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An Improvement of McMillan's UnfoldingAlgorithmJavier Esparza, Stefan R�omer�Institut f�ur Informatik, Technische Universit�at M�unchenWalter VoglerInstitut f�ur Mathematik, Universit�at Augsburg1 IntroductionIn a seminal paper [8], McMillan has proposed a new technique to avoid the state explosionproblem in the veri�cation of systems modelled with �nite-state Petri nets. The techniqueis based on the concept of net unfolding, a well known partial order semantics of Petri netsintroduced in [10], and later described in more detail in [3] under the name of branchingprocesses. The unfolding of a net is another net, usually in�nite but with a simplerstructure. McMillan proposes an algorithm for the construction of a �nite initial part ofthe unfolding which contains full information about the reachable states. We call such aninitial part a �nite complete pre�x. He then shows how to use these pre�xes for deadlockdetection.The unfolding technique has been later applied to other veri�cation problems. In [6, 7]it is used to check relevant properties of speed independent circuits. In [4], an unfolding-based model checking algorithm for a simple branching time logic is proposed. Recently,the technique has also been used for the veri�cation of timed systems [9] .Although McMillan's algorithm is simple and elegant, it sometimes generates pre�xesmuch larger than necessary. In some cases a minimal complete pre�x has O(n) in the sizeof the Petri net, while the algorithm generates a pre�x of size O(2n). In this paper weprovide an algorithm which generates a minimal complete pre�x (in a certain sense to bede�ned). The pre�x is always smaller than or as large as the pre�x generated with theold algorithm.The paper is organised as follows. Section 2 contains basic de�nitions about Petri nets andbranching processes. In Section 3 we show that McMillan's algorithm is just an elementof a whole family of algorithms for the construction of �nite complete pre�xes. In Section4 we select an element of this family, and show that it generates minimal pre�xes in acertain sense. Finally, in Section 5 we present experimental results.�Partially supported by the Teilproject A3 SAM of the Sonderforschungsbereich 342 \ Werkzeuge undMethoden f�ur die Nutzung paralleler Rechnerarchitekturen".1



2 Basic de�nitions2.1 Petri netsA triple (S; T; F ) is a net if S \ T = ; and F � (S � T ) [ (T � S). The elements of Sare called places, and the elements of T transitions. Places and transitions are genericallycalled nodes. We identify F with its characteristic function on the set (S � T )[ (T � S).The preset of a node x, denoted by �x, is the set fy 2 S [ T j F (y; x) = 1g. The postsetof x, denoted by x�, is the set fy 2 S [ T j F (x; y) = 1g.A marking of a net (S; T; F ) is a mapping S ! IN . A 4-tuple � = (S; T; F;M0) is a netsystem if (S; T; F ) is a net and M0 is a marking of (S; T; F ) (called the initial marking of�). A marking M enables a transition t if 8s 2 S:F (s; t) � M(s). If t is enabled at M ,then it can occur, and its occurrence leads to a new marking M 0 (denoted M t�! M 0),de�ned by M 0(s) = M(s)� F (s; t) + F (t; s) for every place s. A sequence of transitions� = t1t2 : : : tn is an occurrence sequence if there exist markingsM1, M2, : : : , Mn such thatM0 t1�!M1 t2�! : : :Mn�1 tn�!MnMn is the marking reached by the occurrence of �, also denoted by M0 ��! Mn. M is areachable marking if there exists an occurrence sequence � such that M0 ��!M .A markingM of a net is n-safe ifM(s) � n for every place s. We identify 1-safe markingswith the set of places s such that M(s) = 1. A net system � is n-safe if all its reachablemarkings are n-safe.In this paper we consider only net systems satisfying the following two additional prop-erties:� The number of places and transitions is �nite.� Every transition of T has a nonempty preset and a nonempty postset.2.2 Branching processesBranching processes are \unfoldings" of net systems containing information about bothconcurrency and conicts. They were introduced by Engelfriet in [3]. We quickly reviewthe main de�nitions and results of [3].Occurrence nets. Let (S; T; F ) be a net and let x1, x2 2 S [T . The nodes x1 and x2are in conict, denoted by x1#x2, if there exist distinct transitions t1, t2 2 T such that�t1 \ �t2 6= ;, and (t1; x1), (t2; x2) belong to the reexive and transitive closure of F . Inother words, x1 and x2 are in conict if there exist two paths leading to x1 and x2 whichstart at the same place and immediately diverge (although later on they can convergeagain). For x 2 S [ T , x is in self-conict if x#x.An occurrence net is a net N = (B;E;F ) such that:� for every b 2 B, j�bj � 1,� F is acyclic, i.e. the (irreexive) transitive closure of F is a partial order,2



� N is �nitely preceded, i.e., for every x 2 B [E, the set of elements y 2 B [E suchthat (y; x) belongs to the transitive closure of F is �nite, and� no event e 2 E is in self-conict.The elements of B and E are called conditions and events, respectively. Min(N) denotesthe set of minimal elements of B [ E with respect to the transitive closure of F .The (irreexive) transitive closure of F is called the causal relation, and denoted by<. The symbol � denotes the reexive and transitive closure of F . Given two nodesx; y 2 B [ E, we say x co y if neither x < y nor y < x nor x#y.Branching processes. Let N1 = (S1; T1; F1) and N2 = (S2; T2; F2) be two nets. Ahomomorphism from N1 to N21 is a mapping h:S1 [ T1 ! S2 [ T2 such that:� h(S1) � S2 and h(T1) � T2, and� for every t 2 T1, the restriction of h to �t is a bijection between �t (in N1) and �h(t)(in N2), and similarly for t� and h(t)�.In other words, a homomorphism is a mapping that preserves the nature of nodes andthe environment of transitions.A branching process of a net system � = (N;M0) is a pair � = (N 0; p) where N 0 =(B;E;F ) is an occurrence net, and p is a homomorphism from N 0 to N such that(i) The restriction of p to Min(N 0) is a bijection between Min(N 0) and M0,(ii) for every e1; e2 2 E, if �e1 = �e2 and p(e1) = p(e2) then e1 = e2.Figure 1 shows a 1-safe net system (part (a)), and two of its branching processes (parts(b) and (c)).Two branching processes �1 = (N1; p1) and �2 = (N2; p2) of a net system are isomorphicif there is a bijective homomorphism h from N1 to N2 such that p2 � h = p1. Intuitively,two isomorphic branching processes di�er only in the names of conditions and events.It is shown in [3] that a net system has a unique maximal branching process up toisomorphism. We call it the unfolding of the system. The unfolding of the 1-safe systemof Figure 1 is in�nite.Let � 0 = (N 0; p0) and � = (N; p) be two branching processes of a net system. �0 is a pre�xof � if N 0 is a subnet of N satisfying� Min(N) belongs to N 0,� if a condition belongs to N 0, then its input event in N also belongs to N 0, and� if an event belongs to N 0, then its input and output conditions in N also belong toN 0.and p0 is the restriction of p to N 0.1In [3], homomorphisms are de�ned between net systems, instead of between nets, but this is only asmall technical di�erence without any severe consequence.3
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(b) (c)Figure 1: A net system and two of its branching processes2.3 Con�gurations and cutsA con�guration C of an occurrence net is a set of events satisfying the following twoconditions:� e 2 C ) 8e0 � e: e0 2 C ( C is causally closed).� 8e; e0 2 C::(e#e0) (C is conict-free).A set B0 of conditions of an occurrence net is a co-set if its elements are pairwise in corelation. A maximal co-set B0 with respect to set inclusion is called a cut.A marking M of a system � is represented in a branching process � = (N; p) of � if �contains a cut c such that, for each place s of �, c contains exactly M(s) conditions bwith p(b) = s. It is easy to prove using results of [1, 3] that every marking represented ina branching process is reachable, and that every reachable marking is represented in theunfolding of the net system.Finite con�gurations and cuts are tightly related. Let C be a �nite con�guration of abranching process � = (N; p). Then the co-set Cut(C), de�ned below, is a cut:Cut(C) = (Min(N) [ C�) n �C:In particular, given a con�guration C the set of places p(Cut(C)) is a reachable marking,which we denote by Mark(C).For 1{safe systems, we have the following result, which will be later used in Section 4:Proposition 2.1Let x1 and x2 be two nodes of a branching process of a 1-safe net system. If x1 co x2,then p(x1) 6= p(x2). 2.1Given a cut c of a branching process � = (N; p), we de�ne *c as the pair (N 0; p0), whereN 0 is the unique subnet of N whose set of nodes is fx j (9y 2 c : x � y)^8y 2 c : :(x#y)gand p0 is the restriction of p to the nodes of N . The following result will also be usedlater: 4



Proposition 2.2If � is a branching process of (N;M0) and c is a cut of �, then * c is a branchingprocess of (N; p(c)). 2.23 An algorithm for the construction of a complete�nite pre�x3.1 Constructing the unfoldingWe give an algorithm for the construction of the unfolding of a net system. First of all,let us describe a suitable data structure for the representation of branching processes.We implement a branching process of a net system � as a list n1; : : : ; nk of nodes. Anode is either a condition or an event. A condition is a pair (s; e), where s is a place of� and e the input event. An event is a pair (t; B), where t is a transition of �, and B isthe set of input conditions. Notice that the ow relation and the labelling function of abranching process are already encoded in its list of nodes. How to express the notions ofcausal relation, con�guration or cut in terms of this data structure is left to the reader.The algorithm for the construction of the unfolding starts with the branching processhaving the conditions corresponding to the initial marking of � and no events. Eventsare added one at a time together with their output conditions.We need the notion of \events that can be added to a given branching process".De�nition 3.1Let � = n1; : : : ; nk be a branching process of a net system �. The possible extensionsof � are the pairs (t; B), where B is a co-set of conditions of � and t is a transition of� such that� p(B) = �t, and� � contains no event e satisfying p(e) = t and �e = BPE (�) denotes the set of possible extensions of �. 3.1Algorithm 3.2 The unfolding algorithminput: A net system � = (N;M0), where M0 = fs1; : : : ; sng:output: The unfolding Unf of �.beginUnf := (s1; ;); : : : ; (sn; ;);pe := PE (Unf );while pe 6= ; doappend to Unf an event e = (t; B) of pe and acondition (s; e) for every output place s of t;pe := PE (Unf )endwhileend 3.25



The algorithm does not necessarily terminate. In fact, it terminates if and only if theinput system � does not have any in�nite occurrence sequence. It is correct only underthe fairness assumption that every event added to pe is eventually chosen to extend Unf(the correctness proof follows easily from the de�nitions and from the results of [3]).Constructing a �nite complete pre�xWe say that a branching process � of a net system � is complete if the following twoconditions hold:� every reachable marking of � is represented in �, and� if a transition t can occur in �, then � contains an event labelled by t.The unfolding of a net system is always complete. It is also easy to see that a completepre�x contains as much information as the unfolding.Since an n-safe net system has only �nitely many reachable markings, its unfolding con-tains at least one complete �nite pre�x. We show how to transform the algorithm aboveinto a new one whose output is a �nite complete pre�x.We need some preliminary notations and de�nitions:Given a con�guration C, we denote by C �E the fact that C [E is a con�guration suchthat C \ E = ;. We say that C � E is an extension of C, and that E is a su�x of C.Obviously, if C � C 0 then there is a su�x E of C such that C � E = C 0.Let C1 and C2 be two �nite con�gurations such that Mark(C1) = Mark(C2). It fol-lows easily from the de�nitions that * Cut(Ci) is isomorphic to the unfolding of �0 =(N;Mark (Ci)), i = 1; 2; hence, * Cut(C1) and * Cut(C2) are isomorphic. Moreover,there is an isomorphism IC2C1 from * Cut(C1) to * Cut(C2). This isomorphism induces amapping from the �nite extensions of C1 onto the extensions of C2: it maps C1�E ontoC2 � IC2C1 (E).We can now introduce the three basic notions of the algorithm:De�nition 3.3A partial order � on the �nite con�gurations of a branching process is an adequateorder if:� � is well-founded,� � re�nes �, i.e. C1 � C2 implies C1 � C2, and� � is preserved by �nite extensions, meaning that if C1 � C2 and Mark(C1) =Mark(C2), then C1 � E � C2 � IC2C1 (E). 3.3De�nition 3.4 Local con�gurationThe local con�guration [e] of an event of a branching process is the set of events e0such that e0 � e.2 3.42It is immediate to prove that [e] is a con�guration.6



De�nition 3.5 Cut-o� eventLet � be a branching process and let � be an adequate partial order on the con�g-urations of �. An event e is a cut-o� event (with respect to �) if � contains a localcon�guration [e0] such that(a) Mark([e]) = Mark([e0]), and(b) [e0] � [e]. 3.5The new algorithm has as parameter an adequate order �, i.e. every di�erent adequateorder leads to a di�erent algorithm.Algorithm 3.6 The complete �nite pre�x algorithminput: An n-safe net system � = (N;M0), where M0 = fs1; : : : ; skg.output: A complete �nite pre�x Fin of Unf.beginFin := (s1; ;); : : : ; (sk; ;);pe := PE (Fin);cut-o� := ;;while pe 6= ; dochoose an event e = (t; B) in pe such that [e] is minimal with respect to �;if [e]\ cut-o� = ; thenappend to Fin the event e and a condition(s; e) for every output place s of t;pe := PE (Fin);if e is a cut-o� event of Fin thencut-o� := cut-o� [fegendifelse pe := pe n fegendifendwhileend 3.6McMillan's algorithm in [8] corresponds to the orderC1 �m C2:, jC1j < jC2j:It is easy to see that �m is adequate.The reason of condition (a) in the de�nition of cut-o� event is intuitively clear in the lightof this algorithm. Since Mark([e0]) = Mark([e]), the continuations of Unf from Cut([e])and Cut([e0]) are isomorphic. Then, loosely speaking, all the reachable markings thatwe �nd in the continuation of Unf from Cut([e]) are already present in the continuationfrom Cut([e0]), and so there is no need to have the former in Fin. The rôle of condition7
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7 1 0Figure 3: A pre�x of the net system of Figure 2(b) is more technical. In fact, when McMillan's algorithm is applied to \ordinary" smallexamples, condition (b) seems to be superuous, and the following strategy seems towork: if an event e is added and Fin already contains a local con�guration [e0] suchthat Mark([e]) = Mark([e0]), then mark e as cut-o� event. The following example (alsoindependently found by K. McMillan) shows that this strategy is incorrect. Consider the1-safe net system of Figure 2.The marking fs12g is reachable. Without condition (b) we can generate the pre�x ofFigure 3.The names of the events are numbers which indicate the order in which they are added tothe pre�x. The events 8 and 10 are cut-o� events, because their corresponding markingsfs7; s9; s10g and fs6; s8; s11g are also the markings corresponding to the events 7 and 9,respectively. This pre�x is not complete, because fs12g is not represented in it.We now prove the correctness of Algorithm 3.6.8



Proposition 3.7Fin is �nite.Proof: Given an event e of Fin, de�ne the depth of e as the length of a longest chain ofevents e1 < e2 < : : : < e; the depth of e is denoted by d(e). We prove the followingtwo results:(1) For every event e of Fin, d(e) � n + 1, where n is the number of reachablemarkings of �.Since cuts correspond to reachable markings, every chain of events e1 <e2 < : : : < en < en+1 of Unf contains two events ei, ej, i < j, such thatMark([ei]) =Mark([ej]). Since [ei] � [ej] and � re�nes �, we have [ei] � [ej],and therefore [ej] is a cut-o� event of Unf. Should the �nite pre�x algorithmgenerate ej, then it has generated ei before and ej is recognized as a cut-o�event of Fin, too.(2) For every event e of Fin, the sets �e and e� are �nite.By the de�nition of homomorphism, there is a bijection between p(e)� andp(e�), where p denotes the homomorphism of Fin, and similarly for �p(e) andp(�e). The result follows from the �niteness of N .(3) For every k � 0, Fin contains only �nitely many events e such that d(e) � k.By complete induction on k. The base case, k = 0, is trivial. Let Ek be theset of events of depth at most k. We prove that if Ek is �nite then Ek+1 is�nite.By (2) and the induction hypothesis, E�k is �nite. Since �Ek+1 � E�k [Min(Fin), we get by property (ii) in the de�nition of a branching processthat Ek+1 is �nite.It follows from (1) and (3) that Fin only contains �nitely many events. By (2) itcontains only �nitely many conditions. 3.7Proposition 3.8Fin is complete.Proof: (a) Every reachable marking of � is represented in Fin.Let M be an arbitrary reachable marking of �. There exists a con�guration Cof Unf such that Mark(C) = M . If C is not a con�guration of Fin, then itcontains some cut-o� event e, and so C = [e]� E for some set of events E. Bythe de�nition of a cut-o� event, there exists a local con�guration [e0] such that[e0] � [e] and Mark([e0]) =Mark([e]).Consider the con�guration C 0 = [e0] � I [e0][e] (E). Since � is preserved by �niteextensions, we have C 0 � C. Morever,Mark(C 0) = M . If C 0 is not a con�gurationof Fin, then we can iterate the procedure and �nd a con�guration C 00 such that9
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Figure 4: A Petri net and its unfoldingC 00 � C 0 and Mark(C 00) = M . The procedure cannot be iterated in�nitely oftenbecause � is well-founded. Therefore, it terminates in a con�guration of Fin.(b) If a transition t can occur in �, then Fin contains an event labelled by t.If t occurs in �, then some reachable marking M enables t. The marking M isrepresented in Fin. Let C be a minimal con�guration with respect to � such thatMark(Cut(C)) = M . If C contains some cut-o� event, then we can apply thearguments of (a) to conclude that Fin contains a con�guration C 0 � C such thatMark(Cut(C 0)) = M . This contradicts the minimality of C. So C contains nocut-o� events, and therefore Fin also contains a con�guration C �feg such that eis labelled by t. 3.84 An adequate order for the 1-safe caseAs we mentioned in the introduction, McMillan's algorithm may be ine�cient in somecases. An extreme example, due to Kishinevsky and Taubin, is the family of systems onthe left of Figure 4.While a minimal complete pre�x has size O(n) in the size of the system (see the dot-ted line in Figure 4), the branching process generated by McMillan's algorithm has sizeO(2n). The reason is that, for every marking M , all the local con�gurations [e] satisfyingMark([e]) =M have the same size, and therefore there exist no cut-o� events with respectto McMillan's order �m.Our parametric presentation of Algorithm 3.6 suggests how to improve this: it su�ces to�nd a new adequate order �r that re�nes McMillan's order �m. Such an order induces aweaker notion of cut-o� event; more precisely, every cut-o� event with respect to �m isalso a cut-o� event with respect to �r, but maybe not the other way round. Therefore,the instance of Algorithm 3.6 which uses the new order generates at least as many cut-o� events as McMillan's instance, and maybe more. In the latter case, Algorithm 3.6generates a smaller pre�x.The order �r is particularly good if in addition it is total. In this case, whenever an10



event e is generated after some other event e0 such that Mark([e]) = Mark([e0]), we have[e0] �r [e] (because events are generated in accordance with the total order �r), and so eis marked as a cut-o� event. So we have the following two properties:� the guard \e is a cut-o� event of Fin" in the inner if instruction of Algorithm 3.6can be replaced by \Fin contains a local con�guration [e0] such that Mark([e]) =Mark([e0])", and� the number of events of the complete pre�x which are not cut-o� events cannotexceed the number of rechable markings.In the sequel, let � = (N;M0) be a �xed net system, and let� be an arbitrary total orderon the transitions of �. We extend � to a partial order on sets of events of a branchingprocess: for such a set E, let '(E) be that sequence of transitions which is orderedaccording to� and contains each transition t as often as there are events in E with labelt; '(E) is something like the Parikh-vector of E. Now we say that E1 � E2 if '(E1) isshorter than '(E2), or if they have the same length but '(E1) is lexicographically smallerthan '(E2). Note that E1 and E2 are incomparable with respect to � i� '(E1) = '(E2)and, in particular, jE1j = jE2j.We now de�ne �r more generally on su�xes of con�gurations of a branching process(recall that a set of events E is a su�x of a con�guration if there exists a con�gurationC such that C � E).De�nition 4.1 Total order �rLet E1 and E2 be two su�xes of con�gurations of a branching process � and letMin(E1) and Min(E2) denote the sets of minimal elements of E1 and E2 with respectto the causal relation. We say E1 �r E2 if:� E1 � E2, or� '(E1) = '(E2) and{ Min(E1)�Min(E2), or{ '(Min(E1)) = '(Min(E2)) and E1 nMin(E1) �r E2 nMin(E2). 4.1The second condition of this de�nition could be expressed as: the Foata-Normal-Form ofE1 is smaller than that of E2 with respect to �, cf. e.g. [2].Theorem 4.2Let � be a branching process of a 1-safe net system. �r is an adequate total order onthe con�gurations of �.Proof: a) �r is a partial order.It is easy to see by induction on jEj that �r is irreexive. Now assume E1 �r E2 �rE3. Clearly, E1 �r E3 unless '(E1) = '(E2) = '(E3), which in particular implies11



jE1j = jE2j = jE3j. For such triples with these equalities we apply induction on thesize: if Min(E1)� Min(E2) or Min(E2)� Min(E3), we conclude E1 �r E3, andotherwise we apply induction to Ei nMin(Ei), i = 1; 2; 3, which are also su�xesof con�gurations.b) �r is total on con�gurations.Assume that C1 and C2 are two incomparable con�gurations, i.e. jC1j = jC2j,'(C1) = '(C2), and '(Min(C1)) = '(Min(C2)). We prove C1 = C2 by inductionon jC1j = jC2j.The base case gives C1 = C2 = ;, so assume jC1j = jC2j > 0.We �rst prove Min(C1) = Min(C2). Assume without loss of generality that e1 2Min(C1) nMin(C2). Since '(Min(C1)) = '(Min(C2)), Min(C2) contains an evente2 such that p(e1) = p(e2). Since �Min(C1) and �Min(C2) are subsets of Min(N),and all the conditions of Min(N) carry di�erent labels by Proposition 2.1, we have�e1 = �e2. This contradicts condition (ii) of the de�nition of branching process.SinceMin(C1) = Min(C2), both C1nMin(C1) and C2nMin(C2) are con�gurationsof the branching process *Cut(Min(C1)) of (N;Mark(Min(C1))) (Proposition 2.2);by induction we conclude C1 = C2.c) �r is well-founded.In a sequence C1 �r C2 �r : : : the size of the Ci cannot decrease in�nitely often;also, for con�gurations of the same size, Ci cannot decrease in�nitely often withrespect to �, since the sequences '(Ci) are drawn from a �nite set; an analogousstatement holds for Min(Ci). Hence, we assume that all jCij, all '(Ci) and all'(Min(Ci)) are equal and apply induction on the common size. For jCij = 0, anin�nite decreasing sequence is impossible. Otherwise, we conclude as in case b)that we would have C1 n Min(C1) �r C2 n Min(C2) �r : : : in * Cut(Min(C1)),which is impossible by induction.d) �r re�nes �.Obvious.e) �r is preserved by �nite extensions.This is the most intricate part of the proof, and here all the complications inDe�nition 4.1 come into play. Take C1 �r C2 with Mark(C1) = Mark(C2). Wehave to show that C1 � E �r C2 � IC2C1 (E), and we can assume that E = feg andapply induction afterwards. The case C1 � C2 is easy, hence assume '(C1) ='(C2), and in particular jC1j = jC2j. We show �rst that e is minimal in C 01 =C1 [ feg if and only if IC2C1 (e) is minimal in C 02 = C2 [ fIC2C1 (e)g.So let e be minimal in C 01, i.e. the transition p(e) is enabled under the initialmarking. Let s 2 �p(e); then no condition in �C1 [ C�1 is labelled s, since theseconditions would be in co relation with the s-labelled condition in �e, contradictingProposition 2.1. Thus, C1 contains no event e0 with s 2 �p(e0), and the same holdsfor C2 since '(C1) = '(C2). Therefore, the conditions in Cut(C2) with labelin �p(e) are minimal conditions of �, and IC2C1 (e) = e is minimal in C 02. The12



reverse implication holds analogously, since about C1 and C2 we have only usedthe hypothesis '(C1) = '(C2).With this knowledge about the positions of e in C 01 and IC2C1 (e) in C 02, we proceedas follows. If Min(C1)� Min(C2), then we now see that Min(C 01)� Min(C 02), sowe are done. If '(Min(C1)) = '(Min(C2)) and e 2 Min(C 01), thenC 01 nMin(C 01) = C1 nMin(C1) �r C2 nMin(C2) = C 02 nMin(C 02)hence C 01 �r C 02. Finally, if '(Min(C1)) = '(Min(C2)) and e 62 Min(C 01), we againargue thatMin(C1) = Min(C2) and that, hence, C1nMin(C1) and C2nMin(C2) arecon�gurations of the branching process * Cut(Min(C1)) of (N;Mark(Min(C1)));with an inductive argument we get C 01 n Min(C 01) �r C 02 nMin(C 02) and are alsodone in this case. 4.2We close this section with a remark on the minimality of the pre�xes generated by thenew algorithm, i.e. by Algorithm 3.6 with �r as adequate order. Figure 1(b) and (c) area minimal complete pre�x and the pre�x generated by the new algorithm for the 1-safesystem of Figure 1(a), respectively. It follows that the new algorithm does not alwayscompute a minimal complete pre�x.However, the pre�xes computed by the algorithm are minimal in another sense. Thealgorithm stores only the reachable markings corresponding to local con�gurations, whichfor the purpose of this discussion we call local markings. This is the feature which makesthe algorithm interesting for concurrent systems: the local markings can be a very smallsubset of the reachable markings, and therefore the storage of the unfolding may requiremuch less memory than the storage of the state space. In order to �nd out that thepre�x of Figure 1(b) is complete, we also need to know that the initial marking fs1; s2gappears again in the pre�x as a non-local marking. If we only store information about localmarkings, then the pre�x of Figure 1(c) is minimal, as well as all the pre�xes generated bythe new algorithm. The reason is the observation made above: all the local con�gurationsof Fin which are not induced by cut-o� events correspond to di�erent markings; therefore,in a pre�x smaller than Fin we lose information about the reachability of some marking.5 Implementation issues and experimental resultsThe implementation of the Algorithm 3.6 has been carried out in the context of the modelchecker described in [4], which allows to e�ciently verify formulae expressed in a simplebranching time temporal logic.For the storage of Petri nets and branching processes we have developed an e�cient,universal data structure that allows fast access to single nodes [12]. This data structureis based on the underlying incidence matrix of the net. Places, transitions and arcs arerepresented by nodes of doubly linked lists to support fast insertion and deletion of singlenodes.The computation of new elements for the set PE involves the combinatorial problem of�nding sets of conditions B such that p(B) = �t for some transition t. We have imple-mented several improvements in this combinatorial determination, which have signi�cantinuence on the performance of the algorithm. The interested reader is referred to [12].13
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(b) Slotted ring protocol for n = 2.Figure 5: Two scalable netsAlgorithm 3.6 is very simple, and can be easily proved correct, but is not e�cient. Inparticular, it computes the set PE of possible extensions each time a new event is addedto Fin, which is clearly redundant. Similarly to McMillan's original algorithm [8], inthe implementation we use a queue to store the set PE of possible extensions. The newevents of Fin are extracted from the head of this list, and, when an event is added, thenew possible extensions it generates are appended to its tail.The simplest way to organize the list would be to sort its events according to the totalorder �r. However, this is again ine�cient, because it involves performing unnecces-sary comparisons. The solution is to sort the events according to the size of their localcon�guration, as in [8], and compare events with respect to �r only when it is reallyneeded.With this implementation, the new algorithm only computes more than McMillan's whentwo events e and e0 satisfy Mark([e]) = Mark([e0]) and j[e]j = j[e0]j. But this is preciselythe case in which the algorithm behaves better, because it always identi�es either e ore0 as a cut-o� event. In other words: when the complete pre�x computed by McMillan'salgorithm is minimal, our algorithm computes the same result with no time overhead.The running time of the new algorithm is O(( jBj� )�), where B is the set of conditions of theunfolding, and � denotes the maximal size of the presets of the transitions in the originalnet (notice that this is not a measure in the size of the input). The dominating factorin the time complexity is the computation of the possible extensions. The space requiredis linear in the size of the unfolding because we store a �nite amount of information proevent.Finally, we present some experimental results on two scalable examples. We compareMcMillan's algorithm and the new algorithm, both implemented using the universal datastructure and the improvements in the combinatorial determination mentioned above.The �rst example is a model of a concurrent n{bu�er (see Figure 5(a)). The net has 2nplaces and n+1 transitions, where n is the bu�er's capacity. While the number of reachablemarkings is 2n, Fin has size O(n2) and contains one single cut{o� event (see Table 1).14



Original net Unfolding time [s]n jSj jT j j[M0 >j jBj jEj jcuto�sj McMillan New algorithm20 40 21 220 421 211 1 0:22 0:2040 80 41 240 1641 821 1 2:40 2:5060 120 61 260 3661 1831 1 17:45 18:0880 160 81 280 6481 3241 1 66:70 67:85100 200 101 2100 10101 5051 1 191:58 197:34120 240 121 2120 14521 7261 1 444:60 437:30140 280 141 2140 19741 9871 1 871:93 869:50160 320 161 2160 25761 12881 1 1569:90 1563:74180 360 181 2180 32581 16291 1 2592:93 2597:86Table 1: Results of the n bu�er example3.Original net McMillan's algorithm New algorithmn jSj jT j j[M0 >j jBj jEj jcuto�sj time [s] jBj jEj jcuto�sj time [s]1 10 10 1:2 � 101 18 12 3 0:00 18 12 3 0:002 20 20 2:1 � 102 100 68 12 0:00 90 62 14 0:003 30 30 4:0 � 103 414 288 60 0:13 267 186 42 0:054 40 40 8:2 � 104 1812 1248 296 1:72 740 528 128 0:385 50 50 1:7 � 106 8925 6240 1630 45:31 1805 1280 300 1:586 60 60 3:7 � 107 45846 31104 8508 1829:48 4470 3216 792 11:087 70 70 8:0 � 108 |4 10143 7224 1708 79:088 80 80 1:7 � 1010 |4 23880 17216 4256 563:699 90 90 3:8 � 1011 |4 52209 37224 8820 2850:8910 100 100 8:1 � 1012 |4 119450 86160 21320 15547:67Table 2: Results of the slotted ring protocol example.In this example, the complete pre�x computed by McMillan's algorithm is minimal. Thenew algorithm computes the same pre�x without time overhead, as expected.Our second example, Figure 5(b), is a model of a slotted ring protocol taken from [11].Here, the output of the new algorithm grows signi�cantly slower than the output ofMcMillan's algorithm. For n = 6 the output is already one order of magnitude smaller.6 ConclusionsWe have presented an algorithm for the computation of a complete �nite pre�x of anunfolding. We have used a re�nement of McMillan's basic notion of cut-o� event. Thepre�xes constructed by the algorithm contain at most n non-cut-o� events, where n is thenumber of reachable markings of the net. Therefore, we can guarantee that the pre�x isnever signi�cantly larger than the reachability graph, what did not hold for the algorithmof [8].AcknowledgementsWe thank Michael Kishinevsky, Alexander Taubin and Alex Yakovlev for drawing ourattention to this problem, and Burkhard Graves for detecting some mistakes.3All the times have been measured on a SPARCstation 20 with 48 MB main memory.4These times could not be calculated; for n = 7 we interrupted the computation after more than 12hours. 15
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