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Abstract

We propose a novel method for computing a spatially
dense matching between two 3D shapes. It is based on
finding a minimal surface in the high-dimensional space
representing the product of two shape surfaces. Compu-
tationally, the proposed approach leads to a binary linear
program whose relaxed version can be solved efficiently in
a globally optimal manner. We consider two cost functions
for matching. The first one aims at computing a matching
which minimizes a thin-shell energy measuring the physi-
cal energy necessary to deform one shape into the other.
The second one additionally imposes that corresponding el-
ements on either surface should have a similar local feature
descriptor. Experimental results demonstrate that the pro-
posed LP relaxation allows to compute high-quality match-
ings which reliably put into correspondence articulated 3D
shapes.

1. Introduction

An increasing number of digitized three-dimensional
objects has become available over the last years due to
the technical progress in acquisition hardware like laser
scanners or medical imaging devices. Such objects origi-
nate from a variety of different domains including biology,
medicine, industrial design or computer animation. This
rapid growth in stored data brings about the need for re-
liable algorithms to organize this data. One of the cor-
nerstone problems in this context is the matching problem:
Given two three-dimensional objects, find a meaningful cor-
respondence between the object’s surfaces. To date there is
no efficient and optimal algorithm for this problem.

In this work, we propose a novel framework for finding
an optimal matching between pairs of points on either sur-
face. We formulate shape matching as a minimal surface
problem which allows for a linear programming discretiza-
tion. This model comes with a sound physical interpretation
and allows to compute high-quality matching without need
for initialization.

Figure 1. We propose to cast the matching of surfaces in 3D as
a codimension-two minimal surface problem which aims at mini-
mizing the distortion when transforming one shape into the other.
We show that a consistent discretization of this minimal surface
problem gives rise to an integer linear program. By means of LP
relaxation we can compute near-optimal matchings such as the one
shown above.

1.1. Related Work

Interestingly, in one less dimension the matching of pla-
nar shapes can be solved by means of dynamic program-
ming in runtimes which are subcubic in the number of
points on each shape [15]. Unfortunately the concepts of
dynamic programming and Dijkstra’s shortest path algo-
rithm do not extend to higher-dimensions where the prob-
lem is no longer a shortest path problem. Therefore existing
approaches for three-dimensional shape matching typically
rely on local optmimization techniques.

The paradigm of the Gromov–Hausdorff framework,
proposed by Mémoli and Sapiro in [13], is to find the corre-
spondence which minimizes the geodesic distortion. Bron-
stein et al. [1] proposed an efficient method for comput-
ing such correspondences in a coarse-to-fine strategy much
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akin to optical flow algorithms. In [2] the same Gromov–
Hausdorff was merged with the idea of diffusion distances.

Other approaches to shape matching employ techniques
from conformal geometry [19, 22, 12] or Riemannian ge-
ometry [9]. The physically motivated energy model we use
in this work is related to the works of Litke et al. [11] and
of Rumpf and Wirth [20].

All the above-mentioned methods have in common that
they use a local optimization technique to minimize a non-
convex energy. As a consequence, the quality of solutions
depends heavily on a good initialization and an appropri-
ately designed coarse-to-fine strategy. In addition, solutions
do not come with any optimality guarantees, which implies
that in principle they can be arbitrarily bad.

Recently, two methods with a more global flavour have
been proposed. On the one hand, Zeng and coworkers [23]
formulate shape matching as a graph matching problem of
third order and apply the QPBO algorithm [17]. Although
the overall approach does not guarantee globally optimal so-
lutions, it is able to detect when a proposed matching pair is
globally optimal. Two major drawbacks of this approach
are that firstly it suffers from a very high computational
complexity, considering all triples of possible matchings. In
practice it allows only the matching of a few feature points
which is then postprocessed with a local method. Secondly,
this approach lacks a continuous counterpart, as it merely
matches discrete points rather than surface elements.

On the other hand, Lipman and Daubechies [10] recently
proposed to compare surfaces of genus zero and open sur-
faces using optimal mass transport and conformal geome-
try. Computationally, this amounts to solving a linear pro-
gramm in n2 variables where n is the number of vertices
used in the discretization of the surfaces. The problem with
this approach is that no spatial regularity is imposed on the
matchings.

1.2. Contribution

We propose a novel formulation for the shape matching
problem based on finding an optimal surface of codimen-
sion 2 in the product of the two shape surfaces. This sur-
face minimizes the physical deformation energy needed for
deforming one shape into the other. We derive a consistent
discretization of the continuous framework and show that
the discrete minimal surface problem amounts to a linear
program. Compared to existing approaches the proposed
framework has the following advantages:

• The LP formulation is a global approach allowing to
compute matchings which are independent of initial-
ization with no postprocessing.

• The proposed method guarantees for spatially consis-
tent matchings.

• We provide a discretization of the set of surface dif-
feomorphisms by means of linear constraints. This
is quite remarkable because in previous formulations
the diffeomorphism constraint is highly non-linear and
computationally very difficult [21].

• The algorithmic formulation is independent of the par-
ticular choice of deformation energy and can be ap-
plied universally. As an example, we show that one
can also incorporate local feature similarity in order to
improve performance.

• Experiments demonstrate that reliable and dense
matchings are obtained even for larger problem in-
stances with no need for postprocessing.

2. From Shape Matching to Minimal Surfaces:
The Continuous Setting

In this section we outline a shape matching model which
is based on minimizing physically motivated energies. We
then show how this problem can be translated into an equiv-
alent problem of finding a minimal codimension-two sur-
face in a four-dimensional space.

2.1. Shape Matching based on Minimizing Defor-
mation Energies

Let X,Y ⊂ R3 be two differentiable, oriented, closed
surfaces. We formulate the shape matching problem as an
optimization problem over the set of orientation preserving
diffeomorphisms between X and Y

inff∈Diff+(X,Y )E(f) + E(f−1) (1)

where E is a suitable energy on the class of all diffeo-
morphisms between surfaces and Diff+(X,Y ) is the set of
orientation preserving diffeomorphisms between X and Y .
Note that we choose a symmetric problem formulation, pe-
nalizing at the same time deformation energy of X into Y
and of Y into X . This is necessary because usually E takes
different values on f and on f−1.

The energy functional we use is borrowed from elasticity
theory in physics [3]. Interpret the surfaces X and Y as
“thin shells”. Now we try to find the deformation of X into
Y which requires the least stretching and bending energy.
Such models usually consist of a membrane energy Emem

and a bending energy Ebend penalizing deformations in the
first and in the second fundamental forms of the surfaces.
In our work we use the following formulation:

E(f) =

∫
X

(trgX E) + µ trgX (E2)︸ ︷︷ ︸
Emem

+ λ

∫
X

(HX(x)−HY (f(x))2︸ ︷︷ ︸
Ebend

(2)



where E = f∗gY − gX is the difference between the met-
ric tensors of X and Y , typically called the Lagrange strain
tensor,HX andHY denote the mean curvatures and µ and λ
are parameters which determine the elasticity and the bend-
ing property of the material. This energy is a slightly sim-
plified version of Koiter’s thin shell energy [8].

2.2. Diffeomorphisms and their Graph Surfaces

Given an orientation preserving diffeomorphism f :
X → Y we obtain a surface Γ ⊂ X × Y in the Euclidean
product of X and Y by passing to the graph

Γ = {(x, f(x)) | x ∈ X} ⊂ X × Y. (3)

The surface Γ comes with two natural projections πX : Γ→
X, (x, f(x)) 7→ x and πY : Γ → Y, (x, f(x)) 7→ f(x). A
diffeomorphism is completely characterized by its graph:

Proposition 1 (graph surfaces). Let Γ be the graph of a
diffeomorphism f : X → Y . Then

(i) Γ is a differentiable, connected, closed surface inX×
Y

(ii) The projections πX and πY are both diffeomor-
phisms.

(iii) The two orientations which Γ naturally inherits from
X and Y coincide.

Viceversa, any surface Γ ⊂ X×Y which satisfies (i),(ii)
and (iii) is the graph of a diffeomorphism between X and
Y . We call such surfaces graph surfaces

The energy E(f) can be expressed as

E(f) = Ẽ(Γ) (4)

where Ẽ(Γ) = E(πY ◦ (πX)−1) + E(πY ◦ (πY )−1).
The outcome of the above discussion is that the optimiza-

tion problem (1) can be phrased as an optimization problem
over the set of surfaces in X × Y which then reads

inf Ẽ(Γ)

subject to Γ ⊂ X × Y is a graph surface
(5)

We remark that the idea of casting optimal diffeomor-
phism problems as minimal surface problems has been ap-
plied previously in the theory of nonlinear elasticity [7].

3. The Discrete Setting

In this section we develop a discrete counterpart of the
notion of graph surfaces in X × Y introduced in Section
2.2. We start in 3.1 with the definition of discrete surface
patches inX×Y . These patches will be the building blocks
for discrete graph surfaces intruduced in 3.2. Finally in 3.3
we give a discrete version of the energy.

3.1. Discrete Surface Patches

Let X = (VX , EX , FX) be a triangulated oriented sur-
face mesh, consisting of a set of vertices VX , of directed
edges EX and of oriented triangles FX .

A priori, edges on X do not have a direction. Here we
have fixed for each edge on X an arbitrary direction. Thus,
whenever two vertices a1 and a2 of X are connected by an
edge, either ( a1a2 ) ∈ EX or ( a2a1 ) = − ( a1a2 ) ∈ EX . We
extend the set of edges by degenerate edges

EX = EX ∪ {( aa ) | a ∈ VX}. (6)

By assumption, the triangles of X have an orientation.
If the vertices a1, a2, a3 build an oriented triangles on X ,
then

(
a1
a2
a3

)
=
(
a2
a3
a1

)
=
(
a3
a1
a2

)
∈ FX . As for the edges, we

extend the set of triangles by degenerate triangles

FX = FX ∪
{(

a1
a2
a2

) ∣∣ a1, a2 ∈ VX , ± ( a1a2 ) ∈ EX
}
.

(7)
Notice that degenerate triangles can consist of only one or
of two vertices.

Next, we introduce product surface triangles for two tri-
angular meshes X and Y . Define the product of X and
Y by the set of vertices V = VX × VY , the set of edges
E = EX × EY and the set of product triangles

F :=


a1, b1
a2, b2
a3, b3


∣∣∣∣∣∣∣∣∣∣

f1 =
(
a1
a2
a3

)
∈ FX ,

f2 =

(
b1
b2
b3

)
∈ FY ,

f1 or f2 non-degenerate

 (8)

The product triangles in F are the basic pieces which are
later glued to discrete graph surfaces. For shape matching,
a product triangle a1, b1

a2, b2
a3, b3

 ∈ F (9)

is interpreted as setting vertex ai ∈ VX in correpondence
with vertex bi ∈ VY .

3.2. Discrete Surfaces

As we have seen in Section 2 a diffeomorphism can be
represented as a surface Γ ⊂ X × Y satisfying conditions
(i), (ii) and (iii). In this section we derive discrete versions
of these properties.

Definition 2. A discrete surface in X × Y is a subset Γ ⊂
F . The set of all discrete surfaces is denoted by surf(X ×
Y ).



Discrete version of (i): Recall that the boundary operator for
triangle meshes [5] maps triangles to their oriented bound-
ary. We extend this definition to the product graph G.

As for the sets EX and EY we choose arbitrary orienta-
tions for each product edge e ∈ E. By means of these orien-
tations we define for any edge ( v1v2 ) connecting two vertices
v1, v2 ∈ V a vector in O ( v1v2 ) ∈ {−1, 0, 1}|E| whose e-th
entry is given by

O ( v1v2 )e =


1 if e = ( v1v2 )

−1 if e = ( v2v1 )

0 else
(10)

We remark that by definition of EX and EY only one of the
cases appears, so that exactly one entry of O ( v1v2 ) is non-
zero.

Definition 3. The boundary operator ∂ : F →
{−1, 0, 1}|E| is defined by

∂

a1, b1
a2, b2
a3, b3

 := O

(
a1, a2

b1, b2

)
+O

(
a2, a3

b2, b3

)
+O

(
a3, a1

b3, b1

)
,

(11)
where the ai ∈ VX and bi ∈ VY form triangles on X resp.
on Y .

The boundary operator is linearly extended to a map

surf(X × Y )→ Z|E|. (12)

A discrete surface in X × Y Γ is closed if ∂Γ = 0.

The natural discrete version of (i) is a closed connected
surface in X × Y .

Discete version of (ii): As in the continous setting we can
project product triangles to the surfaces X and Y .

Definition 4. The projection πX : F → {0, 1}|FX | is de-
fined by

πX(f) :=

{
ea if a =

(
a1
a2
a3

)
is non-deg.

(0, . . . , 0) else
(13)

for each face f =

(
a1,b1
a2,b2
a3,b3

)
∈ F . Here, ea is the vector

with 1 in the a-entry and 0 in all other entries.

We extend the projection πX linearly to a map πX :
surf(X × Y ) → Z|FX |. The projection πY : F →
{0, 1}|FY | and its linear extension πY : surf(X × Y ) →
Z|FY | are defined similarly.

Let now Γ be a discrete surface in X × Y . Then we say
that the projections of Γ to X and Y are discrete diffeomor-
phisms if and only if

πX(Γ) = (1, . . . , 1) ∈ Z|FX | and

πY (Γ) = (1, . . . , 1) ∈ Z|FY |.
(14)

This gives a discrete version of (ii).
Note that in this definition we do not ask for injectiv-

ity on the vertices set. This is necessary for modelling dis-
cretely strong compressions. However, conditions (14) en-
sure a global bijectivity property which is sufficient in our
context.

Discrete version of (iii): By definition, the set of surfaces in
X×Y only contains surface patches which are consistently
oriented. Therefore any surface in surf(X × Y ) satisfies
condition (iii).

Definition 5. Let Γ ∈ {0, 1}|F | be a discrete surface in
X × Y , represented by its indicator vector. Then Γ is a
discrete graph surface in X × Y if ∂

πX
πY

 · Γ =

0
1
1

 . (15)

3.3. Discrete Surface Energy

Now we introduce a discrete energy on the set of prod-
uct triangles in X × Y . For the membrane energy in (2)
we adopt the term proposed by Delingette [4]. Given two
triangles T1, T2 ⊂ R3, Delingette computes the stretch en-
ergy Emem(T1 → T2) necessary for deforming T1 in T2.
In our framework we associate with each product triangle

(a, b) =

(
a1,b1
a2,b2
a3,b3

)
∈ F the membrane cost

Emem(a, b) :=Emem

((
a1
a2
a3

)
→
(
b1
b2
b3

))
+

Emem

((
b1
b2
b3

)
→
(
a1
a2
a3

))
.

(16)

For the bending term we proceed similarly associating with
each product triangle (a, b) the cost

Ebend(a, b) =

∫
a

(HX −HY )2 +

∫
b

(HY −HX)2. (17)

In practice we discretize the mean curvature following [14].
Next, we extend the energy linearly from discrete surface

patches to discrete surfaces in X × Y . Identify a discrete
surface with its indicator vector Γ ∈ {0, 1}|F |. Define the
vector E ∈ R|F | whose f -th entry is

Ef = Emem(f) + Ebend(f). (18)

Then the discrete energy of Γ is given by the vector product

Et · Γ. (19)

4. Linear Programming Solution
In the previous section we have introduced a discrete no-

tion of graph surfaces (15) and a discrete deformation en-
ergy (19) for such graph surfaces. This enables us to state
the discrete version of (5):



min Et · Γ
subject to Γ ∈ {0, 1}|F | and

A · Γ = b

(20)

whereA is the matrix
(

∂
πX
πY

)
and b =

(
0
1
1

)
. This is a binary

linear programm.
For solving (20), we relax the binary constraints to Γ ∈

[0, 1]|F |. This relaxed version can be solved globally op-
timally in polynomial time. We employed an alternating
direction method developped by Eckstein et al. [6]. This al-
gorithm is parallelizable which allowed us an efficient im-
plementation on the GPU.

Since the constraint matrix of the relaxed problem is not
totally unimodular, we are not guaranteed an integral solu-
tion. A simple thresholding scheme would destroy the ge-
ometric consistency of the solution. Therefore, for obtain-
ing an integral solution we revert to a hyperplane cutting
method, that is we successively fix the maximum value to 1
and solve the residual problem until an integral solution is
reached.

5. Experimental Results

We have introduced a framework for computing dense
matchings between 3D shapes using LP relaxation. The fol-
lowing experimental results are aimed at highlighting vari-
ous properties of the proposed method.

5.1. Matching of Articulated Shapes

A common problem in shape matching is that the same
shape may undergo substantial deformation and articula-
tion. Nevertheless, one would like to reliably identify cor-
responding structures. Figure 2 shows the matching com-
puted for two different articulations of a dancer. Although
arms and legs are in very different positions and the skirt
of the dancer is deformed the proposed method identified
the correct matching. Since the proposed framework en-
forces geometric consistency matching errors occur only on
a small spatial scale. In contrast to methods without spatial
regularization strong outliers such as single points matched
to the wrong leg do not arise.

5.2. Matching Near-Symmetrical Shapes

In the upper image of figure 3 we match on left hand
to another left hand. The algorithm determines the de-
sired matching. In the lower image a right hand is matched
to a left hand. Interestingly, these two shapes are near-
symmetric but not isometric. Rather than matching thumb-
to-thumb and thus the back of one hand to the front of the
other, the algorithm determined that the matching of thumb
to pinkie provides a smaller deformation energy.

Figure 2. Matching of a person in different poses. Despite large
gestures of the dancer and a deformed skirt the proposed method
matches arms and legs correctly. The framework guarantees geo-
metric consistency and thereby prevents strong outliers.

5.3. On the Influence of Feature Descriptors

As the cost coefficients in the proposed linear program-
ming approach can be arbitrarily chosen, we are not re-
stricted to the proposed physical deformation model. An
alternative can be a feature descriptor which assigns a cost
to each possible match between vertices. The upper image
in Figure 4 shows the result computed with the physical de-
formation model. In the lower image we added the Heat
Kernel Signature [16] to the cost function so as to favor
local feature similarity of corresponding surface elements.
Interestingly there is no substantial visible effect of the fea-
ture descriptor showing that the proposed physical deforma-
tion model is indeed quite powerful. In some experiments,
however, we found that imposing feature similarity leads to
faster convergence of the algorithm.

6. Conclusion

We proposed to cast the spatially dense matching of
3D shapes as a minimal surface problem in a higher-
dimensional space spanned by the two shapes. We consider
two alternative cost functionals, the first one measuring the
physical energy associated with deforming one shape into
the other, the second one imposing a local feature similarity
of corresponding surface elements. We showed that a con-
sistent discretization leads to an integer linear program. As



Matching two left hands

Matching a right hand and a left hand

Figure 3. Matching Near-Symmetrical Shapes While matching
two left hands provides the desired matching of thumb-on-thumb,
for the case of matching right hand to left hand, the algorithm
determines that matching thumb-to-pinkie gives rise to a smaller
deformation energy than trying to match the front of one hand to
the back of the other.

a consequence, we can compute high-quality solutions to
the matching problem which are independent of initializa-
tion by means of LP relaxation. Experimental results con-
firm that the proposed method generates reliable dense cor-
respondences for a variety of articulated real-world shapes.
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