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A polynomial algorithm to compute theconcurrency relation of free-choice SignalTransition Graphs �Andrei Kovalyov and Javier EsparzaInstitut f�ur InformatikTechnische Universit�at M�unchenAbstractThe concurrency relation of a Petri net contains the pairs of transitions that can beconcurrently enabled. We present a polynomial algorithm to compute the concurrencyrelation of free-choice Signal Transition Graphs, a class of Petri nets with applicationsto the veri�cation and synthesis of speed-independet circuits.1 IntroductionSignal Transition Graphs (STGs) have become a popular and much studied formalism forthe speci�cation and veri�cation of speed independent circuits [3, 8, 9]. STGs are 1-boundedPetri nets whose transitions carry labels of the form y+, y�, where y is a circuit signal.1 Theoccurrence of a transition with label y+ raises y, i.e., sets its value to 1, while the occurrenceof a transition with label y� lowers y, i.e., sets its value to 0.A speed-independent circuit should never reach a state in which one circuit element wishes tolower the signal while another independently wishes to raise it, because then the behaviourof the circuit depends on the timing characteristics of the elements involved [12]. In anSTG model this situation corresponds to the existence of a reachable marking which con-currently enables two transitions with opposite labels like y+ and y�. Only STGs avoidingthis situation can be implemented.Another necessary condition for an STG to be implementable is the Complete State Codingproperty or the more restrictive Unique State Coding property [3] 2. Pastor and Cortadellahave recently described a procedure to verify if a free-choice STG satis�es the Unique StateCoding property [10, 11] which requires to compute the concurrency relation, i.e., the pairsof transitions that can be concurrently enabled.�This work was Partially supported by the Sonderforschungsbereich 342 of the Deutsche Forschungsge-meinschaft, Teilprojekt A3.1Originally, Chu de�ned STGs as free-choice Petri nets [3]. So Chu's STGs are what we call free-choiceSTGs in this paper.2The precise de�nition of this property is not important for this paper.1



The discussion of [12] and the result of [10] show that the concurrency relation of STGshas important applications. In this paper we present an algorithm which computes theconcurrency relation for live and bounded free-choice nets, and therefore for live free-choiceSTGs, in O(n3) time, where n is the number of places and transitions of the net. Therestriction to live STGs is not signi�cant, because non-live STGs are considered incorrectmodels, and liveness of free-choice STGs can be e�ciently decided (see, for instance, [4, 7]).The algorithm is obtained following the lines of [6]. After some basic de�nitions (Section2), we de�ne the structural concurrency relation of a Petri net (Section 3). Then we provethat the concurrency and the structural concurrency relation coincide for live and boundedfree-choice Petri nets (Section 4). Finally, we show that the structural concurrency relationcan be computed in O(n3) time, improving the algorithm given in [6], whose time complexitywas O(n5) (Section 5).2 Basic de�nitionsA net N is a triple (S; T; F ), where S and T are two disjoint, �nite sets of places andtransitions, and F � (S�T )[(T�S) is a 
ow relation. Places and transitions are genericallycalled nodes. We identify F with its characteristic function (S � T ) [ (T � S)! f0; 1g.Given a node x of N , �x = fy j (y; x) 2 Fg is the preset of x and x� = fy j (x; y) 2 Fg isthe postset of x. Given a set of nodes X of N , we de�ne �X = Sx2X �x and X� = Sx2X x�.A triple (S 0; T 0; F 0) is a subnet of N if S 0 � S, T 0 � T and F 0 = F \ ((S 0 � T 0) [ (T 0� S 0)).If X is a set of elements of N , then the triple (S \X;T \X;F \ (X �X)) is a subnet of N ,called the subnet of N generated by X.A net (S; T; F ) is a T-net if j�sj = 1 = js�j for every place s. It is a free-choice net if (s; t) 2 Fimplies �t� s� � F for every place s.3A labelled net N is a fourtuple (S; T;W; l), where (S; T; F ) is a net, and l is a mappingT ! Act , where Act is a set of actions. A marking of N is a mapping M :S ! IN . Amarking M enables a transition t if M(s) � F (s; t) for every place s. If t is enabled at M ,then it can occur, and its occurrence leads to the successor marking M 0 which is de�ned forevery place s by M 0(s) = M(s) +Xt2T F (t; s)� F (s; t)A Petri net or net system is a pair � = (N;M0) where N is a connected net and M0 is amarking of N . The connectedness of N is not a constraint, because the concurrency relationof a net system can be easily obtained from the concurrency relations of its connectedcomponents. The expression M1 t�! M2, where M1, M2 are markings of N , denotes thatM1 enables transition t, and that the marking reached by the occurrence of t is M2. Theempty sequence � is an occurrence sequence: we have M ��!M for every marking M .A T-system (free-choice system, labelled system) is a pair � = (N;M0) where N is a T-net(free-choice net, labelled net) and M0 is a marking of N .A net system is live if for every reachable marking M and every transition t there exists amarking M 0 reachable fromM which enables t. If (N;M0) is a live system, then we also saythat M0 is a live marking of N .3We follow the terminology of [4]. These nets are also called extended free-choice nets in the literature.2



A net system is b-bounded if M(s) � b for every place s and every reachable marking M . Anet system is bounded if it is b-bounded for some number b. If (N;M0) is a bounded system,we also say that M0 is a bounded marking of N .3 Concurrency relationsThe concurrency relation is usually de�ned as a set of pairs of transitions. We use a moregeneral de�nition.Let (N;M0) be a net system, and let X be the set of nodes of N . Given x 2 X, de�ne themarking Mx of N as follows:� if x is a place, then Mx is the marking that puts one token on s, and no tokenselsewhere;� if x is a transition, then Mx is the marking that puts one token on every input placeof x, and no tokens elsewhere.The concurrency relation k � X �X contains the pairs (x1; x2) such that M �Mx1 +Mx2for some reachable marking M . In particular, two transitions t1, t2 belong to the concurrecyrelation if they can occur concurrently from some reachable marking, and two places belongto the concurrency relation if they are simultaneously marked at some reachable marking.The concurrency relation is very related to the co relation used in the theory of nonsequentialprocesses [1]: (x1; x2) belongs to the concurrency relation if and only if some nonsequentialprocess of (N;M0) contains two elements in co labelled by x1 and x2. This is in fact a moreelegant de�nition, but, since it requires to introduce a number of concepts, we use the oneabove.We now de�ne the structural concurrency relation, �rst presented in [6]:De�nition 3.1 Structural concurrency relationLet (N;M0) be a system, where N = (S; T; F ), and let X = S [ T . The structuralconcurrency relation kA � X �X is the smallest symmetric relation such that:(i) 8s; s0 2 S: M0 �Ms +Ms0 ) (s; s0) 2 kA(ii) 8t 2 T : (�t� �t) n idT � kA ) (t� � t�) n idT � kA(iii) 8x 2 X 8t 2 T : fxg � �t � kA ) (x; t) 2 kA ^ fxg � t� � kAwhere idT denotes the identity relation on T .Loosely speaking, condition (i) states that any two places marked at the initial marking arestructurally concurrent (actually, this is the case for a pair (s; s) only ifM0 puts at least twotokens on s). Condition (ii) states that if all the input places of a transition are structurallyconcurrent, then so are its output places. Clearly, these two conditions are ful�lled by theconcurrency relation k. At �rst sight it could seem that k also ful�lls condition (iii), but thisis not the case. This condition states that if a node is structurally concurrent with all theinput places of a transition, then it is also structurally concurrent with all its output places.3
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Fig. 1 A system for which k 6= kAFigure 1 shows a system in which k does not satisfy (iii): (s; s1) and (s; s2) are concurrent,because there are two di�erent reachable markings which mark s; s1 and s; s2, respectively,but there is no reachable marking which puts tokens simultaneously on s, s1 and s2. So forthis system we have k 6= kA. Another example in which the system is live and 1-boundedcan be found in [6].The following results are proven in [6]:Theorem 3.2(i) For every net system, k � kA.(ii) For live T-systems, k = kA.4 The main resultWe prove in this section that kA and k coincide for live and bounded free-choice systems(and therefore for live free-choice STGs). The reader which is not interested in the detailsof the proof can safely jump to the next section.The proof has much in common with the proof of the Second Con
uence Theorem [4], whichwe now recall.4.1 The Second Con
uence TheoremAll the de�nitions and results of this subsection are taken from [4]. The Second Con
uenceTheorem states that if two live and bounded markings M1 and M2 of a free-choice net agreeon all S-invariants, then they have a common successor, i.e., there exists a marking thatis reachable from both M1 and M2. Since it can be easily shown that any two reachablemarkings agree on all S-invariants, it follows that any two reachable markings have a common4



successor. The result can be generalised to a setM1; : : : ;Mn of markings which agree pairwiseon all invariants, and in the sequel we consider this more general version.Let us �rst recall the notions of S-invariant and markings that agree on all S-invariants.De�nition 4.1An S-invariant of a net N is a rational-valued solution of the equation X �N = 0.Two markings M and M 0 of N agree on all S-invariants if I � M = I � M 0 for everyS-invariant I of N .Theorem 4.2Let (N;M0) be a system, and let M be a reachable marking. Then M and M0 agree onall S-invariants.The proof of the Second Con
uence Theorem distinguishes two cases, according to whetherthe free-choice net N is a T-net or not. The �rst case is easily solved using the followingresult, which states that for T-systems the converse of Theorem 4.2 holds:Theorem 4.3 Reachability Theorem for T-systemsLet (N;M0) be a live T-system. A marking M is reachable iff it agrees with M0 on allS-invariants.Since M1; : : : ;Mn are live and bounded and agree on all S-invariants, they are all reachablefrom each other. Therefore, any of them is a common successor of all the others.In the second case, when N is not a T-net, the proof makes use of a reduction procedure. Nis split into two: a subnet cN = ( bS; bT; bF ) called CP-subnet in [4], and the subnet generatedby all the nodes that do not belong to cN , denoted by N n cN .De�nition 4.4 CP-subnetsA subnet N 0 = (S 0; T 0; F 0) of a net N is a CP-subnet if it is(i) nonempty and weakly connected,(ii) transition-bordered (i.e., contains pre- and post-sets of all its places),(iii) a T-net (i.e., every place has exactly one input transition and one output transition),and(iv) the net N nN 0 is strongly connected and contains some transition.A transition t 2 T 0 such that �t 6� S 0 is called a way-in transition.The following result guarantees that N can be split:Proposition 4.5A well-formed free-choice net is either a T-net or has a CP-subnet.Once N is split, we let n particular sequences occur from M1; : : : ;Mn. These sequencescontain only transitions of cN which are not way-in transitions.5



Proposition 4.6 Fundamental property of CP-subnetsLet N be a well-formed free-choice net, and letM1; : : : ;Mn be live and bounded markingsof N that agree on all S-invariants. Let cN be a CP-subnet of N , let bTi be the set ofway-in transitions of cN , and let N = N n cN . There exist occurrence sequences M1 �1�!M 01; : : : ;Mn �n�!M 0n, where �1; : : : ; �n contain only transitions of bT n bTin, such that(1) No transition of bT n bTin is enabled at M 01; : : : ;M 0n,(2) dM 01 = � � � = dM 0n, where cM denotes the projection of M onto the places of cN ,(3) Mi �M 0i for 1 � i � n, where M denotes the projection of M onto the places of N ,and(4) M 01; : : : ;M 0n are live and bounded markings which agree on all S-invariants of N .After the occurrence of these sequences we `freeze' the transitions of the CP-subnet, i.e., weforbid them to occur again, and preserve so the equality dM 01 = � � � = dM 0n. If N is a T-net,then Theorem 4.3 can be applied, and we are done. Otherwise, by Proposition 4.5 andProposition 4.6(3) we can iterate the procedure until we get two markings which coincideeverywhere, and are therefore the same. This marking is a common successor ofM1; : : : ;Mn.Instead of freezing the transitions of the CP-subnet, we can equivalently remove it andconsider thereafter the remaining net N .4.2 The new resultIn order to adapt these results to the concurrency problem for free-choice systems, we havea closer look at the proof of Proposition 4.5, which shows how to construct a CP-subnet ofa live and bounded free-choice system which is not a T-system. The proof is based on thenotion of T-component.De�nition 4.7 T-components, T-coversLet N 0 be the subnet of a net N generated by a nonempty set X of nodes. N 0 is aT-component of N if:� �t [ t� � X for every transition t of X, and� N 0 is a strongly connected T-net.Let C be a set of T-components of N . C is a T-cover if every transition of N belongs toa T-component of C. A net is covered by T-components if it has a T-cover.It is easy to see that every node of the net, and not only every transition, belongs to someelement of a T-cover.We have the following well-known result: 6



Theorem 4.8 T-coverability TheoremWell-formed free-choice nets are covered by T-components.Now, in order to �nd a CP-subnet, we proceed as follows. We take a minimal T-cover Cof N , i.e., no proper subset of C is a cover. Since N is not a T-net, we have jCj > 1. Weconstruct the (non-directed) graph G = (V;E) as follows.V = CE = f(Ni; Nj) jNi and Nj have at least one common nodegThe graph G is connected because C is a cover of N and N is connected. Moreover, G hasat least two vertices because jCj > 1.We choose an spanning tree4 of G, and select one of its leaves, say N1. We then construct amaximal set of nodes X of N1 satisfying the following properties:(a) The net generated by X is connected, and(b) No element of X belongs to a T-component of C n fN1g.The set X is nonempty, because C is a minimal cover. The subnet NX generated by X is aCP-subnet.We call the subnets NX private subnets, because they are generated by nodes that N1 doesnot share with any other T-component of C. So we have that private subnets are CP-subnets.Notice that a T-component may have more than one private subnet. However, if this is thecase then the private subnets are disjoint (by the maximality condition on X).We are now ready to prove the following result.Proposition 4.9Let (N;M0) be a live and bounded free-choice system, and let s and t be a place and atransition of N such that �t = fr1; : : : ; rng. Assume that for every 1 � i � n there existsa reachable markingMi such that Mi �Ms+Mri. Then there exists a reachable markingM �Ms +Pni=1Mri .Proof:Let C be a minimal T-cover of N , which exists by the T-coverability Theorem. We considertwo cases:(a) Some T-component N1 of C contains both s and t.Let G be the graph described above, and let Gs be a spanning tree of G. We constructsystems (N1;Mf1 ); : : : ; (N1;Mfn ) as follows. If Gs has only one node, then N = N1,and we take (N1;Mfi ) = (N0;Mi). If Gs has more than one node, we select one of itsleaves, di�erent from N1 (this is possible, because a spanning tree with at least twonodes has at least two leaves, and so we are never forced to select N1). Once such a4A spanning tree is a cycle-free connected graph (V;E0); it can be obtained from G by successive deletionof edges that belong to a cycle. 7



leaf Ni is chosen, we consider its private subnets one by one. For each private subnet,we execute the occurrence sequences of Proposition 4.6 from the markingsM1; : : : ;Mn.After that, we remove the private subnet. We proceed like this with all the privatesubnets of Ni. We thus obtain systems (N 0;M 01); : : : ; (N 0;M 0n), where N 0 is minimallycovered by C 0 = C n fNig. Moreover, the graph G0 corresponding to the minimal coverC 0 is the graph obtained from G by removing the node N 0, and the graph G0s obtainedfrom Gs by removing the vertex N 0 is a spanning tree of G0. If G0s contains more thanone node, we iterate the procedure, this time starting from (N 0;M 01); : : : ; (N 0;M 0n) andG0s.Since each iteration removes one node from G, the procedure terminates when thespanning tree contains only one node. Since N1 is never removed, this node is n1. Sothe procedure outputs systems (N1;Mf1 ); : : : ; (N1;Mfn ).Let M11; : : : ;M1n be the projection of M1; : : : ;Mn onto the places of N1. Since Propo-sition 4.6(2) can be applied each time we remove a private subnet, we have:(i) Mfi �M1i for 1 � i � n, and(ii) Mf1 : : : ;Mfn agree on all the invariants of N1.By (i), Mfi �Ms +Mri. the result follows from (ii) and Theorem 3.2(i).(b) No T-component of C contains both s and t.Let N1 be a T-component of C containing s. We choose a spanning tree Gs of G,and proceed as in (a), iteratively selecting a leaf di�erent from N1. However, we nolonger stop when the spanning tree contains a node, but as soon as t belongs to aprivate subnet cN of some leaf. Notice that this eventually happens, because otherwisethe reduction process could continue until only N1 remains, which contradicts theassumption that no T-component of C contains both s and t.Let N 0 be the net obtained after termination, and letMf1 ; : : : ;Mfn be the correspondingmarkings. Further, let M 01; : : : ;M 0n be the projection of M1; : : : ;Mn onto the places ofN 0. By Proposition 4.6(3), Mfi �M 0i , and thereforeMfi marks both s and ri. Now, byProposition 4.6, there exist occurrence sequences �1; : : : ; �n enabled at Mf1 ; : : : ;Mfn ,which contain only transitions of bT n bTin, and lead to markings satisfying two conditions:(i) the projections of Mf1 ; : : : ;Mfn onto the places of cN coincide, and(ii) no transition of bT n bTin is enabled at Mf1 ; : : : ;Mfn .Since cN is a T-net, (i) and (ii) can only hold if all of �1; : : : ; �n contain the transitiont. Since s remains marked along the execution of these sequences, some reachablemarking marks simultaneously s and all the input places of t.Proposition 4.9 leads to our main result: 8



Theorem 4.10 Concurrency Theorem for free-choice systemsThe relations k and kA coincide for live and bounded free-choice systems.Proof:We have k � kA by Theorem 3.2(i). We prove that the k relation of a live and boundedfree-choice system (N;M0) satis�es the three conditions of De�nition 3.1. Since kA is thesmallest symmetric relation satisfying these conditions, we have kA � k, which �nishesthe proof. Condition (i) follows easily from the de�nition of k. Condition (ii) is a directconsequence of the liveness of (N;M0). Condition (iii) follows immediately from Proposition4.9.5 Computing the structural concurrency relationIn [6], the �rst author presented a O(n5) algorithm for the computation of kA in an arbitrarynet system, where n is the number of places and transitions of the net. In this paper weshow that kA can be computed in O(n4) time, and in O(n3) time for free-choice systems.Algorithm 5.1Input: A live system (N;M0), where N = (S; T; F ).Output: R � X �X.beginR := f(s; s0) jM0 �Ms +Ms0g [ [t2T t� � t�;E := R \ (X � S);while E 6= ; dochoose (x; s) 2 E; E := E n f(x; s)g;for every t 2 s� doif fxg � �t � R thenE := E [ ((fxg � t�) nR);R := R [ f(x; t)g [ (fxg � t�)endifendforendwhileendProposition 5.2Algorithm 5.1 terminates, and after termination R = kA.9



Proof:Observe that E � R is an invariant of the while loop and holds initially. Therefore, eachexecution of the while loop removes from E an element of E \ R. This element is neveradded to E again. So the algorithm terminates.Let Q be the value of R after termination. We prove:(1) Q � kA.We �rst prove that R � kA holds initially. We have f(s; s0) jM0 �Ms+Ms0g � kA byde�nition. Moreover, since (N;M0) is live, for every transition t there is a reachablemarking which simultaneously marks every output place of t. Therefore, St2T t�� t� �k, and since k � kA, we have St2T t� � t� � kA. So initially R � kA.Moreover, it follows easily from the de�nition of kA that R � kA is an invariant of thewhile loop. So we have Q � kA.(2) Q satis�es the three conditions of De�nition 3.1.Condition (i) and (ii) follow immediately from the initialisation of R. For condition(iii), let x 2 X and t 2 T . We have to prove:fxg � �t � Q =) (x; t) 2 kA ^ fxg � t� � QIf fxg � �t is not included in Q, we are done. So assume fxg � �t � Q.Let (x; s) be the last element of fxg� �t which is removed from E during the executionof the algorithm. As we have seen above, (x; s) is never added to E again.Assume that immediately after (x; s) is removed from E, we have (x; s0) =2 R for somes0 2 �t. We prove that (x; s0) is never added to R later on. Every new element added toR is also added to E, and every element of E is removed before termination. Therefore,if (x; s0) were added to R it would later be removed from E, contradicting the de�nitionof (x; s).Since fxg � �t � R and no element of fxg � �t is added to R after (x; s) is removedfrom E, we already have fxg � �t � R immediately after (x; s) is removed from E.Then, the next execution of the for loop adds (fxg� t�) to Q. So (fxg� t�) � Q aftertermination.Q = kA follows from (1), (2) and the minimality of kA.We calculate the complexity of the algorithm when the subsets X � X (in particular, theincidence relations of the net) are encoded as bidimensional arrays X �X ! f0; 1g. In thiscase, the algorithm needs O(jXj2) space, and the following operations take constant time forevery (x; y) 2 X �X and R � X �X:� determine if x 2 �y (x 2 y�);� determine if (x; y) 2 R;� add (x; y) to R; 10



� remove (x; y) from R.The initialisation of Q, E and N takes O(jSj2 � jT j) time. The while loop is executed atmost O(jSj � jXj) times, because each iteration removes one element from E which is neveradded to it again. One iteration takes O(jSj � jT j) time (O(jT j) iterations of the for looprequiring O(jSj) time each). So the algorithm runs in O(jSj2 � jT j � jXj) time.It is possible to give a faster algorithm for free-choice systems, because they satisfy thefollowing property: �t1 = �t2 for every two output transitions t1; t2 of a place s. In this case,the condition of the if instruction in the algorithm above holds either for all or for none ofthe transitions t 2 s�. So, instead of checking the condition for each transition of s�, wemay just check it for one of them. If the condition holds, we may then immediately add toR the set fxg � St2s� t� = fxg � (s�)�. If we precompute the set f(s; s0) j s0 2 (s�)�g in theinitialisation step, which can be done in O(jSj2 � jT j), this assignment requires only O(jSj)time.We get the following algorithm:Algorithm 5.3Input: A live free-choice system (N;M0), where N = (S; T; F ).Output: R � X �X.beginR := f(s; s0) jM0 �Ms +Ms0g [ [t2T t� � t�;A := f(s; s0) j s0 2 (s�)�g;E := R \ (X � S);while E 6= ; dochoose (x; s) 2 E; E := E n f(x; s)g;choose t 2 s�;if fxg � �t � R thenE := E [ (f(x; s0) j (s; s0) 2 Ag nR);R := R [ f(x; s0) j (s; s0) 2 AgendifendwhileendAn iteration of the while loop requires only O(jXj) time, and not O(jSj � jT j), as was thecase in Algorithm 5.1. Since the initialisation step can still be executed in O(jSj2 � jT j),Algorithm 5.3 runs in O(jSj � jXj2) time.6 ConclusionsWe have presented an O(n3) algorithm for the computation of the concurrency relation oflive and bounded free-choice systems, where n is the number of nodes of the net. Ourwork was motivated by the interesting applications of the concurrency relation to the design11



and veri�cation of asynchronous circuits. Our algorithm can be used to detect undesirablerace conditions in free-choice Signal Transition Diagrams (STGs) modelling speci�cations ofspeed-independent circuits. It can also be used as subroutine in the algorithm for checkingthe Unique State Coding property presented in [10, 11].Pastor and Cortadella give in [11] an O(n3) algorithm for the computation of the concurrencyrelation. The algorithm is based on some plausible but so far unproved properties of free-choice systems. It also has some restrictions: it only works for 1-bounded free-choice STGswithout linearly dependent places, in which the initial marking is a home marking (i.e., canbe reached from any other reachable marking). We have managed to solve these problems:our algorithm has a formal proof, is simpler, more general, and has the same complexity.Our paper adds one more to the list of results on the concurrency problem, i.e., the problemof deciding if two given transitions of a Petri net are concurrently enabled at some reachablemarking. The problem is EXPSPACE-hard for arbitrary net systems, and PSPACE-completefor 1-bounded systems [2]. It has been shown to be polynomial for live T-systems [6], 1-bounded con
ict-free systems [13, 5] (although the algorithm of [5] can be easily generalisedto the n-bounded case), and now for live and bounded free-choice systems.Our algorithm also can be used to solve the 1-boundedness problem: decide if a given liveand bounded free-choice system is 1-bounded. It follows easily from the de�nition of theconcurrency relation that a net system is 1-safe iff its concurrency relation is irre
exive. Sothe 1-boundedness problem can be solved in O(n3) as well. This improves the complexity ofearlier algorithms based on linear programming.AcknowledgementsMany thanks to Jordi Cortadella and Enric Pastor for helpful discussions, and for drawingour attention to the concurrency problem for STGs.References[1] E. Best and C. Fern�andez. Nonsequential Processes { A Petri Net View. EATCSMonographs on Theoretical Computer Science, 13, 1988.[2] A. Cheng, J. Esparza, and J. Palsberg. Complexity Results for 1-safe Nets. TheoreticalComputer Science, 147:117{136, 1995.[3] T.A. Chu. Synthesis of Self-timed VLSI Circuits from Graph-theoretic Speci�cations.Phd thesis, MIT, 1987.[4] J. Desel and J. Esparza. Free-choice Petri Nets, volume 40 of Cambridge Tracts inTheoretical Computer Science. Cambridge University Press, 1995.[5] J. Esparza. A Solution to the Covering Problem for 1-Bounded Con
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