

TUTI

TECHNISCHE
UNIVERSITAT
MUNCHEN

INSTITUT FUR INFORMATIK

Sonderforschungsbereich 342:
Methoden und Werkzeuge fiir die Nutzung
paralleler Rechnerarchitekturen

An Improvement
of McMillan’s Unfolding
Algorithm

Javier Esparza, Stefan Romer, Walter Vogler

TUM-19525
SFB-Bericht Nr.342/12/95 A
August 1995

TUM-INFO-08-95-125-350/1.Fl

Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©1995 SFB 342 Methoden und Werkzeuge fiir
die Nutzung paralleler Architekturen

Anforderungen an: Prof. Dr. A. Bode
Sprecher SFB 342
Institut fiir Informatik
Technische Universitat Miinchen
Arcisstr. 21 / Postfach 20 24 20
D-80290 Miinchen, Germany

Druck: Fakultat fiir Informatik der
Technischen Universitat Minchen

An Improvement of McMillan’s Unfolding
Algorithm

Javier Esparza, Stefan Romer*
Institut fur Informatik, Technische Universitat Minchen

Walter Vogler
Institut fir Mathematik, Universitat Augsburg

1 Introduction

In a seminal paper [8], McMillan has proposed a new technique to avoid the state explosion
problem in the verification of systems modelled with finite-state Petri nets. The technique
is based on the concept of net unfolding, a well known partial order semantics of Petri nets
introduced in [10], and later described in more detail in [3] under the name of branching
processes. The unfolding of a net is another net, usually infinite but with a simpler
structure. McMillan proposes an algorithm for the construction of a finite initial part of
the unfolding which contains full information about the reachable states. We call such an
initial part a finite complete prefiz. He then shows how to use these prefixes for deadlock
detection.

The unfolding technique has been later applied to other verification problems. In [6, 7]
it is used to check relevant properties of speed independent circuits. In [4], an unfolding-
based model checking algorithm for a simple branching time logic is proposed. Recently,
the technique has also been used for the verification of timed systems [9] .

Although McMillan’s algorithm is simple and elegant, it sometimes generates prefixes
much larger than necessary. In some cases a minimal complete prefix has O(n) in the size
of the Petri net, while the algorithm generates a prefix of size O(2"). In this paper we
provide an algorithm which generates a minimal complete prefix (in a certain sense to be
defined). The prefix is always smaller than or as large as the prefix generated with the
old algorithm.

The paper is organised as follows. Section 2 contains basic definitions about Petri nets and
branching processes. In Section 3 we show that McMillan’s algorithm is just an element
of a whole family of algorithms for the construction of finite complete prefixes. In Section
4 we select an element of this family, and show that it generates minimal prefixes in a
certain sense. Finally, in Section 5 we present experimental results.

*Partially supported by the Teilproject A3 SAM of the Sonderforschungsbereich 342 “ Werkzeuge und
Methoden fiir die Nutzung paralleler Rechnerarchitekturen”.

2 Basic definitions

2.1 Petri nets
A triple (S, T, F)isa net it SNT =0 and FF C (S xT)U (T x S). The elements of S

are called places, and the elements of T' transitions. Places and transitions are generically
called nodes. We identify F' with its characteristic function on the set (S x T)U (T x 5).
The preset of a node x, denoted by *x, is the set {y € SUT | F(y,x) = 1}. The postset
of x, denoted by z°, is the set {y € SUT | F(x,y) = 1}.

A marking of a net (9,7, F) is a mapping S — IN. A 4-tuple ¥ = (S, T, F, My) is a net
system if (S, T, F') is a net and My is a marking of (5,7, F') (called the initial marking of
Y). A marking M enables a transition ¢ if Vs € S: F(s,t) < M(s). If ¢ is enabled at M,
then it can occur, and its occurrence leads to a new marking M’ (denoted M SN M),
defined by M'(s) = M(s) — F(s,t) 4+ F(t,s) for every place s. A sequence of transitions
o =tity... 1, is an occurrence sequence it there exist markings My, My, ..., M,, such that

t t t
My — M, = ... M, " M,

M,, is the marking reached by the occurrence of o, also denoted by My —— M,. M is a
reachable marking if there exists an occurrence sequence ¢ such that My - M.

A marking M of a net is n-safe if M(s) < n for every place s. We identify 1-safe markings
with the set of places s such that M(s) = 1. A net system X is n-safe if all its reachable
markings are n-safe.

In this paper we consider only net systems satistying the following two additional prop-
erties:

e The number of places and transitions is finite.

e Every transition of T has a nonempty preset and a nonempty postset.

2.2 Branching processes

Branching processes are “unfoldings” of net systems containing information about both
concurrency and conflicts. They were introduced by Engelfriet in [3]. We quickly review
the main definitions and results of [3].

Occurrence nets. Let (5,7, F') be a net and let x1, 3 € SUT. The nodes x; and
are in conflict, denoted by xi#x,, if there exist distinct transitions ¢1, t5 € T" such that
*ty N %ty £ 0, and (¢4, 21), (t2,x2) belong to the reflexive and transitive closure of F. In
other words, =y and x5 are in conflict if there exist two paths leading to z; and x5 which
start at the same place and immediately diverge (although later on they can converge
again). For @ € SUT, = is in self-conflict if x# .

An occurrence net is a net N = (B, E, F') such that:

o for every b € B, |*b] < 1,

e F'is acyclic, i.e. the (irreflexive) transitive closure of F' is a partial order,

2

o N is finitely preceded, i.e., for every @ € BU I, the set of elementsy € BU E such
that (y,) belongs to the transitive closure of F' is finite, and

e no event e € I/ is in self-conflict.

The elements of B and F are called conditions and events, respectively. Min(N) denotes
the set of minimal elements of B U F with respect to the transitive closure of F'.

The (irreflexive) transitive closure of F' is called the causal relation, and denoted by
<. The symbol < denotes the reflexive and transitive closure of F. Given two nodes
x,y € BUFE, we say x co y if neither # < y nor y < = nor x#y.

Branching processes. Let Ny = (51,71, Fy) and Ny = (52,13, F3) be two nets. A
homomorphism from Ny to Ny! is a mapping h: S; U Ty — So U T3 such that:

® h(Sl) g 52 and h(Tl) g TQ, and

e for every t € T, the restriction of h to *t is a bijection between *¢ (in N;) and *h(?)
(in Nz), and similarly for t* and h(?)*.

In other words, a homomorphism is a mapping that preserves the nature of nodes and
the environment of transitions.

A branching process of a net system ¥ = (N, My) is a pair § = (N',p) where N’ =
(B, E, F) is an occurrence net, and p is a homomorphism from N’ to N such that

(i) The restriction of p to Min(N') is a bijection between Min(N') and My,
(i) for every e, e € F, if *e; = ®ey and p(ey) = p(ez) then e = e,.

Figure 1 shows a 1-safe net system (part (a)), and two of its branching processes (parts
(b) and (c)).

Two branching processes 31 = (N1, p1) and 83 = (N3, p2) of a net system are isomorphic
if there is a bijective homomorphism £ from N; to N, such that py, o h = p;. Intuitively,
two isomorphic branching processes differ only in the names of conditions and events.

It is shown in [3] that a net system has a unique maximal branching process up to
isomorphism. We call it the unfolding of the system. The unfolding of the 1-safe system
of Figure 1 is infinite.

Let g = (N',p') and = (N, p) be two branching processes of a net system. 3’ is a prefix
of #if N’ is a subnet of N satisfying

e Min(N) belongs to N,
e if a condition belongs to N’, then its input event in N also belongs to N’, and

e if an event belongs to N’, then its input and output conditions in /V also belong to

N'.

and p' is the restriction of p to N'.

Tn [3], homomorphisms are defined between net systems, instead of between nets, but this is only a
small technical difference without any severe consequence.

sl S2 sl 2

(b) s3 s4 (c) s3 4
tl 3 tl 3
sl S2 sl 2
t2
s3 4

Figure 1: A net system and two of its branching processes

2.3 Configurations and cuts

A configuration C of an occurrence net is a set of events satisfying the following two
conditions:

e cc(C = Ve <eed e C (Cis causally closed).
o Ve, e/ € C:—(efte’) (C is conflict-free).

A set B’ of conditions of an occurrence net is a co-set if its elements are pairwise in co
relation. A maximal co-set B’ with respect to set inclusion is called a cut.

A marking M of a system X is represented in a branching process 3 = (N,p) of ¥ if 3
contains a cut ¢ such that, for each place s of ¥, ¢ contains exactly M(s) conditions b
with p(b) = s. It is easy to prove using results of [1, 3] that every marking represented in
a branching process is reachable, and that every reachable marking is represented in the
unfolding of the net system.

Finite configurations and cuts are tightly related. Let ' be a finite configuration of a
branching process 8 = (N, p). Then the co-set Cut(C'), defined below, is a cut:

Cut(C) = (Min(N) U C*)\ *C.

In particular, given a configuration C the set of places p(Cut(C)) is a reachable marking,
which we denote by Mark(C').

For 1-safe systems, we have the following result, which will be later used in Section 4:

Proposition 2.1

Let x1 and x5 be two nodes of a branching process of a 1-safe net system. If x1 co x4,
then p(x1) # p(as). m2.1

Given a cut ¢ of a branching process 8 = (N, p), we define {} ¢ as the pair (N, p’), where
N’ is the unique subnet of N whose set of nodes is {x | (Jy € ¢: & > y)AVy € ¢: =(a#y)}
and p’ is the restriction of p to the nodes of N. The following result will also be used
later:

Proposition 2.2

If 3 is a branching process of (N, My) and ¢ is a cut of 3, then {} ¢ is a branching
process of (N, p(c)). m2.2

3 An algorithm for the construction of a complete
finite prefix

3.1 Constructing the unfolding

We give an algorithm for the construction of the unfolding of a net system. First of all,
let us describe a suitable data structure for the representation of branching processes.
We implement a branching process of a net system X as a list nq,...,n; of nodes. A
node is either a condition or an event. A condition is a pair (s, e), where s is a place of
Y and e the input event. An event is a pair (£, B), where ¢ is a transition of ¥, and B is
the set of input conditions. Notice that the flow relation and the labelling function of a
branching process are already encoded in its list of nodes. How to express the notions of
causal relation, configuration or cut in terms of this data structure is left to the reader.
The algorithm for the construction of the unfolding starts with the branching process
having the conditions corresponding to the initial marking of ¥ and no events. Events
are added one at a time together with their output conditions.

We need the notion of “events that can be added to a given branching process”.

Definition 3.1

Let 8 = nq,...,n; be a branching process of a net system . The possible extensions
of 3 are the pairs (£, B), where B is a co-set of conditions of 3 and ¢ is a transition of

Y such that
e p(B) ="t, and
e /3 contains no event e satisfying p(e) =1 and *e = B
PE(3) denotes the set of possible extensions of (. m3.1

Algorithm 3.2 The unfolding algorithm

input: A net system ¥ = (N, My), where My = {s1,...,8,}.

output: The unfolding Unf of ¥.

begin

Unf := (s1,0),...,(s,,0);

pe := PE(Unf);

while pe #) do
append to Unfan event e = (¢, B) of pe and a
condition (s, e) for every output place s of ¢;
pe := PE(Unf)

endwhile

end

m3.2

The algorithm does not necessarily terminate. In fact, it terminates if and only if the
input system ¥ does not have any infinite occurrence sequence. It is correct only under
the fairness assumption that every event added to pe is eventually chosen to extend Unf
(the correctness proof follows easily from the definitions and from the results of [3]).

Constructing a finite complete prefix

We say that a branching process [of a net system ¥ is complete if the following two
conditions hold:

e every reachable marking of ¥ is represented in /3, and

e if a transition ¢ can occur in X, then [contains an event labelled by t.

The unfolding of a net system is always complete. It is also easy to see that a complete
prefix contains as much information as the unfolding.

Since an n-safe net system has only finitely many reachable markings, its unfolding con-
tains at least one complete finite prefix. We show how to transform the algorithm above
into a new one whose output is a finite complete prefix.

We need some preliminary notations and definitions:

Given a configuration (', we denote by €' & I the fact that C'U F is a configuration such
that C N E = (). We say that C' @& F is an eatension of C, and that F is a suffiz of C.
Obviously, if C' C C’ then there is a suffix £ of ' such that O @ E = (.

Let Cy and Cy be two finite configurations such that Mark(Cy) = Mark(Cy). 1t fol-
lows easily from the definitions that {} Cut(C;) is isomorphic to the unfolding of ¥’ =
(N, Mark(C;)), ¢ = 1,2; hence, {t Cut(Cy) and {} Cut(Cy) are isomorphic. Moreover,
there is an isomorphism]gf from {} Cut(Cy) to {y Cut(C3). This isomorphism induces a
mapping from the finite extensions of €y onto the extensions of Cy: it maps C; & E onto
Ch @ I62(E).

We can now introduce the three basic notions of the algorithm:

Definition 3.3

A partial order < on the finite configurations of a branching process is an adequate
order if:

o < is well-founded,

o < refines C, i.e. (7 C (5 implies € < (5, and

e < is preserved by finite extensions, meaning that if Cy < Cy and Mark(Cy) =
Mark(Cs), then Cy & E < Cy & IG2(B).

m3.3

Definition 3.4 Local configuration

The local configuration [e] of an event of a branching process is the set of events €’
such that ¢ < e.? m3.4

2It is immediate to prove that [e] is a configuration.

Definition 3.5 Cut-off event

Let 3 be a branching process and let < be an adequate partial order on the config-
urations of 3. An event e is a cut-off event (with respect to <) if # contains a local
configuration [¢'] such that

(a) Mark(le]) = Mark([¢']), and
(b) [¢] < [e].
m3.5

The new algorithm has as parameter an adequate order <, i.e. every different adequate
order leads to a different algorithm.

Algorithm 3.6 The complete finite prefix algorithm

input: An n-safe net system ¥ = (N, My), where My = {s1,..., s}
output: A complete finite prefix Fin of Unf.
begin
Fin := (s1,0),...,(sg, 0);
pe := PE(Fin);
cut-off := 0;
while pe #) do
choose an event e = (¢, B) in pe such that [e] is minimal with respect to <;
if [¢]N cut-off =) then
append to Fin the event ¢ and a condition
(s, e) for every output place s of t;
pe := PE(Fin);
if ¢ is a cut-off event of Fin then
cut-off := cut-off U{e}
endif
else pe :=pe \ {e}
endif
endwhile
end

m3.6
McMillan’s algorithm in [8] corresponds to the order
Cl '<m 023<:> |Cl| < |CQ|

It is easy to see that <, is adequate.

The reason of condition (a) in the definition of cut-off event is intuitively clear in the light
of this algorithm. Since Mark([e']) = Mark([e]), the continuations of Unf from Cut([e])
and Cut([e']) are isomorphic. Then, loosely speaking, all the reachable markings that
we find in the continuation of Unf from Cut([e]) are already present in the continuation
from Cut([e']), and so there is no need to have the former in Fin. The r6le of condition

7

Figure 3: A prefix of the net system of Figure 2

(b) is more technical. In fact, when McMillan’s algorithm is applied to “ordinary” small
examples, condition (b) seems to be superfluous, and the following strategy seems to
work: if an event e is added and Fin already contains a local configuration [¢] such
that Mark([e]) = Mark([¢]), then mark e as cut-off event. The following example (also
independently found by K. McMillan) shows that this strategy is incorrect. Consider the
1-safe net system of Figure 2.

The marking {si2} is reachable. Without condition (b) we can generate the prefix of
Figure 3.

The names of the events are numbers which indicate the order in which they are added to
the prefix. The events 8 and 10 are cut-off events, because their corresponding markings
{87, 89,810} and {sg, ss,s11} are also the markings corresponding to the events 7 and 9,
respectively. This prefix is not complete, because {s13} is not represented in it.

We now prove the correctness of Algorithm 3.6.

Proposition 3.7

Fin is finite.

Proof: Given an event e of Fin, define the depth of e as the length of a longest chain of
events e; < ez < ... < ¢; the depth of e is denoted by d(e). We prove the following
two results:

(1)

For every event e of Fin, d(e) < n+ 1, where n is the number of reachable
markings of X.

Since cuts correspond to reachable markings, every chain of events e; <
€3 < ... < e, < euy1 of Unf contains two events e;, e¢;, ¢ < j, such that
Mark([e;]) = Mark([e;]). Since [e;] C [e;] and < refines C, we have [e;] < [¢],
and therefore [e;] is a cut-off event of Unf. Should the finite prefix algorithm
generate e;, then it has generated e; before and e; is recognized as a cut-off
event of Fin, too.

For every event e of Fin, the sets *e and ¢* are finite.

By the definition of homomorphism, there is a bijection between p(e)® and
p(e®), where p denotes the homomorphism of Fin, and similarly for *p(e) and
p(®e). The result follows from the finiteness of N.

For every k > 0, Fin contains only finitely many events e such that d(e) < k.

By complete induction on k. The base case, k = 0, is trivial. Let Fj be the
set of events of depth at most k. We prove that if Ey is finite then Ejpiq is
finite.

By (2) and the induction hypothesis, E} is finite. Since *FEpy1 C Ep U
Min(Fin), we get by property (ii) in the definition of a branching process
that Ejyq is finite.

It follows from (1) and (3) that Fin only contains finitely many events. By (2) it

contains only finitely many conditions. m3.7

Proposition 3.8

Fin is complete.

Proof: (a) Every reachable marking of ¥ is represented in Fin.

Let M be an arbitrary reachable marking of Y. There exists a configuration C'
of Unf such that Mark(C) = M. If C is not a configuration of Fin, then it

contains some cut-off event e, and so C' = [e] & F for some set of events F. By

the definition of a cut-off event, there exists a local configuration [¢] such that

[e] < [e] and Mark([e']) = Mark([e]).

Consider the configuration C' = [¢/] &][[:]/](E). Since < is preserved by finite
extensions, we have C' < C. Morever, Mark(C’) = M. If C" is not a configuration
of Fin, then we can iterate the procedure and find a configuration C” such that

9

Minimal
complete
prefix

Zk copies of sk

Figure 4: A Petri net and its unfolding

C" < C"and Mark(C") = M. The procedure cannot be iterated infinitely often
because < is well-founded. Therefore, it terminates in a configuration of Fin.

(b) If a transition ¢ can occur in ¥, then Fin contains an event labelled by ¢.

If t occurs in X, then some reachable marking M enables . The marking M is
represented in Fin. Let C' be a minimal configuration with respect to < such that
Mark(Cut(C)) = M. If C contains some cut-off event, then we can apply the
arguments of (a) to conclude that Fin contains a configuration ¢’ < C such that
Mark(Cut(C")) = M. This contradicts the minimality of C'. So C contains no
cut-off events, and therefore Fin also contains a configuration C' & {e} such that e

is labelled by ¢. m 3.8

4 An adequate order for the 1-safe case

As we mentioned in the introduction, McMillan’s algorithm may be inefficient in some
cases. An extreme example, due to Kishinevsky and Taubin, is the family of systems on
the left of Figure 4.

While a minimal complete prefix has size O(n) in the size of the system (see the dot-
ted line in Figure 4), the branching process generated by McMillan’s algorithm has size
O(2"). The reason is that, for every marking M, all the local configurations [e] satisfying
Mark([e]) = M have the same size, and therefore there exist no cut-off events with respect
to McMillan’s order <,,.

Our parametric presentation of Algorithm 3.6 suggests how to improve this: it suffices to
find a new adequate order <, that refines McMillan’s order <,,. Such an order induces a
weaker notion of cut-off event; more precisely, every cut-off event with respect to <,, is
also a cut-off event with respect to <,, but maybe not the other way round. Therefore,
the instance of Algorithm 3.6 which uses the new order generates at least as many cut-
off events as McMillan’s instance, and maybe more. In the latter case, Algorithm 3.6
generates a smaller prefix.

The order <, is particularly good if in addition it is total. In this case, whenever an

10

event e is generated after some other event ¢’ such that Mark([e]) = Mark([¢']), we have
[e] <. [e] (because events are generated in accordance with the total order <,), and so e
is marked as a cut-off event. So we have the following two properties:

e the guard “e is a cut-off event of Fin” in the inner if instruction of Algorithm 3.6
can be replaced by “Fin contains a local configuration [¢/] such that Mark([e]) =

Mark([e'])”, and

e the number of events of the complete prefix which are not cut-off events cannot
exceed the number of rechable markings.

In the sequel, let ¥ = (N, My) be a fixed net system, and let < be an arbitrary total order
on the transitions of ¥. We extend < to a partial order on sets of events of a branching
process: for such a set E, let p(F) be that sequence of transitions which is ordered
according to < and contains each transition ¢ as often as there are events in £ with label
t; p(F) is something like the Parikh-vector of £. Now we say that F; < F; if o(F;) is
shorter than ¢(FEs), or if they have the same length but @(F4) is lexicographically smaller
than p(F,). Note that F; and F, are incomparable with respect to < iff p(F1) = ¢(F3)
and, in particular, |Eq| = ||

We now define <, more generally on suffixes of configurations of a branching process
(recall that a set of events E is a suffix of a configuration if there exists a configuration

C such that C' & F).

Definition 4.1 Total order <,

Let Fy and F,; be two suffixes of configurations of a branching process § and let
Min(FEy) and Min(FE,) denote the sets of minimal elements of £ and Fy with respect
to the causal relation. We say F <, Fy if:
® E1 < EQ, or
e o(F) =p(F2) and
— Min(Ey) < Min(FEy), or
— o(Min(E1)) = o(Min(Ey)) and Ey \ Min(Eq) <, Ey \ Min(Es).
m4.l

The second condition of this definition could be expressed as: the Foata-Normal-Form of
Ey is smaller than that of Fy with respect to <, cf. e.g. [2].

Theorem 4.2

Let 3 be a branching process of a 1-safe net system. <, is an adequate total order on
the configurations of [3.

Proof: a) <, is a partial order.

[t is easy to see by induction on |F| that <, is irreflexive. Now assume £y <, Fy <,
Fs. Clearly, Fy <, Fs unless ¢(FE1) = p(F2) = ¢(F3), which in particular implies

11

|| = |E2| = | F3]. For such triples with these equalities we apply induction on the
size: if Min(Fy) < Min(FEy) or Min(Ey) < Min(FEs), we conclude Fy <, Fs, and
otherwise we apply induction to E; \ Min(FE;), « = 1,2,3, which are also suffixes
of configurations.

b) <, is total on configurations.

Assume that C7 and (3 are two incomparable configurations, i.e. |C] = |Cs],
©(C1) = (Cy), and o(Min(Ch)) = ¢(Min(Cy)). We prove €y = Cy by induction
on |Cq]| = |Cs].

The base case gives (1 = Cy = 0, so assume |Cy| = |C3| > 0.

We first prove Min(Cy) = Min(Cy). Assume without loss of generality that e; €
Min(Cy) \ Min(C3). Since o(Min(C1)) = p(Min(Cy)), Min(C3) contains an event
ez such that p(e;) = p(es). Since *Min(Cy) and *Min(C3) are subsets of Min(N),
and all the conditions of Min(N) carry different labels by Proposition 2.1, we have
*e1 = *ez. This contradicts condition (ii) of the definition of branching process.

Since Min(Cy) = Min(Cy), both C1\ Min(C1) and C3\ Min(Cy) are configurations
of the branching process {} Cut(Min(Cy)) of (N, Mark(Min(C1))) (Proposition 2.2);

by induction we conclude Cy = (.
¢) <, is well-founded.

In a sequence Cy =, C3 =, ... the size of the C; cannot decrease infinitely often;
also, for configurations of the same size, C; cannot decrease infinitely often with
respect to <, since the sequences ¢(C;) are drawn from a finite set; an analogous
statement holds for Min(C;). Hence, we assume that all |C;], all (C;) and all
©(Min(C;)) are equal and apply induction on the common size. For |C;| = 0, an
infinite decreasing sequence is impossible. Otherwise, we conclude as in case b)
that we would have Cy \ Min(Cy) =, Cy \ Min(Cy) =, ... in {4 Cut(Min(C)),

which is impossible by induction.

d) <, refines C.

Obvious.

e) <, is preserved by finite extensions.

This is the most intricate part of the proof, and here all the complications in
Definition 4.1 come into play. Take C; <, Cy with Mark(Cy) = Mark(C3). We
have to show that Oy @& F <, Cy @]gf(E), and we can assume that £ = {e} and
apply induction afterwards. The case C; < (5 is easy, hence assume o(C;) =
©(Cy), and in particular |C1| = |Cz]. We show first that e is minimal in C] =
C1 UA{e} if and only if]gf(e) is minimal in C) = Cy U {]gf(e)}

So let e be minimal in 7, i.e. the transition p(e) is enabled under the initial
marking. Let s € *p(e); then no condition in *Cy U C7 is labelled s, since these
conditions would be in co relation with the s-labelled condition in ®e, contradicting
Proposition 2.1. Thus, C; contains no event e’ with s € *p(€’), and the same holds
for Cy since p(Cy) = ¢(Cy). Therefore, the conditions in Cut(Cy) with label

in *p(e) are minimal conditions of 3, and]gf(e) = e is minimal in C}. The

12

reverse implication holds analogously, since about C; and (5 we have only used

the hypothesis (C1) = ¢(Cy).

With this knowledge about the positions of e in C] and]gf(e) in C, we proceed
as follows. If Min(C1) < Min(C3), then we now see that Min(C]) < Min(C}), so
we are done. If o(Min(Ch)) = o(Min(C3)) and e € Min(C]), then

C1\ Min(C7) = C1\ Min(Cq) <, C2 \ Min(C3) = Cy\ Min(CY)

hence C] <, C}. Finally, if o(Min(Cy)) = o(Min(C3)) and e ¢ Min(C7), we again
argue that Min(Cy) = Min(Cy) and that, hence, C;\ Min(Cy) and Cy\ Min(Cy) are
configurations of the branching process {} Cut(Min(C1)) of (N, Mark(Min(Ch)));
with an inductive argument we get C] \ Min(Cy) <, C5\ Min(C}) and are also
done in this case. m4.2

We close this section with a remark on the minimality of the prefixes generated by the
new algorithm, i.e. by Algorithm 3.6 with <, as adequate order. Figure 1(b) and (c) are
a minimal complete prefix and the prefix generated by the new algorithm for the 1-safe
system of Figure 1(a), respectively. It follows that the new algorithm does not always
compute a minimal complete prefix.

However, the prefixes computed by the algorithm are minimal in another sense. The
algorithm stores only the reachable markings corresponding to local configurations, which
for the purpose of this discussion we call local markings. This is the feature which makes
the algorithm interesting for concurrent systems: the local markings can be a very small
subset of the reachable markings, and therefore the storage of the unfolding may require
much less memory than the storage of the state space. In order to find out that the
prefix of Figure 1(b) is complete, we also need to know that the initial marking {s1,s2}
appears again in the prefix as a non-local marking. If we only store information about local
markings, then the prefix of Figure 1(c¢) is minimal, as well as all the prefixes generated by
the new algorithm. The reason is the observation made above: all the local configurations
of Fin which are not induced by cut-off events correspond to different markings; therefore,
in a prefix smaller than Fin we lose information about the reachability of some marking.

5 Implementation issues and experimental results

The implementation of the Algorithm 3.6 has been carried out in the context of the model
checker described in [4], which allows to efficiently verify formulae expressed in a simple
branching time temporal logic.

For the storage of Petri nets and branching processes we have developed an efficient,
universal data structure that allows fast access to single nodes [12]. This data structure
is based on the underlying incidence matrix of the net. Places, transitions and arcs are
represented by nodes of doubly linked lists to support fast insertion and deletion of single
nodes.

The computation of new elements for the set PFE involves the combinatorial problem of
finding sets of conditions B such that p(B) = *f for some transition . We have imple-
mented several improvements in this combinatorial determination, which have significant
influence on the performance of the algorithm. The interested reader is referred to [12].

13

@Sl

oA N\ o

©$3

Ns/

@SS

@ s7

NN

5

GiveFreeSiotl P2

Freel

—=[] O .12 F;Ez
/p& \ P4 IntAckl 8// Ack2 / \ P14 IntAckz PW
Oo” O=—[O=— wO<—[<=—0" O<=—[O=— ®
N/ N/ Ny~

Dﬁg)ﬂﬁm Usett

¢ PutMessagel nSlot1 ¢

]

PLL GiveFreeSlot2 P:

Oo—=[}

N/ .

O——=0——=0

PutMessagel nSlot2

S——=[1{—=O Ol Ors /
EK /Zk\\ /3 @)\ K \‘V K
Osz 054 Ose Oss D< [
S;Q O[] oo
T D Writel DWHIEE

(a) n—buffer for n = 4. (b) Slotted ring protocol for n = 2.

Figure 5: Two scalable nets

Algorithm 3.6 is very simple, and can be easily proved correct, but is not efficient. In
particular, it computes the set PE of possible extensions each time a new event is added
to Flin, which is clearly redundant. Similarly to McMillan’s original algorithm [8], in
the implementation we use a queue to store the set PFE of possible extensions. The new
events of Fin are extracted from the head of this list, and, when an event is added, the
new possible extensions it generates are appended to its tail.

The simplest way to organize the list would be to sort its events according to the total
order <,.. However, this is again inefficient, because it involves performing unnecces-
sary comparisons. The solution is to sort the events according to the size of their local
configuration, as in [8], and compare events with respect to <, only when it is really
needed.

With this implementation, the new algorithm only computes more than McMillan’s when
two events e and ¢’ satisfy Mark([e]) = Mark([e']) and |[e]| = |[¢/]|. But this is precisely
the case in which the algorithm behaves better, because it always identifies either e or
¢ as a cut-off event. In other words: when the complete prefix computed by McMillan’s
algorithm is minimal, our algorithm computes the same result with no time overhead.
The running time of the new algorithm is O((%)g), where B is the set of conditions of the
unfolding, and ¢ denotes the maximal size of the presets of the transitions in the original
net (notice that this is not a measure in the size of the input). The dominating factor
in the time complexity is the computation of the possible extensions. The space required
is linear in the size of the unfolding because we store a finite amount of information pro
event.

Finally, we present some experimental results on two scalable examples. We compare
McMillan’s algorithm and the new algorithm, both implemented using the universal data
structure and the improvements in the combinatorial determination mentioned above.
The first example is a model of a concurrent n—buffer (see Figure 5(a)). The net has 2n
places and n+1 transitions, where n is the buffer’s capacity. While the number of reachable
markings is 2, Fin has size O(n?) and contains one single cut—off event (see Table 1).

14

Original net Unfolding time [s]
n IS| | 1T] | [[Mq > |B| | |E| | |cutoffs| || McMillan | New algorithm
20 40 | 21 220 421 211 1 0.22 0.20
40 80 | 41 240 1641 821 1 2.40 2.50
60 || 120 | 61 260 3661 | 1831 1 17.45 18.08
80 || 160 | 81 280 6481 | 3241 1 66.70 67.85
100 || 200 | 101 2100 10101 | 5051 1 191.58 197.34
120 || 240 | 121 2120 14521 | 7261 1 444.60 437.30
140 || 280 | 141 2140 19741 | 9871 1 871.93 869.50
160 || 320 | 161 2160 25761 | 12881 1 1569.90 1563.74
180 || 360 | 181 2180 32581 | 16291 1 2592.93 2597.86

Table 1: Results of the n buffer example®.

Original net McMillan’s algorithm New algorithm

n IS| | IT] | ITMg>| |Bl | |El | |cutoffs| | time [s] Bl | |El | lcutoffs| | time [s]
1 10 10 | 1.2- 10% 18 12 3 0.00 18 12 3 0.00
2 20 20| 2.1-103 100 68 12 0.00 90 62 14 0.00
3 30 30| 4.0 104 414 288 60 0.13 267 186 42 0.05
4 40 40 | 8.2 106 1812 1248 296 1.72 740 528 128 0.38
5 50 50 | 1.7 107 8925 6240 1630 45.31 1805 1280 300 1.58
6 60 60 | 3.7- 108 45846 | 31104 8508 1829.4§ 4470 3216 792 11.08
7 70 70 | 8.0- 1010 — 10143 7224 1708 79.08
8 80 80 | 1.7- 1077 — 23880 | 17216 4256 563.69
9 3.8-10 — 52209 | 37224 88 2850.89

10 || 100 | 100 | 8.1 -10%2 —* || 119450 | 86160 21320 | 15547.67

Table 2: Results of the slotted ring protocol example.

In this example, the complete prefix computed by McMillan’s algorithm is minimal. The
new algorithm computes the same prefix without time overhead, as expected.

Our second example, Figure 5(b), is a model of a slotted ring protocol taken from [11].
Here, the output of the new algorithm grows significantly slower than the output of
MecMillan’s algorithm. For n = 6 the output is already one order of magnitude smaller.

6 Conclusions

We have presented an algorithm for the computation of a complete finite prefix of an
unfolding. We have used a refinement of McMillan’s basic notion of cut-off event. The
prefixes constructed by the algorithm contain at most n non-cut-off events, where n is the
number of reachable markings of the net. Therefore, we can guarantee that the prefix is
never significantly larger than the reachability graph, what did not hold for the algorithm
of [8].

Acknowledgements

We thank Michael Kishinevsky, Alexander Taubin and Alex Yakovlev for drawing our
attention to this problem, and Burkhard Graves for detecting some mistakes.

3All the times have been measured on a SPARCstation 20 with 48 MB main memory.
4These times could not be calculated; for n = 7 we interrupted the computation after more than 12
hours.

15

References

[1] E. Best and C. Ferndndez: Nonsequential Processes — A Petri Net View. EATCS
Monographs on Theoretical Computer Science 13 (1988).

[2] V. Diekert: Combinatorics on Traces. LNCS 454 (1990).

[3] J. Engelfriet: Branching processes of Petri nets. Acta Informatica 28, pp. 575-591
(1991).

[4] J. Esparza: Model Checking Using Net Unfoldings. Science of Computer Program-
ming (1993).

[5] J. Esparza, S. Romer and W. Vogler: An improvement of McMillan’s unfolding
algorithm. Informatik Bericht, TU Miinchen, in preparation.

[6] M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky: Concurrent Hard-
ware: The Theory and Practice of Self-Timed Design, Wiley (1993).

[7] A. Kondratyev and A. Taubin: Verification of speed-independent circuits by STG
unfoldings. Proceedings of the Symposium on Advanced Research in Asynchronous
Circuits and Systems, Utah (1994).

[8] K.L. McMillan: Using unfoldings to avoid the state explosion problem in the verifica-
tion of asynchronous circuits. Proceedings of the 4th Workshop on Computer Aided
Verification, Montreal, pp. 164-174 (1992).

9] K.L. McMillan: Trace theoretic verification of asynchronous circuits using unfoldings.

Proceedings of the Tth Workshop on Computer Aided Verification, Liege (1995).

[10] M. Nielsen, G. Plotkin and G. Winskel: Petri Nets, Event Structures and Domains.
Theoretical Computer Science 13(1), pp. 85-108 (1980).

[11] E. Pastor, O. Roig, J. Cortadella and R.M. Badia: Petri Net Analysis Using Boolean
Manipulation. Proc. Application and Theory of Petri Nets ’94, LNCS 815, pp. 416—
435 (1994).

[12] S. Romer: Implementation of a Compositional Partial Order Semantics of Petri
Boxes. Diploma Thesis (in German). Universitat Hildesheim (1993).

16

SEFB 342:

Methoden und Werkzeuge fiir die Nutzung paralleler
Rechnerarchitekturen

bisher erschienen :

Reihe A

342/1/90 A
342/2/90 A
342/3/90 A

342/4/90 A

342/5/90 A
342/6/90 A
342/7/90 A
342/8/90 A

342/9/90 A

342/10/90 A
342/11/90 A

342/12/90 A
342/13/90 A
342/14/90 A

342/15/90 A
342/16/90 A
342/17/90 A

Robert Gold, Walter Vogler: Quality Criteria for Partial Order Se-
mantics of Place/Transition-Nets, Januar 1990

Reinhard Féfimeier: Die Rolle der Lastverteilung bei der numeri-
schen Parallelprogrammierung, Februar 1990

Klaus-Jorn Lange, Peter Rossmanith: Two Results on Unambi-
guous Circuits, Februar 1990

Michael Griebel: Zur Losung von Finite-Differenzen- und Finite-
Element-Gleichungen mittels der Hierarchischen Transformations-
Mehrgitter-Methode

Reinhold Letz, Johann Schumann, Stephan Bayerl, Wolfgang Bibel:
SETHEO: A High-Performance Theorem Prover

Johann Schumann, Reinhold Letz: PARTHEO: A High Performan-
ce Parallel Theorem Prover

Johann Schumann, Norbert Trapp, Martin van der Koelen: SE-
THEO/PARTHEO Users Manual

Christian Suttner, Wolfgang Ertel: Using Connectionist Networks
for Guiding the Search of a Theorem Prover

Hans-Jorg Beier, Thomas Bemmerl, Arndt Bode, Hubert Ertl, Olav
Hansen, Josef Haunerdinger, Paul Hofstetter, Jaroslav Kremenek,
Robert Lindhof, Thomas Ludwig, Peter Luksch, Thomas Treml:
TOPSYS, Tools for Parallel Systems (Artikelsammlung)

Walter Vogler: Bisimulation and Action Refinement

Jorg Desel, Javier Esparza: Reachability in Reversible Free- Choice
Systems

Rob van Glabbeek, Ursula Goltz: Equivalences and Refinement
Rob van Glabbeek: The Linear Time - Branching Time Spectrum
Johannes Bauer, Thomas Bemmerl, Thomas Treml: Leistungsana-
lyse von verteilten Beobachtungs- und Bewertungswerkzeugen
Peter Rossmanith: The Owner Concept for PRAMs

G. Bockle, S. Trosch: A Simulator for VLIW-Architectures

P. Slavkovsky, U. Riide: Schnellere Berechnung klassischer Matrix-
Multiplikationen

17

Reihe A

342/18/90 A
342/19/90 A

342/20/90 A
342/21/90 A

342/22/90 A

342/23/90 A
342/24/90 A

342/25/90 A

342/26/90 A

342/27/90 A
342/28/90 A
342/29/90 A

342/30/90 A
342/31/90 A

342/32/90 A
342/33/90 A
342/1/91 A
342/2/91 A

342/3/91 A

Christoph Zenger: SPARSE GRIDS

Michael Griebel, Michael Schneider, Christoph Zenger: A combina-
tion technique for the solution of sparse grid problems

Michael Griebel: A Parallelizable and Vectorizable Multi- Level-
Algorithm on Sparse Grids

V. Diekert, E. Ochmanski, K. Reinhardt: On confluent semi-
commutations-decidability and complexity results

Manfred Broy, Claus Dendorfer: Functional Modelling of Opera-
ting System Structures by Timed Higher Order Stream Processing
Functions

Rob van Glabbeek, Ursula Goltz: A Deadlock-sensitive Congruence
for Action Refinement

Manfred Broy: On the Design and Verification of a Simple Distri-
buted Spanning Tree Algorithm

Thomas Bemmerl, Arndt Bode, Peter Braun, Olav Hansen, Peter
Luksch, Roland Wismiiller: TOPSYS - Tools for Parallel Systems
(User’s Overview and User’s Manuals)

Thomas Bemmerl, Arndt Bode, Thomas Ludwig, Stefan Tritscher:
MMK - Multiprocessor Multitasking Kernel (User’s Guide and
User’s Reference Manual)

Wolfgang Ertel: Random Competition: A Simple, but Efficient Me-
thod for Parallelizing Inference Systems

Rob van Glabbeek, Frits Vaandrager: Modular Specification of Pro-
cess Algebras

Rob van Glabbeek, Peter Weijland: Branching Time and Abstrac-
tion in Bisimulation Semantics

Michael Griebel: Parallel Multigrid Methods on Sparse Grids

Rolf Niedermeier, Peter Rossmanith: Unambiguous Simulations of
Auxiliary Pushdown Automata and Circuits

Inga Niepel, Peter Rossmanith: Uniform Circuits and Exclusive
Read PRAMs

Dr. Hermann Hellwagner: A Survey of Virtually Shared Memory
Schemes

Walter Vogler: Is Partial Order Semantics Necessary for Action
Refinement?

Manfred Broy, Frank Dederichs, Claus Dendorfer, Rainer Weber:
Characterizing the Behaviour of Reactive Systems by Trace Sets
Ulrich Furbach, Christian Suttner, Bertram Fronhofer: Massively
Parallel Inference Systems

18

Reihe A

342/4/91 A

342/5/91 A
342/6/91 A

342/7/91 A

342/8/91 A
342/9/91 A

342/10/91
342/11/91
342/12/91

342/13/91

342/14/91
342/15/91
342/16/91
342/17/91
342/18/91
342/19/91
342/20/91

342/21/91

A

A

Rudolf Bayer: Non-deterministic Computing, Transactions and Re-
cursive Atomicity

Robert Gold: Dataflow semantics for Petri nets

A. Heise; C. Dimitrovici: Transformation und Komposition von
P/T-Netzen unter Erhaltung wesentlicher Eigenschaften

Walter Vogler: Asynchronous Communication of Petri Nets and the
Refinement of Transitions

Walter Vogler: Generalized OM-Bisimulation

Christoph Zenger, Klaus Hallatschek: Fouriertransformation auf
diinnen Gittern mit hierarchischen Basen

Erwin Loibl, Hans Obermaier, Markus Pawlowski: Towards Paral-
lelism in a Relational Database System

Michael Werner: Implementierung von Algorithmen zur Kompak-
tifizierung von Programmen fiir VLIW-Architekturen

Reiner Miiller: Implementierung von Algorithmen zur Optimierung
von Schleifen mit Hilfe von Software-Pipelining Techniken

Sally Baker, Hans-Jorg Beier, Thomas Bemmerl, Arndt Bode, Hu-
bert Ertl, Udo Graf, Olav Hansen, Josef Haunerdinger, Paul Hof-
stetter, Rainer Knédlseder, Jaroslav Kremenek, Siegfried Langen-
buch, Robert Lindhof, Thomas Ludwig, Peter Luksch, Roy Milner,
Bernhard Ries, Thomas Treml: TOPSYS - Tools for Parallel Sy-
stems (Artikelsammlung); 2., erweiterte Auflage

Michael Griebel: The combination technique for the sparse grid
solution of PDE’s on multiprocessor machines

Thomas F. Gritzner, Manfred Broy: A Link Between Process Alge-
bras and Abstract Relation Algebras?

Thomas Bemmerl, Arndt Bode, Peter Braun, Olav Hansen, Tho-
mas Treml, Roland Wismiiller: The Design and Implementation of
TOPSYS

Ulrich Furbach: Answers for disjunctive logic programs

Ulrich Furbach: Splitting as a source of parallelism in disjunctive
logic programs

Gerhard W. Zumbusch: Adaptive parallele Multilevel-Methoden
zur Losung elliptischer Randwertprobleme

M. Jobmann, J. Schumann: Modelling and Performance Analysis
of a Parallel Theorem Prover

Hans-Joachim Bungartz: An Adaptive Poisson Solver Using Hier-
archical Bases and Sparse Grids

19

Reihe A

342/22/91
342/23/91
342/24/91

342/25/91
342/26/91

342/27/91
342/28/91
342/29/91
342/30/91

342/31/91

342/32/91

A

342/1/92 A

342/2/92 A

342/2-2/92 A

342/3/92 A

342/4/92 A

342/5/92 A

342/6/92 A

Wolfgang Ertel, Theodor Gemenis, Johann M. Ph. Schumann, Chri-
stian B. Suttner, Rainer Weber, Zongyan Qiu: Formalisms and Lan-
guages for Specifying Parallel Inference Systems

Astrid Kiehn: Local and Global Causes

Johann M.Ph. Schumann: Parallelization of Inference Systems by
using an Abstract Machine

Eike Jessen: Speedup Analysis by Hierarchical Load Decomposition
Thomas F. Gritzner: A Simple Toy Example of a Distributed Sy-
stem: On the Design of a Connecting Switch

Thomas Schnekenburger, Andreas Weininger, Michael Friedrich: In-
troduction to the Parallel and Distributed Programming Language
ParMod-C

Claus Dendorfer: Funktionale Modellierung eines Postsystems
Michael Griebel: Multilevel algorithms considered as iterative me-
thods on indefinite systems

W. Reisig: Parallel Composition of Liveness

Thomas Bemmerl, Christian Kasperbauer, Martin Mairandres,
Bernhard Ries: Programming Tools for Distributed Multiprocessor
Computing Environments

Frank LeBlke: On constructive specifications of abstract data types
using temporal logic

L. Kanal, C.B. Suttner (Editors): Informal Proceedings of the
Workshop on Parallel Processing for Al

Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Tho-
mas F. Gritzner, Rainer Weber: The Design of Distributed Systems
- An Introduction to FOCUS

Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Tho-
mas F. Gritzner, Rainer Weber: The Design of Distributed Systems
- An Introduction to FOCUS - Revised Version (erschienen im Ja-
nuar 1993)

Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Tho-
mas F. Gritzner, Rainer Weber: Summary of Case Studies in FO-
CUS - a Design Method for Distributed Systems

Claus Dendorfer, Rainer Weber: Development and Implementation
of a Communication Protocol - An Exercise in FOCUS

Michael Friedrich: Sprachmittel und Werkzeuge zur Unterstiit- zung
paralleler und verteilter Programmierung

Thomas F. Gritzner: The Action Graph Model as a Link between
Abstract Relation Algebras and Process-Algebraic Specifications

20

Reihe A

342/7/92 A
342/8/92 A
342/9/92 A
342/10/92 A

342/11/92 A

342/12/92 A
342/13/92 A

342/14/92 A
342/15/92 A

342/16/92 A
342/17/92 A
342/18/92 A
342/19/92 A
342/20/92 A
342/21/92 A
342/22/92 A
342/23/92 A
342/24/92 A

342/25/92 A
342/26/92 A

Sergei Gorlatch: Parallel Program Development for a Recursive Nu-
merical Algorithm: a Case Study

Henning Spruth, Georg Sigl, Frank Johannes: Parallel Algorithms
for Slicing Based Final Placement

Herbert Bauer, Christian Sporrer, Thomas Krodel: On Distributed
Logic Simulation Using Time Warp

H. Bungartz, M. Griebel, U. Riide: Extrapolation, Combination and
Sparse Grid Techniques for Elliptic Boundary Value Problems

M. Griebel, W. Huber, U. Riide, T. Stoértkuhl: The Combination
Technique for Parallel Sparse-Grid-Preconditioning and -Solution
of PDEs on Multiprocessor Machines and Workstation Networks
Rolf Niedermeier, Peter Rossmanith: Optimal Parallel Algorithms
for Computing Recursively Defined Functions

Rainer Weber: Eine Methodik fiir die formale Anforderungsspezif-
kation verteilter Systeme

Michael Griebel: Grid— and point—oriented multilevel algorithms
M. Griebel, C. Zenger, 5. Zimmer: Improved multilevel algorithms
for full and sparse grid problems

J. Desel, D. Gomm, E. Kindler, B. Paech, R. Walter: Bausteine
eines kompositionalen Beweiskalkiils fiir netzmodellierte Systeme
Frank Dederichs: Transformation verteilter Systeme: Von applika-
tiven zu prozeduralen Darstellungen

Andreas Listl, Markus Pawlowski: Parallel Cache Management of
a RDBMS

Erwin Loibl, Markus Pawlowski, Christian Roth: PART: A Parallel
Relational Toolbox as Basis for the Optimization and Interpretation
of Parallel Queries

Jorg Desel, Wolfgang Reisig: The Synthesis Problem of Petri Nets
Robert Balder, Christoph Zenger: The d-dimensional Helmholtz
equation on sparse Grids

Ilko Michler: Neuronale Netzwerk-Paradigmen zum FErlernen von
Heuristiken

Wolfgang Reisig: Elements of a Temporal Logic. Coping with
Concurrency

T. Stortkuhl, Chr. Zenger, S. Zimmer: An asymptotic solution for
the singularity at the angular point of the lid driven cavity
Ekkart Kindler: Invariants, Compositionality and Substitution
Thomas Bonk, Ulrich Riide: Performance Analysis and Optimiza-
tion of Numerically Intensive Programs

21

Reihe A
342/1/93 A

342/2/93 A

342/3/93 A

342/4/93 A

342/5/93 A
342/6/93 A
342/7/93 A

342/8/93 A

342/9/93 A

342/10/93 A
342/11/93 A

342/12/93 A

342/13/93 A

342/14/93 A
342/15/93 A

342/16/93 A

342/17/93 A

M. Griebel, V. Thurner: The Efficient Solution of Fluid Dynamics
Problems by the Combination Technique

Ketil Stglen, Frank Dederichs, Rainer Weber: Assumption / Com-
mitment Rules for Networks of Asynchronously Communicating
Agents

Thomas Schnekenburger: A Definition of Efficiency of Parallel Pro-
grams in Multi-Tasking Environments

Hans-Joachim Bungartz, Michael Griebel, Dierk Roéschke, Chri-
stoph Zenger: A Proof of Convergence for the Combination Techni-
que for the Laplace Equation Using Tools of Symbolic Computation
Manfred Kunde, Rolf Niedermeier, Peter Rossmanith: Faster Sor-
ting and Routing on Grids with Diagonals

Michael Griebel, Peter Oswald: Remarks on the Abstract Theory
of Additive and Multiplicative Schwarz Algorithms

Christian Sporrer, Herbert Bauer: Corolla Partitioning for Distri-
buted Logic Simulation of VLSI Circuits

Herbert Bauer, Christian Sporrer: Reducing Rollback Overhead in
Time-Warp Based Distributed Simulation with Optimized Incre-
mental State Saving

Peter Slavkovsky: The Visibility Problem for Single-Valued Surface
(z = f(x,y)): The Analysis and the Parallelization of Algorithms
Ulrich Riide: Multilevel, Extrapolation, and Sparse Grid Methods
Hans Regler, Ulrich Riide: Layout Optimization with Algebraic
Multigrid Methods

Dieter Barnard, Angelika Mader: Model Checking for the Modal
Mu-Calculus using Gaufl Elimination

Christoph Pflaum, Ulrich Riide: Gauff’ Adaptive Relaxation for
the Multilevel Solution of Partial Differential Equations on Sparse
Grids

Christoph Pflaum: Convergence of the Combination Technique for
the Finite Element Solution of Poisson’s Equation

Michael Luby, Wolfgang Ertel: Optimal Parallelization of Las Vegas
Algorithms

Hans-Joachim Bungartz, Michael Griebel, Dierk Roéschke, Chri-
stoph Zenger: Pointwise Convergence of the Combination Technique
for Laplace’s Equation

Georg Stellner, Matthias Schumann, Stefan Lamberts, Thomas
Ludwig, Arndt Bode, Martin Kiehl und Rainer Mehlhorn: Deve-
loping Multicomputer Applications on Networks of Workstations
Using NXLib

22

Reihe A

342/18/93 A
342/19/93 A
342/20/93 A
342/01/94 A
342/02/94 A
342/03/94 A
342/04/94 A

342/05/94 A

342/06/94 A
342/07/94 A
342/08/94 A
342/09/94 A
342/10/94 A
342/11/94 A

342/12/94 A

342/13/94 A

342/14/94 A

342/15/94 A

Max Fuchs, Ketil Stglen: Development of a Distributed Min/Max
Component

Johann K. Obermaier: Recovery and Transaction Management in
Write-optimized Database Systems

Sergej Gorlatch: Deriving Efficient Parallel Programs by Systema-
ting Coarsing Specification Parallelism

Reiner Hiittl, Michael Schneider: Parallel Adaptive Numerical
Simulation

Henning Spruth, Frank Johannes: Parallel Routing of VLSI Circuits
Based on Net Independency

Henning Spruth, Frank Johannes, Kurt Antreich: PHIroute: A Par-
allel Hierarchical Sea-of-Gates Router

Martin Kiehl, Rainer Mehlhorn, Matthias Schumann: Parallel Mul-
tiple Shooting for Optimal Control Problems Under NX/2
Christian Suttner, Christoph Goller, Peter Krauss, Klaus-Jérn Lan-
ge, Ludwig Thomas, Thomas Schnekenburger: Heuristic Optimiza-
tion of Parallel Computations

Andreas Listl: Using Subpages for Cache Coherency Control in Par-
allel Database Systems

Manfred Broy, Ketil Stglen: Specification and Refinement of Finite
Dataflow Networks - a Relational Approach

Katharina Spies: Funktionale Spezifikation eines Kommunika-
tionsprotokolls

Peter A. Krauss: Applying a New Search Space Partitioning Me-
thod to Parallel Test Generation for Sequential Circuits

Manfred Broy: A Functional Rephrasing of the Assumption/Com-
mitment Specification Style

Eckhardt Holz, Ketil Stglen: An Attempt to Embed a Restricted
Version of SDL as a Target Language in Focus

Christoph Pflaum: A Multi-Level-Algorithm for the Finite-
Element-Solution of General Second Order Elliptic Differential
Equations on Adaptive Sparse Grids

Manfred Broy, Max Fuchs, Thomas F. Gritzner, Bernhard Schétz,
Katharina Spies, Ketil Stglen: Summary of Case Studies in FOCUS
- a Design Method for Distributed Systems

Maximilian Fuchs: Technologieabhéngigkeit von Spezifikationen di-
gitaler Hardware

M. Griebel, P. Oswald: Tensor Product Type Subspace Splittings
And Multilevel Iterative Methods For Anisotropic Problems

23

Reihe A

342/16/94 A
342/17/94 A

342/18/94 A
342/19/94 A

342/20/94 A

342/01/95 A
342/02/95 A
342/03/95 A

342/04/95 A

342/05/95 A

342/06/95 A
342/07/95 A

342/08/95 A
342/09/95 A
342/10/95 A

342/11/95 A
342/12/95 A

Gheorghe Stefanescu: Algebra of Flownomials

Ketil Stglen: A Refinement Relation Supporting the Transition
from Unbounded to Bounded Communication Buffers

Michael Griebel, Tilman Neuhoeffer: A Domain-Oriented Multilevel
Algorithm-Implementation and Parallelization

Michael Griebel, Walter Huber: Turbulence Simulation on Sparse
Grids Using the Combination Method

Johann Schumann: Using the Theorem Prover SETHEO for verify-
ing the development of a Communication Protocol in FOCUS - A
Case Study -

Hans-Joachim Bungartz: Higher Order Finite Elements on Sparse
Grids

Tao Zhang, Seonglim Kang, Lester R. Lipsky: The Performance of
Parallel Computers: Order Statistics and Amdahl’s Law

Lester R. Lipsky, Appie van de Liefvoort: Transformation of the
Kronecker Product of Identical Servers to a Reduced Product Space
Pierre Fiorini, Lester R. Lipsky, Wen-Jung Hsin, Appie van de Liet-
voort: Auto-Correlation of Lag-k For Customers Departing From
Semi-Markov Processes

Sascha Hilgenfeldt, Robert Balder, Christoph Zenger: Sparse Grids:
Applications to Multi-dimensional Schrédinger Problems
Maximilian Fuchs: Formal Design of a Model-N Counter
Hans-Joachim Bungartz, Stefan Schulte: Coupled Problems in Mi-
crosystem Technology

Alexander Pfaffinger: Parallel Communication on Workstation Net-
works with Complex Topologies

Ketil Stglen: Assumption/Commitment Rules for Data-flow Net-
works - with an Emphasis on Completeness

Ketil Stglen, Max Fuchs: A Formal Method for Hardware/Software
Co-Design

Thomas Schnekenburger: The ALDY Load Distribution System
Javier Esparza, Stefan Romer, Walter Vogler: An Improvement of

MecMillan’s Unfolding Algorithm

24

SEFB 342 :

Reihe B

342/1/90 B
342/2/90 B
342/3/90 B
342/4/90 B
342/1/91 B
342/2/91 B
342/3/91 B
342/4/91 B
342/5/91 B

312/6/91 B

342/7/91 B
342/1/92 B

342/2/92 B
342/1/93 B
342/2/93 B

342/1/94 B

Methoden und Werkzeuge fiir die Nutzung paralleler
Rechnerarchitekturen

Wolfgang Reisig: Petri Nets and Algebraic Specifications

Jorg Desel: On Abstraction of Nets

Jorg Desel: Reduction and Design of Well-behaved Free-choice
Systems

Franz Abstreiter, Michael Friedrich, Hans-Jiirgen Plewan: Das
Werkzeug runtime zur Beobachtung verteilter und paralleler
Programme

Barbara Paechl: Concurrency as a Modality

Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier- Toolbox
-Anwenderbeschreibung

Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop
iiber Parallelisierung von Datenbanksystemen

Werner Pohlmann: A Limitation of Distributed Simulation
Methods

Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually
Shared Memory Scheme: Formal Specification and Analysis
Dominik Gomm, Ekkart Kindler: Causality Based Specification and
Correctness Proof of a Virtually Shared Memory Scheme

W. Reisig: Concurrent Temporal Logic

Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-
of-Support

Christian B. Suttner: Parallel Computation of Multiple Sets-of-
Support

Arndt Bode, Hartmut Wedekind: Parallelrechner: Theorie, Hard-
ware, Software, Anwendungen

Max Fuchs: Funktionale Spezifikation einer Geschwindigkeits-
regelung

Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: Ein
Literaturiiberblick

Andreas Listl; Thomas Schnekenburger; Michael Friedrich: Zum
Entwurf eines Prototypen fiir MIDAS

25

