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A polynomial algorithm to compute the
concurrency relation of free-choice Signal
Transition Graphs *

Andrei Kovalyov and Javier Esparza
Institut fir Informatik
Technische Universitat Minchen

Abstract

The concurrency relation of a Petri net contains the pairs of transitions that can be
concurrently enabled. We present a polynomial algorithm to compute the concurrency
relation of free-choice Signal Transition Graphs, a class of Petri nets with applications
to the verification and synthesis of speed-independet circuits.

1 Introduction

Signal Transition Graphs (STGs) have become a popular and much studied formalism for
the specification and verification of speed independent circuits [3, 8, 9]. STGs are 1-bounded
Petri nets whose transitions carry labels of the form y+, y~, where y is a circuit signal.! The
occurrence of a transition with label y raises y, i.e., sets its value to 1, while the occurrence
of a transition with label y~ lowers y, i.e., sets its value to 0.

A speed-independent circuit should never reach a state in which one circuit element wishes to
lower the signal while another independently wishes to raise it, because then the behaviour
of the circuit depends on the timing characteristics of the elements involved [12]. In an
STG model this situation corresponds to the existence of a reachable marking which con-
currently enables two transitions with opposite labels like y* and y~. Only STGs avoiding
this situation can be implemented.

Another necessary condition for an STG to be implementable is the Complete State Coding
property or the more restrictive Unique State Coding property [3] 2. Pastor and Cortadella
have recently described a procedure to verify if a free-choice STG satisfies the Unique State
Coding property [10, 11] which requires to compute the concurrency relation, i.e., the pairs
of transitions that can be concurrently enabled.

*This work was Partially supported by the Sonderforschungsbereich 342 of the Deutsche Forschungsge-
meinschaft, Teilprojekt A3.

1Originally, Chu defined STGs as free-choice Petri nets [3]. So Chu’s STGs are what we call free-choice
STGs in this paper.

2The precise definition of this property is not important for this paper.



The discussion of [12] and the result of [10] show that the concurrency relation of STGs
has important applications. In this paper we present an algorithm which computes the
concurrency relation for live and bounded free-choice nets, and therefore for live free-choice
STGs, in O(n?) time, where n is the number of places and transitions of the net. The
restriction to live STGs is not significant, because non-live STGs are considered incorrect
models, and liveness of free-choice STGs can be efficiently decided (see, for instance, [4, 7]).
The algorithm is obtained following the lines of [6]. After some basic definitions (Section
2), we define the structural concurrency relation of a Petri net (Section 3). Then we prove
that the concurrency and the structural concurrency relation coincide for live and bounded
free-choice Petri nets (Section 4). Finally, we show that the structural concurrency relation
can be computed in O(rn?) time, improving the algorithm given in [6], whose time complexity
was O(n®) (Section b).

2 Basic definitions

A net N is a triple (S,T, F'), where S and T are two disjoint, finite sets of places and
transitions, and I C (SxTYU(T x S) is a flow relation. Places and transitions are generically
called nodes. We identify F' with its characteristic function (S x TYU (T x S) — {0,1}.
Given a node x of N, *x = {y | (y,z) € F'} is the preset of v and «* = {y | (z,y) € F} is
the postset of x. Given a set of nodes X of NV, we define *X = [J,cx *z and X*® = U,cx 2°.
A triple (57, T', F') is a subnet of Nif " C S, T"C T and F'= FnN((S xTHYU (T x 5)).
If X is a set of elements of N, then the triple (SN X, TN X, F N (X x X)) is a subnet of N,
called the subnet of N generated by X.
Anet (5,7, F)isa T-netif |*s| = 1 = |s*| for every place s. It is a free-choice net if (s,t) € F
implies *t x s* C /' for every place 5.3
A labelled net N is a fourtuple (S, T, W, 1), where (S,T, F) is a net, and [ is a mapping
T — Act, where Act is a set of actions. A marking of N is a mapping M:S — IN. A
marking M enables a transition ¢ if M(s) > F(s,t) for every place s. If ¢ is enabled at M,
then it can occur, and its occurrence leads to the successor marking M’ which is defined for
every place s by

M'(s) = M(s)+>_ F(t,s)— F(s,1)

te’l

A Petri net or net system is a pair ¥ = (N, My) where N is a connected net and My is a
marking of N. The connectedness of N is not a constraint, because the concurrency relation
of a net system can be easily obtained from the concurrency relations of its connected
components. The expression M; —— M,, where M, M, are markings of N, denotes that
M enables transition ¢, and that the marking reached by the occurrence of t is M. The
empty sequence ¢ is an occurrence sequence: we have M —— M for every marking M.
A T-system (free-choice system, labelled system) is a pair © = (N, My) where N is a T-net
(free-choice net, labelled net) and My is a marking of N.
A net system is live if for every reachable marking M and every transition ¢ there exists a
marking M’ reachable from M which enables t. If (N, Mp) is a live system, then we also say
that My is a live marking of N.

3We follow the terminology of [4]. These nets are also called extended free-choice nets in the literature.



A net system is b-bounded if M(s) < b for every place s and every reachable marking M. A
net system is bounded if it is b-bounded for some number b. If (N, My) is a bounded system,
we also say that My is a bounded marking of V.

3 Concurrency relations

The concurrency relation is usually defined as a set of pairs of transitions. We use a more
general definition.

Let (N, Mp) be a net system, and let X be the set of nodes of N. Given z € X, define the
marking M, of N as follows:

e if x is a place, then M, is the marking that puts one token on s, and no tokens
elsewhere;

e if x is a transition, then M, is the marking that puts one token on every input place
of z, and no tokens elsewhere.

The concurrency relation || C X x X contains the pairs (z1,22) such that M > M,, + M.,
for some reachable marking M. In particular, two transitions ¢y, t; belong to the concurrecy
relation if they can occur concurrently from some reachable marking, and two places belong
to the concurrency relation if they are simultaneously marked at some reachable marking.
The concurrency relation is very related to the co relation used in the theory of nonsequential
processes [1]: (x1,x2) belongs to the concurrency relation if and only if some nonsequential
process of (N, My) contains two elements in co labelled by 21 and x5. This is in fact a more
elegant definition, but, since it requires to introduce a number of concepts, we use the one
above.

We now define the structural concurrency relation, first presented in [6]:

Definition 3.1 Structural concurrency relation

Let (N, My) be a system, where N = (S,7,F), and let X = SUT. The structural

concurrency relation |[* C X x X is the smallest symmetric relation such that:

(i) Vs,s' € S: My > M, + My = (s,8) € ||
(ii) Ve € T: (*t x *t) \idr C ||* = (t* x t*) \ idp C |4
(iii) Ve e XVteT: {a} x*tC|A = (z,t) € ||[* A {a} xt* C|?

where idp denotes the identity relation on 7.

Loosely speaking, condition (i) states that any two places marked at the initial marking are
structurally concurrent (actually, this is the case for a pair (s, s) only if My puts at least two
tokens on s). Condition (ii) states that if all the input places of a transition are structurally
concurrent, then so are its output places. Clearly, these two conditions are fulfilled by the
concurrency relation ||. At first sight it could seem that || also fulfills condition (iii), but this
is not the case. This condition states that if a node is structurally concurrent with all the
input places of a transition, then it is also structurally concurrent with all its output places.
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Fig. 1 A system for which || # ||

Figure 1 shows a system in which || does not satisfy (iii): (s,s1) and (s, s,) are concurrent,
because there are two different reachable markings which mark s, s; and s, s5, respectively,
but there is no reachable marking which puts tokens simultaneously on s, s; and s2. So for
this system we have || # ||4. Another example in which the system is live and 1-bounded
can be found in [6].

The following results are proven in [6]:

Theorem 3.2

(i) For every net system, || C [|4.

(ii) For live T-systems, || = ||*.

4 The main result

We prove in this section that |4 and || coincide for live and bounded free-choice systems
(and therefore for live free-choice STGs). The reader which is not interested in the details
of the proof can safely jump to the next section.

The proof has much in common with the proof of the Second Confluence Theorem [4], which
we now recall.

4.1 The Second Confluence Theorem

All the definitions and results of this subsection are taken from [4]. The Second Confluence
Theorem states that if two live and bounded markings M; and M of a free-choice net agree
on all S-invariants, then they have a common successor, i.e., there exists a marking that
is reachable from both M; and Ms. Since it can be easily shown that any two reachable
markings agree on all S-invariants, it follows that any two reachable markings have a common



successor. The result can be generalised to a set My, ..., M, of markings which agree pairwise
on all invariants, and in the sequel we consider this more general version.

Let us first recall the notions of S-invariant and markings that agree on all S-invariants.

Definition 4.1
An S-invariant of a net IV is a rational-valued solution of the equation X - N = 0.

Two markings M and M’ of N agree on all S-invariants if /- M = I - M’ for every
S-invariant [ of N.

Theorem 4.2
Let (N, My) be a system, and let M be a reachable marking. Then M and M, agree on

all S-invariants. [

The proof of the Second Confluence Theorem distinguishes two cases, according to whether
the free-choice net N is a T-net or not. The first case is easily solved using the following
result, which states that for T-systems the converse of Theorem 4.2 holds:

Theorem 4.3  Reachability Theorem for T-systems

Let (N, My) be a live T-system. A marking M is reachable iff it agrees with My on all
S-invariants. |

Since My, ..., M, are live and bounded and agree on all S-invariants, they are all reachable
from each other. Therefore, any of them is a common successor of all the others.

In the second case, when N is not a T-net, the proof makes use of a reduction procedure. N
is split into two: a subnet N = (S5, T, Flca,ﬂed CP-subnet in [4], and the subnet generated
by all the nodes that do not belong to N, denoted by N\ N.

Definition 4.4  CP-subnets
A subnet N’ = (5", 7", F') of a net N is a CP-subnet if it is
(i) nonempty and weakly connected,
(ii) transition-bordered (i.e., contains pre- and post-sets of all its places),

(iii) a T-net (i.e., every place has exactly one input transition and one output transition),
and

(iv) the net N\ N’ is strongly connected and contains some transition.

A transition ¢t € T" such that *t € 5" is called a way-in transition.
The following result guarantees that N can be split:

Proposition 4.5

A well-formed free-choice net is either a T-net or has a CP-subnet. [

Once N is split, we let n particular sequences occur from My, ..., M,. These sequences
contain only transitions of N which are not way-in transitions.



Proposition 4.6  Fundamental property of CP-subnets

Let N be a well-formed free-choice net, and let My, ..., M, be live and bounded markings
of N that agree on all S-invariants. Let ]Y\be a CP-subnet of N, let T; be the set of
way-in transitions of N, and let N = N \ N. There exist occurrence sequences M; —
Mj, ..., M, =% M, where oy,...,0, contain only transitions of T \ Tm, such that

(1) No transition of T\ T} is enabled at M{,.... M!

n?

(2) Kl\{ == ]\72 where M denotes the projection of M onto the places of ]/\7,

(3) M; < M! for 1 <i < n, where M denotes the projection of M onto the places of N,
and

(4) Mj,..., M are live and bounded markings which agree on all S-invariants of N.

After the occurrence of these sequences we “freeze’ the transitions of the CP-subnet, i.e., we
forbid them to occur again, and preserve so the equality M{ = .-+ = j\/i\{l If N is a T-net,
then Theorem 4.3 can be applied, and we are done. Otherwise, by Proposition 4.5 and
Proposition 4.6(3) we can iterate the procedure until we get two markings which coincide
everywhere, and are therefore the same. This marking is a common successor of My, ..., M,.

Instead of freezing the transitions of the CP-subnet, we can equivalently remove it and
consider thereafter the remaining net N.

4.2 The new result

In order to adapt these results to the concurrency problem for free-choice systems, we have
a closer look at the proof of Proposition 4.5, which shows how to construct a CP-subnet of
a live and bounded free-choice system which is not a T-system. The proof is based on the
notion of T-component.

Definition 4.7 T-components, T-covers
Let N’ be the subnet of a net N generated by a nonempty set X of nodes. N’ is a
T-component of NV if:
e *LU* C X for every transition ¢ of X, and
e N'is a strongly connected T-net.

Let C be a set of T-components of N. C is a T-cover if every transition of N belongs to
a T-component of C. A net is covered by T-components if it has a T-cover.

It is easy to see that every node of the net, and not only every transition, belongs to some
element of a T-cover.

We have the following well-known result:



Theorem 4.8 T-coverability Theorem

Well-formed free-choice nets are covered by T-components. ]

Now, in order to find a CP-subnet, we proceed as follows. We take a minimal T-cover C
of N, i.e., no proper subset of C is a cover. Since N is not a T-net, we have |C| > 1. We
construct the (non-directed) graph G' = (V, E) as follows.

V=¢C
E = {(N;,N;) | N; and N; have at least one common node}

The graph G is connected because C is a cover of N and N is connected. Moreover, GG has
at least two vertices because |C| > 1.

We choose an spanning tree! of (7, and select one of its leaves, say IV;. We then construct a
maximal set of nodes X of N; satisfying the following properties:

(a) The net generated by X is connected, and

(b) No element of X belongs to a T-component of C \ {N;}.

The set X is nonempty, because C is a minimal cover. The subnet Ny generated by X is a
CP-subnet.

We call the subnets Nx private subnets, because they are generated by nodes that Ny does
not share with any other T-component of C. So we have that private subnets are CP-subnets.
Notice that a T-component may have more than one private subnet. However, if this is the
case then the private subnets are disjoint (by the maximality condition on X).

We are now ready to prove the following result.

Proposition 4.9

Let (N, Mp) be a live and bounded free-choice system. and let s and ¢ be a place and a
transition of N such that *¢ = {ry,...,r,}. Assume that for every 1 <i < n there exists
a reachable marking M; such that M; > M, + M,,. Then there exists a reachable marking
M> M+ 38, M,,.

Proof:

Let C be a minimal T-cover of N, which exists by the T-coverability Theorem. We consider
two cases:

(a) Some T-component Nj of C contains both s and t.

Let GG be the graph described above, and let G5 be a spanning tree of G. We construct
systems (Nl,le), oo, (N1, M) as follows. If G has only one node, then N = Ny,
and we take (Nl,M'if) = (No, M;). Tf G5 has more than one node, we select one of its
leaves, different from N; (this is possible, because a spanning tree with at least two
nodes has at least two leaves, and so we are never forced to select N7). Once such a

4A spanning tree is a cycle-free connected graph (V, E); it can be obtained from G by successive deletion
of edges that belong to a cycle.



leaf NV; is chosen, we consider its private subnets one by one. For each private subnet,
we execute the occurrence sequences of Proposition 4.6 from the markings My, ..., M,.
After that, we remove the private subnet. We proceed like this with all the private
subnets of N;. We thus obtain systems (N', M{),...,(N', M), where N’ is minimally
covered by C' = C\ {N;}. Moreover, the graph i’ corresponding to the minimal cover
C’ is the graph obtained from G by removing the node N', and the graph G’, obtained
from (G5 by removing the vertex N’ is a spanning tree of G'. If G, contains more than
one node, we iterate the procedure, this time starting from (N', M7),..., (N, M!) and
G

Since each iteration removes one node from G, the procedure terminates when the
spanning tree contains only one node. Since Nj is never removed, this node is n;. So
the procedure outputs systems (NVy, ile), ooy (Ny, MY).

Let Miq,..., My, be the projection of My, ..., M, onto the places of N;. Since Propo-
sition 4.6(2) can be applied each time we remove a private subnet, we have:

(1) AMZ»f > My;for 1 <i<n,and
(i) M{ ... M/ agree on all the invariants of Nj.

By (i), Mif > M, + M,,. the result follows from (ii) and Theorem 3.2(i).

(b) No T-component of C contains both s and t.

Let Ny be a T-component of C containing s. We choose a spanning tree (G5 of G,
and proceed as in (a), iteratively selecting a leaf different from N;. However, we no
longer stop when the spanning tree contains a node, but as soon as ¢ belongs to a
private subnet N of some leaf. Notice that this eventually happens, because otherwise
the reduction process could continue until only N; remains, which contradicts the
assumption that no T-component of C contains both s and .

Let N’ be the net obtained after termination, and let le, ..., M/ be the corresponding
markings. Further, let M, ..., M be the projection of My,..., M, onto the places of
N'. By Proposition 4.6(3), MZ-f > M/, and therefore ]Wif marks both s and r;. Now, by
Proposition 4.6, there exist occurrence sequences oy, ..., 0, enabled at Mlj o, M7
which contain only transitions of f\ﬁm and lead to markings satisfying two conditions:

(i) the projections of ]V]]f, ..., MJ onto the places of N coincide, and
(i1) no transition of T \ Tin is enabled at le, oM

Since N is a T-net, (i) and (ii) can only hold if all of o1, ..., 0, contain the transition
t. Since s remains marked along the execution of these sequences, some reachable
marking marks simultaneously s and all the input places of ¢.

Proposition 4.9 leads to our main result:



Theorem 4.10 Concurrency Theorem for free-choice systems

The relations || and || coincide for live and bounded free-choice systems.

Proof:

We have || C ||* by Theorem 3.2(i). We prove that the || relation of a live and bounded
free-choice system (NN, My) satisfies the three conditions of Definition 3.1. Since ||* is the
|4 C ||, which finishes

smallest symmetric relation satisfying these conditions, we have

the proof. Condition (i) follows easily from the definition of ||. Condition (ii) is a direct
consequence of the liveness of (N, Myp). Condition (iii) follows immediately from Proposition
4.9. |

5 Computing the structural concurrency relation

In [6], the first author presented a O(n®) algorithm for the computation of ||* in an arbitrary
net system, where n is the number of places and transitions of the net. In this paper we
show that || can be computed in O(n*) time, and in O(n?) time for free-choice systems.

Algorithm 5.1

Input: A live system (N, My), where N = (S, T, F).
Output: R C X x X.

begin
R:={(s,s") | Mo > M, + My} U [Jt* =1t
teT
E:=Rn(X x95);
while £ # () do
choose (x,s) € B; F:= E\ {(x,s)}
for every t € s* do
if {z} x*tC R then
Bim BU(({r} x 9\ )
R:=RU{(x,t)} U ({z} x1t*)
endif
endfor
endwhile
end

Proposition 5.2

Algorithm 5.1 terminates, and after termination R = ||.



Proof:

Observe that £ C R is an invariant of the while loop and holds initially. Therefore, each
execution of the while loop removes from E an element of £ N R. This element is never
added to K again. So the algorithm terminates.

Let @ be the value of R after termination. We prove:

(1)

QC I

We first prove that R C || holds initially. We have {(s,s’) | My > M, + My} C ||* by
definition. Moreover, since (N, My) is live, for every transition ¢ there is a reachable
marking which simultaneously marks every output place of t. Therefore, ;e t* x 1* C

||, and since || C |4, we have U, t* x t* C ||*. So initially R C ||*.

Moreover, it follows easily from the definition of ||* that R C || is an invariant of the
while loop. So we have Q C ||4.

() satisfies the three conditions of Definition 3.1.
Condition (i) and (ii) follow immediately from the initialisation of R. For condition
(iii), let € X and t € T. We have to prove:

[} CQ = (e el* A {2} x1°CQ

If {#} x *t is not included in @), we are done. So assume {z} x *t C Q).

Let (z, 8) be the last element of {2} x *¢ which is removed from £ during the execution
of the algorithm. As we have seen above, (z,s) is never added to F again.

Assume that immediately after (z,s) is removed from F, we have (z,s") ¢ R for some
s' € *t. We prove that (z, s") is never added to R later on. Every new element added to
R is also added to E, and every element of F is removed before termination. Therefore,
if (z, s') were added to R it would later be removed from F, contradicting the definition
of (z,s).

Since {z} x *t C R and no element of {a} x *t is added to R after (z,s) is removed
from F. we already have {x} x *¢ C R immediately after (z,s) is removed from F.
Then, the next execution of the for loop adds ({z} xt*) to Q. So ({2} xt*) C Q after
termination.

Q = ||* follows from (1), (2) and the minimality of ||. .

We calculate the complexity of the algorithm when the subsets X x X (in particular, the
incidence relations of the net) are encoded as bidimensional arrays X x X — {0,1}. In this
case, the algorithm needs O(] X|?) space, and the following operations take constant time for

every (z,y) € X x X and RC X x X:

determine if z € *y (z € y*);
determine if (z,y) € R;
add (z,y) to R;

10



e remove (z,y) from R.

The initialisation of @, F and N takes O(|S|* - |T'|) time. The while loop is executed at
most O(|S] - |X]) times, because each iteration removes one element from F which is never
added to it again. One iteration takes O(|S] - |T'|) time (O(|T|) iterations of the for loop
requiring O(]S]) time each). So the algorithm runs in O(|S|* - |T| - | X]|) time.

It is possible to give a faster algorithm for free-choice systems, because they satisty the

following property: *t; = *t; for every two output transitions t1,¢; of a place s. In this case,
the condition of the if instruction in the algorithm above holds either for all or for none of
the transitions ¢ € s*. So, instead of checking the condition for each transition of s®, we
may just check it for one of them. If the condition holds, we may then immediately add to
R the set {x} X Usese t* = {x} x (5*)°. If we precompute the set {(s,s’) | s € (s*)*} in the
initialisation step, which can be done in O(|S]* x |T'|), this assignment requires only O(]S|)
time.

We get the following algorithm:

Algorithm 5.3

Input: A live free-choice system (N, My), where N = (S, T, F).
Output: R C X x X.

begin
R = {(S./Sl) | A/[() 2 A/[.; + M,’J} U U t. X ]L.’

teT
A= {(5,8) |5 € ()
E:=RnN(X x9);
while E # () do
choose (x,s8) € I, £ := FE\ {(2,8)}
choose t € s°;
if {z} x*t C R then
E:=FEU{(z,5)](s,8) € A} \ R);
R:=RU{(z,s)|(s,s") € A}
endif
endwhile
end
An iteration of the while loop requires only O(|X|) time, and not O(|S] - |7’
case in Algorithm 5.1. Since the initialisation step can still be executed in O(
Algorithm 5.3 runs in O(]S] - | X [?) time.

), as was the

S % |T)),

6 Conclusions

We have presented an O(n?) algorithm for the computation of the concurrency relation of
live and bounded free-choice systems, where n is the number of nodes of the net. Our
work was motivated by the interesting applications of the concurrency relation to the design

11



and verification of asynchronous circuits. Our algorithm can be used to detect undesirable
race conditions in free-choice Signal Transition Diagrams (STGs) modelling specifications of
speed-independent circuits. It can also be used as subroutine in the algorithm for checking
the Unique State Coding property presented in [10, 11].

Pastor and Cortadella give in [11] an O(n?) algorithm for the computation of the concurrency
relation. The algorithm is based on some plausible but so far unproved properties of free-
choice systems. It also has some restrictions: it only works for 1-bounded free-choice STGs
without linearly dependent places, in which the initial marking is a home marking (i.e., can
be reached from any other reachable marking). We have managed to solve these problems:
our algorithm has a formal proof, is simpler, more general, and has the same complexity.
Our paper adds one more to the list of results on the concurrency problem, i.e., the problem
of deciding if two given transitions of a Petri net are concurrently enabled at some reachable
marking. The problem is EXPSPACE-hard for arbitrary net systems, and PSPACE-complete
for 1-bounded systems [2]. It has been shown to be polynomial for live T-systems [6], 1-
bounded conflict-free systems [13, 5] (although the algorithm of [5] can be easily generalised
to the n-bounded case), and now for live and bounded free-choice systems.

Our algorithm also can be used to solve the 1-boundedness problem: decide if a given live
and bounded free-choice system is 1-bounded. It follows easily from the definition of the
concurrency relation that a net system is 1-safe iff its concurrency relation is irreflexive. So
the 1-boundedness problem can be solved in O(n?) as well. This improves the complexity of
earlier algorithms based on linear programming.
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