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The Importance of Power-tail Distributionsfor Telecommunication Tra�c ModelsMichael Greiner, Manfred Jobmann and Lester LipskyzInstitut f�ur InformatikTechnische Universit�at M�unchen, GermanyKeywordsPower-tail distributions, heavy/fat-tail distributions, stable distributions, regu-larly varying functions, asymptotically self-similar functions, truncated tails, G/M/1queues, renewal processes, bu�er overow, utilization.1 IntroductionRecent measurements of tra�c on communications networks have shown some extraor-dinary behavior which may prove critical for understanding the performance of broad-band, and indeed, other information networks. For instance, Leland, et.al., [LELA94]have measured and analyzed the arrival of many millions of packets on ETHERNET net-works at Bellcore, while Beran, et.al., [BERA95] have measured and analyzed severalmillions of frames from Variable-Bit-Rate (VBR) video services. The data collected havebeen measured accurately enough to give reliable numbers for the number of packet ar-rivals in intervals of as little as 0.01 seconds. The data displayed in both papers showenormous instability of arrival rates. No matter how large one takes for measurementintervals, the number of arrivals per unit time varies widely. This has been described as\self-similar", and \fractal" behavior. These, and other papers, have argued that r(k), theauto-correlation function lag-k of the number of arrivals per time interval, must go to zeroso slowly thatP1k=1 r(k) =1. They imply that any realistic model of such tra�c must in-clude very long-range correlation e�ects. However, this may not necessarily be true, sincea renewal process (no correlation of interarrival times) where the interarrival times havea power tail distribution (i.e., distribution functions which behave as 1 � F (x) ) 1=x�for large x) could generate such data [LIPS95]. Georganas [GEOR94] has argued thatif service time distributions which have power tails with in�nite means (� � 1) are con-sidered, then bu�er sizes may become a serious problem. His analysis requires that themeasured arrival rate goes to zero as x ! 1, so it is not clear what a realistic systemwould see. In any case, even if � > 1 bu�er sizes may have to be very large indeed toavoid data loss.zPermanent Address: Department of Computer Science and Engineering, University of Connecticut,Storrs, CT 06269-3155



2 The Importance of Power-tail Distributions for Telecommunication Tra�c ModelsWhile the warnings given to designers of future systems are no doubt correct, thestatistical analyses have not revealed how either simulation or analytic techniques can beapplied to study the performance of such systems. On the other hand, it has been shownthat \self-similar" data can be generated by a renewal process where the interarrivaltimes come from a single power-tail distribution with a �nite mean (but in�nite variance)[LIEF94]. The simplest model for this would be a GI/M/1 queue. Alternatively, theresults in [LIKH95] indicate that a Poisson process with a \disbursed" batch of packetswhose number is distributed by a power tail, can also generate self-similar data. In itssimplest version, this can be transformed into an M/G/1 queue, where `G' is a power-taildistribution.In this paper, we describe in detail the properties of power-tail distributions, and thenpresent an analytic class of well-behaved distributions (a sub-class of which are PhaseDistributions which can be used in Markov Chain models) that have truncated power tails,and in the limit become power-tail distributions. This class was �rst used in [LIPS86] toexplain the long-tail behavior of measured CPU times at Bellcore in 1985 [LELA85]. Itwas also used to show what might happen in data-retrieval systems which have power-tail �le sizes [GARG92], and even to explain the distribution of medical insurance claims[LOWR93]. We then use these distributions to study the behavior of steady-state GI/M/1queues, as a model for telecommunications networks. We then present the results of aparametric study of the a�ects of di�erent �'s on the geometric parameter, s [LIPS92]as a function of the utilization parameter, �, where� := [arrival rate] � [mean service time]: (1)The variance of a power-tail distribution is in�nite if � � 2, but our calculations showthat the steady-state performance of these queues becomes worse only gradually as �drops below 2 with � �xed. The performance only becomes disastrous as � approaches 1from above (i.e., the mean still exists). We also present calculations for distributions withtruncated power tails, and show that they too can yield extraordinarily large mean queuelengths.Of course, all this is done assuming steady-state behavior. But this may require inor-dinately many arrivals before such large queue lengths could be seen in reality. Discreteevent simulation models must necessarilly su�er from the same problem. We present anargument showing that the closer � is to 1, the more arrivals must occur before anysystem's steady state can be approached. It remains for the future to yield appropriatedescriptions of transient behavior.2 Power-tail DistributionsFirst we display some standard de�nitions which will be useful in this paper. In all casesthe time variables are in the range 0 � x <1.



2 Power-tail Distributions 32.1 De�nitionsLet X be a random variable representing the time for a process to complete. Then theProbability Distribution Function (PDF) is one-sided, and de�ned by:F (x) := Pr(X � x)with F (0�) = 0, and limx!1F (x) = 1. The Reliability Function isR(x) := Pr(X > x) = 1� F (x);and the probability density function (pdf) for the process, if it exists, is:f(x) := dF (x)dx = �dR(x)dx �The `th moment of the distribution (or the expectation of X`), if it exists, is de�ned by:x` := E(X`) := Z 10 x` � f(x) dx: (2)The variance of the distribution is de�ned by�2 := E([X � E(X)]2) = E(X2)� [E(X)]2 = x2 � �x2;and the dimensionless quantity, the coe�cient of variation, is de�ned byC2 := �2�x2 �The conditional probability for the process to complete, given that it has not �nished bytime x is given byF (t; x) := Pr(X � x + t jX > x) = F (x+ t)� F (x)R(x) ;with appropriate de�nitions for R(t; x) and f(t; x). t is often referred to as the residualtime. Let Tx be the random variable for the time remaining, conditioned on x. Then themean time remaining, given that the task is still running at time x, isE(Tx) = Z 10 t � f(t; x) dt = 1R(x) Z 10 t � f(x + t) dt (3)and the mean residual time (the mean service time remaining, given that it is not knownwhen service began) is given by the well-known formulaxr := Z 10 E(Tx) � R(x)E(X) dx = E(X2)2 � E(X) = �x � "C2 + 12 # :The right-most term in the above expression shows clearly that if C2 > 1 (C2 < 1), thenthe mean residual time is greater (less) than the mean time for service.



4 The Importance of Power-tail Distributions for Telecommunication Tra�c ModelsThere is a broad class of distributions which are variously called heavy-, fat-, long-tailed or sub-exponential distributions. They are categorized by their behavior for large x,namely their reliability functions all go to 0 slower than any exponential. In other words,if limx!1 xn � e�axR(x) = 0 8 a > 0 and 8 n � 0; (4)then R(x) has a heavy (fat, long) tail. Sub-exponential distributions are de�ned as thosesatisfying limx!1 R(x + t)R(x) = 1 8 t : (5)It is not hard to show that every distribution satisfying (4) is sub-exponential. For thepurposes of this paper, we de�ne functions that do not satisfy (5) as well behaved. Tighterde�nitions can be found, but are not necessary for this exposition.Many heavy-tailed distributions are not uniquely determined by their moments. Ac-cording to [FELL71] (p.514), if the moments of a distribution satisfylim sup`!1 1̀ hE(X`)i1=` <1 (6)then F (x) is uniquely determined. All well behaved distributions [those which do notsatisfy (4)] satisfy (6), but heavy tails do not generally satisfy this limit test. A commonlyused class of distributions are the Weibull Distributions, de�ned by: R(x) = exp(�� �xc).Weibull distributions with c < 1 are heavy tailed [they satisfy (4)], and do not satisfy(6). It has been shown that if c � 1=2, then there exist other distributions with the samemoments [LIEF??].2.2 Some PropertiesThe sub-class of heavy-tailed distributions of interest here are the Power-tail Distributions.They have the following property for large x:R(x) =) cx� where � > 0: (7)Alternatively, limx!1x` �R(x) = ( 0 for ` < �1 for ` > � : (8)Distributions which have this asymptotic behavior are sometimes referred to as ParetoDistributions, but this is inappropriate since the speci�c form of Pareto distributions[f(x) = c x��1=(1+x)�+�] are of signi�cance only in so far as they have the same asympoticbehavior as all other power-tail distributions. A more appropriate name, if one must namefunctions after people, would be L�evy, or L�evy-Pareto distributions, since L�evy de�nedand found the class of stable functions which have these power tails (where only 0 < � < 2is meaningful). See [FELL71] and below.Straight-forward di�erentiation yields the asymptotic form for the pdf,f(x) =) � cx�+1 � (9)



2 Power-tail Distributions 5Then from (2) and elementary calculus, it follows that all moments for ` � � are in�nite!Thus, if � � 2 then F (�) has in�nite variance, and if � � 1 then F (�) has in�nitemean. One can ask what an in�nite mean signi�es, since an in�nite time-span cannot beexperienced in any service, and a �nite sum of �nite numbers must necessarily be �nite.An understanding of this relies on ideas statisticians have been trying to explain to therest of us for many years. For well behaved distributions, it is expected that the averageof a sequence of numbers drawn from the same distribution should approximate the meanfor that distribution. In general, let x1; x2; � � � ; xn; � � � be such a sequence. Suppose E(X`)exists for all ` � 0, and let s(`)n := 1n nXk=1xk̀: (10)Then ���s(`)n � E(X`)��� = O 1pn! : (11)From a practical point of view, this means that an increasing number of terms in the sumwill lead to an ever decreasing di�erence (with statistical uctuations, of course). If onewishes to improve the estimate of E(X`) by a factor of 2, then one must include 4 timesas many numbers. But if E(X`) is in�nite, then (11) loses its meaning, and sǹ increasesunboundedly with n.Mathematically, (11) comes from the Central Limit Theorem, which states the follow-ing (see [FELL71], p.259):Let X1; X2; ::: be mutually independent continuous random variables with acommon distribution, F (�), with �nite mean, �x, and variance, �2. Then thedistribution of their averaged sum,Sn := 1n nXk=1Xk (12)tends to the Normal distribution, with the same mean, but with variance �2=n.The theorem applies only to the �rst moment, but if F (�) has all �nite moments, then thetheorem can be applied in turn to each moment, making (11) valid for all `. If, however,E(X`) = 1 for all ` � � > 2, the statement, tends to the Normal distribution has to besoftened somewhat. For n large enough, the distribution for Sn looks normal (pun) for0 < x < �x+a ��, where a is large and grows with n. But (8) still applies. (Also rememberthat the Normal distribution actually extends from �1 to +1, whereas we are dealingwith distributions which are only non-zero for x � 0. What happens here is that theNormal distribution which Sn tends toward, has negligibly small probabilities for x < 0.I.e., n must be large enough so that exp(�n�x=2�2)� 1.)Note that if F (�) is already a Normal distribution, then Sn is also Normal, but withsmaller variance. This is a special case of distributions which are said to be stable. Thede�nition of a stable distribution might be stated in the following way:Let X;X1; X2; : : : be mutually independent continuous random variables witha common distribution, F (�). F (�) ist called stable i� for each n 2 N Sn hasthe same distribution as cnX + dn for some constants cn 2 R+ and dn 2 R .



6 The Importance of Power-tail Distributions for Telecommunication Tra�c ModelsFrom the statement of the central limit theorem, the Normal Distribution can be theonly stable distribution with �nite variance. But what about distributions with in�nitevariance? P. L�evy showed that all stable distributions, other than the Normal, have powertails with exponent 0 < � � 2, one for each power. This leads to modi�cation of (11) with` = 1, to read:jsn � E(X)j = O� 1n�� where � = 1� 1� for 1 < � � 2: (13)If � > 2 then � = 1=2 and we get (11) for ` = 1, but if � � 1 then (13) is meaningless.Observe that (13) implies that if � < 2, many more samples have to be taken to gainthe same estimate of �x as was the case for � = 2. For instance, suppose that � = 1:5. Then� = 1=3, and it now takes 8 times as many points to improve the estimate by a factor of2. This is not a trivial di�erence. (The following discussion is not to be taken as a seriousattempt at a quantitative estimate of any sum's accuracy. Innumerable counter-examplesabound. However it does serve to give a reasonable qualitative idea of how the number ofsamples needed grows with desired accuracy.) Suppose that one would like to get a k-digitestimate of �x. Then one might write O(n��) � 10�k. Upon manipulating this formula onecan come up with a guesstimate of the number of points needed, namelyn(k; �) := c � 10k=�; (14)where c is some scaling constant. (For �nite variance, c = q�2= �x2.) One can say thatwith this many sample points, it is \highly probable" that the measured average will bewithin k digits of the mean.Suppose c � 1, then for 2-digit accuracy (uctuations of a graph of less than thisorder would be perceived by the unaided eye as a \fairly smooth" curve), if � � 2then n(2; 0:5) = 102=0:5 = 10; 000 points. On the other hand, if � = 1:5, then n(2; 1=3) =1; 000; 000 points! The number of points needed for a given accuracy is extremely sensitiveto �. For an � of 1.4, � = 1=3:5 and n = 10; 000; 000. For � = 1:1, � = 1=11, yieldingn = 1022. With this kind of instability, an Ampere of current (� 1:6 � 1019 electronsper second) could not be measured with any accuracy. For � = 1:05, the temperatureof a gram-molecular-weight of a substance would uctuate too much to be measured.(Avogadro's number is 6:023 � 1023 molecules, while n(2; 1:05) = 1042.) This argumentwill be used below in the discussion of \self-similarity".2.3 A Simple ExampleOne might ask why power tail distributions have been seen so infrequently in the past.Part of this has to do with the way we have been examining data, and part has todo with the size of the samples normally examined. If the number of samples is small,then extraordinary samples (e.g., a job requiring an extremely large service time) areoften blamed on the weather. Also, if the customer population is restricted (e.g., a closedsystem) and small compared to the queue sizes one would expect over a long period oftime for the equivalent unbounded (open) system, then the e�ects of the tail will not berecognized.



2 Power-tail Distributions 7In 1985, Leland and Ott [LELA85] examined the CPU times of over 6 million jobsthat were executed at BELLCORE over a 6 months period. The usual analysis of suchdata reorders the times into size place, and plots the fraction of jobs which have timeless than or equal to x. In the limit, this should approach the distribution function forCPU times. A better function is the fraction of jobs greater than x, which approachesthe reliability function. Both functions are monotonic, and look very well behaved. Inthe 1960's many computer installations did just this, and concluded rightly that thedistribution of CPU times could not be purely exponential. They then invariably �t theirdata to hyperexponential distributions (a weighted sum of two or more exponentials).(See [TRIV82] who reproduces data from the University of Michigan [ROSI65]. A reportfrom the University of Minnesota [MINN67] shows similar data.) What Leland and Ottplotted instead, was the mean time remaining for those jobs greater than x. That is, theyevaluated the equivalent of (3). They found that this function increased linearly withx for 5 to 6 orders of magnitude. In other words, the expected time remaining for a jobincreased linearly with the amount of time it had already run. This is one of the importantproperties of power-tail distributions.Another way to expose the tail is to plot the reliability function on log-log paper. From(7) we can see that log(R(x)) =) log(c)� � � log(x) :This is again a straight line, now with slope ��. We demonstrate this with a simpleexample. Consider the reliability function,R(x) = a � e�x + 1� a(1 + x)2 for 0 � a � 1: (15)It is easy to show that this has a mean value of 1 for all a, but for a < 1 it has apower-tail with � = 2, and thus has in�nite variance. Figure 1 shows this function fora = 0:0; 0:5; 0:8; and 1:0. For a = 1, we have the pure exponential function, but theother three curves look very similar to the �rst, so one would expect no surprises, eventhough they actually have in�nite variance. Figure 2 shows the log of the same functionsplotted against log(x). Here it is clear that the tails are di�erent. All three power-tailfunctions show the straight line described previously, with negative slope � = 2. It wouldbe interesting to reexamine the CPU data published in the 1960's in this light.Returning to residual times, for x large enough, the asymptotic form for R(x) givenin (7) can be substituted directly into (3) givingE(Tx) =) x�� 1 �This clearly shows the linear behavior found by [LELA85]. Using (15) we get the relationE(Tx) = a � e�x + 1�a1+xa � e�x + 1�a(1+x)2 = (1 + x) " (1 + x) � a � e�x + 1� a(1 + x)2 � a � e�x + 1� a# :The formulas for large x depend on whether a = 1 or not, namelyE(Tx) ( = 1 for a = 1) x+ 1 for a < 1 : (16)
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Figure 1: Four reliability functions, three with power tails and in�nite variance.These are all taken from Equation (15), for a = 0; 0:5; 0:8 and 1:0 . The mutual crossingat x � 2:51 is a peculiarity of this particular equation. Note that the heavier the tail(smaller a), the more likely it is that X < �x = 1 (smaller R(1)). But if X exceeds x � 3,then the process is likely to last much longer.
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Figure 2: The same four functions, now plotted on a log-log scale. No matter howsmall (1� a) is, as long as it is greater than 0, the power tail term will dominate for largeenough x.



2 Power-tail Distributions 9For the exponential case (a = 1), the mean time remaining is always 1, a consequence ofits memoryless property. But for a < 1, the mean time remaining is more than the timealready spent.One might ask whether very long residual times are likely to happen. Consider thepossibility that 20 units of time would elapse without a completion occurring. The prob-ability for this to occur is R(20). For a = 1, this is R(20) = 1=e20 = 1=485; 165; 195. Onlyone event in 500 million would last this long. So, for a system which lasts for a millionevents, one could fairly say that this event is so unlikely that it can be ignored. However,for a = 0:8, R(20) = 1=2205. In some sense, this is also an unlikely event. But in a systemwhich lasts for 1,000,000 events, this type of event is almost surely going to occur, notonce, but many times, so it cannot be ignored. And when it does occur, expect it to lastanother 21 units of time. For a = 0:5, an event that lasts more than 20 units of time iseven more likely (R(20) is now 1/882).2.4 A Robust FunctionIt is puzzling why power-tail distributions should show up in various aspects of computersystem performance. In this section we present a model which mimics in a simple waywhat could be causing this phenomenon. It thus gives some insight as to why power tailsoccur, and gives a rationale for use of the term self-similar. At the same time it willprovide us with a functional form (�rst introduced in [LIPS86]) which has a power tail,can be truncated, and can be used for simulation and Markov modelling. (Depending onthe base function used, this class of distributions can be matrix-exponential [LIPS92], oreven phase distributions [NEUT81].)First consider the following scenario. Suppose a \typical" computer user chooses torun a program whose CPU time is best described by a distribution function, F0(x), witha mean of 1 second. After receiving the result, he decides, with probability 1/2, to runthe program again, but with modi�cations which increase its CPU time by a factor of 2.After receiving the second result, he decides (again with probability 1/2) whether to runthe program yet again, with more modi�cations which increase its CPU time by anotherfactor of 2. Even if this looping continued inde�nitely, only 1/2 the users would run theirprograms more than once, only 1 in 4 users would run their programs more than twice,and less than 1 in a thousand would run their programs more than 10 times. On average,each user will only run his program twice. So, the frequent user is not common, yet themean CPU time per job grows unboundedly. The mean time is given by:�x = 12 � 1 + 14 � 2 + 18 � 4 + 116 � 8 + � � �+ � � � = 12 + 12 + 12 + 12 + � � �+ � � � =1:Of course it would take an in�nite amount of time, and an in�nite number of users for thissum to be complete. But what would be seen over time, is a user behavior which seemsto stabilize (an average of two runs per user), but with the infrequent arrival of very bigjobs, which get bigger, and cause the mean CPU time to grow ever bigger as well. Thisis a reasonable qualitative description of power-tail behavior generally, where `th moment(` � �) replaces mean CPU time.



10 The Importance of Power-tail Distributions for Telecommunication Tra�c ModelsA formal mathematical description of the above process is as follows. LetX0; X1; � � � Xn; � � � be random variables representing the time for the nth rerun of a pro-gram which will run at least that many times (X0 is the initial run, X1 is the �rst rerun,etc.). Let Fn(x) be the distribution function for Xn, with reliability function, Rn(x), anddensity function, fn(x). Next, let 0 < �n � 1 be the conditional probability that a programwill be run at least one more time, given that it ran n times (�0 := 1). Last, de�nen := E(Xn)=E(Xn�1):For the example just given, we have for n > 0, �n = 1=2, n = 2, and E(X0) = 1.For notational convenience, we de�ne �(n) := �1�2 � � � �n [�(0) = 1], and (n) :=12 � � �n = E(Xn)=E(X0). Then �N := N�1Xn=0 �(n)where �N is the expected number of times a user will run a program (original or modi�ed),with up to N � 1 modi�cations. The random variable, YN , given byYN := 1�N N�1Xn=0 �(n)Xnrepresents the CPU time of a program, among those that have not run more than Ntimes. The distribution function for YN is given byFYN (x) = 1�N N�1Xn=0 �(n)Fn(x);with mean E(YN ) = E(X0)�N N�1Xn=0 �(n)(n):These formulas are far too rich in parameters for our expository purposes, so we makesome simplifying assumptions. We point out, however, that the power-tail behavior wewill demonstrate is valid for this general expression as long as limn!1 �(n) = 0 and(n) !1, while �n � a > 0 and n � b > 1, for the same in�nite set of n's, for some aand b.Assume that �n = � and n =  for all n > 0. Then �(n) = �n, and (n) = n.Consequently, �N = N�1Xn=0 �n = 1� �N1� � �Next assume that all the Fn(x)'s are the same shape as F0(x), and that F0(x) is wellbehaved. That is Fn(x) = F0(x=n); and thus E(Xn) = nE(X0) 8 n:The corresponding formula for Rn(x) is obvious, butfn(x) = �n f0(x=n):



2 Power-tail Distributions 11The density function for YN becomesfYN (x) = 1� �1� �N N�1Xn=0  �!n f0(x=n); (17)with reliability function RYN (x) = 1� �1� �N N�1Xn=0 �nR0(x=n): (18)We will call these functions truncated power-tail distributions for reasons which will be-come clear presently. They are well behaved (or Phase, or matrix-exponential) if R0(x)is, and converge to f(x) := limN!1 fYN (x) = (1� �) 1Xn=0 �!n f0(x=n); (19)and R(x) := limN!1RYN (x) = (1� �) 1Xn=0 �nR0(x=n): (20)Although RYN (�) is well behaved for all N as de�ned in Subsection 2, the limit function,R(x), is not.The moments of FYN (�) are easy to �nd. From the de�nition,E(YǸ) = 1� �1� �N N�1Xn=0  �!n Z 10 x` f0(x=n) dx:We make the substitution, x = un and getE(YǸ) = 1� �1� �N N�1Xn=0  �!n n(`+1) Z 10 u` f0(u) du = 1� �1� �N N�1Xn=0 ��`�n E(X0̀); (21)and �nally, E(YǸ) = 1� �1� �N � 1� (�`)N1� �` � E(X0̀): (22)As long as �` < 1, the limit can be taken to getE(Y `) := limN!1E(YǸ) = 1� �1� �` � E(X0̀): (23)But if �` � 1 the limit diverges (in�nite moments). We identify � by the relation,�� = 1 ; or � := � log(�)log() � (24)This is the same � as in (7). Then we have the typical power-tail relation for moments:E(Y `) <1 () ` < �: (25)



12 The Importance of Power-tail Distributions for Telecommunication Tra�c ModelsWe next show that R(x) asymptotically satis�es a property which matches Feller'sde�nition of a regularly varying function. This could also be used as the de�nition for anasymptotically self-similar function. We then show (as does Feller) that such functionsmust have power tails. Consider (20), evaluated at x = t,R(t) = (1� �) 1Xn=0 �nR0(t=n�1) = (1� �) 1Xn=�1 �n+1R0(t=n)R(t) = �(1� �) 1Xn=0 �nR0(t=n) + (1� �)R0(t) = �R(t) + (1� �)R0(t):But R0(t) is well behaved, and drops o� at least as fast as some negative exponential, sofor t large enough, R0(t) must be small compared to the sum, therefore,R(t) �! �R(t) as t �!1:This can be done any number of times, so we have, for large tR(kt) = �kR(t):Let u = k, solve for k [k = log(u)= log()], and substitute for it to get�k = ek log(�) = elog(�) log(u)= log():But from the discussion following (23), � = � log(�)= log(), so�k = e�� log(u) = elog(u��) = u��:Therefore R(kt) = R(ut) = R(t)=u�:Let t be large enough, but �xed, and let x = ut, then �nallyR(x) = R(t)=(x=t)� = R(t)t�x� = cx� � (26)Feller de�nes a regularly varying function as one which satis�esR(tx) �!  (x)R(t) as t �!1 :He then goes on to show that for a monotone decreasing function [which R(x) is],  (x) =x��.In the following section, we will use this family of functions to study the behavior ofsteady-state G/M/1 queues. For that purpose, we letR0(x) = e��x; where � = 1� �1� � �
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Figure 3: R(x) as a function of x for � 2 f1:1; 1:2; 1:5; 1:7; 2:0; 3:0;1g and� = 0:5 . For x � 3 the curves start to cross until �nally for x � 216 the curves for� = 1:1 and � = 1:2 cross and complete the reordering of the curves. (Compare withFigure 1.)
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Figure 5: Truncated power-tail reliabilities RYN for N 2 f1; 2; : : : ; 9; 12; 100g ,� = 1:5 and � = 0:5 , plotted on a log-log scale. For N = 100, log(R(�)) is a straightline for many orders of magnitude of change in x. Even with only 12 terms, log(R(�)) lookslike a straight line for a factor of 100 change in x.Since E(X0) = 1=�, from (23), E(Y ) = 1 as long as � < 1. Figure 3 shows R(x)versus x for various values of � and � = 0:51. Figure 4 displays the same functions ona log-log scale, showing their linear behavior for large x. We see clearly that a larger �yields a larger negative slope for R(x). Also, for x large enough, R(x) bounds e�x fromabove, and the larger � is, the closer R(x) is to e�x.Finally, in Figure 5 we display some functions with truncated tails. Here we see howthe tail �lls in for increasing N . In some sense, this mimics the way data points accumulatefor real systems. For a given set of data, there is a largest member, and very few otherelements of comparable size. Therefore, the fraction of samples that are nearly that largedrops to 0 very rapidly with increasing x. As more samples are added, a few will be muchlarger than all previous ones, and the tail �lls in. Thus we can map, at least qualitatively,the increase in number of samples with increase in N . Note that for �nite N , E(YN) < 1.3 The G/M/1 Queue As ModelOur purpose in this paper is to examine the impact which interarrival processes thatexhibit power-tail behavior can have on a telecommunications network. To show that theimpact can be great, it is only necessary to examine the simplest of such systems. The datain [LELA94] clearly indicate that we can expect packets to arrive in unusual patterns.Their analysis of irregularity of the number of packets arriving per unit time is consistent1The curves change only slightly when using another value for �, e.g. � 2 f0:25; 0:75g .



3 The G/M/1 Queue As Model 15with a Hurst Parameter, H, with value H = 0:8. The relationship between H and � isgiven by [LIKH95] as H = (3� �)=2; or � = 3� 2 �H : (27)This, then corresponds to � = 1:4. Although there is much time spent in various papersdiscussing the connection between H; �, and the autocorrelation coe�cients, r(k), for thenumber of arrivals in successive equal time intervals, it can be shown [LIPS95] that arenewal process with power-tailed interarrival times has the appropriate properties eventhough the interarrival times themselves are uncorrelated. Therefore the r(k)'s will playno part in what follows.In their paper, Leland, et.al., have shown that their data (some 29 million packets overa 24 hour period) remains unstable over 5 orders of magnitude of time intervals, namelyfrom number of arrivals in 0.01 seconds, to number in 100 seconds. They then argued thatthis showed a manifest self-similarity for the process. We claim that if they had been ableto increase the time intervals by two orders of magnitude the instability would disappear.In principle, if � > 1 then there exist intervals large enough to get smooth data. On theother hand, we concede that the number of sample points needed to achieve this stabilitycould exceed the lifetime of the system being investigated. In Subsection 2 we arguedthat a power-tail distribution with � = 1:4 would require sample sizes on the order of 107to yield visual smoothness. Unfortunately, the largest intervals displayed in [LELA94]contained \only" 33,000 or so packets per 100 second interval. Therefore, according to(14), if they had increased their intervals by two orders of magnitude, their graphs wouldhave achieved visual smoothness. Unfortunately, even a set of 29 million data points isnot su�cient to yield more than two or three intervals, so an honest test cannot be made.But from our guesstimate arguments, it is clear that for all � > 1 the data will stabilize inprinciple. For � < 1 the data will grow more erratic with increased interval width. Onlyfor � = 1 will this self-similarity property repeat itself for all orders of magnitude.3.1 The Arrival ProcessWhatever terminology is used for wildly varying arrivals, there are (at least) two in-equivalent simple process classes which could generate them. First, one could imagine�les whose sizes are distributed according to some power-tail distribution, and instead ofbeing sent whole, are broken up into much smaller packets. Suppose that such �les aresent out according to a Poisson distribution, the individual packets disburse somewhat(separate randomly in time from each other), and are recognized at the destination asbursts of packets. This is a compound Poisson process. Such models have been used togenerate arrivals, but as far as we know, no-one has used a generator with a power tail.Likhanov, et.al., [LIKH95] have come close, however. Instead of trying to deal with thedisbursion of packets, they argue that the Poisson arrival of bursts is equivalent to anM/G/1 queue, where the service times are power tails. (Actually, they assume a largenumber of independent sources, and then reprove the well-known theorem that the merg-ing of many independent arrival processes approaches a Poisson process whose arrival rateis the sum of the individual arrival rates.) Garg, et.al., [GARG92] presented an M/G/1model in studying data retrieval systems where �le sizes came from truncated power-tail



16 The Importance of Power-tail Distributions for Telecommunication Tra�c Modelsdistributions. They also studied what happened as the tail behavior extended to largerand larger x.The other simple process which could generate wild data is simply a renewal processwhere the interarrival times have a power tail. [LIEF94] have demonstrated that indeedone can have very wild data with arbitrarilly large bursts. After all, if there are longintervals with no arrivals, then there must be other intervals which have far more thantheir share. The data in [LELA94] does not seem to show extremely long periods withno arrivals. Therefore, a simple renewal model may have to be merged with a smallbackground Poisson process. Unfortunately, the merging of two (as opposed to very many)renewal processes is not a renewal process (unless both are Poisson). This would then makethe well-known solution of a steady-state GI/M/1 queue inappropriate. But a system witha non-renewal arrival process is a very di�cult problem indeed. We will therefore solvethe GI/M/1 queue as an approximation to the more appropriate system.3.2 Finding The Geometric Parameter, sIt is well known that the steady-state probability for �nding k customers in an openGI/M/1 queue, �(k), is given by [LIPS92]�(0) = 1� ��(k) = (1� s) � � � sk�1 ; k > 0where s is the geometric parameter satisfying the equations = B�[�(1� s)]: (28)B�(z) is the Laplace transform of the interarrival distribution, and � is the service rateof the exponential server. Let �x be the mean interarrival time. Then� = 1��xand the mean queue length (including the one being served) for the process is�q := 1Xk=0 k � �(k) = �1� s �For telecommunications systems, the arrival probabilities are of importance. The proba-bility that an arriving packet will �nd exactly k > 0 other packets already there is givenby a(k) = (1� s) � sk = �(k) � s� �Suppose that a no-loss system is required. One might have a primary bu�er ofK slots, anda backup bu�er of unbounded size (e.g., a disc-array sub-system). Then the probabilitythat an arriving packet will have to be stored in the backup bu�er isPr(K) = 1Xk=K a(k) = (1� s) 1Xk=K sk = sK:



3 The G/M/1 Queue As Model 17These equations all show the important role s plays in GI/M/1 queues. We see that thesmaller s is, the better system performance we can expect. Equivalently, the closer s is to1, the bigger �q and Pr(K) will be, giving less desirable performance. When s is close to1, it is better to look at Pr(K) as a function of t := 1� s, for thenPr(K) = sK = eK log(s) = eK log(1�t) � e�tK for t� 1:There are some general statements one can make. For instance, when � = 1, so does s. IfR(0) = 1 (a non-defective distribution) then s = 0 when � = 0. Also, only for the M/M/1queue does s = �. We say that if s > � then system performance is worse, and if s < �then system performance is better than one could ask for. It has been shown [LIPS92]that the slope of the curve, s versus � at � = 0 is �xf(0). So if this is less than (greaterthan) 1, then for small �, performance is better (worse) than the equivalent M/M/1 queue.At the other end, at � = 1, the slope is 2=(C2 + 1). If C2 > 1 (C2 < 1) then performanceis worse (better). It is also known [LIPS92] that near � = 1 performance depends onlyon the moments of the interarrival time distribution, and thus on � and �. In particular,if � � 2 then C2 = 1 and the slope is 0. This means that s will remain close to 1 evenas � decreases.In general, for small � performance depends only on the behavior of f(x) for smallx . Given (17), the values of f(x) and its derivatives at x = 0 depend on f0(x). For thefunction chosen here [�e��x with � = (1 � �)=(1 � �)], f(0) > 1 for all � and all �.A di�erent function could have been chosen which would have yielded a smaller s forsmall � (e.g., �2xe��x). But the performance for � ! 1 would be the same. This showsthe di�culty in selecting test functions in exploring the general performance of systems.Without more knowledge of a particular system, no model can be relied upon to give anaccurate picture of the performance for small or intermediate �. This will be discussedfurther in the next sections, when calculation results are presented.3.3 Behavior of Queues based on fYN (Truncated Tails)We return now to (28) and our explicit test functionfYN (x) = � � 1� �1� �N N�1Xn=0  �!n exp(��x=n); (29)where � = (1� �)=(1� �), � < 1 and �� = 1, i.e.  = (1=�)1=�. Its mean is given by�xN := E(YN) = 1� (�)N1� �N [ cf. (21) ]:As long as N is �nite our test function is well behaved in that all its moments are �nite,and it drops o� exponentially for large x (see Subsection 2).From (28) and the de�nition of the Laplace Transform, the following non-linear equa-tion must be solved for its smallest positive root.s = Z 10 e��(1�s)xfYN (x) dx = � 1� �1� �N N�1Xn=0 �n�(1� s)n + � �
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Figure 6: �-s-Diagram for various values of � where � = 0:5 and N = 10.Note that s = 1 is always an extraneous root of this equation. It has no relevance to ourdiscussion; its physical signi�cance comes from the fact that R10 fYN (x) dx = 1. It can beeliminated by subtracting 1 from both sides and using 1 = (1 � �)=(1 � �N) PN�1n=0 �n.Then we can solve instead, g(s) = 0, whereg(s) = 1� �1� �N N�1Xn=0 (�)n(1� s)n + �=� � 1: (30)Figures 6 to 15 show the characteristic behavior of the geometric parameter s, i.e. thesolution of g(s) = 0, as a function of �, for various values of the parameters � , � and N .The �gures are grouped into three classes:� Fixed � and N ; � variable (Figures 6 and 7): The smaller � is, the larger is s.For � small enough, and N large enough, performance can be very bad (s close to1).� Fixed � and �; N variable (Figures 8-10): The larger N is, the larger is s. Forlarger values of � the values of s stabilize more rapidly. If we think of N as somehowrelated to the sample size in a real system, then these �gures show that for smaller� more samples must be included (larger N) in order for the system to experiencethe full e�ect of the tail [s(�; N) ) s(�; 1)]. We also see that for � close to, orbigger than 2.0, performance is not disasterous, even for large N .� Fixed � and N ; � variable (Figures 11-15): For small N we have a somewhatunexpected result: For �xed � and N , s is not necessarilly a monotonic function of�. (�g. 11, 14). For larger N (e.g. N � 12 for � = 1:1 or N � 5 for � = 1:5) the
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Figure 7: �-s-Diagram for various values of � where � = 0:5 and N = 30.largest value s� of s (for �xed �) will be obtained at di�erent values of � (�g. 12,13, 15). However, we can see that s� is a monotonic non-decreasing function of N .Also, � loses importance as N increases. That is, the range of possible values for sas � varies from 0 to 1, decreases with increasing N . So in the limit N ! 1 it isno longer necessary to consider di�erent values of �, except perhaps if � is close to1 (see Figure 13 and next subsection).We see then, that even though fYN is well behaved, s can be very close to 1 even formoderate �. Part of this is due to the largeness of C2, and thus the almost horizontalslope at � = 1. But for small �, and large N s stays close to 1 even when � is as small as0.5. For �xed N , the smaller � is the smaller � will be before s deviates from 1. Also, forsmaller �, N must be larger before approaching its limiting value, corresponding to theexpected experimental result that smaller � requires more events to experience the fullimpact of a power tail, as implied by (14).3.4 Behavior of Queues based on fFor N !1 �x � E(Y ) = 1 and (30) reduces tog(s) = (1� �) 1Xn=0 (�)n(1� s)n + �=� � 1: (31)From a numerical point of view it can be advantageous to solve for t := 1� s instead ofs in the vicinity of � = 1 . So we get the alternative equation~g(t) := g(1�s) = (1��) 1Xn=0 (�)ntn + �=��1 = (1��) 1Xn=0 (1� t)(�)n � �n�=�tn + �=� != 0 : (32)
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Figure 8: �-s-Diagram for various values of N where � = 2:0 and � = 0:5.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

3
7

10
15
30

Figure 9: �-s-Diagram for various values of N where � = 1:5 and � = 0:5.
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Figure 10: �-s-Diagram for various values of N where � = 1:1 and � = 0:5.
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Figure 16: �-s-Diagram for di�erent values of � where � = 0:5 and N !1 .Figure 16 shows s for various values of �. As mentioned in the previous subsection(see p.19) the graphs di�er only slightly for di�erent values of �. Note that this �guredoes not di�er signi�cantly from Figure 7, showing that a function with a truncated tailcan cause almost as bad performance as its limit function. Also, the transition in goingfrom small N to large N to1 is smooth and convergent. We also see that as � increases,performance improves (smaller s for the same �), and for large � approaches that of theM/M/1 queue (s = �). Again, the transition is smooth. For instance, even though f(x)has an in�nite variance for � = 2, there is no abrupt change in behavior as one goes from� < 2 to � > 2.Next, in Figure 17 we display for some values of � the value of � = 1=(��x) where t is0:01 (0:001, 0:0001), and � is computed from equation (32). This �gure attempts to showhow small � can be and still have a value for s = 1 � t close to 1, depending on �. Itssigni�cance can best be shown by the following.Example: For � = 1:1 we get � � 0:46 when t = 0:01, soPr(K = 10) = (1� 0:01)10 = 0:9910 � 90:4%and Pr(50) � 60:5%. In other words: Even if the utilization is less than a half theprobability that the primary bu�er of size 10 (50) is full when a new packet arrivesis greater than 90% (60%). To keep the probability of overow to below 10% wouldrequire a primary bu�er of size K = 229. For � = 1:5 these probabilities occur for� � 0:91 . On the other hand, for � = 2:5, we get the more reasonable result that� is greater than 0:98 , i.e., a system must be nearing saturation (� close to 1) toget high probabilities of overow. Remember that for � � 2 Y has in�nite variance[ see (25) ].
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Figure 17: �-�-Diagram for t 2 f0:01; 0:001; 0:0001g and � = 0:5 .4 Conclusion/SummaryIn the �rst part of this paper we gave a detailed description of the properties of power-tailed distributions, also known as Pareto, or L�evy-Pareto distributions. They form aproper subclass of the so-called heavy-tailed, or sub-exponential distributions. The hier-archy of distributions is summarized in Figure 18. We then showed how application ofthe Central-limit Theorem must be modi�ed when dealing with power tails. In particularwe showed that the number of events which must transpire before steady-state solutionscan be relevant grows unboundedly large as � approaches 1 from above (for � � 1 therenever can be a steady state). We then introduced a class of well behaved distributionswhich can be used to analytically model processes which have power tails, or truncatedpower tails. They are also useful for discrete event simulations. One of these distributionswas used to model a steady-state G/M/1 queue. We showed that steady-state behavior(as represented by the geometric parameter, s) varies smoothly with � > 1. It also variessmoothly as the truncated tail is �lled in (N ! 1). We reiterate the �nal remark ofthe introductory section: To fully understand the real impact which power-tail distribu-tions will have on telecommunications (and other) systems, appropriate descriptions oftransient behavior must be developed.



26 The Importance of Power-tail Distributions for Telecommunication Tra�c Modelssub-exponential (p.4)ON MLHI JK�� ?heavy-tail, fat-tail, not well behaved (p.4)ON MLHI JKOO
stable (p.5)ON MLHI JK //z power-tail (p.4)ON MLHI JKOO monotone decreasing,regularly varying (p.12)WV UTPQ RSoo

L�evy-Pareto (p.4)ON MLHI JKOO
Figure 18: Overview of the relations between various sub-classes of distribu-tions. \!" denotes the relation \is a sub-class of".Appendix - Asymptotic behavior of gIn Section 3.4 we examined the properties of a G/M/1 queue by �nding the unique rootof (28) for s = 1 � t in the open interval, (0; 1). We eliminated the extraneous root ats = 1 (t = 0) by using the expression~g(t) := 1� t� B�(�t)twhich for our test function yields (32). It can be shown for any function [LIPS92], that~g(0) = 1=�� 1 = (1� �)=�. A power-series expansion can be used to explore its behaviornear � = 1. If the appropriate moments are �nite, then for � close to 1 (i.e. t close to 0),one can write ~g(t) � ~g(0) + ~g0(0) � t+ ~g00(0) � t2=2 + � � � ;where for k > 0 (see [LIPS92])~g(k)(0) = �k!	[(��V)k+1] = (�1)kk + 1 � E(Xk+1)(��x)k+1 �For t small enough, ~g(t) = 0 can be solved approximately as a polynomial root-�ndingproblem. However, if � � 2, then the second moment is in�nite, and the equation doesn'thold. We used instead, ~g(t) = 1� �� + c � t��1 + � � � ; (33)where c is some constant which could depend upon �. We now prove this equation, andgive some explicit properties to c. Higher terms in the series can also be found in this way.zexcept for the normal distribution



4 Conclusion/Summary 27De�ne h(t ; �) := ~g(t)� ~g(0)t� �Clearly, if ~g0(0) exists, then h(0+ ; 1) = ~g0(0), h(0+ ; � < 1) = 0, and h(0+ ; � > 1) = 1.Even if ~g0(0) is in�nite, there may exist some � 6= 1 such that0 < limt!0 jh(t ; �)j <1: (34)This is sometimes called the generalized derivative. For the power-tail distribution usedin this paper we can writet�h(t ; �) = (1� �)�� 1Xn=0 (�)n1 + (�=�)tn � (1� �)�� 1Xn=0(�)n= (1� �)�� 1Xn=0(�)n " 11 + (�=�)tn � 1# = �(1� �) ��!2 1Xn=0 t(�2)n1 + (�=�)tn �Recall from (24) that �� = 1, and let � = �� 1 + ", thenh(t ;�� 1 + ") = �(1� �)t"  ��!2 1Xn=0 (tn)2��1 + (�=�)tn �Before taking the limit for t! 0, we anticipate our results to simplify the above expressionsomewhat. As long as 1 < � < 2, the in�nite sum converges, but t" ! 1 if " < 0, andt" ! 0 if " > 0. Therefore, in order to satisfy constraint (34), we must have " = 0. Weassume this in what follows.Let ~h(t ;�� 1) := h(t �=� ;�� 1). Then we have~h(t ;�� 1) = �(1� �) ��!� 1Xn=0 (tn)2��1 + (tn) �If ~h(t ;�� 1) has a �nite limit as t! 0, then any sequence ~h(t` ;�� 1) will converge tothe same limit if ft`g is a monotonic decreasing sequence with t` ! 0. Suppose for nowthat the limit exists, and let t` = t0=`, where t0 > 0, but otherwise unspeci�ed. Then~h(t` ;�� 1) = �(1� �) ��!� 1Xn=0 (t0n�`)2��1 + (t0n�`) = �(1� �) ��!� 1Xn=�` (t0n)2��1 + (t0n) �We take the limit and get:lim`!1 ~h(t` ;�� 1) = �(1� �) ��!� 1Xn=�1 (t0n)2��1 + (t0n) �From the ratio test for convergence, it is clear that the doubly in�nite sum converges aslong as 1 < � < 2. That means the limit exists for each t0 > 0. In order for the originalequation to have a (unique) �nite limit, the doubly in�nite sum must be independent oft0. We have computed the sum for many values of t0,  and �, and have found that for�xed �; , the sums for di�erent values of t0 agree to 14 signi�cant decimal digits, the full
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Figure 19: �-t-Diagram both for the exact and the asymptotic equation in twhere � = 1:3 and � = 0:5 . From the insert, it is clear that the asymptotic equationis an excellent approximation for � as small as 0:9 :precision of our calculations. Thus we assume that the limit indeed exists, and is equal to(we arbitrarilly set t0 to 1, and recall that �=� = (1� �)=[(1� �)�], with � = 1=� )c � c(� ; ) = � (� � )����(� � 1)��1 1Xn=�1 (n)2��1 + nsince limt!0 ~h(t ;�� 1) = limt!0 h(t ;�� 1) (33)= (c � t��1)=t��1 = c .When ~g(t) is set to 0 from (33), we get for t,t��1 = "�(� � 1)� �  #��1 (1� �)� �  �(� ; ); (35)where for convenience, we have de�ned:1�(� ; ) := 1Xn=�1 (n)2��1 + n �This equation shows how s = 1 � t approaches 1 as � approaches 1, for 1 < � < 2.It is also extremely useful as an initial guess for �nding the exact root of g(s) = 0 [or~g(t) = 0] by numerical means. In fact, the closer � is to 1, the harder it is to �nd the exactroot unless this asymptotic expression is used. Figures 19 and 20 visualize the quality ofapproximation by (35) in the vicinity of � = 1 . Clearly, the smaller � is, the better is theapproximation even for smaller � .
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Figure 20: �-t-Diagram both for the exact and the asymptotic equation in twhere � = 1:7 and � = 0:5 . Here the asymptotic equation is only good for � > 0:98 .As one last comment, we note that the doubly in�nite sum diverges for � = 1 and� = 2, thus �(1 ; ) = �(2 ; ) = 0. Interestingly, �(� ; ) is actually symmetric about� = 1:5. By replacing the dummy variable n with �n in the sum, and then manipulatinga little, it can be shown that for 1 � � � 2�(� ; ) = �(3� � ; );or for 0 � � � 1 �(1 + � ; ) = �(2� � ; ):That is �(1:1 ; ) = �(1:9 ; ), �(1:2 ; ) = �(1:8 ; ), etc.
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