
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Tagungsband des 3. Workshops zur
Software-Qualitätsmodellierung und -bewertung

Stefan Wagner, Manfred Broy, Florian Deissenboeck, Peter
Liggesmeyer, Jürgen Münch (Hrsg.)

TUM-I1001
Februar 10

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-02-I1001-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c©2010

Druck: Institut für Informatik der
Technischen Universität München

Vorwort

Qualität ist seit Beginn der kommerziellen Entwicklung von Software ein wichtiges Thema in Forschung und
Praxis und diese Bedeutung verstärkt sich noch weiter. Heutige Entwicklungen stellen zusätzliche
Anforderungen an verschiedenste Qualitätsaspekte dar. Beispielsweise führt die Durchdringung von kritischen
Systemen, wie Flugzeugen oder Automobilen, zu immer höheren Sicherheitsanforderungen an Software. Der
starke Anstieg der durchschnittlichen Code-Größen und die Langlebigkeit von Software-Systemen machen die
Wartbarkeit zu einer wichtigen Eigenschaft. Die Beherrschung von Software-Qualität stellt somit ein wichtiges
Ziel im Software Engineering dar. Diesem Ziel steht aber die Komplexität und Vielschichtigkeit von Qualität
gegenüber.
Es existiert eine große Zahl an unterschiedlichen Sichten und eine entsprechende Vielzahl an
Herangehensweisen zu diesem Thema. Für die praktische Anwendung in der Software-Entwicklung stehen
aufgrund dieser Vielfalt überwiegend nur Insellösungen zur Verfügung, die keine ganzheitliche Behandlung des
Themas ermöglichen. Beispielsweise sind trotz der engen Verbindung Bewertungen von Zuverlässigkeit und
Nutzbarkeit typischerweise nicht integriert.
Ein verbreitetes Vorgehen zur Bewältigung dieser Probleme stellt die Verwendung von Qualitätsmodellen und
daraus abgeleiteter bzw. damit in Beziehung gesetzter Bewertungen dar. Ein solches Vorgehen wird sowohl in
der Forschung untersucht, als auch bereits in der Praxis angewendet. Es hat sich aber oft gezeigt, dass Standards,
wie die ISO 9126, nicht direkt anwendbar sind und eigene Qualitätsmodelle für spezifische Situationen erstellt
werden müssen. Dies resultiert in teilweise sehr unterschiedlichen Ansätzen zur Qualitätsmodellierung und -
bewertung. Ziel dieses Workshops ist es, diese Ansätze vorzustellen und zu diskutieren. Hierbei bauen wir auf
die Erfahrungen und Ergebnisse der ersten beiden Ausgaben des Workshops 2008 und 2009.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

1

Organisation

Der Workshop SQMB ’10 wurde in Zusammenarbeit der Technische Universität München und des Fraunhofer
IESE organisiert. Der Workshop fand im Zusammenhang mit der Konferenz SE 2010 in Paderborn statt.

Organisatoren

Stefan Wagner, Technische Universität München
Manfred Broy, Technische Universität München
Florian Deißenböck, Technische Universität München
Peter Liggesmeyer, Fraunhofer IESE
Jürgen Münch, Fraunhofer IESE

Programmkomitee

Klaus Beetz, Siemens
Thomas Beil, Daimler
Manfred Broy, TU München
Horst Degen-Hientz, KUGLER MAAG CIE
Florian Deißenböck, TU München
Reiner Dumke, Universität Magdeburg
Gregor Engels, Universität Paderborn
Jürgen Knoblach, BMW
Christian Körner, Siemens
Peter Liggesmeyer, Fraunhofer IESE
Oliver Mäckel, Siemens
Jürgen Münch, Fraunhofer IESE

Dietmar Pfahl, Simula Research Laboratory
Markus Pizka, itestra
Reinhold Plösch, JKU Linz
Ralf Reussner, Universität Karlsruhe
Wilhelm Schäfer, Universität Paderborn
Kurt Schneider, Universität Hannover
Andy Schürr, TU Darmstadt
Dirk Voelz, SAP
Stefan Wagner, TU München
Ernest Wallmüller, Qualität & Informatik
Andreas Zeller, Universität des Saarlandes
Rolf Ziegler, SAP

Externe Gutachter

Oliver Sudmann

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

2

From Code-based to Requirement-based Testing

Harry M. Sneed (MPA)
ANECON GmbH, Vienna

Abstract: This presentation describes how software testing has evolved from testing
programs against themselves – code-based testing – to testing programs against their design –
model-based testing – to testing programs against their requirements – requirement-based
testing. The basic premise has always been the same, namely that a test is a comparison of
actual behavior with expected behavior. The problems have also remained constant and that is
what to test and how to describe the expected system behavior.

The speaker goes back to the very first test system – RXVP – developed to test the U.S.
Ballistic Missile Defense System back in 1975. This system already contained many of the
features of current testing systems including instrumentation, assertions, test scripts and
execution path monitoring. The speaker then goes on to describe the experience with the first
commercial software test laboratory set up in Budapest to test the Siemens Integrated
Transport Steuerungssoftware – ITS. This testing project was a landmark project in many
respects, a) the test was made on a fixed price basis, b) the test was value driven, and c) the
test involved taking the software offshore to test. As such it was a precedent to today’s many
offshore testing projects.

The Budapest Test Laboratory is a good example of code-based testing. The module test cases
were extracted from the code by analyzing the potential execution paths and their input data
domain. A test case was generated for every path with the conditional data variables as input
parameters. A certain class of errors was found but only 51% of the total errors that were
finally reported. The errors in the interaction of the modules with each other and with the
environment were only found later in system integration testing. As such this experience
points out the limits of unit testing.

This inspired the speaker to move on to model-based testing. Case tools were introduced to
support users in developing a model of their system. The models of the 80’s were mainly
based on structured module design and data flow, but there were other approaches as well
such as data modeling with E/R diagrams, process modeling with Petri Nets and logic design
with decision tables. These design documents were analyzed to extract test cases directed
toward exercising all data flows, all conditions and all data entity relations. Later, in the
1990’s object technology emerged as the leading design approach. UML diagrams were then
used to model a system. Testing technology followed suit by analyzing these diagrams to
create test cases. The test cases then became use cases, object interactions, state transitions
and activity diagram paths. The speaker gives several examples of model-based testing using
UML.

The current trend is toward requirement-based testing. Here the test cases are extracted from
the requirement documents. The speaker explains how requirement texts are automatically
analyzed to recognize potential test cases. These may be actions to be executed, object states
to be confirmed and conditional rules to be verified. The presentation is rounded off by a
review of the experience made with requirement-based testing and the expectations of the
speaker concerning the future of software testing. The new solutions are faster and more
elegant, yet the main problem remains unsolved and that is to find an infinite numbers of
errors in a finite time.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

3

Goal-oriented Adaptation of Software Quality Models

Michael Kläs, Constanza Lampasona, Adam Trendowicz, Jürgen Münch

Fraunhofer Institute for Experimental Software Engineering
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

{michael.klaes,constanza.lampasona,adam.trendowicz,juergen muench}@iese fraunhofer.de

Abstract. Objectively measuring and evaluating software quality has become a
fundamental task. Many models support software product quality stakeholders
in dealing with software quality. In this contribution, we present an approach
for adapting software quality models and the challenges that emerge in this re-
gard. We propose an adaptation process based on the use of a core quality
model and on the existence of a meta-model that provides an essential structure
for the base and for the derived adapted models. We show different solution
ideas for obtaining a correct adapted quality model and performing goal-
oriented, efficient adaptation.

1 Introduction

Given the increasing pervasiveness of software in our society and its growing com-
plexity, it is essential to produce high software quality. The importance of satisfying
customers’ needs and keeping the software organization profitable have made the
objective measurement and evaluation of software quality a fundamental task.

A myriad of software quality models (QMs) intend to support product quality
stakeholders in dealing with software quality. Most of these models can be assigned
to one of two strategies for modeling software quality [15], namely fixed-model ap-
proaches and define-your-own-model approaches. The former usually specify a pre-
scriptive set of quality characteristics or metrics, whereas the latter use methods to
guide the experts in the derivation of customized QMs. The applicability of fixed
models is generally limited to contexts similar to the one in which the model was
developed, in contrast to define-your-own approaches, which require intensive expert
effort. A third option is represented by the so-called balanced QMs, which are based
upon the idea of adapting a core model for specific domains and specific purposes
[15]. This adaptation should be as much reproducible as possible and should therefore
be guided by a detailed process. The use of a base QM and its systematic customiza-
tion may support cost-effective handling of organizational or project quality needs.
Furthermore, the fact that software quality for all products would be relying on the
same elementary structure represents another potential advantage.

The concept of balanced models plays a central role in the German research project
QuaMoCo, in which the work presented in this paper has been conducted. The project
aims at developing a software quality standard with a degree of detail that should
allow its direct operational application. Besides, the quality standard should have the

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

4

necessary flexibility to cover different technologies for software development. In this
contribution, our objective is to present an approach for adapting QMs and the chal-
lenges that emerge in this regard.

Existing software quality models are deficient when it comes to their adaptation to
the needs of a specific organization or project in a reusable, reproducible manner.
Adaptations of QMs are generally based on ISO9126 [14]. Some common modifica-
tions are to define attributes [2] or to add quality characteristics for a very specific
domain [17, 5].

The literature related to adaptation methods for software product QMs is rather
meager. For adapting the ISO9126 QM to the domain of component-based software
development, Andreou and Tziakouris [2] take into account the users: component
developers, re-users, and end users. The outcome is a quality model especially for
original software components. Calero et al. [7] used a general portal quality model for
the creation of a special QM for eBanking: BPQM (eBanking Portal Quality Model).
To achieve the specialization of the model, a survey was performed among domain
experts. Unfortunately, these specific adaptations focus on the resulting adapted QMs
and not on a reproducible customization process.

Other authors use define-your-own-model tools to refine their specific models.
These customizations have a narrow focus and are difficult to transfer to other con-
texts. Andersson and Eriksson [1], for example, present a process for the construction
of a QM founded on a basic QM with existing metrics (SOLE quality model). They
illustrate how to customize the model to the specific needs of an organization, includ-
ing how to identify quality factors and mapping them to metrics. The SOLE quality
model [10] has the factor-criteria-metric [16] structure. Bianchi et al. [6] used GQM
to refine a specific model. They center their research on QM reuse, i.e., which
changes can be requested when a quality model is reused, how to verify that despite
the changes made in the reused quality model, it remains suitable for its goals, and
what the side effects caused by changing the metrics are on the quality model. Horgan
and Khaddaj [13] propose an approach for model refinement based on expert knowl-
edge.

Franch and Carvallo [11] present a very general process to build an ISO9126 QM.
It should be kept in mind that we are explicitly referring to software product quality
and not to process quality. Nevertheless, for the refinement of our tailoring idea, we
will consider concepts related to software process adaptation and study their transfer-
ability to the customization of software product quality models.

2 Proposed Adaptation Approach

2.1 Adaptation Process Scope

In order to locate the adaptation of a QM within an organization’s structure and proc-
esses, we use the Quality Improvement Paradigm (QIP) [4]. QIP defines an abstract
six-step process for introducing and continuously improving a technology within an
organization, where analogical cycles are applied at the organizational level and at the
project level. We recommend embedding quality modeling and model application into

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

5

these cycles (Fig. 1). At the organizational level, the performance of a QM is the
subject of continuous improvement. At the project level, the QM is used to evaluate
and improve software product quality.

Major QM adaptations should take place in step 3 (Choose Processes) at higher or-
ganizational levels such as a whole organization, a business unit, a domain, or a pro-
jects portfolio. At the project level, QM adaptation takes place in the analogical step
(4.3) and should be limited to minor adjustments, e.g., driven by project-specific
quality requirements, without changing the QM structure, in order to preserve con-
formance of quality evaluations across software products created at the project level.
Therefore, an adaption process has to support three logical activities: reducing, ex-
tending, and adjusting a QM.1

2. Set Up Goals
Define goals w.r.t. the quality of

software products;
Define goals w.r.t. the performance

of the quality model

1. Characterize
Identify environment characteristics

and assumptions relevant for
quality modeling

3. Choose Processes
Adapt product quality model and

associated processes (e.g., product
quality evaluation process).

Plan execution and analysis steps

4. Execute
Apply the quality model at the

project level5. Analyze
Analyze data on the perfomance of
the quality model; identify causes of

deficiencies and improvement
potentials

6. Package
Package and communicate the

results of analysis and experiences;
plan improvements of the quality

model (next QIP cycle)
4.24.1 4.3

4.44.54.6

Fig. 1. Scope of the QM adaptation process

2.1 Requirements

Based on the requirements for the definition and application of QMs stated by practi-
tioners and scientists within the QuaMoCo project, we condensed three major re-
quirements with respect to the adaptation process:
• (R1) Correctness – An adapted QM must be syntactically correct in that it remains

conformant to the underlying meta-model (MM) and to the defined consistency
rules.

1 QIP refines the first step of the PDCA approach [9] (Plan) into three more detailed ones,

with the remaining three PDCA steps being used very similarly by the QIP [11]. For readers
who may be more familiar with the PDCA approach, this means that the quality adaptation
process can be thought of as a part of the first step within PDCA. Analogically, the DMAIC
cycle [18] could be mapped to the concepts of QIP, and probably, step 3 of QIP would corre-
spond to some activity in the Define step of DMAIC.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

6

• (R2) Goal Orientation – The adaption of a base model should be driven by organ-
izational needs and capabilities. In particular, organization-specific and project-
specific software quality objectives should be considered.

• (R3) Efficiency – This is concerned with the overhead (e.g., personnel, time, and
budget) needed for adapting a QM. Acceptable overhead would differ depending
on the organizational level (e.g., more overhead will be allowed for adapting a QM
at the level of the whole organization, where such adaptation has a larger scope and
is performed relatively rarely).

One major challenge of defining a QM adaptation process is to make it independent
of a particular model, i.e., to define a set of adaptation rules that will be universally
applicable to any model conformant with the QuaMoCo MM.

2.2 Solution Idea for R1 (Correctness)

Assuring syntactical correctness requires an MM describing the structure of the QM
and some consistency rules that should be fulfilled by the QM in order to be compli-
ant with the MM. We show the adaptation process on the QuaMoCo MM (Fig. 2) [8].
The two fundamental constructs in this MM are the Quality Aspect tree, which de-
scribes and refines the quality characteristic of interest (e.g., maintainability is broken
down into the sub-aspects analyzability, stability, changeability, and testability) and
the Factors, which capture the product-related factors with the major influence on the
Quality Aspects defined (e.g., complexity of source code). A Factor consists of an
Entity Type (e.g., source code) and a Property that characterizes it (e.g., complexity).
Both provide important information for defining appropriate Measures, with a Meas-
ure referring to rules for determining the actual value of a Factor’s occurrence. Based
on the Measures, an Impact Evaluation can be specified to determine the concrete
impact of the Factor on the Quality Aspects (i.e., a rule mapping the measurement
results to a specific value on the evaluation scale). The general tendency whether a
factor improves or inhibits a specific Quality Aspect is defined and justified by the
corresponding Impact (e.g., high complexity inhibits the analyzability of the product).
In order to get an overall statement about the quality of interest, the evaluation results
of different Impacts and of different subordinate Quality Aspects have to be combined
according to rules defined by Quality Aspect Evaluations (e.g., analyzability and
stability evaluations are combined into an overall maintainability statement). One
approach for assuring the consistency of an adapted model would be to adapt the QM
first, and then check its consistency based on the MM and consistency rules. Another
approach for assuring consistency during the adaptation of a QM would be to define a
limited set of basic operations that allow transforming a QM from one consistent state
into a new consistent state. We propose a compromise between these two options: We
allow intermediate inconsistencies and defining rules for a set of basic transforma-
tions to highlight inconsistencies and to explain what has to be done to return the QM
back to a consistent state. Such basic transformations can be DELete, ADD, or MOD-
ify a specific model construct (see Table 1). For instance, if we want to add a new
Measure for an existing Factor (i.e., ADD(Measure)), we have to check all Impact
Evaluations defined for the Factor and include the Measure in the Impact Evaluation
description.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

7

Table 1. Exemplary consistency rules for basic transformation operations

Construct DEL([Construct]) ADD([Construct]) MOD([Construct])
Measure Modify descriptions of all impact

evaluations that use the measure, in
order to remove the deleted measure
from the impact evaluation

For each factor to which the meas-
ure added belongs, modify related
impact evaluation descriptions in
order to include the new measure

Check descriptions of all impact
evaluations that use the measure, in
order to align them with the modifi-
cation of the measure (if required)

… … … …

2.3 Solution Idea for R2 (Goal Orientation)

We suggest describing the objective of the adapted QM using the GQM goal template
[3]. The GQM goal template is a means for specifying a goal in a structured way. Our
aim is not to derive a measurement plan using the GQM approach, but to use the
GQM template to formulate the quality modeling goal with respect to which adapta-
tion should be performed. The template describes the entities to be considered (Ob-
ject), from which perspective we consider them (Viewpoint), the quality aspects of
interest (Quality Focus), the adapted QM intention (Purpose), and the environmental
characteristics influencing the QM (Context) (for an example goal, see Fig. 2).

+name
+description

EntityType

+name
+description

Property

+name
+description

QualityAspect

+name
+description

Measure

+description
ImpactEvaluation

1

*

isA
1*

partOf

+name
Entity MeasurementData ImpactEvaluationResult

+description
QualityAspectEvaluation

QAEvaluationResult

*
*

quantifies

1 *

characterizes

1 *

describes

* *

based on

* *

based on

* *

uses

1
1

evaluates

1
1

evaluates

Quality
Specification

Quality Model
Application

+description
Factor

1
*

+justification
+effect

Impact

* 1

influences

1..* 1..*

impacts

1

*

type

Quality
Evaluation

-name
-description

QualityRequirement

1
*

(1)

(2)

(3+4)

(5)

Quality Model
DefinitonGQM Goal

Evaluate
(1: Purpose)
the source code
(2: Object)
from the perspective
of a Manager
(3: Viewpoint)
with respect to its
Maintainability
(4: Quality Focus)
for a product in the
embedded domain,
developed with C
(5: Context).

1
*

1

1

1

1

Fig. 2. Quality MM and area of goal-oriented QM adaptation

A goal-oriented approach allows us to simplify the adaptation process such that each
basic transformation is assigned elemental rules specifying which QM elements need
to be adapted and how. For instance, the following goal-oriented rules can be defined
for reducing the QM, i.e., removing all its parts that are not relevant for achieving the
particular goal: (1) For the purpose of quality evaluation, all constructs defined by the
MM are required. For the purpose of quality specification, we can remove irrelevant
elements by applying the rule: DEL(Construct ∈ {Measure, Impact Evaluation, Qual-
ityAspectEvaluation}). (2) All Factors in which the entity type does not correspond to
the Object specified in the QM’s goal can be removed from the QM by applying the
rule: DEL(EntityTypes ∉ instanceOf(Object)). For example, if we are interested in
source code, this operation removes requirements- and design-related Factors from

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

8

the QM. (3) The Viewpoint identifies relevant Impacts by scoping specific Quality
Aspects. Impacts that are irrelevant regarding a particular Viewpoint can be re-
moved, together with associated Impact Evaluations, by applying the rule:
DEL(QualityAspects ∉ partOf(Viewpoint)). (4) If we are only interested in a specific
Quality Aspect (e.g., maintainability, but not reliability), this would further reduce the
relevant scope of the adapted QM: DEL(QualityAspects ∉ part of (QualityAspect)).
(5) Finally, we have to remove all Measures that cannot be collected in our context,
e.g., for C source code this could be object-oriented metrics: DEL(Measure m with
m.applicableFor.language ∉ context.language).

2.4 Solution Idea for R3 (Efficiency)

To achieve efficient QM adaption, existing (MM-conformant) QMs should be reused
as an adaptation base instead of building a QM from scratch. Further, a base model
should cover diverse concrete content, because QM reduction can be more efficiently
automated than QM extension. However, including only universally valid content in
such a model would lead to a nearly empty model without reuse potential. Thus, the
adaptation approach should allow identifying potential reuse candidates.

2.5 Connection of Solution Ideas

In an initial tailoring step, the quality model is reduced to the elements needed for the
specific quality modeling goal (R2). We increase reduction efficiency by focusing on
the key elements of the GQM goal and by automating the respective basic operations
(R3). In further adaption steps, the model can be modified and extended with basic
operations, while consistency is assured by associated consistency rules (R1).

3 Summary and Future Work

This paper explains the need for an adaption process for QMs, presents fundamental
requirements identified, and sketches an approach that addresses these requirements.
The consistency of the adapted QM is covered by the definition of basic operations
and corresponding consistency rules; further, the approach explains how to integrate
the relevant goals into the adaptation process and addresses the efficiency of adapta-
tion through automation and reuse. The next steps will be the refinement of the ap-
proach, i.e., the explicit description of a process into which the ideas presented here
will be embedded. An empirical evaluation in an industrial environment is also
planned, as is a tool for supporting the customization process. A special challenge is
seen in the appropriate use of context information.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

9

4 Acknowledgements

Parts of this work have been funded by the BMBF project QuaMoCo (grant 01 IS 08
023 C). We gratefully acknowledge the contributions and input of Reinhold Plösch,
Dominik Kirchler, and Jens Heidrich.

5 References

1. Andersson, T.; Eriksson, I. V. (1996): Modeling the quality needs of an organization’s
software. In: HICSS ‘96: Proceedings of the 29th Hawaii International Conference on Sys-
tem Sciences Volume 4: Organizational Systems and Technology. Washington, DC, USA:
IEEE Computer Society, p. 139.

2. Andreou, A. S.; Tziakouris, M. (2007): A quality framework for developing and evaluat-
ing original software components. In: Inf. Softw. Technol., vol. 49, no. 2, pp. 122–141.

3. Basili, V. R. (1992): Software Modeling and Measurement. The Goal/Question/Metric
Paradigm. University of Maryland - Dept. of Computer Science: (Computer Science
Technical Report Series). - NR CS-TR-2956. - NR UMIACS-TR-92-96.

4. Basili, V. R.; Caldiera, G.; Rombach, H. D. (2002): Experience Factory. In: Marciniak,
John J. (Ed.): Encyclopedia of Software Engineering. 2nd Ed. New York: John Wiley &
Sons, Vol. 1, pp. 511–519.

5. Behkamal, B.; Kahani, M.; Akbari, M. K. (2009): Customizing ISO 9126 quality model
for evaluation of B2B applications. In: Inf. Softw. Technol., vol. 51, no. 3, pp. 599–609.

6. Bianchi, A.; Caivano, D.; Visaggio, G. (2002): Quality models reuse: experimentation on
field. In: COMPSAC ‘02: Proceedings of the 26th International Computer Software and
Applications Conference on Prolonging Software Life: Development and Redevelopment.
Washington, DC, USA: IEEE Computer Society, pp. 535–540.

7. Calero, C.; Cachero, C.; Córdoba, J.; Moraga, M. (2007): PQM vs. BPQM: studying the
tailoring of a general quality model to a specific domain. In: Advances in Conceptual
Modeling – Foundations and Applications, pp. 192–201.

8. Deissenboeck, F. H. (2009): Quamoco Report: Quality meta model-WP1.3 v1.0 2009-08-
17.

9. Deming, W. E. (1986): Out of the crisis. Massachusetts Institute of Technology, Cambrid-
ge, Mass.

10. Eriksson, I.; Törn, A. (1991): A model for IS quality. In: Softw. Eng. J., vol. 6, no. 4, pp.
152-158.

11. Franch, X.; Carvallo, J. P. (2003): Using quality models in software package selection. In:
IEEE Softw., vol. 20, no. 1, pp. 34–41.

12. Hamann, D. (2006): Towards an integrated approach for software process improvement.
Combining software process assessment and software process modeling. Techn. Univ.,
Diss.--Kaiserslautern, 2005. Stuttgart: Fraunhofer-IRB-Verl. (PhD Theses in Experimental
Software Engineering, 19).

13. Horgan, G.; Khaddaj, S. (2009): Use of an adaptable quality model approach in a produc-
tion support environment. In: Journal of Systems and Software, vol. 82, no. 4, pp. 730–
738.

14. ISO/IEC 9126-1:2001: Software Engineering - Product Quality - Part 1: Quality Model.
15. Klaes, M.; Muench, J. (2008): Balancing upfront definition and customization of quality

models. In: Software-Qualitaetsmodellierung und -bewertung SQMB'08, pp. 26–30.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

10

16. McCall, J. A.; Richards, P. K.; Walters, G. F. (1977): Factors in Software Quality. Con-
cept and Definitions of Software Quality: Final Technical Report Springfield: National
Technical Information Service (NTIS), Reportnr. RADC-TR-77-369 (I, II and III).

17. Sharma, A.; Kumar, R.; Grover, P. S. (2008): Estimation of quality for software compo-
nents: an empirical approach. In: SIGSOFT Softw. Eng. Notes, vol. 33, no. 6, pp. 1–10.

18. Tayntor, C. B. (2002): Six Sigma Software Development. Boca Raton: Auerbach Publica-
tions, 2002.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

11

Adapting Quality Models for Assessments – Concepts
and Tool Support

Reinhold Plösch1, Harald Gruber1, Gustav Pomberger1, Christian Körner2

1 Johannes Kepler University Linz, Altenberger Straße 69,4040 Linz, Austria
{reinhold.ploesch, harald.gruber, gustav.pomberger}@jku.at

2 Siemens AG, Corporate Technology – SE 1, Otto-Hahn-Ring 6, 81739 Munich, Germany

christian.koerner@siemens.com

Abstract. Operational quality models, i.e., quality models that do not only
structure and define quality by means of quality aspects but also contain a
larger number of measures, facilitate quality measurement as the laborious task
of defining measures can be omitted. An operational quality model often
contains a large number of quality aspects and measures; therefore
methodological support as well as tool support is necessary to adapt such a
quality model to project-specific needs. Based on a general quality adaption
framework we have developed a method for tailoring quality models. This
method is supported by an accompanying tool. The application of the method
and the tool in more than 40 projects proved the practicability of the approach.
Nevertheless additional methodological support for deriving quality aspects or
quality requirements from (business) goals would be desirable.

Keywords: ISO 9126, Adapting quality models, EMISQ method, SPQR tool

1 Introduction
It's the ambitious goal of software engineers to develop good software. What

means “good”? Assessing a product, i.e., determining whether the product (software
as well as any other consumer product) is good, has something to do with quality. The
term quality may be considered from different viewpoints, leading to different
interpretations and definitions. ISO 9126 [8], which follows the product-based and
manufacturing-based approaches (as introduced in [4]), defines the term software
quality as "the totality of characteristics of an entity that bear on its ability to satisfy
stated and implied needs".

This definition gives us an idea about software quality but is too vague for any
practical application. To allow measuring software quality, a systematic approach has
to be used to derive measures from general properties of software. Quality models
provide this in a systematic manner. There are a number of different quality models
known in literature. One example of a general model is the so called factor-criteria-
metrics-model (FCM-model) [1]. According to this quality model, the quality of
software is described by identifying various quality attributes, often called factors or
quality aspects. In order to make each factor measurable, it is necessary to refine
factors into quality criteria. Factors represent a more user-oriented view, while quality

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

12

criteria reflect a more software-oriented view. The refinement process takes place
until quality indicators, i.e., measurable and assessable metrics, can be found for each
quality criteria. There exist a number of specific quality models based on this general
FCM-approach, e.g., the model defined by ISO 9126 [8], the FURPS model [5], the
model defined by McCall [10], the quality model by Barry Boehm [2] or the SATC
model [6].

The benefits of these approaches are well structured quality aspect hierarchies that
facilitate reasoning about quality and ease finding measures for specific quality
aspects. The model proposed by ISO 9126 defines a widely used quality model.
Nevertheless, on the level of metrics (in terms of the FCM-model) ISO 9126 provides
only some examples for metrics. These examples give good hints how to measure a
quality aspect, but the set of measures provided is far from being comprehensive.

One important aspect of EMISQ ("Evaluation Method for Internal Software
Quality") [11] was (and still is) the development of operational quality models.
Operational in this context means providing a comprehensive set of measures for each
quality attribute, with special attention on measures that can be provided
automatically by static code analysis tools like PMD [15] or PC-Lint [14]. The current
quality model provided by EMISQ contains more than 3,000 measures of 15 different
tools. These measures are assigned to two quality models – one that is similar in
structure to the ISO 9126 model and a second one that has its emphasis on technical
topics and problems (e.g. memory issues, threading issues). This large number of
measures makes it necessary to think about an adaptation process and a method as not
all 3,000 measures can be applied for each project. Approaches like GQM [16, 17, 18]
or SQUID [9] focus on building entire quality models from scratch and cannot be
directly used for adaptation tasks, though the result of these approaches (especially
the identified quality aspects) could of course be used as input for the tailoring
process. Franch and Carvallo [3] propose a six step approach for building (adapting) a
quality model based on the ISO 9126 quality model. Both, on the level of quality
attributes and on the level of measures they allow the following principal operations:

• Delete-Operations: Remove quality attributes (or later measures) that are not
suitable for the domain or the specific project.

• Add-Operations: Add quality attributes (or later measures) that were not
included in the original (ISO 9126) quality model but that make sense in the
context of the domain or project.

• Modify-Operations: Adapting of thresholds for measures.

Fig. 1 depicts the principal process for adapting the quality model. This general
adaptation process needs to be refined in order to provide the necessary support for
the adaptation. In our EMISQ method we provide more specific methodological
support for this general adaption process (this is described in chapter 2). Chapter 3
describes how the tailoring approach provided by EMISQ is supported by our tool
SPQR (“Software Project Quality Reporter”).

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

13

Fig. 1. General adaptation process

2 Tailoring in the EMISQ Assessment Method
Besides the quality model aspect, EMISQ is a methodology for systematically

assessing the internal software quality. The assessment model is based on the ISO
14598 [7] standard but extends it significantly. The major differences are:

• Instead of specifying a quality model and finding measures for each project we
have developed a pre-defined quality model with measures integrated from
various static code analysis tools. This quality model may be tailored for a
particular project. The step "Establish rating levels for metrics" of the ISO
standard can be excluded completely as its activities are already considered in our
quality model.

• Contrary to the ISO standard the evaluation of the quality attributes does not
occur automatically after the measures are collected but needs an expert. An
aggregation model describes how to sum up quality ratings from the sub-attribute
level to the top level.

• The method is substantially supported by a knowledge base, i.e., by a set of
structured evaluation guidelines, that guides the evaluation team and provides
extra material like checklists, tool configuration files, presentation material, and
document templates.

• Furthermore, the evaluation team can use a tool called SPQR (Software Project
Quality Reporter) that is aligned with the EMISQ-method. This would of course
also be possible when applying ISO 14598, but currently SPQR is tightly focused
on the EMISQ-method.

The EMISQ evaluation model consists of eight main activities that are each

divided up into 5 to 10 sub-activities. Fig. 2 depicts the main activities.
The first activity – “Establish Purpose of Evaluation” – is a major preparing

activity for the adaptation process. The intention of this step is to identify and define
the goals of the evaluation project, e.g., improving the maintainability of a software
product or identifying stability and efficiency problems. It has to be found out
whether these goals can be achieved by following the EMISQ method or whether
additional measures (e.g. dynamic analysis of programs) have to be planned. The
result of this activity is a signed project agreement and a set of the goals that have to
be considered by the evaluation project.

The adaptation process is spread over three main activities (see Fig. 2). According
to the defined goals, the types of products to be analyzed are selected (“Identify Types

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

14

of Products”). The purpose of this activity is to identify those software artifacts that
are objects of the assessment, e.g. products, packages or subsystems. During this step
all technical issues for the selected software artifacts that are important for the
evaluation are documented.

Establish
Purpose of
Evaluation

Identify Types of
Products

Specify Quality
Model Select Metrics

Produce
Evaluation Plan

Take
Measurements

Assess and
Document

Results

Assure Reuse of
Results

Objectives Adaptation

Planning, Assessment and Feedback

Fig. 2. EMISQ Process Overview. Activities with tailoring tasks are highlighted.

The core adaptation activities take place in the activities “Specify Quality Model”
and “Select Metrics”.

The adaptation process in “Specify Quality Model” starts by trying to map the
identified goals to quality aspects. In EMISQ we support two different quality aspect
hierarchies – one following ISO 9126 (with some enhancements) and, as a second
choice, one that is organized by technical topics (e.g. Memory topics, Timing topics,
Object-oriented programming topics). The respective quality aspects are identified by
analyzing the goals and trying to link them with aspects that are suitable to support
goal achievement. The formulation of goals (e.g. “The code should be highly
portable”) often gives hints for the selection of quality aspects, but obviously more
support would be desirable here. Currently we are working on a better method support
for this mapping.

Depending on the types of goals either management oriented quality aspects in the
manner of ISO 9126 or technical topics will be selected. The EMISQ approach starts
with fully developed operational quality aspect hierarchies and removes those quality
aspects that cannot be justified by the identified goals. Our current quality model
contains more than 3,000 measures from various static code analysis tools, which
makes flexible support for the selection of quality aspects and measures absolutely
necessary. Thus, according to the general adaption steps presented in chapter 1, we
perform delete-operations on the level of quality aspects (measures are not yet
considered). Sometimes a goal might impose a link on a general quality aspect like
“Maintainability”. In such a case it has to be cross-checked, whether all sub quality
aspects (e.g., “Readability”, Changeability”) are to be included or whether the goal
was formulated too imprecise. Fig. 3 depicts the adaptation process.

As shown in Fig. 3 all measures associated with quality aspects are part of the
tailored quality model at this stage of the adaptation process. Typically we do not
apply add-operations (see chapter 1) on the level of quality aspects as we start with a
fully developed quality model.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

15

Fig. 3. Tailoring (deleting) of quality aspects. Circles denote quality aspects,

squares denote measures. Quality aspects marked for deletion are indicated by dark
grey color.

In the “Select metrics” activity the measures are adapted. In a first step, typically
delete-operations (see chapter 1) are applied – with different selection criteria for
deletion:

• Programming Language: Typically only measures of one programming
language are used in a project. Nevertheless, depending on the complexity of a
project, it could make sense to integrate measures of more than one
programming language in the quality model, if different parts of the project are
realized using different programming languages. In that case, the quality goals
have to be invariant for these different parts.

• Static Code Analysis Tool: The selection of static code analysis tools is mainly
driven by experience with tools in an organization and by software license
conditions. Therefore those static code analysis tools are excluded that do not
fit into the organization. Typically a static code analysis tool is focused on one
programming language (e.g. PMD [15] provides support for the programming
language Java, only). Nevertheless, there are some tools available (e.g. Sissy
[16]) that provide multi programming language support. It therefore makes
sense to decouple the selection of the programming language from the
selection of the static code analysis tools.

• Importance: As a part of the quality model each measure has an associated
importance attribute. The importance of a metric is defined for the relation
between the measure and the quality aspect, i.e., if a measure is associated
with more than one quality aspect, the importance might be different for each
quality aspect. This importance attribute allows the selection of metrics in the
range “very high” to “very low”. Usually, when starting a quality enhancement
program based on static code analysis, only measures with “very high”
importance are selected in order to keep the effort for quality enhancements
low. Later in the project, additional metrics with lower importance might be
added.

• Trustworthiness: Each measure in the quality model is attributed with a
trustworthiness level (in percent). This number is derived by means of a
special analysis technique, where we have manually inspected the results of
static code analysis tools in order to find out so called false-positives, i.e.,
measure values that are misinterpreted as false while being correct. Details on
the approach can be found in [13]. Depending on the importance of a quality

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

16

aspect, one might select for instance metrics with a lower trustworthiness, too,
if it is an important quality aspect, and on the other hand will concentrate on
metrics with high trustworthiness only, if the quality aspect is of lesser
importance.

• Key Metrics: Key metrics have been identified by a group of experts and
denote metrics that are considered to be important regardless of the type of
software product. This attribute therefore reflects the experience of experts.
Typically, key metrics are important for at least one quality aspect and have at
least an average trustworthiness level.

These criteria can be combined flexibly and therefore give the opportunity of a fine-
grained selection of metrics for the project-specific quality model. Additionally,
individual metrics may be separately deleted from the quality model.

We also provide add-operations for measures, i.e. depending on the goals it might
be useful to add measures. Adding measures takes place when measures of tools
should be used that are not yet part of our operational quality model. Additionally,
some tools allow the specification of additional metrics, e.g., by using a special query
engine (PMD [15] is an example of a tool that allows this). Finally, metrics that
cannot be retrieved automatically but only by means of code inspections or code
walkthroughs can be added.

Fig. 4. Adaptation of metrics – deleting and adding metrics. Starting with the

quality model tailored by quality aspects (see Fig. 3) we delete metrics (marked dark
grey) and add metrics (marked light grey).

In a last step, modify-operations are applied onto measures. This basically means that
thresholds for metrics are adjusted according to the goals of the project – quality
aspects that are considered to be very important will have stricter thresholds for the
associated metrics than quality aspects that are of less importance.

Typically we apply this adapted quality model on the project in order to fine-tune
the selection of measures. This is essential as there are always project situations were
some measures – that are reasonable in principal – cannot be used for the project, as
they are in conflict with established and documented programming practices of the
project. So, we typically apply additional delete-operations on metrics after a first
measurement task before finishing the adaptation process.

3 Tool Support for the Tailoring Process
Tool Support for EMISQ is provided by the Software Project Quality Reporter

(SPQR) [12] which is implemented as set of Eclipse plug-ins. SPQR is capable of

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

17

importing data from various static code analysis tools for associating this data with
the quality model. Flexible filtering and browsing facilities allow detailed inspection
of the data by quality experts and provide integrated access to the source code under
investigation. Furthermore the tool provides support for documenting quality
measures and for documenting the ratings of the quality experts. Finally the tool
allows exporting a preliminary code quality report as Microsoft Word document. This
is the core functionality needed by quality experts. In addition, plug-ins are available
to maintain the central quality model and to tailor this quality model to the specific
needs of each evaluation project. In this chapter we present the tailoring capabilities
in more detail.

(1)

(3)

(4)

(5)

(2)

(6)

Fig. 5. Adapting quality models with SPQR – Overview

The tailoring process starts with a fully operational quality model. The main user
interface for adapting this quality model is depicted in Fig. 5. The following numbers
refer to the numbers in the image above.

(1) By default the ISO 9126 quality hierarchy (QM-Quality Model) as well as the
defect oriented classification (Technical Issue Classification) are available. If
the defined goals for a project clearly focus on one view only, the unnecessary
view can be excluded quickly (by the particular checkbox) .

(2) For each quality aspect hierarchy those aspects that are not needed in a project
can be excluded (see Fig. 6, where the aspects Portability and Security are
deleted from the quality model).

(3) The deletion of metrics from the quality model can be done by different
criteria – either by means of analysis tools, programming languages or
additional properties.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

18

(4) For the current project the tools FindBugs and PMD are used. The other static
code analysis tools (and therefore the measures associated with them) are
excluded from the quality model.

(5) Deleting metrics for specific programming languages is done in a similar way
as deleting tools (see (4)).

(6) The deletion of metrics can also be done via the properties trustworthiness and
importance as well as by considering key metrics as described in chapter 3
(see Fig. 7).

Pressing the ok-Button (see Fig. 5) generates a tailored quality model. The quality
model editor (there is no figure for this in this paper) can be used to manually add
new metrics and to modify the thresholds of metrics and therefore fully support add
and modify operations as presented in chapters 1 and 2 on the level of measures.

Fig. 6. Deleting quality aspects

Fig. 7. Deleting measures by properties

At the end of the adaptation process an adapted quality model is available. SPQR
generates the appropriate tool configuration data – depending on the measures and
tools included in this adapted quality model.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

19

4 Experience and Further Works
The tailoring process described in this paper was applied to more than 40

evaluation projects worldwide with success. The principal idea of starting with an
operational quality model proved to be good. Typically, gathering of goals and
mapping these goals to quality aspects is done by means of one or two workshops.
The workshop is used to identify business and quality goals and to map them to
quality attributes, i.e., to gain a common understanding of the relation between goals
and quality attributes. The fine-tuning of the quality model on the level of metrics is
typically driven by the importance of a quality attribute and by the availability of tool
support (or the license costs for them). A comparable quality model (i.e., with
comparable accuracy) built from scratch would require considerable more effort (in
the projects we have in mind this would mean another addition 2 person weeks at
least). Additionally, having an operational model facilitates the communication as
examples for measures of a quality aspect can be shown – this often clarifies
problems or ambiguities in the definition of a quality aspect and therefore leads to
more accurate quality models. In all projects the tailoring of the quality model takes
place by means of analysis tools, as there is often experience available with specific
tools, or organizations want to start with open source tools, only. Trustworthiness
levels or importance of metrics are hardly used in projects, while the selection of key
metrics is typically done when starting with quality management.

On the method level additional support is needed for deriving quality aspects from
(business) goals. Currently, there is hardly any method support available which means
that only highly experienced quality experts can adapt the quality model.

References
1. Balzert H.: Lehrbuch der Software-Technik – Software Management; Software-

Qualitätssicherung, Unternehmensmodelierung, Spektrum Akademischer Verlag, 1998
2. Boehm B., Brown J.R., Kaspar H., Lipow M., MacLeod G.J., Merrit M.J., "Characteristics

of Software Quality", 1978
3. Franch X., Carvallo J.P..: Using Quality Models in Software Package Selection, IEEE

Software, Vol. 20, No 1, IEEE Computer Society Press, 2003
4. Garvin D.A.: "What does Product Quality Really Mean?, in: Sloan Management Review,

1984, pp 25-43
5. Grady R.B., Caswell D.L.: "Software Metrics: Establishing a Company-Wide Program",

Prentice Hall, 1987
6. Hyatt L., Rosenberg L.: "A Software Quality Model and Metrics for Identifying project

Risks and Assessing Software Quality", Proceedings of 8th Annual Software Technology
Conference, Utah, April 1996

7. ISO/IEC 14598: Information Technology – Software Product Evaluation; ISO/IEC, 1999
8. ISO/IEC 9126-1:2001: Software engineering - Product quality - Part 1: Quality model

(2001)
9. Kitchenham B., Linkman S., Pasquini A., Nanni V.: The SQUID approach to defining a

quality model., Software Quality Journal, Vol (6), No 3, September 1997, Springer
Netherlands, 1997

10. McCall J.A., Richards P.K., Walters G.F.: "Factors in Software Quality", Rome Air
Development Center, 1977

11. Plösch R., Gruber H., Hentschel A., Körner Ch., Pomberger G., Schiffer S., Saft M., Storck
S.: The EMISQ Method - Expert Based Evaluation of Internal Software Quality,

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

20

Proceedings of 3rd IEEE Systems and Software Week, March 3-8, 2007, Baltimore, USA,
IEEE Computer Society Press, 2007

12. Plösch R., Gruber H., Pomberger G., Saft M., Schiffer S.: Tool Support for Expert-Centred
Code Assessments, Proceedings of the IEEE International Conference on Software Testing,
Verification, and Validation (ICST 2008), April 9-11, 2008, Lillehammer, Norwegen, IEEE
Computer Society Press, 2008

13. Plösch R., Mayr A., Pomberger G., Saft M.: An Approach for a Method and a Tool
Supporting the Evaluation of the Quality of Static Code Analysis Tools, Proceedings of
SQMB 2009 Workshop, held in conjunction with SE 2009 conference, March 3rd 2009,
Kaiserslautern, Germany, published as Technical Report TUM-I0917 of the Technical
University Munich, July 2009

14. Product information about PC-Lint can be obtained via http://www.gimpel.com
15. Product information about PMD can be obtained via http://pmd.sourceforge.net
16. Product information about SISSy can be obtained via http://sissy fzi.de
17. Rombach H.D., Basili V.R.: Quantitative Software-Qualitätssicherung; In: Informatik

Spektrum, Band 10, Heft 3, Juni 1987, S 145-158
18. Solingen R., Berghout E.: The Goal/Question/Metric Method; McGraw Hill Verlag,

Berkeley, 1999
19. Solingen R.: The Goal/Question/Metric Approach; In: Encyclopedia of software

Engineering, two-volume set, 2002

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

21

Architecture-Driven Derivation of Performance Metrics

Frank Brüseke, Yavuz Sancar, Gregor Engels

s-lab - Software Quality Lab, Warburger Str. 100,

33098 Paderborn, Germany

{fbrueseke, ysancar, engels}@s-lab.uni-paderborn.de

Abstract. To assess the software quality using a quality model, metrics must be

selected for the particular project. While quality models as ISO 9126 define me-

trics, they are too vague and must be mapped to the particular project by speci-

fying where to apply which metrics in the particular system. Especially, for the

quality attribute performance finding the right metrics is difficult, as one must

find the metrics that will uncover performance problems. Performance analysis

tries to find the root cause of performance problems using measurements. Thus,

it enforces an internal perspective on a software system, including a view on the

software architecture, to find appropriate metrics. Existing approaches are ei-

ther not intended or not specialized enough to find appropriate metrics for per-

formance analysis regarding the software architecture. Our goal is to supply

such a specialized approach. In this paper, we introduce a first step of such an

approach. We construct a set of performance metrics based on a special perfor-

mance architecture model. We use this model to identify locations where we

can apply performance metrics. We plan to select metrics from the resulting set

in our specialized approach for finding appropriate performance metrics.

1 Introduction

Quality models are traditionally used to clarify the quality requirements for software

systems. They are also used to validate if these quality requirements are met by the

software system. For example, ISO 9126 [1] is such a quality model that defines

software qualities by detailing them using quality attributes and metrics.

The metrics defined in ISO 9126 are too vague to use in a particular project [2].

The metrics defined there must be mapped to the particular project by specifying what

needs to be measured where in regard to the particular software system.

In this paper, we present a method detailing the quality attribute performance. We

define performance the same way that efficiency is defined in ISO 9126. This method

is used as part of a performance analysis (PA) approach. PA deals with finding the

root cause of performance problems. So, we are interested in an internal perspective

regarding the quality attribute performance that allows us to locate the problem in the

structure of the software system. A performance problem’s cause can be effectively

found using measurements. Agarwala and Schwan [3] have identified requirements

for performance measurement. On one hand, they state that one has to collect mea-

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

22

surements in the entire software system. On the other hand, they demand measure-

ments with fine granularity. They argue that both requirements are necessary to effec-

tively analyze performance. Measuring in the entire system with fine granularity

means to carefully choose metrics. Choosing an insufficient number of metrics or the

wrong metrics can lead to situations where performance problems cannot be analyzed

and choosing too many metrics can lead to perturbation of the software.

The software architecture defines the entire software system and its most important

entities. Regarding the software architecture ensures that no part of the system is

forgotten and it naturally hints at where metrics can be applied. Moreover, we can

also enable measurement at the granularity that the software architecture is specified

in. So, we need an internal perspective on software systems that defines metrics based

on the software architecture and fulfills the given requirements.

While choosing metrics is a crucial task in PA, most PA methods do not describe

how to do this (e.g. [4], [5]). Focke [6] has proposed to use the Goal-Question-Metric

paradigm (GQM) [7] to build a detailed internal quality model for PA. GQM is too

abstract to help to choose the right metrics specifically for PA. Moreover, Focke does

not regard the software architecture when applying GQM.

Our research goal is to supply an approach that enables choosing the right metrics

for PA. The first step to do so is to know which set of metrics we can choose from.

The next step is to choose performance metrics appropriate for PA from the set found

in the first step. How to derive such a set of metrics is described in this paper.

This set of metrics has to fulfill certain requirements. As we want to choose from it

later on, the set must at least have a certain size. First, it must comprise metrics re-

garding time behavior as well as resource utilization (cf. ISO 9126 [1]). It must also

be big enough, such that it covers the whole system to be analyzed. Lastly, it must

allow tracking down time behavior problems to at least component granularity. This

means that the set of metrics must comprise at least one time behavior metric for each

component and subsystem, and at least one resource usage metric for each host.

We propose a method to construct a set of metrics in an architecture-aware fashion.

Our method may already be applied at an early stage of development in which the

implementation is not yet complete. The process of finding the set of metrics is illu-

strated in Fig. 1. In the first step, one must extract a special model of the system ar-

chitecture, called Performance Architecture Model (PerArMo), from existing archi-

tecture descriptions given in the specification. This model has to include all compo-

nents as specified. Moreover, we must also extract from the design specification

which hardware the components run on. Including deployment aspects in the model

enables us to argue about resource usage. We propose to use a combination of UML

component and deployment diagram for the PerArMo. The deployment part of the

diagram enables us to also model hosts and execution environments, such as comput-

ers, operating systems and middleware.

The PerArMo may need to be refined (cf. step 2 in Fig. 1) to also include compo-

nents and metrics that the specification does not talk about explicitly. These compo-

nents are technical components that are not mentioned due to the high level of ab-

straction of the specification. For example, the TCP/IP stacks are usually not men-

tioned when specifying remote interfaces between components.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

23

The fully refined PerArMo offers a complete overview of the measurement loca-

tions (MLs) of the software system. An ML is an identifiable entity in hardware or

software where we can make measurements. For instance, a ML is a host, a device

driver, a middleware system, a component, a framework, or a class. We create an

empty list of metrics for each ML identified in the PerArMo (cf. step 3 in Fig. 1).

Lastly, we derive metrics (cf. step 4.1 in Fig. 1) for each ML. This technique to

find metrics can be complemented with experiences from previous projects (cf. step

4.2 in Fig. 1) where performance measurement took place, and with market analysis

of measurement tools as well as literature research (cf. step 4.3 in Fig. 1). The metrics

found in these activities enhance the set of metrics resulting from the process de-

scribed above.

In this paper we will describe the process illustrated in Fig. 1 in detail. In Chap-

ter 2, we detail how to build an initial PerArMo from the specification. When the

model is refined as described in Chapter 3 it includes all MLs. In Chapter 4, we dem-

onstrate how to derive metrics. While all this is explained we demonstrate the steps

using a running example introduced in Chapter 2. Chapter 5 discusses related work in

the area of methodologies to find (performance) metrics and in the area of architecture

models. Chapter 6 concludes the paper and gives an outlook on future work in the

area of finding metrics using this method.

2 Building the initial performance-architecture model

To create the PerArMo, we must identify the subsystems and components of the ana-

lyzed system and their internal structure down to sub-component level. We must also

find out how the components are meant to be deployed. The first step of our method

(cf. Fig. 1) is that we study the specification to construct this PerArMo. We can also

interview the developers if the specification is unclear or (still) incomplete.

The PerArMo constructed in this step must cover all functional components (in-

cluding subsystems and sub-components). These components need to form a con-

nected graph. The components must either be coupled by provided and required inter-

faces or by interface forwarding from component to sub-component. It must cover

how these components are to be distributed between the physical nodes and in which

Performace
architecture

model

Comp 1 Comp 2

Comp 3

ML #1

Req
Spec

Analysis
Spec

Design
Spec

3.

ML #2

ML #n

3. identify measurement locations

4.2

… 4.3

4. find metrics4.1

4.1

4.1

1. extract model

literature

meas tools

1.

2. Refine model

previous projects

Fig. 1. Metric derivation process

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

24

execution environments they will be running. This first model is to be refined in the

next step of our process.

The PerArMo is an UML component diagram that also covers certain elements of

the UML deployment diagram. The component diagram models the different compo-

nents and their connection with each other using provided and required interfaces [8].

The deployment diagram usually assigns artifacts realizing certain components to

nodes, i.e. host computers [8]. However, we propose to include nodes and execution

environments directly into the component diagram. In this combined model, nodes

and execution environments can encapsulate other execution environments and com-

ponents. This combined diagram is still syntactically correct UML [8]. So, any devel-

oper with sufficient UML-experience can construct a PerArMo.

In the following, we will apply our method to the Java Petstore 2.0 for JEE 5 [9] as

an example. This application implements a web shop where you can sell and buy pets.

When creating an entry to sell a pet you need to enter a captcha to secure the pet store

against bots. When buying pets you can use a geographic search that can find pets

offered in your neighborhood.

The pet store is based on the JEE platform and therefore is executed on a JEE ap-

plication server (such as JBoss, Glassfish etc.). The web shop also uses a relational

database to store its data. Throughout this paper, we will assume that the web shop

runs on one host and that the database is running on another host.

A PerArMo for the Java Petstore is shown in Fig. 2. The component diagram part

of the PerArMo shown in Fig. 2 gives us an overview of the main functional units of

the software. This information can be used to derive MLs as we can measure in any of

those components and in all of the interfaces.

Including deployment information into the PerArMo adds a technical dimension to

the model (see Fig. 2). This information is used to include resource usage metrics, as

CPU usage, and environmental information, such as process id. As we can see that the

components “Captcha”, “Geodata”, “Petstore” and “OR-Mapper” run on one host we

know that they are potentially competing for the resources offered by that host. We

now also have a clue how the interfaces are technically realized in the software archi-

tecture as we can see them crossing the boundaries of execution environments and

Application Server Host

<<execution environment>>
Java Virtual Machine (JVM)

Database Host

DBMS

<<execution environment>>
Application Server

Petstore

Captcha
Geodata

OR-Mapper

Map service

Geo coding
service

Fig. 2. Architecture model implicitly covering measurement locations

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

25

hosts. This information is important for refining the PerArMo.

3 Refining the performance-architecture model

The PerArMo in Fig. 2 is not yet complete and needs to be refined (cf. step 2 in

Fig. 1). There may be components that have not been modeled as they are not men-

tioned in the specification. This can happen in two circumstances. First, an interface

may abstract away technical details in the specification. That is, it implicitly defines

multiple MLs. Second, an execution environment or host may include a technical

component that influences the performance.

In the first case, we need to find the implicit MLs by examining all interfaces in the

PerArMo that are crossing execution environment or host boundaries. We refine such

an interface by introducing an intermediate component connecting the source and

target component. We repeat this until there is at least one component for this inter-

face in any execution environment or host the source or target component is encapsu-

lated in. When an interface goes from one host to another we add two components on

either side, regardless of encapsulation. For example, the interface between OR-

Mapper and the DMBS crosses host boundaries. Hence, we add network driver com-

ponents on either side. Moreover, we insert the JDBC framework on the JVM-level of

the application server. Now, we have sufficiently detailed the interface according to

the introduced conditions. In Fig. 3 these MLs are added as components and interfac-

es in between the two components OR-Mapper and DBMS.

In the second case, we examine every execution environment and host. We check

if the particular execution environment or host executes performance-relevant servic-

es that are needed to execute our system. Often these services manage resources, for

example the garbage collector of the JVM (see Fig. 4) and the memory manager of

the application server host. These technical components do not need to be connected

to any functional component.

The refined PerArMo implicitly specifies all MLs. Each entity in the PerArMo can

serve as a ML. We allocate an empty list of metrics for each component, interface,

Application Server Host

Network driver

Database Host

DBMS Network driver

<<execution environment>>
Java Virtual Machine (JVM)

<<execution environment>>
Application Server

OR-Mapper JDBC

Fig. 3. Example for an explicitly modeled implicit measurement location

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

26

execution environment and host in the PerArMo (cf. step 3 in Fig. 1). Please note that

the interface and socket notation of component diagrams is an abbreviation for two

linked interfaces in UML's abstract syntax. This way, we also get the two perspectives

that we can measure an interface from. In our example, we can measure the interface

between the Petstore and the OR-Mapper from either the perspective of the Petstore

or from the perspective of the OR-Mapper (cf. Fig. 2).

4 Finding metrics

Next, we find possible metrics for the MLs we have identified so far (cf. step 4 in

Fig. 1). A metric consists first and foremost of the measurement procedure, and se-

condly of the data type, unit and scale of the measurements.

The main technique to find metrics is to directly derive metrics from each ML (cf.

step 4.1 in Fig. 1). To derive a metric we need to know its unit and the environmental

information it refers to. First, write down which units can be measured in this ML.

For example, in the ML “network device” (cf. Fig. 3) we can measure the units

second, byte, and packet. The list of units must include a time unit. Next, combine

each pair of units with each other using the division operator. We get combinations

like bytes/second. Using such a combination as well as its reciprocal to construct

metrics usually does not make sense. Decide for the combination or its reciprocal. For

example, we rather choose the combination “bytes/packet” than “packets/byte”, be-

cause it results in integer values.

While the units given as an example are physical, more abstract MLs offer more

abstract units. Important sources for units are the input and output entities. For exam-

ple, the unit “captcha” can be measured as output of the component “Captcha” (cf.

Fig. 2). This unit can also be combined to the unit “captcha/sec”.

Next, we have to look for environmental information found in MLs. Environmental

information is information that has no performance relevance, but helps to categorize

the performance measurements. Environmental information also often does not

change during one run of the software. Examples for such environmental information

that can be found in the ML network driver are: local IP-address, maximum transmis-

sion unit (MTU), link speed and duplex mode. Environmental information should

only be measured if it relates to some performance information.

Now, we detail the units further and relate them to the environmental information.

There are two questions that can help us with this task:

Application Server Host
<<execution environment>> Java Virtual Machine (JVM)

Memory
Manager

Garbage
Collector

Fig. 4. Example for technical services in operating system and JVM

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

27

─ Can the unit of measurement be broken into parts? What information, i.e. units

of measurement or environmental information, can be found in the part?

─ Which environmental information (or other measurements) relates to the unit of

measurement?

The first question applies mostly to units of measurement that have a higher ab-

straction level, such as packet and captcha. For example the unit packet has a header

that can tell us where it comes from and where it is going to. The second question can

be useful for any unit of measurement. To answer this question, one needs to relate

the unit of measurement to environmental information found in this ML and related

MLs. Related MLs are components and interfaces linked to this ML using an associa-

tion and execution environments and hosts that encapsulate this ML.

The information obtained with the questions is helpful to construct metrics. We

combine a unit or combination of units with environmental information. This way, we

construct a first idea of a metric. For example, we may be interested in the throughput

(unit KB/sec) of JDBC packets originating from the application server process (envi-

ronmental information packet type and packet source).

All the metrics we found for a ML can then be documented in a table. Table 1 is an

example how this could look like for the ML network driver. This table comprises the

name of the described ML together with the ML it was implicitly defined in. Then,

there follows a list of metrics detailed with the metric’s name, unit of measurement

and measurement information (i.e. what is measured).

A complementary technique to find metrics is to analyze which metrics have been

used in past projects (cf. step 4.2 in Fig. 1). We need to consider projects that have

used similar technologies realizing the system to be developed.

Another complementary technique to find metrics is to analyze the measurement

tools on the market and the literature (cf. step 4.3 in Fig. 1). For many of the mea-

surement tools it is possible to find out which metrics they can apply in which envi-

ronments. Additionally, one can evaluate metrics defined in the literature, e.g. ISO

9126 [1]. The metrics that have been found using the two complementary techniques

Table 1. Metrics associated with a specific measurement location

Measurement Location “Network Driver on Application Host OS”

implicit in “Interface from OR-Mapper to DMBS”

Performance metrics
Name Unit Measurement information

JDBC through-

put (outgoing)

KB/s Sum of the size of packets per second, where the packets are sent to

the port and host given in the JDBC URL from the application server
process.

JDBC through-

put (incoming)

KB/s Sum of the size of packets per second, where the packets are sent

from the host given in the JDBC URL to the application server

process

Overall
throughput

KB/s Sum of the size all packets passing through the network adapter per
second

Split packets packets/sec Number of packets that need to be sent as multiple packets over the

wire as their size exceeded the MTU

Average packet
size

KB Average size of packets, where the packets are sent to the destination
port and host given in the JDBC URL and originating form the

application server process

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

28

must be mapped to the MLs. If we can map the found metrics to one or more of the

MLs, we include it in the table for the matching MLs. All the tables constructed for

each of the MLs represent the set of metrics that is the result of our method.

5 Related Work

Related work can be found in two areas. First, there is related work on how to find

(performance) metrics. This includes the area of PA. Second, there are other means of

architecture modeling that also cover performance aspects.

5.1 Performance analysis and finding metrics

Most common approaches for PA do not talk about how to find metrics.

DeRose et. al [4] introduce a basic PA cycle that consists of the following five steps:

1) instrumentation; 2) measurement; 3) analysis; 4) presentation; and 5) optimization.

They do not cover how the metrics are found that are applied to the system by instru-

mentation and measurement.

Schlimm et. al [5] also introduce a PA approach. They recommend using certain

tool classes for PA in their approach. They assume that one can find any performance

problem with these tools and do not choose metrics.

Smith and Williams [10] also propose a process for PA in their book. It starts off

with the step “Prepare test plans”. In this step, one has to define which measurements

should be taken with which tools, but it is not stated how metrics can be derived.

In performance engineering ([10], [11]) performance models are constructed to

predict how good the performance will be, given the software design. The perfor-

mance models mainly determine the performance metrics that are used. Performance

models, such as execution graphs or the UML profile for schedulability, performance

and time (UML SPT) [12], produce results when the models are solved. These results

can also be interpreted as measurements taken on the basis of metrics. In performance

engineering, real measurements obtained by executing the system are only used to

verify and calibrate the performance models. The selected set of metrics is not suffi-

cient to serve PA purposes, as they focus on categories (cf. [5]) of performance prob-

lems where using design alternatives may solve the problem.

Siddiqui and Woodside [13] suggest using performance budgets. They use the, so

called, resource demand budgets to specify which performance constraints an element

in a Use Case Map (UCM) must fulfill. They complete the UCM with elements, such

as middleware, that have been abstracted away in the original model. These comple-

tions are very similar to our consideration of implicit ML. However, UCMs are not

suited to choose metrics as they do not cover the interface specification of compo-

nents and do not distinguish between hardware and software.

The Goal-Question-Metric paradigm [7] is a generic method for choosing metrics.

As it is generic it can naturally give no support how to choose appropriate metrics

specifically for PA. The method introduced in this paper can complement GQM when

it is applied for PA, as shown by Focke [6].

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

29

5.2 Architecture Models

The UML offers several profiles for modeling performance information. UML

SPT [12] allows us to annotate dynamic models with performance characteristics.

UML SPT does not affect structural models and hence does not give us more oppor-

tunities than pure UML in terms of architecture modeling.

The UML QoS/FT profile [14] allows us to create quality models. These quality

models contain quality characteristics (i.e. metrics) and constraints (i.e. indicators).

The constraints can then be attached to arbitrary UML elements using annotations.

This way, one can bring together software architecture and performance requirements.

The notation using annotations is, however, not very readable for big sets of metrics,

like the ones we are constructing here.

The Palladio Component Model (PCM) [11] comprises a set of diagrams that can

be used for component-based software development. It is specifically designed to

allow performance engineering. In the PCM method, component designers model

their component with its provided and required interfaces. The system architect com-

bines them using an allocation diagram and the system deployer assigns those assem-

bled components to nodes. So, the information about the software architecture is scat-

tered among three different diagrams. This scattered way of modeling is not suited for

the (partly) manual derivation of metrics from the software architecture.

6 Conclusions and Outlook

In this paper, we have introduced a method to systematically derive a set of software

performance metrics from the software architecture. The derived set of metrics in-

cludes all relevant metrics according to the requirements (cf. Chapter 1). But, we do

not state here how to choose metrics relevant for a particular situation where PA is

needed. This is subject of further research.

To find the set of metrics, one constructs a PerArMo from the specification includ-

ing all functional components in the system. The model is then enhanced by adding

technical components. We assume that all relevant components (functional or tech-

nical) are either specified or known to the developers and therefore regarded in the

PerArMo. We add components that reflect the complexity of interfaces crossing ex-

ecution environment or host boundaries and also service components that are included

in hosts or execution environments. Then, we find metrics for each ML, i.e. for each

component, interface, execution environment and host. We derive metrics by finding

and combining the units and environmental information that can be measured in a

particular ML.

All metrics found with this method form the resulting set of metrics. This set of

metrics gives us a complete overview (assuming the PerArMo is complete) of the

time behavior of the software on component granularity. As the interfaces model

input/output behavior of components and we enforce to regard a time unit in every

ML, we find all metrics necessary to characterize time behavior for each component.

However, metrics for resource usage are only included in the resulting set of metrics

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

30

if one considers units specifying resource saturation in the particular MLs.

The PerArMo is a combination of UML component and deployment diagram. This

diagram allows us to see the information about functional coupling and technical

deployment of those functions in one place. This makes the diagram the ideal basis

for performance metric derivation. Regarding the technical aspects of deployment

enables us to find metrics considering resource utilization on any modeled host or

execution environment.

We are planning to improve the PerArMo, such that it includes information about

metrics and still remains readable. Moreover, we want to implement tool support for

creating PerArMos and deriving metrics from the architecture. In this context, we are

planning to evaluate our method and compare it to other approaches. The tool might

integrate a database of environmental information and metrics for the reuse of MLs.

References

1. International Organization for Standardization: Software engineering - product quality -

Part 1: Quality Model, ISO/IEC 9126-1 (2001).

2. Becker, S.: Performance-Related Metrics in the ISO 9126 Standard. Dependability Me-

trics. pp. 204-206 Springer (2008).

3. Agarwala, S., Schwan, K.: SysProf: Online Distributed Behavior Diagnosis through Fine-

grain System Monitoring. 26th IEEE International Conference on Distributed Computing

Systems, 2006. ICDCS 2006. (2006).

4. DeRose, L., Pantano, M., Reed, D., Vetter, J.: Performance Issues in Parallel Processing

Systems. Performance Evaluation: Origins and Directions. pp. 141–159 (2000).

5. Schlimm, N., Novakovic, M., Spielmann, R., Knierim, T.: Performance-Analyse und -

Optimierung in der Softwareentwicklung, Informatik-Spektrum, vol. 30, 2007, pp. 251-

258.

6. Focke, T., Hasselbring, W., Rohr, M., Schute, J.: Ein Vorgehensmodell für Performance-

Monitoring von Informationssystemlandschaften, EMISA Forum, vol. 27, Jan. 2007, pp.

26-31.

7. Basili, V., Caldiera, G., Rombach, H.D.: Goal Question Metric Paradigm. Encyclopedia

of Software Engineering. pp. 528–532 John Wiley & Sons, Inc. (1994).

8. Object Management Group, Inc.: UML superstructure specification, Version 2.2 (2009).

9. Sun Microsystems Inc.: petstore: Java Pet Store Reference Application,

https://petstore.dev.java net/, Dec. 2009.

10. Smith, C.U., Williams, L.G.: Performance Solutions: A Practical Guide to Creating Res-

ponsive, Scalable Software, Addison-Wesley Professional (2001).

11. Becker, S., Koziolek, H., Reussner, R.: Model-Based performance prediction with the

palladio component model. Proceedings of the 6th international workshop on Software

and performance. pp. 54-65 ACM, Buenes Aires, Argentina (2007).

12. Object Management Group, Inc.: UML(TM) Profile for Schedulability, Performance, and

Time Specification, Version 1.1 (2005).

13. Siddiqui, K.H., Woodside, C.M.: Performance aware software development (PASD) using

resource demand budgets. Proceedings of the 3rd international workshop on Software and

performance. pp. 275-285 ACM, Rome, Italy (2002).

14. Object Management Group, Inc.: UML(TM) Profile for Modeling Quality of Service and

Fault Tolerance Characteristics and Mechanisms Specification, Version 1.1.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

31

3MQM: A Maturity Model for
Model-based Quality Management

Michael Kläs, Adam Trendowicz, Jens Heidrich, Ove Armbrust

Fraunhofer Institute for Experimental Software Engineering,
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

{michael.klaes, adam.trendowicz, jens.heidrich, ove.armbrust}@iese.fraunhofer.de

Abstract. Managing product quality during the development, operation, and
maintenance of software-intensive systems is a challenging task. Although
many organizations use quality models to define, control, measure, or improve
different quality aspects of their development artifacts, only very little guidance
is available on how to assess the maturity of an organization with respect to
model-based quality management (MQM). Thus, it is difficult for an organiza-
tion to improve its usage of quality models. Existing process maturity models
such as CMMI or SPICE are too generic to provide specific guidance for the
improvement of MQM. This paper presents a Maturity Model for Model-based
Quality Management (3MQM) as a first step towards better support for deter-
mining the maturity of current MQM and for identifying improvement possi-
bilities with respect to MQM. The model can be applied to provide an inte-
grated overview of the maturity of an organization with respect to the usage of
quality models.

Keywords: Software Quality, Quality Management, Quality Model, Maturity
Model, Process Assessment Method.

1 Introduction & Related Work

Nowadays, software practitioners are faced with the challenging task of managing the
quality of software-intensive systems in a predictable and controllable way. Accord-
ing to a study [9] conducted in the context of the German QuaMoCo project [8], many
organizations rely on quality models for specifying, controlling, measuring, or im-
proving different quality aspects of their development artifacts. The maturity of their
quality management process is crucial for coming up with appropriate models that
actually work in practice. This includes, for instance, the definition of quality models,
their adaptation for specific projects, their maintenance over time, and their introduc-
tion into the respective organization. ISO/IEC 9126 [1] defines a quality model for
software products that is widely used as a basis for developing company-specific
quality models. Recently, the ISO started developing the ISO/IEC 25000 series [2] of
standards to replace ISO/IEC 9126 and the corresponding quality evaluation standard
ISO/IEC 14598 [3]. There are many aspects involved in setting up a successful
model-based quality management system (MQM), some of which are addressed by

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

32

these standards. However, very little guidance is available on how to assess the capa-
bility of an organization regarding all those aspects and evaluate its maturity with
respect to MQM. Thus, it is difficult for an organization to establish a clear path for
improving and optimizing its usage of quality models.

With respect to software processes in general, however, a number of improvement
approaches exist. Model-based approaches such as ISO/IEC 15504 (SPICE) [4] or
CMMI [5] compare an organization’s processes or methods to a reference model
containing well-known and widely accepted best practices. Typically, the elements of
such a reference model are associated with different levels that are supposed to reflect
an organization’s different capability or maturity levels. Therefore, this type of model
is called capability or maturity model. An assessment or appraisal determines to
which degree an organization complies with the demands of the respective model and
is typically performed by comparing the actually used processes against the require-
ments for these processes as stated in the reference model. Such assessments may
serve to evaluate an organization with respect to its process maturity, or to identify
improvement options for an organization’s processes.

One well-known capability model is described in ISO/IEC 15504, often referred to
as SPICE. It defines requirements for performing process assessments and provides
an exemplar assessment model that complies with these requirements. In fact, SPICE
is often used synonymously with this exemplar model, which we will also do
throughout the remainder of this paper. SPICE defines process areas like project man-
agement or software construction, which encapsulate the most important activities
(base practices) and expected outcomes for each process area. In addition to that,
generic practices are instantiated for every process area, e.g., concerning management
of the respective activities or unifying activities across the whole organization. A
process area is evaluated on a scale from 0 to 5, reflecting the organization’s capabil-
ity with respect to, for example, project management.

The CMMI model provides similar features and adds an organizational maturity
level, which is assumed to reflect the respective organization’s process maturity in a
single value. In order to reach a certain maturity level, an organization must hence
reach minimum capability levels for defined process areas. Capability/maturity mod-
els such as SPICE and CMMI have continuously become more popular, and their
concepts of which are hence being transferred to other, specialized models, such as
TPI for test process improvement [6]. However, for model-based quality manage-
ment, no such transfer exists.

The basic idea illustrated in this paper is to make use of the standard framework for
process assessments as defined in ISO/IEC 15504 for creating a comprehensive capa-
bility model for selected MQM process areas and an overall maturity model for
model-based quality management (3MQM) that introduces relevant quality practices
for MQM process areas and capability levels. 3MQM will support companies in sys-
tematically improving their capability regarding selected MQM process areas and
their overall MQM maturity.

The paper is structured as follows: Section 2 introduces the basic ideas for our ca-
pability and maturity model for MQM. Section 3 summarizes the basic approach and
discusses future work in this area.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

33

2 Maturity Model for Model-Based Quality Management

The model we propose defines process areas (PAs), which are used to evaluate an
organization’s capability with respect to MQM and to guide improvement activities.
Capability level (CL) definitions based on quality practices (QPs) support this evalua-
tion. We further propose a mapping of CL profiles to maturity levels (ML) describing
an organization’s overall maturity with respect to MQM.

2.1 Process Areas

Since we propose an MQM maturity model for software organizations, we focus in
our proposal on primary software-related life cycle processes, including software
verification & validation. In alignment to the SPICE standard, the engineering PAs
are separated into software requirements analysis, design, and construction. We did
not include software integration as a distinct area because usually no explicit MQM
takes place in this PA. For the sake of simplicity, we further combined the SPICE PAs
of software testing, joint reviews, verification, and validation into the single PA veri-
fication and validation. Our selection of PAs is currently driven by the artifacts to
which MQM is applied. That is to say, we address the processes producing these
artifacts. PAs such as product evaluation or quality assurance that benefit from or are
in charge of specific MQM aspects, but do not produce such artifacts, are not in-
cluded. In order to underline and assure the alignment of MQM in specific PAs with
the global quality goals addressing the product as a whole, we included an additional
PA named global quality management. In order to illustrate the need of such a PA, we
can think, for example, about a global quality goal like “fast system responds time for
queries” that may be broken down and supported by corresponding goals in the design
PA (“high performance architecture”) and the construction PA (“efficient algo-
rithms”). Fig. 1 displays the proposed process areas. Although the initial MQM ma-
turity model focuses on primary life cycle processes, it may also be applied to soft-
ware during operation and maintenance phases. Operation is addressed by the global
quality management PA, which focuses on the software in operation. The use of qual-
ity models in maintenance and development is similar; therefore, the developed PAs
are expected to also be applicable to product maintenance phases.

Fig. 1. Proposed process areas for model-based quality management

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

34

2.2 Capability Levels

We propose choosing the CLs based on a set of typical application purposes for qual-
ity models. Such purposes may be to specify, measure and monitor, evaluate and
control, manage, or measure and predict the quality of a software-intensive product
[7]. Since these purposes form a partial order with respect to an organization’s quality
modeling capabilities, they can be utilized to define corresponding CLs:

• CL0: Incomplete – Concepts of MQM are not implemented, or fail to achieve their
purposes.

• CL1: Specifying – On a project level, a common understanding of quality is speci-
fied in the specific process area and linked to higher level goals. Guidelines de-
scribe strategies for archiving this quality.

• CL2: Monitoring – The understanding of quality is operationalized and measured
in the process area at appropriate points in time. The trends in measurement data
are analyzed.

• CL3: Controlling – A common understanding of quality is defined in the process
area on an organizational level. Collected measurement data are evaluated in order
to control quality.

• CL4: Managing – Impacts on quality are known for the specific area process and
are actively managed in case of measured quality deviations.

• CL5: Predicting – The quality in the specific process area is predictable because
the quantitative impact of the most important influence factors on quality is known.
Therefore, quality in the specific process area can be planned quantitatively.

These capability levels define a natural order of improvement: the more sophisticated
the purpose, the higher the associated CL. For instance, we cannot measure and moni-
tor quality without first specifying it; we cannot control quality (i.e., provide targets
or thresholds) without quantifying it; and so on.

2.3 Maturity Levels

In order to evaluate an organization’s overall maturity with respect to model-based
quality management, we propose a mapping of the CLs to an ML. The major benefit
of such a mapping is that it shows directions for improvement during the introduction
and refinement of MQM in a company. Similar to CMMI, we propose five MLs:

• ML1: Initial – Every organization is on ML 1.

• ML2: Monitoring – In the organization, projects are actively monitoring product
quality in the process areas software requirements analysis and software construc-
tion.

• ML3: Controlling – The organization is consistently controlling quality for soft-
ware requirements analysis, software construction, and the complete product
(global quality).

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

35

• ML4: Managing – The organization is consistently controlling quality for the com-
plete product (global quality) and for every process area for MQM, and, in addi-
tion, considers influence factors for actively managing the most important process
areas

• ML5: Predicting – The organization is consistently managing quality for the com-
plete product (global quality) and for every process area, and ,in addition, quantita-
tively controls influence factors for the most important process areas.

Table 1 depicts the construction of organizational MLs based on the CLs: In order to
reach ML2, an organization must achieve CL2 at least for the process areas software
requirements analysis and software construction. Likewise, in order to reach ML3, an
organization must achieve CL3 at least for the process areas software requirements
analysis, software construction, and global quality.

Table 1. Maturity level mapping to process area capability levels

Process Area

Requirements Design Construction V&V Global Quality

1 - - - - -
2 2 - 2 - 2
3 3 - 3 - 3
4 3* 3* 3* 3* 3*

M
at

ur
ity

 L
ev

el

5 4+ 4+ 4+ 4+ 4+
*: All process areas must achieve at least CL 3, plus at least one process area must reach CL 4.
+: All process areas must achieve at least CL 4, plus at least one process area must reach CL 5.

2.4 Example: Software Construction Quality Practices

In this paragraph, we provide an example definition of quality practices (QP) for
MQM capability levels for the software construction process area (i.e., we focus on
the quality of the software code). In this initial version of our maturity model, we do
not (yet) distinguish base and generic practices as, for example, SPICE does. Please
note that the term “establish” within a QP implies the existence of four sub-practices,
which state that the process outputs must be (1) defined, (2) introduced, i.e., commu-
nicated to all relevant stakeholders, (3) applied, i.e., application should be ensured by
appropriate control mechanisms and trainings, and (4) maintained, i.e., necessary
changes must be implemented and their effects on other process outputs must be
traced and resolved. We will not repeat these sub-practices for the remainder of this
paper.

1 – Specifying

QP1.1: Establish quality goals with respect to software code.
Code quality goals are goals related to the quality of software code, for ex-
ample, low complexity or little code cloning.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

36

QP1.2: Establish an integrated code quality model that is derived from code quality
goals by qualitatively refining them (horizontal goal alignment).
Integrated means that all quality goals are considered in one model. How-
ever, the model may be comprised of several sub-models.

QP1.3: Establish links between code quality goals and global quality goals (vertical
goal alignment).
Global quality goals can be goals for the overall software-intensive system.

QP1.4: Establish coding guidelines based on the code quality model.
Coding guidelines provide constructive strategies for reaching the code
quality goals.

2 – Monitoring

QP2.1: Establish measures for quantifying quality goals defined in the code quality
model.
Goal-oriented measurement assures that collected measurement data con-
tributes to at least one quality goal.

3 – Controlling

QP3.1: Establish quantitative evaluation criteria for each code quality goal.
An evaluation criterion consists of a defined procedure that maps measure-
ment values to an evaluation scale. Usually, for this purpose a baseline or
threshold values are used to evaluate goal achievement.

QP3.2: Establish rules for aggregating evaluation results.
Aggregation rules may allow for defining an overall evaluation for code
quality comprising all related aspects and goals.

QP3.3: Establish an organization-wide code quality model.
All code quality goals across the organization should be integrated into a
unified model.

QP3.4: Establish a standard method for adapting organization-wide code quality
models.
An adaptation method is required for adapting the organizational code qual-
ity model to the particular context, e.g., a particular software development
project.

4 – Managing

QP4.1: Establish a qualitative link between variation factors and their influences on
code quality goals.
Variation factors include environmental characteristics (e.g., related to pro-
ject context, resources, personnel, or processes) that have an impact on the
achievement of the code quality goals. Qualitative refers to the type of im-
pact, that is, whether it has a positive or negative impact on achieving a spe-
cific quality goal.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

37

5 – Predicting

QP5.1: Establish a quantitative link between variation factors and the quality goals
they have an impact on.
Quantitative relationship refers to a functional relationship between quality
goals and the values of related variation and context factors, for instance,
related to project context, resources, personnel, or processes.

3 Summary and Future Work

Improving the maturity of an organization regarding its quality management activities
is crucial for staying competitive in a highly dynamic business environment in which
product quality is one central differentiator between competitors. Model-based quality
management (MQM) is becoming more and more popular because it supports an
organization in making product quality measureable and therewith controllable. The
intention of the maturity model for model-based quality management (3MQM) pro-
posed in this paper is to help organizations in systematically building up a clear path
towards improving their MQM capability of selected process areas and their overall
MQM maturity.

The basic idea of 3MQM is to create an ISO/IEC 15504-compatible model for de-
termining the capability of MQM process areas, and to define a corresponding matur-
ity model. Initially, we distinguish four process areas addressing different phases of
the software development life cycle and one process area integrating quality manage-
ment on a global level, i.e., encompassing the complete product. A number of quality
practices are used to describe capability levels for the process areas, covering typical
application purposes of quality models. Based on the capability levels, an organiza-
tion-specific maturity level can be determined. The capability levels together with the
maturity level show an organization how and where to make systematic improve-
ments with respect to model-based quality management.

Our next step will be to complete the 3MQM approach. This especially includes a
more detailed definition of all quality practices for all capability levels and process
areas. It is also important to note that the selection of process areas is probably not
final and may be extended in the future. One possible candidate from SPICE’s sup-
porting life cycle processes that may be included in the final model is, for instance,
“documentation”. Furthermore, the approach will be evaluated in industrial case stud-
ies as part of the public German research project QuaMoCo. The goal of the
QuaMoCo project is to define an operationalized tailor-made product quality model
for different domains and organizations. The evaluation will monitor the capability
levels of selected process areas and the overall MQM maturity of an organization
after different stages of the QuaMoCo quality model have been introduced. Another
interesting research topic will be to explicitly align the quality goals within quality
models with an organization’s overall business goals and strategies.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

38

Acknowledgments

Parts of this work have been funded by the BMBF project “QuaMoCo – Software-
Qualität: Flexible Modellierung und integriertes Controlling” (grant 01 IS 08 023 C).

References

1. International Organization for Standardization, “ISO/IEC 9126 International Standard,
Software engineering – Product quality, Part 1: Quality model,” ISO/IEC, Geneva,
Switzerland 2001.

2. International Organization for Standardization, “ISO/IEC 25000 Software product
Quality Requirements and Evaluation (SQuaRE): Guide to SQuaRE,” ISO/IEC, Ge-
neva, Switzerland 2005

3. International Organization for Standardization, “ISO/IEC 14598 International Stan-
dard, Software product evaluation - Part 1: General overview”, ISO/IEC, Geneva,
Switzerland 1999.

4. International Organization for Standardization, “ISO/IEC 15504:2004, Information
technology - Process assessment,” ISO/IEC, Geneva, Switzerland 2006.

5. “CMMI for Development, Version 1.2”, CMU/SEI-2006-TR-008, Carnegie Mellon
University, 2006.

6. Sogeti, “Test Process Improvement,” http://www.sogeti.de/tpi-test-process-
improvement html, last visited 2009-11-11.

7. Klaes, M., Heidrich, J., Muench, J., Trendowicz, A., “CQML Scheme: A Classifica-
tion Scheme for Comprehensive Quality Model Landscapes,” Proceedings of the 35th
EUROMICRO Conference Software Engineering and Advanced Applications, IEEE
Computer Society, pp. 243-250, 2009.

8. “Software-Qualität: Flexible Modellierung und integriertes Controlling (QuaMoCo)”,
Website: http://www.quamoco.de, last visited 2009-11-14.

9. Wagner, S., Lochmann, K., Winter, S., Goeb, A., Klaes, M., “Quality Models in Prac-
tice. A Preliminary Analysis,” Proceedings of 3rd International Symposium on Em-
pirical Software Engineering and Measurement, IEEE Computer Society, 2009.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

39

Categorization of Software Quality Patterns?

Klaus Lochmann1, Stefan Wagner1, Andreas Goeb2, Dominik Kirchler2

1 Technische Universität München 2 SAP Research
Garching, Germany Darmstadt, Germany

{lochmann, wagnerst}@in.tum.de {andreas.goeb, dominik.kirchler}@sap.com

Abstract. In software systems recurring patterns are often observed
and have been collected and documented in different forms, as for ex-
ample in development guidelines. These well-known patterns are utilized
to support design decisions or to automatically detect flaws in software
systems. For the most part, these patterns are related to software qual-
ity issues and can also be be referred to as software quality patterns.
These quality patterns have to be communicated to the various roles
contributing to the development of software, e.g., to software architects
or developers. Hence, a comprehensive scheme to categorize the various
types of patterns is needed to support effective communication. The cat-
egories should be shaped so that each category can be communicated to
a single organizational role in a company. Since each pattern refers to a
specific concept of the software system, a categorization based on sys-
tem modeling concepts is used. The presented categorization scheme is
grounded on activity-based quality models that are already used to col-
lect different patterns related to the quality of software systems. Based on
two case studies the applicability of the categorization scheme is shown.
Real-world models were categorized using the scheme and the resulting
distribution of entities within the different classes is discussed.

1 Introduction

In practical software engineering, a major challenge is to develop software of
high quality. Professional developers use proven best practices and experiences
to tackle it. In order to pass these best practices to inexperienced developers
they document recurring patterns. Sources for such patterns are, for example,
coding guidelines, style guides, bug patterns, and architectural patterns. Style
guides for source code improve its readability by applying a consistent format.
Bug patterns are used to detect and classify defects in software.

The term quality pattern as used by Houdek and Kempter [1] describes a
structured way to document and reuse quality-related experience. The authors
define a framework based on Goal/Question/Metric-Approach that contains an
abstract, a problem statement in a specified context as well as a solution. Our
understanding of the term quality pattern is more general. All product-related

? This work has partially been supported by the German Federal Ministry of Education
and Research (BMBF) in the project QuaMoCo (01 IS 08023B/D).

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

40

patterns occuring in software that are related to quality are seen as quality
patterns by us. The exact definition of the term is based on quality models and
will be given in section 2.

Patterns and their relation to quality attributes of a system are represented
in quality models. The first quality model that distinguishes between quality
attributes and quality-influencing properties of a system is that of Dromey [2].
In this paper the approach of Deissenboeck et al. [3], which extends Dromey’s
ideas, is used because it sets development activities in relation to properties
of the system. These properties are essentially describing quality patterns. In
recent work, such quality models are used to define how to achieve quality in a
software system [4,5]. All these quality models focus on software product quality
by defining concepts related to the software product itself as opposed to process-
related concepts.

Problem. To efficiently communicate the information contained in quality models
a categorization is needed that supports their communication. Many existing
quality models provide a categorization according to quality attributes. Yet,
especially for communicating the patterns to different audiences and roles, this
categorization is not optimal, because it does not divide the quality patterns
alongside the needs of these organizational roles. Furthermore, quality models in
practice tend to be large, containing hundereds of patterns. The handling and
communicating of such models posed additional challenges.

Contribution. In this paper we propose an approach for classifying quality pat-
terns according to abstraction levels of the system they are referring to. Each
abstraction level is concerned with different concepts that are relevant for differ-
ent development steps. Since the different development steps are performed by
different roles within a company, corresponding quality patterns can be commu-
nicated to these roles.

2 Activity-Based Quality Models

Quality models have been used to describe the concept of software quality for
decades [6,7]. Several authors argue that facts describing the system have to be
separated from quality aspects. Dromey [2], for example, introduces a quality
model that distinguishes between quality-carrying properties and quality at-
tributes.

Entity

Attribute

Activity

1

*

1 *
Fact

*
1

1
*

Impact

* *

Fig. 1: Meta-Model: Activity-Based Quality Model

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

41

Existing quality models often use high-level “-ilities” for defining quality on a
very coarse level, which is reported to be hard to operationalize [3]. To overcome
this shortcoming, activity-based quality models (ABQM) were proposed [8]. The
idea there is to break down quality in detailed facts and their influence on activ-
ities performed on the system. An example for a fact would be “unambigousness
of source code”, which has an influence on the activity “code reading”.

An ABQM is based on a defined meta-model (see Fig. 1) whose elements are
described in the following. The beforementioned facts are modeled as a compo-
sition of entities and attributes. The entities describe a hierarchically structured
decomposition of the system and corresponding documents. Entities can be tech-
nical concepts of programming languages such as source code expressions but also
more abstract concepts such as inheritance structure. An entity that is character-
ized by an Attribute is called Fact, e.g., [Source Code | UNAMBIGUOUSNESS] denotes
unambiguous source code. Also the activities are organized in a hierarchy. A top-
level activity maintenance has sub-activities such as code reading, modification, and
testing. The impacts define a relationsship between facts and activities. They de-
scribe which fact has an influence on an activity. For denoting the previous exam-

ple, the following notation is used: [Source Code | UNAMBIGOUSNESS]
+−→ [Code Reading].

ABQMs have been used for modeling maintainability [3], usability [9], and
security [4]. In these case studies existing knowledge in form of guidelines, check-
lists, standards, etc. has been modeled as an ABQM. The occuring patterns
found in these documents are modeled as facts in the ABQM, whereby the im-
pact on activities gives a justification for the relevance of the fact.

3 Categorization of Entities

Due to the fact the entities of the ABQM are referring to very different concepts
and abstraction levels of a system and the fact that real quality models are very
large (e.g., 142 entities in [3]), the task of communicating the significant parts
of the model to the appropriate people at the right phase during development
is challenging. Since the activities are more related to the concerns of stake-
holders, they are not suited as a means for categorization regarding roles in a
company. A software architect, for example, has to take both maintainability
and performance issues into regard.

In the following we propose an approach to structure the entities in a way
that is suitable for the goals described above. The most general way of catego-
rization is to distinguish between entities referring to the software system itself,
and those referring to documents secondarily produced, like documentation (see
Fig. 2a). Although ABQMs are also used to model non-system entities, like the
development environment or pocess characteristics, we focus on product related
entities, because they make up a strong majority of entites in our case studies.
We distinguish between system documentation that describes the inner structure
and working of the system, and the user documentation like operator manuals
etc. Since all entities referring to the software system in some way represent a

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

42

model of it, we will use existing concepts from existing modeling techniques to
structure them.

According to Schätz et al. [10] we distinguish between horizontal and ver-
tical abstraction (see Fig. 2b). Horizontal abstraction introduces a separation
of concerns with the distinction between structure, behavior, and data. Vertical
abstraction introduces levels of abstraction, whereby the lower the level of ab-
straction, the more details are visible. An example for levels of abstraction are
black-box description, white-box description, and the technical implementation
of a system.

For each abstraction level research has been conducted and sophisticated
models are available that we exploit here. Broy et al. [11] describe the architec-
ture of embedded software-intensive systems on different levels of abstraction.
In this work we use the concepts depicted in Fig. 2b and described as follows.

Black-box level On this level of abstraction the inner working of the system is
omitted. Therefore, only the interface of the system to its environment and the
user-visible behavior are described.

– Structural Concepts describe the structure of the system. Since, on the black-
box level the internal structure is not visible, only externally visible structure
is described here.

– Behavioral Concepts describe the behavior of the system as seen at the sys-
tem boundary by its environment or rather the user.

– Interface/Data Concepts define the syntactic interface of the system and the
data types that are used by it.

White-box level On this level of abstraction the system is described as a white
box, i.e., the internal components of the system are visible. This level is also
called logical architecture.

– Structural Concepts on this level are the components the system consists of,
and the way in which the components are connected to each other.

(a)

Entities

Software System

Documentation

Horizontal Abstraction

Vertical Abstraction

System Documentation

User Documentation

(b)

Black-Box Level

Implementation Level

White-Box Level

S
tr

u
c

tu
re

B
e

h
a

v
io

r

D
a

ta
/I

fa
c

e
.

Ve
rt

ic
al

 A
bs

tr
ac

tio
n

Horizontal Abstraction

Fig. 2: Categorization of Entities

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

43

– Behavioral Concepts on this level define the behavior of each component.

– Interface/Data Concepts describe the interfaces of the components.

Implementation level On this level, the actual implementation of the system is
described. It consists of both software and hardware elements.

– Structural Concepts describe the structure of the software, e.g., the source-
code, configuration files, and hardware, e.g., CPUs, memory, and bus sys-
tems.

– Behavioral Concepts describe the behavior of the elements on this level.
These can be timing constraints of the hardware but also behavioral concepts
of the programming language as for example pointers and garbage collection.

– Data Concepts describe the data structures used on the source code and
hardware level.

4 Case Study: TUM Maintainability Model

At Technische Universität München (TUM) an ABQM for maintainability was
developed in multiple case studies [3,8]. This quality model was used for the
generation of guidelines as well as for the evaluation of the results of static code
analysis tools. The model consists of 152 entities, 205 facts, and 30 activities.
It has to be noted, that some entities are used for structuring and are actually
not referring to system concepts at all. These entities typically have no facts
associated with them and were omitted in the analysis. There were 10 entities
of this kind.

Example In Tab. 1 examples of the TUM maintainability model are shown. In
the first row of the table the fact [Distribution | EXISTENCE] is defined. This fact just
expresses whether there are distributed parts within the system or not. Because
it relates to the concept that the system consists of different components, it was
categorized as “white-box / structure”.

Another example is that of the third row: [Recursion | EXISTENCE]. The exis-
tence of recursive function calls is clearly related to the implementation level,
and because it refers to the behavior of the code, it was categorized as “imple-
mentation / behavior”.

These two examples clearly show that the categorization is suitable for the
communication of facts. The white-box facts, which would be communicated to
software architects, contain information on architectural issues (in this case, dis-
tribution). The implementation facts, which would be used for coding-guidelines,
would express rules for developers, in this case the use of recursive functions
would be forbidden.

Discussion In Tab. 2 the results of the categorization are visualized. It can be
seen that most of the entities are situated on the implementation level. However,
this result is not surprising taking into account that the model was built using

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

44

Table 1: Examples of the TUM maintainability model
Entity Attributes and Description Category

distribution existence: “Does the system have dis-
tributed parts?”

White-box / Structure

boolean expression
accessibility : “Within a boolean expres-

sion, no assignments should
be made.”

Impl. / Structure

completeness: “Boolean expressions have
to be completely bracketed.”

recursion existence: “Are there recursive func-
tion calls?”

Impl. / Behavior

runtime-checks existence: “Does the language provide
runtime checks, e.g. for ar-
ray bounds?”

Impl. / Behavior

design-decisions
existence: “Are design-decisions docu-

mented?”
Documentation / System

completeness: “Is the documentation of
design-decisions complete?”

Table 2: Categorization of TUM maintainability model
(a) Software system entities

Structure Behavior Data / Iface

Black-Box 1 0 0
White-Box 3 1 0
Implementation 89 11 9

(b) Documentation entities

Type #

User Documentation 0
System Documentation 28

coding guidelines and static code analysis tools. These sources of information
typically refer to the source code and not to high-level concepts of software
systems. It has to be noted that also architectural issues are hardly present
in this model. The entities categorized as system documentation, however, are
available in a significant number.

5 Case Study: SAP Security Requirements

In this case study, the SAP Product Standard [12] for security was examined
with respect to the defined categorization scheme. In a first step, all the qual-
ity requirements contained in the Product Standard were transferred into the
proposed ABQM structure. In total, 205 different requirements were analyzed
and modeled. To model the activity hierarchy, we used the scheme proposed by
Wagner et al. [4]. The constructed entity types were categorized according to the
definitions above. The total number of categorized entities was 121. The results
are shown in Tab. 3. Note that more than one requirement may refer to a specific

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

45

entity and that requirements referring to the same entity may do so at different
abstraction levels.

For example the entity password can refer to the concept that a secret phrase
is used for authorization as well as to the source code variable for storing the
password string and also to its value. One can easily imagine corresponding
requirements: (1) “sensitive data should be protected by a password”, (2) “the
memory storing a password has to be overwritten after use”, and (3) “a password
may never be printed in clear text to log files”.

In these cases the same entity was counted once for each pair of abstraction
level/concept. This explains that the sum of all entries in Tab. 3 is 166 instead
of 121.

Discussion As seen above, some requirements may refer to the same entity
at different abstraction levels or concepts. This shows that it was not always
possible during the modeling process to deduce entities from requirements in
such a way, that they could be uniquely categorized afterwards.

To validate our approach, categorization of requirements and categorization
of entities should yield similar distributions of results. This can be seen by com-
paring Tab. 3 and Tab. 4, the latter summarizing the categorization results of
the original requirements.

Generally, the question arises whether it makes sense to classify the entities
in comparison to classifying the single requirements. Obviously this is the case, if
the number of requirements is significantly higher then the number of resulting
entities (including facts and descriptions). In other cases, it may seem to be
the easier way to just classify the requirements. However, having an ABQM-
like structured quality model offers several additional benefits, as described in
section 2. Whether these justify the extra effort of transferring the requirements
into the quality model depends on the objective and the type of analysis that is
intended to be conducted with the quality model.

6 Discussion & Conclusion

In this paper we presented a method for categorizing software quality patterns,
which are modeled using an activity-based quality model. The categorization
is based on software modeling concepts and on different abstraction levels used

Table 3: SAP model entities
(a) System entities

Structure Behavior Data / Iface

Black-Box 15 23 27
White-Box 13 26 22
Implementation 20 1 1

(b) Documentation entities

Type #

User Documentation 7
System Documentation 11

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

46

Table 4: SAP requirements

(a) System requirements

Structure Behavior Data / Iface

Black-Box 16 36 32
White-Box 16 37 24
Implementation 22 1 1

(b) Documentation require-
ments

Type #

User Documentation 7
System Documentation 13

herein. The patterns of the different categories could be suited for communicating
the patterns to different organizational roles or to designate responsible persons
for eliciting and maintaining the patterns.

The categorization scheme was evaluated in two case studies. The first case
study relied on an already existing model that was constructed using coding
guidelines and evaluation rules of static code analysis tools. In the second case
study a real-world requirements list was modeled and then categorized.

These case studies showed that the categorization scheme is applicable to
real-world models. In the second case study we can see that the number of
entities in each category is quite evenly distributed with the tendency that higher
abstraction levels are more present. Thus we conclude that the categorization
scheme does actually define categories that are present in real documents.

By comparing the two case studies, we can see that the nature of the mod-
els is strongly reflected in the distribution of the category sizes. In the second
case study a generic requirements list was modeled that contained very different
requirements. This is reflected by the equal distribution of the category sizes.
However, in the first case study coding guidelines and metrics of static code anal-
ysis tools were modeled, which resulted in entities that were mostly categorized
as referring to implementation structure.

Moreover, the categorization of the model promoted a deeper understanding
of the model itself. During the categorization the modeler had to think about the
exact meaning of the entities. In the quality model that meaning was often not
explicitly documented. Therefore, during the categorization it was discovered
that some entities were used ambiguously in the quality model. This deficiency
was then corrected by splitting the entity in two entities, in order to reflect
the two different meanings. In summary, the categorization also contributed to
enhance the quality of the quality model itself.

A possible problem during categorization is the decision where to place spe-
cific concepts. Since all concepts are eventually implemented as source code,
there appears the general tendency to classify all as implementation level. The
categorization scheme must be applied in such a way that the patterns are clas-
sified at the highest possible abstraction level. If a pattern describes user-visible
functionality, it has to be classified as black-box, even though the functionality
itself is implemented in source code. If a pattern describes an implementation
detail of one specific programming language, it is clearly related to the imple-

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

47

mentation level, because users and even software architects are not concerned
with this detail.

In our future research we will focus on how the categorization scheme can
be used to improve both communication and maintenance of software quality
patterns. For the communication, it is possible to communicate the entities of
different abstraction levels to different organizational roles. Implementation pat-
terns are typically relevant for developers and can be used to generate guidelines,
while the white-box patterns handle architectural issues and are therefore rele-
vant for software architects. An adequately classified quality model can be used
to integrate quality knowledge into the tools that are central to these organiza-
tional roles, e.g. the programming environment for the developer. Furthermore,
the categorization scheme could be used to find adequate roles to maintain ex-
isting software quality patterns. Black-box patterns are mainly concerned with
high-level concepts, which are primarily elicited and handled in requirements
engineering. For the maintenance of adequate white-box patterns software ar-
chitects are most probably the right group, while implementation patterns have
to be developed by experts of programming languages. In future research these
applications of the categorization scheme have to be empirically evaluated in case
studies to prove their feasibility and usefulness. In addition, this evauation may
lead to a refinement of the categorization granularity, should we find evidence
that a higher level of detail will raise its practical value.

References

1. Houdek, F., Kempter, H.: Quality patterns—an approach to packaging software en-
gineering experience. In: SSR ’97: Proceedings of the 1997 symposium on Software
reusability, New York, NY, USA, ACM (1997) 81–88

2. Dromey, G.R.: A model for software product quality. IEEE Transactions on
Software Engineering 21(2) (1995) 146–162

3. Deissenboeck, F., Stefan Wagner, Pizka, M., Teuchert, S., Girard, J.F.: An activity-
based quality model for maintainability. In: Proceedings of the 23rd International
Conference on Software Maintenance (ICSM 2007), IEEE Computer Society (2007)

4. Wagner, S., Mendez Fernandez, D., Islam, S., Lochmann, K.: A security require-
ments approach for web systems. In: Workshop Quality Assessment in Web (QAW
2009). (2009)

5. Wagner, S., Deissenboeck, F., Winter, S.: Managing quality requirements using
activity-based quality models. In: Proc. 6th International Workshop on Software
quality (WoSQ’08), ACM Press (2008) 29–34

6. Boehm, W.B.: Characteristics of Software Quality. North-Holland (1978)
7. McCall, A.J., Richards, K.P., Walters, F.G.: Factors in Software Quality. NTIS

(1977)
8. Broy, M., Deissenboeck, F., Pizka, M.: Demystifying maintainability. In: Proceed-

ings of the 4th Workshop on Software Quality, ACM Press (2006)
9. Winter, S., Wagner, S., Deissenboeck, F.: A comprehensive model of usability. In:

Proceedings of Engineering Interactive Systems. LNCS, Springer (2007)
10. Schätz, B., Pretschner, A., Huber, F., Philipps, J.: Model-based development of

embedded systems. In: Proc. Workshop on Advances in Object-Oriented Informa-
tion Systems. LNCS. Springer-Verlag (2002) 331–336

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

48

11. Broy, M., Feilkas, M., Grünbauer, J., Gruler, A., Harhurin, A., Hartmann, J.,
Penzenstadler, B., Schätz, B., Wild, D.: Umfassendes Architekturmodell für das
Engineering eingebetteter Software-intensiver Systeme. Technical Report TUM-
I0816, TU München (2008)

12. Wroblewski, M.: Compliance testing of non-functional requirements at SAP. In:
Quality Engineered Software and Testing Conference (QUEST’08). (2008)

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

49

Teststufenspezifische Qualitätsattribute für die
Qualitätsbewertung von nichtfunktionalen

Anforderungen

Yavuz Sancar1 , Frank Brüseke1, Gregor Engels1,

1 Software Quality Lab (s-lab), Universität Paderborn, Warburger Str.100

33100 Paderborn, Germany
{ysancar, fbrueseke, engels}@s-lab.upb.de

Abstract. Die Bewertbarkeit einer Software nach ihren geforderten
Qualitätsattributen kann erfolgskritisch sein. Die übliche Beschreibung der
Qualitätsattribute, wie wir sie aus der Standardliteratur kennen, ist jedoch aus
Testersicht zu allgemein, um sie für jede Teststufe ohne Weiteres anwenden zu
können. Dies gilt insbesondere auch für die nichtfunktionalen Anforderungen.
Somit ist es schwierig, für jede Teststufe Aussagen über die Softwarequalität in
Hinblick auf die funktionalen und nichtfunktionalen Qualitätsattribute zu
treffen. Wir stellen einen Ansatz für die Qualitätsbewertung durch
teststufenspezifische Betrachtung der Qualitätsattribute vor.

Keywords: quality assessment, quality models, test metrics, test management

1 Qualität und Testen

Während der Entwicklung von Softwaresystemen müssen unterschiedliche
Qualitätsattribute wie Zeitverhalten und Fehlertoleranz berücksichtigt werden [1].
Eine klare Vorstellung über die im Produkt zu berücksichtigenden Qualitätsattribute
zu erlangen, ist eine wichtige Aufgabe. Denn die Produktqualität kann die
Folgekosten der Software maßgeblich beeinflussen und ein entscheidender
Wettbewerbsvorteil sein [2].

Das Testen beschreibt eine analytische Maßnahme zur Kontrolle und Sicherung
der geforderten Softwarequalität, die durch entsprechende Anforderungen
beschrieben wird. Es hat die Aufgabe Fehler zu finden und das Vertrauen in die
Software zu steigern [3]. Es ermöglicht, die Frage nach dem Erfüllungsgrad der
geforderten Qualitätsattribute zu beantworten. In der Praxis wird das Testen durch
aufeinander aufbauende Stufen realisiert. In jeder dieser Teststufen wird dabei ein
Testprozess durchlaufen, um letztlich eine Bewertung der Software hinsichtlich der
erreichten Qualitätsattribute zu ermöglichen. Unserer Beobachtung nach werden
Qualitätsanforderungen wie Effizienz und Sicherheit häufig deswegen vernachlässigt,
weil deren Bedeutung und Bewertung in den unterschiedlichen Teststufen, besonders
in den unteren Teststufen wie dem Komponenten- oder Integrationstest, nicht

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

50

eindeutig ist. Hierzu ist aus unserer Erfahrung, die wir im s-lab durch unsere
Industrieprojekte gesammelt haben, die Erkenntnis wichtig, dass die Prüfung der für
die Software geforderten Qualitätsattribute je nach Teststufe und Testumgebung
völlig unterschiedliche Testziele, Testmetriken und Akzeptanzkriterien erfordern
kann.

In diesem Papier stellen wir einen Ansatz für die Bewertung der Qualitätsattribute
durch ihre teststufenspezifische Betrachtung vor und zeigen Nutzungsmöglichkeiten
des Ansatzes auf.

2 Teststufenspezifische Bewertung von Qualitätsattributen

Das stufenweise Testen wie es beispielsweise das V-Modell [6] vorsieht, wird dazu
eingesetzt, möglichst frühzeitig Aussagen über die Qualität zu ermöglichen
(Abbildung 1). Die Messung der Qualitätsattribute im Produkt beantwortet letztlich
die Frage, ob die geforderten Qualitätsattribute im Produkt vorhanden sind. Nun muss
für jedes geforderte Qualitätsattribut geklärt werden, wie es in der jeweiligen
Teststufe gemessen und bewertet werden kann.

2.1 Problem und Anforderung an die Lösung

Die übliche Beschreibung der Qualitätsattribute in einem Qualitätsmodell, wie wir sie
aus der Standardliteratur kennen, bezieht sich auf die Qualitätseigenschaften, die das
gesamte Produkt erfüllen muss [1][4][5]. Aus Testersicht sind diese Vorgaben zu
allgemein, da sie sich auf das vollständig integrierte System beziehen und damit
bestenfalls für den Abnahmetest oder Systemtest angewendet werden können. Die
Bedeutung der Qualitätsattribute für die anderen Teststufen ist nicht offensichtlich.
Dies ist jedoch für eine systematische Testplanung der Teststufen essentiell. Ist die
Bedeutung eines Qualitätsattributs für eine Teststufe nicht klar formuliert, so besteht
die Gefahr falsche oder fehlende Testziele abzuleiten. Auch die auf diesen Testzielen
aufbauenden Schritte des Testprozesses, wie zum Beispiel das Ableiten der Testfälle,
produzieren sonst unzureichende Ergebnisse. Um dem entgegenzuwirken ist es
notwendig in der „Testplanung & Steuerung“ des Testprozesses, die für die Software
allgemein geforderten Qualitätsattribute zu konkretisieren. Dabei wird die Bedeutung
dieser Qualitätsattribute gemeinsam mit ihren Akzeptanzkriterien für jede Teststufe
festgelegt. Auf diese Weise entsteht ein detailliertes Qualitätsmodell für jede
Teststufe. Diese Detaillierungsnotwendigkeit wird in Abbildung 1 anhand der
gestrichelten Linien beispielhaft dargestellt.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

51

Pl
an

un
g & Steuerung

Akzeptanztest

Abschluss
Analysis
& Design

Realisierung
Durch‐
führung

Auswertung
& Bericht

Pl
an

un
g & Steuerung

Systemtest

Abschluss
Analysis
& Design

Realisierung
Durch‐
führung

Auswertung
& Bericht

Pl
an

un
g & Steuerung

Integrationstest

Abschluss
Analyse &
Design Realisierung

Durch‐
führung

Auswertung
& Bericht

Anforderungs-
definition

Funktionaler
System-
entwurf

Technischer
System-
entwurf

Komponen-
tenentwurf

Pl
an

un
g & Steuerung

Komponententest

Abschluss
Analyse &
Design

Realisierung Durch‐
führung

Auswertung
& Bericht

Implementierung

Softwarequalitätsmodell

QM1 QM2 QM3 QM4 QM5 QM6

QA
2

QA
1

QA
3

QA
4

QA
5

QA
6

QA
7

QA
8

QA
n

2.2 Lösungsansatz

Für die Entwicklung eines teststufenspezifischen Qualitätsmodells schlagen wir einen
Top-Down-Ansatz in Anlehnung an den Goal-Question-Metric-Ansatz (GQM-
Ansatz) [7] vor. Da der GQM-Ansatz ein allgemeines Verfahren ist, ist es notwendig,
es in Bezug auf das Testen zu spezialisieren. Dazu kann die in Tabelle 1 dargestellte
Qualitätsmatrix als Orientierungshilfe verstanden werden.

Tabelle 1: Qualitätsmatrix

<Quality Attribute> Test Goal Test Question Test Metric Acceptance
Criterion

Acceptance Test
System Test
Integration Test
Component Test

Neben den Aspekten eines Goals (Test) Purpose, (Test) Viewpoint, (Test) Object,
(Test) Focus, wie sie der GQM-Ansatz fordert [7], wird ein auf das Testen
spezialisiertes Ziel (Test Goal) durch den Test Level und das Test Environment
definiert.

Test Level: Die Teststufe, für die ein Qualitätsattribut aus dem
allgemeineren Qualitätsmodell detailliert wird.

Abbildung 1: Detaillierung der Qualitätsattribute für jede Teststufe

wagnerst
Text Box
52

Test Environment: Die Testumgebung, in der die Einhaltung des
Qualitätsattributes überprüft werden soll.
Test Focus: Das assoziierte Qualitätsattribut aus dem allgemeinen
Qualitätsmodell, nach dem die Testobjekte getestet werden sollen (z.B.:
Antwortzeit).
Test Viewpoint: Die Sichtweise wird ebenfalls durch die Teststufe
bestimmt. Beispielsweise wird im Komponententest aus Sicht des
Entwicklers getestet.
Test Objects: Eine Auswahl von Testobjekten (z.B.: Klassen oder
Methoden), die im Hinblick auf den Test Focus getestet werden sollen;
gegebenenfalls (nach Risiko) priorisiert.
Test Purpose: Der Zweck wird durch die Teststufe bestimmt. Z.B.: Der
Zweck des Komponententests ist es, Fehler zu finden und das Vertrauen in
die kleinsten Einheiten zu steigern, für die noch eine eigene Spezifikation
existiert (z.B.: Klassen oder Methoden); individuell und unabhängig von
anderen Einheiten des Systems.

Die Definition eines Goals nach dem GQM-Ansatz ist der erste Schritt in der
Entwicklung eines Qualitätsmodells [4]. Analog dazu ist die Definition eines Test
Goals für eine Teststufe der erste Schritt in der Entwicklung eines
teststufenspezifischen Qualitätsmodells. Im nächsten Schritt werden die Test Goals
mit quantifizierbaren Testfragen (Test Question) weiter verfeinert. Die konkreten Test
Questions müssen individuell formuliert werden.

Da der Zweck des Testens jedoch durch die Fehlerfindung und die Steigerung des
Vertrauens vorgegeben ist, können im Bereich des Testens die Test Question auch in
zwei Kategorien unterteilt werden: Test Result und Test Quality. Welche Fehler
ausgewertet werden sollen, werden in der Test Result-Kategorie erfragt. Die Test
Quality-Kategorie soll eine angemessene Qualität der Tests gewährleisten. Damit
wird direkt das Vertrauen in die eigenen Testaktivitäten und indirekt das Vertrauen in
die Software gesteigert. Für jede der genannten Kategorien muss mindestens eine
Frage formuliert werden.

Schließlich werden den Test Questions Test Metrics und entsprechende
Acceptance Criteria zugeordnet, die sich für die Beantwortung der Fragen eignen. Mit
der Durchführung dieser vier Schritte wird eine Zeile der oben genannten
Qualitätsmatrix gefüllt.
Das Füllen der Qualitätsmatrix zeigen wir im Folgenden an den Beispielen für den
Abnahme- und Komponententest (s. Abschnitt 2.3 bzw. Abschnitt 2.4). Das
betrachtete Qualitätsattribut sei „Zeitverhalten“ („Time behavior“).

Entsprechend den hier gezeigten Beispielen muss dieses Vorgehen für alle
geforderten Qualitätsattribute eines Softwaresystems und jeweils für alle geplanten
Teststufen in der Testphase „Testplanung" durchgeführt werden.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

53

2.3 Beispiel: Abnahmetest (Acceptance Test)

Das Test Goal für den Abnahmetest („TB_CT_TG“) wäre nach den in Abschnitt 2.1
definierten Aspekten somit:

„Im Abnahmetest müssen in der produktivnahen Testumgebung Win7ENG1DB2
in Hinblick auf das Zeitverhalten aus Sicht des Benutzers Fehler in dem vollständig
integrierten System gefunden und das Vertrauen in das gesamte System gesteigert
werden.“

Die Beantwortung der folgenden Fragen ist in diesem Beispiel von Interesse:

1) Test Result-Kategorie: Wie hoch ist die mittlere Zeitdauer bis zu einer
Fehlerwirkung in Hinblick auf das Zeitverhalten? (TB_AT_TQTR1)

2) Test Quality- Kategorie: Wie hoch ist die Überdeckung der Geschäftsvorfälle
mit Priorität „sehr hoch“, die nach Zeitverhalten getestet werden sollten.
(TB_AT_TQTR2)

Als Metriken und Akzeptanzkriterien zur Beantwortung der Fragen eignen sich

die folgenden Metriken:

Zu 1) TB_AT_TMTR1: „Mean time to failure“ (MTTF) als durchschnittliche
Betriebsstunden im Abnahmetest bis zum Auftritt einer Fehlerwirkung, die das
Zeitverhalten des gesamten Softwaresystems betrifft.

Das Acceptance Criterion sei TB_AT_AC_TR1> 48 Stunden.

Zu 2) TB_AT_TMTR2:

Das Acceptance Criterion sei TB_AT_AC_TR2= 1.

Damit haben wir die Zeile für den Akzeptanztest der Qualitätsmatrix gefüllt (siehe
Tabelle 2). Aus Gründen der Übersichtlichkeit wurden nur die Kennungen der Inhalte
eingetragen.

Tabelle 2: Qualitätsmatrix für Time behavior – Acceptance Test

<Time behavior> Test Goal Test Question Test Metric Acceptance
Criterion

Acceptance Test TB_AT_TG TB_AT_TQTR1 TB_AT_TMTR1 TB_AT_AC_TR1
TB_AT_TQTR2 TB_AT_TMTR2 TB_AT_AC_TR2

Anzahl der Geschäftsvorfälle mit Priorität „sehr hoch“, die nach Zeitverhalten getestet wurden
Gesamtanzahl der Geschäftsvorfälle mit Priorität „sehr hoch“, die nach Zeitverhalten getestet werden

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

54

2.4 Beispiel: Komponententest (Component)

Das Test Goal für den Komponententest („TB_CT_TG“) wäre nach den in
Abschnitt 2.1 definierten Aspekten wie folgt:

„Im Komponententest müssen in der Testumgebung ECLPSE3D1Oracle in
Hinblick auf das Zeitverhalten aus Sicht des Entwicklers Fehler in den Komponenten
networkScanner, activityControl, wakeUPStatus gefunden und das Vertrauen in
diese Komponenten unabhängig von den anderen Einheiten gesteigert werden.“

Folgende Fragen werden für den Komponententest gestellt:

1) Test Result-Kategorie: Wie hoch ist die Anzahl der Fehlerwirkungen in
Hinblick auf das Zeitverhalten? (TB_CT_TQTR1)

2) Test Quality- Kategorie: Wie hoch ist die Überdeckung der Komponenten
mit Priorität „hoch“, die nach Zeitverhalten getestet werden sollten.
(TB_CT_TQTR2)

Als Metriken und Akzeptanzkriterien zur Beantwortung der Fragen eignen sich

die folgenden Metriken:

Zu 1) TB_CT_TMTR1: Gewichtete Gesamtanzahl der Fehlerwirkungen, die mit

der Durchführung einer Testfallmenge und der dadurch erreichten Überdeckung
gefunden wurden.

Das Acceptance Criterion sei TB_CT_AC_TR1<= 3 Fehlerwirkungen.

Zu 2) TB_CT_TMTR2:

Das Acceptance Criterion sei TB_CT_AC_TR2<= 0,75.

Damit haben wir die Zeile für den Komponententest der Qualitätsmatrix ebenfalls
gefüllt (siehe Tabelle 3).

Tabelle 3: Qualitätsmatrix für Time behavior – Acceptance Test and Component Test

<Time behavior> Test Goal Test Question Test Metric Acceptance
Criterion

Acceptance Test TB_AT_TG TB_AT_TQTR1

TB_AT_TMTR1

TB_AT_AC_TR1

TB_AT_TQTR2 TB_AT_TMTR2 TB_AT_AC_TR2

Component Test TB_CT_TG TB_CT_TQTR1

TB_CT_TMTR1

TB_CT_AC_TR1

TB_CT_TQTR2 TB_CT_TMTR2 TB_CT_AC_TR2

Anzahl der Komponenten mit Priorität „hoch“, die nach Zeitverhalten getestet wurden
Gesamtanzahl der Komponenten Priorität „hoch“, die nach Zeitverhalten getestet werden müssen

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

55

3 Zusammenfassung und Ausblick

Eine Beurteilung der Softwarequalität in den Teststufen, wie Komponenten- und
Integrationstest, erfordert die teststufenspezifische Betrachtung der geforderten
Qualitätsattribute für diese Teststufen. In diesem Beitrag wurde ein Verfahren
vorgestellt, das dieser Forderung durch eine Spezialisierung des GQM-Ansatzes von
Basili [7] nachkommt. Dabei werden bei der Definition von Zielen und Fragen die
Besonderheiten des Testens wie Teststufen (Test Level) und Testumgebungen (Test
Environment) bzw. die Testergebnisse (Test Result) und die zugrundeliegende
Testqualität (Test Quality) berücksichtigt. Auf die Weise wird ein detaillierteres
Qualitätsmodell für jede Teststufe erstellt. Durch die klaren Zielvorgaben dieses
Qualitätsmodells wird die Testplanung, insbesondere die Auswahl der richtigen
Metriken systematisiert und die frühe Beurteilung der Softwarequalität vereinfacht.
Da häufig die nichtfunktionalen Anforderungen vernachlässigt werden [8][9][10][11],
profitiert besonders die Bewertung der nichtfunktionalen Anforderungen durch dieses
Verfahren.

In einem weiteren Papier werden wir vorstellen, wie in der Testphase
“Testauswertung“ die Entscheidung getroffen wird, ob ein Test Goal erreicht worden
ist. Dazu werden wir das Vorgehen für die Messung der Test Metric, den Abgleich
der ermittelten Kennzahlen mit den Acceptance Criteria und die Beantwortung der
Test Questions beleuchten. Im Zuge dessen werden wir auch die Auswirkungen der
Test Goals auf die Testfallerstellung und die Testaufwandsberechnung betrachten.

Es ist geplant, dieses Vorgehen in die Teststrategiebestimmung während der

Testplanung und in die Teststeuerung zu integrieren. Die Praxistauglichkeit werden
wir in einem Anwendungsgebiet für Informationssysteme evaluieren.

References

1. International Organization for Standardization: Software engineering - product quality -
Part 1: Quality Model, ISO/IEC 9126-1, 2001.

2. Wagner, S., Broy, M., Deißenböck, F., Kläs M., Liggesmeyer P., Münch J. and. Streit J:
Softwarequalitätsmodelle – Praxisempfehlungen und Forschungsagenda. Informatik-
Spektrum, 2009.

3. Spillner, A., Linz, T.: Basiswissen Softwaretest. dpunkt.verlag, 2005. – ISBN 3–89864–
358–1.

4. Balzert, H.: Lehrbuch der Software-Technik. Bd. 1. Zweite Auflage. Berlin Heidelberg:
Spektrum Akademischer Verlag, 2001.

5. Bøegh, J.: A New Standard for Quality Requirements. IEEE Software 25, 2. 57-63, 2008
6. Dröschel, W., Inkrementelle und objektorientierte Vorgehensweisen mit dem V-Modell 97.

München: Oldenbourg, 1998.
7. Basili, V., Caldiera, G., Rombach, H.D.: Goal Question Metric Paradigm. Encyclopedia of

Software Engineering. pp. 528–532 John Wiley & Sons, Inc., 1994.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

56

8. Wagner, S., Deißenböck, F., Winter S.: Managing quality requirements using activity-based
quality models. WoSQ '08: Proceedings of the 6th international workshop on Software
quality. ACM, 2008.

9. Matoussi A., Laleau R.: A Survey of Non-Functional Requirements in Software
Development Process. Technical report LACL, University of Paris-Est 2008.

10. Chung L., Non-functional requirements in software engineering. Boston, Mass.: Kluwer
Acad. Publ., 2000.

11. van Lamsweerde A., Goal-oriented requirements enginering: a roundtrip from research to
practice. In International Requirements Engineering 2008 (RE '08). 16th IEEE, 2008, pp.
4–7.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

57

Using a software blood count in custom software

development projects: an experience report

Markus Großmann

Capgemini sd&m AG, Löffelstr. 46, 70597 Stuttgart, Germany

markus.grossmann@capgemini-sdm.com

Abstract. Capgemini sd&m develops quality models and tools for controlling

the software product quality and has been applying them in their custom

software development projects since a couple of years. The latest version of the

quality model is the so called “software blood count” [1], which was

implemented in the Capgemini sd&m Software Cockpit. This tool was rolled

out to the company at the start of 2009 and is now actively used in over twelve

software development projects. This paper gives a first summary of the

experiences we made in 2009 concerning the usage of the software blood count

in practice. We experienced that projects didn’t use it to define a custom quality

model. The main reasons were that quality requirements are typically not clear

enough and measuring overall software quality showed as being too complex to

do it within one single evaluation process. Instead projects picked only few

indicators of the software blood count and integrated the measurements as

integral parts of their quality assurance processes. The selection was motivated

by quality risks projects wanted to control. We could identify typical

measurement-based quality assurance techniques based on the software blood

count: automatic code reviews, architecture management and test monitoring.

Further work has to be done to elaborate those techniques and provide out-of-

the-box-solutions. Besides that we also perceived that there are problems with

adequate measurement tool support. Many programming languages are not

covered by those tools and even if they are, the tools have usually shortcomings

when used in a large scale project context. This is a problem because automatic

code reviews showed to be the most significant technique.

1 Introduction

The economic crisis has reached the IT: time and cost pressure have dramatically

increased. Although the price level is sinking, a sinking of the quality level is usually

not accepted. Getting proves for a sufficient quality level gets increasingly important

– both for customers and software vendors. German software companies have to

justify their higher prices compared to Indian pure player. They argue that they

deliver better software quality and have a longer experience in software craftsmanship

[2]. Unfortunately there are currently no established quality standards that could help

to prove this.

Besides that, other evolutions in the area of commercial software development

induce further challenges in software quality assurance: SOA is popular and Cloud

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

58

Computing describes a new supplement, consumption and delivery model for IT

services. Software becomes larger, more complex and more distributed. Application

management and the factor “maintainability” are of great importance since most

development effort is still spent on existing software. This all demands effective

quality assurance methods that manage the growing quality needs.

Therefore Capgemini sd&m has developed several constructive and analytical

quality assurance techniques in the past and has been using them in their software

projects. Among them is a tool called “software cockpit” that was initially developed

together with a research partner [3].

This tool and the contained quality model were developed further in cooperation

with a handful of pilot projects at Capgemini sd&m. At the beginning of 2009 the

software cockpit was released as general available product inside of Capgemini

sd&m. It contained a new quality model called the “software blood count”, i.e. a

collection of software product metrics relevant to quality assessment (see fig. 1.). The

software blood count was also equipped with interpretation aids for the metrics,

recommendations on quality requirements and possible mitigations in case of detected

quality risks. This was an improved quality model approach based on experiences

with the first version of the software cockpit [1].

Fig. 1. The Capgemini sd&m software blood count

The software cockpit was rolled out to and used actively in twelve custom software

development projects in 2009. The sizes of these projects were equally distributed

from small projects (smaller than 100 KLOC1) up to large scale projects (larger than

1,000 KLOC). All projects used Java technology, target industries were mainly the

automotive sector, but also logistics, public sector and travel.

The software cockpit was intentionally delivered without detailed process or

quality evaluation guidelines. This should encourage a pragmatic use of the tool and

provide better insights about the really necessary application scenarios in practice by

showing the processes that evolve or are affected by the usage. In the following we

1 KLOC = Kilo Lines of Code

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

59

outline the experiences we made about the usage of the software blood count

approach in practice. The experiences where mainly collected by interviews with the

project leaders and the technical architects of the projects and by providing support

for the setup and application of the software cockpit.

2 Usage of the software blood count as a quality model

Software Quality models are a means to define and describe software quality. They

shall help to specify the quality of a software product in a way that it can be used in a

number of scenarios, e.g. to assess the quality of the software product, to improve the

quality of the software product, and so on.

The software cockpit allows building a custom quality model. It provides a toolset

that measures the metrics of the software blood count and can be extended by custom

metrics. If offers the possibility to define checks and thresholds that help to verify the

conformance to quality requirements. Additionally it provides quality requirements

suggestions and detection patterns that form a basic quality model. The question now

is whether the projects used the software blood count as a quality model: to define

quality, to measure quality aspects, to carry out quality evaluations, etc.

2.1 Projects didn’t use the software blood count to define software quality

Most of the projects didn’t have a clear set of measurement goals when starting

with the software cockpit; there were only two projects that knew in advance what

they wanted to measure. One project got a list of over 200 static code analysis rules

from the customer that they had to check. The requirement was that the next release

source code mustn’t contain more code anomalies for each rule than for the last

release. The other project wanted to measure a set of custom size metrics (number of

application services, number of interfaces, etc.). Both are far away from being a

definition for the overall software quality of the project. All in all the projects had too

few explicit non-functional requirements to justify the creation of a comprehensive

quality model. This had several reasons.

One reason was that the customers usually asked for a fixed price offer based on a

rough concept or an announcement. In many cases non-functional requirements are

not known exactly at this point of time so they are left out or are described only very

general. Measurable definitions have the characteristic that they are “hard” – either

the customer or the software vendor can insist on them. Opinions differ whether this

is an advantage or a drawback, though, in many cases people refrain from making

clear upfront decisions. However, it is universally agreed that those requirements

should be specified that have a strong influence on the price. High demands are

expensive – that has to be visible.

Another reason was that quality modelling was perceived as taking too much time

and as being too complex. Every requirement would have to be reconciled with the

customer and there is the fear that it isn’t clear where to start and where to end here.

Non-functional requirements are often taken as granted by the customer, they are

considered as self-evident hygiene factors (e.g., passwords must not be saved in clear

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

60

text). There is the trust that programmers know what they do and you don’t have to

specify every single rule of software craftsmanship. So projects often do without

additional controlling activities, especially because the measurement of quality

requirements often isn’t simple (e.g., do the programmers write understandable code

comments).

Conclusion: Software quality definitions are difficult in custom development

software projects, mainly because sustainable and comprehensive quality

requirements are missing or too lately known in the project. Controlling the basic

rules of software craftsmanship is often seen as overhead – especially in qualified

teams. So although the software blood count simplifies the definition and

measurement of quality requirements, this wasn’t really used in practice. Unless there

are clear goal definitions, by management or by the customer, projects will spend only

very low effort on quality definition.

2.2 Different opinions concerning quality requirement threshold guidelines

The software cockpit provides a set of basic quality requirement suggestions

together with thresholds (e.g., unit tests shouldn’t fail). Projects could decide whether

they adopt some of those requirements. We experienced that the projects divided into

two fractions here, nearly equally divided.

The one fraction completely denied any kind of threshold because they feared that

thresholds may have an unwanted influence on the software development process.

They saw the risk that people concentrate on tuning metrics instead of improving

software quality or the effectiveness of the development process. They advocate

trusting the programmer and didn’t want to encourage a “work-to-rule” working

atmosphere. They compared it with traffic where studies showed that too many traffic

signs do not prevent but rather promote road accidents.

The other fraction was open for guidelines and thresholds that demand self-evident

qualities of software craftsmanship. It should be on hand to see where programmers

even fail the simplest rules and it should be possible to demand or guarantee a

minimum quality standard – especially at code handover situations. We noticed that

especially members of highly distributed projects represented this fraction.

Conclusion: The acceptance of quality guidelines seems to depend on the project

situation, especially the team organization and the team qualification. Projects with a

highly qualified team often do without controlling the ABC of software development.

Whereas teams that haven’t been working together consider proposals as helpful that

define a minimum quality standard for specific characteristics of software

craftsmanship.

2.3 Projects focused on specific quality indicators

We perceived that each project used only a small custom subset of the software

blood count. We had no project that measured all of the 16 available indicators; they

rather did cherry-picking. Projects chose only those indicators where they wanted to

establish a controlling activity for a specific quality aspect. Measurement with the

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

61

software cockpit was thought as a supplement to existing quality assurance methods

like, e.g., functional testing or code reviews. It was not considered necessary to

establish a controlling for all kinds of quality aspects. Instead projects selected those

measurements that were considered important in the project, that represented a vital

quality risk or that were not covered by other measures. The projects justified this

with lean management and pragmatic thinking. The following table lists each metric

and how many projects used it2.

 Used by projects (percentage)

Classes count 100 %

Number of statements (NCSS) 100 %

Code comment density 100 %

Number and result of unit tests 100 %

Rule violations count 92 %

Code anomalies count 92 %

Code anomaly density 92 %

Code coverage 50 %

Average component dependency (ACD) 42 %

Relative ACD 42 %

Illegal dependencies count 42 %

Cycles count 42 %

Defects count 25 %

Defect density 25 %

Frequency of changes 17 %

Review effort 0 %

Table 1. Metrics of the software blood, sorted by usage rate

Projects enriched their software development process with activities that used

software measurement for analytical quality assurance. It is interesting that we could

identify similarities between projects here. All of the observed activities could be

categorized into three different process bundles – we call them measurement-based

quality assurance techniques. We will depict those in the next chapter.

Furthermore we often got the feedback that though the number of metrics is

manageable it is still difficult to figure out the application context of each metric. The

scope of the software blood count is quite large and the catalogue of detection

patterns is too unclear if you want to filter for a specific quality aspect or to find out

which indicators are essential in your specific project context. It was also

cumbersome for the projects that metrics where not embedded within activities

respectively process descriptions. So people had to invent their own usage techniques.

However, this was our intention and we now got a clearer picture about software

development process integration for software measurement.

2 Please note that not all metrics of the software blood count were implemented in the rolled out

software cockpit release.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

62

Conclusion: It seems to make sense to modularize the software blood count in

order to support a focused quality view of a software development project. A

modularized structure would also simplify the understanding and clarify the

application areas of the software blood count. Projects needn’t have to deal with a

universal quality evaluation method, but can select those techniques that are important

– or demanded by the customer – in their project context.

3 Measurement-based quality assurance techniques

We experienced that several metrics of the software blood count were always used

together in similar application contexts throughout the projects. This chapter gives a

brief description of the identified techniques in order to get the idea, describe the main

motivation and list the used metrics.

 Used by projects

(percentage)

Automatic Code Reviews 92 %

Architecture Management 42 %

Test Monitoring 50 %

Table 2. Percentage of projects using measurement-based quality assurance techniques

3.1 Automatic Code Reviews

All except one project integrated static code analysis tools into their automated

build process. That means they added Findbugs, PMD and Checkstyle in order to

search for bug patterns in the source code or to do code style validations. Most

projects had their own configuration for these tools, only two projects used the

templates that came with the software cockpit. The measured metrics of the software

blood count were number of code anomalies, code anomaly density, number of rule

violations.

Users drew an analogy between this technique and a virus scanner. The motivation

of this technique was to control the conformance to an agreed coding style and to find

possible defects. They let the static code analysis tools go over the source code like a

virus scanner and analyzed the reported code anomalies. Here it was essential to

choose a good configuration of the static code analysis tools so that false alarms were

minimized.

This technique should also help to increase the effectiveness of manual code

reviews, because the entry criteria for a manual code review were that the code

conformed to the coding style and that no severe code anomalies were in the code. So

that manual code reviews weren’t bothered with trivial mistakes and negligences.

Projects also used automatic code reviews to find suspicious places in the code where

improvements or a manual code review would be sensible. One project for example

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

63

regularly performed a so called “quality day” where the data of the static code

analysis served as input data for code improvements and refactorings.

3.2 Architecture Management

Projects that used this technique created a SonarJ3 logical architecture model for

their software system. The motivation was to find deviations between the intended

architecture and the real architecture in the source code. Additionally some

dependency metrics were calculated. This should help to prevent software erosion i.e.

the continuous decay of the internal structure of the software system. Software

erosion is a big problem for changeability and maintainability of the software.

Architecture management is described in [4]. The measured metrics of the software

blood count were number of illegal dependencies, number of cycles, relative average

component dependency (rACD), average component dependency (ACD).

3.3 Test Monitoring

Test monitoring looks after the effectiveness of the tests, especially the automated

test suite. It checks whether the tests are running successfully and how high the test

coverage is. A test suite that isn’t maintained looses its significance. Low test

coverage could mean that tests are insufficient. The measured metrics of the software

blood count were number of tests, test results and code coverage.

3.4 Software Performance Monitoring

The software performance metrics of the software blood count have been

implemented late in 2009, so that no project was able to use them. However we had

some requests of projects that wanted to do Software Performance Monitoring, i.e. a

regular check of business transaction response times.

4 Further Lessons Learned

This chapter contains a brief summary of other significant experiences we made.

4.1 Measurement tools have shortcomings in a large scale project context

We ran into several technical problems especially when setting up measurement

tools for large scale projects with a huge code base. Setup for small and medium size

projects took usually only about 5 person days whereas setup for the same tools for

3 http://www hello2morrow.com/products/sonarj

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

64

large scale projects took about 20 person days. The reason is that the measurement

tools showed technical shortcomings when used in a large scale project context.

One example: we used Cobertura4 for measuring code coverage. The Maven plugin

for Cobertura showed problems when used with the Maven inheritance feature, which

is quite common in large scale projects. The Cobertura Maven plugin also doesn’t

automatically calculate code coverage for multiple projects – also a feature that is

widely used in large scale projects. The build process of large scale projects has

usually many steps (e.g., deployment on servers), which isn’t good supported by the

Cobertura code instrumenting feature. Other code coverage tools like EMMA5 and

even the commercial tool Clover6 also showed more or less technical problems in a

large scale project context.

4.2 No adequate measurement tool support for several programming languages

We learned that the application of measurement or quality models is hampered by

a lack of measurement tool support.

Java is maybe the programming language that has the best support of static code

analysis tools. A lot of them are even Open Source. However, we observed that even

if you use Java technology, there is a lot of “code” that is not considered by static

code analyzers: e.g. code from scripting languages (e.g., JavaScript), template

languages (e.g., Java Server Faces), proprietary configuration files (e.g., Spring,

Hibernate), etc. So these are blind spots when measuring e.g. code coverage, code

size or code anomalies.

We also tried to implement the software blood count for ABAP, but had difficulties

at extracting the measurement data from the ABAP workbench because adequate

interfaces were missing. So this was a situation where measurement tools were

available but their data couldn’t be used by external programs.

Finally there are a lot of programming languages where there are no or only very

little measurement tools available – especially open source tools. For example there is

still a lot of Cobol software, but hardly any measurement tools for this programming

language. We think that this problem will not become smaller in future but rather

increase since the growing significance of (graphical) Model Driven Design

languages and Domain specific languages. This is a problem, especially because

Automatic Code Reviews showed as the technique with the highest significance.

4.3 Out-of-the-box solutions are preferred

The time and effort needed for setting up and operating the measurement of the

software blood count was the main acceptance criteria. Projects preferred out-of-the-

box solutions, even if they provide less flexibility. It is essential to have measurement

completely automated.

4 http://cobertura.sourceforge net/
5 http://emma.sourceforge net/
6 http://www.atlassian.com/software/clover/

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

65

5 Conclusions and Outlook

We rolled out the software blood count with only little process guidelines. It

showed that not only one but many different quality evaluation processes evolved –

the measurement-based quality assurance techniques. Each technique didn’t use the

full software blood count but only fractions of it. The next steps will now be to further

elaborate those techniques and modularize the software blood count according to

them. The goal is to provide out-of-the-box solutions that can be quickly applied in

practice. Tool support matters, so these solutions should be equipped with sufficient

howtos and recipes that especially describe the snares and caveats when applying

measurement tools in a large scale project context.

Further work can be done to explore new measurement-based quality assurance

techniques, particularly those that use metrics which are currently not part of the

software blood count. It will also be interesting to do research on the effectiveness of

each method: how good do they help to evaluate which quality aspects? How many

defects can be found earlier than as usual?

Finally the main challenge will be to integrate all of these techniques into an

overall quality model or an overall quality standard. From our current point of view

and due to our experiences it is more likely that an overall quality standard will be an

aggregation of “mini” quality standards than a homogenous way to calculate quality

aspects from measurement results.

References

[1] M. Großmann: Towards an applicable software quality model for individual software

projects, in S. Wagner, M. Broy, F. Deissenboeck, P. Liggesmeyer, J. Münch (Hrsg.)

Tagungsband 2. Workshop zur Software-Qualitätsmodellierung und -bewertung (SQMB

'09) (2009)

[2] „Software - Made in Germany", Study of the IMWF Institut für Management- und

Wirtschaftsforschung on behalf of the Beratungs- und Softwarehauses PPI AG (2009).

[3] M. Bennicke, F. Steinbrückner, M. Radicke, J.-P. Richter: Das sd&m Software Cockpit:

Architektur und Erfahrungen, in R. Koschke, O. Herzog, K.-H. Rödiger, M. Ronthaler

(Hrsg.): INFORMATIK 2007, Beiträge der 37. Jahrestagung der Gesellschaft für Informatik

e.V. (GI), Lecture Notes in Informatics (LNI), GI Proceedings 110, Band 2, pp. 254—260

(2007)

[4] A. v. Zitzewitz: Erosion vorbeugen, JavaMagazin, (2), (2007)

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

66

Maintainability Index Revisited: Adaption and
Evaluation for Bosch Automotive Software

Jochen Quante, Thomas Grundler, Andreas Thums

Robert Bosch GmbH
Corporate Sector Research and Advance Engineering Software

P.O. Box 30 02 40, 70442 Stuttgart, Germany

Abstract. Assessing maintainability or other software quality attributes
automatically has been in focus of research and practice for a long time.
One well-known example is the Maintainability Index by Oman and
Hagemeister [1, 2]. Their results were promising – however, there also
has been a lot of critics about the approach. This paper reports on the
adaption and evaluation of this approach on Bosch automotive software.

1 Introduction: The Maintainability Index

The Maintainability Index (MI) as introduced by Oman and Hagemeister is
based on the idea of correlating software product metrics with expert opinions on
maintainability [1, 2]. It uses principal components analysis (PCA) on software
metrics plus a polynomial regression analysis to build a predictor model. The
underlying assumption is that software product metrics measure properties that
have something to do with maintainability, which appears reasonable.

Embedded software is different from classical IT software [3]. Therefore, it
is interesting to see whether the approach is applicable to this kind of soft-
ware. Furthermore, we want to report about the acceptance and usefulness of
the approach in industry. Our goal in using the MI is to provide a means to
identify components with low maintainability, such that those can be targeted
and improved systematically.

2 Applying the Method to Bosch Software

To evaluate the approach, we selected two subsystems from a Diesel engine con-
trol software and let a number of experts judge their maintainability. The latter
was done using a questionnaire that covered different aspects of maintainability.
Then we took a set of standard software product metrics as provided by the
QA-C tool1. When applying PCA on this data, the result was that most metrics
ended up in one cluster along with the lines of code metric. Also, this cluster
represents the major share of information.

1 http://www.programmingresearch.com/QAC_MAIN.html

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

67

Using regression analysis, the following formula resulted as the maintainabil-
ity index when calibrated with subsystem A:

M = 266.04−0.07 ·XLN −0.29 ·LCT −3.87 ·CAL−5, 27 ·LOP −36, 48 ·MIF

where XLN is the number of executable lines of code, LCT is the number of
local variables declared, CAL is the number of distinct function calls, LOP is
the number of logical operators, and MIF is the maximum nesting of control
structures.

We also evaluated a set of advanced non-standard metrics, such as data
flow complexity and cognitive complexity. However, they did not result in any
new clusters in the PCA, which means that they are strongly correlated to the
other (simpler) metrics. Another observation is that the metrics from the HIS
recommendations2 are mostly located in distinct clusters, which indicates that
they really check for different aspects.

Fig. 1. Maintainability index results for the modules of subsystem B. Maintainabil-
ity values greater zero indicate “good” maintainability, values lower than zero “bad”
maintainability. The X axis enumerates the different modules.

The formula was evaluated on a second subsystem B. Figure 1 shows the
maintainability index values for the different modules of this subsystem. Most
of the modules get a positive rating, whereas a few modules have large negative
values and thus a strong indication of bad maintainability. Those are the modules
that one should first regard when looking for maintainability improvement. The
question is whether the indicated modules are really those that are also rated
as being of low maintainability (LM) by the experts. We found that 50% of

2 HIS is an initiative of German vehicle manufacturers that focuses on improving
software quality. Among other things, they have defined recommended ranges for
certain software metrics that apply for automotive software [4].

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

68

the modules belong to the LM category (precision), and that 83% of the LM
modules are contained in this set (recall). This means that the index is really a
quite useful indicator: It highlights only a few of the modules, and every second
of these modules has in fact potential for improvement.

3 Experience and Discussion

On first sight, at 50%, the precision of our MI may not seem quite high. However,
the feedback from our business units is that this level of precision is “good
enough” in practice: They are happy to get some hint where to look first when
aiming at maintainability improvement. The index does not need to be perfect
– which would mean 100% precision and 100% recall. The HIS metric range
recommendations already are a guideline for good software quality, but do not
have maintainability in focus. Another practical advantage is that assessing the
MI is quite “cheap”: The required metrics are already there. It is therefore easy to
roll out the MI and to integrate it into the software development process. These
are factors that should not be underestimated for industrial application. Apart
from the practical relevance, applicability and acceptance aspects, we found a
number of other noteworthy issues in our studies on which we will elaborate in
the following.

Code size and maintainability. One major finding is that the length of a
function or module (XLOC) alone is already a strong indicator for maintainabil-
ity. In most cases, the functions that were indicated by the MI were in fact those
that were very long. Long functions were also rated to have low maintainability
by the experts. This means it would be a good heuristic to sort the functions by
their size to find the problematic ones. Furthermore, the majority of the met-
rics is correlated to XLOC, which makes this approach even more appealing.
However, when evaluated on the same subsystem B, we found that the XLOC
criterion alone also results in a precision of 50%, but in a recall of only 43%.
This means that the additional terms in the MI help to improve recall, and this
improvement comes at quite low cost.

Comparability. Another finding concerns different programming styles.
Different organizational units may use different programming guidelines and
implementation styles, which makes results hard to transfer from one system to
another. This means that the MI has to be calibrated for each unit individually.
There cannot be a single universal or even company-wide maintainability index.
Comparing maintainability between different systems is therefore infeasible.

Individual differences. Also, different experts judged about the same
module in quite inconsistent ways. For example, the same module was rated
“good” by one expert and “very bad” by another. Of course, this is not a good
basis for maintainability assessment: How can an automatism assess maintain-
ability when even the experts do not agree? This means that the “perfect index”
is not realizable by any maintainability assessment approach: Different people
regard different constructs as being hard to understand; what is complex for one
person may be easy for another, and vice versa.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

69

Variance and preprocessor. Our software has a very high variance. To
cope with that, the product line approach is applied, which means that common
parts are shared and variant parts are separated using different mechanisms. One
widespread variant mechanism is the use of C preprocessor conditions. In our
analyses, we used QA-C metrics, which work on preprocessed code. However,
it turned out that variants sometimes contain less than 50% of the entire code
base, which means that we ignored most of the code that a programmer has to
deal with. Maintainability therefore should be assessed on the source code level
instead of the preprocessed code level. Unfortunately, metrics on the unprepro-
cessed source code level often have to rely on heuristics and may therefore be
more imprecise input data. This approach yet has to be evaluated.

Root-cause analysis. One point that is generally criticized about the MI
is that it does not allow root-cause analysis. This means that the index tells you
that your code is bad – but it does not tell you why or how to make it better.
One approach to tackle this problem is to integrate bad smell pattern detection.

Outliers. Also, the MI ignores outliers, which may contain valuable hints
about maintainability problems in practice. In a case study we performed, an
approach solely based on outliers delivered quite good results for assessing main-
tainability. Similar to the MI, XLOC is an important factor here, but other
metrics that are significantly higher (or lower) than the average also become
an influencing factor. If precision shall be improved, it could be a good idea to
include outliers into the index.

4 Summary and Outlook

As pointed out above, the MI in its current form is already quite valuable for
industrial purposes. However, it can be further improved by raising precision and
adding root-cause analysis capabilities. We plan to improve the index by using
a combined metrics – including source-level metrics – and “bad smell patterns”
approach. The different indicators will then be combined using a quality model.
Outliers can be integrated into this model as well. This approach will allow
root-cause analysis and will be more independent from the experts’ assessment.

References

1. Oman, P.W., Hagemeister, J.R.: Constructing and testing of polynomials predicting
software maintainability. Journal of Systems and Software 24(3) (1994)

2. Coleman, D., Ash, D., Lowther, B., Oman, P.: Using metrics to evaluate software
system maintainability. IEEE Computer 27(8) (1994) 44–49

3. Schulte-Coerne, V., Thums, A., Quante, J.: Challenges in reengineering automo-
tive software. In: Proc. of 13th Conf. on Software Maintenance and Reengineering
(CSMR). (2009) 315–316

4. Kuder, H.: HIS Source Code Metriken (April 2008) available at http://portal.

automotive-his.de/images/pdf/SoftwareTest/his-sc-metriken.1.3.1.pdf.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

70

The ArchMapper Approach to Architectural
Conformance Checks: An Eclipse-based Tool for
Style-oriented Architecture to Code Mappings

Simon Giesecke1 and Michael Gottschalk2 and Wilhelm Hasselbring3

1 Simon Giesecke
BTC Business Technology Consulting AG

Kurfürstendamm 33
10719 Berlin

simon.giesecke@btc-ag.com
2 Michael Gottschalk

freiheit.com technologies GmbH
Straßenbahnring 22
20251 Hamburg

michael.gottschalk@freiheit.com
3 Wilhelm Hasselbring

Christian-Albrechts-Universität zu Kiel
Department of Computer Science

24098 Kiel
wha@informatik.uni-kiel.de

Abstract. The ArchMapper approach allows performing two activities
in the software development process efficiently: checking the conformance
of the code to the intended architecture as specified by an architectural
description, and generating code skeletons and architecture-related con-
figuration files from the architectural description. Both directions exploit
information based on the architectural style of the software system. An
architectural style may be as simple as the style of layered architectures,
or it may correspond to a specific middleware platform, which allows
more specific analyses and generation. We have applied the approach to
the style of the Spring MVC framework, where several architectural prop-
erties can be checked, and the Spring configuration file for the application
may be automatically generated from the architectural description.

1 Introduction

An important aspect in ensuring the evolvability of a software system is its
conceptual integrity. Conceptual integrity is guaranteed on the architectural level
by the adherence to a consistent architectural style. In practise, the adherence
to an architectural style can only be ensured in the long term when tool support
for checking the conformance of the implementation to the architecture and its
style is available. This is particularly true in the context of distributed software
development. Tool support requires that the architectural style can be formalised

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

71

in some way, which is not possible for all properties that can be associated with
an architectural style. Strict approaches focus on declarative properties of an
architectural style which require knowledge of a complex formalism in practically
relevant cases (see, e.g., [1]). It is often easier, though less rigorous, to specify
architectural rules by implementing checks for them imperatively. This does not
require an evaluation engine for declaratively specified rules. The ArchMapper
approach is such an approach. In this paper, we focus on using the ArchMapper
approach to perform style-based architectural conformance checks as described
before. However, the ArchMapper approach supports another activity, style-
based code generation.

In the following, we begin by describing the conceptual foundations of the
approach (Section 2). Then, we describe the architecture of the ArchMapper tool
that implements the approach (Section 3). In Section 4, we describe an evaluation
of the approach and the tool in a case study using a real-world system. Section 5
discusses related work, while Section 6 concludes the paper and provides thoughts
on future work.

2 Concept

2.1 Foundations

Software Architecture and Architectural Views Currently, there is no
consensus on the meaning of the term “software architecture” yet, so we briefly
introduce our understanding. We distinguish the general term “software archi-
tecture” and subordinate “architectural views” (other authors and related ap-
proaches implicitly or explicitly equate “software architecture” with a specific
“architectural view”, e.g. [2]). This understanding is based on the definitions in
the ISO 42010 Standard [3] for software architecture description, which defines
software architecture as “the fundamental organization of a system embodied in
its components, their relationships to each other and to the environment and
the principles guiding its design and evolution”.

The architecture of a software system can be described from different view-
points that may decompose the system into different kinds of elements, each
of which is called an architectural view. The most important viewpoints [4]
are the module viewpoint, which describes the structure of the code in terms
of modules (in Java, e.g., these are usually identified with packages), and the
component-and-connector viewpoint that describes the basic runtime structure
of the system. When designing new software systems, it is convenient to use
a straightforward mapping of components and connectors to modules, which
means that certain modules are used exclusively by their corresponding compo-
nents. However, library modules will typically be used by multiple components.
When the software system is run on a runtime component platform, components
may explicitly correspond to artefacts: For example, OSGi bundles (or Eclipse
plug-ins) are components in this sense.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

72

Architectural Styles Architectural styles can be defined for any architec-
tural view, but they are most commonly used together with the component-and-
connector view. Well-known examples are several variants of the pipe-and-filter
style and of layered styles. For this architectural view, the following definition
describes the seminal understanding of architectural styles: “An architectural
style determines the vocabulary of components and connectors that can be used
in instances of that style, together with a set of constraints on how they can
be combined” [5]. An “instance” of a style is an architectural description of a
concrete software system that conforms to the vocabulary and constraints of the
style.

2.2 Style-oriented Architecture to Code Mappings

Our mapping approach is based on architectural descriptions in the component-
and-connector view. The code however, is naturally organised in the module
view. Therefore, the definition of the architecture-to-code-mapping implicitly
involves a mapping between these architectural views.

Architectural information inherently goes beyond the information that is
naturally contained in the source code. Any code-to-architecture conformance
checking approach uses an architectural description and a mapping from the
elements architectural description (e.g. components) to the elements of the code
(e.g. source files, packages, and classes). A (generic) conformance checker uses
the architectural description, the mapping and the source code to create a list
of violations (if any exist). This basic approach is extended by the ArchMapper
approach. An overview of its elements is shown in Figure 1.

In the ArchMapper approach, the architectural information consists of two
types of artefacts: style descriptions, which are reusable for all software systems
that are built on top of the same platform4, and architectural descriptions, which
correspond to a specific software system. In our evaluation, we use an academic
Architectural Description Language (ADL) called Acme for describing styles and
architectures. While this ADL is not well-known among software practitioners,
it is easy to learn since it can be said to be a minimal language that has the
required modelling features, i.e. the constructs necessary for modelling styles
and instances of styles5.

Acme has the additional benefit that a modelling tool is available, which is
integrated with Eclipse and allows checking the architecture for conformance
with the style, which means that these rules do not need to be checked di-
rectly in the code. However, there remain constraints imposed by a specific style
that need to be checked in the code, e.g. constraints that refer to constituents

4 An architectural style is a model of the platform from the component-and-connector
architectural view. A platform is a specific mode of use of a set of middleware
products. We distinguish platform and product since complex middleware products
can be used in a variety of ways that incur architectural differences.

5 We have shown that using the UML for this purpose is possible, but unfortunately
awkward if implemented rigorously [6].

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

73

MidArch Style
Description

(Acme)

Architecture
Description

(Acme)

Style-specific
Mapping

(XML)

Architecture-
specific
Mapping

(XML)

Generic
Conformance

Checker

Style-specific
Conformance

Checker

references references

conforms to

Source
Code
(Java)

Platform-
specific

Configuration
Files

Rule Violations

Fig. 1. ArchMapper Approach to Style-specific Architecture Conformance Checks

(e.g. methods) of the target elements of the mapping (e.g. classes). Therefore,
the code-to-architecture conformance check can be improved by exploiting the
knowledge that a software system should adhere to a specified architectural style.

This knowledge is used in two ways:
– A style-specific mapping. It describes rules for mapping style-dependent el-

ements of an architectural description to the code. It is interpreted by the
generic conformance checker that is used for style-independent mappings as
well.

– A style-specific conformance checker. This may be used to check proper-
ties that cannot be easily expressed in the form of rules that the generic
conformance checker interprets.

It is important to note that both the style-specific mapping and the style-specific
conformance checker are specified or implemented independently from a specific
software system. They can be reused and be applied to any system that is spec-
ified to adhere to the same style.

The properties checked by the generic conformance checker are the following:
Communicational integrity: For each dependency between elements in the

code, an allowed dependency must be specified for the respective components
in the architectural description.

Missing elements: Each component must be implemented by at least one code
element, and every code element must be associated with a component.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

74

3 Architecture

3.1 Foundations

Eclipse Static Analysis Tools The Eclipse Static Analysis Tools are part
of the Eclipse Test and Performance Tools Platform. They provide a language-
neutral framework and GUI for implementing and running static code analyses.
A static analysis can be easily defined by implementing a Rule interface and
defining an extension to an extension point supplied by the Static Analysis Tools.

3.2 Architecture of the ArchMapper Tool

Fig. 2. Architecture of the ArchMapper Tool

Figure 2 shows an overview of the architecture of the ArchMapper tool6.
For the sake of simplicity, the diagram shows dependencies for the case of Java.
However, the architecture can be easily adapted to other languages supported
by IDEs based on the Eclipse Workbench IDE, such as C++. In the current Java
setup, the ArchMapper tool extends both the Eclipse Java Development Tools
(JDT) and the Static Analysis Tools. There is a core ArchMapper component
which implements the generic code generator and conformance checker as well
as the user interface. It uses an internal representation of the architectural de-
scription, which is supplied by ADL-specific plug-ins. Currently, only the Acme
plug-in is implemented, but UML support could be easily added as indicated
6 Available for download at http://archmapper.sourceforge.net/

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

75

in the figure. Style-specific code generators and conformance checkers are also
added via the Eclipse plug-in infrastructure, as it is currently done with the
SpringStyleMapper plug-in.

3.3 ArchMapper Tool Features

In addition to the style-based architectural conformance check, the ArchMapper
tool checks the following properties on the architectural level:
Average Component Dependency: The Average Component Dependency met-

ric [7] is calculated and shown as a warning, independently from its value.
Dependency cycles: Components that are part of a dependency cycle are

identified.

4 Evaluation

The ArchMapper tool has been evaluated using a relevant middleware-oriented
architectural style of the Spring Model/View/Controller framework7 and a real-
world software system that has been in use at a postal service company.

4.1 Spring Web-MVC Architectural Style and Style-specific
Mapping

Fig. 3. Screenshot:Conformance check rules specific to the Spring Web-MVC style

7 http://static.springsource.org/spring/docs/2.0.x/reference/mvc.html

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

76

Figure 3 shows the conformance check rules that have been defined specif-
ically for the Spring MidArch Style, which is a specialisation of the general-
purpose Model-View-Controller style.

One of the architectural rules is the “No computation in Model classes” rule.
It is an architectural rule, since it governs the global interaction structure within
the application. It may be stated on the architectural level, however it cannot be
checked on the architectural level, but only using the implementation. In terms
of the implementation elements, it means that classes within a Model component
may only offer simple getter and setter methods.

The source code generation feature is used to generate the Spring XML con-
figuration file from the architectural description.

4.2 Application to the Architecture of an Existing Software System

The ArchMapper tool identified several violations of architectural rules that
have apparently not been noticed before. First, there are violations of the “No
computation in Model classes” rule, which has been violated 40 times in the
original implementation that was checked using ArchMapper. Additional viola-
tions of architectural rules that have been uncovered by ArchMapper include a
large number of violations of the generic architectural rule of communicational
integrity, for example direct accesses from classes of the controller component to
database classes. In addition, violations of the rules “No outgoing connections
in Model components” and “No static methods” have been detected. While the
violations of the communicational integrity rule could have been detected with
a generic architectural conformance checking tool, the other architectural rules
could not have been stated easily without the unique style-based approach un-
derlying ArchMapper, and hence the detection of their violation would not have
been possible.

5 Related Work

5.1 Academic Approaches

There are several academic approaches to architectural conformance checking,
but few that consider the relevance of style-specific checks. First, representa-
tive for those approaches that do not consider architectural styles, we discuss
the ArchJava approach. Second, we discuss the approach supported by the tool
ArchitectureChecker.

ArchJava Architectural information can be either provided as additional anno-
tations that are part of the source code files, or it can be provided as a separate
artefact. ArchJava [8] uses the former approach, while we chose the latter ap-
proach, which has several benefits:

– The software architecture has a different lifecycle than the code, since it is
initially created before any code is written. Thus, it can be used for code
generation. In addition, it is changed much less often than the code.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

77

– A separate software architecture description can be easily used as architec-
tural documentation. If the architectural information is distributed over a
large number of source code files, relationships between different fragments
are difficult to understand.

– Notations that are commonly used for architecture descriptions, e.g. the
UML or specialised architecture description languages, often are graphical
and are not designed to be intermixed with source code. A language for
annotating source code would require an additional learning effort.

– The mapping between architecture and code is made explicit. It can be
specified by rules and exceptions to these rules.

ArchitectureChecker In [9], another style-based approach to checking archi-
tectural conformance is presented. It is based on a declarative description of the
architectural style. In difference to the approach presented here, it only uses the
description of the style and a representation of the architecture derived from the
source code, i.e. a module view. It does not use an explicit model of the expected
architecture. It is not explicitly stated whether the architectural style refers to
the component-and-connector view or to the module view. A tool implementing
the approach also exists (ArchitectureChecker), but is not described in detail in
the paper.

5.2 Industrial Tools

There exist some industrial tools that allow to perform architecture conformance
checks. However, none of these tools supports the notion of an architectural
style natively. Furthermore, they are not based on an independent architectural
descriptions from the component-and-connector viewpoint, but rather operate
on code-based architectural elements and their dependencies.

SonarJ8 supports the definition of matrix-like structures of architectural el-
ements and implicitly defines a kind of basic architectural style that limits legal
dependencies between the architectural elements. It is limited to software sys-
tems implemented in Java.

Sotograph9 is a tool with an academic background [10] which has been ex-
tended towards an industrial-strength tool. It is implicitly based on a sort of
layered architectural style.

The CAST Application Intelligence Platform10 also provides some capabili-
ties for specifying and checking architectural rules.

6 Conclusions and Outlook

Compared to other approaches, ArchMapper has several unique properties:
8 http://www.hello2morrow.com/products/sonarj
9 http://www.hello2morrow.com/products/sotograph

10 http://www.castsoftware.com/Product/Application-Intelligence-Platform.aspx

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

78

– ArchMapper is the only tool that is based on an architecture that can easily
accommodate arbitrary architectural description notations, since we separate
the architecture description language from the mapping approach.

– ArchMapper is one of only two existing approaches to exploit style informa-
tion in the mapping.
Our approach is more general, since the tool used by [11] is restricted to
layered architectures.

– ArchMapper is the only approach that is designed to produce architectural
rules and style-specific mappings across independently developed software
systems, since the architectural styles and style-specifics mapping aspects
are bound to the middleware product and platform that is used to build the
software system.

– ArchMapper is integrated with a popular IDE (Eclipse) and provides in-
formation on architectural violations directly side-by-side with the source
code.

– ArchMapper is the only approach that allows the addition of a style-specific
conformance checker, and is furthermore integrated with a code generation
feature, which has not been detailed in this paper.

– While the implementation is currently only available for Java as the imple-
mentation language, its architecture allows it to be easily be adapted to other
implementation languages that are supported by the Eclipse Static Analysis
Tools.

There are still some limitations to the approach, for which remedies could be
provided by future work:

– When using Acme as an ADL, it is not possible to explicitly specify the
direction of communication links. These are implicitly determined by the
semantics of the defined ports. This could be relieved by using a different
ADL for architecture specification, such as the UML-based modelling ap-
proach presented in [6].

– The mapping between the component-and-connector view and the module
view does not yet accommodate for modules that are not associated with
exactly one component, which is usually the case for any library module. One
way to handle this is to define library pseudo-components for each library
module. A component type for library components can be supplied by a
specific architectural style. Style-specific rules are that library components
may not access any non-library components. Among the library components,
communication restrictions may also be explicitly defined. The mapping of
library components to their source code may be reused for any software
system using the libraries.

– While it is quite easy to adapt the tool to an implementation language other
than Java, the application to multi-language software systems would require
an additional effort to make the specification of the architecture-to-code
mapping convenient.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

79

References

1. Pahl, C., Giesecke, S., Hasselbring, W.: Ontology-based modelling of architectural
styles. Information & Software Technology 51 (2009) 1739–1749

2. Kazman, R., Bass, L., Webb, M., Abowd, G.: SAAM: a method for analyzing
the properties of software architectures. In: ICSE ’94: Proceedings of the 16th
international conference on Software engineering, Los Alamitos, CA, USA, IEEE
Computer Society Press (1994) 81–90

3. ISO: Recommended Practice for Architectural Description of Software-Intensive
Systems. (2006) IEEE Standard 1471-2000, ISO/IEC Standard 42010 (formerly
ISO/IEC DIS 25961).

4. Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers, J., Little, R.: Doc-
umenting Software Architectures: Views and Beyond. Pearson Education (2002)

5. Garlan, D., Shaw, M.: An introduction to software architecture. In Ambriola, V.,
Tortora, G., eds.: Advances in Software Engineering and Knowledge Engineering,
Singapore, World Scientific Publishing Company (1993) 1–39

6. Giesecke, S., Marwede, F., Rohr, M., Hasselbring, W.: A Style-based Architecture
Modelling Approach for UML 2 Component Diagrams. In: Proceedings of the 11th
IASTED International Conference Software Engineering and Applications (SEA
2007), Cambridge, MA, USA, Anaheim, CA, USA, ACTA Press (2007) 530–538

7. Beck, C., Stuhr, O.: Stan – strukturanalyse für java. JavaSpektrum (2008) 44–49
8. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: connecting software architecture

to implementation. In: Proceedings of the 24th international conference on Software
engineering, ACM Press (2002) 187–197

9. Becker-Pechau, P.: Stilbasierte architekturprüfung. In Fischer, S., Mähle, E.,
Reischuk, R., eds.: Informatik 2009. Volume P-154 of Lecture Notes in Informatics.,
Bonn, Germany, Gesellschaft für Informatik e.V. (GI) (2009) 3264–3275

10. Bischofberger, W.R., Kühl, J., Löffler, S.: Sotograph - a pragmatic approach to
source code architecture conformance checking. In Oquendo, F., Warboys, B.,
Morrison, R., eds.: Software Architecture, First European Workshop, EWSA 2004,
St Andrews, UK, May 21-22, 2004, Proceedings. Volume 3047 of Lecture Notes in
Computer Science., Springer (2004) 1–9

11. Becker-Pechau, P., Karstens, B., Lilienthal, C.: Automatisierte softwareüberprü-
fung auf der basis von architekturregeln. In Biel, B., Book, M., Gruhn, V., eds.:
Software Engineering 2006, Fachtagung des GI-Fachbereichs Softwaretechnik, 28.-
31.3.2006 in Leipzig. Volume 79 of LNI., GI (2006) 27–37

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

80

	deckblatt.pdf
	proceedings
	deckblatt.pdf
	proceedings

