yields that the local variable

i in C code is addressed by M4[r1 + 8] in assembly. Our equality relation analysis

introduces the local variable _i for memory location M4[r1+8]. After having analysed
instruction 14, the linear equality relation r0 = _i holds. Instructions 04 through 08
describe the computation of the address of a[i]which is stored in register r9. This results
in accessing memory at position r1+8+4 ·_i+4. Relation r9 = r1+8+4 ·_i+4 after

passing instruction 08 displays the information that register r9 is depending on the value
of the stack pointer r1 and on the value of the local variable _i. In order to dissolve this

address properly the value of variable _i has to be known. The interval analysis [12]

provides us with the extended interval (0, [0, 99]) for _i at this program point, since

21

the analysis refinement causes that this interval is transferred from register r0 to local

variable _i when passing instruction 16. Thus, within the extended interval analysis

we obtain the interval with stack pointer dependency (1, [12, 408]) for register r9. To
identify that the single elements of an integer array are accessed, the memory access

expression r1+12+4·_i has to be checked for its alignment, given by the corresponding

memory access instruction. Checking the alignment, as described in the next section,

refines the interval (1, [12, 408]) to the set of stack pointer offsets {12, 16, 20, . . . , 408}.

5 Alignment Analysis

As stated in the PPC-ABI [28], the alignment of memory accesses has a crucial impact

on their performance and thus leads to more accurate computations of the WCET [2].

For this purpose we are interested in as precise alignment properties as possible. In

WCET computation, alignment properties play a role in two different aspects: memory

operand alignment and burst access. First, we describe howmemory operand alignment

can be checked with the help of the inferred affine register equality relations.

Memory operand alignment As described in [15], according to the length of the

operand every operand of a single-register memory access instruction has a natural

alignment boundary. This means that the address of an aligned operand should be an

integral multiple of its length. When accessing memory operands, the best performance

can only be guaranteed if alignment on their natural boundaries is given – otherwise

one may meet performance degradation. This alignment property means that an access

to an operand of size m bytes at memory address a is aligned iff a mod m ≡ 0. From
modular arithmetic, we can use the fact that the validity of an equality relation modulo

2m implies that the equality relation is as well valid for moduli 21 . . . 2m−1. It is not

necessary to perform additional fixpoint analyses for inferring equality relations valid

modulo powers of two less than 2m−1. A linear equality relation p = 0 is valid modulo

2m for m < w iff 2w−m · p = 0 is valid modulo 2w.

Hence, for every memory access instruction (u,xi := Mm[p] res. Mm[p] := xi, v) we
want to diagnose whether memory accesses are aligned or not. In this process, we have

to check for every vector x from the set of affine equalities dual(R♯(v)) whether the

equality relation 232−m · p(x) = 0 is valid.

In the PPC architecture [28], the stack pointer x1 is initially 16−byte aligned, i.e.,

x1 mod 16 ≡ 0. Thus, within the affine equality relation analysis, we add the initial

precondition xASP = 24
xASP . This initial alignment assumption of the stack pointer

yields the following modified constraint [R0♯] for the start point of main.

[R0♯] R♯(smain) ⊒ [[xASP := 24
xASP ; x1 := xASP]] 〈e0, . . . , ek+1〉

For every called function the 16-byte alignment property for the stack pointer is pre-

served, according to the calling conventions of the processor ABI, even if a dynamic

stack modification as, e.g., via alloca has taken place. In order to verify if a given

assembly code adheres to the coding conventions of the processor ABI, we perform ad-

ditional checks. Within the alignment analysis we check whether the alignment of the

stack pointer x1 is preserved whenever a write access on the value of the stack pointer

is performed or a function is called. We only emanate that at the entry point of function

main the stack pointer is 16-byte aligned.

22

Examine the store-instruction at address 10 from example 9, the affine register relations
{−16−x1+x9−4 ·x0 = 0, −48−x1+xASP = 0, 24

xASP = 0} hold mod 232. For

the memory access at register x9, the relation x9 = xASP +4 ·x0−32 must be checked

for 4−byte alignment, which means whether this relation mod 22 evaluates to zero

or not. This is equivalent to a multiplication of this relation with 230. Thus, we obtain:

(xASP + 4 · x0 − 32) mod 4 ≡ (xASP + 0 − 0) mod 4. Since at this program point

the artificial stack pointer is 16-byte aligned (as the relation 24
xASP mod 232 ≡ 0

states), this memory access is 4−byte aligned. Consider the following example where

the single components of the structure struct x are accessed within a loop.

Example 15. handling complex data structures

struct x{

int a;

int b;

};

int main(){

struct x ar[4];

int i;

for(i =0;i<4;i++){

ar[i].a=1;

ar[i].b=2;

}

}

//ar[i].a=1;

10: lwz r0,8(r1)

11: mulli r9,r0,8

12: addi r0,r1,8

13: add r9,r9,r0

14: addi r9,r9,4

15: li r0,1

16: stw r0,0(r9)

//ar[i].b=2;

17: lwz r0,8(r1)

18: mulli r9,r0,8

19: addi r0,r1,8

20: add r9,r9,r0

21: addi r9,r9,8

22: li r0,2

23: stw r0,0(r9)

The store-instruction at 16 yields that memory is accessed at position 8 · _i + r1 + 12
— at instruction 23 memory is accessed at position 8 · _i + r1 + 16. _i denotes the
local variable at memory address r1 + 8. The interval analysis has inferred the interval

[0, 3] for variable _i. When evaluating the memory access expressions and factoring

into the alignment factor (of 4 bytes) denoted by the store-instruction for instructions

16 (r1 + [12, 44]) and 8 (r1 + [16, 48]), we detect that their memory cells overlap.

In order to distinguish the single components of a complex data structure, we try to

reconstruct the set-up of this data structure. For this purpose we determine the greatest

alignment factor m with respect to which one of the address expressions pi is aligned

to, i.e., the greatest m such that deg(2m · pi) < 1. In case of our example, we obtain

an alignment factor of 8. Thus, at instruction 16 memory is accessed in steps of 8 bytes

with an offset of 4 (given as the rest of the modulo operation pi mod 2m) with respect

to the accessed address space, i.e., r1+{12, 20, 28, 36, 44}. For instruction 23 memory

is accessed in steps of 8 bytes with an offset of 0 with respect to the accessed address

space, i.e., r1+{16, 24, 32, 40, 48}. This information suggests a data structure of length

8 bytes, consisting of two components. The first component is accessed with offset 0,
whereas its second component starts at offset 4.
Summarising, for every memory access we use the inferred information to check the

valid modulo 232-relations for operand alignment.

23

Burst access The second form of alignment concerns the cache. In PPC each cache

line contains 32 bytes. Such a cache line is, e.g., loaded as continuous bundle of 8 small

4-byte data blocks into the cache.

322824201612840

mod 32 = 0mod 32 = 0

In case of a memory access, if data is transferred from consecutive memory cells, all

except the first memory access are extremely fast. Most overhead that comes along

with the first access need not be repeated for the rest of the cache line. This performant

technique of memory access is called cache bursting. In order to take advantage of burst

accesses in WCET computations, we propose the following technique. First consider an

example in form of a control flow graph. At program point 2 we know that register x1

is 25-aligned. The edge between program point 5 and 6 contains a memory access of 4
bytes specified by the value of register x3.

Example 16. burst access

3

4

5

6

x3 := x1 + x2;

x0 := M4[x3];

x2 := x2 + 4;

2

x2 := 0;

10

x1 := c1;

...

x1 := c2;

227x1 = 0; Summarising, at program point 5 we have

the information:

• (227
x1 = 0) ≡ (x1 mod 25 = 0)

• (x2 = x2 + 4) mod 232 ≡ 0
• (x3 = x1 + x2) mod 232 ≡ 0

Since each memory operand which misses the cache causes a time penalty, it is nec-

essary to localise 32−byte alignment within our analysis. From affine equality relation

analysis the property x3 = x1 + x2 and 227
x1 = 0 can be deduced. When unrolling

of loops and recursive functions is performed and the concrete values for registers are

available, it is obvious which memory accesses are 25-aligned and thus are a cache miss.

For the precise handling of burst accesses it is sufficient to perform partial unrolling of

loops. In case of example 16, where we examine a 4-byte memory access within a loop,

the loop has to be unrolled maximally 8 times — because for a word-aligned memory

access 7 memory accesses within the loop are extremely fast, whereas the 8-th access

will result in a cache miss and thus cause the loading of a new cache line.

Now, consider the following example, where the single array cells are accessed using

pointer arithmetic:

24

Example 17. cache bursting

int main(){

int *p;

int arr1[16],arr2[16],arr3[16];

int i, j;

if (j > 100)

p = arr1;

else if (j > 0)

p = arr2;

else

p = arr3;

i=0;

for(j=0;j<16;j++)

i= i +*(p++);

if (*p < 0)

return 1;

return 0;

}

//i= i +*(p++);

21: lwz r9,16(r1)

22: lwz r9,0(r9)

23: lwz r0,12(r1)

24: add r0,r0,r9

25: stw r0,12(r1)

26: lwz r9,16(r1)

27: addi r0,r9,4

28: stw r0,16(r1)

29: lwz r9,8(r1)

30: addi r0,r9,1

31: stw r0,8(r1)

32: lwz r0,8(r1)

33: cmpwi cr7,r0,15

34: ble cr7,0x21

Here, we are interested in alignment properties of the single memory accesses for C-

construct ∗(p++) within the for-loop, i.e. instruction 22 in assembly code. Since we

examine a 4-byte memory access, this loop has to be unrolled maximally 8 times, when

checking for 25 aligned memory accesses. Then, we try to find alignment properties

for every memory access 0(r9) after unrolling, as the following table for example 17

illustrates:

unrolling address equalities mod 25 address difference mod 25

0 227r9 = 227r1 + 5 · 229 –

1 227r9 = 227r1 + 3 · 230 4

2 227r9 = 227r1 + 7 · 229 8

3 227r9 = 227r1 12

4 227r9 = 227r1− 7 · 229 16

5 227r9 = 227r1− 3 · 230 20

6 227r9 = 227r1− 5 · 229 24

7 227r9 = 227r1− 231 28

For this purpose, we assume the address equality in the 0th step of unrolling as reference
address equality. Next, we compute the difference by subtracting each address equal-

ity, obtained in every step of unrolling 8 times altogether, from this reference address

equality. The constant differences we obtain (third column of the table above) indicate

that memory is accessed in steps of 4 bytes. A difference c means that this address with

respect to the reference address is equal to c modulo 25. Since we evaluate the equal-

ity relations with respect to the modulus 25, we identify that every 8th memory access

within the for-loop will result in a cache miss. Additionally we are able to infer the

alignment factor with respect to a given cache line.

Inferring alignment properties is an important aspect in cache analysis, because this in-

formation contributes much in classifying memory accesses as cache miss or hit. Since

the analyses, described in this paper, were conceived within the project SuReal [1], the

25

main aim consisted of yielding quite precise information about the execution properties

of an executable to improve the cache behaviour prediction [12].

6 Experimental results

The theoretical approach presented in this paper was implemented within the WCET-

framework in PAG [17,12]. We conducted a test series on a 2, 2 GHz Opteron machine

equipped with a physical memory of 16GB. Our analysis providing affine equality re-

lation and interval information for processor registers and memory locations quickly

terminate in the range of a few seconds. Only program edn takes much more time and

memory compared to the other example programs. However, it makes extensive use

of local arrays, reference parameters and pointer arithmetic. All the example programs

are compiled with optimisation level zero for the PPC architecture. The following table

shows some practical results of our prototypical implementation.

Program Procs Instr MemAcc Unknown Locals Globals PosUnal Time MemUse

prime 11 250 106 4 53 – 1 5.27sec 358MB

edn 16 1153 476 78 379 5 62 2024.53sec 3276MB

standard 7 116 48 – 17 – – 0.91sec 93 MB

switch 1 93 28 1 29 – – 1.66sec 74MB

mod 1 33 16 2 16 – 2 0.97sec 70MB

brake 6 212 112 12 44 17 – 4.54sec 382MB

top 14 1822 827 4 17 – – 0.96sec 0,06MB

Table 2. Some results of our test programs

Within this table we specify:

1. the number of procedures Procs and instructions Instr

2. the number of memory access instructions MemAcc,

3. the number of memory accesses Unknown our analysis was not able to classify,

4. the number of possible candidates for local Locals and global variables Globals,

5. the number of memory accesses PosUnal which may be unaligned,

6. the time Time and memory requirements MemUse of our analysis run.

Our test programs are available online http://www2.in.tum.de/~flexeder/tests.

Here, we present an extract from our test suite. The first two programs prime and edn

are example programs from the WCET suite within the framework PAG. The program

standard is generated from C code which conforms to the characteristics as specified

in section 2, where only local and global variables and global arrays occur. Programs

mod and switch are in order to test alignment properties and finally the two programs

brake and top generated for our SuReal demonstrator [1].

When we consider only assembly code conforming to these characteristics (section

2) all the memory accesses to local and global variables were precisely identified, as

e.g. the table entry for program standard specifies. This involves that the alignment

property of memory accesses can be precisely classified as aligned or not aligned.

26

http://www2.in.tum.de/~flexeder/tests

In case of programs mod and switch, we also take the concept of local arrays and

pointers into account. In case of mod there are two memory accesses marked as possi-

bly unaligned.

...

int *p, i;

for (i=0; i<10; i++, p++)

*p = i;

...

We obtain this imprecise result since there

is a store-instruction to an unknown mem-

ory location. There, we discard all informa-

tion about the local variables so that even

the alignment information gets lost.

In presence of the concept of pointers and pointer arithmetic, our approach is not able to

precisely handle reference parameters. There all information about the local variables

gets lost. As in case of an unknown target address of a store-instruction and passing

a pointer as parameter to a function call, we destroy all information about the local

variables to provide a safe analysis.

With the techniques of introducing an artificial stack pointer register and investigating

escaping stack addresses, we can verify if the assembly code to analyse conforms to the

specified characteristics (refer to section 2). Given the following assembly code, our

analysis issues a warning that two stack addresses may escape.

Example 18. pointer arithmetic

01: stwu r1,-32(r1)

02: mflr r0

03: stw r0,36(r1)

04: addi r0,r1,8

05: mr r3,r0

06: bl 0x17

07: lwz r0,8(r1)

08: stw r0,12(r1)

09: addi r0,r1,12

10: mr r3,r0

11: lwz r0,36(r1)

12: mtlr r0

13: addi r1,r1,32

14: blr

For the assembly code to the left the vari-

able identification mechanism inferred lo-

cal variables _i at stack address r1 − 24
and _j at stack address r1− 20. At instruc-
tion 05 the stack address r1 − 24 is saved

in parameter passing register r3 and sub-

sequently a function is called. Furthermore,

at instruction 10 the stack address r1 − 20
is written into the return register r3 and is

thus marked as escaping address as well.

For these two instructions, our analysis is-

sues a warning that the address of local vari-

able _i and _j may escape and thus the as-

sembly code violates our requested coding

conventions.

Instead of issuing a warning when the callee modifies the stack level of the caller, we

include this modification into our further analysis. Then, this allows for a precise clas-

sification of local variables.

Now, if we compare our results with the value analysis specified by AbsInt [12], for the

example programs mod and switch, we obtain almost the same results. However, our

approach is not dependent on a precise assumption on the address of the stack pointer

register. Thus, if the value of the stack pointer is not known at all, our approach is able

to yield at least alignment information and is able to classify memory accesses as stack

address or global variable.

Concluding, we want to remark the major limitations of the approach presented here. It

is not able to precisely handle local arrays and reference parameters. Since in case of

27

a local array, we introduce a new variable for the memory location denoting the start

address of the array, we may loose precision due to referencing this array. The non-

standard coding conventions for parameter passing require the effect approach to yield

reasonable results at all.

7 Conclusion

In this paper we presented an interprocedural analysis of executables for safety-critical

real-time applications. We restrict our analysis to assembly code which contains only

local and global variables and is free of the concept of pointers and address arithmetic.

This is not uncommon, since e.g.s the SCADE[10] code generation guidelines [9] for

safety-critical software development for avionics prove. Our approach of analysing un-

optimised assembly code, using full linear algebra [21], is able to identify candidates

for local and global variables and supplies information about alignment properties. We

presented an analysis for inferring all valid affine equality relations between the pro-

cessor registers of the executable. These relations precisely describe address expres-

sions. The majority of address expressions which occur in real-time applications results

from accesses to local variables. To establish reliable statements about local variables,

it is necessary to track stack pointer modifications. For this purpose we presented the

concept of introducing an artificial stack pointer. In the case of unoptimised assembly

code it is indispensable to extend a conventional interval analysis to obtain precise re-

sults. For that purpose we keep track of affine relations between processor registers and

memory locations. This allows us to infer intervals for single memory locations by back

propagating information from processor registers to memory locations. To achieve an

improvement of the precision of our analyses we follow the reduced product approach,

where the information of one analysis is used to improve the precision of the other anal-

ysis. Furthermore, in this paper we presented techniques to verify the absence of pointer

arithmetic and dynamic stack allocation. For intervening the area of WCET compu-

tation on executable code, we propose an alignment analysis, because the alignment

of memory accesses has a crucial impact on their performance. With this information

about the contents of memory locations and processor registers and their correlation,

the cache analysis of [2] can be improved by deciding whether a memory access will

result in a cache miss or hit. Within the project SuReal [1], the assembly code analysis

proposed in this paper was implemented within the framework PAG [17]. Furthermore,

for our approach it is not necessary to deal with contexts and a call-string length greater

than zero. Compared to the congruence analysis of AbsInt within the WCET frame-

work which relies on Granger‘s [14] congruence domain our analysis yields almost the

same precise results. Applying these techniques to real-world safety-critical real-time

applications seems to provide reasonable results in reasonable runtime, as section 6

illustrates.

28

References

1. Sicherheitsgarantien Unter REALzeitanforderungen. http://www.sureal-projekt.org/.

2. M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache behavior prediction by abstract

interpretation. In SAS ’96: Proceedings of the Third International Symposium on Static

Analysis, pages 52–66. Springer-Verlag, 1996.

3. G. Balakrishnan and T. Reps. Recovery of variables and heap structure in x86 executables.

Technical report, 2005.

4. G. Balakrishnan and T. Reps. DIVINE: DIscovering Variables IN Executables. In VMCAI,

pages 1–28, 2007.

5. G. Balakrishnan, T. Reps, D. Melski, and T. Teitelbaum.

WYSINWYX: What You See Is Not What You eXecute. PhD thesis, University of Wis-

consin, Madison,WI,USA, August 2007.

6. S. Basumallick and K. Nilsen. Cache issues in realtime systems. 1994.

7. P. Cousot. Abstract interpretation based formal methods and future challenges, invited paper.

In R. Wilhelm, editor, « Informatics — 10 Years Back, 10 Years Ahead », volume 2000 of

Lecture Notes in Computer Science, pages 138–156. Springer-Verlag, 2001.

8. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analy-

sis of programs by construction or approximation of fixpoints. In Conference Record of

the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, pages 238–252, Los Angeles, California, 1977. ACM Press, New York, NY.

9. B. Dion. How to meet EUROCAE ED-12B / RTCA DO-178B international software safety

regulation for airborne systems while reducing development cost, 2007.

10. F.-X. Dormoy and E. Technologies. SCADE 6 A Model

Based Solution For Safety Critical Software Development, 2008.

http://www.esterel-technologies.com/technology/WhitePapers/.

11. C. Ferdinand. Worst case execution time prediction by static program analysis. ipdps, 03,

2004.

12. C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling,

S. Thesing, and R. Wilhelm. Reliable and precise WCET determination for a real-life pro-

cessor. In EMSOFT ’01: Proceedings of the First International Workshop on Embedded

Software, pages 469–485. Springer-Verlag, 2001.

13. C. Ferdinand and R. Wilhelm. Efficient and precise cache behavior prediction for real-time

systems. Real-Time Syst., 17(2-3), 1999.

14. P. Granger. Static analysis of arithmetical congruences. volume 30, pages 165–199, 1989.

15. IBM. PowerPC Architecture - The official manual for the PowerPC architecture. Three parts:

instruction set architecture, virtual environment architecture, and operating environment ar-

chitecture, IBM book number SR28-5124-00. 1993.

16. S. Lim, Y. Bae, G. Jang, B. Rhee, S. Min, C. Park, H. Shin, K. Park, and C. Kim. An accurate

worst case timing analysis technique for RISC processors. pages 97–108, 1994.

17. F. Martin. PAG – an efficient program analyzer generator. International Journal on Software

Tools for Technology Transfer, 2(1):46–67, 1998.

18. GrammaTech, Inc. CodeSurfer. http://www.grammatech.com/products/codesurfer/.

19. F. Mueller. Static cache simulation and its applications. PhD thesis, Tallahassee, FL, USA,

1995.

20. M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear algebra. SIG-

PLAN Not., 39(1):330–341, 2004.

21. M. Müller-Olm and H. Seidl. Analysis of modular arithmetic. ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), 29(5), 2007.

29

http://www.sureal-projekt.org/
http://www.esterel-technologies.com/technology/WhitePapers/
http://www.grammatech.com/products/codesurfer/

22. G. Ramalingam, J. Field, and F. Tip. Aggregate structure identification and its application to

program analysis. In Symposium on Principles of Programming Languages, pages 119–132,

1999.

23. T. Reps, G. Balakrishnan, and J. Lim. Intermediate-representation recovery from low-level

code. In PEPM ’06: Proceedings of the 2006 ACM SIGPLAN symposium on Partial evalua-

tion and semantics-based program manipulation, pages 100–111. ACM, 2006.

24. T. Reps, G. Balakrishnan, J. Lim, and T. Teitelbaum. A next-generation platform for analyz-

ing executables. In APLAS, pages 212–229, 2005.

25. RTCA. DO-178B software considerations in airborne systems and equipment certification,

1992.

26. J. Schneider and C. Ferdinand. Pipeline behavior prediction for superscalar processors by

abstract interpretation. In LCTES ’99: Proceedings of the ACM SIGPLAN 1999 workshop

on Languages, compilers, and tools for embedded systems, pages 35–44. ACM, 1999.

27. F. Semiconductor. MPC755- RISC Microprocessor Hardware Specification, MPC755EC,

Rev.8, 2006. http://www.freescale.com/files/32bit/doc/data_sheet/MPC755EC.pdf?fpsp=1.

28. S. Sobek and K. Burke. Power PC Embedded Application Binary Interface (EABI): 32-bit

implementation, 2004. http://www.freescale.com/files/32bit/doc/app_note/PPCEABI.pdf?fsrch=1.

30

http://www.freescale.com/files/32bit/doc/data_sheet/MPC755EC.pdf?fpsp=1
http://www.freescale.com/files/32bit/doc/app_note/PPCEABI.pdf?fsrch=1

	Analysis of executables for WCET concerns
	Andrea Flexeder,Michael Petter and Helmut Seidl (Technische Universität München)

