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Optimal consumption and investment with
bounded downside risk measures for
logarithmic utility functions

Claudia Kluppelberg and Serguei Pergamenshchikov

Abstract. We investigate optimal consumption problems for a Blackefzs market under uniform
restrictions on Value-at-Risk and Expected Shortfall égdrithmic utility functions. We find the so-
lutions in terms of a dynamic strategy in explicit form, wiican be compared and interpreted. This
paper continues our previous work, where we solved simiiablpms for power utility functions.
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1 Introduction

One of the principal questions in mathematical finance is the optimal investue-
sumption problem for continuous time market models. By applying resulis §to-
chastic control theory, explicit solutions have been obtained for sos@adgases (see
e.g. Karatzas and Shreve [9], Korn [11] and references therein)

With the rapid development of the derivatives markets, together withimieglings
on certain financial products, the exposure to losses of investmentssky@ssets can
be considerable. Without a careful analysis of the potential danganwbstment can
cause catastrophic consequences such as, for example, thecriierih the “Société
Géneérale”.

To avoid such situations the Basel Committee on Banking Supervision segge
some measures for the assessment of market risks. It is widelgtadddat the/alue-
at-Risk(VaR) is a useful summary risk measure (see, Jorion [7] or Dolyd\[de recall
that the VaR is the maximum expected loss over a given horizon periogiam@con-
fidence level. Alternatively, thExpected ShortfallES) orTail Condition Expectation
(TCE) measures also the expected loss given the confidence levdbi®uio

In order to satisfy the Basel committee requirements, portfolios haventootdhe
level of VaR or (the more restrictive) ES throughout the investmenzbor This leads
to stochastic control problems under restrictions on such risk measures

Our goal in this paper is the optimal choice of a dynamic portfolio subjectigka
limit specified in terms of VaR or ES uniformly over the investment intef®al’].

In Klippelberg and Pergamenshchikov [10] we considered the aptinvest-
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ment/consumption problem with uniform risk limits throughout the investmernit h
zon for power utility functions. In that paper also some interpretation & &ad ES
besides an account of the relevant literature can be found. Our ras[l@] have in-
teresting interpretations. We have, for instance, shown that for pavigy functions
with exponents less than one, the optimal constrained strategies aresrigklssiffi-
ciently small risk bounds: they recommend consumption only. On theargntor the
(utility bound of a) linear utility function the optimal constrained strategiesmenend
to invest everything into risky assets and consume nothing.

In this paper we investigate the optimal investment/consumption problemdgas lo
rithmitic utility functions again under constraints on uniform versions of Vai BS
over the whole investment interv@l, 7']. Using optimisation methods in Hilbert func-
tional spaces, we find all optimal solutions in explicit form. It turns out tha optimal
constrained strategies are the unconstrained ones multiplied by sorfieientivhich
is less than one and depends on the specific constraints.

Consequently, we can make the main recommendafiorcontrol the market risk
throughout the investment intervgll, 7] restrict the optimal unconstrained portfolio
allocation by specific multipliers (given in explicit form{®.6) for the VaR constraint
and in(3.26)for the ES constraint).

Our paper is organised as follows. In Section 2 we formulate the probiderde-
fine the Black—Scholes model for the price processes and present#iin process
in terms of an SDE. We define the cost function for the logarithmic utility fumctio
and present the admissible control processes. We also presenttresuained con-
sumption and investment problem of utility maximisation for logarithmic utility. In
Sections 3 we consider the constrained problems. Section 3.1 is devotedsto
bound in terms of Value-at-Risk, whereas Section 3.2 discusses tkeqummces of
arisk bound in terms of Expected Shortfall. Auxiliary results and proapastponed
to Section 4. We start there with material needed for the proofs of boimesgthe
Value-at-Risk and the ES risk bounds. In Section 4.1 all proofs of Se8tib can be
found, and in Section 4.2 all proofs of Section 3.2. Some technical bsrare post-
poned to the Appendix, again divided in two parts for the Value-at-Riskregnd the
ES regime.

2 Formulating the problem

2.1 The model and first results

We work in the same framework of self-financing portfolios as in Kilpprg and
Pergamenshchikov in [10], where the financial market is of Blackeles type con-
sisting of oneriskless bondnd severalisky stockon the interval0, 7']. Their respec-
tive pricesS, = (S, (t))o<t<r ands; = (S,(t))o<:<r fori =1, ..., d evolve according
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to the equations:

{dso<t> = 7, So(t) dt, Sp(0) =1,
(2.1)

dS; (1) = S,(8) uy(t)dt + S,(t) 9, oy, (1) dW,(t),  S;(0) > 0.
Here W, = (W,(t),...,W,(t))" is a standardi-dimensional Wiener process ¢,
r, € R is theriskless interest rateu, = (uy(t), ..., uy(t))" is the vector ofstock-
appreciation ratesand o, = (0;;(t))1<i,j<a IS the matrix ofstock-volatilities We
assume that the coefficien(ts )<, <1 (14 ) o<t <7 @NAd(0,) <« are deterministic cad-
lag functions. We also assume that the mattiis not degenerated for dll< ¢ < 7.

We denote byF, = o{W, ,s < t}, t > 0, the filtration generated by the Brownian
motion (augmented by the null sets). Furthermore|, denotes the Euclidean norm
for vectors and the corresponding matrix norm for matrices and priemetds the
transposed. Fofy,),«,<r Square integrable over the fixed intery&l7] we define
lyllr = (fy ly,l* )72,

The portfolio procesgr, = (my(t), ..., my(t))"), ., represents the fractions of the
wealth process invested into the stocks. The consumption rate is dendtegl,by. -
Then (see [10] for details) the wealth procé&s)o<;<r is the solution to the SDE

dXt:Xt(rt+y;9t—vt)dt+Xty£th, Xy =2>0, (2.2)

where
0, =0, (n, —r, 1) with 1=(1,...,1) e R?,

T
/ 0,2t < oo,
0

The control variables arg, = o,m, € R* andv, > 0. More precisely, we define the
(F})o<t<r-Progressively measurable control process as(y,, v, ):>o0, Which satisfies

and we assume that

T T
/0 ly,|?dt < oo and /0 v, dt < oo as. (2.3)

In this paper we consider logarithmitic utility functions. Consequently, werass
throughout that

T
/(1nvt)_dt<oo a.s., (2.4)
0

wherea_ := —min(a,0).
To emphasise that the wealth process (2.2) corresponds to somel qootress
we write X”. Now we describe the set of control processes.

Definition 2.1. A stochastic control process= (v,)o<i<r = ((y;,v;))o<¢<7 IS called
admissibleif it is (F,)o<¢<r-progressively measurable with valuesfifi x R, , satis-
fying integrability conditions (2.3)—(2.4) such that the SDE (2.2) harique strong
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a.s. positive continuous SO|UtiQIX;’)0§tST for which

E (/0 (In(v: X})) dt+ (1nX%)> < 00.

We denote by the class of aladmissible control processes

Forv € V we define the cost function
T
J(z,v) :=E, </ In (v, X}) dt + lnX%) : (2.5)
0

HereE, is the expectation operator conditional &ff = =.
We recall a well-known result, henceforth called threeonstrained problem

max J(z,v). (2.6)
vey

To formulate the solution we set

16,*

wit)=T—-t+1 and 7, =r + 5

0<t<T.

Theorem 2.2(Karatzas and Shreve [9], Example 6.6, p. 108he optimal val-
ue of J(x,v) is given by

T
T
J(z,v) = J(x,v*) = (T +1)1 t)7, dt .
max J(z,v) = J(z,v7) = ( +)1T1T+1+/0 w(t) Ty

The optimal control process’ = (y;', v} )y<;<r € V is of the form

* * 1
yt = Ht and Ut = w, (27)

where the optimal wealth proce§X )o<:<r is given as the solution to

dX; = X7 (r + 10 — ) db + X700, X =2, (28)

which is

. T+1—t b ¢
X = mﬁexp(/o rudu—i—/o 9;qu).

Note that the optimal solution (2.7) of problem (2.6) is deterministic, andevete
in the following byi/ the set of deterministic functions = (y,,v,)o<:<7 satisfying
conditions (2.3) and (2.4).

For the above result we can state that

max J(z,v) = max J(z,v).
vey veu
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Intuitively, it is clear that to construct financial portfolios in the marketelq2.1) the

investor can invoke only information given by the coefficieits ,«,«,, (1;)o<i<r

and(o,),<; <7 Which are deterministic functions. o -
Then forv € U, by Itd’s formula, equation (2.2) has solution

XY = wE(y) RVt

with R, = fg r,du, V, = fg v, du, (y,0), = fg v/ 0, du and the stochastic exponential

t , 1 t )
& = ([ vaw, =5 [ nfa).

Therefore, for € U the proces$X ;) . IS positive, continuous and satisfies

sup E[InX/| < oco.
0<t<T

This implies that/ C V. Moreover, forv € U we can calculate the cost function (2.5)
explicitly as

T 1
J(z,v)=(T+1)Inz + / w(t) (rt + y,0, — §|yt|2) dt
0

T
+/ (Inv, — V,)dt — V.. (2.9)
0

3 Optimisation with constraints: main results

3.1 \Value-at-Risk constraints

As in Kluppelberg and Pergamenshchikov [10] we use as risk messite modifica-
tions of Value-at-Risk and Expected Shortfall introduced in Emmerppgéiiberg and
Korn [5], which reflect the capital reserve. For simplicity, in order toidwnon-relevant
cases, we consider only< o < 1/2.

Definition 3.1 (Value-at-Risk (VaR)). For a control procesand0 < « < 1/2 define
theValue-at-Risk (VaR)y

VaR, (v, o) := zelfle — Q,, t>0,

where fort > 0 the quantityQ, = inf{z > 0 : P(X} < z) > «} is thea-quantile of
X7,
t

Note that for every € U we find

1
Qr = @ exp (R, =V, + (4:0), = 5 wll? = laalliyll) (3.1)
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whereg,, is thea-quantile of the standard normal distribution.
We define thdevel risk functiorfor some coefficient < ( < 1 as

¢ = Cxel, te0,T]. (3.2)

The coefficient{ € (0, 1) introduces some risk aversion behaviour into the model.
In that sense it acts similarly as a utility function does. Howeyéas a clear interpre-
tation, and every investor can choose and understand the influenaerigkibound,
as a proportion of the riskless bond investment.

We consider the maximisation problem for the cost function (2.9) ovategfies
v € U for which the Value-at-Risk is bounded by the level function (3.2) over th
interval [0, T7; i.e.

max J(z,v) subjectto sup VaR, (v, ) <1. (3.3
veu 0<i<T ¢

To formulate the solution of this problem we define

[ me
Glu, ) : /0 N ez @

Moreover, for fixed\ > 0 we denote by
p(A) =inf{u>0: G(u,\) <1}, (3.5)

if it exists, and sep(\) = +oo otherwise. For a proof of the following lemma see A.1.

Lemma 3.2. Assume thalfg,,| > ||6|| > 0 and

kR (a2 - 1012) + K2

s @ — 101 |
wherek, = |wd|3 andk, = |lwf||2. Then the equatiodz(-,\) = 1 has the
unique positive solutiop(X). Moreover,0 < p(A) < coforall 0 < A < A_ .., and
P(Amax) = 0.
Now for A > 0 fixed and0 < ¢ < T we define the weight function
M(w(t) + A
Here we set, () = 1 for p(\) = +o0. Itis clear, that for every fixed > 0,
0<n(T)<7(t)<1l, 0<t<T. (3.7)
To take the VaR constraint into account we define
(N = IqalllTA9l\T+%IITA9||2Tf /7Ol - (3.8)

Denote by®~! the inverse ofb, provided it exists. A proof of the following lemma is
givenin A.l.
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Lemma 3.3. Assume thafd|| - > 0 and
0<C<1—e laallolrtlol/2. (3.9)
Then for all0 < a < —In(1 — ¢) the inversed~!(a) exists. Moreover,
0<® Ha)< Ay, for 0<a<—In(1-¢)
and®=1(0) = A,

Now set
¢(r) =@ (In(1-k)/(1-¢), 0<r<(, (3.10)

and define the investment strategy
@f = 0,Tp(x) t), 0<t<T. (3.11)

To introduce the optimal consumption rate we define

(3.12)
and recall that for

K== T

the functionv;” coincides with the optimal unconstrained consumption rétg¢) as
defined in (2.7).
It remains to fix the parameter. To this end we introduce the cost function

T
(k) = In(1 - k) +Tlnn+/ () 042 (T () %T;(K)(t)) dt.  (3.13)
0

To choose the parametewe maximisel:

v =~(¢) = argmaxI'(x) . (3.14)

0<k<(¢

With this notation we can formulate the main result of this section.

Theorem 3.4. Assume thald||,- > 0. Then for all¢ > 0 satisfying(3.9) and for all
0 < a < 1/2 for which

9l = 2(T+ 1) [0l (3.15)
the optimal value off (z, v) for problem(3.3)is given by
J(z,v") = A(z) + T (v(C)) , (3.16)

where

T
Alz)=(T+1)Inz + / wt)yr,dt =T InT (3.17)
0
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and the optimal controb* = (y;, v} )o<,<r IS Of the form

y, =y and v =v]. (3.18)

The optimal wealth process is the solution of the SDE

dX* = X (r, — v/ + (y)' 0,)dt + X (y))' dW,, X; =z,

t
given by
T— t x
X =z&(y") % e Vet Wh 0, o<t <T.
The following corollary is a consequence of (2.9).

Corollary 3.5. If |0l =0, thenforall0 < { < 1landforall0 < a < 1/2

* * o
y; =0 and v} =]

with v = argmax_, (In(1 — k) + T'Ink) = min(ky,¢). Moreover, the optimal
wealth process is the deterministic function
T — mi t
X: =z ml;(ﬂ()7<) eRf,
In the next corollary we give some sufficient condition, for which theegtment
process equals zero (the optimal strategy is riskless). This is the firgimakcase.

0<t<T.

Corollary 3.6. Assume tha¢||. > 0 and that(3.9)holds. If0 < ¢ < x, and

aal 2 (14 D16l (24 02 ) (3.19)

theny = ¢ and the optimal solution™ = (y;, v} )o<;< IS Of the form
y; =0 and wv; :vf.
Moreover, the optimal wealth process is the deterministic function

T —(t
Xt* =z TC efte
Below we give some sufficient conditions, for which the solution of optitiosa
problem (3.3) coincides with the unconstrained solution (2.7). This is ¢lcersl
marginal case.

0<t<T.

Theorem 3.7. Assume that

1 2
_ —la, Mol +101%/2 3.20
(>1 1 e ( )

Then for all0 < o < 1/2 for which|q,| > [|0|/;, the solution of the optimisation
problem(3.3)is given by(2.7)(2.8).
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3.2 Expected shortfall constraints

Our next risk measure is an analogous modification oBkgected ShortfallES).

Definition 3.8 (Expected Shortfall (ES)). For a control procesand0 < a < 1/2
define

m,(v,0) = E, (X)X <Q,), t>0,

whereQ), is thea-quantile of X" given by (3.1). TheExpected Shortfall (ES$ then
defined as
ES,(v,a) = xzef'* — m,(v,a), t>0.

Again forv € U we find
my(v,a) = x F, (|lyl,) eVt

where

1 o 2
Fo(z) = ﬁ/ e /2 dt.
S €02 g 1

We consider the maximisation problem for the cost function (2.5) ovategfies
v € U for which the Expected Shortfall is bounded by the level function (3v2) the
interval[0, 77, i.e.

. ES
max J(z,v) subjectto  sup ESv.a)
veu 0<t<T ¢

< 1. (3.21)

We proceed similarly as for the VaR-constraint problem (3.3). Define

N RS bg
Gy(u,\) = /0 RTESTRTESYE 0,2dt, w>0A>0.  (3.22)
where
1 , P )

It is well known and easy to prove that
1
Yy

1
< oy < 5’ y>0. (3.24)

< | =

This means thap, (u) > |q,| for all u > 0, which implies for every fixed\ > 0 that
G, (u, A) < G(u, A) for all w > 0. Moreover, similarly to (3.5) we define

pr(A) =inf{u >0 : Gy(u,\) <1}. (3.25)

Since G, has similar behaviour a&, the following lemma is a modification of
Lemma 3.2. Its proof is analogous to the proof of Lemma 3.2.



10 Kluppelberg and Pergamenshchikov

Lemma 3.9. Assume thalig, | > ||¢||, > 0 and

b+ \Jhs (62(0) — |0]2) + k2

0<A<A = :
e $2(0) — (10117
wherek, and k, are given in Lemma 3.2. Then the equati@n(-,A\) = 1 has the
unique positive solutiop, (X). Moreover,0 < p,(\) < cofor0o < A < Al and

P ()\Ilmx) =0.

Now for A > 0 fixed and0 < ¢ < T we define the weight function

_ p1(AN) (w(t) +A)
A (e (V) + o (V) (W) +A) (3.26)

and we set, (-) = 1 for p,(\) = +oo. Note that for every fixed > 0,

ax(?)

OSC,\(T)SC,\(t)Sl, 0<t<T. (3.27)
To take the ES constraint into account we define

(N = —IIVaOll7 — I F, ([:017) - (3.28)

Denote by® ! the inverse ofp, provided it exists. The proof of the next lemma is
given in Section A.2.

Lemma 3.10. Assume thafd|| > 0 and
0<C<1—F, (|0]y) 'z . (3.29)

Then for all0 < a < —1In(1 — ¢) the inversed ! exists and) < ®'(a) < A, for
0<a<-—In(l-¢)and®;(0) = A]

Now, similarly to (3.5) we set
¢1(k) =@ (In(1 - k)/(1-C), 0<w<C, (3.30)
and define the investment strategy
Ut =0y (1), 0<t<T, (3.31)

We introduce the cost function
T 1
(k) =In(1—-k)+Tlnk —|—/ w(t) |6, (%1(&) (t) — §§<2251(ﬁ)(t)> dt. (3.32)
0

To fix the parametex we maximisel’; :

71 = 11(¢) = argmaxT’y (k). (3.33)
0<r<(

With this notation we can formulate the main result of this section.
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Theorem 3.11. Assume that6||,- > 0. Then for all¢ > 0 satisfying(3.29)and for all
0 < a < 1/2 satisfying
|¢q| = max(1,2(T + 1)||0[|7) (3.34)

the optimal value of (z, v) for the optimisation probler(B.21)is given by

J(w,v") = Alz) + Ty (1(Q)

where the functioM is defined in(3.17)and the optimal controb* = (y;, v} )o<;<r
is of the form (recall the definition af' in (3.12) o

yi=7"" and v =uv]". (3.35)

The optimal wealth process is the solution to the SDE

dx; = X/ (r, — o] + (y:)'et)dt + X (yt*)'th, X =u,

given by

T— t .
X* = mgt(y*)+(c)eRt_‘/t+(y 79)t, 0<t<T.

Corollary 3.12. If ||6]| = 0, then the optimal solution of proble(B8.21)is given in
Corollary 3.5.

Similarly to the optimisation problem with VaR constraint we observe two margina
cases. Note that the following corollary is again a consequence of (2.9)

Corollary 3.13. Assume thalid|r > 0 and that(3.29)and (3.34)hold. Themny, = ¢
and the assertions of Corollary 3.6 hold wittreplaced byy, .

Theorem 3.14. Assume that
1

lelz.
= Fa (16r) 1. (3.36)

(>1-—
Then for allo < o < 1/2 for which|q, | > max(1,||0]|+) the solution of problen(3.21)
is given by(2.7)2.8).

3.3 Conclusion

If we compare the optimal solutions (3.18) and (3.35) with the uncanstlaoptimal
strategy (2.7), then the risk bounds force investors to restrict theistimant into the
risk assets by multiplying the unconstrained optimal strategy by the coatfiaiiven
in (3.11) and (3.14) for VaR constraints and (3.31) and (3.33Efrconstraints. The
impact of the risk measure constraints enter into the portfolio proceasgihtbe risk
level ¢ and the confidence level
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4  Auxiliary results and proofs

In this section we consider maximisation problems with constraints for the twste
of (2.9):

I(V):= /OT (Inve — V;)dt and H(y) := /OTw(t)(yget - %|yt|2)dt. (4.1)

We start with a result concerning the optimisation/¢f), which will be needed to
prove results from both Sections 3.1 and 3.2.

Let W[0,T] be the set of differentiable functiorys : [0,7] — R having positive
cadlag derivativef satisfying condition (2.4). Fdr > 0 we define

Woul0, T ={f e W[0,T] : f(0)=0 and f(T)=>b}. 4.2)
Lemma 4.1. Consider the optimisation problem

max I .
fEW, ,[0,T] (£)

The optimal value of is given by
b

e
I*(b) = I =I(f"Y= -TInT — T Iln ——, 4.3
(0) rerm (f) =1(f") n 05— (4.3)
with optimal solution
Teb
)=In——m——— <t<T. 4.4
frO=trs gy, 0Sts (4.4)

Proof. Firstly, we consider this optimisation problem in the spétje, 7] of two times
continuously differentiable functions de, T'):

max I(f)
FEW, ,[0,TINC?[0,T7]

By variational calculus methods we find that it has solution (4.3); i.e.

max I(f) =I(f").
FEW, ,[0,TINC2[0,T]

where the optimal solutiofi* is given in (4.4).
Take nowf € W, [0, 7] and suppose first that its derivative

0<t<T

Let Y be a positive two times differentiable function prl, 1] such thatf_l1 T(z)dz =
1, and sefl’(z) := 0 for |z| > 1. We can take, for example,

L 1 .
T(z){mem(—ﬁ) it |2l <1,

1—v2

0 itz >1.
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By setting f(t) = f(0) forall ¢ < 0 and f(t) = f(T) for all t > T, we define an
approximating sequence of functions by

1

v, (t) = n/R Y(n(u—1t)) f(u)du :/ Y(2) f (t—|— %) dz.

-1

Itis clear that(v,),~, € C?[0,T]. Moreover, we recall thaf is cadlag, which implies
that it is bounded of0, 77; i.e.

sup f(t) = fmax < 0,
0<t<T

and its discontinuity set has Lebesgue measure zero. Thereforegihens€v,,),, -,
is bounded; more precisely, -

0< frin < v, (1) < froe <00, 0<t<T, (4.5)

andv,, — f asn — oo for Lebesgue almost alle [0, T]. Therefore, by the Lebesgue
convergence theorem we obtain

T

lim v, (t) — f(t)|dt = 0.

n—oo 0

Moreover, inequalities (4.5) imply
[Inv, | <In (max(fmax, 1) + ‘hl (min(fmin, 1)) ‘ .

Thereforef, (t) = fot v, (u) du belongs tav, , [0, T]NC?[0,T]for b, = fOT v,, (u) du.
Itis clear that ’
lim I(f,) = I(f) and lim b, =b.

n—oo n—oo

This implies that
I(f) < I°(b),
wherel*(b) is defined in (4.3). .
Consider now the case, wheie,_, . f(¢) = 0. For0 < § < 1 we consider the
approximation sequence of functions

fs(t) =max(d, f(t)) and f(;(t):/ fs(u)du, 0<t<T.
0

Itis clear thatf; € W, [0,7] for by = f fs(t)dt. Therefore,I(fs) < I*(bs).
Moreover, in view of the convergence

T

lim [ (f5(t) — f(t))dt =0

6—0 0
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we getlimsup;  I(fs5) < I*(b). Moreover, note that

I(f5) - I(f)] < /

As

(Ind —In f(£) dt + T/ (5-fw) o

As

< / (In f(1))_dt + 5T A(Ay),
A

s

where Ay = {t € [0,7] : 0 < f(t) < 6} andA(Ay) is the Lebesgue measure of
As. Moreover, by the definition oV[0,T] in (4.2) the Lebesgue measure of the
set{t € [0,T) : f(t) = 0} equals zero and, (Inf,)_dt < oo. This implies that
lims_.o A(A4) = 0 and hence

lim I(f;) = I(f),

6—0
e I(f) < I*(b). 0

In order to deal withH as defined in (4.1) we need some preliminary result. As
usual, we denote by,[0,7] the Hilbert space of functiong satisfying the square
integrability condition in (2.3).

Define fory € £,[0, T] with |ly||; > 0

Y, = v/ llylle and 1,(h) = lly+hllx = llylr — @ h)r- (4.6)

We shall need the following lemma.

Lemma 4.2. Assume thay € £,[0,T] and|y|l > 0. Then for every, € £,[0,T] the
functioni, (h) > 0.

Proof. Obviously, ifh = ay for somea € R, theni, (k) = (|1 +a| — 1 —a)l|y[[z > 0.
Let nowh # ay for all a € R. Then

2(y, h)r + 1017

_ BB - @)@ R + ()
Ty + Al + Tylr

(ya h) -
’ ly + Al + llyllz

L,(h)
It is easy to show directly that for all

ly +2llr +lyllr + @ h)r =0

with equality if and only ifh = ay for somea < —1.
Therefore, ifh # ay, we obtain

@
ly + hlle + llylle + @ h)r —

L,(h)
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4.1 Results and proofs of Section 3.1

We introduce the constraidf : £,[0,7] — R as

1
K(y) = 5lvllz + laal 1yl — (v,60)7 (4.7)

For0 < a < —In(1 — ¢) we consider the following optimisation problems

max H(y) subjectto K(y)=ua (4.8)
ye‘c2[07T]

Proposition 4.3. Assume that the conditions of Lemma 3.3 hold. Then the optimisation
problem(4.8) has the unique solutiop* = 3 = 6,7, (t) with\, = ®~*(a).

Proof. According to Lagrange’s method we consider the following unconstigineb-
lem
U(y, A 4.9
jona (Y, A) (4.9)
where¥(y, \) = H(y) — AK (y) andX € R is the Lagrange multiplier. Now it suffices
to find some\ € R for which the problem (4.9) has a solution, which satisfies the
constraint in (4.8). To this end we repres@nas

T 1
W) = [ @0+ ) (50~ 5ln) e — Algol ol
0

It is easy to see that fox < 0 the maximum in (4.9) equalsoo; i.e. the problem
(4.8) has no solution. Therefore, we assume that0. First we calculate the Fréchet
derivative; i.e. the linear operatar, (-, A) : £,[0,7] — R defined forh € £,[0,7] as

v 6—0 )

For|ly|l+ > 0 we obtain

D, (hA) = / ", (60 by
0

with
dy(t,A) = (w(t) + A0, —y,) — Maal Y, -
If ||yl = 0, then

T
D, (1 \) = / (@(t) +X) 0, hy ot — Mg, | |7
0

Define now
Ay(h, A)=U(y+h,\)—T(y,\) — Dy(h, A). (4.10)
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We have to show thah, (h, A < 0 forall y,h € £,[0,7]. Indeed, if||y[|; = 0 then

AN =~ / ((t) + X) [y 2t < 0.
0

If |y]l > 0, then

1 T
Ay<h,x>§/o (w(t) + \) By dt = Xg |1, (k) <0,

by Lemma 4.2 for alh > 0 and for ally, h € £,[0, T.
To find the solution of the optimisation problem (4.9) we have to firel £,[0, 7]
such that
D,(h,\)=0 forall heL,[0,T]. (4.11)

First notice that foi| ||~ > 0, the solution of (4.11) can not be zero, sinceget 0 we
obtainD,(h, \) < 0 for h = —6. Consequently, we have to find an optimal solution to
(4.11) fory satisfying||y|| > 0. This means we have to find a non-zere L,[0, 7T
such that

d,(t,\) =0.

One can show directly that for < A < A ... the unique solution of this equation is
given by
yt)‘ = 0,7,(t), (4.12)

wherer, (t) is defined in (3.6). Note that in view of the second part of Lemma 3.2 and
definition (3.6) the functio” # 0 for every0 < A < A ...

It remains to choose the Lagrage multiplierso that it satisfies the constraint in
(4.8). To this end note that

K(y") =2(\).

Under the conditions of Lemma 3.3 the inverseagxists and fod < a < —In(1—¢)
the inverse functio) < ®~1(a) < A, . Thusy*« # 0 with A\, = ®!(a) is the
solution of the problem (4.8). O

We are now ready to proof the main results in Section 3.1. The auxiliary sname
proved in A.1.

Proof of Theorem 3.4In view of the representation (2.9) and definitions (4.1), we can
rewrite the cost function as

J(x,v)=(T+1)lnz+ /Tw(t)rtdt +In(1—-r)+I(V)+ H(y), (4.13)
0

wherex =1 — e~ Vr,

We start to maximisd (z, v) by maximising!/ over all functions’. To this end we
fix the last value of the consumption process, by setling= — In(1 — x) for some
parametefd < x < 1 which will be chosen later. By Lemma 4.1 we find that

I(V)<I(V®)=-TmT + Tk,
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where .
Vt“:/ v“(t)dtzlnL 0<t<T. (4.14)
0

Define now
1
Li(v) = (y,0); — 5||y||fth* lag| lyll,, 0<t<T,

and note that condition (3.3) is equivalent to

inf L(v) >In(l1-¢). (4.15)

0<t<T
Firstly, we consider the bound in (4.15) only at time T
Lp(v) > (1-0) .

Recall definition (4.7) o and choose the functidri asV* as in (4.14). Then we can
rewrite the bound fol () as a bound foi and obtain

K(y) < n(1-r)/(1-C), 0<r<C.

To find the optimal investment strategy we need to solve the optimisation pr¢hl8)
for0 <a <In(l1-&)/(1—¢). By Proposition 4.3 fo0 < a < —1In(1 — ()

ax H(y) = H(y") := C(a), 4.16
YELL[0,T], K (y)=a () (") (a) ( )

where the solutiory® is defined in Proposition 4.3. Note that the definitions of the
functionsH andy® imply

T
Cla) = / w(®)(7, ()~ %Tfa () o2 with 3, =&~ (a).
0
To consider the optimisation problem (4.8) foe= 0 we observe that

1
K(y) = lyllr (laa] = 10ll7) + 5llyll7 > 0,

provided thatg,| > |6||; (which follows from (3.15)). Thus, there exists only one

function for whichK (y) = 0, namelyy = 0. Furthermore, by Lemma 3/Z\,,.) =0
and, therefore, definition (3.6) implies
7, ()=0 and ym=x=0. (4.17)

max

In view of Lemma 3.3 we ge®—(0) = A, therefore,y® (0 = yruwx = 0;
i.e. y*« with \, = ®~1(a) is the solution of the optimisation problem (4.8) for all
0 <a < —In(1 - ¢). Now we calculate the derivative 6f(-) as

. . T
Cla) = A, / w(t) (1— X, () 10,12 71 (¢, \,) Ot ,
0
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where
oA (t)

oA
Since\, = 1/®(),), by Lemma A.1, the derivativé(a) is positive. Therefore,

In(1 — K)
Cla) = C [ =——2/
0<asin(lon)/(1=C) (a) ( 1-¢ ) ’

and we choose = In(1 — k) /(1 — ¢) in (4.16).
Now recall the definitions (3.11) and (3.12), the representation Y4ui® set
v = (g5, v))o<i<r- Thus fory € U with V = —In(1 — x) we have

J(x,v) < J(x,v") = A(x) + T'(K).

Tt A) =

(4.18)

Itis clear that (3.14) gives the optimal value for the parameter
To finish the proof we have to verify condition (4.15) for the strategylefined in
(3.18). Indeed, we have

o 1, . .
L") = 70— 3l = laa Il — | oz
0

¢ ¢
=: —/ g(u) du —/ vids,
0 0

* *

1) = 7710, laa x(t) = 1+ & d x(®)= t '
o) =710 (ol x0 ~1+ ) and (0 20/ fy (20216, s

We recall¢(x) from (3.10) andy from (3.14), thenr = 7,,)(t). Definition (3.6)
implies

where

o) 14 ¢(v) - 1 .
275 (O)10l T 2010l (L4+T + é(y) ~ 2/10)l- (1 +T)

Therefore, condition (3.15) guarantees thg) > 0 for ¢ > 0, which implies
L,(v*) = Lp(v*) =In(1 - ().
This concludes the proof of Theorem 3.4. O

Proof of Corollary 3.6.Consider now the optimisation problem (3.14). To solve it we
have to find the derivative of the integral in (3.13)

T
1
B(k) := W) 0, ( Topm) (t) — =72, (1) ) dt.
)= [ OI0 (rs(6) = 575000
Indeed, we have with(x) as in (3.10),

T
B9 = [l (1= 7a00(0) 5 o).
0
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Obviously,

0 .

35 "ot (1) = 1t 6(k)) 6(k) (4.19)
wherer, (¢, \) is defined in (4.18). By the definition efin (3.10)®(¢(x)) = In(1 —
k)/(1 =), we have

: 1
R TPy T
Therefore,
. _ _ Tw()] (1 =7 (1)) 7, (t, ) ]6,]? dt
B(ﬁ):—liﬂBw(m)) with By = Jo 2l ¢ ;((A); &) 16,

We calculate now the derivative @fas
. T
B = [ 267006, Pek, (4.20)
0

where

- |90]72 ()
= o —_ 1 .
At A) = 2T = 1)

By inequality (A.1),7(¢,\) > 0 and, moreover, in view of Lemma A.1, we have
7, (¢, A) < 0. Therefore, taking representation (4.20) into account, we obtain

By = o 20 A=) In e Nl
Jo 76 7y (6 V)] 16,2k

Moreover, using the lower bound (A.1) we estimate

By < —(LH D216l

— B, (4.21)
02| = (T + 1) [16]|7

Condition (3.19) foi0 < ¢ < &, implies that

1
B <|l=--1)T-1.
max—(g )

Thus for0 < k < ¢ < &, we obtain

: T 1 T 1
I —— 1+B,,)>=———(1+B,,,) >0.
(K'/) > K 1 — K ( + max) — g 1 _ C ( + max) —

This impliesy = ¢, i.e. ¢(y) = ®7'(0). Therefore, by Lemma 3.3(y) = A,
Therefore, we conclude from (4.17) thagt= 7, (t)0, =0forall0 <t < T. O
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Proof of Theorem 3.7It suffices to verify condition (4.15) for the strategy = (y;, v} )o<;<r
with y* = 0, andv! = 1/w(t) for ¢t € [0,T7]. Itis easy to show that condition (3.20)
implies thatL,.(v*) > In(1 — ¢). Moreover, for0 < ¢ < T we can represert, (v*) as

¢ ¢
Lt(l/*):—/ g:ds—/ vrds,
0 0

90| ) A (Iq | ) 16,2
g* — al 1 Z al 1 Z 0
! <|9||t 2 16l 2

since we have assumed that| > ||0||r. Therefore,L,(v*) is decreasing ir; i.e.
L,(v*) > Lp(v*) forall 0 <t <T. This implies the assertion of Theorem 3.7. O

where

4.2 Results and proofs of Section 3.2

Next we introduce the constraint

Ki(y) == —(y,0)r —InF, ([yl7)- (4.22)

For 0 < a < —1In(1 —¢) we consider the following optimisation problems

H subjectto K =a. 4.23
jona (y) j 1(y)=a (4.23)

The following result is the analog of Proposition 4.3.

Proposition 4.4. Assume that the conditions of Lemma 3.10 hold. Then the optimisa-
tion problem(4.23)has the unique solutiogr = Ut = Orsa, , () with A, , = 7 (a).

Proof. As in the proof of Proposition 4.3 we use Lagrange’s method. We centie
unconstrained problem
U, (y, N, 4.24
jonax 1 A) (4.24)
where¥,(y,\) = H(y) — AK,(y) and X > 0 is the Lagrange multiplier. Taking
into account the definition of, in (4.22), and settingf, = InF, we obtain the
representation

T
) = [ (408~ 2 ) d AL ol
0

Its Fréchet derivative is given by

Dy () = lim =2 e at

It is easy to show directly that fdjy|| > 0

T

Dy X) = [y (6 ) by,

0
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where .
dy o, (t,A) = (W) + )0, —w(t) y, + Mo (Iyll7) Y, -

andf, (-) denotes the derivative df,(-).
If |yl =0, then

T
Dy, (h, A) :/ (w(t) +A) 0y hy dt+ X £, ()]l 7 -
0
We set now
Ay, (B A) =T, (y+h,A) = Uy (y,\) — Dy, (h,A), (4.25)
and show that\, | (h,\) < 0forall y,h € £,[0,7]. Indeed, ifl|y[|; = 0, then

T
BuyiX) =5 [ w@® b P+ A () - £
0

Recalling the definition op in (3.23) and setting;; = |¢,| + =, the derivatives of,
are given by

i (2) = ——1 F () = Lo melm)
£(x) = N and £ (z) Erraanll (4.26)

The last inequality follows directly from the right inequality in (3.24). THere, tak-
ing into account thaf, (0) = 0 we getf, (z) < f,,(0)x for all z > 0. Thus forA > 0
we haveA, (b, A) < 0in the case whefiy||; = 0.

Let now ||y||, > 0 andy = y/|ly||r. Then

1 T
BuyhX) =5 [ w®lhPet + 25,0,
0

where .
0y y(h) = follly + hllp) = follylle) = folllylle) @ h)p -

Moreover, by Taylor’s formula and denoting iy the second derivative of , we get

. 1 .
014 (h) = falllyllr) 1y (h) + 5 fo O) (lly + Rl — lyllr)*
wherel, (-) is defined in (4.6) and
win([[yllz, [ly + blly) <9 <max((lylr, |y +Allz) -
Now the last inequality in (4.26) and Lemma 4.2 imply tet (h,\) < 0 for all
A > 0andy, h € £,[0,T]. The solution of the optimisation problem (4.24) is given by
y € L£5[0,T] such that

Dy, (hA)=0 forall he L,0,T]. (4.27)
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Notice that for||¢||;- > 0 the solution (4.27) can not be zero, sincegor 0 we obtain
D, ,(h,A) < 0for h = —0. Therefore, we have to solve equation (4.27) fowith
lly|| > 0, equivalently, we have to find a non-zero functionCif{0, 7] satisfying

dy,(t,\) =0.
One can show directly that for< A < A! the solution of this equation is given by
LA _
Y, = a(t)o, (4.28)

whereg, (t) is defined in (3.26). Now we have to choose the parametersatisfy the
constraint in (4.23). Note that

Ky =2,(\).

Under the conditions of Lemma 3.10 the inversebgfexists. Therefore, the function
y're # 0 with X\, = @' (a) is the solution of the optimisation problem (4.23). O

Proof of Theorem 3.11Define

Ll,t(V) =0, =V, + fo(lyll), 0<t<T, (4.29)
with f, = In F,.
First note that the risk bound in the optimisation problem (3.21) is equivaden
inf L >In(1- 4.30
odnf  Lig() 2 In (1=0), (4.30)

As in the proof of Theorem 3.4 we start with the constraint at tiraeT":

Lyp(v) =2 In(1-0).

Taking the definition of; in (4.22) into account and choosing= V" as in (4.14)
we rewrite this inequality as

Ky(y) < n(l-r)/(1-¢), 0<r<C.

To find the optimal strategy we use the optimisation problem (4.23), exigrla
range ofa t0 0 < a < In(1 — x)/(1 — ¢). In Proposition 4.4 we established that for
each0 < a < —1In(1 — ()

max H(y) = H@y"*) = C,(a), 4.31
YEL,[0,T], K, (y)=a (v) v) 1 (a) (4.31)

where the optimal solutiofi*-® is defined in Proposition 4.4. We observe that

- 1 :
) (a) = / W(t)|9t|2 (g/\m(t) - §g§1 a(t)) dt with )‘1,a = @;1((1).
0 :
To study the optimisation problem (4.23) for= 0 note that

Ki(y) 2 kin(lyllr) - with Ky, (2) = —2(|0] 7 = fo(2), 2 >0.
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Moreover,

. 1
(@) = ———— — [0]ly, >0,
AR

and by the right inequality in (3.24) we obtain far,| > ||0||; (which follows from
condition (3.15))

Fmin (%) 2 |ao] + @ = [|6]l7 >0, >0,

Thereforek, () > k,;,(0) = 0 forall z > 0 andk,_; () = 0 ifand only if z = 0.
This means that only = 0 satisfiesK, (y) = 0. Moreover, in view of Lemma 3.9
and Lemma 3.10, as in the proof of Theorem 3.4, we objath= 0. Therefore, the
functiony®® is the solution of (4.23) for ald < a < —1In(1 — ).

To choose the parameter< « < In(1 — x)/(1 — ¢) we calculate the derivative of
C,(a) as

Cyla) = Ay, / 06 (16, (0) St ),

where 5

Gt ) = ra (). (4.32)
We recall that\, , = 1/, (), ,) with A, , = ®]!(a). Therefore, by Lemma A.2, the
derivativeC, (a) > 0. This implies

In(1 - H))
max Cila) =C, | ———=| .
0<a<lIn(1-r)/(1=C) (@) 1( 1-¢

Soin (4.31) we take = In(1 — x)/(1 — ().
Recalling the notation, " = 6,s, (. (t) from (3.31) we set™" = (5", vF ) o<y
Then, forv € U with V, = —In(1 — k), -

J(x,v) < J(z,7") = A(x) + T (k).

Itis clear that (3.33) gives the optimal value for the parameter
To finish the proof we have to verify condition (4.30) for the strategyas defined
in (3.35). To this end, withp, () = @ (In(1 — x)/(1 - ()), we set
x S;
St =S,y () and xy(t) = 2o,
t

With this notation we can represent the function, (v*) in the following integral form

t t
L,(v*) :—/ g7 (u) du —/ vids,
0 0

where

01(0) =10, <M 1) with 7, (6) = = £, (Is"01l,) -
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Note that definition (3.26) and the inequalities (3.27) imply

ST 1+¢(n) 1
xi(t) > —— > > :
! 251101, — 20011, A+ T + ¢, (7)) ~ 20l (1 +T)

Moreover, from the right inequality in (3.24) we obtain

. 1
Ja®) = Sl o0l

Therefore, condition (3.15) implies that(¢) > 0, i.e.

> ol + 115700, = l4al -

Ll,t(V*) > Ll,T(V*) =In(1-¢).
This concludes the proof of Theorem 3.11. O

Proof of Corollary 3.13.Consider now the optimisation problem (3.33). To solve this
we have to calculate the derivative of the integral in (3.32)

B,(x) = / w(t) 16,2 (%I(K)(t)—%gil(n)(t)) dt.
0

We obtain .
B (r) = él(n)/o w(t)]6,* (1= <(t)) 61 (t, 61 (x)) dt,

whereg, (¢, \) is defined in (4.32). We recall the definition ¢f in (3.30). Therefore,

with .
~ Jo wt) (1 =) s (t, ) |0,[%dt
b, (\)
By Lemma A.2,¢,(t,\) < 0, therefore, taking representation (A.5) into account, we
obtain

Bi(\) = foTw(tT) (L= ) [N 16*d
fo Nt A) sy (¢, )] 16,2t

Moreover, with the lower bound (A.6) we can estim&g\) as in in (4.21), i.e.

B,(\) < B

max *

The remainding proof is the same as the proof of Corollary 3.13. O

Proof of Theorem 3.14We have to verify condition (4.30) for the strategy= (y; , v} )o<;<r
with y* = 60, andv’ = 1/w(t) for ¢t € [0, T7. o
First note that condition (3.36) implies

Ly 7(v*) > 1In(1-().
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Moreover, for0 < ¢ < T we can represent the functidqyt(u*) as

t t
L) = 101 + 2,180 = vy == [ tzds = [ o,
0 0

where

1
V=——7oou-o——1)16,.
= (G 1)
Therefore, by the right inequality in (3.24) we obtain

[ > (lgal + 100l = 1) 10, = (lga| — 1) |6,

and by condition (3.34) we gét > 0 for 0 <t < T, therefore,L, ,(v*) is decreasing
int,le.for0<t<T

Ly,(v") = Ly p(v") 2 In(1-().

This concludes the proof of Theorem 3.14. O

5 Appendix

A.1 Results for Section 3.1

Proof of Lemma 3.2SinceG(u, \) is for fixed A decreasing to O in, equationG(u, \) =
1 has a positive solution if and onlyd#(0, \) > 1. But this is equivalent tés + 2k, —
A (lga|* = [10]13) = 0, which gives the upper bound far Moreover, taking into ac-
count that5(0, A ,,...) = 1 we obtain from definition (3.5) that(\ =0. O

? max max )

Next we prove some properties @fandr,.

Lemma A.1. The functionr,(¢) is continuously differentiable ix for0 < X < A ..,
and the partial derivativg4.18)is negative for alld < ¢ < 7. Moreover, under the
condition(3.15)the derivatived(\) < 0 for0 < A < A ...

Proof. First note that

F(0) = g PO =@ (t) + )
(Mg |+ p(N)(w(t) + X))
By the definition ofp()) in (3.5) we getG(p(A), A) = 1for 0 < A < A ... Therefore,
Gy(p(N), A
0 =~
with
Gy = 288N ang gy, n) = 290N
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The definition ofG in (3.4) implies that

T @l )
G ) = 2/0 (Nl T ulw(n) T a8
and
G )\)__2| |/T w(t)(w(t)+)‘) |9 |2dt
2 ) = =2l | T e e

Therefore, foralD < A< A .. and0 <t <T
p(A) <0 and 7 (t,\) <0.

Consider now the derivative d@f given in (4.20). To find a lower bound fdr note that
by the inequalities (3.7)
DY (t) > T(Tv >‘) > 1 )
01z = 70,0l — (T + IOl

Therefore,

~ N
F(t,N) > TTO0 1 (A.1)

and by condition (3.15)(¢t,\) >0for0 <t <Tand0 < A < A i.e.®(\) < 0.0

max’?

Proof of Lemma 3.3Taking into account that,(-) = 1 we get

1
®(0) = lg 101l = 5116117

Moreover, condition (3.9) implie®(0) > —In(1 — ¢). The second part of Lemma 3.2,
the definitions (3.6) and (3.8) imply immediately thgt\, ,.) = 0. Therefore, in
view of Lemma A.1 the invers@—!(a) exists for0 < a < —In(1 — ¢). Moreover,
0<d (a) <A, for0<a<—In(1-¢) and®=1(0) = A, O

max’

A.2 Results for Section 3.2

We present some properties®f(\) andg,.

Lemma A.2. The functiong,(¢) is continuously differentiable in for all 0 < X <
AL and the partial derivativg4.32)is negative for all0 < t < T. Moreover, under

max

condition(3.15)the derivativei)l()\) <0foro< A< Aiﬂax.

Proof. First note that

G (t,A) = — (W(t) + Noe (N ( w(t)

(w(t) + Npy + 1, (W) \w(t) + A APy Qa(pl)) (A.2)
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wherep, = p,()) is defined in (3.25) and

dja(pl) — P d}a(pl)
P1 %0 (p1) .

Note that we can represent the numerator as

Q(p1) =

(y) A+ yly —lg.1) — (¥ —la.])
©*(y)

balpr) = prdalpy) = 2

with y = |¢,| + p,. Therefore, the left inequality in (3.24) implies

1

MMO+Mw%%m—@—MMZG+y@ﬂ%m(§—$)—@—%D

y3 y3

)

and by condition (3.34) we obtain
Q,(py) >0 for p; >0.
Let us now calculate,. To this end note that definition (3.25) implies

Gi(py(A\),N) =1 forall 0<A<Al .

Therefore,
. G o(p1 (M), A
AN =G
1,1(/)1( ) A)
with 0G (u, \) 0G (u, \)
u, u,
Gl,l(u, A) = 71(,% and GLQ(u, A) = 718)\ .

The definition ofG, in (3.22) implies that

T () £ NG + 1) w0)
(%“%”‘faé RO ER O ESY

and
w(t) (w(t) + A)
A (u) + u(w(t) + X))

T
Gy a(u,\) = *27/)(1(10/ ( 3 0,|% dt .
0

Taking into account that

1= (4] + we(lga| +v)
92 (|90l +u)

we obtain from the right inequality in (3.24)

3

Vo (u) +1 =

Y (x)+1>0 forall z=>0.

(A.3)

(A.4)
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Therefore, forald <A<\ and0 <t <T

pr(A) <0 and ¢ (t,\) <0.
Let us calculate now the derivative &f. We obtain

. T
B (\) = / 0t ) < (8, V)02 (A5)
0

where

sty al)o® 1 e

ay ~e(lgal+ay) ay
with a, = |[s,0]|7. In view of the inequalities (3.27) we obtain

al) _ o) o o) o 1
ay  Nsxller = sxO)0lly — (T + D0l

Therefore, by the right inequality in (3.24) and the condition (3.15)

|9, | + ay |4,
ntA) > =1 > ——& ] >0 (A.6)
(T +1)[0] (T + )]0
foro<t<Tand) <)<\ O

max’

Proof of Lemma 3.10Similarly to the proof of Lemma 3.3 we observe that condition
(3.29) implies
®,(0) = —ll0llr = fa(l0ll7) > —In(1 = ¢).
Moreover,®, (A )= 0sincep, (A} )= 0. This means thap, (0) = Al .
In view of Lemma A.2®, (-) is strictly decreasing of0, A} = ]. Therefore,® !
exists for all0 < a < —In(1 — ¢) such that

0<¢(a) <Al for 0<a<—In(1-¢)

max

andg,(0) = At

max’
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