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1 Introduction

Recent measurements of traffic on communications networks have shown some extraor-
dinary behavior which may prove critical for understanding the performance of broad-
band, and indeed, other information networks. For instance, Leland, et.al., [LELA94]
have measured and analyzed the arrival of many millions of packets on ETHERNET net-
works at Bellcore, while Beran, et.al., [BERA95] have measured and analyzed several
millions of frames from Variable-Bit-Rate (VBR) video services. The data collected have
been measured accurately enough to give reliable numbers for the number of packet ar-
rivals in intervals of as little as 0.01 seconds. The data displayed in both papers show
enormous instability of arrival rates. No matter how large one takes for measurement
intervals, the number of arrivals per unit time varies widely. This has been described as
“self-similar”, and “fractal” behavior. These, and other papers, have argued that r(k), the
auto-correlation function lag-k of the number of arrivals per time interval, must go to zero
so slowly that >7°; r(k) = co. They imply that any realistic model of such traffic must in-
clude very long-range correlation effects. However, this may not necessarily be true, since
a renewal process (no correlation of interarrival times) where the interarrival times have
a power tail distribution (i.e., distribution functions which behave as 1 — F(z) = 1/x*
for large x) could generate such data [LIPS95]. Georganas [GEOR94| has argued that
if service time distributions which have power tails with infinite means (o < 1) are con-
sidered, then buffer sizes may become a serious problem. His analysis requires that the
measured arrival rate goes to zero as @ — 00, so it is not clear what a realistic system
would see. In any case, even if o > 1 buffer sizes may have to be very large indeed to
avoid data loss.
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While the warnings given to designers of future systems are no doubt correct, the
statistical analyses have not revealed how either simulation or analytic techniques can be
applied to study the performance of such systems. On the other hand, it has been shown
that “self-similar” data can be generated by a renewal process where the interarrival
times come from a single power-tail distribution with a finite mean (but infinite variance)
[LIEF94]. The simplest model for this would be a GI/M/1 queue. Alternatively, the
results in [LIKH95] indicate that a Poisson process with a “disbursed” batch of packets
whose number is distributed by a power tail, can also generate self-similar data. In its
simplest version, this can be transformed into an M/G/1 queue, where ‘G’ is a power-tail
distribution.

In this paper, we describe in detail the properties of power-tail distributions, and then
present an analytic class of well-behaved distributions (a sub-class of which are Phase
Distributions which can be used in Markov Chain models) that have truncated power tails,
and in the limit become power-tail distributions. This class was first used in [LIPS86] to
explain the long-tail behavior of measured CPU times at Bellcore in 1985 [LELAS85]. It
was also used to show what might happen in data-retrieval systems which have power-
tail file sizes [GARG92], and even to explain the distribution of medical insurance claims
[LOWRO93|. We then use these distributions to study the behavior of steady-state GI/M/1
queues, as a model for telecommunications networks. We then present the results of a
parametric study of the affects of different a’s on the geometric parameter, s [LIPS92]
as a function of the wtilization parameter, p, where

p = |arrival rate] - [mean service time]. (1)

The variance of a power-tail distribution is infinite if a < 2, but our calculations show
that the steady-state performance of these queues becomes worse only gradually as «
drops below 2 with p fixed. The performance only becomes disastrous as a approaches 1
from above (i.e., the mean still exists). We also present calculations for distributions with
truncated power tails, and show that they too can yield extraordinarily large mean queue
lengths.

Of course, all this is done assuming steady-state behavior. But this may require inor-
dinately many arrivals before such large queue lengths could be seen in reality. Discrete
event simulation models must necessarilly suffer from the same problem. We present an
argument showing that the closer « is to 1, the more arrivals must occur before any
system’s steady state can be approached. It remains for the future to yield appropriate
descriptions of transient behavior.

2 Power-tail Distributions

First we display some standard definitions which will be useful in this paper. In all cases
the time variables are in the range 0 < z < oc.



2.1 Definitions

Let X be a random variable representing the time for a process to complete. Then the
Probability Distribution Function (PDF) is one-sided, and defined by:

F(z):= Pr(X <ux)
with F(0_) =0, and :}LI%OF(QZ) = 1. The Reliability Function is
R(x):=Pr(X >2)=1- F(x),
and the probability density function (pdf) for the process, if it exists, is:

_ dF(x) d R(x)
T dr dw

f):

The (** moment of the distribution (or the exzpectation of X*), if it exists, is defined by:

2’ = B(XY) = /Oo 2t () dw. (2)

0

The variance of the distribution is defined by
0% := E([X — B(X)]?) = B(X?) — [E(X)]> = 2 — 27,
and the dimensionless quantity, the coefficient of variation, is defined by
2. O
Cce = =

The conditional probability for the process to complete, given that it has not finished by
time x is given by
F(z+1t)— F(x)

R(x) ’

F(ty;z) =Pr(X <z+t|X>ux)=

with appropriate definitions for R(¢;2) and f(¢;x). t is often referred to as the residual
time. Let T, be the random variable for the time remaining, conditioned on x. Then the
mean time remaining, gien that the task is still running at time x, is

1
R(z)

E(Tw):/ooot-f(t;x)dt: /Ooot-f(:z:—i-t)dt (3)

and the mean residual time (the mean service time remaining, given that it is not known

when service began) is given by the well-known formula

[ _ B
o '_/o B(T2) B YT e T

The right-most term in the above expression shows clearly that if C* > 1 (C? < 1), then
the mean residual time is greater (less) than the mean time for service.

5]
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There is a broad class of distributions which are variously called heavy-, fat-, long-
tailed or sub-exponential distributions. They are categorized by their behavior for large x,
namely their reliability functions all go to 0 slower than any exponential. In other words,
if n —axr

2

JJLHC}OTZ)ZO Va>0andVn>0, (4)

then R(z) has a heavy (fat, long) tail. Sub-exponential distributions are defined as those
satistying
. R(x+t
lim L
It is not hard to show that every distribution satisfying (4) is sub-exponential. For the
purposes of this paper, we define functions that do not satisfy (5) as well behaved. Tighter
definitions can be found, but are not necessary for this exposition.

=1 Vt. (5)

Many heavy-tailed distributions are not uniquely determined by their moments. Ac-
cording to [FELLT1] (p.514), if the moments of a distribution satisfy
lim sup1 [E(Xz)r/z < 0 (6)
(oo L
then F(x) is uniquely determined. All well behaved distributions [those which do not
satisfy (4)] satisfy (6), but heavy tails do not generally satisty this limit test. A commonly
used class of distributions are the Weibull Distributions, defined by: R(x) = exp(—A\-z°).
Weibull distributions with ¢ < 1 are heavy tailed [they satisfy (4)], and do not satisfy
(6). It has been shown that if ¢ < 1/2, then there exist other distributions with the same
moments [LIEF?7?].

2.2 Some Properties

The sub-class of heavy-tailed distributions of interest here are the Power-tail Distributions.
They have the following property for large x:

R(x) = . where a > 0. (7)
a:a
Alternatively,
e _ 0 for (<«
v () = { oo for > a. (8)

Distributions which have this asymptotic behavior are sometimes referred to as Pareto
Distributions, but this is inappropriate since the specific form of Pareto distributions
[f(x) = cat~1/(14a)*t#] are of significance only in so far as they have the same asympotic
behavior as all other power-tail distributions. A more appropriate name, if one must name
functions after people, would be Leévy, or Lévy-Pareto distributions, since Levy defined
and found the class of stable functions which have these power tails (where only 0 < av < 2
is meaningful). See [FELL71] and below.

Straight-forward differentiation yields the asymptotic form for the pdf,
ac

fla) = = )




Then from (2) and elementary calculus, it follows that all moments for ¢ > « are infinite!
Thus, if @ < 2 then F(-) has infinite variance, and if @ < 1 then F(-) has infinite
mean. One can ask what an infinite mean signifies, since an infinite time-span cannot be
experienced in any service, and a finite sum of finite numbers must necessarily be finite.
An understanding of this relies on ideas statisticians have been trying to explain to the
rest of us for many years. For well behaved distributions, it is expected that the average
of a sequence of numbers drawn from the same distribution should approximate the mean
for that distribution. In general, let a1, 9, -+, ,, - be such a sequence. Suppose E(X*)
exists for all £ > 0, and let

st = =Sl (10)
Then
1
(0 _ | = —
59 — B(X )\_o<\/ﬁ>. (11)
From a practical point of view, this means that an increasing number of terms in the sum
will lead to an ever decreasing difference (with statistical fluctuations, of course). If one
wishes to improve the estimate of E(X*) by a factor of 2, then one must include 4 times

as many numbers. But if E(X?) is infinite, then (11) loses its meaning, and s’ increases
unboundedly with n.

Mathematically, (11) comes from the Central Limit Theorem, which states the follow-
ing (see [FELLT1], p.259):

Let Xy, X5,... be mutually independent continuous random variables with a
common distribution, F'(-), with finite mean, z, and variance, 0. Then the
distribution of their averaged sum,

1 n
Spi==> Xy (12)
n k=1

tends to the Normal distribution, with the same mean, but with variance o2 /n.

The theorem applies only to the first moment, but if () has all finite moments, then the
theorem can be applied in turn to each moment, making (11) valid for all ¢. If, however,
E(X% = oo for all £ > « > 2, the statement, tends to the Normal distribution has to be
softened somewhat. For n large enough, the distribution for S, looks normal (pun) for
0 < x <ZT+a-o, where a is large and grows with n. But (8) still applies. (Also remember
that the Normal distribution actually extends from —oo to 400, whereas we are dealing
with distributions which are only non-zero for x > 0. What happens here is that the
Normal distribution which S,, tends toward, has negligibly small probabilities for x < 0.
Le., n must be large enough so that exp(—n7/20?) < 1.)

Note that if F'(-) is already a Normal distribution, then S, is also Normal, but with
smaller variance. This is a special case of distributions which are said to be stable. The
definition of a stable distribution might be stated in the following way:

Let X, Xy, Xy, ... be mutually independent continuous random variables with
a common distribution, F(-). F(-) ist called stable iff for each n € N S,, has
the same distribution as ¢, X + d,, for some constants ¢, € R* and d,, € R.



From the statement of the central limit theorem, the Normal Distribution can be the
only stable distribution with finite variance. But what about distributions with infinite
variance? P. Levy showed that all stable distributions, other than the Normal, have power
tails with exponent 0 < o < 2, one for each power. This leads to modification of (11) with
(=1, to read:

1
G

1
|sn—E(X)|:O< ) where f=1——= for 1<a<?2 (13)
(0]

If @ > 2 then # =1/2 and we get (11) for ¢ =1, but if & < 1 then (13) is meaningless.

Observe that (13) implies that if @ < 2, many more samples have to be taken to gain
the same estimate of T as was the case for a = 2. For instance, suppose that a = 1.5. Then
f =1/3, and it now takes 8 times as many points to improve the estimate by a factor of
2. This is not a trivial difference. (The following discussion is not to be taken as a serious
attempt at a quantitative estimate of any sum’s accuracy. Innumerable counter-examples
abound. However it does serve to give a reasonable qualitative idea of how the number of
samples needed grows with desired accuracy.) Suppose that one would like to get a k-digit
estimate of . Then one might write O(n™?) ~ 107*. Upon manipulating this formula one
can come up with a guesstimate of the number of points needed, namely

n(k,3) == c-10%/7 (14)

where ¢ is some scaling constant. (For finite variance, ¢ = (/0?/Z%.) One can say that
with this many sample points, it is “highly probable” that the measured average will be
within k& digits of the mean.

Suppose ¢ & 1, then for 2-digit accuracy (fluctuations of a graph of less than this
order would be perceived by the unaided eye as a “fairly smooth” curve), if a > 2
then n(2,0.5) = 10%/%® = 10,000 points. On the other hand, if o = 1.5, then n(2,1/3) =
1,000, 000 points! The number of points needed for a given accuracy is extremely sensitive
to . For an « of 1.4, # = 1/3.5 and n = 10,000, 000. For o = 1.1, f = 1/11, yielding
n = 10?2, With this kind of instability, an Ampere of current (= 1.6 x 10* electrons
per second) could not be measured with any accuracy. For a = 1.05, the temperature
of a gram-molecular-weight of a substance would fluctuate too much to be measured.
(Avogadro’s number is 6.023 x 10% molecules, while n(2,1.05) = 10*2.) This argument
will be used below in the discussion of “self-similarity”.

2.3 A Simple Example

One might ask why power tail distributions have been seen so infrequently in the past.
Part of this has to do with the way we have been examining data, and part has to
do with the size of the samples normally examined. If the number of samples is small,
then extraordinary samples (e.g., a job requiring an extremely large service time) are
often blamed on the weather. Also, if the customer population is restricted (e.g., a closed
system) and small compared to the queue sizes one would expect over a long period of
time for the equivalent unbounded (open) system, then the effects of the tail will not be
recognized.



In 1985, Leland and Ott [LELAS85] examined the CPU times of over 6 million jobs
that were executed at BELLCORE over a 6 months period. The usual analysis of such
data reorders the times into size place, and plots the fraction of jobs which have time
less than or equal to x. In the limit, this should approach the distribution function for
CPU times. A better function is the fraction of jobs greater than x, which approaches
the reliability function. Both functions are monotonic, and look very well behaved. In
the 1960’s many computer installations did just this, and concluded rightly that the
distribution of CPU times could not be purely exponential. They then invariably fit their
data to hyperexponential distributions (a weighted sum of two or more exponentials).
(See [TRIV82] who reproduces data from the University of Michigan [ROSI65]. A report
from the University of Minnesota [MINNG7] shows similar data.) What Leland and Ott
plotted instead, was the mean time remaining for those jobs greater than x. That is, they
evaluated the equivalent of (3). They found that this function increased linearly with
x for 5 to 6 orders of magnitude. In other words, the expected time remaining for a job
increased linearly with the amount of time it had already run. This is one of the important
properties of power-tail distributions.

Another way to expose the tail is to plot the reliability function on log-log paper. From
(7) we can see that
log(R(x)) = log(c) — « - log(z) .

This is again a straight line, now with slope —a. We demonstrate this with a simple
example. Consider the reliability function,
Rw)=a-e+——% for 0<a<1 15
(x)=a-e —|—m or 0<a<l, (15)
It is easy to show that this has a mean value of 1 for all a, but for « < 1 it has a
power-tail with o« = 2, and thus has infinite variance. Figure 1 shows this function for
a = 0.0, 0.5, 0.8, and 1.0. For ¢« = 1, we have the pure exponential function, but the
other three curves look very similar to the first, so one would expect no surprises, even
though they actually have infinite variance. Figure 2 shows the log of the same functions
plotted against log(x). Here it is clear that the tails are different. All three power-tail
functions show the straight line described previously, with negative slope o = 2. It would
be interesting to reexamine the CPU data published in the 1960’s in this light.

Returning to residual times, for « large enough, the asymptotic form for R(x) given
in (7) can be substituted directly into (3) giving

E(T,) = —

a—l'

This clearly shows the linear behavior found by [LELAS85]. Using (15) we get the relation

a-e‘x—f—l_—; 1+2) - a-e*+1—a
BT = T (14 [0
a- e+ g (14+2)-a-e*+1—a

The formulas for large x depend on whether ¢ = 1 or not, namely

= 1 for a=1
E(T2) { = x+1 for a<1. (16)



Figure 1: Four reliability functions, three with power tails and infinite variance.
These are all taken from Equation (15), for a = 0, 0.5, 0.8 and 1.0. The mutual crossing
at © =~ 2.51 is a peculiarity of this particular equation. Note that the heavier the tail
(smaller @), the more likely it is that X < Z =1 (smaller R(1)). But if X exceeds x ~ 3,
then the process is likely to last much longer.

-15 | : g
20 + Y i

25 | : i

-30 1 1 1 .’- 1 1
0 1 2 3 4 5 6
Figure 2: The same four functions, now plotted on a log-log scale. No matter how
small (1 —a) is, as long as it is greater than 0, the power tail term will dominate for large
enough .



For the exponential case (« = 1), the mean time remaining is always 1, a consequence of
its memoryless property. But for ¢ < 1, the mean time remaining is more than the time
already spent.

One might ask whether very long residual times are [likely to happen. Consider the
possibility that 20 units of time would elapse without a completion occurring. The prob-
ability for this to occur is R(20). For a = 1, this is R(20) = 1/e*® = 1/485,165,195. Only
one event in 500 million would last this long. So, for a system which lasts for a million
events, one could fairly say that this event is so unlikely that it can be ignored. However,
for a = 0.8, R(20) = 1/2205. In some sense, this is also an unlikely event. But in a system
which lasts for 1,000,000 events, this type of event is almost surely going to occur, not
once, but many times, so it cannot be ignored. And when it does occur, expect it to last
another 21 units of time. For ¢ = 0.5, an event that lasts more than 20 units of time is
even more likely (R(20) is now 1/882).

2.4 A Robust Function

It is puzzling why power-tail distributions should show up in various aspects of computer
system performance. In this section we present a model which mimics in a simple way
what could be causing this phenomenon. It thus gives some insight as to why power tails
occur, and gives a rationale for use of the term self-similar. At the same time it will
provide us with a functional form (first introduced in [LIPS86]) which has a power tail,
can be truncated, and can be used for simulation and Markov modelling. (Depending on
the base function used, this class of distributions can be matriz-exponential [LIPS92], or
even phase distributions [NEUTS81].)

First consider the following scenario. Suppose a “typical” computer user chooses to
run a program whose CPU time is best described by a distribution function, Fy(z), with
a mean of 1 second. After receiving the result, he decides, with probability 1/2, to run
the program again, but with modifications which increase its CPU time by a factor of 2.
After receiving the second result, he decides (again with probability 1/2) whether to run
the program yet again, with more modifications which increase its CPU time by another
factor of 2. Even if this looping continued indefinitely, only 1/2 the users would run their
programs more than once, only 1 in 4 users would run their programs more than twice,
and less than 1 in a thousand would run their programs more than 10 times. On average,
each user will only run his program twice. So, the frequent user is not common, yet the
mean CPU time per job grows unboundedly. The mean time is given by:

1 1 1 5 1 4 1 g 1 1 1 1
x_2. +4. +8 +16. +...+..._2+2+2+2+...+..._oo_
Of course it would take an infinite amount of time, and an infinite number of users for this
sum to be complete. But what would be seen over time, is a user behavior which seems
to stabilize (an average of two runs per user), but with the infrequent arrival of very big
jobs, which get bigger, and cause the mean CPU time to grow ever bigger as well. This
is a reasonable qualitative description of power-tail behavior generally, where (" moment
(¢ > «) replaces mean CPU time.



A formal mathematical description of the above process is as follows. Let
Xo, X1, --- X,,, --- be random variables representing the time for the n'* rerun of a pro-
gram which will run at least that many times (Xj is the initial run, X is the first rerun,
etc.). Let F,,(x) be the distribution function for X,,, with reliability function, R, (x), and
density function, f,(x). Next, let 0 < 6,, < 1 be the conditional probability that a program
will be run at least one more time, given that it ran n times (6, := 1). Last, define

T = B(Xn) /E(X ).

For the example just given, we have for n > 0, 6, =1/2, v, = 2, and E(X;) = 1.

For notational convenience, we define §(n) := 61605---6, [#(0) = 1], and y(n) :=
Y172+ Ve = E(X,)/E(Xy). Then

where Oy is the expected number of times a user will run a program (original or modified),
with up to N — 1 modifications. The random variable, Yy, given by

1 N—-1

N n=0
represents the CPU time of a program, among those that have not run more than N
times. The distribution function for Yy is given by

1 N-1

> 0(n)Fu(w),

Fyy(x) = Oy
n=0

with mean
B(Yy) = ngj” > onr(n).

These formulas are far too rich in parameters for our expository purposes, so we make
some simplifying assumptions. We point out, however, that the power-tail behavior we
will demonstrate is valid for this general expression as long as lim, .., #(n) = 0 and
v(n) — oo, while 6, > a > 0 and v, > b > 1, for the same infinite set of n’s, for some a
and b.

Assume that 6, = ¢ and v, = v for all n > 0. Then #(n) = 6", and v(n) = ™.
Consequently,

N—-1 1_9]\[
Oy = 0" = .

Next assume that all the F,,(x)’s are the same shape as Fy(x), and that Fy(x) is well
behaved. That is

F.(x) = Fy(x/~"), and thus E(X,)=~"E(Xy) Vn.
The corresponding formula for R, (x) is obvious, but

ful@) =77" folx/y").



The density function for Yy becomes

1—0 /o))"
fyy (@) = N — | Jolz/7") (17)
1 9 n=0
with reliability function
1 — 9 N—-1
Ry, (x) = N > 0" Ro(x/9™). (18)

We will call these functions truncated power-tail distributions for reasons which will be-
come clear presently. They are well behaved (or Phase, or matrix-exponential) if Ry(x)
is, and converge to

o) = i fi (0 =003 (%) stern) (19)

and
R(z) := NhinOo Ry, (xz)=(1-10) Z 0" Ro(x/y"). (20)

n=0
Although Ry, (-) is well behaved for all NV as defined in Subsection 2, the limit function,
R(x), is not.

The moments of Fy, (-) are easy to find. From the definition,

B(Y)) = 11__£V Nzl( ) / o fola/y") da

We make the substitution, = uy™ and get

EYZ QN]- n(¢+1) Oof d_]'_eNilg(nEXf 21
0= 2 (2 [ )y dn = 7w (07" B, 20
and finally,
1—6 1— (05N

E(Yy) = - - E(X{). 22
08) = T - o gt BOX) (22)

As long as #7° < 1, the limit can be taken to get
E(Y) = lim B(YS) = 0 E(xd) (23)

’ N —o0 N 1 — nye 0/

But if #7* > 1 the limit diverges (infinite moments). We identify a by the relation,

0y =1, or a:=-— log(0) (24)

log(7)

This is the same « as in (7). Then we have the typical power-tail relation for moments:

EY)<oo <= [(<a. (25)



We next show that R(x) asymptotically satisfies a property which matches Feller’s
definition of a regularly varying function. This could also be used as the definition for an
asymptotically self-similar function. We then show (as does Feller) that such functions
must have power tails. Consider (20), evaluated at x = ~t,

Rot) = (1=0) S O Rlt/" ) = (L= 0) 3 0" Roft /)

n=-—1

R(vt) = 6(1—0) S 0" Ro(t/2") + (1 — 0) Ro(t) = OR(t) + (1 — 6) Ro(71).

n=0

But Ry(t) is well behaved, and drops off at least as fast as some negative exponential, so
for t large enough, Ry(~t) must be small compared to the sum, therefore,

R(yt) — OR(t) as t — oc.
This can be done any number of times, so we have, for large ¢
R(y*t) = 0FR(t).
Let u = v*, solve for k [k = log(u)/log(v)], and substitute for it to get
gk — eklos(8) — log(6)log(u)/log(y)
But from the discussion following (23), a = —log(#)/log(7), so
o _ p—alog(u) _ Jog(u™®) _ ,—a

Therefore
R(7v*t) = R(ut) = R(t)/u®.
Let t be large enough, but fixed, and let x = ut, then finally

R(x) = R(t)/(x/t)" = = (26)
Feller defines a reqularly varying function as one which satisfies
R(tx) — (x)R(t) as t — 0.

He then goes on to show that for a monotone decreasing function [which R(x) is], ¢ (x) =
.

In the following section, we will use this family of functions to study the behavior of
steady-state G/M/1 queues. For that purpose, we let

1—-46
1—~0

Ro(x) = e ", where p=



Figure 3: R(x) as a function of = for a« € {1.1,1.2,1.5,1.7,2.0,3.0,00} and
0 = 0.5. For x ~ 3 the curves start to cross until finally for « ~ 216 the curves for
a = 1.1 and @ = 1.2 cross and complete the reordering of the curves. (Compare with
Figure 1.)
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Figure 4: R(x) as a function of z for a« € {1.1,1.2,1.5,1.7,2.0,3.0,00} and
0 = 0.5, now plotted on a log-log scale. As « approaches oo, R(x) approaches e
for finite .
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Figure 5: Truncated power-tail reliabilities Ry, for N € {1,2,...,9,12,100},
a = 1.5 and 8 = 0.5, plotted on a log-log scale. For N = 100, log(R(+)) is a straight

line for many orders of magnitude of change in x. Even with only 12 terms, log(R(-)) looks
like a straight line for a factor of 100 change in x.

Since E(Xy) = 1/p, from (23), E(Y) = 1 as long as v0 < 1. Figure 3 shows R(z)
versus x for various values of a and # = 0.5!. Figure 4 displays the same functions on
a log-log scale, showing their linear behavior for large x. We see clearly that a larger «
yields a larger negative slope for R(x). Also, for = large enough, R(x) bounds e™* from
above, and the larger « is, the closer R(x) is to e~ *.

Finally, in Figure 5 we display some functions with truncated tails. Here we see how
the tail fills in for increasing V. In some sense, this mimics the way data points accumulate
for real systems. For a given set of data, there is a largest member, and very few other
elements of comparable size. Therefore, the fraction of samples that are nearly that large
drops to 0 very rapidly with increasing x. As more samples are added, a few will be much
larger than all previous ones, and the tail fills in. Thus we can map, at least qualitatively,
the increase in number of samples with increase in N. Note that for finite N, E(Yy) < 1.

3 The G/M/1 Queue As Model

Our purpose in this paper is to examine the impact which interarrival processes that
exhibit power-tail behavior can have on a telecommunications network. To show that the
impact can be great, it is only necessary to examine the simplest of such systems. The data
in [LELA94]| clearly indicate that we can expect packets to arrive in unusual patterns.
Their analysis of irregularity of the number of packets arriving per unit time is consistent

!The curves change only slightly when using another value for 6, e.g. 6 € {0.25,0.75}.



with a Hurst Parameter, H, with value H = 0.8. The relationship between H and « is
given by [LIKH95] as

H=3B-a)/2, or a=3-2-H. (27)

This, then corresponds to aw = 1.4. Although there is much time spent in various papers
discussing the connection between H, «, and the autocorrelation coefficients, r(k), for the
number of arrivals in successive equal time intervals, it can be shown [LIPS95] that a
renewal process with power-tailed interarrival times has the appropriate properties even
though the interarrival times themselves are uncorrelated. Therefore the 7(k)’s will play
no part in what follows.

In their paper, Leland, et.al., have shown that their data (some 29 million packets over
a 24 hour period) remains unstable over 5 orders of magnitude of time intervals, namely
from number of arrivals in 0.01 seconds, to number in 100 seconds. They then argued that
this showed a manifest self-similarity for the process. We claim that if they had been able
to increase the time intervals by two orders of magnitude the instability would disappear.
In principle, if a > 1 then there exist intervals large enough to get smooth data. On the
other hand, we concede that the number of sample points needed to achieve this stability
could exceed the lifetime of the system being investigated. In Subsection 2 we argued
that a power-tail distribution with o = 1.4 would require sample sizes on the order of 107
to yield visual smoothness. Unfortunately, the largest intervals displayed in [LELA94]
contained “only” 33,000 or so packets per 100 second interval. Therefore, according to
(14), if they had increased their intervals by two orders of magnitude, their graphs would
have achieved visual smoothness. Unfortunately, even a set of 29 million data points is
not sufficient to yield more than two or three intervals, so an honest test cannot be made.
But from our guesstimate arguments, it is clear that for all &« > 1 the data will stabilize in
principle. For o < 1 the data will grow more erratic with increased interval width. Only
for . = 1 will this self-similarity property repeat itself for all orders of magnitude.

3.1 The Arrival Process

Whatever terminology is used for wildly varying arrivals, there are (at least) two in-
equivalent simple process classes which could generate them. First, one could imagine
files whose sizes are distributed according to some power-tail distribution, and instead of
being sent whole, are broken up into much smaller packets. Suppose that such files are
sent out according to a Poisson distribution, the individual packets disburse somewhat
(separate randomly in time from each other), and are recognized at the destination as
bursts of packets. This is a compound Poisson process. Such models have been used to
generate arrivals, but as far as we know, no-one has used a generator with a power tail.
Likhanov, et.al., [LIKH95] have come close, however. Instead of trying to deal with the
disbursion of packets, they argue that the Poisson arrival of bursts is equivalent to an
M/G/1 queue, where the service times are power tails. (Actually, they assume a large
number of independent sources, and then reprove the well-known theorem that the merg-
ing of many independent arrival processes approaches a Poisson process whose arrival rate
is the sum of the individual arrival rates.) Garg, et.al., [GARG92] presented an M/G/1
model in studying data retrieval systems where file sizes came from truncated power-tail



distributions. They also studied what happened as the tail behavior extended to larger
and larger x.

The other simple process which could generate wild data is simply a renewal process
where the interarrival times have a power tail. [LIEF94] have demonstrated that indeed
one can have very wild data with arbitrarilly large bursts. After all, if there are long
intervals with no arrivals, then there must be other intervals which have far more than
their share. The data in [LELA94| does not seem to show extremely long periods with
no arrivals. Therefore, a simple renewal model may have to be merged with a small
background Poisson process. Unfortunately, the merging of two (as opposed to very many)
renewal processes is not a renewal process (unless both are Poisson). This would then make
the well-known solution of a steady-state GI/M/1 queue inappropriate. But a system with
a non-renewal arrival process is a very difficult problem indeed. We will therefore solve
the GI/M/1 queue as an approximation to the more appropriate system.

3.2 Finding The Geometric Parameter, s

It is well known that the steady-state probability for finding £ customers in an open
GI/M/1 queue, 7(k), is given by [LIPS92]

7(0) = 1—p
(k) = (1—s)-p-s"1 k>0

where s is the geometric parameter satisfying the equation
s = B*[A1—s)]. (28)

B*(z) is the Laplace transform of the interarrival distribution, and A is the service rate
of the exponential server. Let T be the mean interarrival time. Then

1

'OZE

and the mean queue length (including the one being served) for the process is

For telecommunications systems, the arrival probabilities are of importance. The proba-
bility that an arriving packet will find exactly £ > 0 other packets already there is given
by

a(k) = (1 —s)-s" =x(k)- o
Suppose that a no-loss system is required. One might have a primary buffer of K slots, and
a backup buffer of unbounded size (e.g., a disc-array sub-system). Then the probability
that an arriving packet will have to be stored in the backup buffer is

o0 [ee]

PriK)=>Y a(k)=(1-s) ) s =s"



These equations all show the important role s plays in GI/M/1 queues. We see that the
smaller s is, the better system performance we can expect. Equivalently, the closer s is to
1, the bigger ¢ and Pr(K) will be, giving less desirable performance. When s is close to
1, it is better to look at Pr(K) as a function of ¢t := 1 — s, for then

Pr(K) = s& = effloels) — oFKloe(1-0) o oK £ ¢ < 1.

There are some general statements one can make. For instance, when p = 1, so does s. If
R(0) =1 (a non-defective distribution) then s = 0 when p = 0. Also, only for the M/M/1
queue does s = p. We say that if s > p then system performance is worse, and if s < p
then system performance is better than one could ask for. It has been shown [LIPS92]
that the slope of the curve, s versus p at p = 0 is £f(0). So if this is less than (greater
than) 1, then for small p, performance is better (worse) than the equivalent M/M/1 queue.
At the other end, at p =1, the slope is 2/(C%* +1). If C? > 1 (C? < 1) then performance
is worse (better). It is also known [LIPS92] that near p = 1 performance depends only
on the moments of the interarrival time distribution, and thus on a and 6. In particular,
if <2 then C? = oo and the slope is 0. This means that s will remain close to 1 even
as p decreases.

In general, for small p performance depends only on the behavior of f(z) for small
x. Given (17), the values of f(x) and its derivatives at « = 0 depend on fo(x). For the
function chosen here [pe™** with u = (1 —0)/(1 — 07)], f(0) > 1 for all ¢ and all «.
A different function could have been chosen which would have yielded a smaller s for
small p (e.g., p*re™"*). But the performance for p — 1 would be the same. This shows
the difficulty in selecting test functions in exploring the general performance of systems.
Without more knowledge of a particular system, no model can be relied upon to give an
accurate picture of the performance for small or intermediate p. This will be discussed
further in the next sections, when calculation results are presented.

3.3 Behavior of Queues based on fy, (Truncated Tails)

We return now to (28) and our explicit test function

1_9N1

@) = g 32 (L) (o (29)
where = (1 —0)/(1 —07), 0y <1 and 7% = 1, i.e. v = (1/6)*/*. Its mean is given by

oy = B(Vy) = 207 o))

As long as N is finite our test function is well behaved in that all its moments are finite,
and it drops off exponentially for large = (see Subsection 2).

From (28) and the definition of the Laplace Transform, the following non-linear equa-
tion must be solved for its smallest positive root.

1—0 = o
A1—s)z _ .
8_/ " fr () de = QNZ)\I—S)v”—f—;L
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Figure 6: p-s-Diagram for various values of a where 8 = 0.5 and N = 10.

Note that s = 1 is always an extraneous root of this equation. It has no relevance to our
discussion; its physical significance comes from the fact that [5° fy, (¢) de = 1. It can be
eliminated by subtracting 1 from both sides and using 1 = (1 — 6)/(1 — V) N 0.
Then we can solve instead, g(s) = 0, where

1—0 N2 (vO)™

e 7;] (L—s)y"+pu/XA (30)

Figures 6 to 15 show the characteristic behavior of the geometric parameter s, i.e. the
solution of ¢g(s) = 0, as a function of p, for various values of the parameters a-, # and N .
The figures are grouped into three classes:

e Fixed 6 and N; a variable (Figures 6 and 7): The smaller « is, the larger is s.
For « small enough, and N large enough, performance can be very bad (s close to

1).

e Fixed a and 0; N variable (Figures 8-10): The larger N is, the larger is s. For
larger values of o the values of s stabilize more rapidly. If we think of N as somehow
related to the sample size in a real system, then these figures show that for smaller
« more samples must be included (larger N) in order for the system to experience
the full effect of the tail [s(p; N) = s(p; 00)]. We also see that for « close to, or
bigger than 2.0, performance is not disasterous, even for large N.

e Fixed a and N; 0 variable (Figures 11-15): For small N we have a somewhat
unexpected result: For fixed p and N, s is not necessarilly a monotonic function of
6. (fig. 11, 14). For larger N (e.g. N > 12 for « = 1.1 or N > 5 for v = 1.5) the
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Figure 7. p-s-Diagram for various values of a where 8 = 0.5 and N = 30.

largest value s* of s (for fixed p) will be obtained at different values of 6 (fig. 12,
13, 15). However, we can see that s* is a monotonic non-decreasing function of N.
Also, 6 loses importance as N increases. That is, the range of possible values for s
as @ varies from 0 to 1, decreases with increasing N. So in the limit N — oo it is
no longer necessary to consider different values of 6, except perhaps if 6 is close to
1 (see Figure 13 and next subsection).

We see then, that even though fy, is well behaved, s can be very close to 1 even for
moderate p. Part of this is due to the largeness of C?, and thus the almost horizontal
slope at p = 1. But for small o, and large NV s stays close to 1 even when p is as small as
0.5. For fixed N, the smaller « is the smaller p will be before s deviates from 1. Also, for
smaller «v, N must be larger before approaching its limiting value, corresponding to the
expected experimental result that smaller o requires more events to experience the full
impact of a power tail, as implied by (14).

3.4 Behavior of Queues based on f

For N — oo & =E(Y) =1 and (30) reduces to
(1-0) -1 31
g(s Z (1—s)y™ +u/)\ (31)

From a numerical point of view it can be advantageous to solve for t := 1 — s instead of
s in the vicinity of p = 1. So we get the alternative equation

3(t) = g(1=s) = (1-0) 3> — 1 _(1—g) 32 LZDOD = OWA 1y ()

=ty 4 /A s Y+ /A



Figure 8: p-s-Diagram for various values of N where @ = 2.0 and 6 = 0.5.

0.6

04

0 0.2 0.4 0.6 0.8 1

Figure 9: p-s-Diagram for various values of N where a = 1.5 and 6 = 0.5.
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Figure 10: p-s-Diagram for various values of N where a = 1.1 and 6 = 0.5.
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Figure 11: p-s-Diagram for various values of 8 where o« = 1.5 and N = 3.
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Figure 12: p-s-Diagram for various values of 8 where o« = 1.5 and N = 30.
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Figure 13: p-s-Diagram for various values of § where a = 1.5 and N = 100.
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Figure 14: p-s-Diagram for various values of 8 where o« = 1.1 and N = 10.
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Figure 15: p-s-Diagram for various values of & where o = 1.1 and N = 30.
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Figure 16: p-s-Diagram for different values of a where 8 = 0.5 and N — oo.

Figure 16 shows s for various values of a. As mentioned in the previous subsection
(see p.19) the graphs differ only slightly for different values of #. Note that this figure
does not differ significantly from Figure 7, showing that a function with a truncated tail
can cause almost as bad performance as its limit function. Also, the transition in going
from small NV to large NV to oo is smooth and convergent. We also see that as « increases,
performance improves (smaller s for the same p), and for large o approaches that of the
M/M/1 queue (s = p). Again, the transition is smooth. For instance, even though f(x)
has an infinite variance for o« = 2, there is no abrupt change in behavior as one goes from
a<2toa>2.

Next, in Figure 17 we display for some values of a the value of p = 1/(AZ) where ¢ is
0.01 (0.001, 0.0001), and p is computed from equation (32). This figure attempts to show
how small p can be and still have a value for s = 1 — ¢ close to 1, depending on «. Its
significance can best be shown by the following.

Example: For a = 1.1 we get p =~ 0.46 when ¢ = 0.01, so
Pr(K =10) = (1 -0.01)" = 0.99" ~ 90.4%

and Pr(50) ~ 60.5%. In other words: Even if the utilization is less than a half the
probability that the primary buffer of size 10 (50) is full when a new packet arrives
is greater than 90% (60%). To keep the probability of overflow to below 10% would
require a primary buffer of size K = 229. For a = 1.5 these probabilities occur for
p =~ 0.91. On the other hand, for o = 2.5, we get the more reasonable result that
p is greater than 0.98, i.e., a system must be nearing saturation (p close to 1) to
get high probabilities of overflow. Remember that for « < 2 Y has infinite variance
[see (25)].
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Figure 17: a-p-Diagram for ¢ € {0.01,0.001,0.0001} and 6 = 0.5.

4 Conclusion/Summary

In the first part of this paper we gave a detailed description of the properties of power-
tailed distributions, also known as Pareto, or Levy-Pareto distributions. They form a
proper subclass of the so-called heavy-tailed, or sub-exponential distributions. The hier-
archy of distributions is summarized in Figure 18. We then showed how application of
the Central-limit Theorem must be modified when dealing with power tails. In particular
we showed that the number of events which must transpire before steady-state solutions
can be relevant grows unboundedly large as « approaches 1 from above (for « < 1 there
never can be a steady state). We then introduced a class of well behaved distributions
which can be used to analytically model processes which have power tails, or truncated
power tails. They are also useful for discrete event simulations. One of these distributions
was used to model a steady-state G/M/1 queue. We showed that steady-state behavior
(as represented by the geometric parameter, s) varies smoothly with o > 1. It also varies
smoothly as the truncated tail is filled in (N — o0). We reiterate the final remark of
the introductory section: To fully understand the real impact which power-tail distribu-
tions will have on telecommunications (and other) systems, appropriate descriptions of
transient behavior must be developed.
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Figure 18: Overview of the relations between various sub-classes of distribu-
tions. “—” denotes the relation “is a sub-class of”.

Appendix - Asymptotic behavior of g

In Section 3.4 we examined the properties of a G/M/1 queue by finding the unique root
of (28) for s = 1 — ¢ in the open interval, (0, 1). We eliminated the extraneous root at
s =1 (t = 0) by using the expression

3(6) = 1—t —tB*()\t)

which for our test function yields (32). It can be shown for any function [LIPS92], that
§g(0)=1/p—1=(1—-p)/p. A power-series expansion can be used to explore its behavior
near p = 1. If the appropriate moments are finite, then for p close to 1 (i.e. ¢ close to 0),
one can write

g(t) = §(0) + §'(0) -t + 5" (0) - £2/2+ - -,
where for £ > 0 (see [LIPS92])

(~DF B
E+1 (pr)+

§(0) = —kI[(-AV)* ] =

For ¢t small enough, g(¢) = 0 can be solved approximately as a polynomial root-finding
problem. However, if & < 2, then the second moment is infinite, and the equation doesn’t
hold. We used instead,

- 1— _
g(t):Tp—l—c-ta1+---, (33)
where ¢ is some constant which could depend upon p. We now prove this equation, and

give some explicit properties to c. Higher terms in the series can also be found in this way.

fexcept for the normal distribution



Define () — 5(0)
oy . 9 —g\l)
h(t ’ ﬁ) T t/B
Clearly, if §'(0) exists, then h(04;1) = §'(0), h(04;8 < 1) =0, and h(04;3 > 1) = oc.
Even if §’(0) is infinite, there may exist some 3 # 1 such that
0<}:it%|h(t;ﬂ)| < 0. (34)

This is sometimes called the generalized derivative. For the power-tail distribution used
in this paper we can write

) N ) - M & 0
= (1- 9);;}(97) [W - 1] =—(1=9) (ﬁ) ;W

Recall from (24) that #y* =1, and let # = o — 1 4 ¢, then

e (P

= \n) ST+

Before taking the limit for ¢t — 0, we anticipate our results to simplify the above expression
somewhat. As long as 1 < a < 2, the infinite sum converges, but t* — oo if £ < 0, and
t* — 0 if ¢ > 0. Therefore, in order to satisfy constraint (34), we must have ¢ = 0. We
assume this in what follows.

Let h(t;a —1) := h(t u/A; —1). Then we have

ittia-1)=—a-0)(2) S 100

H n=0 1 + (t7n>

If iL(t ;a0 — 1) has a finite limit as ¢ — 0, then any sequence iL(tg ;a0 — 1) will converge to
the same limit if {¢,} is a monotonic decreasing sequence with ¢, — 0. Suppose for now
that the limit exists, and let t, = t,/~¢, where t, > 0, but otherwise unspecified. Then

Wteia—1) = —(1—0) <3>a A <3>a 5 )"

1) =1+ (toy™ ) 1 1+ (toy™)

n=—(

We take the limit and get:

@ oo n\2—a

lim h(te;a—1) = —(1—0) (5> 3 {oy")™*

{0 1) e 1 (t7")
From the ratio test for convergence, it is clear that the doubly infinite sum converges as
long as 1 < a < 2. That means the limit exists for each ¢, > 0. In order for the original
equation to have a (unique) finite limit, the doubly infinite sum must be independent of
to. We have computed the sum for many values of ¢y3, v and «, and have found that for
fixed «v, 7, the sums for different values of ¢y agree to 14 significant decimal digits, the full
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Figure 19: p-t-Diagram both for the exact and the asymptotic equation in ¢
where @ = 1.3 and € = 0.5. From the insert, it is clear that the asymptotic equation

is an excellent approximation for p as small as 0.9.

precision of our calculations. Thus we assume that the limit indeed exists, and is equal to
(we arbitrarilly set to to 1, and recall that A/p = (1 — 60v)/[(1 — 0)p|, with § = 1/+*)

c=cla,y) =

(v =) i (y")*

_fyapa(fya _ ]_)afl iy 1+ fyn

since lim A (t; o — 1) = }:ir% h(t;a—1) ) (c-to )/ttt =c.

t—0

When §(t) is set to 0 from (33), we get for ¢,

@ a—1
jamt _ lm(v - 1)] Y1 —p
v =

where for convenience, we have defined:

L i ()

la,y) 2 1+7"

(35)

This equation shows how s = 1 — ¢t approaches 1 as p approaches 1, for 1 < a < 2.
It is also extremely useful as an initial guess for finding the exact root of g(s) = 0 [or
g(t) = 0] by numerical means. In fact, the closer p is to 1, the harder it is to find the exact
root unless this asymptotic expression is used. Figures 19 and 20 visualize the quality of
approximation by (35) in the vicinity of p = 1. Clearly, the smaller « is, the better is the

approximation even for smaller p.
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Figure 20: p-t-Diagram both for the exact and the asymptotic equation in ¢
where o = 1.7 and 6 = 0.5. Here the asymptotic equation is only good for p > 0.98.

As one last comment, we note that the doubly infinite sum diverges for o« = 1 and
a = 2, thus I['(1,v) = ['(2,7) = 0. Interestingly, I'(a;,y) is actually symmetric about
a = 1.5. By replacing the dummy variable n with —n in the sum, and then manipulating
a little, it can be shown that for 1 < a <2

(a,7)=T@B - a,v),

orfor0 <6 <1

That is ['(1.1,v) =T'(1.9,~), ['(1.2,v) = I'(1.8,7), etc.
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