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Abstract

Reliable motion estimation on resource-limited platforms is important for

many applications. While insects solve this problem in an exemplary man-

ner, mobile robots still require a bulky computation and sensor equipment

to provide the required robustness. In this thesis, we aim for an efficient

and reliable navigation system which is independent of external devices. For

that, we assess highly effectual, but still application-independent, biologi-

cal concepts. Based on these insights, we propose an inertial-visual system

as a minimal sensor combination which still allows for efficient and robust

navigation.

Thereby, we focus especially on algorithms for image-based motion estima-

tion. Different methods are developed to allow for efficient image processing

and pose estimation at high frame rates. Tracking of several hundreds of

features and a motion estimation from these correspondences in a few mil-

liseconds on low-power processing units have been achieved. The precision

of the motion computation is evaluated in dependence of the aperture angle,

the tracking accuracy, and the number of features. In addition, we derive

error propagations for image-based pose estimation algorithms. These can

be used as accuracy estimate when fusing camera measurements with other

sensors. We propose two different ways of combining inertial measurement

units and cameras. Either the inertial data is used to support the feature

tracking or it is fused with the visual motion estimates in a Kalman fil-

ter. For the spatial and temporal registration of the sensors we present also

different solutions.

Finally, the presented approaches are evaluated on synthetic and on real

data. Furthermore, the algorithms are integrated into several applications,

like hand-held 3D scanning, visual environment modeling, and driving as

well as flying robots.



Zusammenfassung

Eine zuverlässige Bewegungsschätzung auf Plattformen mit eingeschränkten

Ressourcen ist essentiell für viele Anwendungen. Während Insekten die-

se Aufgabe auf vorbildliche Weise lösen, benötigen mobile Roboter immer

noch umfangreiche Sensorik und Rechen-Kapazität, um die erforderliche

Robustheit gewährleisten zu können. Auf der Suche nach einer effizienten

und zuverlässigen Navigationslösung, beginnt diese Arbeit mit einer Beur-

teilung von effektiven, aber noch anwendungsunabhängigen, biologischen

Konzepten. Basierend auf diesen Einsichten wird die Kombination eines In-

ertialsensors und einer Kamera als minimales Navigationssystem, das noch

angemessene Zuverlässigkeit gewährt, vorgeschlagen.

Dabei liegt der Fokus vor allem auf der bildbasierten Positionsbestimmung.

Verschiedene Methoden wurden entwickelt, um eine effiziente Bildverarbei-

tung und Positionsberechnung bei hohen Bildwiederholungsraten zu ermög-

lichen. Es wurde erreicht, dass auf einem Low-Power-Prozessor in wenigen

Millisekunden mehrere hundert Merkmale verfolgt werden können. Der Ein-

fluss des Öffnungswinkels, die Tracking-Genauigkeit und die Anzahl der

Merkmale auf die Positionsbestimmung werden evaluiert. Weiters werden

Fehlerabschätzungen für Positionsberechnungs-Methoden hergeleitet, die als

Gütemaß für die Fusion von Kameramessungen mit anderen Sensoren Ver-

wendung finden. Zwei verschiedene Kombinationsmöglichkeiten von iner-

tialen Navigationssystemen und Kameras werden vorgestellt. Entweder un-

terstützt die inertiale Messung das Tracking von Merkmalen oder ein Kal-

man-Filter fusioniert die inertialen und visuellen Bewegungsschätzungen.

Für die zeitliche und räumliche Registrierung der Sensoren werden eben-

falls verschiedene Ansätze vorgeschlagen.

Schließlich findet eine Auswertung der vorgestellten Verfahren mit realen

und synthetischen Daten statt. Zudem werden die Algorithmen in verschie-

dene Applikationen integriert, wie z.B. handgeführtes 3D Scannen, visuelle

Umgebungsmodellierung und fahrende sowie fliegende Roboter.



Riassunto

La stima affidabile del moto su piattaforme con risorse limitate è importante

per molte applicazioni. Mentre gli insetti risolvono questo problema in modo

esemplare, i robot mobili, per garantire la robustezza necessaria, hanno

bisogno di svariati sensori e di ingombranti attrezzature per il calcolo. In

questa tesi l’obiettivo è di sviluppare un sistema di navigazione efficace ed

affidabile e allo stesso tempo indipendente da dispositivi esterni. Il primo

approccio è stata la valutazione positiva di concetti biologici adatti a fornire

le basi per gli studi seguenti. Grazie a queste intuizioni si è lavorato ad una

combinazione di sensori minima, che tuttavia garantisce una navigazione

efficiente e robusta, formata da un sensore inerziale ed una videocamera.

Questa dissertazione si concentra specialmente sulla stima della posizione

basata sull’analisi delle immagini. Per rendere efficace la loro elaborazione

e il calcolo della posizione ad elevata frequenza, sono stati proposti diversi

metodi. In questo modo è possibile monitorare diverse centinaia di punti di

riferimento con un processore a basso consumo. Inoltre sono stati valutati

l’influenza dell’angolo di apertura, l’esattezza del tracking e il numero di

punti di riferimento sulla stima della posizione. Si è poi risalito a propa-

gazioni dell’errore di calcolo della posizione, che possono essere usati come

indice di qualità per la fusione di misurazioni video con altri sensori. Infine

sono state individuate due possibili combinazioni di un’unità di misura iner-

ziale con una videocamera. Queste informazioni inerziali possono sostenere

il tracking di punti di riferimento, oppure possono essere combinate in un

filtro Kalman con il calcolo del movimento basato su una camera. Per la

sincronizzazione spaziale e temporale dei sensori sono state proposte diverse

metodiche.

Alla fine i metodi presentati sono stati analizzati con dati reali e sintetici.

Gli algoritmi sono stati integrati in diverse applicazioni, come per esempio la

scansione manuale 3D, la modellatura visuale dell’ambiente e robot mobili

e volanti.
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Chapter 1

Motivation

Since the early beginnings of mobile robotics, researchers work on robots which au-

tonomously move from a starting point A to an end point B. Different questions arise,

if one wants to tackle this problem – some major ones are: Which trajectory shall the

robot follow to safely reach B? How can the robot be kept on this path? What is the

robot’s current location relative to B? These three questions are treated in separate

research areas. The Motion Planning community tries to answer the first question and,

thus, looks for algorithms to compute trajectories under various aspects, such as effi-

ciency, safety, velocity, and so forth. The second question is extensively discussed in

control theory. These two questions are beyond the scope of this work, in which we

will concentrate on parts of the remaining issue: How can mobile robots efficiently and

reliably navigate and localize themselves in 3D space?

The knowledge of its own location with respect to a prior (localization) or an as-

pired position (as part of navigation) are crucial for mobile robots1. However, in many

non-robotic applications similar problems have to be solved, like localization devices

for humans, scanning and modeling of objects or the whole environment, surveying,

and many more. All these applications need to estimate the absolute or relative posi-

tion based on one or more sensors. Of course, depending on the applications varying

requirements arise.

Up to now, most localization or navigation algorithms with broad impact rely on

artificial global references, e.g. the Global Positioning System (GPS). Such methods are

already available in mass-products, although they suffer from a restricted application

space and limited accuracy and are, hence, not feasible for all applications. Man-made

global referencing systems will always somehow limit the area of application; even GPS

1In general, an approach solving one of these two problems can also solve the other one. Thus, we
will not distinguish between them in the following, if not explicitly mentioned.
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1. MOTIVATION

provides no signal or reduced signal quality for instance in houses, cities, canyons,

narrow mountains or forests.

Therefore, on-system solutions are desirable, which do not depend on external de-

vices. Such methods are usually based on the fusion of a large number of sensors to

achieve the required reliability, while simultaneously building a map of the world to

limit drifting. High processing costs, the price of the sensors and the computational

power are the limiting factors of their impact. The commercially available systems

are quite expensive or do not have adequate reliability or accuracy. Most approaches

provided in literature tackle only the localization problem for a certain application,

but do not provide a generic solution. Moreover, due to high memory consumption,

these methods do not scale well in general and, thus, restrict the workspace. A local

navigation system, which allows for a reliable pose estimation in general environments

while providing a scalable map for drift compensation, is of great interest.

Various aspects have to be considered for the decision on which sensors to use. Many

applications, like the localization of hand-held devices, exhibit high dynamic motions.

Furthermore, increasing dynamics are also noticeable in mobile robots, which generally

become more and more agile, solving their tasks more quickly. To deal with such mo-

tions, sensors have to be used that provide short integration times and high sampling

rates. Another significant characteristic of sensors is whether they are passively captur-

ing the environment or actively emitting signals, e.g., light or sound to perform their

measurements. The passive sensors have no direct influence on their measurements

and, thus, they completely depend on the scene characteristics, like lighting conditions

or object properties. This makes it difficult to develop generic algorithms with univer-

sal parameters. However, beside this drawback the passive nature of sensors allows in

general for more diverse environments and, thus, for a wider field of application than

active sensors. These usually have a rather high power consumption, provide only a

limited measurement range, and they suffer from cross-talking as well as easy jamming

and detection.

There is a continuous trend to miniaturize platforms, not only to reduce production

costs, but also to allow for micro or light-weight systems. To achieve that, compact

sensors should be used, their number should be reduced and the algorithms should

be optimized for memory and computational efficiency. However, since every sensor

has its drawbacks, one should not rely on a single one, but fuse the data acquired by

different sensors to yield reliability and robustness. Every additional sensor improves

the estimation result, but for the sake of the system’s compactness, only as many of

them as necessary should be used. A trade-off has to be found between reliability and

efficiency.
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1.1 Efficient Navigation Inspired by Biological Insights

A short excursion into biology should provide some insights into which senses nature

found to be useful for navigation and how this task is solved by insects. The sensor-

concept and the methods which we will present in this work are inspired by these

biological assessments.

1.1 Efficient Navigation Inspired by Biological Insights

To motivate our idea of an efficient navigation system, we will first try to analyze

navigation from a biological point of view. Any life-form has been optimized by the

process of evolution over many millions of years. This selection process led to the

most efficient and robust navigation systems. Sometimes they have been adapted to

a specific ecological niche and sometimes they have been generalized to allow for a

large environmental variety. The tasks of most animals may be always specific and

rather simple, e.g. foraging, mating or moving back home, and, hence, they do not

need generic navigation strategies. However, the same species of even rather primitive

animals, like insects, can be found in a large variety of environments. Insects are quite

resource-limited animals if compared to humans or other mammals - they require a

highly efficient but still robust navigation apparatus. Therefore, we let us inspire by

their sensory organs and their behavior when trying to answer the questions: “Which

sensors were found by evolution to be necessary for robust navigation?” and “How can

insects with their small brain reliably find back home after moving thousands of body

lengths to a foraging site?”.

Even though much research has been devoted in biology to answer these questions,

the experiments are not always conclusive and, hence, many aspects are still part of

current discussion or only theories without proper experimental grounding are avail-

able. Nevertheless, we will try to assess various ideas and concentrate on the common

assumptions by denoting meaningful experiments. For that we are not looking for any

family or even species specific behaviors or physiological details, but we try to extract

common concepts. Indeed, the physiological properties relevant for navigation seem to

be in general quite similar, even between different families of insects. Especially their

long-distance navigation techniques seem to be comparatively coherent. Probably the

best studied insects, in terms of long-distance navigation, are bees and ants. Although

they act in different spaces, they seem to use common navigation techniques, which

should, hence, allow for an environment- and task-independent generalization. There-

fore, we will focus on the extensive experiments and theories on ants and bees to find

an answer to the aforementioned questions.
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1. MOTIVATION

The insights in this section should motivate a compact but reliable sensor setup

and efficient navigation algorithms. However, an extensive survey and discussion is

beyond the scope of this work. Comprehensive overviews of specific aspects, e.g. the

sensory system, navigation strategies or insect vision, can be found amongst others

in [15, 16, 17]. In the following we will first assess the insects’ physiology and their

navigation behavior to finally make the transition to mobile robotics by mapping the

senses and the strategies to technical sensors and navigation algorithms.

1.1.1 Assessing the Sensory Physiology of Insects

The difference in how sophisticated a sensory organ is depends on the importance

of the information it provides in a specific environment. Beside that, the physiology

between species is quite similar. Ants, e.g., live in forests, deserts, houses, on rocks,

basically limited only by the presence of enough food. Of course, different species

of ants vary slightly in their physiology and do, therefore, fit more or less well in a

specific environment. Many of them use pheromones to mark their path. By varying

the intensity or the pattern, recruiting individuals may signal whether the scent trail

is promising for foraging or not. However, such a feature would not help desert ants,

like the Cataglyphis bicolor, because any pheromone would vaporize immediately in the

desert’s heat [18].

To get an idea of which senses insects may use to solve their navigation task we will

start with a list of senses and their possible use for navigation.

• Orientation sensing: Animals can estimate the global direction based on their

sensitivity for the Earth’s magnetic field (magnetic compass) [19, 20]. A compass

is crucial to ensure direction of heading, accurate path integration and for the

alignment of visual representations of the environment. Turtles, lobsters, newts,

and birds, for instance, even use a geomagnetic map for navigation [21, 22].

Insects use also their visual system for orientation estimation (visual compass).

They use terrestrial information like, e.g., the landmark panorama [23], far distant

beacons or celestial information like the polarized skylight [24], the direction of

the sun or the moon, the spectral or intensity distribution of skylight and the sky

itself (i.e. clouds). One dedicated organ seems to be the ocelli [25, 26] and the

dorsal rim area (DRA) - a specialized dorsal part of the compound eye, which

contains receptors that are sensitive to the plane of polarization of light [27].

• Vision: The two compound eyes of insects consist of thousands of facets, the

so called ommatidia, which are spread almost over the whole sphere. Each om-

matidium consists of several individual photoreceptor units. House flies (Musca
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domestica), for instance, have about 8, 000 ommatidia, worker honeybees (Apis

Mellifera), e.g., have about 10, 000 and dragonflies (Anisoptera) up to 60, 000

ommatidia. For comparison, a camera with a resolution of 320× 240 has already

76, 800 pixels - more than most insects. The interommatidial angle in honeybees

varies from 1.4 to 4.5 and the acceptance angle of the ommatidias has been mea-

sured to be about 2.6◦ [28, 29, 30]. The blind area, covered by the torso of the

bee, is approximately an ellipse of about 47◦ azimuth and 100◦ elevation. The

field of view (FOV) of the two eyes does also overlap by about 30◦ [29].

Several insects possess a multi-chromatic opponent color processing system (multi-

spectral pixels). Honeybees, e.g., have a trichromatic perception for blue, green

and ultraviolet. The latter is important for some specific tasks, as, for instance,

to perceive patterns on nectar-laden flowers that are invisible to us. However,

there might also some navigational aspects be involved, like the fact that in the

ultraviolet channel the sky is always bright and far clouds are invisible [31] or the

increased contrast for the skyline panorama [32].

The neuronal system provides fast, analog processing of the visual information.

In insects, each ommatidium is serviced by ca. 12 neurons in the first layer of

processing (Lamina) and by up to 60 neurons in the second layer of processing

(Medulla). There are extensive lateral interactions at many different scales, espe-

cially in the medulla. Flies showed in experiments that they can reliably respond

to visual changes up to 200Hz [33]. Flying insects cannot make use of any leg-

based odometry. For them visual odometry is crucial for path integration. Visual

odometry uses the optical flow1 to estimate the distance traveled [34].

• Proprioception: It is quite likely, that insects are, like humans, aware of the

position and motion of their limbs – information that can be gathered from

mechanoreceptors in joints and muscles. An important concept of proprioception

is leg-based odometry, which is used by various walking insects and is probably

their most significant sense for navigation. By counting their steps and by fusing

the compass information they could yield accurate and reliable homing vectors

even on rough terrain, where the step sizes vary.

• Tactile Sensing: The tactile recognition of landmarks, tactile obstacle detection

and wall following is crucial for animals with antennae, vibrissæ or other sensible

hair that live in dark, confined environments, like the crayfish [35]. However, this

sense is not really relevant for long-distance navigation.

1Optical flow represents how fast the world moves in the visual system - this concept will be
described in Section 2.4 in more detail.
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• Inertial sensing: Several insects, e.g. flies, have modified hind wings, so called

halteres, which are flapped rapidly and measure the angular velocity (like gyro-

scopes) based on the Coriolis forces [36]. This information allows animals to keep

their head and, thus, their sensors stabilized in all three rotational axes.

Some insects have a dedicated organ to measure accelerations, the so called sta-

tocysts. It is a heavy body lying on a bed of mechanoreceptors that are sensitive

to shearing forces. Additionally, the force raised by the muscles reveals also ap-

plied forces. There is also evidence that the relative angle between thorax and

abdomen is used to measure the gravity.

Further, there is a very widely distributed reflex, the so called dorsal light reflex,

that is used by many animals to define the vertical direction [37]. It uses the

overall light distribution to control the roll orientation of the head.

• Odor: Ants and also flying stingless bees use pheromones to mark trails, their

nest and food sources. Many other animals mark their territorial boundaries

with pheromones. The navigational problem that arises once an odor plume has

been detected is to draw conclusions of where the odor comes from, taking into

consideration that it has been perturbed by wind and other disturbances [38].

Hence, odor is mainly used to detect artificial markers, e.g. pheromones, and

as communication channel between individuals, e.g. to reveal the mating-state.

However, there is some experimental evidence that odors form stable patterns at

landscape scale, which are used by pigeons (doves) for navigation [39, 40, 41].

• Taste: Similar to odor, the taste sense can be used to detect artificial markers,

like pheromones, or for other task-specific communication. One major difference

between taste and odor is that a marker-detection can only occur at the actual

marker location. This prevents far distant perception, but avoids also the local-

ization problem of odor.

• Hearing: Sound is measured on the insect’s surface by the so called tympanal

organ [42]. Special vibration-sensible legs have also shown in experiments to be

responsible for sound perception, e.g. in scorpions and spiders [43]. Further exper-

iments proof that sound or ultrasound is used as active sense for mate attraction

or predator avoidance in flying crickets [44] and bats, e.g., are also known to use

acoustic landmarks for navigation [45].

• Wind sensing: Flying insects can measure the air speed with their antennae

and with filigree hairs on their head. There is no experimental evidence that this
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information is fused together with the visual odometry and orientation sensing

for path integration, but it would probably help to make use of this sense.

• Range sensing: It is not clear to which extend insects use their stereo system for

range sensing. The short baseline and the low resolution make stereo triangulation

only possible within a few centimeters. Hence, it seems likely that insects do

not rely much on stereo triangulation. Only in case of close objects stereo vision

would be applicable. Such a binocular spatial localization has been experimentally

shown for the praying mantis while catching the pray [46]. However, while insects

do not provide a dedicated range sensing organ, other animals, e.g. bats, do. The

ultrasound for bats is like the tactile sensing for crawling insects - it reveals the

geometry of the environment and is used for navigation and obstacle detection.

1.1.2 Biological Insights in the Navigation Behavior of Insects

In this section, we will try to outline how insects solve the navigation task with their

senses and their limited processing and memory resources. We will focus on navigation

strategies which do not rely on any communication and, hence, we neglect e.g. the

pheromone trail of ants and the famous “waggle” dance of bees, which is how bees

communicate the location of foraging sites in the hive. These aspects are of major

interest for research on swarm intelligence and are beyond the scope of this work.

The non-interactive navigation strategies rely mainly on path integration by any kind

of odometry (proprioceptive navigation) and navigation by environmental perception

(exteroceptive navigation).

The following senses can be used to perceive cues in the environment for navigation:

vision, odor, taste, hearing and range sensing. We will discuss the importance of each

sensor in Section 1.1.3 and conclude that visual cues are sufficient to solve all required

tasks for navigation. Several species of ants and bees seem to successfully navigate

over long distances only based on their visual system and relying on path integration.

Hence, in the following we will only discuss visual navigation concepts.

Path Integration

Path integration is the continuous integration of movements over an insect’s journey.

Cues that can be used for this process are, for instance, angular velocity, optical flow,

compass information (e.g. the gravity vector) and any proprioception, like counting the

number of steps. The fusion of all this information allows for accurate dead reckoning.

The integration of the path is in general very robust, because it uses mostly motion

cues which do not directly rely on the environment and, hence, are not affected by

7
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any external disturbances. Therefore, it is also the major fall-back solution in case the

navigation based on environmental cues fails. The result of path integration is a global

vector pointing to the starting point, e.g. the nest, or, if the path has already been trav-

eled, an arbitrary point of interest, e.g. a foraging site. This vector denotes a straight

and, hence, the fastest way to the goal. A long exploration path can be abbreviated

on the way back just by following this vector. However, some other experiments show,

that insects use also local path integration vectors to connect landmarks.

Fiddler crabs (Uca vomeris), e.g., reveal the importance of path integration when

fighting. They have only a small action space, but they need to find a hole in a flat

world from a viewpoint close to the ground. Their path integration is very accurate

and the only way to navigate. If such crabs are fighting, they use their large pincer

not to hurt each other, but to lift each other from the ground. At the point they loose

touch, their path integration fails and they are not able to find and hide in their holes

anymore, which exposes them to predators [47, 48].

Visual Exteroceptive Navigation

However, for insects which forage in larger environments, path integration is not ac-

curate enough for long distance explorations. Any small error becomes constantly

accumulated and, hence, the divergence of the proper direction and distance at the end

of the journey increases with the traveled distance [49]. This is a systematic problem

of any dead reckoning based method and cannot be avoided.

The visual system allows insects to follow known paths and to localize within a

familiar environment. In case visual navigation fails, insects seem to rely again on path

integration. Once they are at the end of the vector and their visual navigation system

is still lost, they initiate a species specific search pattern to look for the goal they were

heading to, e.g. the nest [50]. If an insect is passively displaced by, e.g., a gust of wind

or an animal, the computed path integration will miss the goal by the magnitude of

the displacement [51].

While path integration is rather well understood and verified, the various visual

navigation concepts in insects still pose many open questions. The ocelli are also a

visual sense, but their is no evidence that this organ is used for anything else than

attitude control (sky compass) and, thus, they are not further discussed at this point.

The compound eye is, therefore, the only organ providing detailed visual navigation

information. Let us keep in mind, that the view of a bee is completely different than

what humans see. As you can see in Fig. 1.11, the resolution is less but the field of view

1www.zf-laser.com
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(a) Omnidirectional view (b) Bee-eye view

Figure 1.1: The left image shows an unwarped omnidirectional view rendered from the
data acquired by a Z&F laser-scanner. The right image shows the same view as seen
through the eye of a bee. (Both images are by courtesy of Wolfgang Stürzl [30])

covers almost the whole sphere. It is difficult to realize an accurate body stabilization

based on such a low resolution. Other organs, e.g. the halteres, are more likely to be

used for this task. However, optical flow is clearly used to prevent drifting and to keep

a certain height [52]. By assuming that the velocity of the bee is constant, it can simply

stay at a certain altitude by keeping the optical flow constant. Another effect, which

one can note observing insects, is, that if an insect is flying against too strong wind, it

will force it to land. Moreover, if insects fly over a clear lake, they may drown, because

they try to keep the optical flow of the ground at a certain level. There is also some

work in literature showing that by some assumptions it would be possible to estimate

the egomotion based on optical flow and by measuring the air speed [53].

For visual navigation there is no need for high accuracy, but it is crucial to provide

highly robust and reliable localization. As we will show and discuss in Section 8.2.1 the

resolution is the major factor which determines the accuracy and a field of view which

is much larger than 120◦ worsens the precision for a constant resolution, but it helps

to gain robustness and reliability. Many questions remain, which visual information

is gathered and how it is processed, memorized, and used by the insects brain while

navigating through the world.

In the following, we will discuss experiments which will give some insights into the

exteroceptive navigation of insects. For that we will formulate three questions and try

to find the answers. The statements we will make are mainly based on experiments on

bees and ants, because an extensive survey of the problem would go beyond the scope

of this work. However, for the sake of clarity we will make general statements without

delimiting the validity of every conclusion to the respective species.
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Do insects use the whole field of view or only single landmarks for pose estimation?

Humans have an optical system which provides high resolution for a small aperture

angle (the fovea), improving the recognition of focused objects they are looking for.

In contrast, the resolution in the optical system of insects does not vary as much over

the whole FOV and is in general much lower. However, a large field of view allows to

robustly identify the current location, but does it provide the high accuracy necessary to

find specific locations, like the nest entrance or a known feeding source? Experiments

have shown, that it is possible to approach a goal based on the gradient of image

differences, once a set of images of the trajectory to follow are known [54, 55, 56].

For that each view is substracted from a so called snapshot, an image which has been

acquired while learning the trail or the nest environment, and by following the resulting

gradient the insect reaches the position where the snapshot has been acquired. From

there on the next snapshot can be approached until it finds the goal. Such global

methods which use similarities between images are easy to realize as a neuronal network

in a bee’s brain. Further, they would also explain the learning flights of bees, where

the insect backs away from the goal in a series of arcs that are roughly centered on the

goal [57]. However, it is still not clear according to which criteria they decide when

to acquire a new snapshot. A trade-off has to be found between enough similarity

between the images to allow for an overlapping catchment area of the gradients and

enough differences to be memory efficient.

While the latter conclusions would suggest that insects use their panoramic view

to find a location, there are many other experiments showing that visual navigation of

insects is strongly related to specific landmarks in the environment [58, 59]. Thinking

of an omnidirectional view, there are many possible landmarks and the insect has to

determine how much it relies on each feature. Thereby, it would make sense to weight

the cues in the image according to their distance and according to how reliable they

are. The visual localization accuracy in space is directly related to the distance of

the objects in the field of view. An insect can measure the distance to a landmark

by speed-based parallax or motion-based parallax [60]. According to [61] landmarks

should be weighted based on the following three characteristics: salience - landmarks

should be unique and easy to distinguish from other part; permanence or reliability

- landmarks and their position should be constant over time; relevance - a landmark

should help to recognize important places or decision points. There is experimental

evidence which shows that not all landmarks have the same influence on navigation,

but a sort of weighting of the information gathered from landmarks occurs [62, 63].

The question remains, whether single landmarks are recognized as objects or whether

the location of the corresponding cues is only encoded in the retina (so called retinotropic
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encoding). It has been empirically shown, e.g. with water striders [64] and ants [65],

that insects follow a path by keeping a certain edge or point on a specific retinal posi-

tion. Nevertheless, they are also able to relate landmarks to each other and categorize

them as we will see in the next question.

Summarizing the results we retrieve following insights: Insects use the panoramic

view to find a location, but it seems that there is also a weighting of the image areas

involved. Strong landmarks are predominant and have more impact on the insect’s

navigation than the “background curtain”. The panoramic, far distant background

provides a visual compass, but its drawback is that it does not reveal any translational

information. Hence, close landmarks or texture is crucial to correct for translational

drifts. Honeybees, e.g., almost perfectly stabilize their head while flying, which allows

them to fly strict translational and change directions by rotation saccades [66, 67, 68].

Thus, they behaviorally separate rotation from translation, which eases and robustifies

vision-based motion computation significantly as we will see in Section 5.1. Further,

to keep a specific position they seem to use also so called visual servoing techniques,

where they keep image cues on predefined retinal locations.

Which cues do insects use as landmarks and how are correspondences between them

established?

Insects have been shown to rely on various visual cues, like color [69, 70, 71], apparent

size, edge orientation [72] and the vertical center of gravity of a shape [73], but also their

spatial arrangement [74]. Usually, all these cues indicate the same origin or direction,

but what happens if different cues provide contradictory information? Insects have

been shown to not only average or interpolate between cues, but they are also able

to generalize and categorize them [75]. They can, e.g., discriminate between different

oriented stripes, but at the same time they also generalize a pattern and “identify” it

as stripes independent of its orientation.

Experiments show that they do not only navigate based on the resulting probability

of the most likely location, but they also take into consideration the likeliness of whether

a location or direction is reliable. In case the information from the visual system is

interpreted to not yield enough probable navigation information and, hence, the insect

is lost, it starts with a search pattern.

Even though apparently the different visual stimuli are fused, there is no proof for a

probabilistic fusion of landmark guidance and path integration. The latter serves as a

fall-back strategy and scaffold for learning – there is no evidence that ants use landmarks

to reset their current global path integration coordinates when they are displaced to

a location with familiar visual stimuli [76, 77, 78]. Landmarks are primed by path
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integration and path integration is suppressed in landmark rich environments [79].

Due to this lack of a close fusion between path integration and visual landmarks, we

can assume that on the one hand landmarks are not used to improve the accuracy

of path integration, while on the other hand global path integration is not used to

provide landmarks with positional coordinates. There is no evidence that insects build

geometric maps of their environment. Nevertheless, they use landmarks to trigger

certain local path integration vectors with defined distance and direction, which were

stored as a specific part of the route [60].

Summarizing, we can say that the tasks of path integration and navigation are

separated. Thus, insects do not combine localization and (geometrical) map building,

like it is suggested and implemented by the popular SLAM (simultaneous localization

and mapping) methods in robotics. Rather topological maps are used to solve this task,

whereas a large part of the biologists is of the opinion that insects do not rely on maps

at all. Further, many cues of different types are used in a weighted way to allow for a

robust navigation. As soon as an insect is lost, it relies on fall-back algorithms.

How are paths or routes stored in the insect’s memory?

Landmarks are route specific – insects may use different routes when they go to or come

from a certain location even though the omnidirectional view would allow to use the

same landmarks [80]. They seem to be not able to inverse a path if it is only known

in one direction. An ant, e.g., which is on the way to the foraging site and becomes

displaced to a different path which it knows only from going back to the nest, will follow

this path to the nest instead of taking the inverse trajectory to the foraging location

where it actually was heading to [81]. Due to the panoramic view, the ant would

have also seen the landmarks from behind, but apparently it cannot use them in that

constellation. Humans seem to build a so called cognitive map which allows to navigate

based on the spatial relations of prominent features. Experiments led to the conclusion

that bees use their path integration system, piloting system and image matching system

in a non-cooperative and competing manner [82]. There is no indication for a level of

combinatorial integration of the representations which would force the assumption of

the existence of cognitive maps in insects. They rather follow specific routes which they

set up during exploration or by following a scout to the foraging location.

However, the location of landmarks influences how insects choose their trajec-

tory [58] and, hence, it is quite probable that individuals of the same species heading to

the same location will follow the same trajectory, even if it is not a straight line. This

behavior seems to be a trade-off found by nature between memory efficiency and trav-

eling efficiency. Much less abstraction capability is required and less information about
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1.1 Efficient Navigation Inspired by Biological Insights

the environment needs to be stored when an insect simply moves from one landmark

to the next instead of taking unknown shortcuts.

Further, insects spend a variable amount of memory to recognize locations or paths

depending on how often they need it [60]. It seems that they refine their path every

time, evaluating the reliability and, thus, the importance of landmarks for navigation.

Of course it is more important to find again the nest than a foraging site and, thus,

any insect which lives in a hive or a nest spends some time to memorize the close

surrounding of the nest before leaving it.

Concluding we have seen that insects have not a complex cognitive map which

they can rely on, but they have rather a set of paths which they can follow based on

landmarks. The location of the landmark also influences the trajectory, which leads to

the assumption that insects store routes as lists of landmarks or views. Landmarks can

be related to a certain path, which allows them to set up on a known route if lost, but

only in the direction they have stored the path. Following specific, landmark-related

exploration strategies reduces the amount of information to be memorized.

1.1.3 Biological Inspired Efficient Navigation System

The selection process in biological evolution guarantees that all the mechanisms we can

find nowadays in nature are superior - within the current constraints - to any previous

biological solution. However, it should not be our aim to copy the biological systems,

because we do not have the same application constraints or the same realization requi-

sites in nowadays technology and we can not provide the same embodiment with our

robots. Further, animals have in general other constraints than robotic applications.

We should rather try to be inspired by the computational mechanisms which we can

observe in nature and translate them to our robots and applications.

Sensory Equipment

Let us start with the question which current technologies could realize the insect’s senses

and which of them are necessary for a robust but minimal system. In the following we

will list the corresponding sensors to the senses in insects and assess them:

• Orientation sensing: It is possible to gain relative and absolute compass infor-

mation by using cameras with or without polarization filter, but it is currently

much easier to provide a magnetic compass for a global orientation estimation

in robots. However, such compasses have difficulties in the vicinity of magnetic

materials like, e.g., the iron in buildings. Furthermore, one can use the gravity
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vector measured by accelerometers to determine two degrees of attitude. This

method fails as soon as a significant translational acceleration is applied.

• Vision: Cameras become more and more popular in robotics due to their low

power consumption, compactness and low prices and due to the fact that they are

noninvasive and accurate. However, only a few approaches are known, which try

to achieve visual systems with similar spatial and temporal resolution characteris-

tics as the compound eye of insects [83, 84]. Most of the technological realizations

of optical flow devices are one dimensional arrays of photoreceptors [83]. There

are first technological solutions which allow for a parallel processing of two di-

mensional fields. Up to now, however, they only exist in sizes up to 30× 30 [85].

Another approach is to use a regular camera and a field-programmable gate array

(FPGA) to realize parallel dense optical flow computation [86, 87, 88, 89] or a

graphic processing unit (GPU). FPGA based solutions require long development

times, while GPUs suffer from high power-consumption and heat generation. To

allow the implementation on resource-limited embedded systems, one should for

the time being focus on the development of sequential algorithms. Further, a

common drawback of both processing units is that it is hard to realize complex,

adaptive algorithms and, hence, they usually only compute the optical flow from

image to image based on computationally simple algorithms, e.g. [86], and feed

the control loop with the outcome [90]. However, this does not prevent drifting,

which is actually a main advantage of optical sensors. The stabilization can also be

provided by the inertial sensors, but motion estimation based on them inevitably

drifts. Thus, one should not focus on visual localization for inner-loop control,

which requires high sampling rates and accuracies, but for drift-prevention.

The catadioptric imaging system presented in [30] provides a 280◦ field of view,

while the panoramic mirror in [91] has a smaller aperture angle but a uniform

angular resolution in elevation. In general, cameras on robots are equipped with

narrow field of view lenses, trying to reduce the accuracy limits introduced by

the pixel discretization. This contradicts the observations of insect eyes. Humans

overcome the drawback of a limited field of view at high resolution by extensive

head and eye movements and by building an environmental model in their mind,

which allows them to navigate, despite seeing only a small part of the world.

This is computationally expensive and beyond a minimalist navigation system as

insects are. There are several algorithms that were designed for spherical views

and, thus, are also more accurate and reliable for large aperture angles [92, 93].
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In Section 8.2.1, we will see that the accuracy for a generic algorithm on projec-

tive images has an optimum for the focal length and decreases again for too wide

angles, assuming a constant resolution. Anyway, a large FOV increases robust-

ness and reliability of motion estimation and especially for global localization.

Further, it reduces the aperture problem, improves obstacle and object detection,

and allows for the realization of a visual compass as illustrated in Fig. 1.2.

In Section 1.1.1 we mentioned that the insect’s eyes process images at a high

Figure 1.2: This sequence shows images acquired by a catadioptric camera mounted
on a quadrocopter. It would be straightforward to extract the horizon (note the slight
irregularities and texture differences) which could then be used to estimate the full rotation
and not only the yaw angle (visual compass).

rate. How relevant is this for visual navigation? If image cues move several pixels

between processing instances, it is computationally much more expensive than

if only neighboring pixels have to be evaluated for data association. A neuronal

network requires less interactions of neighboring neurons and becomes more ro-

bust if the optical flow vectors are short. In the machine learning community,

e.g., it is well-known that the constitution of a neuronal net prefers a small area

of interaction of neighboring neurons than a highly cross-linked one (broad vs.

deep neuronal net). The distance of visual cues on the retina or the image plane

depends on the velocity of motion and the processing rate. Hence, a fast vi-

sual processing makes the computation of correspondences easier and reduces the

number of possible matches. Otherwise, assumptions on the motion or the envi-

ronment have to be made in order to disambiguate within a large set of possible

matches.

Hence, for a robust, efficient and reliable motion estimation a camera with a large

FOV and high processing rates should be preferred.

• Proprioception: The current joint position or the link size of a robot are in

general well known. Lately, also impedance-based control became possible due to

respective force sensors in the joints [94, 95]. Such robotic concepts are especially

interesting for, e.g., safety issues [96]. However, counting the revolutions per
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minutes of a wheel does usually not allow for accurate odometry estmiation due

to slippage and changing ground conditions.

• Tactile Sensing: Tactile sensors are of great interest in robotics [97, 98]. How-

ever, they are only of little importance for unconstrained, long distance naviga-

tion.

• Intertial sensing: Inertial sensors measure the derivatives of motion, which is

crucial for high dynamic control. Inertial measurement units (IMUs) consists of

a gyroscope and an accelerometer for each of the three spatial axes. Their infor-

mation can also be used for strapdown calculations (see Section 2.6) to improve

path integration.

• Odor: Research on the development of odor sensors started in the 1990s and

became more popular with various promising approaches in the last years [99].

The navigation relevant aspect of odor is quite application specific and not inter-

esting for a general solution. There exists, e.g., some work on autonomous plume

tracking robots, which should replace lobsters to sniff out mines [100]. Odor

as communicative channel can be easily replaced by any other communication

technology, e.g. radio.

• Taste: The technological realizations of the taste sense are far too complex and

time consuming to be used in mobile robotics. Further, taste as navigation strat-

egy would only be relevant, if it is feasible to set artificial markers. Hence, this

sense can be neglected for our considerations.

• Hearing: Acoustic signals were first used in underwater vehicles for navigation

issues [101], but nowadays they are also used on mobile robot platforms to localize

relative to sound sources [102]. However, the accuracy which can be achieved is

not as good as for visual or range sensing devices and, thus, it is in general only

used to drive the attention of the robots rather than localizing them.

• Wind sensing: For flying systems it might be of interest to measure the air

speed and, thus, their velocity against wind. Such anemometers are available

as small assemblies. However, depending on the aircraft it might be difficult to

measure the wind – the spinning rotors of a helicopter, e.g., make it difficult to

measure it.

• Range sensing: Range finders are quite common in robotics. Light or laser

detection and ranging (LIDAR/LADAR), time-of-flight (TOF) cameras, sonar,
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stereo camera systems, are a few sensors which measure the distance relative to

their environment. While most of these devices are of large size or need a complex

setup, sonar is quite small and lightweight. Although being not quite accurate,

its measurements can be used for reliable obstacle detection. Unlike infrared (IR)

diodes, sonar can also detect glass and it is not influenced by the presence of

sunlight. Range measurements can be used in a straightforward manner to build

geometric maps, which are easy to understand and to navigate on. However, most

of them are active sensors and they all suffer from a limited range of measurement.

Three crucial tasks of a mobile robot system in a general environment can be identi-

fied to be application and system independent. They are: motion estimation to control

the robot, navigation in its environment and obstacle detection and avoidance. In the

next three paragraphs we will evaluate the relevance of the mentioned sensors for these

tasks.

Low-level motion estimation

IMUs are the most important sensors for high dynamic control in mobile robots. The

compactness, low power consumption and high sample rates of these sensor units make

them superior to any other available sensor on the market for high dynamic control. The

major drawback of this sensor is that it only measures the motion derivatives as angular

velocity and translational acceleration which makes it prone to drifts. The roll and

pitch angle can be stabilized using the gravity vector measured by the accelerometers.

Wind sensing is, except for special tasks, not useful for ground robots and is, therefore,

disregarded by our considerations. Range sensors measure the distance to objects

within a certain range. If these objects are static, a mobile system can estimate its

motion based on these measurements. A monocular camera allows to estimate the

rotation and the translation up to scale. The scale of the translation depends on the

distance of the visible landmarks. The crucial requirement is texture - if there is no

visible structure an image-based motion estimation becomes impossible. A camera is

actually an instrument which measures angles (goniometer). Due to the projection of

the 3D world on a 2D image surface, one dimension gets lost and can only be partly

recovered by using several measurements. This loss of one dimension and the large

amount of data makes visual motion estimation algorithms in general complex, error-

prone and slow. Orientation sensors, like a magnetic compass or visual orientation

estimation techniques, can further improve the robustness of motion estimation. A

magnetic compass, e.g., can estimate the yaw angle which can not be determined based

on the IMU measured gravitation vector. For mobile robots, proprioception is only

relevant for odometry estimation in case the robot is ground-based.
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High-level navigation

There are various visual cues which can be used for landmark-based navigation. Fur-

thermore, there are algorithms known which use image differences to follow certain

paths. Odor and taste are only useful if artificial markers are available. Passive acous-

tic localization requires also external sound sources which are not always provided. We

are aiming for a more generic solution and, hence, we neglect these senses. Haptic

sensors are interesting for close distance exploration, narrow spaces or manipulation,

but they are not so useful for navigation in air, e.g., for flying systems. The ground-

based odometry estimates of proprioceptive sensors or prone to drift, but they have the

advantage that they do not rely on the environment and, thus, are always available.

Geometric cues from range sensors are usually not as reliable and robust for navigation,

because either they provide too less variation on a noise-robust level of detail.

Obstacle detection

Visual systems provide obstacle detection in terms of the time to impact defined by

the length of the optical flow vectors. However, again only objects with texture can

be seen. Probably the most important directive for a mobile robot is not to harm a

human being. Despite that, they are usually rather fragile and do not have a chitinous

exoskeleton like insects, which allows them to bump into obstacles if vision fails (in

which case tactile sensing would start playing a role). Hence, a fall-back sensor for

obstacle avoidance would be useful, which replaces the chitin-shell. Obstacle detection

is easiest provided by range sensing devices. For that we do not need a high resolution

or accuracy - a noisier but compact and energy efficient sensor like sonar is sufficient

for this purpose and could provide a sort of “virtual chitinous skin”, which allows some

software to detect a “virtual bumping” into an object and prevent the real contact.

Concluding, we can say, that a camera alone could solve all three tasks in a generic

environment, but only based on one camera it is not possible to estimate the proper

scale which is required by the control loop. Moreover, vision is not applicable to high

dynamic systems due to motion blur and rather small sampling rates. Like every sensor,

also cameras have some drawbacks, e.g., environments with changing light conditions,

poor texture or repetitive pattern which make the feature association quite error-prone.

Hence, we define a minimal sensory equipment to reliably and robustly solve the navi-

gation task by an IMU and a camera, as seen in insects. Cameras allow for a relative

referencing, which prevents drifts as long as the same landmarks are visible, while IMUs

permit robust motion estimates also at high dynamics. Further, IMUs may drift, but

they never fail and always provide measurements at a constant rate. They also allow to
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estimate the proper motion scale. Both are compact and passive sensors which perfectly

enhance each other due to their complementary nature. Really high camera frame rates

would be necessary to replace an IMU by a visual system and one would also loose the

reliability gained by a fail-safe sensor. Anyway, high frame rates should be preferred

to ease the data association problem in landmarks tracking. A wide aperture angle,

as in omnidirectional cameras, provides a robust and reliable navigation and obstacle

detection.

Range sensors provide a very accurate localization and, thus, a reliable motion

estimation in indoor or object-dense environments (e.g. forests, cities, etc.), where

enough measurements are provided by close landmarks. To increase the robustness of

the system in case of failure, an obstacle detection based on range sensors, e.g. sonar,

is recommendable. Any further sensor, like, e.g., a magnetic compass or barometer,

would of course improve the motion estimation and increase robustness but is beyond

a minimalist sensor concept. To navigate between two points in space only as much

accuracy in odometry estimation is necessary as it is required to provide a robust land-

mark association for exteroceptive navigation. Any drift of the egomotion estimation

can then be compensated by the navigation algorithms.

Design of Biologically Inspired Algorithms

Unlike algorithms proposed and implemented by the SLAM community, insects seem to

keep the task of motion estimation and landmark or map based navigation separated.

They have techniques to estimate the egomotion and they have methods to memorize

paths based on various landmarks and cues. They use basic principles, like global and

local path integration, to achieve a high robustness and reliability in navigation, while

keeping the processing costs low. Further, they do not build a geometric map, but rather

store their paths separately and access them independently. This allows for a memory

efficient navigation which is highly scalable. However, it is not efficient anymore as

soon as there are too many, partly overlapping trajectories - some landmarks would

be stored redundantly. In such cases a cognitive map would be more flexible (as, e.g.,

proposed by [103]).

One major characteristic of the visual navigation of insects is that they adapt their

motion to their neuronal processing (“algorithms”). They plan their trajectory contin-

uously based on their current view. This allows to relax the motion problem and when

repeating the path an insect does not even have to memorize how it moved the first

place, but it just has to follow the same usual strategy and it will move the same way

as before. It is not clear from the experiments, whether insects have implemented such
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a concept which would ease memorization a lot. An indication for it is, that different

ants choose almost the same paths to a certain destination, which solely depends on

the available landmarks. On the other side, the experiments also show that insects

memorize local vectors which describe the distance and direction from each landmark

on. A combination of both techniques increases robustness and reliability.

We stated that a visual system should run at high speed, because the sensory system

has to fit the dynamics of the motion, which eases processing. While insects evaluate

every photoreceptor (“pixel”) in parallel, conventional CPUs process the large amount

of image-data sequentially. Hence, it is crucial to reduce the number of pixels to process,

by selecting only pixels which contain relevant information. There is no need to process

pixels showing a white wall, because no motion information can be gathered from it.

By a sparse image evaluation, the processing costs per image are reduced, which allows

for much higher frame rates with all the advantages mentioned before.

By physically separating rotation from translation, the motion estimation in insects

becomes much easier than in the general case. Such a separation would significantly

reduce the processing costs for motion estimation and increase its accuracy.
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Figure 1.3: This flow diagram illustrates significant software modules for an efficient
autonomous robot system which is based on a camera (red) and an IMU (blue). Basically
all tasks can be achieved by processing the camera measurements only. Whereas, the IMU
increases accuracy and robustness especially at high dynamics, and the systems reliability,
because it is a fail-safe sensor which does not depend on the environment. The navigation
map can be based on arbitrary sensors and, thus, these modules are colored in green.

Fig. 1.3 gives an overview about required software modules for our proposed insect

inspired navigation. In this work, we are going to focus on the motion estimation
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task which involves feature detection and tracking, IMU-camera calibration and sensor

fusion with the aim to achieve high frame rates also on resource-limited mobile platforms

by developing efficient image processing algorithms. A more detailed overview is given

in the next section.

1.2 Outline – Towards Efficient Inertial-Visual Navigating

Robots

In this thesis, we do not reason about how to implement special hardware, but from

an algorithmic point of view we start at the lowest level evaluating available methods

and compare them to our own solutions. Keeping the proposed, biologically-inspired

minimal system in mind (see Fig. 1.3), we focus on the following modules: IMU-camera

registration and fusion, optical flow computation and the pose estimation from it as

well as its error propagation. Furthermore, we touch on the topics visual homing,

obstacle detection and its avoidance based on optical flow. Our algorithms have been

developed to allow for a reliable navigation also on resource-limited mobile platforms.

They are designed under the premise of efficiency and reliability - aiming for minimalist

systems providing adequate robustness. To preserve the generic aspects of the various

algorithms, we will introduce them in a top-down manner.

In order to accurately fuse an IMU and a camera, they have to be temporally

and spatially registered. We discuss the importance of proper temporal alignment and

present solutions for it. Moreover, a closed-form solution for the spatial alignment

is introduced, which can be used for a rough registration or the initialization of our

novel batch-optimization based approach, which then is compared to state-of-the-art

methods, proving the accuracy of the algorithm. The sensor measurements are fused

in twofold ways, either by aiding landmark tracking or in an extended Kalman filter.

Aiming for an efficient image-based pose estimation, we analyze our own, biologi-

cally motivated approach, and various variants of the eight-point algorithm. We evalu-

ate them with respect to robustness and accuracy under the aspects of aperture angle,

the number of features and their detection accuracy. Furthermore, we derive a first

order error-propagation, which estimates the expected motion accuracy based on the

available feature correspondences.

We have identified high frame-rate image processing as one major key for robust and

reliable visual motion estimation. The bottleneck in image-based motion computation

is usually the low-level processing of the image. Only by an efficient detection of

feature correspondences, we can provide high motion update rates. Hence, we will
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again enhance state-of-the-art tracking algorithms and evaluate own solutions. The

latter are developed based on the outcome of our accuracy evaluations and under the

constraint of high frame rates. This new feature tracker can handle several hundreds

of features in few milliseconds on low-power processing units.

The presented algorithms are used in various applications, like online 3D-modeling,

virtual environment modeling for surprise detection and autonomous quadrocopter

flights.

This yields the following structure for the rest of this thesis. First off, we introduce

some mathematical concepts in Chapter 2 and related work is discussed in Chapter 3.

Next, we start with our contributions, presenting techniques for IMU-camera registra-

tion and fusion in Chapter 4. In Chapter 5, we introduce our image-based motion

estimation methods and derive the first order error propagations in Chapter 6. The

last theoretic chapter, Chapter 7, tackles our low-level image processing with feature

extraction and tracking. In Chapter 8, we experimentally validate the proposed meth-

ods and present some applications based on our algorithms in Chapter 9. Chapter 10

concludes this thesis and considers future work.
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Chapter 2

Mathematical Framework and

Concepts

In the following, the mathematical framework is introduced and some required mathe-

matical concepts are sketched. The mathematical notation is explained and summarized

in the same named section after the appendix. In addition, the illustration of samples

by boxplots is explained in Appendix A.2.

2.1 Rigid Body Transformations and Coordinate Frames

Let P be a point in the three-dimensional Euclidean space, which is represented

globally by a Cartesian coordinate frame, such that P ∈ R3 and the elements of

P =
(
xP yP zP

)T
denote the Cartesian coordinates. Any rigid transformation

in 3D space can then be represented by a rotation and a translation [104, 105]:

P ′ = RP + t , (2.1)

where R ∈ SO(3,R) represents the rotation and t ∈ R3 the translation. By extending

the point representation to the so called homogeneous form P =
(
xP yP zP 1

)T

the rigid body transformation can be expressed by a single transformation matrix:

P ′ = TP , with T =

(
R t

0 1

)
(2.2)

Because it will always be clear from the context we renounce of marking point repre-

sentations according to whether they are homogeneous or not.
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Within this work we assume that the motion of all points in space is the same and,

thus, they are all part of a rigid body. The question remains, which coordinate frame is

used as reference for the description of motion or indication of points. For example, each

sensor measures relative to its own coordinate system. In order to combine different

measurements, the alignment between these coordinate frames has to be known. First,

let us assume a global (world) coordinate frame W defining the global origin and the

global x-, y-, and z-directions by its X-, Y-, and Z-axis. The alignment between each

couple of coordinate frames can be described by a transformation matrix ATB, where

this matrix denotes the transformation from B to A.

Leading superscripts denote the frame of reference, while successive superscripts

denote the sensor which acquired the measurements. Hence, e.g. the rotational velocity

at time instance t, measured by a camera but expressed in the IMU coordinate system

I is described as IωCt . In case of translations, we require two successive subscripts

to express the start and end frame of the translation. Thus, e.g. WtCI denotes the

translation from the camera frame to the IMU frame expressed in the world frame.

In Eq. 2.1 we assume that the points move relative to the frame of reference. How-

ever, in mobile robot navigation the main task is to estimate the motion of the robot

relative to some fixed landmarks. Thus, the landmarks are assumed to be static, while

the sensors on the robot experience the motion. Hence, the motion of the points can

be explained by the inverse of the motion of the sensor which measures the landmarks,

leading to the following motion equation and the inverse transformation matrix

P ′ = RT (P − t) and T−1 =

(
RT −RT t

0 1

)
. (2.3)

We will choose between the representations in Eq. 2.1 and Eq. 2.3 depending on

which formulation is more adequate and eases the understanding.

2.2 Rotation Representations

There are several ways how a rotation may be expressed. The different representations

and their conversions are fairly well described in literature [105]. Hence, we will focus

on the formulas and relations required in the next chapters. Following representations

will be used: Euler angles, direction cosine matrices (DCMs), Euler angle-axis, Tsai

angle-axis and quaternions.

To solve the ambiguity of sign in the angle-axis representations, the absolute angle

is chosen to be always positive. The Tsai angle-axis representation p (as described
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in [106]) of a rotation with absolute angle θ and unit length rotation axis p̂ can be

computed by

p = 2 sin

(
θ

2

)
p̂ | θ > 0 (2.4)

A DCM is denoted by R, which has the characteristic to be orthonormal, while

a quaternion is usually represented by q and has the property to have unit length.

The fourth element of the quaternions q4 represents cos
(
φ
2

)
, where φ is the absolute

rotation angle, and, thus, the only real parameter. A bar over a quaternion denotes

the inverse rotation

q̄ =




−q1
−q2
−q3
q4


 . (2.5)

The operator ⊙ denotes the quaternion product so that CqA=
CqB ⊙ BqA.

The conversion from an arbitrary rotation representation into a DCM or a quater-

nion is described by the functions R=DCM(. . .) and q=Q(. . .), respectively.

Small Angle Approximations

Sometimes it is helpful to use approximations for small rotations. In the following we

list a few relations which will be used later on:

δq =




xσ sin
(
σ
2

)

yσ sin
(
σ
2

)

zσ sin
(
σ
2

)

cos
(
σ
2

)


 ≈

σ≈0




xσ
2
yσ
2
zσ
2
1


 , (2.6)

whereas σ is the absolute rotation angle and σ̂ is the unit length rotation axis of the

rotation σ and δq denotes a small quaternion rotation. Such quaternions can then be

represented by only their imaginary parts

δq̃
!
=



δq;1
δq;2
δq;3


 =

σ≈0



xσ
2
yσ
2
zσ
2


 . (2.7)

Moreover, we use

∆R ≈
σ≈0

I3+[σ]× ≈
σ≈0

I3+2 [δq̃]× and ∆T
R ≈

σ≈0
I3− [σ]× ≈

σ≈0
I3−2 [δq̃]× , (2.8)

where ∆R is a small rotation expressed as DCM.

25



2. MATHEMATICAL FRAMEWORK AND CONCEPTS

2.3 Camera Model

In this work, we make use of the pinhole camera model [107, 108]. A pinhole camera

provides a perspective projection from 3D to 2D. Any point P in 3D space is projected

onto the image plane according to following formula

r̃ = f
P

zP
= f




xP
zP
yP
zP

1


 def

= fr (2.9)

where r and r̃ denote the projections of the 3D point onto the unit focal or real image

plane in the camera coordinate system respectively.

The exact pixel location in the image coordinate frame, with pixel coordinates u

and v, can, thus, be computed by

p =

(
u
v

)
=

( f
sx

xP
zP

+ ox
f
sy

yP
zP

+ oy

)
=

(
fx

xP
zP

+ ox

fy
yP
zP

+ oy

)
(2.10)

with sx, sy being the pixel size in x- or y-direction, while ox, oy represents the pixel-

offset of the principle point to the upper left corner, which is the origin of the image

coordinate frame C. This relation can also be written in matrix form, resulting in the

so called intrinsic camera parameter matrix

K =



fx s ox
0 fy oy
0 0 1


 . (2.11)

The skew factor s, which allows to model a relation between the X- and Y-axis can

usually be neglected, because such a relation only exists if the chip is not mounted

parallel to the lens as it usually only occurs in cameras of low quality. Hence, this

factor has not been listed in Eq. 2.10 for the sake of clarity. However, there is a further

step necessary to provide the nonlinear mapping of the division:

p =

(
u′

w′

v′

w′

)
, with



u′

v′

w′


 = Kr . (2.12)

The intrinsic parameters consist also of the radial distortion introduced by the

lens. In this work, we assume in general already undistorted points, if not mentioned

differently. The transformation parameters, a rotation CRW and a translation CtW or a
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homogeneous transformation matrix ITW , denoting the spatial alignment of a camera

to its frame of reference (e.g. the world coordinate frame, a second camera, a robot, or

an other device) are called extrinsic parameters. Fig. 2.1 sketches the pinhole camera

model with the involved coordinate frames.
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Figure 2.1: This drawing illustrates the camera projection with the intrinsic and extrinsic
camera parameters. While the real image plane is behind the optical center (the pinhole,
the point through which all the rays go), it is usually easier for imagination to assume a
plane which is in front of the optical center. In this plane all the objects are upright and
not mirrored as in the real image plane.

We calibrate the intrinsic and extrinsic parameters of the camera with CalDe and

CalLab [109].

2.4 Optical Flow

Optical flow is the pattern of apparent motion in a visual scene caused by the relative

motion between an observer, e.g. eye or camera, and the scene [107, 108]. Any element of

the observer gets connected to the element where the projected point in space appeared

in the last time-step, which yields a dense vector field between two images. These so

27



2. MATHEMATICAL FRAMEWORK AND CONCEPTS

called optical flow vectors contain information about the relative rotation, translation

and distance of the observer to any object in the scene. The length of an optical flow

vector is defined by the ratio between the relative velocity of the projected point and

its distance and, thus, represents the time-to-collision. This information can be used

for obstacle detection. Sparse optical flow denotes the variant where the optical flow

is computed only for a few elements (e.g. pixels of an image) and not for the whole

projection (dense optical flow).

Assuming a static environment this concept can also be used for motion estimation.

If only translation is applied, all optic flow vectors intersect in two points on a sphere,

the focus of expansion (FOE) and focus of contraction (FOC), whereas at most one

of them is visible in pinhole cameras where it is called epipole. The axis through the

optical center and the FOE denotes the direction of motion, thus, the orientation of the

optical flow vectors relative to the epipole reveals the sign of the direction of motion. If

the vectors are pointing away from the epipole, the motion is towards it (epipol equals

FOE), and otherwise away from it (epipol equals FOC). If a general motion is applied,

the computation of rotation and translation becomes more complicated, but it is still

possible by closed form solutions as we will see in Section 3.3.

2.5 RANSAC

The Random Sampling Consensus algorithm (RANSAC) is an iterative framework to

find parameters for a given model from a data set including outliers [110]. In each

iteration, a smallest possible data subset is randomly chosen to calculate the model

parameters. This model is then applied to the residual data set and the elements are

split into fitting elements (inliers) and non-fitting elements (outliers). This step is

repeated several times and the best model, according to the number of inliers and their

residual error, is chosen. Preemptive RANSAC is a variant which allows the algorithm

to leave the loop in case that a certain quality criterion applies also before the maximum

number of iterations is reached.

2.6 IMU Strapdown Computation

An inertial measurement unit measures only 3D motion derivatives: the angular ve-

locity, as the first derivative of the attitude, is provided by the gyroscopes and the

translational acceleration, as the second derivative of the position, is gathered by the

accelerometers. These measurements are acquired in the IMU-frame (or body-frame) I,

the coordinate frame which is rigidly attached to the sensor unit and, thus, to the
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moving platform. The measurements are in respect to a fixed reference frame F, the

so called inertial-frame, which has its origin in the center of the Earth and a rigid

orientation in respect to the fixed stars. Another important reference frame is the

navigation-frame N. Its origin corresponds to the one of I, but the X- and Y-axis are

aligned with the North and East direction, respectively, while the Z-axis points to the

Earth center.1

The accelerometers, however, measure not only the forces due to translational ac-

celeration, but also the earth’s gravity force and the Coriolis force, which results from

the Earth’s rotation. In a strapdown computation, one computes the pose from the

measurements of an IMU [111]. For that the rotation and the translational veloc-

ity has to be propagated from the former measurements and the Coriolis and gravity

force compensated motion derivatives are integrated. In presence of vibrations and if

the strapdown computation runs slower than the IMU sampling rate, also other ef-

fects, like coning and sculling, play an important role (the interested reader is referred

to [111] for further explanations). For the sake of compactness, weight and price we

will use sensors which are based on the technology of micro-electro-mechanical systems

(MEMS), but which are more noisy than, e.g., optical IMUs and suffer from biases. We

assume to sample the IMU at its maximum rate and, hence, we will neglect aforemen-

tioned effects as well as the influence of Earth rotation in our strapdown computation.

This results in following strapdown equations.

The attitude quaternion at time-step k + 1 can be computed by

NqI;k+1 = NqI;k ⊙ I;kqI;k+1 (2.13)

where I;kqI;k+1 results from the measured rotational velocity IωI , which is assumed to

be constant for the sample-time ∆t, by the small-angle approximation

I;kqI;k+1 =


 cos

(
‖σ‖
2

)

σ
‖σ‖ sin

(
‖σ‖
2

)

 with σ = IωI ∆t . (2.14)

The new position of the body-frame NtFI;k+1 can be computed by integrating the

current velocity NvFI;k and the measured translational acceleration NaFI;k+1, which is

also assumed to be constant over the sampling time,

NtFI;k+1 = NtFI;k + NvFI;k∆t +
1

2
NaFI;k+1∆t

2 (2.15)

1For the sake of simplification a fixed world reference frame W might be assumed in other chapters
with an arbitrary origin and orientation.
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where
NvFI;k+1 = NvFI;k +

(
I3 + NRI;k+1

1

2
[σ]×

)
NaFI;k+1∆t (2.16)

and
NaFI;k+1 = NRI;k+1

IaIk+1 +
Ng (2.17)

with IaIk+1 the measured acceleration and Ng = (0 0 9.81)T the gravitation vector.

For a derivation of these equations please refer to [111].

2.7 Kalman Filter Equations

The Kalman filter is an optimal filter for linear problems with zero-mean, white Gaus-

sian noise [112]. A lot of work can be found in literature about this data fusion con-

cept [111, 113]. In this section, we will only mention the two steps, the propagation

and the update, for the indirect (or error-state) Kalman framework and its general

equations which we will in the following refer to. Any Kalman filter variation applied

in this work will be introduced and discussed at the point we will use it.

Propagation

The Kalman filter requires a linear dynamic model which describes the transition from

the error state δ+x;k of time instance k to δ−x;k+1

δ−x;k+1 = Fk+1δ
+
x;k + Gk+1nx,k , (2.18)

where Fk+1 is the state transition matrix and Gk+1 maps the system noise nx,k to the

state space. The covariance matrix P+
k propagates as follows:

P−
k+1 = Fk+1P

+
k F T

k+1 + Gk+1QkG
T
k+1 (2.19)

with Qk denoting the system noise matrix.

Update

As soon as a measurement zk+1 is acquired, the residual rk+1 between it and the

estimated measurement ẑk+1 is computed by

rk+1 = zk+1 − ẑk+1 . (2.20)
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Now, an update step can be performed, which fuses the propagated state and the ac-

quired measurement. For that we compute the innovation Sk+1 by the measurement

matrix Hk+1, which represents the mapping between the state space and the measure-

ment space, and the covariance matrix Lk+1 of the new measurement

Sk+1 = Hk+1P
−
k+1H

T
k+1 + Lk+1 . (2.21)

The so called Kalman gain Kk+1

Kk+1 = P−
k+1H

T
k+1S

−1
k+1 (2.22)

is then used for the covariance update

P+
k+1 = P−

k+1 − Kk+1Hk+1P
−
k+1 (2.23)

as well as the state update

δ+x;k+1 = δ−x;k+1 + Kk+1 rk+1 . (2.24)
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Chapter 3

Related Work

In this section, we are going to discuss relevant approaches in literature and state-of-

the-art solutions for the different topics we are treating within this work. These include

image features and their tracking techniques, motion estimation algorithms and sensor

fusion relevant methods.

3.1 Image Features

Thinking of a camera as a sensor for motion estimation, one prerequisite is inevitable:

a relation between two images has to be established. The way how such a relation is

determined bears probably the most significant aspect regarding robustness, reliability

and accuracy in image based navigation. Either every pixel of the whole image is

used, which is only feasible on parallel processing units, or with the reduction of the

amount of pixels to process by evaluating their relevance. The properties commonly

considered for this purpose are intensity, color, and texture. An exception is the feature

proposed by Kovesi [114, 115], which is based on the phase congruency of the image’s

frequencies. These features are lighting insensitive, but require an evaluation of the

image in the frequency domain, which is processing intensive. The detection of color

or texture features bears in general a computational overhead and, thus, we do as well

not consider them here.

In Section 1.1.2, we have seen, that from a biological point of view there are three

characteristics of a possible landmark which have to be considered: salience, perma-

nence and reliability. Salience is probably the most crucial property. The more salient

a gradient is, the more accurate its location and, hence, the motion can be determined.

The permanence of a feature is an aspect which can only be evaluated over time and,

thus, is only crucial for landmark-based navigation but not for visual odometry. The
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reliability of feature detectors is usually referred to as repeatability by the computer

vision community. This value represents how often, and, thus, how reliable, a feature

can be found in a sequence of images.

Compared to edges and color cues, corners are more accurate and provide a two

dimensional constraint. Considering corners as intersection of two edges, these features

have no spatial extension and, therefore, there is no ambiguity in their location. Of

course, this aspect is only valid, if the locality of a corner is preserved and the response of

a detector is as close as possible to the real corner location. Several different approaches

of corner extraction are known in literature. All aim for an efficient, accurate and/or

reliable detection – three rather conflicting characteristics. In the following, we will

mention the most popular feature detectors and explain more in detail the ones related

to our proposed solutions. For a more comprehensive survey please refer to [116].

The Harris corner detection algorithm is probably one of the most popular corner

extraction methods [117]. It is based on the first order Taylor expansion of the second

derivative of the local sum of squared differences (SSD). The eigenvalues of this linear

transformation reveal how much the SSD approximation varies if the patch would be

shifted along the image axes. There are solutions which interpret the eigenvalues based

on a threshold [118] or without [119].

So called global matching algorithms allow features to be detected within the whole

image. Therefore, a corner detector has to provide a high repeatability, so that it detects

the same features also after large affine transformations. The global tracker SIFT [120,

121] (scale invariant feature transform) uses difference of Gaussians (DoG), while the

faster SURF [122, 123] (speeded up robust features) uses a Haar wavelet approximation

of the determinant of the Hessian. A generalization of the DoG detector for box- and

octagon-like shapes is presented as CenSurE [124] (center surround extrema).

Smith developed the so called smallest uni-value segment assimilating nucleus test

(SUSAN) [125] for corner detection. The brightness of the center pixel, the nucleus,

is compared to its circular pixel neighborhood, and the area of the uni-value segment

assimilating nucleus (USAN) is computed. Corner and edges can be detected by eval-

uating this area, or it can be used for noise reduction, too. The advantages of this

approach are, that neither noise sensitive derivation nor other computationally expen-

sive operations have to be performed. In [125], a circular disc with diameter 3.4 is used,

which yields a total area of 37 pixels.

In the last decade, the processing power of standard computers has become fast

enough to provide corner extraction at video rate. However, running conventional cor-

ner detection (e.g. the Harris corner detector) and performing other intensive tasks,

is still computationally infeasible on most single processor. With the introduction of
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recent techniques such as Rosten’s features from accelerated segment test (FAST) [126],

feature extraction has seen a significant performance increase for real-time Computer

Vision applications. While being efficient, this method has proven in several applica-

tions to be reliable due to high repeatability [127].

In this thesis, we are going to present a novel corner detection approach, which is

based on the same corner criterion as FAST, but which provides a significant perfor-

mance increase for arbitrary images. Unlike FAST, the corner detector does not have

to be trained for a specific scene, but it dynamically adapts to the environment while

processing an image. For a better understanding of our approach, we will sketch FAST

in more detail in the next section.

3.1.1 FAST Revisited

The FAST principle is based on the SUSAN corner detector. Again, the center of a

circular area is used to determine brighter and darker neighboring pixels. However, in

the case of FAST, not the whole area of the circle is evaluated, but only the pixels on

the discretized circle describing the segment. Like SUSAN, FAST uses a Bresenham’s

circle of diameter 3.4 pixels as test mask. Thus, for a full accelerated segment test 16

pixels have to be compared to the value of the nucleus. To prevent this extensive test,

the corner criterion has been even more relaxed. The criteria for a pixel to be a corner

according to the accelerated segment test (AST) is as follows: there must be at least S

connected pixels on the circle, which are brighter or darker than a threshold determined

by the center pixel value. The values of the other 16 − S pixels are disregarded.

Therefore, the value S defines the maximum angle of the detected corner. Keeping

S as large as possible, while still suppressing edges (edges result in S = 8), increases

the repeatability of the corner detector. Thus, FAST with segment size 9 (FAST-9)

is usually the preferred version, and is also used in our experiments unless otherwise

stated. The AST applies a minimum difference threshold (t), when comparing the value

of a pixel on the circular pattern with the brightness of the nucleus. This parameter

controls the sensitivity of the corner response. A large t-value results in few but strong

corners, while a small t-value yields also corners with smoother gradients. In [127] it

is shown, that the AST with S=9 has a high repeatability, compared to other corner

detectors as, e.g., Harris, DoG, or SUSAN. The repeatability of a corner detector is a

quality criterion which measures the capability of a method to detect the same corners

of a scene from varying viewpoints.

One question still remains, namely which pixel to compare first, second, third,

and so forth. Obviously, there is a difference in speed, whether one consecutive pixel
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after another is evaluated or, e.g., bisection on the circle pattern is used to test if

the corner criterion applies or cannot apply anymore. This kind of problem is known

as constrained twenty questions paradigm. When to ask which question results in a

decision tree with the aim to reduce its average path length. In [128], Rosten uses

ID3 [129], a machine learning method, to find the best tree based on training data

of the environment where FAST is applied. Doing so, it is not guaranteed that all

possible pixel configurations are found (see Section 8.1.2). Already small rotations of

the camera may yield pixel configurations which have not been measured in the test

images. Even if all the pixel configurations are present, a small rotation about the

optical axis would drastically change the probability distribution of the measured pixel

configurations. This may result in an incorrect and slow corner response. To learn the

probabilistic distribution of a certain scene is, therefore, not applicable, unless only the

same viewpoints and the same scene are expected. Please note that the decision tree

is optimized for a specific environment and has to be re-trained every time it changes

to provide the best performance.

The decision tree learning used by the FAST algorithm builds a ternary tree with

possible pixel states “darker”, “brighter” and “similar”. At each learning step, both

questions, “is brighter” and “is darker”, are applied for all remaining pixel and the

one with the maximum information gain is chosen. Hence, the state of each pixel can

be one of four possibilities: unknown (u), darker (d), brighter (b) or similar (s). In

the following, we call a combination of N states a pixel configuration. The size of the

configuration space is therefore 4N , which yields 416 ≈ 4 · 109 possible configurations

for N = 16. For the rest of this thesis, we refer to this model as restricted or four states

configuration space.

FAST-ER, the most recent FAST derivation, has even a slightly increased repeata-

bility, compared to FAST-9, at the cost of computational performance [127]. The main

difference is the thickness of the Bresenham’s circle, that has been increased to 3 pixels.

This results again in a more SUSAN-like algorithm, which spans a circular area of 56

pixels, disregarding the inner 3x3 pixels. Again, ID3 is used to build the decision tree,

restricting the evaluation to only a small part of the 47 pixels.

3.2 Feature Trackers

In the previous section, we discussed image cues, which are salient enough to be re-

detected in different images. Feature trackers describe techniques how features can

be followed from image to image and how the data association problem between the
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feature sets of two images can be solved. There is a large number of approaches avail-

able in literature, which can be categorized into dense or sparse optical flow methods.

Similar concepts arise for both types. The only difference is that the dense approaches,

e.g. [130], can use the proximity constraint to solve ambiguities and/or to smooth the

result, e.g. by using total variation [131]. Further, feature trackers can be divided into

• global trackers, which consist of a detector and a descriptor. They can find

features in images which have been acquired from two quite different viewpoints

(e.g. SIFT [120, 121], SURF [122, 123], BRISK [132], etc.) and

• local trackers, which are much more efficient and use gradient descent tech-

niques to find the new feature location (KLT [133], SSD [134], etc.) or tracking

by matching methods, which provide similar to global trackers a detection and

description stage, but the descriptor can be significantly relaxed, because they

also use the local proximity condition of the features (e.g. PTAM [135]).

Global tracking methods use computationally expensive descriptors and, hence,

their matching is in general not real-time capable. Only recently, an efficient global

matching algorithm, BRISK [132] (binary robust invariant scalable keypoints), has

been proposed, which uses an efficient corner detector, namely AGAST (which we

will present in Section 7.2.1), and, thus, allows online feature tracking at 25Hz on

a conventional computer. The descriptor is a smart combination of the rotation-

invariant BRIEF [136] (binary robust independent elementary features) and the multi-

scale DAISY [137]. BRIEF is the most efficient global feature descriptor, a derivative

of LBP [138] (local binary patterns), which allows an efficient matching due to binary

operations on gray-scale comparisons. It is not rotation invariant, but has proven to

yield comparable results to upright SURF (U-SURF), a rotation-invariant variation of

SURF, while being about 25 times faster than U-SURF. However, even though BRISK

allows for an image processing at video-rates, it is not feasible for high frame-rates on

embedded systems. For the sake of efficiency and generality, we are aiming for sparse

image processing of subsequent images of a sequence, focusing only on salient pixels or

pixel-groups. Hence, we do not require global features and, thus, we will not further

discuss global tracking algorithms and their descriptors but focus on local tracking

approaches, which are relevant for our work.

The Kanade-Lucas-Tomasi (KLT) tracker uses gradient images to approach the

corresponding image patch by an iterative gradient descent method. For the derivation

of the original formulas refer to [133, 139]. In general, Shi-Tomasi features are used

for KLT tracking, which are Harris corners with the smallest eigenvalue larger than a
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specified threshold [118]. These features have been derived to optimally fit the KLT

tracker. The so called Bouguet-implementation of KLT is a more efficient, pyramidal

implementation of the tracker, which is based on a few assumptions and modifications

of the derivation [140].

Davison’s MonoSLAM 1 algorithm uses Shi-Tomasi features to implement tracking

by matching [141], while Klein’s parallel tracking and mapping (PTAM)1 algorithm uses

FAST features for this purpose [135]. FAST features are more efficient to compute,

which allows to process much more features. However, a large number of features

worsens the data association problem and, hence, PTAM uses image pyramids with

several levels to limit the search areas for the features. In both cases SSD, is used to

evaluate whether the features correspond or not.

3.3 Motion Estimation Techniques

Once feature correspondences between two images are known and the environment can

be assumed to be rigid, the relative motion of the camera between the locations of image

acquisition can be estimated. However, this information is not directly accessible due

to the perspective projection from 3D to 2D of a regular camera. As introduced in

Section 2.3, one degree of freedom, namely the distance, is lost.

An efficient way of computing the motion between two images are closed form solu-

tions. However, the aforementioned missing information gives space to ambiguities and

error sensitivities, which we will evaluate in Section 8.2. Solutions based on nonlinear

optimization achieve a higher accuracy, but they are computationally more expensive

and require in general a measurement history. If the 3D structure of the landmarks

is known for both images, the problem becomes reduced to a registration of two 3D

point-clouds. If the 3D structure is only available for one image, the task can be solved

by iterative methods. Such solutions are much more stable, but require a landmark

initialization.

There exist also egomotion estimation techniques based on dense optical flow,

e.g. [142], which we disregard at this point, because they are computationally too

expensive on generic, sequential platforms. In addition, special motion estimation

algorithms have been developed for omnidirectional cameras [143, 92, 93]. These algo-

rithms, however, significantly lose performance as soon as the aperture angle becomes

reduced. Even if we aim for camera systems with a large FOV, we can not guarantee,

that there is adequate texture in the environment which makes the full view usable.

Hence, we will focus on generic solutions, which work for arbitrary aperture angles.

1We will discuss these approaches more in detail in Section 3.3.3.
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In the following, we derive the well-known eight-point algorithm and some of its

variants, which we will evaluate in Section 8.4.1. Furthermore, we will discuss state-of-

the-art optimization and iterative approaches. At the end of this part, we will briefly

describe the concept of active matching.

3.3.1 Closed Form Solutions

According to Eq. 2.1, which represents the rigid body transformation, and the camera

projection, described in Eq. 2.9, the components Rr, r′ and t must be coplanar and,

thus, linear dependent. Consequently, their scalar triple product must be zero:

r ′T (t×Rr) = r ′T [t]×Rr = 0 (3.1)

This yields a fundamental linear mapping between two images: the Essential matrix

E, which describes the mapping between two sets of points on the unit focal image

plane in the camera coordinate frame and the Fundamental matrix F , which denotes

the mapping between two sets of points in the image coordinate frame [144]

KTFK = E = [t]×R , (3.2)

with K introduced in Eq. 2.11. At this point, we want to mention that the mapping

Fp = e yields the so called epipolar line e and the point p′ needs to lie on this

line resulting in a dot product of zero. An extensive derivation of this mapping and

a summary of the properties of the Fundamental and Essential matrix can be found

in [108]. We are interested in estimating the relative motion in 3D and, thus, in the

following, we assume calibrated cameras and undistorted image features, which allows

us to estimate the Essential matrix E.

By mapping the matrix E = {Eij} column-wise into a single column vector

E → e =
(
E11 E21 E31 E12 E22 E32 E13 E23 E33

)T
=
(
e1 . . . e9

)T

(3.3)

we get a linear system of equations

A =
(
urur′ urvr′ ur vrur′ vrvr′ vr ur′ vr′ 1

)
(3.4)

with Ae = 0. Furthermore, the notation ur and vr denotes the x- and y-coordinates

in the image, corresponding to the image ray r . To solve this system of equations one
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needs at least eight point correspondences stacked on top of each other

A =




ur1ur′
1

ur1vr′
1

ur1 vr1ur′
1

vr1vr′
1

vr1 ur′
1

vr′
1

1

ur2ur′
2

ur2vr′
2

ur2 vr2ur′
2

vr2vr′
2

vr2 ur′
2

vr′
2

1
...

...
...

...
...

...
...

...
...

urNur′
N

urN vr′
N

urN vrNur′
N

vrN vr′
N

vrN ur′
N

vr′
N

1


 (3.5)

As Eq. 3.1 reveals, the Essential matrix has only five degrees of freedom. Hence, less

than eight points should be necessary to estimate E depending on which and how many

constraints of the Essential matrix are used. There exist so called seven-, six- and five-

point algorithms [145, 146, 147]. These algorithms are, in general, computationally

more expensive and more sensitive to measurement errors [148]. Therefore, we will

focus on the eight-point algorithm and its variants [149, 150].

Eight-Point Algorithm

The eight-point algorithm basically consists of solving the homogeneous linear system

denoted in Eq. 3.5. Due to measurement noise, this system will in general not be zero.

Thus, we need to solve for

e = argmin
e

(‖Ae‖) (3.6)

subject to the constraint ‖e‖ = 1. The solution to this constrained minimization

problem, obtained by means of Lagrangian multipliers, is given by the eigenvector

corresponding to the smallest eigenvalue of ATA [151]. Hence, the solution can be

found by a singular value decomposition of A into

SVD (A) = UAΣAV T
A . (3.7)

and using the last column of VA

e = VA,−9 . (3.8)

In some literature, you find also a factor of
√
2 in above formula. This factor would

enforce the Essential Matrix to have ‖E‖F =
√
2 according to

‖E‖2F = ‖ET ‖2F = tr
(
EET

)
= tr

(
[t]×RRT [t]T×

)
= tr

(
[t]×

(
− [t]×

))
= 2 (3.9)

with t having unit length. We will take this normalization into consideration in a few

steps.

A major improvement of the conventional eight-point algorithm was first proposed

by Hartley [149]. He observed, that the image coordinates are usually of different
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magnitude than the focal length, which leads to an ill-posed singular value decompo-

sition. Hence, Hartley suggested, in defense of the eight-point algorithm, to transform

the input data before estimating the Essential matrix. Introducing two transforma-

tion matrices, S and S′, we are able to manipulate the input of the algorithm, which

improves the computational condition for estimating E:

r′TEr = 0 (3.10)
(
S′r′

)T
S′ −TES−1 Sr = 0

r′TS′T S′ −TES−1 Sr = 0

r̂′T Êr̂ = 0 . (3.11)

The matrix E can then be retrieved by

E = S′T ÊS . (3.12)

In order to make the computation as robust as possible according to total least

squares estimation, the following matrices for S and S′ are chosen [152]. S provides

an anisotropic normalization of r

S = chol(M)−1 with M =
1

N

N∑

i=1

rir
T
i (3.13)

and the Cholesky decomposition chol(M) = K, whereas K is an upper triangular

matrix with M = KKT . N denotes the number of available point correspondences.

S′ describes a shift of the origin and an isotropic scaling for r′

S′ =



s 0 −sc1
0 s −sc2
0 0 1


 with c =

1

N

N∑

i=1

r′i;1:2 and s =

√
2

1

N

∑N
i=1 ‖r′i;1:2 − c‖

,

(3.14)

thus, c denotes the centroid and s an isotropic scaling factor averaging the length of

each point to the length of
(
1 1 1

)T
.

As next, we enforce the singularity constraint of the Fundamental Matrix, replacing

the smallest singular value by zero. Furthermore, the non-zero singular values of the
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Essential matrix have to be one, thus, the modifications would look like

F̄ = UF diag(σF ;1, σF ;2, 0) V
T
F with SVD(F ) = UF diag(σF ;1, σF ;2, σF ;3) V

T
F

(3.15)

Ē = UEΣĒV
T
E = UE diag(1, 1, 0) V T

E with SVD(E) = UEΣEV
T
E (3.16)

where diag(d1, . . . , dn) denotes a diagonal matrix with the entries d1, . . . , dn. This

modification allows to neglect the aforementioned factor
√
2 in Eq. 3.8.

In [152], a further concept for robustification is proposed. The SVD based solution

of an overdetermined linear system in Eq. 3.7 minimizes the error for each entry of the

matrix A. In Section 6.1, we will derive the first order perturbation of the matrix AT .

To ease understanding at that point, we will solve for the transposed Essential matrix

which leads to a permuted matrix ∆T

Å
of ∆T

A. This matrix looks like

∆T

Å
=perm

row (1,4,7,2,5,8,3,6,9)

(
∆T

A

)

∼=




δu1u
′
1 + δu′1u1 δu2u

′
2 + δu′2u2 . . . δuNu

′
N + δu′

N
uN

δv1u
′
1 + δu′1v1 δv2u

′
2 + δu′2v2 . . . δvNu

′
N + δu′

N
vN

δu′1 δu′2 . . . δu′
N

δu1v
′
1 + δv′1u1 δu2v

′
2 + δv′2u2 . . . δuN v

′
N + δv′

N
uN

δv1v
′
1 + δv′1v1 δv2v

′
2 + δv′2v2 . . . δvN v

′
N + δv′

N
vN

δv′1 δv′2 . . . δv′
N

δu1 δu2 . . . δuN
δv1 δv2 . . . δvN
0 0 . . . 0




(3.17)

and for the case where no error in the first image can be assumed, the perturbation

matrix looks like

∆T

Å
∼=




δu′1u1 δu′2u2 . . . δu′
N
uN

δu′1v1 δu′2v2 . . . δu′
N
vN

δu′1 δu′2 . . . δu′
N

δv′1u1 δv′2u2 . . . δv′
N
uN

δv′1v1 δv′2v2 . . . δv′
N
vN

δv′1 δv′2 . . . δv′
N

0 0 . . . 0
0 0 . . . 0
0 0 . . . 0




. (3.18)

This is, e.g., the case using KLT (see Section 7.1), which looks for matches of a specific

patch and, thus, is error-free by definition.

The conventional SVD does not consider, that the last or last three rows of the error
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matrix are zero, respectively. A generalization of the Eckart-Young-Mirsky approxima-

tion theorem, first mentioned in [153], allows to account for it and to find the smallest

perturbation of a submatrix which lowers the rank of a matrix [154]. Let C ∈ RN×(9−z)

and D ∈ RN×z denote the error-prone and error-free submatrix of Å respectively, with

z being the number of error-free columns in Å

Å =
(
C D

)
. (3.19)

Then, by row compression, we yield

UT
DÅ =

(
C1 D1

C2 0

)
with UDΣDV T

D = SVD(D) (3.20)

which allows us to estimate the matrix ∆C , the smallest perturbation which lowers the

rank of matrix Å to rk
(
Ã
)
= 8 and

Ã =
(
C +∆C D

)
, (3.21)

whereas

∆C = UD

(
0

∆C2

)
with ∆C2

= −UC2
diag

(
0, . . . , 0, σ8−rk(D)+1, . . . , σ9−z

)
V T
C2

and UC2
diag(σ1, . . . , σ9−z)V

T
C2

= SVD(C2) ,

(3.22)

assuming that N ≥ 9. In case the features are tracked throughout an image sequence,

the initial features are error-free and, thus, z = 3. While in case of tracking-by-

matching, as described in Section 7.2.1, the number of error-free columns becomes

reduced to the last one and, hence, z = 1.

Decomposition of the Essential Matrix

Once the Essential matrix has been computed, it can be decomposed into translation

and rotation. By modifying the polar decomposition of Ē we yield

Ē = UEΣĒV
T
E = UEΣĒ WZUT

E UEZW V T
E

= [t]× R
(3.23)

with

W =



1 0 0
0 1 0
0 0 det

(
UEV

T
E

)


 , Z̃ =



0 −1 0
1 0 0
0 0 1


 (3.24)
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and

Z =

{
Z̃T if

(∑
iA

+
i t
)T

12 < 0 with Ai =
(
−Rri r′i

)

Z̃ else
. (3.25)

Furthermore, A+
i denotes the Moore-Pennrose pseudoinverse of Ai. This case distinc-

tion disambiguates whether the points lie in front or behind the image plane. Again,

only one correspondence has to be checked in the noise free case, but otherwise, several

feature correspondences should be tested to provide a reliable result. Assuming only a

small rotation, the following more efficient test for Z can be used, where only the first

two diagonal elements are checked to be positive:

Z =

{
Z̃T if R1,1 +R2,2 < 0

Z̃ else .
(3.26)

The translation vector can be easily found as the unit vector minimizing

t̃ = argmin
t

(∥∥ĒT t
∥∥) , (3.27)

which corresponds to finding the unit eigenvector of ĒĒT associated with the smallest

eigenvalue

t̃ = UE;−,3 . (3.28)

It remains to solve for the ambiguity of sign:

t =

{
−t̃ if

∑
i (Rri × r′i)

T
Ēri < 0

t̃ else
(3.29)

Actually, only one correspondence has to be checked in the noise free case, but with

noise, far distant features, which are translation invariant, would cause this test to be

more or less random. Thus, in practice one needs to use a few correspondences to ensure

a reliable result or just one close feature which has a large measurable translational

component.

3.3.1.1 Implementation Variants

The aforementioned variation concepts are evaluated in four different implementation

variants, which are described in the following and named according to their inventors:

• original eight-point (Longuet-Higgins variant): this implementation con-

sists of the unmodified image rays of Eq. 3.10 and, thus, uses the A-matrix as
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described in Eq. 3.5.

• Hartley variant: this variant uses isotropic scaling for both sets of image rays,

S and S′, as denoted in Eq. 3.14.

• Mühlich variant: this variant uses anisotropic scaling for the first image rays

and isotropic scaling for the rays of the second image as introduced in Eq. 3.14

and 3.13.

• Mühlich TLS-FC variant: this variant uses the same normalization as the one

before, but implements also the fixed-column perturbation estimation as seen in

Eq. 3.21.

3.3.2 Iterative Solutions

Other approaches exist, which solve for the rotation and translation in an iterative

way [143, 155]. In the following, we will sketch one such iterative method, Visual-

GPS (VGPS), more in detail, because we will describe an enhanced version of it in

Section 5.2.1.

VGPS estimates the camera motion from a set of tracked landmarks, knowing the

distance of the features up to scale in the reference frame [155, 156]. The method

assumes a reference image C0 and, thereby, solves the relative orientation problem of

determining the pose of the camera C0Tt at time-instance t with respect to C0. For that

it requires an internal 3D model (a set of N points, Pi, i∈{1..N}, in the scene) attached

to C0. This model can be constructed in an arbitrary way (e.g. stereo triangulation, see

Section 7.1.1). The exterior orientation between the current frame and the reference

3D model is computed as follows: an additional tentative 3D model P̂ ′
i is generated

from the 2D projections in the images r′i by using approximated ranges only. These

ranges are estimated from the preceding pose estimation in t−1. Thus, the problem is

reduced to finding the relative orientation between these two sets of points Pi and P̂ ′
i .

This can be solved in closed form using the singular value decomposition.

In a nutshell: Relative translation and rotation are estimated separately. The

origins of the sets of points are set to their respective centroids without modifying their

orientations

C =
1

N

N∑

i=1

Pi C ′ =
1

N

N∑

i=1

P̂ ′
i

P ∗
i = Pi −C P̂ ′∗

i = P̂ ′
i −C ′ . (3.30)
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The camera rotation between these sets of points of the same model corresponds to the

relative rotation between the camera and the reference frames and can be calculated

by maximizing the trace of the inertia matrix of the matched set:

C0R = argmax
R

(
trace

(
RT M

))
with M =

N∑

i=1

P̂ ′∗
i P ∗

i . (3.31)

The solution to this equation can be found in [157] by

C0R = VMUT
M with SVD(M) = UMΣMV T

M . (3.32)

The camera translation can also be computed in closed-form as the distance between

the rotation compensated centroids of the two 3D point sets:

C0t = C − 1

n
C0R

n∑

i=1

P ′
i . (3.33)

Since the tentative 3D model P̂ ′
i may differ from the reference one, the final solution

is found iteratively by optimizing the unknown ranges of the tentative model at the

same time. The algorithm terminates whenever sufficient consistency between the

reference and the original set of points is achieved. The convergence rate depends

on the measurement errors, the location of the features in 3D space and the quality of

the initial parameters.

3.3.3 Least Squares and Maximum Likelihood Solutions

Optimization based solutions are in general computationally complex and suffer from

limited workspaces. However, these kind of approaches become more and more popular

due to the increasing computational power. However, we do not aim to solve a task with

the most powerful processing platforms available, but we want to estimate the motion

reliably with as less resources as possible to allow for other parallel processes and to

be also feasible for smaller, low-current, and resource-limited platforms. Nevertheless,

the approaches we are going to mention in this section are real-time state-of-the-art

solutions, which solve the task of motion and scene structure estimation in a highly

robust way.

MonoSLAM uses an extended Kalman filter (EKF) to predict and fuse the mea-

surements [141]. While this approach works fine for a small number of features, it does

not scale well. The filter state vector and the covariance matrices are not real-time

feasible anymore as soon as too many features are used.
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In contrast, PTAM is a keyframe based approach, which looks for feature corre-

spondences between the current and the keyframe image [135]. As soon as the overlap

is below a certain threshold, a new keyframe is acquired. The relative locations of

neighboring keyframes are estimated in an optimization framework based on the com-

mon features. Thus, two processes, real-time feature tracking and online1 keyframe

mapping, run in parallel and asynchronous. In a later work, this algorithm has been

extended to support also so called edgelets (pieces of lines) [158]. In this way, it became

more robust against motion blur. Furthermore, the huge map sizes limit the algorithm

to small rooms. To overcome this, the maps can be swapped from the physical memory

to the hard drive to allow for larger environments [159].

The question, whether filter or batch-optimization based approaches should be

preferred, has been answered in [160]. The outcome of the experiments shows, that

keyframe optimization yields higher accuracy per processing unit than filter based ap-

proaches. Only if small processing budges are available, filter should be preferred to

bundle adjustment methods.

Most recently a bundle adjustment based motion estimation and scene reconstruc-

tion has been proposed which processes the dense optical flow of the full image [161].

This became feasible by implementing the processing expensive parts of the optimiza-

tion framework on a GPU. No tracking is required due do the use of every pixel in the

image.

3.3.4 Active Matching

Thinking of efficient feature tracking and pose estimation the concept of active match-

ing (AM) cannot be neglected [162, 163]. The idea is to not search for all feature

correspondences before estimating the motion, but track feature per feature and use

the gained information to estimate the possible motion, which reduces the search space

for the remaining ones. By sequentially choosing the features with the highest innova-

tion gain, the search space can be narrowed down drastically by each iteration reducing

the tracking time significantly. However, the question remains, whether this speed up

compensates for the overhead of computing the search spaces and the innovation gains

for the remaining features in each step. Nevertheless, the concept is highly interesting

and we will make use of it in an application presented in Section 9.1.

1With the word online we denote a process, which runs not necessarily in real-time, but processes
the data at run-time.
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3.4 Fusion of IMU and Camera Measurements

Each sensor has its drawbacks and weaknesses. As motivated in Section 1.1, one sen-

sor is not reliable enough for a general application. For instance, a camera facing a

featureless wall cannot provide navigation information, a laser does not detect glass,

an IMU drifts and suffers from biases, sonar is not accurate due to echoes, GPS and

magnetometers do not work indoor, and so forth. Hence, only by fusing various sensors,

we will achieve a robust and reliable pose estimation for a variety of environments and,

thus, applications. A requirement for any sensor fusion is, that their relative pose is

calibrated online or in an offline registration step.

In this work, we focus on the combination of cameras and IMUs. Before we list dif-

ferent fusion techniques for IMU-camera setups, we will first discuss sensor registration

methods available in literature with focus on IMU-camera setups.

3.4.1 IMU-Camera Registration

For a proper fusion of the measurements, the spatial alignment of the sensors has

to be known. However, most IMU-camera calibration approaches neglect a further

important registration issue: the temporal alignment. Especially for highly dynamic

motions, where the signal to noise ratio of the IMU becomes practical, an accurate

alignment is crucial. If the sensors contain a clock and provide a time-stamp for their

samples, one can just synchronize the clocks or the time-stamps to temporally align

the measurements. Several solutions exist to synchronize clocks (an overview is given

in [164]) or the time-stamps (a survey is given in [165]). Unfortunately, cameras and

IMUs provide in general just the sensor data and sometimes also a sample counter, but

the first real time-stamp is usually only set by the driver on the host computer. Hence,

a different synchronization concept must be applied.

Temporal Alignment

Various approaches exist which describe how to fuse measurements which suffer from

time delays in filters. Some of them assume, that the delay is known apriori [166, 167,

168]. Li and Leung estimate the time delay in an unscented Kalman filter [169]. Julier

and Uhlmann show how measurements with random and unknown delays can be fused

using the covariance union algorithm [170]. Tungadi and Kleeman estimate the time

delay between a laser-range sensor and the odometry measurements of a mobile robot

by computing the phase shift of a periodic motion [171]. They do not consider any
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error introduced by slippage or outlier of the range samples. Furthermore, for their

method the spatial alignment of the measurements is required.

Recently, Kelly and Sukhatme presented an approach to estimate the time delay

between a proprioceptive and an exteroceptive sensor [172]. The so called Time Delay

Iterative Closest Point (TD-ICP) algorithm tries to minimize the distance between the

orientation trajectory in 3D space by estimating the angular and temporal alignment

between the sensors. Estimating the angular trajectory by the IMU requires an error-

prone strap-down computation and also the camera orientation would suffer from drift

if no global landmarks, e.g., a checkerboard, are provided. Moreover, in this work, any

jitter of the time-stamps is neglected.

The time delay could also be estimated within an optimization framework, as, e.g.,

the one we will use for the spatial alignment and which is introduced in Section 4.2. For

that the batch-based optimization algorithm has to be enhanced by a further optimiza-

tion parameter which denotes the time delay. However, the computational complexity

would increase significantly because a temporal dependency prevents several assump-

tions which speed up computation. In the case at hand, the B-spline matrices repre-

senting the trajectories would not be constant anymore and the convergence capability

would probably be reduced due to an additional degree of freedom.

Spatial Alignment

Two sensors can be spatially aligned by relating their relative measurements of at least

two motions. Such a relation of a motion in two different coordinate systems is a

well-known problem in robotics. It appears every time a flange mounted sensor has

to be calibrated relative to the robot’s wrist. This problem is known as “AX=XB”

problem, where A and B are the known motions and X the unknown transformation

between the respective coordinate systems. It has first been motivated in the 1980’s

– today, several closed form solutions exist [173, 174, 106, 175, 176]. Especially the

registration of a camera relative to a robot, the so called hand-eye calibration, has

been intensively discussed [177, 178, 179, 180].

The problem in IMU-camera registration1 is a little bit more tricky. A camera can

estimate the proper motion, as long as the scale of some objects in the scene is provided.

IMUs, in contrast, do not directly measure the motion, but only the first derivative of

the angular motion, the angular velocity, and the second derivative of the translational

motion, the acceleration. Furthermore, its measurements are rather noisy and, hence,

high dynamics are necessary to provide an appropriate signal to noise ratio (S/N) for

1In the style of “hand-eye calibration” this problem would be called “vestibule-eye calibration”.
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an accurate registration. Both, the gyroscopes and the accelerometers, suffer from a

bias, which can only be estimated, if properly fused with another sensor. Finally, the

accelerometer measures also the Earth’s gravitation, which makes it generally impos-

sible to process its measurements without knowing the current orientation relative to

the Earth’s center. Hence, without any assumptions, there is no other way than to

estimate the trajectories of the IMU and, thus, to fuse IMU and camera already at

the registration stage. However, by special setups and measurement arrangements the

registration problem can be reduced to allow for a direct estimation of the rotation and

translation.

Several inertial-visual calibration techniques came up in the last years. They can

be categorized in three different classes: closed-form solutions by reducing the system’s

complexity, Kalman filter based approaches and methods which make use of optimiza-

tion techniques.

Lobo and Dias make use of the gravitation vector, measured by the accelerometers,

and a vertical calibration pattern to estimate the rotational alignment of the inertial-

visual system [181, 182]. The translation between the devices is then estimated by

using a turntable. The accelerometers have to lie in the center of the turntable, so

that they become the center of rotation. In this way, simplified equations known from

hand-eye calibration can be used to solve for the translation. While this approach has

the advantage to be static and does not need dynamic motions, the necessary system

setup is rather cumbersome and error-prone.

The most popular solution is to use an extended or unscented Kalman Filter (EKF,

UKF) to estimate the sensor alignment. Approaches of this category implement the

following states in their filter: position, orientation, linear and angular velocity, bias of

the gyroscopes, bias of the accelerometer and, finally, translation and rotation between

IMU and camera.

Kelly and Sukhatme present an UKF based calibration algorithm which can be

based on artificial or natural landmarks [183, 184]. The idea is to allow a robot to

simultaneously explore the environment while calibrating its sensors. If the calibration

step is done offline, the computational overhead of the UKF becomes irrelevant, while

it provides a higher order approximation than the EKF and should, thus, be preferred.

Mirzaei and Roumelioutis register the camera and IMU by fusing the corner loca-

tions of a checkerboard in the camera images with the measurements of the gyroscopes

and the accelerometers [185]. For that they use an error-state (indirect) Kalman Fil-

ter. An initialization stage to find good start values precedes the filtering. Moreover,

they also analyse the observability of the Kalman Filter, with the result that only
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rotations in two degrees of freedom are necessary to estimate the IMU camera transfor-

mation [186]. As benchmark for their experiments, they use an optimization framework

where they minimize the error between measurements and state estimates as described

in [187]. The states and the covariance matrices are linearly propagated as within an

EKF, which is similar to the approach described next.

Hol et al. estimate the spatial alignment using a common system identification

technique [188]. The innovation in an EKF is minimized by standard gradient descent

methods. Their experiments are promising, but one drawback is that the EKF linearizes

the motion model which yields significant errors, especially with large rotations.

Lang and Pinz use a constrained nonlinear optimization method to calculate the

angular misplacement between gyroscopes and a camera [189]. For that they compare

the angles between two camera frames with the integrated gyroscope samples.

3.4.2 Fusion Concepts

There are several approaches known in literature how inertial and visual information

can be fused. These approaches can be split into two groups. The first are batch-

optimization approaches, where the inertial information and the image location of vi-

sual landmarks are fused by bundle-adjustment methods [190]. We will make use of

such techniques in our novel IMU to camera registration approach, described in Sec-

tion 4.2. However, these methods are only feasible for offline processing and, thus, are

not discussed further.

Almost all real-time solutions known in literature rely on Kalman filter concepts.

Some solutions make use of the more accurate but also more computationally complex

UKF [184, 191, 192], while the more familiar, because more efficient, framework is the

EKF [193, 194, 195]. Depending on the application also other derivatives might be

of advantage [196]. There are two different concepts how the visual information can

be fused with the inertial measurements, which let us distinguish between loosely or

tightly coupled systems. Tightly coupled systems model the cross-relations of all the

observed landmarks in the video stream, resulting in a SLAM framework, together with

the inertial measurements [193, 197]. For that they add the landmark location to the

state vector which limits the workspace of these approaches due to a quickly increasing

complexity of O
(
n2
)
, with n being the number of landmarks. Loosely coupled systems,

on the other hand, fuse the inertial measurements with the visual odometry computed

from the feature correspondences. Some of them only use the information of the gravity

vector [198]. In any case, the state vector remains constant and does not grow with

the number of features, which results in a constant complexity of O (n).
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An interesting approach in between loosely and tightly coupled techniques is the

one of Mourikis and Roumeliotis which, similar to the aforementioned Klein’s PTAM,

add the camera viewpoints of selected keyframes to the state vector [194]. Due to an

intelligent formulation of the filter problem they achieve high accuracy while still being

real-time capable.

However, for an online sensor fusion on resource-limited platforms a loosely mea-

surement fusion seems to be the only alternative. Independent of the fusion framework

and the measurement and motion model formulation one has to tackle two major is-

sues if designing such a filter. One is to estimate the proper scale from the acceleration

measurements of the IMU and the other is to model the measurement uncertainties

properly. Nützi et al. implemented a window based spline fitting for scale estima-

tion [199]. They model the scale parameter already in the motion model which yields

redundancies in the state vector due to the representation of the scale as the norm of

the position and the extra scale variable. Further, the spline fitting is not real-time

capable. Weiss and Siegwart modeled the scale as measurement variable [195]. They

use PTAM for motion estimation which allows them to estimate the absolute poses,

while it delimits the workspace. They model the visual motion sensor as black box and,

hence, they do not take care of a proper model for the measurement uncertainties in

the camera domain, where they actually occur.

We are interested in long distance navigation and do not want to restrict the robots

workspace. We aim for fast motions in an arbitrary large application area and accept

small drifts while moving, as it is the case for any odometry based approaches. Hence,

we have relative visual motion measurements. Such information can be modeled by so

called stochastic cloning as introduced by Roumeliotis in [200]. With a camera we can

measure the direction of translation and we can try to keep the relative translational

scale.

In [201], an overview of different measurement models is given. According to that,

there are four ways to set up a filter. One can use the sensor coordinate frame to model

also the motion which results in pseudo-accelerations and highly nonlinear transitions

matrices. Another way is to transform the measurements in the Cartesian frame which

results in tricky uncertainty correlations [202]. The most familiar approach is to use a

hybrid approach mixing the Cartesian and measurement coordinate frames, e.g. using

pseudo-measurements [203]. The last and most rare solution in literature is to use a

completely different coordinate frame which depends on the application.
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Chapter 4

Fusion of IMU and Camera

As motivated in Section 1.1, multimodal perceptions should be combined to compensate

for the drawbacks of single sensors and, thus, achieve a reliable estimation. The same is

valid for cameras and IMUs. The former depend on the environment, requiring textured

scenes and proper lightening conditions, while the latter suffer from long-term drifting.

These characteristics can be overcome by combining the sensors. Cameras provide drift-

free references and IMUs are fail-safe sensors, providing measurements at equidistant

time instances. Hence, IMUs and cameras are rather complementary sensors which

gratefully enrich each other if properly fused. However, this characteristic makes the

registration of these sensors problematic and complex. Before we describe the fusion

of the measurements, we will focus on the temporal and spatial registration, which is

crucial for an accurate fusion of any sensor pair.

Estimating the temporal and spatial alignment simultaneously allows the delay es-

timate to compensate for the spatial alignment error. It seems reasonable to avoid such

a compensation and assume, that the temporal and the spatial alignment are not corre-

lated. By computing the time delay in a pre-processing step of the spatial registration,

as shown in Section 4.1, rejects such a correlation and prevents any influence of the

time lag estimation by the spatial alignment error.

In the following the letters C, G, I, and W denote quantities relative to the camera

(C), gyroscopes (G), IMU (I – in general I=G, but G is more specific) and the global

(world) reference frame (W) respectively, or measurements of a specific sensor.

4.1 Temporal Alignment

Any calibration step starts with the data acquisition. While the calibration approaches

for most sensors are based on static acquisition, gyroscopes need some dynamics to
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provide a reasonable signal to noise ratio. Hence, the temporal alignment of the sen-

sors becomes crucial. Most sensors do not provide any time-synchronization mech-

anism (a prototype for a hardware-synchronized IMU-camera setup is presented in

Appendix A.5), nor do they provide a time-stamp in their data packages. Thus, the

only hint to “guess” the measurement time is the time-stamp from the driver on the

host PC when the sample is received. However, this time-stamp suffers from

• delay, due to the acquisition time, buffers on the sensors or/and on the host

interface and due to the bus used for transmission,

• jitter, the driver on the host side has to be scheduled in order to set the time-

stamp,

• data jams, the processor is busy with tasks of higher priority and cannot process

the arriving samples - these are buffered and all get almost the same time-stamp

as soon as the driver becomes active again.

Thus, the problem arises how to interpret these time-stamps and whether it is reason-

able at all to make use of them. In three steps we correct the time-stamp sequences

of both sensors and align them: first, the sampling period has to be estimated, then

missing samples and data jams have to be detected and fixed so that, finally, the sample

sequences can be aligned.

One assumption can be made which holds for most sensors, namely, that the sensor

itself acquires the measurements with a constant frequency. Calibration sequences are

usually rather short, thus, temperature dependent variations can be neglected at this

point. Hence, the first thing to do is to estimate the sampling period. For that we

compute the median med∆t of all differences between two consecutive time-stamps.

This rough, but robust, estimate of the sample period is then used to detect all valid

sample differences, where valid is defined as a time interval ∆i between the time-

stamps ti−1 and ti which varies only up to half the sampling period. Thus, we define

the indicator function v (∆i) which detects valid samples as

v (∆i) =

{
1, if 1

2 med∆t < ∆i <
3
2 med∆t

0, else
. (4.1)

Doing so, excessively long and short acquisition times resulting from missing sam-

ples and data jams respectively are rejected while allowing for up to 50% jitter. The

acquisition period m̄T can then be computed as the mean of all valid time differences.

Now, that we know the acquisition period, we can remove jitter, look for missing

samples and sample jams and, thus, provide equidistant time-stamps. Data jams are
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characterized as long gaps between the time-stamps with a sequence of extremely short

time differences following. A sample jam can only be recovered if the number of samples

after the gap until the first valid sample interval corresponds to the number necessary

to fill the gap. In case there are too few samples to fill the gap, all samples from the

jam have to be rejected, because it is not possible to figure out which samples have

not been buffered. This follows the strategy to reject samples rather than use false

measurements. In case the sensor provides a counter, it can be used to detect missing

samples and to partially recover data jams even in the absence of some measurements.

The residual gaps in the time-stamp sequence represent missing samples and both, the

time and measurement sequence, can be filled with values “NA” at this points, denoting

unavailable samples.

The sequences have now temporally equidistant samples with period m̄T . We can

estimate the jitter-free time-stamp of the first sample, t̄0, by computing the mean of

all deviations

t̄0 =
1

|Sv|
∑

i∈Sv

(ti − i m̄T ) , (4.2)

with Sv={i | i ∈ {1..N−1} : v (ti − ti−1)=1} denoting the set of all valid time-stamps

and N being the number of samples. Finally, we can align the sequences.

In the following CRC
∆i

denotes the inter-frame DCM resulting from the image based

motion estimation and Gφ̇Gt ,
Gχ̇Gt and Gψ̇Gt represents the angular velocity measured

by the gyroscopes at time instance t. While the frames in which the camera and

the gyroscopes measure the rotations may be different, the measured absolute angular

velocities θ̇t are frame independent and, hence, equal up to an unknown measurement

error eG and eC

θ̇Gt + eG = θ̇Ct + eC . (4.3)

The absolute rotational velocity of the camera at the temporal midpoint between two

images, ti−0.5, can be computed by

θ̇Cti−0.5
=

θC∆i
m̄T ;C

, with ti−0.5 = ti −
m̄T ;C

2
. (4.4)

In the following, we present two different approaches for the temporal alignment of

a camera and an IMU. Both methods are only based on the measurements of the gyros

and, thus, could also only be used for a systems which does not provide accelerometers.
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4.1.1 Temporal Alignment by Cross-Correlation

One way to find the time delay between the sensors is to solve following problem:

δtG2C = argmax
δt


∑

i∈Sv

θ̇Gti+δt θ̇
C
ti


 (4.5)

A brute-force solution to this problem is to use cross-correlation, which has the nice

property to be robust against white noise. The conventional cross-correlation allows

sequences to be aligned only up to sampling accuracy. To overcome this problem, a

higher sampling resolution with sampling interval ∆t can be used by interpolating the

sequences. In the following we assume, without loss of generality, that the time interval

of the acquired gyro measurements is longer than the one of the camera. The problem

to solve becomes

δtG2C = ∆t argmax
k

(
{xcorr (k)}Nxk=−Nx

)
(4.6)

with Nx = NC
m̄TC
∆t

and NC denoting the total number of valid and invalid camera

samples. The cross-correlation function is defined as

xcorr (k) =

{
1
Nx

∑K
i=0 θ̇

G
i∆t+ k∆t

θ̇Ci∆t if k ≥ 0
1
Nx

∑K
i=0 θ̇

G
i∆t

θ̇Ci∆t+ k∆t
else

, (4.7)

whereas K =
m̄TC (NC−1)−k∆t

∆t
, which clips the overlapping sequences. The interval for

k can also be reduced to speed up processing. The interpolation causes an error which

is proportional to the kind of the chosen approximation. Furthermore, if the temporal

displacement is too large, cross-correlation may not find the optimal fit anymore because

the overlap of the sequences becomes too small.

4.1.2 Temporal Alignment by Phase Congruency

Another way to address this problem is to evaluate the measurement sequence in fre-

quency domain. For that the measurements have to be transformed in the frequency

domain F (ω). The amplitude and the phases of the signal can be computed by

A (ω) = |F (ω) | , ϕ (ω) = arg (F (ω)) (4.8)

The phase shift between the common frequencies reveals the temporal alignment, GδtC .

Considering the amplitude, high frequencies consist mainly of the measurement noise

and the lower frequencies contain the bias of the gyroscopes. Furthermore, frequency
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bin 0 has a large spectral leakage because the absolute angles are defined to be only

positive. Therefore, we ignore all frequencies before the first minimum in the spectrum.

To suppress outliers and noise we introduce the following normalized weighting function

which amplifies similar measurements with large amplitude

w (ω) =


∑

ω∈Fv

1

w′ (ω)


w′ (ω) with (4.9)

w′ (ω) = (1−
maxA(ω) −minA(ω)

maxA(ω)
)minA(ω)

=
min2

A(ω)

maxA(ω)
,

maxA(ω) = max
(
GA (ω) , CA (ω)

)
, (4.10)

minA(ω) = min
(
GA (ω) , CA (ω)

)

and Fv being the set of all valid frequencies. Of course, to prevent ambiguities it is

only possible to compute delays up to π
ω
, which is half the period of the respective

frequency. Converting the difference of the sensor specific phases to time we yield

following weighted time difference

δtG2C =
∑

ω∈Fv

w (ω)

(
kω2π + Gϕ (ω)− Cϕ (ω)

)

ω
, (4.11)

where kω is the factor which brings the respective frequency in the range of the delay.

These factors have to be computed in a second iteration. A manually chosen maximum

delay is used to pick all the valid frequencies with a period smaller than this threshold.

Based on the phases and amplitudes of these frequencies the time delay is computed

and the factors kω for the rest of the frequencies are estimated. Now all frequencies can

be used to refine the estimate. In our experiments in Section 8.5.1, we compare also

an alternative where we rely only on the most significant phase shift corresponding to

the frequency bin with the maximum weight max (w (ω)). This method is based on the

assumption that less noise is involved in the estimate, even though it should be less

robust.

A conventional Fast or Discrete Fourier Transformation (FFT, DFT) does not allow

for gaps in the signal. A generalization of the DFT which can also deal with such gaps

is presented in [204] and is called Extended Discrete Fourier Transform (EDFT):
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Fα (ω) =
K−1∑

k=0

x (kT ) α (ω,kT ) (4.12)

where, in general, α (ω,kT ) 6= e−jωkT . It is an iterative algorithm which tries to

find a transform basis function which is applicable to a band-limited signal registered

in a finite time interval and providing the results as close as possible to the Fourier

transform. Based on this transformation we can compute the magnitudes and the

phases even for sequences with gaps.

4.1.3 Online Adaption

As already mentioned earlier, changes or drifts of the sensor clocks may be neglected for

the registration because of the short time span of the sequence. In case an application

has to run for hours or even longer, both sample periods have to be synchronized in

order to ensure proper temporal alignment and, thus, accurate data fusion, e.g., in a

Kalman filter. This can be done by adapting the assumed sample rate m̄T ;I = m̄G;I

and m̄T ;C online, e.g., by a low-pass filter on the valid sample times. In this way, one

should always provide equidistant time-stamps, whereas the period is adapted by the

low-pass filter. Furthermore, it is crucial to always read the complete buffer to detect

data jams and, thus, to avoid reading deprecated samples instead of current ones.

We compare the two presented approaches in Section 8.5.1 and evaluate the impor-

tance of proper temporal alignment.

4.2 Spatial Alignment

Once the time-line is fixed and the offset between the time-stamps of the IMU and the

camera measurements is known, one can estimate the spatial alignment between the

sensors. We propose to model the problem of determining the relative pose and orien-

tation of camera and IMU as a nonlinear batch-optimization problem. Contrary to the

EKF-based methods, we are not propagating the states and covariances throughout a

measurement sequence, but we optimize based on the real nonlinear motion by model-

ing the trajectory of the sensors. Any filter-based estimation is performed sequentially

instead of using the whole batch of data as it is the case in our solution. Hence, our

registration considers all available information at the same time and does not estimate

the constant IMU-camera alignment on a sample-by-sample basis. Within this opti-

mization framework, we seek to determine the trajectory of the unit together with the

calibration parameters for some calibration data sequence. Since the problem is of very
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high complexity and many parameters and characteristics of the employed sensors are

unknown, it is necessary to introduce reasonable assumptions.

In our case, the assumption is that the trajectory associated with the calibration se-

quence can be modeled by means of twice differentiable smooth parametric curves Ip(t)

and Ir(t) describing position and orientation in the IMU coordinate frame at time t,

respectively. The IMU coordinate frame has been chosen for the sake of computational

efficiency, as we will see later. Quaternions will be used to represent orientations, thus
Ir(t) is a four-dimensional curve, while Ip(t) is intuitively a three-dimensional one.

The basic idea of our method is as follows: IMU and camera can be seen as sensors

that deliver measurements that are a result of the same motion, observed from different

coordinate systems. Given accurate measurements as well as accurate calibration data,

we would be able to align the measurements based on the different base coordinate

frames of the sensors. Conversely, we can evaluate the quality of calibration values

by measuring the alignment between measurements. This leads directly to the idea of

optimization of calibration parameters by maximizing the alignment.

The measurements delivered by the IMU are the rotational velocity vector ωI ∈ R3

and the linear acceleration aI ∈ R3. Depending on whether the camera observes un-

known or known landmarks, it can provide relative or even absolute measurements.

For the sake of generality, we assume relative translational and rotational measure-

ments, which we interpret as linear and rotational velocities, vC ∈ R3 and ωC ∈ R3,

by knowing the sampling period.

4.2.1 Objective Function

Relationships between the measurements of the different sensors can be established as

follows [105, 111]:

Iω̂t = IωIt − IeωI ,t = IRC

(
CωCt − CeωC ,t

)
(4.13)

and

IaIt − IeaI ,t +
IRW

Wg = IRC

(
Cv̇Ct − CėvC ,t

)
− Iω̂t ×

(
Iω̂t × ItIC

)
− I ˙̂ωt × ItIC (4.14)

In above formulæ, Iω̂t denotes the real, error-free angular velocity, ex represents the

error of a specific measurement x, and Wg is the gravitation vector (0, 0,−9.81)T .
Measurements of cheap MEMS gyroscopes and accelerometers are not only affected by

white noise, but also by a bias, which has to be modeled explicitly. We will denote the

bias values for gyroscope and accelerometer by bωI and baI , respectively. Since the
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bias values change extremely slowly over time, we adopt the common assumption that

they are constant during the registration sequence.

Unfortunately, a direct comparison as outlined above is not possible, because the

sensor measurements occur at different time instances. Hence, we need a model which

allows to interpolate the motion at arbitrary points in time. In our optimization ap-

proach, we want to minimize the differences between the measurements and, thus, we

aim to minimize the error between all samples and a motion model which inherently

interpolates these measurements. The measurement errors δx;i at time-instance i can

be formulated by following equations:

δωI ;i = IωIi − bωI − I
ω(ti) (4.15)

δaI ;i = IaIi − baI +
Ir(ti)⊙

(
ITvq

Wg
)
⊙ Ir̄(ti)− Ip̈ (ti) (4.16)

δωC ;i = IRC
CωCi − I

ω(ti) (4.17)

δvC ;i = IRC
CvCi + I

ω(ti)× ItIC − Iṗ (ti) (4.18)

with

I
ω(t) = 2 Ivq

(
Ir̄(t)⊙ Iṙ (t)

)
, (4.19)

Ivq =



1 0 0 0
0 1 0 0
0 0 1 0


 , (4.20)

Ir̄(t) = diag (−1,−1,−1, 1) Ir(t) (4.21)

and ti representing the measurement time of sample i. The operator ⊙ denotes the

quaternion multiplication. Please note that the equations are simpler if the trajectory

is modeled relative to the IMU frame. The only measurement revealing information

about the real orientation of the IMU relative to the world coordinate frame is the

gravity vector. However, this becomes irrelevant if we also estimate the orientation of

the gravity vector relative to the initial pose of the IMU I0g. Hence, the trajectory starts

at the origin of the IMU coordinate frame, aligned to its axes and can be estimated

independently of the world coordinate frame. That way, Wg in Eq. 4.16 can be replaced

by I0g.

The errors are weighted with the pseudo Huber cost function h(δ) [108], which is

differentiable and robust against outliers. It is defined as

h(δx,i) = 2b2x



√

δTx,iδx,i

b2x
+ 1 − 1


 . (4.22)
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A common choice for bx is 3σx, where σx denotes the standard deviation of the noise

and x the kind of measurements for ωI , aI , ωC or vC , respectively.

Concatenating the matrices of all the error vectors ∆x = (δx,1 . . . δx,Nx), with Nx

the respective number of measurements, yields the total error matrix

∆ = (∆ωI ∆aI ∆ωC ∆vC ). Thus, the objective function g(∆) can be formulated

as

g(∆) =
∑

x∈{ωI ,aI ,ωC ,vC}

(
1

σ2x

Nx∑

i=1

h(δx,i)

)
. (4.23)

4.2.2 B-Spline Based Trajectory Modeling

The model for our trajectory representation needs to be twice differentiable to provide

the second derivative of the position for acceleration estimation Ip̈(t) (see Eq. 4.16).

Therefore, we use a cubic B-spline curve in our approach as continuous, twice differen-

tiable trajectory model. Using this curve model certainly constitutes a restriction, since

it imposes a number of constraints on the trajectory. Note however, that it is still more

general than the commonly encountered assumption of piecewise linearity of motion,

which is usually made in filter-based approaches. We are now going to introduce our

notation used for B-spline curves. For more detailed information about B-splines, see

[205] or [206]. We define a B-spline curve as

s(t) =

M∑

i=1

ci b
k
i (t), (4.24)

where ci ∈ Rd are the d-dimensional control point values, bki (t) denotes the i-th basis

function of order k and M is the number of knots. The B-spline order k can be chosen

arbitrarily as long as it is at least four. This is required because the trajectory curve

has to be at least twice continuously differentiable, since we also need to compute

the acceleration from the position spline. We use a cubic B-spline that is of order

k = 4, which is equivalent to a piecewise linear approximation of the acceleration

measurements. With c, we denote the vector
(
cT1 cT2 . . . c

T
M

)T ∈ RMd of concatenated

control point values. Furthermore, we assume that an equidistant knot sequence is

used.

It is well-known, that B-splines are linear in parameters, which means that the

evaluation of above equation at several parameter locations t = (t0 t1 . . . tn) is equivalent

to computing the matrix-vector product B(t) c for a suitable basis matrix B(t). More

61



4. FUSION OF IMU AND CAMERA

formally, this is expressed as

(
s(t1)

T s(t2)
T . . . s(tn)

T
)T

= B(t) c . (4.25)

For d-dimensional control point values, the basis matrix has the shape

B(t) =




bk1(t1) bk2(t1) . . . bkm(t1)

bk1(t2) bk2(t2) . . . bkm(t2)
...

...
. . .

...

bk1(tn) bk2(tn) . . . bkm(tn)


⊗ Id, (4.26)

where ⊗ denotes the Kronecker matrix product, and Id is the d × d identity matrix.

It is obvious, that if the vector of parameter locations t remains constant, so does

the matrix B =B(t). The time-stamps of the measurements are constant due to the

previous temporal alignment and, hence, the matrix B has to be computed only once.

Furthermore, it is well-known that B-spline derivatives are again B-splines, and as such

are again linear in parameters. In our optimization process, we are going to evaluate the

spline and its derivatives at the respective measurement time stamps. This means that

spline derivatives can also be computed by simply evaluating B′c for some appropriate

matrix B′ representing the basis matrix of the derived spline.

In our implementation we need a B-spline of dimension d = 7 and, thus, ci ∈ R7 to

model the IMU pose
Is(t)=

(
Ip(t)

T Ir(t)
T
)T

. (4.27)

Note that the quaternions are constrained to be of unit length, as described in Sec-

tion 4.2.3, which yields the expected six degrees of freedom for rigid body motion.

The control point vector of the B-spline is part of the parameter vector θ subject

to optimization. Furthermore, this vector contains the two IMU bias terms, the initial

direction of the gravity vector, the quaternion and the vector describing the transla-

tion between the IMU and camera coordinate system. For the sake of generality, we

also model the scale factor α of the measured camera velocity, assuming that natural

landmarks are used and the scale of translation is unknown and, thus, is also estimated

in our optimization:

θ =
((
cT1 c

T
2 . . . c

T
M

)
bT
ωI

bT
aI

IqTC
I0gT ItTIC α

)T
. (4.28)
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4.2.3 Constraints and Optimization Details

There are some constraints on a few parameters which have to be satisfied for the

optimization. The unit property of the control points of the B-spline and of IqC has to

be ensured. Furthermore, the gravity vector has to be of length 9.81 and the first control

point of the spline is constrained to represent zero rotation and zero translation to avoid

dependencies in the optimization parameters. This is because both the direction of the

gravity vector and the pose of the IMU are going to be optimized – at the beginning of

the trajectory one of these parameters has to be fixed to prevent redundant degrees of

freedom. All these requirements can be formulated as equality constraints which have

to be zero:

req;1 =
M∑

i=1

(‖ci‖)−M (4.29)

req;2 =
∥∥IqC

∥∥− 1 (4.30)

req;3 =
∥∥I0g

∥∥− 9.81 (4.31)

req;4 = c1 −
(
t0
q0

)
(4.32)

with t0=03 and q0=
(
0 0 0 1

)T
.

We use sequential quadratic programming (SQP) as optimization algorithm, be-

cause it is known to work well for nonlinear optimization problems and it allows to

implement equality contraints [207].

For optimization purposes it is generally necessary to compute the gradient of the

objective function, as well as an appropriate Hessian approximation. The gradient of

the objective function can be computed by applying the chain rule to Eq. 4.23 as

∂g(∆)

∂θ
= J

∑

x∈{ωI ,aI ,ωC ,vC}

(
1

σ2x

Nx∑

i=1

∂h(δx;i)

∂∆

)
, (4.33)

with J being the Jacobian of the error matrix ∆ relative to the parameter vector θ.

The derivative of the pseudo Huber cost function is stacked by

∂h(δx;i)

∂∆
=

(
∂h(δx;i)

∂∆ωI

T ∂h(δx;i)

∂∆aI

T ∂h(δx;i)

∂∆ωC

T ∂h(δx;i)

∂∆vC

T
)T

(4.34)
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with

∂h(δx;i)

∂∆x
=

(
∂h(δx;i)

∂δx,1

T

. . .
∂h(δx;i)

∂δx,Nx

T
)T

(4.35)

and
∂h(δx;i)

∂δx,i
=

−2√
δTx,iδx,i

b2x
+ 1

δx,i . (4.36)

The Jacobian J can be described by following components

J =
∂∆

∂θ
=
(
Jc Jb

ωI
Jb

aI
JIqC JI0g JItIC Jα

)
, (4.37)

which can be computed in a straight-forward manner. The main part of the Jacobian

consists of the control points Jc=
(
JT
c;ωI

JT
c;aI

JT
c;ωC

JT
c;vC

)T
where each Jc;x looks

like

Jc;x =




∂δx;1
∂c1

∂δx;1
∂c2

. . .
∂δx;1
∂cM

∂δx;2
∂c1

∂δx;2
∂c2

. . .
∂δx;2
∂cM

...
...

. . .
...

∂δx;Nx
∂c1

∂δx;Nx
∂c2

. . .
∂δx;Nx
∂cM




(4.38)

and each
∂δx;i
∂cj

has two parts:

∂δx;i
∂cj

=
(
∂δx;i
∂cp;j

∂δx;i
∂cr;j

)
(4.39)

with cp;j and cr;j the position and rotation component of the control points modeling

p(tj) and r(tj), respectively. For approximating the Hessian of the system, the popular

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [207] is used.

Nonlinear optimization does not guarantee to find the global optimum. It depends

on the convexity of the problem and the initial values of the parameters to optimize,

whether a local or the global optimum is found. We do not want to relax the prob-

lem to become convex which comes with relaxation errors, but we rather try to find

good starting points for the parameters which also speeds up the optimization process.

The initialization of the optimization parameters is a three-step procedure. First of

all, we find the time offset between the IMU and camera measurements as described

in Section 4.1 and an initial estimate of the orientation between IMU and camera co-

ordinate frame Iq̂C as shown in the next block, Section 4.2.4. The second step is to

determine the number of B-spline control points to be used and good starting points

for them. Finally, the gravity vector and the bias terms have to be initialized. Both
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will be described in Section 4.2.5.

4.2.4 Initialization of the Spatial Alignment

In the following we present a closed form initialization for the gyroscopes-camera align-

ment and briefly discuss the translation initialization. The orientation estimation can

also be used as only registration step without optimization in case that only a less

accurate alignment is required.

Angular Alignment

The angular registration of a camera and a gyroscope can be seen as solving the rota-

tional part of the well-known hand-eye calibration problem. To compute the rotational

alignment GRC between the gyros and the camera, we compute the relative rotations,
GR∆i and CR∆i , between two consecutive images i − 1 and i. The rotations of the

gyroscopes, measured in their coordinate frame G, are simply integrated between two

camera time-stamps.

The task is now to find the rotation GRC which rotates the measurements from

frame C to frame G according to the well-known hand-eye calibration equation

GR∆i =
GRC

CR∆i
GRT

C . (4.40)

To solve for the best fitting spatial alignment GR̃C following least-squares problem over

all camera measurements N has to be solved:

GR̃C=argmax
R

N∑

i=1

tr
(
GR∆i R

CRT
∆i R

T
)
|R ∈ SO(3) (4.41)

A closed form solution for the rotation estimation is described and derived in [106]

and can be computed as follows. Let Cp̂∆i ,
Gp̂∆i and

Gp̂C denote the real eigenvectors

to the eigenvalue 1 of CR∆i ,
GR∆i and GRC respectively. Hence, they represent the

rotation axes of these DCMs. Using this representation, the system of linear equations

to solve for GpC , consisting of Gp̂C and GθC according to Eq. 2.4, can be set up by all

measurement pairs, such that

[
Cp̂∆i +

Gp̂∆i

]
×
Gp

′
C = Cp̂∆i −

Gp̂∆i , (4.42)

with [ · ]× denoting the skew symmetric matrix of a vector.
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The angle-axis form of the rotation GRC can then be computed from Gp′
C by

Gp̂C =
Gp′

C

‖Gp′
C‖

and GθC = 2 tan−1
(∥∥Gp′

C

∥∥) . (4.43)

If all rotations are measured about the same axis or the sensor coordinate frames are

rotated by 0◦ or 180◦, this system is singular and there is no unique solution. However,

if there are at least two rotations about different axes and these axes are not colinear,

a unique solution exists. We detect the colinear-exception by inspecting the singular

values σ1, σ2 and σ3 of
[
Cp̂∆i +

Gp̂∆i

]
×
, where σ1 > σ2 > σ3. If σ3

σ2
< k ≪ 1, where

k denotes a threshold which defines the stack of skew symmetric matrices to be rank-

deficient, a rotation close to 0◦ or 180◦ between the sensor frames is expected. In this

case the angular alignment is estimated using SQP optimization, where the objective

function is defined as

cSQP
(
GRC

)
=

NC∑

i=1

∥∥GRC
Cp̂∆i −

Gp̂∆i

∥∥ . (4.44)

As starting point for the estimation we use

GRC=DCM(p̃∆i , 0
◦) or GRC=DCM(p̃∆i , 180

◦) , (4.45)

depending on whether the signs of the delta rotation axes correspond or not, where

p̃∆i =
p̃′
∆i∥∥∥p̃′
∆i

∥∥∥
and p̃′

∆i = med
({

Cp̂∆i +
Gp̂∆i

}NC
i=1

)
. (4.46)

Hence, p̃∆i denotes the normalized element-wise median of the sum of rotation axes,

which should be quite close to the global optimum and, thus, prevent SQP from finding

local ones.

An alternative approach would be to modify the measurements of the camera or

IMU by a constant rotation, e.g., 90◦, so that the closed-form solution is non-singular

again and consider this rotational offset in the computed angular alignment. However,

in this case it is crucial to choose an axis which does not correspond to the actual axis

of the rotational alignment and, therefore, we propose to chose an axis perpendicular

to p̃∆i .

In the context of gyro-camera calibration, the closed-form solution needs some adap-

tions to achieve adequate robustness. In [106], critical factors affecting the accuracy

and robustness have been discussed and it has been observed, that the accuracy is
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proportional to the magnitude of the measured rotations. In the case of camera to

gyroscope calibration, the sensitivity for errors due to relative small inter frame rota-

tions becomes crucial and may lead to wrong results. Furthermore, Eq. 4.42 minimizes

the steady measurement error of a conventional robot-camera setup, but it does not

consider any time correlation between the sensors. It is necessary to overcome this

problem, if we want to apply this method for bias prone gyroscopes.

If Eq. 4.42 is applied without any modification, each inter frame rotation would

affect the outcome equally - independent of whether there is no rotation, and the

measurement consists only of noise, or in presence of an outlier. Therefore, the absolute

angles of the inter frame rotations should be used to weight the respective equation

based on following observations: Small rotations suffer from a small signal to noise

ratio and, further, a large discrepancy between the sensor measurements implies an

erroneous sample pair. This leads to following weights for both sides of Eq. 4.42 and

the summands in Eq. 4.44

wi = (1− maxθi −minθi
maxθi

)minθi =
min2θi
maxθi

(4.47)

with maxθi and minθi analogously defined to Eq. 4.10.

Calibration sequences are usually short and, therefore, a common assumption is

that the IMU biases are constant. The bias estimation is free of constrains and, thus,

we use a Levenberg-Marquardt optimization for its computation. In the experiments

of Section 8.5.2, we compare the following two cost functions. In the first approach

we simply try to find the bias by making the absolute angles as similar as possible,

while disregarding outliers. This is achieved by applying the Blake-Zisserman cost

function [208], which has been chosen due to its outlier handling:

cBZ (δ) = − ln
(
e−δ

2

+ ǫ
)
. (4.48)

The crossover point from inliers to outliers is given by the threshold α in ǫ = e−α
2

.

Thus, this optimization problem may be written as

b̃=argmin
b

N∑

i=1

cBZ
(
Gθ′∆i −

Cθ∆i
)

(4.49)
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with Gθ′∆i being the absolute angle corresponding to

GR′
∆i =

ti∏

t=ti−1

GR′
t , (4.50)

where

GR′
t = DCM


Gm̄T






Gφ̇t
Gχ̇t
Gψ̇t


− b




 (4.51)

and b̃ being the estimated bias.

An other approach is to minimize the trace of the covariance matrix, PGpC
, of GpC .

The covariance matrix for Gp′
C results from the over-constrained linear system (see

Eq. 4.42) as

PGpC
= V[ · ]×Σ

−2
[ · ]×V

T
[ · ]× with U[ · ]×Σ[ · ]×V

T
[ · ]× = SVD

(
BC+G

[ · ]×
)

(4.52)

and BC+G
[ · ]× representing the vertical stack of the skew matrices of all the vector sums,

[
Cp̂∆i +

Gp̂∆i

]
×
. Depending on the length of the calibration sequence, this matrix may

become quite large. To reduce the processing time, one can also use

PGp′
C
= VT

(
tr
(
Σ2
T

)
I −Σ2

T

) 1
2 V T

T (4.53)

with UTΣTV
T
T = SVD

(
BC+G
T

)
and BC+G

T being the row-wise stack of the vectors
(
Cp̂∆i +

Gp̂∆i

)T
. In this way, one has only to compute the SVD of BC+G

T and not

of BC+G
[ · ]× which is three times larger. A derivation of this equation is shown in Ap-

pendix A.4.

Minimizing the covariance matrix of Gp′
C does not necessarily mean to minimize the

covariance of GpC . Therefore, we propagate the covariance and the estimate for Gp′
C

through the nonlinear equation

GpC =
2Gp′

C√
1 +

∣∣Gp′
C

∣∣2
(4.54)

by using sigma-points, like in the Unscented Kalman filter [209]. Sticking to the nota-

tion of that paper, the weightW (0) is set to 0 according to the formula which computes
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the optimum in case of a Gaussian distribution

W (0) = 1− NS

3
(4.55)

with NS denoting the vector length, which is three in our case. Thus, the objective

function is this time

b̃=argmin
b

(
tr
(
PGpC

) )
. (4.56)

Translational Alignment

An initialization of the translation is rather complicated to achieve. Either one can

extract a first estimate for ItIC from a CAD drawing or a complex setup as described

in [182] has to be used. However, experiments have shown, that once the angular

alignment is properly initialized, the translation converges reliably and, hence, it does

not have to be initialized accurately and can be set to zero too.

The initialization of the residual parameters for the batch-optimization of the spatial

alignment is described in the following.

4.2.5 Optimization Parameter Initialization

The next step is to determine the number of B-spline control points to be used and

initialize them. A high number of control points means less smoothing and higher

flexibility, but also increases the complexity of the computation, and the possibility of

over-fitting. For our experiments in Section 8.5.2, we use 0.6NC control points. This

amount provides a good compromise between computational efficiency and accuracy,

as we will show there. Nevertheless, a more general solution would be to evaluate the

measurements of the accelerometers and the gyroscopes to adapt the knot vector and

the number of control points to satisfy the requirements given by the motion dynamics.

The final step is the initialization of the spline control parameter vector c. A good

initial estimate can be found by calculating Ir̂(t) = Iq̂W (t) and Ip̂ = ÎtIW (t) from the

camera measurements according to the following equations

Wq̂C(ti) =
i∏

j=1

⊙ Q
(
CωCj m̄C

)
(4.57)

Iq̂W (ti) = Iq̂C ⊙ W ¯̂qC(ti) (4.58)

ÎtIW (ti) = It̂IC −DCM
(
Iq̂W (ti)

) i∑

j=1

DCM
(
Wq̂C (tj)

)
CvCj m̄C , (4.59)
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whereas i ∈ {1..NC}.
Subsequently, the B-spline can be approximated by following least-squares fitting

equation:

ĉ =
(
B(tC)

T B(tC)
)−1

B(tC)
T

(
p̂ (tC)
r̂ (tC)

)
(4.60)

with tC=
(
t1 . . . tNC

)
.

The last step is the initialization of the bias terms bωI and baI , the gravity vector
I0g and the translation scale α. Both bias values are initialized with zero vectors. In

general there is no prior knowledge of the initial orientation of the gravity vector I0g

and thus, we assume that the acceleration during the first few IMU measurements is

negligible small so that the sensor measurements consists mainly of the gravity force.

Thus, an initial estimate can be achieved by computing the negative mean of the first

few, L, samples:

I0ĝ = − 1

L

L∑

i=1

IaIi . (4.61)

If there is no knowledge about the used landmarks, the scale factor can be of any

size. One approach to find a proper initial guess is to use the maximum measured

velocity vC of unknown scale and choose an α which yields a reasonable maximum

velocity as assumed to be applied during the data acquisition. If the scale of the

landmarks is known, also the translational scale is known (α= 1) and, hence, can be

removed from the parameter vector.

4.3 IMU Supported Tracking

Once the IMU-camera setup is registered the measurements can be fused. In the fol-

lowing, we will describe two fusing concepts: In this section, we discuss IMU supported

tracking and in the next section we describe a loose Kalman fusion. These methods

can then be applied together or separately.

For the sake of efficiency one should use local feature trackers if a dense image

sequence is provided. However, these will in general fail if the translational or especially

the rotational velocities become too high. Hence, tracking should be supported by the

motion estimates of an IMU which returns reliable estimates at such high dynamics.

The IMU rotation expressed in the camera frame CRI can be easily applied to landmark

propagation by rotating each feature vector r representing the point on the unit-focal
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image plane in direction to the tracked point

r̂t+1 =
r̂′t+1

zr̂′
t+1

with r̂′t+1 = CRI
t+1rt . (4.62)

In case the scale of the features is known, we could also apply the translation

integrated by the acceleration measurements of the IMU after gravity subtraction.

However, experiments have shown, that the double integration of the noise and bias

prone acceleration measurements do not yield translation estimates which are accurate

enough for landmark propagation. Hence, we propose to use a 2D linear translation

propagation dt for each feature as we will describe in Section 7.1. To get only the

translational part of the optical flow, we need to subtract the rotational component

from it, which we can simply compute applying CRI to the reference location

d̂tt+1
= dtt = dt − dRt with dRt = r̂t+1 − rt , (4.63)

where dt is the measured optical flow vector. Finally, the landmark propagation consists

of

p̂t+1 = pt + d̂Rt+1
+ d̂tt+1

. (4.64)

Thus, the rotation becomes propagated based on the IMU measurement while the

translation is predicted in 2D, as illustrated in Fig. 4.1. The camera measurements

and its motion estimation are consequently completely separated which prevents an

accumulation of the estimation errors.

Figure 4.1: Two corresponding features in consecutive images acquired during high dy-
namic motions at a frame rate of 25Hz. The feature drifts by 40.2 pixels, whereas 37 pixels
result from rotation and 17 pixels from translation (some pixels cancel out). The red circle
shows the feature propagation by the IMU and translation prediction in 2D. The yellow
square illustrates the tracking result. The estimated location of the feature corresponds
well enough to allow for local tracking.

Using such a prediction step, the bottleneck of successful tracking during fast mo-

tions (in the experiments we measured successful tracking up to 75 ◦/s and 0.5m/s)
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are not anymore the large feature displacements between two images (up to 50 pixels

in the experiments), but mainly the motion blur1. The shutter time of the cameras

can not be arbitrarily reduced, because short exposure times force the camera gain to

be increased, which amplifies the image noise and impedes proper tracking. In Sec-

tion 8.5.3, we will illustrate a trajectory of a high dynamic motion and the successful

prediction by fusing IMU measurements.

4.4 Kalman Filter Based Fusion

While an IMU aided tracking improves the robustness of image processing significantly,

it does not improve the motion estimation directly. One way to fuse both motion

estimates is by means of a Kalman filter. Such filters convince by their computational

efficiency, while being optimal for linear problems with zero-mean, white Gaussian

noise. Unfortunately, our problem is highly nonlinear. These nonlinearities can be

approximated by making use of Kalman filter derivatives, e.g. the EKF or the UKF.

We chose to realize our fusion as a loosely coupled EKF for the sake of an efficient

solution which can run at high rates on a resource-limited platform. To improve the

linearization properties, we make use of an error-state EKF [210, 111]. In the following

filter, we aim at combining relative measurement updates with the camera uncertainties

modeled in the respective domain as well as a fast convergence of the translational scale.

4.4.1 Dynamic Model

Similar to most solutions presented in literature, our dynamic model for an inertial-

visual fusion consists of the following variables: position WtWI , velocity
WvWI , attitude

(as quaternion) WqI , bias of the accelerometers IbaI and the bias of the gyroscopes IbωI .

The uncertainties, nx, in the pose estimation are modeled as additive zero-mean, white

Gaussian noise on the translational acceleration Wna and on the rotational velocity
Wnω. The biases are modeled as random walk processes which are also driven by

additive white Gaussian noise, Inba and Inbω . The pose and the velocity are estimated

as motion of the IMU frame I relative to the coordinate frame W, expressed in W. The

biases are estimated in I. For the sake of readability, we will drop the frame indices

from now on and only mention them in cases where they are required for understanding.

1A short video is available at http://www6.in.tum.de/∼maire/videos/3dMo imuTracking.avi
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4.4 Kalman Filter Based Fusion

To reduce the linearization errors of the EKF, we represent the dynamic model in

the error state space with the error state vector δx, such that

δx =
(
δTt δTv δTq̃ δTba δTbω

)T
. (4.65)

This representation also allows to represent a quaternion as the vector of its three

imaginary elements, δTq̃ , by applying a small angle approximation according to Eq. 2.6.

The real part of the quaternion is approximated as one and can, thus, be neglected

(see Eq. 2.7). As further advantage we yield a minimal representation of the rotational

DOF, which results in δx ∈ R15.

The continuous-time transition can, thus, be modeled as follows:

δ̇x = F δx + Gnx , (4.66)

whereas

F =




03×3 I3 03×3 03×3 03×3
03×3 03×3 −2

[
Wa
]
×
−WRI 03×3

03×3 03×3 03×3 03×3 −1
2
WRI

03×3 03×3 03×3 03×3 03×3
03×3 03×3 03×3 03×3 03×3




, (4.67)

G =




03×3 03×3 03×3 03×3
WRI 03×3 03×3 03×3
03×3 2WRI 03×3 03×3
03×3 03×3 I3 03×3
03×3 03×3 03×3 I3




(4.68)

and

Q = Diag(Qa,Qω,Qba ,Qbω) . (4.69)

The noise matrices Qa, Qω, Qba , and Qbω correspond to the expectation value of the

noise variables

Qx = E [nx] | x ∈ {a,ω, ba, bω} . (4.70)

In a real system we do not have continuous but discrete time. Hence, we compute

the discrete-time transition and introduce the prior and posterior index to get

x−
k+1 = Φk+1 x

+
k + Gk+1nx;k (4.71)
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with

Φ = e∆tF =




I3 2∆tI3 −1
2∆

2
t

[
Wa
]
×
−1

2∆
2
t
WRI

1
6∆

3
t

[
Wa
]
×
WRI

03×3 I3 −2∆t

[
Wa
]
×

−∆t
WRI

1
2∆

2
t

[
Wa
]
×
WRI

03×3 03×3 I3 03×3 −1
2∆t

WRI

03×3 03×3 03×3 I3 03×3
03×3 03×3 03×3 03×3 I3




(4.72)

and Gk ≈ ∆tG.

The uncertainty of the estimated states is expressed by the covariance matrix P ,

which is propagated according to Eq. 2.19. At the beginning this matrix is initialized

as diagonal matrix, where the entries represent the estimated variances for the initial

guess, σ2x;0, of the corresponding state

P−
0 = diag

(
σ2tx;0 , σ

2
ty ;0 , σ

2
tz ;0 , σ

2
vx;0 , . . . , σ

2
bω;z ;0

)
. (4.73)

4.4.2 EKF Propagation and Update

The IMU measurements are now used to propagate the state in time by applying

the strapdown computation as described in Section 2.6. The more tricky part is how

to fuse the camera measurements. In order to prevent drifting when being static our

visual motion estimation should stick to a keyframe as long as there are enough features

available. To deal with such relative motion measurements, we enhance the state vector

by stochastic cloning of the actual state [200, 211]. Furthermore, we use a monocular

camera, which does not allow to compute the proper scale from natural landmarks.

Hence, we also require to estimate the proper camera scale s. This yields following

augmented and extended state vector δx̆;r,k ∈ R31, with

δx̆;r,k =



δx;r
δx;k
s


 (4.74)

and δx;r denoting the estimated error state at the reference time of the keyframe ac-

quisition and δx;k is the currently estimated error state.

As long as we reference to a specific keyframe we assume a constant scale and, thus,

ns = 0. Hence, the matrices for the state propagation become

Φ̆k =




I15 015×15 015×1

015×15 Φk 015×1

01×15 01×15 1


 , (4.75)
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Ğk =



015×12

Gk

01×12


 (4.76)

and

P̆−
0 =




P−
0 P−

0 015×1

P−
0 P−

0 015×1

01×15 01×15 σ2s;0


 . (4.77)

Every time a keyframe-switch occurs and the scale of the visual odometry accumulates

an error, we model that uncertainty as additional noise on the scale, ns, by modified

model noise matrices Ğs;k and Qs;k, such that

Ğs;k =



015×12 015×1

Gk 015×1

01×12 1


 and Qs;k = Diag(Qa,Qω,Qba ,Qbω , qs) (4.78)

with qs = E [ns].

The second part of a Kalman filter consists in the update of the state by a mea-

surement. To provide the relation between the sensor and our state representation, we

have to derive the linearized mapping Hr,k between error state and measurement zr,k

zr,k = Hr,k δx̆;r,k + nz;r,k , (4.79)

which can be computed analogue to [211].

The relation between the rotation error and the rotation measurement can be de-

rived as follows. Let the estimated rotation Ioq̂Ir denote the rotation from the IMU

frame at time instance r, the keyframe acquisition, to the IMU reference frame, at time

instance o = 0. Then the error at time instance r, δq;r, can be formulated as

IoqIr = δq;r ⊙ Ioq̂Ir . (4.80)

The camera measurement relative to the keyframe is described as the real state cor-

rupted by noise nzq ;r,k

C;rzq;C;k = C;rqC;k + nzq ;r,k . (4.81)

Thus, the measurement error δzq ;r,k can be computed by

δzq ;r,k = Crq̂Ck ⊙ Crz
−1
q;Ck = Crq̂Ck ⊙

(
CrqCk + nzq

)−1

= Crq̂Ck ⊙
(
CkqCr + n̄zq

)
= Crq̂Ck ⊙ CkqCr +

Crq̂Ck ⊙ n̄zq ;r,k , (4.82)
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where Xq
−1
Y = YqX denotes the inverse rotation and with

n̄zq ;r,k = diag (−1,−1,−1, 1) nzq ;r,k . (4.83)

Assuming that the sensor suffers from zero-mean, white Gaussian noise, we can neglect

Eq. 4.83 and say that nzq ;r,k= n̄zq ;r,k.

The rotation between the IMU and the camera frame, IqC , is assumed to be com-

puted in an offline calibration step, e.g., according to Section 4.2. Hence, we ignore the

noise for a moment, with δ′zq ;r,k = δzq ;r,k − Crq̂Ck ⊙ nzq ;r,k, and extend Eq. 4.82, such

that we get a direct relation between the measurement and the estimated error:

δ′zq ;r,k = Crq̂Ck ⊙ CkqCr

= Iq
−1
C ⊙ Ioq̂

−1
Ir ⊙ Ioq̂Ik ⊙ IqC ⊙ Iq

−1
C ⊙

(
δq;k ⊙ Ioq̂Ik

)−1 ⊙
(
δq;r ⊙ Ioq̂Ir

)
⊙ IqC

= Iq
−1
C ⊙ Ioq̂

−1
Ir ⊙ Ioq̂Ik ⊙ Ioq̂

−1
Ik ⊙ δ−1

q;k ⊙ δq;r ⊙ Ioq̂Ir ⊙ IqC

= Iq
−1
C ⊙ Ioq̂

−1
Ir ⊙ δ−1

q;k ⊙ δq;r ⊙ Ioq̂Ir ⊙ IqC . (4.84)

Next, we make use of the fact that the rotation of small angles can be approximated

by the sum of the quaternions and the approximation defined in Eq. 2.6, such that

δzq ;r,k = Iq
−1
C ⊙ Ioq̂

−1
Ir ⊙ δ−1

q;k + δq;r ⊙ Ioq̂Ir ⊙ IqC + Crq̂Ck ⊙ nzq ;r,k

= −IRT

C
IoR̂

T

Ir

(
1

2
σδq;k

)
+ IoR̂Ir

IRC

(
1

2
σδq;r

)
+ CrR̂Ck

(
2 ñzq ;r,k

)

= IoR̂Ir
IRC δq̃;r − IoR̂Ir

IRC δq̃;k + 2 CrR̂Ckñzq ;r,k , (4.85)

with ñzq ;r,k = nzq ;r,k;1:3.

Let us now consider the translational part of the measurement matrix. The relation

between estimated translation, its error and the real translation is provided by

IotIo,Ik = Iot̂Io,Ik − δt;k . (4.86)

An analog relation applies for the scale, such that

s = ŝ− δs . (4.87)

The camera measurement for the translation is again described in terms of the real

state corrupted by some noise nzt

Crzt;Cr,Ck = s CrtCr,Ck + nzt . (4.88)
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The measurement error δzt can be computed by

δzt = ŝ Cr t̂Cr,Ck − Crzt;Cr,Ck

= ŝ Cr t̂Cr,Ck − s CrtCr,Ck − nzt

= ŝ Cr t̂Cr,Ck − (ŝ− δs) CrtCr,Ck − nzt

= ŝ Cr t̂Cr,Ck − ŝ CrtCr,Ck + δs
CrtCr,Ck − nzt

= ŝ
(
Cr t̂Cr,Ck − CrtCr,Ck

)
+ CrtCr,Ck δs − nzt . (4.89)

For the sake of readability, the terms are extended separately, resulting in

Cr t̂Cr,Ck = Cr t̂Io,Ck − Cr t̂Io,Cr

= IR
T

C

(
IoR̂

T

Ir
Iot̂Io,Ik + IoR̂

T

Ir
IoR̂Ik

ItI,C − IoR̂
T

Ir
Iot̂Io,Ir − ItI,C

)

= IR
T

C
IoR̂

T

Ir

(
Iot̂Io,Ik + IoR̂Ik

ItI,C − Iot̂Io,Ir − IoR̂Ir
ItI,C

)
, (4.90)

whereas the translation between IMU and camera, ItI,C , is assumed to be computed

in an offline step, e.g., according to the method presented in Section 4.2. By applying

Eq. 4.80 and the small angle approximation described in Eq. 2.8, we get

CrtCr,Ck = CrtIo,Ck − CrtIo,Cr

= IR
T

C
IoR

T

Ir

(
IotIo,Ik + IoRIk

ItI,C − IotIo,Ir − IoRIr
ItI,C

)

= IR
T

C

(
∆R;r

IoR̂Ir

)T (
Iot̂Io,Ik − δt;k + ∆R;k

IoR̂Ik
ItI,C −

Iot̂Io,Ir + δt;r − ∆R;r
IoR̂Ir

ItI,C

)

= IR
T

C
IoR̂

T

Ir∆
T
R;r

(
Iot̂Io,Ik − δt;k + ∆R;k

IoR̂Ik
ItI,C −

Iot̂Io,Ir + δt;r − ∆R;r
IoR̂Ir

ItI,C

)

= IR
T

C
IoR̂

T

Ir

(
−IoR̂Ir

ItI,C +
(
I3 − 2 [δq̃;r]×

)

(
Iot̂Io,Ik − δt;k +

(
I3 + 2 [δq̃;k]×

)
IoR̂Ik

ItI,C − Iot̂Io,Ir + δt;r

))

= IR
T

C
IoR̂

T

Ir

(
−IoR̂Ir

ItI,C + Iot̂Io,Ik − δt;k + IoR̂Ik
ItI,C +

2 [δq̃;k]×
IoR̂Ik

ItI,C − Iot̂Io,Ir + δt;r − 2 [δq̃;r]×
Iot̂Io,Ik+

2 [δq̃;r]× δt;k − 2 [δq̃;r]×
IoR̂Ik

ItI,C − 4 [δq̃;r]× [δq̃;k]×
IoR̂Ik

ItI,C +

2 [δq̃;r]×
Iot̂Io,Ir − 2 [δq̃;r]× δt;r

)
, (4.91)

with ∆R = DCM(δq). We make the assumption that the products of two error terms
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are negligible

[δq̃;r]× δt;r ≈ 0 (4.92)

[δq̃;r]× δt;k ≈ 0 (4.93)

[δq̃;r]× [δq̃;k]×
IoR̂Ik

ItI,C ≈ 0 , (4.94)

such that

CrtCr,Ck ≈ IR
T

C
IoR̂

T

Ir

(
Iot̂Io,Ik + IoR̂Ik

ItI,C − Iot̂Io,Ir − IoR̂Ir
ItI,C −

δt;k + δt;r + 2 [δq̃;k]×
IoR̂Ik

ItI,C − 2 [δq̃;r]×
IoR̂Ik

ItI,C −

2 [δq̃;r]×
Iot̂Io,Ik + 2 [δq̃;r]×

Iot̂Io,Ir

)
. (4.95)

By combining Eq. 4.95 and 4.90 as well as the rule [a]× b = − [b]× a, we get

Cr t̂Cr,Ck − CrtCr,Ck ≈ IR
T

C
IoR̂

T

Ir

(
δt;k − δt;r − 2 [δq̃;k]×

IoR̂Ik
ItI,C +

2 [δq̃;r]×
IoR̂Ik

ItI,C + 2 [δq̃;r]×
Iot̂Io,Ik − 2 [δq̃;r]×

Iot̂Io,Ir

)

≈ IR
T

C
IoR̂

T

Ir

(
δt;k − δt;r + 2

[
IoR̂Ik

ItI,C

]
×
δq̃;k−

2
[
Iot̂Io,Ik − Iot̂Io,Ir +

IoR̂Ik
ItI,C

]
×
δq̃;r

)
(4.96)

Extending the third term of Eq. 4.89

CrtCr,Ck δs ≈ IR
T

C
IoR̂

T

Ir

(
Iot̂Io,Ik δs + IoR̂Ik

ItI,C δs − Iot̂Io,Ir δs − IoR̂Ir
ItI,C δs−

δt;k δs + δt;r δs + 2 [δq̃;k]×
IoR̂Ik

ItI,C δs − 2 [δq̃;r]×
IoR̂Ik

ItI,C δs−

2 [δq̃;r]×
Iot̂Io,Ik δs + 2 [δq̃;r]×

Iot̂Io,Ir δs

)
(4.97)

and assuming again that the product of error terms is negligible we get

CrtCr,Ck δs ≈ IR
T

C
IoR̂

T

Ir

(
Iot̂Io,Ik δs + IoR̂Ik

ItI,C δs − Iot̂Io,Ir δs − IoR̂Ir
ItI,C δs

)

≈ IR
T

C
IoR̂

T

Ir
Cr t̂Cr,Ck δs . (4.98)
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Now we can insert Eq. 4.96 and 4.98 into Eq. 4.89 and yield

δzt ≈ ŝ IR
T

C
IoR̂

T

Ir

(
δt;k − δt;r + 2

[
IoR̂Ik

ItI,C

]
×
δq̃;k−

2
[
Iot̂Io,Ik − Iot̂Io,Ir +

IoR̂Ik
ItI,C

]
×
δq̃;r

)
+

IR
T

C
IoR̂

T

Ir
Cr t̂Cr,Ck δs − nzt . (4.99)

The measurement matrix can then be determined by combining Eq. 4.85 and 4.99:

z′
r,k =

(
H1,1 03×3 H1,3 03×6 H1,6 03×3 H1,8 03×6 h1,11

03×3 03×3 H2,3 03×6 03×3 03×3 H2,8 03×6 03×1

)




δt;r
δv;r
δq̃;r
δba;r
δbω ;r

δt;k
δv;k
δq̃;k
δba;k
δbω ;k

δs




def
= Hr,k δx̆;r,k , (4.100)

with

H1,1 = −ŝ CrR̂Io

H1,3 = −2 ŝ CrR̂Io

[
Iot̂Io,Ik − Iot̂Io,Ir +

IoR̂Ik
ItI,C

]
×

H1,6 = ŝ CrR̂Io

H1,8 = 2 ŝ CrR̂Io

[
IoR̂Ik

ItI,C

]
×

h1,11 = CrR̂Io
Cr t̂Cr,Ck

H2,3 = CrR̂Io

H2,8 = −CrR̂Io ,

whereas z′
r,k = zr,k − nz;r,k and CrR̂Io =

IR
T
C
IoR̂

T

Ir. The corresponding measurement

noise covariance matrix Lr,k is computed by

Lr,k = Nr,k Diag
(
L′

nz;t;r,k , L
′
ñz;q ;r,k

)
NT
r,k (4.101)
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with

Nr,k =

(−I3 03×3
03×3 2 CrR̂Ck

)
and L′

x;r,k = E [x] | x ∈
{
nzt , ñzq

}
. (4.102)

4.4.3 Pseudo-Measurement Model

Up to now we considered the translation measurements and their noise to be provided

in the Cartesian coordinate frame of our system model. Thinking of a camera as a

goniometer, we measure the epipol and try to keep the translational scale constant. This

measurements are actually not expressed in a Cartesian frame, but in a polar coordinate

frame, where the epipol determines the bearing (or azimuth) φ and the elevation ψ.

The range r is then computed by keeping the relative scales of the landmarks constant.

This yields a measurement vector of the form

Pz =



Pzr
Pzφ
Pzψ


 . (4.103)

Similar to [203], we apply a pseudo-measurement model which allows to represent the

measurements and the noise in the line-of-sight (LOS) coordinate system. The x-axis of

this coordinate frame is always along the direction of translation. Thus, any translation

measurement in LOS coordinates is of the form z̊ =
(
Pzr 0 0

)T
. The mapping between

Cartesian and LOS coordinates is defined by

z̊ =



Pzr
0
0


 =




cos
(
Pzφ
)
cos
(
Pzψ

)
sin
(
Pzφ
)
cos
(
Pzψ

)
sin
(
Pzψ

)

− sin
(
Pzφ
)

cos
(
Pzφ
)

0
− cos

(
Pzφ
)
sin
(
Pzψ

)
− sin

(
Pzφ
)
sin
(
Pzψ

)
cos
(
Pzψ

)


z

def
= Mz z

(4.104)

and

z = M−1
z z̊ = MT

z z̊ . (4.105)

Recapitulating the Kalman state transition, we formulate the new representation

as

x+
k+1 = Φk+1x

+
k + Kk+1M

T
zk+1

(
z̊k+1 −Mzk+1

Hk+1x
−
k+1

)

= Φk+1x
+
k + K̊k+1

(
z̊k+1 − H̊k+1x

−
k+1

)
. (4.106)

This results in the following error state transition

δ+x;k+1 = δ−x;k+1 + K̊k+1 r̊k+1 . (4.107)
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The measurement covariance matrix L̊ can then be computed, analogue to Eq. 4.101,

by

L̊r,k = Nr,k Diag
(
L̊′

nz;t;r,k , L
′
ñz;q ;r,k

)
NT
r,k , (4.108)

with

L̊′
nz;t;r,k =




Pnzr cos
(
Pnzφ

)
cos
(
Pnzψ

)
√
x2z + y2z sin

(
Pnzφ

)
√
x2z + y2z + z2z cos

(
Pnzφ

)
sin
(
Pnzψ

)


 . (4.109)

and Pnz=
(
Pnzr

Pnzφ
Pnzψ

)T
.

For a derivation please refer to [203].

4.4.4 The Filter-Steps in a Nutshell

In the following we summarize our Kalman fusion, which is in general described in

Section 2.7:

1. compute the LOS-mapping Mzk+1
according to Eq. 4.104

2. compute the residual r̊k+1 = z̊k+1 − H̊k+1x
−
k+1

3. compute the error state covariance prior P−
k+1 according to Eq. 2.19

4. compute the innovation S̊k+1 = H̊k+1P
−
k+1H̊

T
k+1 + L̊r,k

5. compute the Kalman gain K̊k+1 = P−
k+1H̊

T
k+1S̊

−1
k+1

6. compute the error state covariance posterior P+
k+1 according to Eq. 2.23

7. compute the correction δ+x;k+1 according to Eq. 4.107

8. update the state by the following equations and reset the error to zero

tk+1 = tk − δt;k+1

vk+1 = vk − δv;k+1

qk+1 =

(
δq̃;k+1

1

)
⊙ qk

ba;k+1 = ba;k − δba;k+1

bω;k+1 = bω;k − δbω ;k+1

In Section 8.5.4 we will show some first experiments on synthetic data as proof of

concept.
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Chapter 5

Image-Based Pose Estimation

In this section, we will introduce two image-based pose estimation techniques. The Z∞-

algorithm is a biological motivated method which estimates the pose based on optical

flow. We mentioned in Section 1.1 that insects are observed to behaviorally separate

rotation and translation, stabilizing their head during motion so that they only mea-

sure translational optical flow. It is difficult to realize such a stabilization on technical

systems, but, nonetheless, we use features with certain projection properties to compen-

sate for the rotational motion and, thus, allow for a pure translation estimation. The

other approach which we present is a keyframe-based VSLAM technique. It estimates

the pose based on the 3D structure of a landmark set, which has to be initialized.

Both approaches work for arbitrary goniometers – the methods are only based on

the angular direction of landmarks. However, in our work we focus on inertial and

visual sensors and, hence, we will discuss the algorithms in the context of cameras.

5.1 Z∞-Algorithm –

Efficient Monocular Motion Estimation

One problem in estimating an arbitrary motion in 3D from noisy sensor data is to

quantify the error and to suppress wrong measurements that deteriorate the result.

Most known approaches, like the eight-point algorithm introduced in Section 3.3.1,

compute all degrees of freedom simultaneously. An error in one dimension can be

compensated by the other dimensions, which makes it difficult to weight or isolate bad

measurements from the data set. Erroneous data can be detected and rejected more

effectively if less parameters are estimated at once. Thus, only the parameters which

belong together should be estimated simultaneously. The effects of a combined and a

separated estimation of translation and rotation are depicted in Section 8.2.1.

83



5. IMAGE-BASED POSE ESTIMATION

The Z∞-algorithm uses the usually undesirable quantization effects of the camera

projection to separate translation-invariant from translation-dependent landmarks in

the image. In fact, we determine the rotational component of the present motion

without ever considering the translational one. Fast closed form solutions exist, which

provide an efficient and globally optimal rotation and translation computation from

optical flow without any a-priori information. Hence, the separation of the rotation

estimation from the translation simplifies the computation and the suppression of error

prone data drastically, which are the major advantages of the Z∞-algorithm.

The key problem is to identify translation-invariant landmarks for rotation estima-

tion. The remaining features can then be used to compute the translation.

5.1.1 Z∞-Principle

Talking about the projective transformation and the pixel discretization of digital cam-

eras, these characteristics are usually considered to be the accuracy barriers for image

based motion estimation. However, splitting the motion in a rotational and trans-

lational part is based on just these effects - Z∞uses the projective transformation

and pixel discretization to split the tracked features into a translation-invariant and

a translation-dependent set.

We see from the basic camera projection equation (Eq. 2.9) that the X- and Y-axis

offsets of the 3D world coordinates, xP and yP , are both divided by the landmark’s

distance zP . Hence, according to the motion formula (Eq. 2.3), the landmarks mapped

onto the image plane move as described in the following.

Each image feature of a calibrated camera can be interpreted as a ray from the

optical center to the 3D landmark intersecting the image plane.

Pi = λir̄i with r̄ =
r

‖r‖ . (5.1)

The length λi of the normalized vector r̄i to the i-th landmark Pi is unknown by the

camera projection. While the rotation of a feature is not affected by the distance of

the respective landmark, this is not the case for translations. A translational motion of

the camera results in a different motion in the image for each landmark depending on

its distance to the camera. The motion transformation of a landmark can be described

by

λ′i r̄
′
i = RT (λir̄i − t) . (5.2)

Due to the pixel discretization, the translation cannot be measured anymore if a land-

mark exceeds a certain distance to the camera. This distance can be computed as
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Table 5.1: Concrete examples illustrating the relation between the distance threshold
z∞ and the camera and motion parameters. The upper values denote the focal length in
pixel size with 900 px (∼37◦ aperture angle) being a quite conventional industrial camera
(e.g., with f = 8.6mm and s = 9.6µm ) going down to 300 px (∼ 90◦ aperture angle)
representing a wide angle camera and 100 px (∼143◦ aperture angle) a fisheye lense. The
left values represent the measurable motion per frame, where r is the frame-rate of the
camera. Please note again that the motion in the direction of the landmark does not affect
z∞. A measured motion of 0.5 m

fr
is equal to a translational motion perpendicular to the

feature ray of 27 km
h

at a frame-rate of only 15Hz, while 0.005m
fr

would still correspond to

a perpendicular motion component of 2.16 km
h

at 120Hz.

f
s
[px]

max(tm) · r
[
m
fr

] 900 600 300 100

0.5 450.0 m 300.0 m 150.0 m 50.0 m
0.1 90.0 m 60.0 m 30.0 m 10.0 m
0.01 9.0 m 6.0 m 3.0 m 1.0 m
0.005 4.5 m 3.0 m 1.5 m 0.5 m

follows

z∞ =
f

sm
tm with m ∈ {x, y} . (5.3)

Hence, z∞ depends on the ratio between the focal length f and the pixel size sx and sy

and the translational components parallel to the camera plane, tx and ty, respectively.

A small lateral translational component, a large aperture angle, low resolution, or a high

frame-rate reduce the distance threshold for translation invariant landmarks. Table 5.1

and Fig. 5.1 illustrate the relation of these factors and the translation invariant distance

by concrete examples. If the camera is not mounted parallel to the main direction

of motion, the measurable component of translational motion becomes significantly

smaller then the values assumed in the examples. As illustrated in Fig. 5.2, the observed

translational component is shortened by two angles

∆tsm = cos(ψm)∆t

∆tm =
tsm

cos(ϕm)
=

cos(ψm)

cos(ϕm)
∆t with m ∈ {x, y} , (5.4)

whereas the angle ψ is between the direction of translation and the plane perpendicular

to the projection ray and the angle ϕ is between the optical axis and the projection

ray. Hence, all the points which lie exactly in the direction of translation become

translation-invariant independent of their distance. The more off the points are from

this axis, the more translational sensitive they get.
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Figure 5.1: Optical flow vector 1 (P1,P
′

1
) is shorter than vector 2 but it is closer to the

optical center. Therefore, both vectors result in the same projection. Vector 3 has the same
length as vector 1, but it is farther from the image plane, hence, the projection is much
shorter. It is so small, that the projection of P3 and P ′

3
lies within the same pixel. If such a

projection results only from a translation then this feature would be translation-invariant,
because the translation does not yield a measurable motion.

We have shown that image features can be split into translation-invariant and

translation-dependent features, depending on their distance to the camera. Indoor

scenes do, in general, not provide enough depth range to allow for translation invariant

landmarks. Only if really slow translations are applied to the camera a short distance

to the landmarks is sufficient. Experiments have shown, that in outdoor pictures the

contrast of the sky to the ground at the horizon generates many good features to track.

Indeed, an average percentage of 60% of the selected features lies at the horizon. But

how can we identify which feature corresponds to which set? We have no information

about the rotation, the translation or the distance of the landmarks visible in the image.

The solution is provided by the algorithm described in the next section.

5.1.2 RANSAC Revisited

The general approach of the Random Sampling Consensus (RANSAC) algorithm is

described in Section 2.5. In our special case, the estimated model is a rotation matrix

for which the entries have to be calculated. Therefore, we take a set of three random
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Figure 5.2: This drawing visualizes how the measurable translational component ∆tx
can be calculated. In general the optical flow vectors become longer the more parallel the
translation to the image plane is and the closer the features are to the image border (due
to a higher angular resolution). The orange auxiliary line illustrates the projections onto
the X-Z plane.

optical flow vectors Rrand and we estimate the rotation matrix based on them R =

R(Rrand), as it will be explained in Section 5.1.3. The estimated rotation is applied to

the remaining data set. In case that the initial three correspondences were from points

in the world at a distance further than z∞ and so represent only the rotational part,

the true rotation is estimated. Otherwise, the influence of the translational component

of the optical flow vectors results in a wrong rotation matrix. Applying the computed

rotation R on the remaining data set shows whether a minimum percentage Ξ#R of

the optical flow vectors, representing the residual translation-invariant features, fit the

estimate up to a specified threshold ΞR. This proofs that the initial points were truly

translational invariant:

Rinl =
{(

ri, r
′
i

)
:
∥∥r̄i − Rr̄′i

∥∥ < ΞR

}
. (5.5)

Based on whether the number of elements in Rinl is sufficient

|Rinl|
N

> Ξ#R , (5.6)

one has to choose a new landmark set for another rotation estimation iteration or a

more accurate rotation can be computed using all identified translation-invariant inliers

R = R(Rinl).
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Once the rotation has been successfully calculated, the back-rotated outlier set

consists of the translation vectors Tinl and the measurement outliers Soutl

Routl = {Tinl, Soutl} . (5.7)

Again we use RANSAC to robustly estimate the translation Trand as described in

Section 5.1.4 and to identify wrong measurements. The deviation of the vectors from

the estimated epipolar line and the percentage of found inliers provides an accuracy

measure and allows to compare the RANSAC iterations.

The probability to find an initial set of three translation-invariant optical flow ele-

ments depends on the percentage of such vectors in the data set. As described above,

an evaluation of real outdoor images has shown, that an average of 60% of the fea-

tures are at the horizon and, thus, far enough to be translation-invariant. The lower

5% quantile was about 30%. This results in approximately 37 iterations necessary to

assure that in 95% of the cases RANSAC can determine the rotation and divide the

data set. Usually, several rotation inliers can also be tracked in the next image. Such

features are then preferred for rotation estimation, because it can be assumed that

the corresponding landmarks are still further away than the z∞ threshold. Thus, the

number of RANSAC iterations for rotation estimation is reduced to one - in practice

few iterations are required to ensure a robust result.

At this point the trade-off one has to find applying this concept should be men-

tioned. On one hand we are looking for a camera setup which reduces the measurable

translational component of landmarks to allow for translation-invariant points, but on

the other hand, if we do not measure the translation, we can not or only poorly estimate

it. Furthermore, an erroneous rotation estimation due to translation influence yields a

bad translation estimation. Hence, the crucial part of this algorithm is a proper and

reliable identification of translation-invariant landmarks.

5.1.3 Rotation Estimation

The rotation of a point cloud can be estimated in closed form based on the direction

vectors to the different landmarks, e.g., based on quaternions [212] or discrete cosine

matrices using an eigenvalue decomposition [157] or a singular value decomposition [213,

214] (see also Section 3.3.2). We use the so called Umeyama algorithm described

in [214], which is an extension of the Arun’s algorithm [213], fixing a possible ambiguity

in the result.
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5.1 Zinf-Algorithm – Efficient Monocular Motion Estimation

The corresponding points used for rotation estimation belong all to translation-

invariant points. Hence, Eq. 5.2 can be abbreviated to

P ′
i = λ′i r̄

′
i = RTPi = RT λi r̄i = λiR

T r̄i ⇒ r̄′i = RT r̄i . (5.8)

Thus, we need to solve the following least squares problem

R(S) : R = argmin
R




∑

(r̄i,r̄′
i)∈S

∥∥RT r̄i − r̄′i
∥∥


 . (5.9)

In the following, we assume that we have a set of corresponding rays {(ri, r′i)},
which are only rotated and whose rotation we want to estimate. First, the origin of the

coordinate frame has to be moved to the center of the point cloud:

c =
1

|S|
∑

r̄i∈S

r̄i c′ =
1

|S|
∑

r̄′
i∈S

r̄′i

r∗i = r̄i − c r′∗i = r̄′i − c′ (5.10)

Now, the non scaled sample cross-covariance matrix for these point clouds is calculated

from the set S∗={(r∗i , r′∗i )}, such that

M =
∑

(r∗
i ,r

′∗
i )∈S∗

r′∗i r∗i
T . (5.11)

Therefore, 1
|S|M is the sample cross-covariance matrix between {r̄i} and {r̄′i}. It can

be shown that the rotation matrix which minimizes Eq. 5.9 also fulfills

R = argmax
R

(tr(RM)) . (5.12)

Consequently, R can be calculated as

R = VMWUT
M with SVD (M) = UMΣMV T

M (5.13)

with

W =



1 0 0
0 1 0
0 0 det

(
VMUT

M

)


 . (5.14)

The uncertainty measure of the rotation estimation consists of the average rotation

error and the percentage of rotation inliers in the data set. We propose the following

89



5. IMAGE-BASED POSE ESTIMATION

formula to compute the quality measure qR:

qR =

∑
r̄i∈Rinl

∥∥RT r̄i − r̄′i
∥∥

|Rinl|2
. (5.15)

This measure results from the mean feature error weighted by the inverse of the inlier

percentage ∑
r̄i∈Rinl

∥∥RT r̄i − r̄′i
∥∥

|Rinl|
N

|Rinl|
with N being the overall number of feature correspondences, but which is constant

and, thus, can be neglected for the quality measure. The weighting term is steep for

small inlier percentages and flattens out for large ones. Hence, the number of inliers

is crucial if only a small percentage of inliers could be found and becomes insignificant

for large inlier sets.

5.1.4 Translation Estimation

All the features in Routl are rotated back by R and consist afterwards only of the

translational part of the motion

r̊′ = Rr′ = RRT (r − t) = r − t (5.16)

with t
!
6= 0 because only translation-dependent features are used. Projecting the rays

on the unit focal image plane we get

ř′ =
r̊′

zr̊′
. (5.17)

The back-rotated optical flow vectors {(riř′i)} should all meet in the epipole, which

means that the epipole should be the intersection of all the lines defined by the trans-

lational flow vectors. This constrained defines a linear system of equations. Let

ni =

(
yř′

i
− yri

xri − xř′
i

)
(5.18)

be the normal of the translational flow vector, then the scalar product di of ni and an

arbitrary point on the line needs to be the same, where di can be computed as follows:

di = nTi ri;1:2 . (5.19)
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Thus, the linear system of equations for the epipole e looks like

Ae =




nT1
nT2
...

nT|Rout|




(
xe
ye

)
=




d1
d2
...

d|Rout|




def
= d . (5.20)

This linear system could then be solved by using the Moore-Pennrose pseudoinverse

A+ of A, which leads to poor results, if A is close to be singular in case of a motion

parallel to the image plane. Therefore, we use the SVD to compute the solution. Let

the linear system be

Ae = d ⇒ Ae− d = 0 ⇒
(
A d

)( e

−1

)
= 0

def
= B g . (5.21)

Thus, the direction of translation up to sign t̃ can be computed by

t̃ =
t̃′∥∥t̃′
∥∥ with t̃′ =

(
e

1

)
, e = −VB;1:2,3

VB;3,3
and SVD (B) = UBΣBV T

B .

(5.22)

Analogue to Eq. 3.29 the ambiguity of sign of the translation vector can be resolved by

following formula:

t =

{
−t̃ if

∑
i (ri × ř′i)

T (
t̃× ri

)
< 0

t̃ else
. (5.23)

As uncertainty measure for the translation, we use the Euclidean distance between

the calculated epipole and the optical flow vectors ‖Ae− d‖ together with the per-

centage of translation inliers, which are defined by the threshold Ξt and

Tinl =
{(

ri, r
′
i

)
:
∥∥nTi e− di

∥∥ < Ξt

}
. (5.24)

Similar to the quality measure for the rotation estimation, as denoted in Eq. 5.15, we

propose following quality measure qt for the translation estimation

qt =

∑
ri∈Tinl

∥∥nTi e− di
∥∥

|Tinl|2
. (5.25)
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5.2 Keyframe Based VSLAM

Thinking of applications where not only efficiency is required but also high accuracy,

we need to estimate and model also the depth of the features which we use for pose

estimation. In that way, we can improve the accuracy of image-based pose estimation

further, but it requires an initialization phase. Other keyframe based algorithms, e.g.,

PTAM, require an initialization step with a long translational motion in front of a planar

surface to initialize the detected features by planar homography decomposition [108].

In the following we introduce a keyframe based VSLAM approach based on a modified

version of the VGPS algorithm as introduced in Section 3.3.2.

In this algorithm we treat the feature initialization sequentially. The algorithm

tracks the features in one camera, but uses a second one to initialize the features of

every new keyframe by sub-pixel stereo triangulation as described in Section 7.1.1. This

initialization step runs in parallel and yields highly accurate feature-depths. Hence,

we do not require an initialization phase when setting up the system, nor a bundle

adjustment to preserve the congruency of the keyframes’ scales.

Independent of the tracker, its result can contain bad features due to occlusions,

repetitive patterns, virtual features and reflections. Moreover, the stereo initialization

can provide false matches resulting in an incorrect depth of the respective points. Oc-

clusions occur when background objects are not present in the image anymore, because

they are overlaid by an object in the foreground. In the opposed case, such background

objects can also suddenly appear in the image at the edge of a foreground object and

avoid proper tracking. Another problem are virtual features. These do not correspond

to real points in the world, but appear at the projection edges of a foreground and a

background object. Such features do not fit the rigid body motion corresponding to a

certain 3D point, but follow an arbitrary, misleading motion model. The same applies

to reflections. Almost none surface has only lambertian reflection, but also a specular

part. Such reflections have a large intensity gradient and are, therefore, likely selected

for tracking. However, the location of the reflection depends not only on the position of

the object, but also on the location of the light source. This leads to a moving feature

with misleading motion model.

Within the tracking layer such problematic cases can not be detected. Therefore,

the localization algorithm has to be able to detect bad features and reject them from

processing and future tracking.
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5.2.1 Robustified VGPS

We rely on a highly accurate feature initialization and do not want to modify the

estimated depths by some bundle adjustment approach as seen in Section 3.3.3. Hence,

we use VGPS (see Section 3.3.2) for motion estimation, which does not change the

depth estimates. Due to its iterative character, maximum likelihood-type estimators

(M-estimators) suggest themselves to be used for outlier rejection. The M-estimators

are a generalization of maximum likelihood (ML) methods. They are more robust to

outliers than ML-methods due to a special weighting. In most cases, an iteratively

re-weighted least squares fitting method is used for the M-estimation. The advantage

by using M-estimators and not a simple outlier rejection method like RANSAC is that

each measurement can be weighted according to its accuracy contribution.

The redescending M-estimator is applied on the residual Euclidean distances be-

tween matched and reprojected points. This is done to disregard gross outliers without

compromising the estimation convergence because of the naturally noisy nature of the

problem. Such outliers may correspond to either a faulty internal 3D model, false

matching correspondences, virtual features (e.g. features from occlusions), or, more in-

frequently, to wrong tentative ranges and are fatal to unbiased pose estimation. There-

fore, in case of outliers, the robustified VGPS not only disregards this data but also

sends a signal to the features’ database in order to remove those landmarks. In partic-

ular, we use the biweight function of Tukey because of its continuous derivatives and

its handy weights [215]. Both, the initial estimation and the chosen scale, are much

more influential parameters to global fast convergence than the nature of the employed

function. Thus, the modification consists in weighting the contribution of each point

to the inertia matrix of the matched set of points with the weight

wi =





(
1− eTi ei

s2

)2

if ‖ei‖ ≤ s
0 else

, (5.26)

where ei=Pi−RP̂ ′
i − t is the estimated normalized matching residual for object point

i and s is the scale of the inlier noise. This yields the following modification of Eq. 3.31

R = argmax
R

(
tr
(
RT M

))
with M =

N∑

i=1

wi P̂
′∗
i P ∗

i . (5.27)

Finally, we use an efficient termination policy determined by a threshold on the

absolute orientation correction over the course of the iterations.
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Experiments in Section 8.2.3 compare RVGPS to the conventional VGPS algorithm

and illustrate the improvements by using M-estimators.
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Chapter 6

Uncertainty Prediction for

Image-Based Motion Estimation

To allow for a proper fusion of different sensors, it is crucial to know the respective

accuracy of each measurement. By using optical flow based motion estimation tech-

niques the accuracy of the estimate depends on the tracked feature set and the applied

algorithm. While there is no error propagation for the Z∞-algorithm known in the lit-

erature, it has already been derived for the regular, original eight-point algorithm [150].

Applying those formulas one obtains the uncertainties for the rotation quaternion and

the translation estimation. However, it does not cover the modifications introduced in

Section 3.3.1, which make the algorithm more stable. Furthermore, the error propa-

gation for the rotation matrix estimation, which is more robust than the quaternion

computation, has also not been discussed in the literature. In this chapter, we will tackle

this missing points and derive a first order error propagation for all the discussed eight-

point algorithm variants and also the Z∞-algorithm, as described in Section 5.1. With

these equations we can approximate the expected error in the computed translation

vector and rotation matrix, given a set of feature correspondences and the provided

tracking accuracy.

6.1 Error Propagation of the Eight-Point Algorithm

In the following, we will present a first order perturbation analysis of the eight-point

algorithm, adapted from [150]. First, we will introduce the notation of errors. Let us

assume a measurement matrix Ã, consisting of the matrix A denoting the real values
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and the perturbation matrix ∆A, such that

Ã = A+∆A . (6.1)

The following theorem will be used in several steps of the derivation.

Theorem: Let A be an n × n symmetric matrix with the eigenvalues λ1, . . . , λn and

H be an orthonormal matrix consisting of the eigenvectors h1, . . . ,hn, such that

A = H diag(λ1, . . . , λn) H
T . (6.2)

x is then a vector in the span of an eigenvector hj with scaling factor k ∈ R, resulting

in

x = khj . (6.3)

The perturbation of x can then be described up to first order by the perturbation in

A, denoted as ∆A, according to

δx ∼= HDiH
T∆Ax , (6.4)

with

Di = diag(l1, . . . , ln) and lj =





0 if i = j
1

λi − λj
else

. (6.5)

Proof : See [150].

The starting point of the derivation is the error δA of the matrix A of Eq. 3.5,

which can be linearly approximated by

δAT =
[
∆T

A

]
col with ∆T

A
∼=




δu1u
′
1 + δu′1u1 δu2u

′
2 + δu′2u2 . . . δuNu

′
N + δu′

N
uN

δu1v
′
1 + δv′1u1 δu2v

′
2 + δv′2u2 . . . δuN v

′
N + δv′

N
uN

δu1 δu2 . . . δuN
δv1u

′
1 + δu′1v1 δv2u

′
2 + δu′2v2 . . . δvNu

′
N + δu′

N
vN

δv1v
′
1 + δv′1v1 δv2v

′
2 + δv′2v2 . . . δvN v

′
N + δv′

N
vN

δv1 δv2 . . . δvN
δu′1 δu′2 . . . δu′

N

δv′1 δv′2 . . . δv′
N

0 0 . . . 0




(6.6)

where ui = uri , u
′
i = ur′

i
and vi = vri , v

′
i = vr′

i
for the sake of clarity. We use the

transposed matrix AT because it eases the computation of the covariance matrix and

the understanding of its shape.
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Our aim is to compute the variance of the estimated t and R. Hence, we have to

compute the linear transitions of each step of the eight-point algorithm, as explained

in Section 3.3.1.

6.1.1 Error Propagation for the Essential Matrix

According to Eq. 3.8 the entries of the Essential matrix correspond to the ninth eigen-

vector of ATA, which agrees with the smallest eigenvalue. Thus, we first have to

compute the error δATA from δAT . Using first order approximation we get

ATA+∆ATA = (A+∆A)T (A+∆A) = ATA+AT∆A +∆T
AA+∆T

A∆A

⇒ ∆ATA
∼= AT∆A +∆T

AA
(6.7)

which corresponds to

δATA
∼=
(
AT ⊗ I9 + row

[
I9 ⊗ (Ai,−)

T
]N
i=1

)
δAT

def
= GATA δAT . (6.8)

The pertubation of the ninth eigenvector of ATA can then be computed by the theorem

introduced at the beginning of this chapter, such that

δê ∼= VADATA;9V
T
A∆ATA ê

= VADATA;9V
T
A

(
êT ⊗ I9

)
δATA

def
= G

Ê
δATA (6.9)

with SVD(A) = UAΣAV T
A because VA corresponds to the eigenvector matrix of ATA

and the singular values ofA are the square roots of the eigenvalues ofATA: λATA = σ2A.

As noted in the last equation, depending on the variant we do not get e but ê and,

thus, we have to recover the Essential matrix according to Eq. 3.12 by

E = S′T
(
Ê +∆

Ê

)
S ⇒ ∆E = S′T∆

Ê
S

⇒ δe =


ST ⊗



1 0 0
0 1 0
1 1 1




 ◦





1 0 0
1 1 0
1 1 1


⊗ S′T


 δê

def
= GE δê . (6.10)

Now, that we know the propagation of the error from the input matrix A to the
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Essential matrix, we can estimate the covariance matrix of E by following formula:

ΓE = HE ΓAT HT
E with HE = GEGÊ

GATA .

Assuming that the errors of different points and different components are uncorrelated

and equally of magnitude σ, δr̃ = δr̃′ =
(
σ σ 0

)T
, the covariance matrix ΓÃT can be

computed based on Γx = E
(
δxδ

T
x

)
from δÃT . Hence, for the basic eight-point algorithm

it has the form

ΓÃT = Diag
(
P̃1, P̃2, . . . , P̃N

)

with

P̃i =
(
r̃r̃T

)
⊗ Γr̃′ + Γr̃ ⊗

(
r̃′r̃′T

)
and Γr̃ = Γr̃′ =



σ2 0 0
0 σ2 0
0 0 0


 , (6.11)

where σ denotes the standard variation of the feature detector and with r̃ as introduced

in Eq. 2.9. However, because of robustness issues we do not use r̃ or r but r̂ which is

a modification of r according to Eq. 3.11. Hence, we need to adapt the measurement

variance for each point by

r̂ = Sr ⇒ δr̂ = Sδr r̂′ = S′r′ ⇒ δr̂′ = S′δr′

Γr̂ =

(
diag

(
1

f
Sδr̃

))2

Γr̂′ =

(
diag

(
1

f
S′δr̃′

))2

, (6.12)

which results in

Γ
ÂT = Diag

(
P̂1, P̂2, . . . , P̂N

)
with P̂i =

(
r̂r̂T

)
⊗ Γr̂′ + Γr̂ ⊗

(
r̂′r̂′T

)
. (6.13)

Please note that if the robustification transformations S and S′ are used and E is

computed according to Eq. 3.12, the Frobenius norm of the Essential matrix is in general

not two anymore, ‖E‖F 6= 2. In the computation of Ē the norm is fixed by Eq. 3.16.

This step has also to be considered in the accuracy estimation. It is approximated by

adjusting the Frobenius norm of the covariance matrix to the Frobenius norm of Ē

which yields

ΓĒ = HEΓÂTH
T
E

2
∑3

i=1 σ
2
Â;i

with U
Â
diag

(
σ
Â;1, σÂ;2, σÂ;3

)
V T

Â
= SVD

(
Â
)
.

(6.14)

The square root for the factor 2
∑3
i=1 σ

2

Â;i

vanishes because it has to be squared for the
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covariance matrix. Please note that this is only an approximation and does actually not

correspond to the counterpart of Eq. 3.16, because it is not assured that the singular

values of Ē are diag(1, 1, 0) but only that the Frobenius norm is 2.

6.1.2 Error Propagation for the Rotation Matrix

According to Eq. 3.23, the rotation matrix is estimated by R = UEZWV T
E . Conse-

quently the error of R propagates as follows

R+∆R = (UE +∆UE
)ZW (VE +∆VE

)T ⇒

∆R
∼= ∆UE

ZWV T
E +UEZW∆T

VE
. (6.15)

Hence, we need to propagate the error for ∆UE
and ∆VE

. The vectors of UE and VE

are eigenvectors of ĒĒT and ĒTĒ respectively. Thus, we first need to compute the

transistion matrix GĒTĒ by

δĒTĒ
∼=
(
col
[
I3 ⊗

(
Ē−,i

)T ]3
i=1

+ I3 ⊗ ĒT

)
δe

def
= GĒTĒ δe . (6.16)

Now, the error in UE and VE can be computed by using again the aforementioned

theorem

δUĒ

∼= col
[
UE DĒĒT;iU

T
E

(
(UE;−,i)

T ⊗ I3

)]3
i=1

δĒĒT

def
= GUĒ

δĒĒT and (6.17)

δVĒ

∼= col
[
VE DĒTĒ;i V

T
E

(
(VE;−,i)

T ⊗ I3

)]3
i=1

δĒTĒ

def
= GVĒ

δĒTĒ . (6.18)

where we choose

DĒĒT;1 = DĒĒT;2 = DĒTĒ;1 = DĒTĒ;2 = diag(0, 0, 1) (6.19)

as proposed by [108], to avoid a division by zero.

Finally, the perturbation in the rotation matrix can be computed by

δR =
(
GRU GRV

)(δUĒ

δVĒ

)
. (6.20)
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with

GRU = col
[(
Z1,2VE;i,2 Z2,1VE;i,1 det

(
UEV

T
E

)
VE;i,3

)
⊗ I3

]3
i=1

and (6.21)

GRV =
(
I3 ⊗Z2,1UE;i,2 I3 ⊗Z1,2UE;i,1 I3 ⊗ det

(
UEV

T
E

)
UE;i,3

)
. (6.22)

This yields the following covariance matrix for the rotation matrix

ΓR =
(
GRU GUĒ

GRV GVĒ

)(GĒĒT

GĒTĒ

)
ΓĒ

(
GT

ĒĒT GT
ĒTĒ

)
(
GT

UĒ
GT

RU

GT
VĒ

GT
RV

)
.

(6.23)

Actually, the error of a rotation matrix has to meet some requirements in order to

fulfill the orthogonality constraint of a DCM [216]:

I = (R+∆R) (R+∆R)T

= RRT +∆RR+R∆T
R + O

(
∆R∆T

R

)

∼= I +∆RR+R∆T
R

⇒ ∆RRT = −
(
∆RRT

)T def
= ∆′

R =
[
d ′

R

]
×
. (6.24)

where the operator [ · ]× denotes the cross-product skew matrix. It follows that

R+∆R =
(
I +∆RRT

)
R =

(
I +∆′

R

)
R

def
= R∆′

R
R . (6.25)

Thus, geometric insights of the rotation error can be gained computing the error rota-

tion axis d ′
R. It can be derived by finding the kernel of ∆′

R, which is the eigenvector of

∆′
R corresponding to its smallest eigenvalue. However, we do not know the error-free

R and, thus, we cannot perform the eigenvalue decomposition directly. By multiplying

the error with its transposed we can eleminate R, such that

Q = ∆′
R∆′T

R = ∆R∆T
R = −∆R∆R . (6.26)

The power of a matrix does not change its eigenvectors but only apply to its eigenvalues.

Hence, we can compute the kernel of matrix ∆′
R by the left singular vector of Q

corresponding to the smallest singular value. The magnitude of the error rotation d ′
R

corresponds to the two largest singular values of ∆′
R. Actually, the singular values of

the skew-symmetric matrix ∆′
R should look like {‖d ′

R‖, ‖d ′
R‖, 0}. We compute the

magnitude of the error rotation by the mean of the square roots of the two largest
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singular values, such that

d ′
R = σmUQ;−,3 with σm = 0.5

(√
σQ;1 +

√
σQ;2

)
(6.27)

and UQ diag(σQ;1, σQ;2, σQ;3)V
T

Q = SVD(Q). The matrix Q can be composed by the

diagonal elements of ΓR as follows:

Q =



ΓR;1,1 + ΓR;4,4 + ΓR;7,7 ΓR;1,2 + ΓR;4,5 + ΓR;7,8 ΓR;1,3 + ΓR;4,6 + ΓR;7,9

ΓR;2,1 + ΓR;5,4 + ΓR;8,7 ΓR;2,2 + ΓR;5,5 + ΓR;8,8 ΓR;2,3 + ΓR;5,6 + ΓR;8,9

ΓR;3,1 + ΓR;6,4 + ΓR;9,7 ΓR;3,2 + ΓR;6,5 + ΓR;9,8 ΓR;3,3 + ΓR;6,6 + ΓR;9,9


 .

(6.28)

6.1.3 Error Propagation for the Translation Vector

We know from Eq. 3.28 that the translation vector equals up to sign to the eigenvector

corresponding to the smallest eigenvalue of ĒĒT . Hence, we first need to estimate the

error transition similar to Eq. 6.8

δĒĒT
∼=
(
row

[
I3 ⊗ Ē−,i

]3
i=1

+ Ē ⊗ I3

)
δe

def
= GĒĒT δe . (6.29)

Analog to Eq. 6.9, the first order perturbation propagation of t̃ can then be computed

using the above theorem, by

δt̃
∼= UEDĒĒT;3U

T
E

(
t̃T ⊗ I3

)
δĒĒT

def
= Gt̃ δĒĒT (6.30)

with SVD
(
Ē
)
= UEΣĒV

T
E .

This yields the following covariance matrix, which is equal to the one for t, due

to the nature of a covariance matrix (the transition matrix Gt̃ is applied twice and

becomes symmetric)

Γt = Γt̃ = Gt̃GĒĒTΓE GT
ĒĒT GT

t̃
. (6.31)

In Section 8.4.1, we will evaluate the quality of the first order error propagation

using synthetic data.

101



6. UNCERTAINTY PREDICTION FOR IMAGE-BASED MOTION
ESTIMATION

6.2 Error Propagation of the Z∞-Algorithm

The motion estimation of the Z∞-algorithm is split into two parts, the rotation and

the translation estimation. We are going to analyze the first order error propagation

without considering the correlation of these two components, because an exhaustive

analysis is tedious and beyond the scope of this work. However, the mutual influence

of rotation and translation will be discussed in the experiment Section 8.4.2.

6.2.1 Error Propagation for the Rotation Matrix

The pure rotation estimation of a point cloud is part of the so called orthogonal Pro-

crustes problem. Its first order accuracy analysis has been presented and discussed

in [216]. We adapt this approach to provide a first order error propagation for the

Z∞ rotation estimation.

Using the same rotation error definition as in Eq. 6.25, the column vector δR of the

matrix ∆R can be computed from [d ′
R]× by

δR = col
[
[−R−,i]×

]3
i=1

d ′
R

def
= GR d ′

R . (6.32)

According to the error propagation of the Procrustes problem in [216], the covariance

matrix for d ′
R can be estimated by

Γd ′
R
= −RHRT

(
N∑

i=1

(
[Rr∗i ]× Γr′∗

i
[Rr∗i ]×

)
+

N∑

i=1

([
r′∗i
]
×
RΓr∗

i
RT

[
r′∗i
]
×

))
RHRT

(6.33)

with N being the number of features and

H = (tr(S) I − S)−1 where EVD (S) = VM diag(σ1, σ2, σ3)V
T
M (6.34)

and SVD (M) = UM diag(σ1, σ2, σ3)V
T
M according to Eq. 5.11. The vectors r∗i and

r′∗i were introduced in Eq. 5.10 and the singular values σ1, σ2 and σ3 of M are in

decreasing order. Please note that H might also be written as

H = VM diag

(
1

σ2 + σ3
,

1

σ1 + σ3
,

1

σ1 + σ2

)
V T
M . (6.35)

Hence, the weighting matrix H has a similar ordering as the inertial shape of the

cloud S (which is the Hermetian component of the polar decomposition) with the
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terms muting their ratios, which reminds to the weighting term of the first order error

propagation of an eigenvector in Eq. 6.4.

It remains to compute the covariance matrices Γr∗
i
and Γr′∗

i
from the feature de-

tector accuracy σ2. As in Eq. 6.11 we start from

Γr̃ = Γr̃′ =



σ2 0 0
0 σ2 0
0 0 0


 ,

but for our rotation estimation we are using unit length rays. Hence, according to the

theorem of intersecting lines, the deviation changes, such that

Γr∗
i
=

(
zri
f

)2


σ2 0 0
0 σ2 0
0 0 0


 and Γr′∗

i
=

(
zr′
i

f

)2


σ2 0 0
0 σ2 0
0 0 0


 , (6.36)

where zri is the z-coordinate of the unit-ray ri and f is the focal length as defined in

Eq. 2.9. The factor
zr′
i

f
simply corresponds to the reciprocal of the vector length 1

‖r̃‖ .

The shift of the origin to the centroid does not affect the variance.

Finally, putting together Eq. 6.33 and 6.32 we get

ΓR = GR Γd ′
R
GT

R . (6.37)

6.2.2 Error Propagation for the Translation Vector

The error in the translation estimation has to be propagated through Eq. 5.21. The

initial error ∆B of B can be estimated according to

∆B =
(
∆A δd

)
(6.38)

with

n+ δn =



(
yř′

i
+ δyř′

i

)
−
(
yri + δyri

)
(
xri + δxri

)
−
(
xř′

i
+ δxř′

i

)



⇒ δn =

(
δyř′

i

− δyri
δxri − δxř′

i

)

⇒ ∆A =
(
δn1

δn2
. . . δn|Rout|

)T
(6.39)
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and

d+ δd = (n+ δn)
T

(
xr + δxr
yr + δyr

)

= (xn + xδn) (xr + δxr) + (yn + yδn) (yr + δyr)

⇒ δd ∼= xnδxr + xδnxr + ynδyr + yδnyr

⇒ δd ∼=
(
δd1 δd2 . . . δd|Rout|

)T
. (6.40)

In the following, we will use the transposed error matrix δBT instead of δB because it

will ease the computation of the covariance matrix later on.

The error propagation from the feature-error to δBT can be computed by following

transition matrices:

δr,n =




δr1
δn1

δr2
δn2

...
δr|Rout|

δn|Rout|




=


I|Rout| ⊗




1 0 0 0
0 1 0 0
0 −1 0 1
1 0 −1 0










δr1
δř′

1

δr2
δř′

2

...
δr|Rout|

δř′
|Rout|




def
= Gr,n δr,ř′

(6.41)

and

δBT
∼= Diag

(
P1,P2, . . . ,P|Rout|

)
δr,n

def
= GBT δr,n (6.42)

with

Pi =




0 0 1 0
0 0 0 1
xni yni xr̃i yr̃i


 . (6.43)

The error of t̂, which is derived from the least-squares solution of Eq. 5.21 according

to Eq. 5.22, can be propagated using the span-of-eigenvector error propagation theorem

introduced at the beginning of Section 6.1 and as specified by Eq. 6.4. Thus, we first

need to compute the transition matrix from the error vector δBT to δBTB similar to

Eq. 6.8

δBTB
∼=
(
row

[
I3 ⊗BT

i,−

]|Rout|

i=1
+BT ⊗ I3

)
δB

def
= GBTB δBT . (6.44)

104



6.2 Error Propagation of the Zinf-Algorithm

Now we can propagate the perturbation of the eigenvector by

δē ∼= VBDBTB;3V
T
B∆BTB

(
e

−1

)

= VBDBTB;3V
T
B

((
e

−1

)T
⊗ I3

)
δBTB

def
= Gē δBTB , (6.45)

where e has been introduced in Eq. 5.22. According to those formulas, the error of δt̃
of the translation direction (up to sign) t̃ can be estimated from δē according to

δt̃ =

(
δē

‖t̃′‖
0

)
and, thus, δt̃ = Gt δē with Gt =



zt̃ 0 0
0 zt̃ 0
0 0 0


 (6.46)

and zt̃ denoting the third component of t̃. The error for t and t̃ varies only in the sign

and, hence, results in the same covariance propagation matrix.

It remains to compute the initial covariance matrix Γr,ř′ . Assuming again that the

errors of different points and different components are uncorrelated and equally δri,ř′
i
=

σ
f
I4, the covariance matrix Γr,ř′ can be computed based on Γr,ř′ = E

(
δr,ř′δTr,ř′

)
. As

result we get

Γr,ř′ =

(
σ

f

)2

I4|Rout| . (6.47)

Putting together the pieces we can compute the covariance matrix of the direction

of translation vector Γt̂, such that

Γt
∼= Ht Γr,ř′ HT

t with Ht = GtGēGBTB GBT Gr,n . (6.48)

We will evaluate the quality of the presented first order error propagation using

synthetic data in Section 8.4.2.
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Chapter 7

Feature Tracking

The accuracy in estimating the mean value of a random variable increases with the

number of its occurrences considered by the computation. Hence, it is possible to tune

a tracking algorithm in two ways to increase the motion estimation accuracy: either

the tracking accuracy is improved, lowering the variance of the random variable, or the

algorithm is tuned to be more efficient and, thus, it allows to use more features1.

In this chapter, we describe two tracking techniques. The first one aims for high

tracking accuracy and is based on the Kanade-Lucas-Tomasi (KLT) feature tracker,

whereas we enhanced it to increase efficiency and allow for sub-pixel accurate stereo-

triangulation. The second one is a tracking-by-matching approach based on AGAST-

features. It does not require any image pre-processing and is, thus, highly efficient.

7.1 Extended KLT Tracking

One of the most popular and efficient local tracking methods currently is KLT (see

Section 3.2). In the following, we will denote a few bottlenecks and drawbacks of the

algorithm and how we bypassed them in our implementation.

KLT tracks the features in the gradient image. For that in conventional imple-

mentations first off the X- and Y-axis gradients are computed for the whole image.

Furthermore, if larger pixel displacements have to be detected, image pyramids are

used which require a low-pass filtering of the image to prevent aliasing. This is done by

convolving the image with a Gaussian smoothing filter. In Appendix A.1, we describe

how the appropriate smoothing kernel for a specific image pyramid can be computed.

For each pyramid level and each axis one convolution for smoothing and one for the

computation of the gradient is required. For the sake of efficient one should try to

1Some experimental results of this effect are shown in Fig. 8.17.
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avoid the computation and the processing of too many image pyramid layers, not only

because of the large processing costs, but also because image pyramids may lead to

wrong matches. If in an upper level, where less detail about the feature is available, a

wrong correspondence (e.g. of a repetitive pattern) is found, there is no possibility to

fix that in the lower levels. Furthermore, considering the large number of pixels per

image one should try to avoid full image processing steps and reduce the search area

as much as possible, of course by still allowing for the necessary dynamics.

KLT generally uses the Shi-Tomasi features (see Section 3.1) with a specified non-

maximum distance threshold. However, this does not prevent that only features in a

small, texture-rich region of the image are found. Such a local limitation of the features

leads to a ill-posed motion estimation, independent of the algorithm.

Moreover, we can assume that we are going to track the same features for quite

a while. This leads to an oblique problem. Let us briefly recapitulate the functional

principle of KLT. First, good features to track have to be chosen. The selection criterion

therefore are the horizontal and vertical gradients in a surrounding region. However,

the tracking itself is based on a simple iterative comparing routine of the gradient

images. The position is estimated with sub-pixel precision up to a specified accuracy -

a residual error will always remain due to the linearization of the tracking step. Thus,

in each step the new feature location is estimated and defines the new template for

the next tracking step. This image-by-image tracking is highly efficient but results in

an accumulation of the tracking error. There are two ways to overcome this problem.

Either, we always use the keyframe patches as reference, which requires a processing

expensive patch normal estimation and warping, or we try to avoid the tracking bias

by binding the feature location to a drift-free point.

To overcome the stated problems we implemented following modifications of the

conventional KLT:

• KLT is a local tracker, which assumes that the features do not move too much.

Hence, the KLT preprocessing (gradient computation and smoothing) is reduced

to small patches around the tracked points. In this way, not the entire images

but only the small feature patches have to be processed and stored. Thus, also

the tracking on high resolution images becomes feasible.

• A linear motion model allows not only for larger feature displacements between

the images, but also for smaller search areas. The results are fewer tracking

iterations and a reduced size of the image-patches. The motion is modeled based

on the 2D feature displacements in the image and provides a strict separation of
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the tracking and the pose estimation routines which prevents a building up of the

error.

• It is often the case that a scene captured by a camera is built from different

structured regions. Patterns with a rich contrast are preferred by feature detectors

because they allow a good discrimination during tracking. Splitting the image

into commensurate sub-images for feature selection, leads to a better landmark

dispersion. A feature set, which covers a wider cone of view allows a better

conditioned pose estimation.

• To prevent feature drifts, we bind the feature to the response of its detector.

KLT uses the Shi and Thomasi detector which detects pixels with the largest

second eigenvalue of the moment matrix of the surrounding patch and, thus, not

necessarily a real corner, but in general a pixel close to it. Hence, we assume that

the feature detector would always extract the same interesting point in the close

pixel neighborhood of the tracked feature. Let vd denote the vector from the sub-

pixel accurate tracking result pt to the pixel accurate feature detector response.

Then the feature gets attracted by a weight resulting from the ratio between the

detector response value of the tracked location spt and the maximum one svd .

Because the tracked location is not a single pixel its value has to be interpolated

by the surrounding pixels. At the end we get a novel sub-pixel accurate and

drift-compensated feature location p′:

p′ = pt +

(
1− spt

svd

)
vd . (7.1)

This yields a mixture between gradient-descent tracking and tracking by matching

as it is used in Section 7.2.3.

Some experimental results are shown in Section 8.1.1.

The computational costs can be significantly reduced by tracking the features only

in one instead of both cameras. However, to increase the motion estimation accuracy

the features 3D structure has to be initialized. There are three different ways to initial-

ize the scale from images: by using the dimensions of some known objects (structure

from reference), by moving a camera (structure from motion) or by using a stereo cam-

era system with stereo-triangulation (structure from stereo). In the next section, we

describe a method which allows to find sub-pixel accurate feature correspondences for

an accurate stereo-triangulation.
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7.1.1 KLT-Based Stereo Initialization

The default way to find stereo correspondences is to search for a corresponding patch

on the epipolar line [108]. For that the neighborhood of each pixel on this line is

compared to the pixel neighborhood of the respective feature. This results in a pixel-

accurate stereo matching. Even if the epipolar line is restricted to a small area due

to the distance limitation of the environment, all the pixels along that line have to

be checked for matching. In practice, that line even grows to a small band due to

calibration inaccuracies and if one wants to achieve sub-pixel accuracy, all possible

sub-pixel locations in this band have to be interpolated. The fact, that the current

problem is principally the same as in tracking, namely to find pixel-correspondences,

leads to following algorithm.

If the cameras are mounted parallel on the stereo rig and the baseline is short, the

affine component of the stereo-transformation can be neglected. Hence, we assume

that the same features are found by a feature detector. We extract features from both

images, the reference as well as the supporting image which is only used for stereo

initialization, whereas for the second one we use a slightly lower threshold for feature

detection, which yields more responses. Now, for each feature in the reference image

we check all detected features on the epipolar line for correspondence. The features are

selected according to following constraints: The coordinate of the horizontal axis (in

general the X-axis) of a possible correspondence has to be smaller or larger (denoted

by ≶) than the one of the reference camera, depending on whether the left or the

right camera has been chosen as reference camera. Furthermore, the distance from the

epipolar line cannot exceed a predefined threshold Ξd, which has to be chosen according

to the feature detector and the accuracy of the camera calibration. The distance from

the epipolar line is computed as follows.

The relation between Fundamental matrix, the image point in the reference camera

pr and the epipolar line in the image coordinate frame of the second camera l is

Fpr = l . (7.2)

We compute the projection factor fp of the epipolar line on the image plane by

f ′p = f l̄T l̄p with l̄p =
1√

x2
l̄
+ y2

l̄



xl̄
yl̄
0


 =

1

1− z2
l̄



xl̄
yl̄
0


 , l̄ =

l

‖l‖ (7.3)
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and f being the focal length in pixel size, which leads to

fp = f
x2l + y2l

‖l‖
(
‖l‖2 − z2l

) (7.4)

and, finally, get the pixel distance dpt of the feature to test pt from the epipolar line by

dpt = f ′p l̄
Tpt = fp l

Tpt . (7.5)

This yields the, usually relative small, set of possible correspondences Cpr from the

set of detected features in the second image T, whereas

Cpr = {pt ∈ T |xpt ≶ xpr ∧ |dpt | < Ξd} . (7.6)

We apply the KLT Tracker on each of these matches to find the sub-pixel accurate

correspondence. Hence, not every feature or even pixel, but only some interesting

points within the epipolar-band are used as starting point for the KLT tracker. In case

of a match, a sub-pixel accurate feature correspondence is found. If the tracker finds

more than one match, we use the one with the smallest pixel difference of the gradient

patches.

By limiting the search range for stereo matches to the displacement corresponding

to an object’s distance, only features in the specified range are found. With this

restriction, we can localize in respect to an object even if it is moved, because we do

not refer to landmarks out of the specified range, as, e.g., on the scene background. This

allows tracking of a moving object and in the 3D modeling scenario the reconstruction

of dynamic subjects (see Section 9.1).

Some results of this initialization technique are presented in Section 8.1.1.

7.2 AGAST-Based Tracking by Matching

In the following, we present an approach which is less accurate but much more efficient.

Due to a highly efficient corner detection we can look for good features to track in each

image and match them. Thus, first we will introduce the adaptive and generic accel-

erated segment test (AGAST) and then we describe which matching policy for feature

tracking we use in combination with this feature detector and when it is applicable.
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7.2.1 Adaptive and Generic Accelerated Segment Test

AGAST is a corner detector which, analog to FAST, is also based on the AST (see

Section 3.1.1), but which is more efficient, while being more generic too. We introduce

the reader step-wise to the different concepts underlying the algorithm: the binary

search tree, the optimal decision tree, and the automatic scene adaption.

Configuration Space for a Binary Search Tree

Instead of only considering a restricted configuration space, as in FAST, we propose to

use a more detailed configuration space in order to provide a more efficient solution.

Therefore, we do not consider two questions of the AST per time as in FAST, but we

evaluate only one. The idea is as follows: choose one of the pixels to test and one

question to pose. The question is then evaluated for this given pixel, and the response

is used to decide the following pixel and question to query. Searching for a corner,

hence, reduces to traversing a binary decision tree. Since, it is required to specify

which pixel to query and the type of question to use. Consequently, the configuration

space increases by the addition of two more states: “not brighter” (b) and “not darker”

(d). Using a similar notion as in [128], the state of a pixel relative to the nucleus n,

denoted by n→ x, is assigned as follows:

Sn→x =





d, In→x < In − t (darker)

d, In→x ≮ In − t
∧

S′
n→x = u (not darker)

s, In→x ≮ In − t
∧

S′
n→x = b (similar)

s, In→x ≯ In + t
∧

S′
n→x = d (similar)

b, In→x ≯ In + t
∧

S′
n→x = u (not brighter)

b, In→x > In + t (brighter)

, (7.7)

where S′
n→x is the preceding state, I is the brightness of a pixel and u means that

the state is still unknown. This results in a binary tree representation, as opposed

to a ternary tree, allowing a single evaluation at each node. Please note that this

increases the configuration space size to 6N , which yields 616 ≈ 2 · 1012 possible nodes

for N = 16.

Associated with each branch of our tree is a processing cost, which represents the

computational cost on the target machine. These costs vary due to different memory

access times. We specify these as follows,

• cR: register access cost (second comparison of the last tested pixel),

• cC : cache access cost (testing of a pixel in the same row)
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• cM : memory access cost (testing of any other pixel).

Furthermore, for each of these, an additional cost equivalent to evaluating a greater-

than operation, is required.

Building the Optimal Decision Tree

It is well known that a greedy algorithm, such as ID3, may perform rather poorly when

finding the optimal decision tree [217]. However, the issue of finding such a tree is

a well-studied problem, where it has been shown that finding the global optimum is

NP-complete [218]. There are several solutions towards finding the optimal tree [219,

220, 221], but they are either approximations to the global optimum or are restricted

to special cases, making them ill-suited for this application.

In order to find the optimal decision tree, an algorithm which is similar to the

backward induction method, as described in [219], has been implemented. We explore

the whole configuration space starting at the root of the decision tree, where none of

the pixels is known. Nodes of the tree are formed by recursively evaluating a possible

question at a given pixel. We explore the configuration space (using Depth First Search)

until a leaf is found, whereas a leaf is defined as the first node on the path which fulfills

or cannot fulfill anymore the AST corner criteria. The cost at a given leaf is zero, while

the cost at any given internal node, cP , is determined by picking the minimum cost

computed for each child pair C+ and C−, representing the positive and negative results

of a test, by

cP = min
{(C+,C−)}

cC+
+ pC+

cT + cC− + pC−cT = cC+
+ cC− + pP cT (7.8)

where cT represents the cost of the pixel evaluation with cT ∈ {cR, cC , cM} and the pP ,

pC+
and pC− are the probabilities of the pixel configurations at the parent and child

nodes respectively. Using this dynamic programming technique allows us to find the

decision tree for an optimal AST (OAST) efficiently. The resulting decision tree can,

hence, be optimized for different cR, cC and cM , but also for arbitrary probabilities for

each pixel configuration, which is necessary for our approach described in the following

section.

The binary configuration space allows for decision trees which reduce the entropy

more quickly than a ternary tree, as questions which contain little information gain are

deferred to later stages of the decision process. Please note that the additional cost of

re-evaluating the same pixel at a subsequent point in time is taken into account when

computing the optimal tree.
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Adaptive Tree Switching

Every image has, independent of the scene, homogeneous and (or) cluttered areas

representing uniform surfaces or structured regions with texture. Hence, instead of

learning the distribution of the pixel configurations from training images, like FAST,

a first generalization would be to learn the probability of structured and homogeneous

regions and optimize the decision tree according to this distribution. The resulting tree

is complete and optimized for the trained scene, while being invariant to any motion.

The probability of an image to be uniform can be modeled by the probability of a pixel

state to be similar to the nucleus (ps). The “brighter” and “darker” states are mirrored

states, which means that, e.g., a brighter pixel on the test pattern will evaluate the

current nucleus pixel as darker as soon as it becomes the center pixel. Due to this

mirroring the states “brighter” and “darker” are assumed to have the same probability

(pbd), which is chosen to sum up to one with ps (ps + 2pbd = 1). Thus, the probability

of a pixel configuration pX can be computed as follows:

pX =
N∏

i=1

pi with pi =





1 for Sn→i = u

ps for Sn→i = s

pbd for Sn→i = d
∨
Sn→i = b

pbd + ps for Sn→i = d
∨
Sn→i = b

(7.9)

The probability distribution of the pixel configuration is, therefore, a trinomial distri-

bution with the probabilities ps and twice pbd. Please note that the states d, b and u

are not single samples of this distribution but represent a set of two and three, respec-

tively. While this approach provides a good solution for the trained environment, it

is not generic and, like FAST, it has to be learned for each specific scene where it is

applied.

A more efficient and generic solution is achieved, if the algorithm automatically

adapts to the area which is currently processed, i.e. it switches between decision trees

which are optimized for the specific area. The idea is to build two or more trees and

specialize them for a certain structuredness - e.g., in case of two trees one would be

ideal for homogeneous and one for structured regions, realized by a small and a large

value for ps. At the end of each decision path, where the corner criterion is met or

cannot be fulfilled anymore, a jump to the appropriate specialized tree is performed

based on the pixel configuration of this leaf (see Fig. 7.1). This switch between the

specialized decision trees comes with no additional costs, because the evaluation of the

leaf node is done offline when generating the specialized tree. In this way, the AST
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is adapted to each image section dynamically and its performance is increased, for an

arbitrary scene. Any learning becomes needless.

Figure 7.1: Principle of the adaptive and generic accelerated segment test. The AGAST
switches between two (or more) specialized trees as soon as the pixel neighborhood changes.
The lighter the gray of a leaf the more equal pixels are in the configuration. The left tree
achieves less pixel evaluations (shorter decision paths) in a homogeneous pixel neighbor-
hood, while the right one is optimized for textured regions.

Because a switch between the trees at no costs can only be performed at a leaf,

the adaption is delayed by one test. Therefore, the only case were the adaptive tree

switching of AGAST would worsen its performance is, if the environment switches from

homogeneous to structured and vice versa at consecutive pixels. This is practically not

possible, due to the mirroring effect of dissimilar pixels as described earlier. However,

natural images usually do not have a random brightness distribution, but they are

rather split into cluttered and uniform regions. If the decision trees can be strongly

balanced by varying ps, also more than two different weighted trees can be used.

At this point it is also worth to mention that the proper model of the probabilistic

distribution would be a more complex, because the configuration states are not fully

independent, due to the aforementioned mirroring effect. It can be exemplified by a

single outlier in a homogeneous region, which is measured N times as unequal pixel on

the test pattern, but for once it is the center pixel, too. This means that the probability

of P (0) is the same as P (N − 1) in cases where the rest of the pixel is either darker or

brighter. However, the probability of P (1) is not equal to P (N − 2), because otherwise

the two outlier would have to be within the AST threshold. Hence, a complete model

would have to take care of the likeliness of outliers to be similar. Experiments have

shown, that only the spike of size P (N − 1) (for the configurations where all the pixels

are brighter or all are darker) yields measurable results when overlapping the trinomial

distribution. Anyway, the results in Section 8.1.2 will show, that this change influences
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the corner response only slightly. This is due to the fact that balancing of the tree is

rather limited, as the experiments in Section 8.1.2 will show.

7.2.2 Minimal Rotation-Invariant Descriptor

For an efficient tracking-by-matching approach, there is not only a fast feature detector

needed, but also an efficient feature descriptor which allows for quick matching - but

what are our constraints for such a descriptor? First, we expect to have a rather narrow

search area (due to a high frame-rate to motion ratio as motivated in Section 1.1) and,

thus, only a few AGAST responses have to be considered for matching. In most cases

none or one feature will be detected within the locality radius which delimits possible

correspondences. However, descriptors like SSD as in PTAM are not rotation invariant

and a slight rotation about the optical axis may lead the matching to fail. However,

as also mentioned in [136] rotation-invariance comes with the price of an increased

percentage of false-positive matches. In the case at hand, we disregard this issue,

which is of great relevance for global feature tracker, where all responses of a detector

have to be considered, but not for local ones. Hence, a minimal rotation-invariant

descriptor (MRID) for AGAST features is required.

It is preferred to spend as less processing time as possible for the descriptor com-

putation. Hence, we should make use of already computed characteristics of AGAST

features, which results in the following three measures for MRID:

• Non-Maximum Suppression Measure (NMSM): For the non-maximum

suppression of AST features one computes the maximum threshold applicable

to still yield a positive response. This measure reflects a rotation-invariant prop-

erty of the feature neighborhood.

• Nucleus-Value: The nucleus-pixel itself is best be represented by its brightness-

value which is also rotation-invariant.

• Feature Distance: The distance between the expected and the detected location

of a feature is also a good plausible measure for a match.

7.2.3 Tracking By Matching

The absolute difference of the NMSM values sr and st and the nucleus-values nr and nt

of the reference and the test feature respectively have to be below a specified threshold

Ξs and Ξn. Features which are not within a certain distance Ξd of the propagated

feature location are not even considered for matching. If these three constraints are
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met, a weighted sum of the measures is used to find the most plausible match mr for

a reference feature fr:

mr = arg min
ft∈F′

(ws|st − sr| + wn|nt − nr| + wd ‖pt − pr‖) with (7.10)

F′ = {ft ∈ F | |st − sr| < Ξs ∧ |nt − nr| < Ξn ∧ ‖pt − pr‖ < Ξd} ,

where F is the set of all features, ws, wn and wd denote the weights for the measures

and pr and pt are the image locations.

As for the extended KLT tracker (see Section 7.1), we suggest to linearly propagate

the features in 2D to allow for higher dynamic motions. Furthermore, one should aim

to keep as long as possible the same reference corners to reduce drifting. A bias is

only accumulated if the reference changes and, hence, sticking to the same reference

set allows for a drift free stabilization in 3D space. Compared to, e.g., gradient-descent

methods where features get adapted from image to image to compensate for the affine

transformation, tracking-by-matching methods stick in general to the same physical

point. Hence, as long as valid corners are detected, their tracking is drift-free.
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Chapter 8

Experiments

In this section, we will provide extensive experiments to assess and validate the algo-

rithms discussed in the Chapters 4, 5, 6 and 7. We start with the feature detection

and tracking and continue with the evaluation and comparison of the image-based pose

estimation methods. As next we validate the error propagation from the detection

accuracy to the pose estimation and verify the temporal and spatial alignment of an

IMU-camera setup. Finally, we run some experiments on the fusion of these two sensors.

8.1 Evaluation of the Feature Tracking Methods

To increase the accuracy of motion estimation methods one can aim to improve the

tracking accuracy or tracking efficiency. In Sections 7.1 and 7.2, we presented two

tracking approaches where each focuses on one of these two properties. We will first

evaluate the extensions made to KLT and after that we will assess AGAST-based

tracking.

8.1.1 Evaluation of the Extended KLT

As proposed in Section 7.1, one way to reduce the processing load of the KLT tracking

is to restrict the computation of the gradient and the image pyramids to the areas sur-

rounding the features to track. In the following, we provide an experimental evaluation

of two different approaches. The first extracts the image patches around the features

and treats them as separate images. The second one processes only the regions of in-

terest (ROI) around the feature locations but maintains the image as it is. While the

patch-based approach suffer from the overhead of copying the regions, the second one

requires more memory jumps for processing. Fig. 8.1 shows some experimental results
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for the original, the patch-based KLT implementation and a method which uses ROIs.

The experiments show that the latter approach is always less efficient than the whole-

image- or patch-based variant and, thus, it can be neglected in further discussions. If

there are too many features to track, the overlapping areas of the patches result in

even more pixels to be processed than the image actually has, making the patch based

variant less efficient. Which alternative to prefer depends, therefore, on the feature

search range and the number of features. However, for a reasonable number of features

the patch based alternative allows for a significant speed up.
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Figure 8.1: These figures compare the processing times of the KLT-variants for different
number of features to track. The red values represent the whole-image-based implemen-
tation, the blue values the ROI-based version and green are the times for the patch-based
variant. On the left, different sizes for the search window are chosen. While the processing
time for the whole image almost only depends on the number of pyramid layers (3 px search
range results in one, 5 px and 10 px in two pyramid layers), the patch-based approach is
also related to the search range and the number of features. The right image shows the
intersection of the lines for a 10 px search range.

In Section 7.1, an extension of the KLT tracking routine to bind a feature to a corner

has been explained. This modification prevents an error accumulation while tracking.

Figure 8.2 illustrates the improvements of the tracking accuracy provided by this new

functionality. Fig. 8.2 makes apparent that within an image sequence the KLT-patch

may change its appearance significantly. Due to the step-wise proceeding the affine

transformation is ignored and becomes adapted from image to image. Especially if

some occlusions or disocclusions occur, as in Fig. 8.2(e), the tracking patch is massively

changed. Due to the slow alteration, the modification is below the difference-threshold

and is not detected by KLT. The patch becomes a virtual feature and follows the
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8.1 Evaluation of the Feature Tracking Methods

(a) images 1, 620, 720 and 900

(b) feature-patch 15 with conventional KLT tracking

(c) feature-patch 15 with corner binding

(d) feature-patch 49 with conventional KLT tracking

(e) feature-patch 49 with corner binding

Figure 8.2: Two different patches are tracked in an image sequence with and without
corner binding. Fig. 8.2(a) shows the images where the features are extracted. While patch
15 differs only by one pixel from the original location after 900 tracking steps, patch 49
has been drifted much further due to partially occlusion. For these two patch-sequences,
the corner-binding variant nullifies the accumulated tracking residues. The green square
illustrates the integral-window and the green point its center and, thus, the feature location.
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occlusion. This effect can be suppressed by the corner-bind method, which ties a

feature to an interesting point and, thus, suppresses drifting.

Stereo Initialization Analysis

The results of the fast and sub-pixel-precise stereo initialization method, as described

in Section 7.1.1, are depicted in Fig. 8.3. The stereo pairs of two different scenes with

the initialization result are illustrated. The red dots in both shots are the extracted

points of interest which are used as matching candidates. The green lines link up

corresponding features of the left camera (upper image) and the right one (lower image).

The green dots at the end of the lines in the lower image are the sub-pixel accurate

correspondences. Blue lines are matches, where the KLT tracker could not find a

minimum due to the limited iteration number. Nevertheless, experiments have shown,

that these correspondences are mostly also as accurate as regular matches (as it can be

seen in the small figures). The lower small images show enlargements of the putto-scene

(left) scene which depict in detail two corresponding parts of the large pictures. The

lines illustrate the correspondences, which proves that the proper matches were found.

8.1.2 Efficiency Evaluation of AGAST

The speed and the repeatability of FAST have already been compared to state of the art

corner detection algorithms in [127]. In those experiments FAST-9 has demonstrated

better performance than, e.g., Harris, DoG, or SUSAN. Thus, we renounce to compare

our AST variation only with FAST-9. Please note that our approach is also based

on the AST and, therefore, it detects the same corners and, thus, provides the same

repeatability as FAST.

First, we show and discuss an experiment where we compare the performance of

different AST masks on noisy and blurry images. Then we evaluate the corner response

of different balanced decision trees and, finally, we compare the performance of FAST

with our approach.

Evaluation of the Various AST Patterns

As already mentioned in Section 3.1, SUSAN as well as FAST use a circle radius

of 3.4 pixels. In [125] it is noted that the mask size does not influence the feature

detection as long as there is no more than one feature within the mask. The effect of

the mask size of an image operator is well studied for filters with dense masks. Their

size affects the smoothing behavior so that larger filters are more robust against noise.

The corresponding effect for the AST pattern size has so far not been discussed in

122



8.1 Evaluation of the Feature Tracking Methods

(a) KLT based stereo initialization

(b) details of the putto-scene above

Figure 8.3: The KLT based stereo initialization allows fast sub-pixel-accurate stereo
matching. The lower small images show corresponding parts of the putto-scene and show
some details of the upper image (left camera) and the lower image (right camera). Blue
lines denote matches which are of less confidence due to a failed tracking-convergence.
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the literature. While for the dense mask of SUSAN, the same smoothing criteria as

mentioned above apply, it is not obvious that large circles have a similar smoothing

effect for AST. Therefore, we use eight checkerboard pictures acquired from different

viewpoints (see Fig. 8.5) to evaluate the corner response of the AST patterns shown

in Fig. 8.4. A checkerboard provides many bright and dark corners of different sizes if

viewed from different angles. Further, we add Gaussian blur and noise to determine

the performance of these pattern on images of poor quality. For all these tests the same

threshold for the brighter- and darker-questions is applied.

Figure 8.4: Different mask sizes for the AST: a 4 pixels mask (red), a squared and
diamond shaped 12 pixels mask (blue, left and right figure) and a 16 pixels mask (green).
The black pixel represents the nucleus.

Figure 8.5: Checkerboard data set.

For pattern sizes up to 12 pixels it is possible to compute the optimal path by

exploring the six state configuration space as described in Section 7.2.1. The com-

putational resources of conventional computers are not sufficient to find the optimal

tree for a 16 pixel pattern within the extended configuration space in reasonable time.

Thus, for this size we compute the optimal tree based on the four state space, yielding

a ternary decision tree. Before generating the machine code, the tree is splatted as

described in [127] to cut off equal branches.

Fig. 8.6 shows the corner response of a 16 pixel pattern with arc lengths of 9, 10

and 11 (arc length 12 is omitted because it does not find any features at these corners),

the 12 pixel pattern with a square and diamond shape as well as the 8 pixel pattern.

The larger the mask and the larger the arc threshold S, the more features are found.
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(a) 9 of 16 (b) 10 of 16 (c) 11 of 16

(d) 7 of 12 diamond (e) 7 of 12 square (f) 5 of 8

Figure 8.6: The corner response for different AST pattern. Detected features are colored
in red. The corners after non-maximum suppression are green.

A small arc is more discriminating and yields features only close to the real corner

location, which is apparent in Fig. 8.6(c). Large patterns result in multiple responses

around a corner location, but they may lie at a distance of about the radius of the mask

from the real corner (see Fig. 8.6(a)). Thus, they do not preserve the corner location.

They are, hence, slower for two reasons: 1) the processing of a large pattern is of

course computationally more expensive, and 2) they need to evaluate many features

for non-maximum suppression. Smaller patterns preserve better the locality constraint

of a corner. However, in the case of the pattern of size 8, the features are too close, so

that a part of them gets lost after non-maximum suppression. Thus, for this size such

a post processing is not necessary and should even be avoided to prevent the loss of

features, because only single responses are observed at a corner.

For the next experiment the original checkerboard images were modified by adding

Gaussian noise (5% and 10%) and Gaussian blur (σ = 0.5, 1.0, 1.5). Fig. 8.7 shows

the performance of the different pattern on these images. Here the advantage of the 16

pixel mask with arc length 9, 9(16), becomes apparent. It is more robust against noise

and blur. However, the same mask sizes but with larger arcs show a similar drop-off

on blurry images as the smaller pattern with similar segment angle. The 16 pixel mask

with arc length 12, 12(16), has a similar arc angle as 5(8), while 7(12) has a similar

angle as 10(16).

The size of the arc angle controls the repeatability, as shown in [127], and the

robustness against blur. The arc length and, thus, the radius of the mask influences

the robustness against noise.
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Figure 8.7: These charts compare the corner response of different patterns for blurry and
noisy images. To preserve the comparability we use the arc length S and in brackets the
mask size for labeling. The red bars show the total amount of features found, while the
green bars represent the number of corners after non-maximum suppression. Note that the
scales of the charts are not the same.
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Corner Response Time

The corner response time of a certain decision tree is evaluated by computing the

number of tests (greater-than or less-than evaluations) for all the possible pixel config-

urations of a mask. To compare the weighting effects of different probabilities of a pixel

to be similar (ps), as described in Section 7.2.1, the pixel configurations are divided

into classes representing the number of similar pixels. Fig. 8.8 shows the deviation of

the mean and the standard deviation of the corner response time from the minimum

of all tests on a class. The trees are built for 12 pixel masks exploring the six state

configuration space. For zero or one similar pixels the trees with weight ps = 0.1 and

ps = 0.01 perform fewer tests as trees with larger values for ps. Also the standard

deviation of the classes is smaller for these trees. It is apparent that the decision trees

can not be balanced significantly due to the strong symmetry of this special constrained

twenty questions problem. Besides, the balance of the classes with a large number of

similar pixels cannot be modified notably, because the amount of possible configura-

tions decreases drastically for them. Nevertheless, the performance of the adaptive tree

is better than if only one tree is used, as we will see in the next section.

Figure 8.8: This chart illustrates the performance of various decision trees, based on
different probabilities for a pixel to be similar (ps). Each decision tree was tested with all
possible pixel combination for the mask.

No performance increase can be achieved for different ps by exploring only the

restricted configuration space, due to the reduced degrees of freedom compared to the

full six state configuration space. The limitations of the latter space are also apparent

in the performance of the tree M12 (4st), which shows a significantly higher average

of tests as M12 (6st) in Table 8.1. This table compares the corner response time for

trees of various mask sizes which were built using different methods. The second data

row M12 (6st) shows the minimum time of the trees compared in Fig. 8.8 which were
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Table 8.1: This table compares the average tests performed for each class of configuration
using various mask sizes and different methods to find the best decision tree. From left to
the right: mask size 8 exploring the six states configuration space, mask size 12 exploring
the six states space, mask size 12 exploring the four states space, mask size 16 exploring
the four states space and the ID3-learned decision tree trained on all possible configura-
tions. The probability of all configurations was assumed to be equal for all trees beside
for M12 (6st), which represents the minimum tests for all decision trees of Fig. 8.8. These
trees were built by exploring the six state configuration space for a mask size of 12 pixels
using different weights.

ns M8 (6st) M12 (6st) M12 (4st) M16 (4st) M16 (ID3)

0 5.54 6.53 7.80 8.1528 8.3651

1 5.32 6.17 7.27 7.6485 7.8073

2 5.07 5.82 6.77 7.1948 7.3094

3 4.81 5.48 6.33 6.7893 6.8692

4 4.59 5.19 5.93 6.4277 6.4812

5 4.41 4.94 5.59 6.1044 6.1388

6 4.26 4.74 5.28 5.8144 5.8354

7 4.13 4.56 5.01 5.5529 5.5649

8 4.00 4.41 4.77 5.3160 5.3223

9 - 4.29 4.55 5.1003 5.1033

10 - 4.18 4.35 4.9031 4.9043

11 - 4.08 4.17 4.7221 4.7225

12 - 4.00 4.00 4.5554 4.5555

13 - - - 4.4013 4.4013

14 - - - 4.2583 4.2583

15 - - - 4.1250 4.1250

16 - - - 4.0000 4.0000

specialized for different ps. Thus, these values are achieved using the AGAST, switching

between two trees which are optimized for ps = 0.1 and ps = 1/3.

Experiments have shown, that by learning a decision tree based on 120 outdoor

images as proposed in [128], only about 87000 pixel configurations out of over 43 million

possible ones could be found. Any learned decision tree should, therefore, be enhanced

by the missing configurations to prevent false positive and false negative responses. The

ID3 based decision tree, learned from all possible configurations with equal weights, has

shown to achieve the best corner response of all trees witch were optimized using ID3

and various ps. Indeed, it yields the identical corner response as the code provided in

the FAST sources.1

1http://svr-www.eng.cam.ac.uk/∼er258/work/fast.html
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Performance Experiments

All the timing experiments are run on one core of an Intel Core2 Duo (P8600) processor

at 2.40GHz. We are using five images from different scenes1, shown in Fig. 8.9.

(a) Lab (b) Outdoor (c) Indoor (d) Aerial (e) Medical

Figure 8.9: The scenes used for the performance test are a lab scene (768x288), an
outdoor image (640x480), an indoor environment (780x580), an aerial photo (780x582)
and an image from a medical application (370x370).

Table 8.2 shows the performance of various AST-decision trees with different mask

sizes and built by different methods. Please note that the achieved speed-ups do not

only affect the corner detection step, but also the computation of the pixel-score for

the non-maximum suppression.

Table 8.2: This table shows the computational time of various AST-decision trees. The
value in parentheses, close to the tree names, stands for the mask size which the tree is
based on. The specified speedup is relative to the FAST performance. The first value
represents the mean speedup for all five images while the value in parentheses shows the
maximum speedup measured.

Image Lab Outdoor Indoor Aerial Medical Speed-Up [%]

FAST-9 (16) 1.8867 2.4242 1.8516 2.2798 1.1106 -

OAST-9 (16) 1.5384 2.2970 1.6197 1.9225 0.9413 13.4 (18.5)

AGAST-7 (12) 1.2686 1.9416 1.4405 1.8865 0.8574 23.0 (32.8)

AGAST-5 (8) 0.9670 1.4582 1.3330 1.8742 0.7727 33.0 (48.7)

To compare the performance of our decision trees with the conventional FAST-9

algorithm, we use the code from the FAST sources mentioned above. The FAST and

optimal AST (OAST) trees are built based on a uniform probability distribution, which

means that the probability for any pixel configuration is the same. This probability

distribution yields the trees with the best overall corner response and, thus, the best

performance.

1The lab scene is provided in the FAST Matlab package at
http://svr-www.eng.cam.ac.uk/∼er258/work/fast-matlab-src-2.0.zip.
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As mentioned in Section 7.2, it is not possible to search for the optimal decision

tree for a 16 pixel mask within the complete configuration space in reasonable time on

conventional computer. Therefore, the tree is optimized in the four state configuration

space and achieves an average speed-up of about 13% regarding FAST-9. For the 12

pixels mask the ideal tree can be found in the six state space and by combining the

trees specialized for ps = 1/3 and ps = 0.1 a mean speed-up of about 23% and up to

more than 30% can be gained. Using the AGAST-5 decision tree on the 8 pixels mask

results in a performance increase of up to almost 50%. Of course, with the drawback

of its sensitivity regarding noise and blur as already discussed before in this section.

The C-sources for OAST-9, AGAST-7 and AGAST-5 are available for download at

http://www6.cs.tum.edu/Main/ResearchAgast. The trees have been optimized accord-

ing to standard ratios of memory access times.
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8.2 Evaluation of the Pose Estimation Algorithms

We have introduced the Z∞-algorithm in Section 5.1 and a keyframe-based SLAM

method in Section 5.2. The following experiments will analyze and compare these

algorithms.

8.2.1 Evaluation of Closed-Form Pose Estimation Algorithms

Before we run experiments on real data we first compare the various variants of the

eight-point algorithm as introduced in Section 3.3.1. We also evaluate the motion

estimation accuracy for different camera setups, motion directions and rotation angles.

We want to get some insights in which algorithm should be preferred for a specific

motion, which aperture angle should be used and how the cameras shall be mounted

on a robot to allow for the most accurate and robust motion estimation. A more

extensive evaluation regarding noise-sensitivity, number of landmarks and aperture

angle is provided together with the validation of the error propagation in Section 8.4.

The simulated camera parameters are: 20 features, noise in both images (if not

mentioned differently) due to pixel-discretization of the features (σ2= 1
12) and 600×600

pixel resolution.

Evaluation of Eight-Point Variants

In the following plots (Fig. 8.10 to Fig. 8.13), we compare the different eight-point

variants as introduced in Section 3.3.1. Each of these figures evaluates a certain camera

aperture angle (∼ 143◦, ∼ 100◦, ∼ 53◦, ∼ 37◦) and consists of following plots: the first

four plots show the effect of the direction of translation on the translation and rotation

estimation (only translational motion is simulated). The next two plots show how

the rotation estimation error depends on the direction of rotation axis at a constant

absolute rotation of 10◦ (only rotational motion is simulated). For that, the direction of

translation and the rotation axis direction varies by 10◦-steps between the optical-axis

(Z-axis) and the X-axis. The rotation estimation error is specified as absolute angle

error which can be computed from the error DCM, R∆ = RT
SR, by

θ = acos

(
R1,1 +R2,2 +R3,3 − 1

2

)
. (8.1)

The left column of these six plots is generated by simulating only noise in the second

image (as it is the case in feature-tracking) and the right column assumes noise in both

images (as in tracking-by-matching approaches).
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The last two plots illustrate the median condition number and stability number

of the A-matrix of the eight-point algorithm (see 3.5) for the direction of translation

simulation. The condition number is the quotient of the largest and the second smallest

singular value
σA;1
σA;8

and represents the influence distribution between the strongest and

weakest vector of the nullspace which generates the solution - the second smallest

and not the smallest is used because we have a homogeneous system of equations.

Hence, a small condition number implies a well-conditioned problem, where all vectors

in the nullspace have approximately equal influence on the solution. The stability

number is the ratio of the second smallest and the smallest singular value and describes

how stable the solution is. A small value means that the residuum vector and the

smallest nullspace-vector have similar weights and, hence, the solution can be regarded

as strongly affected by the error. For the last two plots there is no significant difference

whether we simulate noise in one or in both images, thus, we only show one plot for each

measure. Further, the Mühlich TLS-FC variant fixes the rank of A to be eight, which

means that the condition number is infinitely large and, therefore, it is not plotted for

this variant.

Evaluating the simulation plots 8.10 to 8.13 we can establish following statements

for the eight-point algorithm:

• A significant difference between the four eight-point variants becomes only for

small aperture angles notable, whereas the Mühlich variants slightly outperform

the Hartley variant. The un-normalized, original algorithm proofs to have more

difficulties in translation estimation but performs much better in estimating the

rotation if no translation is present.

• The advantage of the Mühlich TLS-FC variant becomes apparent for the simula-

tions with noise in only one image (see Fig. 8.13(e)). While the translation esti-

mation is not affected, the rotation estimation is significantly improved for small

aperture angles. Small focal lengths, on the contrary, seem to have a slightly

reduced accuracy compared to the simpler Mühlich variant.

• In the case of noise in both images, e.g. if the correspondences are found by a

tracking-by-matching algorithm, the TLS-FC step in the Mühlich approach can

be neglected.

• The normalization of the Hartley and Mühlich variants provides a much better-

conditioned motion estimation, especially for large aperture angles - as intended

by the inventors.
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Figure 8.10: This graphic shows the error of translation and rotation estimation of
the eight-point algorithm for different directions of translation and of the rotation axis
simulating a focal length of 100 px, which is equivalent to an aperture angle of ∼143◦. The
lower two plots illustrate the condition and stability number as described in the text. The
simulation parameters used are: 10 features, noise in both images due to pixel-discretization
of the features (σ2 = 1

12
) and 600× 600 pixel resolution.
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Figure 8.11: This graphic shows the error of translation and rotation estimation of
the eight-point algorithm for different directions of translation and of the rotation axis
simulating a focal length of 250 px, which is equivalent to an aperture angle of ∼100◦. The
lower two plots illustrate the condition and stability number as described in the text. The
simulation parameters used are: 10 features, noise in both images due to pixel-discretization
of the features (σ2 = 1

12
) and 600× 600 pixel resolution.
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Figure 8.12: This graphic shows the error of translation and rotation estimation of
the eight-point algorithm for different directions of translation and of the rotation axis
simulating a focal length of 600 px, which is equivalent to an aperture angle of ∼53◦. The
lower two plots illustrate the condition and stability number as described in the text. The
simulation parameters used are: 10 features, noise in both images due to pixel-discretization
of the features (σ2 = 1

12
) and 600× 600 pixel resolution.
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Figure 8.13: This graphic shows the error of translation and rotation estimation of
the eight-point algorithm for different directions of translation and of the rotation axis
simulating a focal length of 900 px, which is equivalent to an aperture angle of ∼37◦. The
lower two plots illustrate the condition and stability number as described in the text. The
simulation parameters used are: 10 features, noise in both images due to pixel-discretization
of the features (σ2 = 1

12
) and 600× 600 pixel resolution.
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• The normalization switches the stability of estimating translations. The un-

normalized variant has a stable estimation of translations in the direction of the

optical axis for short focal lengths, while the normalized ones have a more stable

estimation for translations parallel to the image plane. This effect flips for large

aperture angles (similar to the conditioning).

• The feature normalization, as provided by all the eight-point derivatives, is crucial

for large focal lengths, but becomes unnecessary for short ones.

Comparison of the Eight-Point and the Z∞-Algorithm

We compare the eight-point algorithm with the Z∞-algorithm in Fig. 8.14. For that

we chose two variants, the original and the Mühlich variant, and run 100 random runs

per test-case. The simulated translational motion is 5m or 10◦ absolute rotation per

frame and the simulated landmarks have a distance of 1 to 50m.

There are common effects notable which vary depending on the optical system (these

effects will also be apparent in Fig. 8.31 and Fig. 8.35): a large aperture angle lessens the

accuracy of translation estimation due to a reduced angular resolution. The rotation

estimation has a flat optimum around 90◦ and performs less at small or large focal

lengths. Furthermore, the direction of translation becomes more significant for small

aperture angles, which provide less accuracy in estimating translations perpendicular to

the optical axis. The estimation error becomes also visible in the rotation estimation -

apparently, a translational vector field which is parallel to the image plane is much

easier (mis-)interpreted as rotation. For large aperture angles the opposite trend is

notable. On the other hand, the direction of the rotation axis does not seem to influence

significantly the rotation estimation.

The Z∞-algorithm shows to follow the same trends as the eight-point algorithm,

but it always outperforms it. This can also be seen in Fig. 8.15, where the condi-

tion numbers of all variants are compared. The Z∞-alorithm provides a much better

conditioned estimation for any type of motion. This can be explained by the reduced

number of degrees of freedom for motion estimation. The closed-form computation

of the rotation and the translation always yields the global least-squares optimum,

while an outlier rejection is provided by the RANSAC framework. However, the eight-

point algorithm or nonlinear optimization techniques have also advantages over the

Z∞-algorithm. They do not require translation-invariant features because rotation and

translation are estimated simultaneously. This also allows to disambiguate little trans-

lational portions in the optical flow vector which would be interpreted as (biased) noise

by the Z∞-algorithm. Moreover, if the feature distance is stored and optimized along
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Figure 8.14: This graphic shows the error of translation and rotation estimation for
various directions of translation and directions of rotation axis and different aperture an-
gles (top to bottom: f = 100, 250, 600 and 900 px). Following algorithms are compared
(from left to right): the eight-point algorithm (original and Mühlich variant) and the Z∞-
algorithm. Some boxplots of the eight-point algorithm might be cropped for the sake of
visibility of the Z∞-boxplots. However, the full boxplots are shown in Fig. 8.10 to Fig. 8.13.
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the image-sequence the estimation accuracy will be increased. The drawback of nonlin-

ear estimation techniques is that they are computationally rather expensive and they

may find local optima. In addition, experiments have shown that the convergence of

such bundle adjustment methods can be rather slow if also the distance of the features

has to be estimated.
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Figure 8.15: This plots compare the median condition numbers for the eight-point vari-
ants and the Z∞-algorithm. The left column shows the condition numbers for the trans-
lation estimation and the right one for the rotation estimation. The upper two plots were
generated by simulating a wide angle camera (f=100 px) and the lower ones by a narrow
field of view (f=900 px).

Fig. 8.16 illustrates how the error of the rotation estimation distributes on the

different axes. For that we plot the Euler angle error, whereas we assume the small

error approximation as introduced in Eq. 2.8, with the angle-axis vector σ replaced by

the Euler angles
(
φx φy φz

)T
, such that

∆R ≈




1 −φz φy
φz 1 −φx
−φy φx 1


 = I +





φx
φy
φz






×

⇒
φx ≈ R2,1 = −R1,2

φy ≈ R1,3 = −R3,1

φz ≈ R3,2 = −R1,3

.

(8.2)

While the Mühlich eight-point variant does not show a significant difference between
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(b) Euler angle errors (f=250 px)
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(c) Euler angle errors (f=600 px)
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(d) Euler angle errors (f=900 px)

Figure 8.16: This graphic shows the Euler angle error of all three axes, resulting from
the eight-point variants and the Z∞-algorithm for various aperture angles (top to bottom:
f=100, 250, 600 and 900 px).
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8.2 Evaluation of the Pose Estimation Algorithms

the axes and the various focal lengths, the two other variants (the original eight-point

and the Z∞-algorithm) provide a better performance for the X- and Y-axis, especially

for small aperture angles. For large field of views the difference between the axes

becomes neglectable. The rotation estimation about the Z-axis is also not influenced

by the focal length.

The last graphic of this section, Fig. 8.17, illustrates the relation between the num-

ber of features and the detection accuracy. These two tracking properties are plotted

against each other for the eight-point Mühlich-variant and the Z∞-algorithm. The plots

show that the detection accuracy becomes insignificant if enough features are used and

the tracking errors annihilate each other (keep in mind that we assume an unbiased

tracking).
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Figure 8.17: This graphic plots the influence of the detection accuracy and the number
of features against each other. The eight-point algorithm used is the Mühlich-variant. The
simulation parameters are: noise in both images, 600 × 600 pixel resolution and 250 px
focal length (∼100◦ aperture angle).
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8.2.2 Experimental Evaluation of the Z∞-Algorithm

In the previous section, we have seen that the Z∞-algorithm should be preferred, in

case a separation of the landmarks into translation-variant and -invariant features is

feasible. In the following section, we will present a comparison with an IMU to validate

the approach. Fig. 8.18 illustrates the Z∞-steps. We use the KLT implementation

as introduced in Section 7.1 to find feature correspondences for the evaluation of our

algorithm. Fig. 8.18(a) shows an example output of the tracker with 500 features.

However, also global trackers, like SURF have been successfully tested as described

later in this section.

To evaluate the Z∞-based motion estimation we compare it to the measurements

of an IMU. For that we use an “MTi” IMU from Xsens1 which is mounted on a Guppy

F046C camera from Allied Vision. The IMU provides the absolute rotation, based on

the Earth’s magnetic field, three gyroscopes, and the acceleration of the device. The

camera images and the IMU data are acquired with 25Hz. Before the data can be

evaluated the IMU-camera alignment has to be determined as described in Section 4.2.

Fig. 8.192 visualizes two data sets acquired while holding the camera-IMU system out of

a car. The left image shows a sinuous trajectory on a slightly left bent street. The right

image describes the path through a turnaround. Even though we compute the relative

motion from image to image and do not stick to a reference, like in keyframe techniques,

the Z∞-method shows less drifting than the Kalman filtered output of an Xsens IMU.

The IMU apparently suffers from the centrifugal forces, which, once integrated, they

are not removed from the velocity vector anymore and cause the estimated pose to drift.

Fig. 8.20 shows the angles measured along the axis perpendicular to the street, when

driving the sinuous line illustrated in the left image of Fig. 8.19. The measurements

are consistent which validates the Z∞-based rotation estimation.

SURF based Z∞-Pose Estimation

The Z∞-algorithm has also been successfully tested with the global tracker SURF. Like

every global tracker, SURF also provides much more outlier and the accuracy is in

general worse than with local trackers. We run SURF on 10 megapixel pictures of the

church in Seefeld, Germany, which were acquired by an octocopter. Fig. 8.21 shows the

rotation and translation estimation result for one such image pair. The images were

acquired with large intermediate distances. Hence, SURF features have been extracted

and the rotation and also translation was computed for each feature set. Despite the

1http://www.xsens.com
2The pictures at the right hand-side are “Google maps” screen-shots http://maps.google.com.
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8.2 Evaluation of the Pose Estimation Algorithms

(a) tracking output (b) rotation estimation

(c) translation estimation (d) obstacle detection

Figure 8.18: Visualization of the Z∞-steps. The landmarks are marked green if they
could be tracked from the last image or red if they were lost and replaced by new fea-
tures to track (a). The optical flow is represented as green vectors, where the original
position of the feature is marked by a circle and the tracked location by a cross. The
results of the rotation estimation are colored red. The endpoints of the optical flow vectors
are rotated back according to the computed rotation – they are marked as crosses too.
Thereby, translation-invariant features are represented by red vectors, while the outlier of
the rotation computation are magenta (b). The translation estimation is illustrated blue.
Similar to the rotation visualization, the vectors, which were used for epipole estimation,
are dark blue, while the outlier and, therefore, wrong tracked features are light blue. The
black star (circle and cross) represents the computed epipole (c). A result of the obstacle
avoidance is shown in (d) and consists of two parts: the main image shows the optical flow
vectors which are used for obstacle detection and the small sub-image shows the computed
obstacle map. The vectors are mapped regarding their angle to the calculated epipole and
a red line illustrates the suggested swerve direction (swerve angle) as it is explained in the
text.
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Figure 8.19: Two trajectories measured by the Z∞-algorithm (red) and an IMU (blue).
In the pictures at the right-hand side the driven trajectories are sketched in black.

high percentage of outlier and the poor accuracy, the Z∞-algorithm has successfully

processed the image sequence. No ground truth could be provided for this experiment

but the estimated motion is plausible for a similar inlier-percentage as used for KLT-

matches which implies a reliable motion estimation.

Obstacle Avoidance

Potential obstacles can be detected by evaluating the translational component of the

optical flow dt. The closer or the faster an object is moving respective to the camera,

the larger the optical flow vectors become [107]:

‖dt‖ ∝
‖v‖
z2

. (8.3)
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Figure 8.20: This image shows the relative angle measured during the same run as in the
left image of Fig. 8.19. The Z∞-rotation estimation is red, while the IMU data is blue.

Figure 8.21: Motion estimation based on SURF features.

The velocity and the distance cannot be separated without any knowledge about the

environment. Hence, the length of a translational optic flow vector expresses the time-

to-impact (or time-to-collision) and a specific threshold on the length of the optical flow

vectors has to be specified, which defines a dangerous object. This threshold depends

on the camera characteristics (resolution, focal length, etc.) and the application (how

much time is required to stop or plan a new trajectory). This concept works also in

dynamic environments, where fast moving objects are earlier detected as dangerous

obstacles than slow ones.

To allow for a reactive behavior which can be directly coupled to the robot control,

we use the calculated epipole and, thus, the direction of translation as reference for

the obstacle avoidance strategy. Once the directions in which the dangerous objects lie

are computed, the middle of the largest free segment is proposed as swerve direction.
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This simply means for a robot which operates in 3D space to steer in the suggested

direction in order to avoid the objects. The obstacle maps in Fig. 8.22 show the angle

of dangerous objects respective to the epipole, their level of danger as length (inverse

time-to-impact) and a suggested swerve direction for obstacle avoidance. The images

where acquired by a Pioneer3-DX equipped with a Marlin F046C camera as shown in

the experiments of Section 8.3.

(a) Input images for the obstacle detection: the black star is the epipole and the green vectors are the
optical flow.

(b) These are the corresponding obstacle maps to the images above - the red line is the suggested swerve
direction for obstacle avoidance.

Figure 8.22: Within the Z∞-algorithm the rotational component of the optical flow is
removed and translation-dependent features are identified. These can be used to realize a
reactive obstacle avoidance.

Processing Times

Fig. 8.23 shows the processing times of a C++-Implementation of the algorithm on

a 1.6 GHz Intel Core Duo processor T2300.1 The most important parameters influ-

encing the processing performance are the maximum number of iterations for rotation

estimation (40), the maximum number of iterations for translation estimation (20) and

the maximum number of steps per translation estimation (5). The processing is only

single-threaded and the code gives still some space for significant performance optimiza-

1The time was measured with the gprof profiling tool.

146



8.2 Evaluation of the Pose Estimation Algorithms

tion. Nevertheless, the algorithm requires in average only 4.13ms for all Z∞-steps. The

rotation estimation processes most features and, hence, requires also the most time.

Figure 8.23: The computation time for each module of the Z∞-algorithm in milliseconds.
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8.2.3 Experimental Evaluation of the Keyframe-Based VSLAM

We mounted a stereo camera system on the wrist of a robotic manipulator, a KUKA

KR161, to compare the accuracy improvement of the RVGPS method, introduced in

Section 5.2.1, relative to the conventional VGPS. The robot’s kinematics is used as a

ground truth with a relative error of 0.1mm in position and 0.1◦ in rotation. Based on

this reference, the accuracy of the visual navigation algorithm can be evaluated.

Figure 8.24: The motion is from one side of the castle (image #1) to the other (image
#350), and then back again to the front in image #710.

In the experiment, the sensor is moved half around a model of castle Neuschwanstein

shown in Fig. 8.24 and back again. 710 images were processed on a total path of

125 cm. The orientation changed up to 55◦. Fig. 8.25 shows the executed trajectory

and compares the motion estimation result with the inverse kinematics of the KUKA

robot. The images have been processed twice: with the robustification enabled and

disabled. The errors of the rotation and translation are illustrated in Fig. 8.26. The

blue dots represent the RVGPS output and the red dots VGPS without robustification.

Disregarding the outliers in the performance charts, the translational error increases

up to 4mm and the maximum accumulated rotational error is 0.5◦. The outliers are

the result of bad, drifting features which are detected by RVGPS and removed from

further processing.

In the run with standard VGPS, the orientational error remains almost the same,

while the translation estimation accumulates an error up to 20mm. This can be ex-

plained by the nature of such an iterative gradient descent method as VPGS: A differ-

ence in the measured landmarks and the reprojection can often be lessened by zooming

1http://www.kuka.com
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Figure 8.25: This figure shows the executed trajectory and compares the result of the
keyframe-based SLAM (red) with the inverse-kinematics of the KUKA robot (black).
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Figure 8.26: Residual orientation and translation error with respect to the KUKA ma-
nipulator. The vertical lines mark the change of sets and the “Sx” denote the current
number of set. Blue: using RVGPS. Pink : using VGPS. VGPS accumulates an error up
to 20mm at some point, which is not shown for the sake of visibility.
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out the camera. The algorithm simply follows the gradient on the optical axis of the

camera to diminish the error.

Moreover, the effect of the keyframe management becomes apparent in both runs.

The error which is accumulated at each switch of set on the way to the end of the

castle is again removed moving back to the initial position. The old feature sets are

refound and used for the pose estimation on the way back. The error accumulated

between the changes is removed again and the final residual error can be explained by

the inaccuracies in the robot kinematics and tracking drifts.

Application related ground-truth experiments are shown in Section 9.1.
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8.3 Comparison of the Z∞-Algorithm and Keyframe-Based

VSLAM

In this experiment, Z∞-based visual odometry estimation is compared to stereo-initia-

lized keyframe-based VSLAM. The latter method has been designed for short-distance

applications as 3D-modeling (see Section 9.1), but it has been shown to be also accurate

and reliable for mobile robot navigation (see Section 9.2). In contrast, the Z∞-algorithm

requires far distant landmarks which are translation-invariant in order to allow for

rotation estimation.

In this experiment, two Marlin F046C cameras from Allied Vision1 have been

mounted on a stereo rig with 9 cm baseline on the top of a Pioneer3-DX from Mo-

bileRobots Inc.2 (Fig. 8.27). The robot has been programmed to follow a circular path

with 3m diameter. During this run 1920 stereo image pairs were acquired. The cameras

have been slightly tilted to the ground to increase the close areas in the images which

are required for translation estimation, while keeping the horizon and the structures

at infinity well visible. Although robot odometry is in general rather imprecise, the

Pioneer has been able to close the circle with only a few centimeters of error. Based

on the result of this experiment we will discuss some drawbacks and advantages of the

motion estimation algorithms.

Figure 8.27: Experimental setup: a Pioneer3-DX equipped with two Marlin cameras.

Fig. 8.29(a) shows the trajectory computed by the VSLAM approach. It is apparent

that there is no bundle adjustment applied: wrong initialized features lead to a wrong

pose estimation, but are usually immediately removed by the M-estimator in RVGPS.

However, if there are too many wrong features, it can last some images until they get

1http://www.alliedvisiontec.com
2http://www.mobilerobots.com
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removed from the current feature set. Such a behavior is visible in the lower half of the

circle, where the computed trajectory leaves the circular path and jumps back again

after a while. Such outlier could also be suppressed by a probabilistic filter, like, e.g.,

a Kalman filter.

To provide an accurate stereo initialization with this baseline, all landmarks have

to lie within a range of approximately 10m. Therefore, this image sequence is ill-

conditioned for RVGPS-based localization due to several facts: only features in the

lower half of the image can be used for pose estimation, due to the large rotation the

feature sets are leaving the field of view quickly and the ground on which the robot

is operating has only little structure which eases miss-matches and the loss of features

during tracking (see Fig. 8.28(a)).

(a) VSLAM-screenshot (b) Z∞-screenshot

Figure 8.28: The screenshots illustrate the difficulties for both methods in estimating
the robot’s motion in this environment. VSLAM only uses close landmarks which can be
initialized by stereo-triangulation. Such features are rare on the homogeneous textured
ground. This is also a problem for the translation estimation of the Z∞-algorithm. The
tiny translational motion component is often misleadingly interpreted as rotation. This
becomes visible by the red features on the ground.

The large rotational component of the motion compared to the amount of trans-

lation prevents the Z∞-algorithm to determine the direction of translation accurately.

The small translation results in a z∞-range of 10 cm per image. Therefore, the trans-

lation can only be evaluated after several images, when it gets accumulated to a mea-

surable length. Furthermore, the small translational component in the optical flow

vectors yields the features to be tested as translation-invariant and, therefore, to be

misleadingly used for rotation estimation and to be rejected from further translation

estimation (see Fig. 8.28(b)). A large number of images for translation accumulation

increases also the probability of the features to get lost by the tracker – this is also

favored by the poor structured ground.
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(b) absolute in-plane rotation
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(c) relative in-plane rotation
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Figure 8.29: a) The computed trajectory by the VSLAM algorithm. The red square is
the starting point and the red circle the endpoint of the path. b) Comparison of the
absolute angle estimated by the Z∞ (red) and the VSLAM (blue) algorithm. c) The
relative angles about the Y-axis are plotted, which are computed by the Z∞- (red) and
by the VSLAM-algorithm (blue). d) This plot shows the difference between the Z∞and
VSLAM rotation estimates along the Y-axis. Only a few outlier can be identified, which
are detected by the M-estimator in RVGPS. Hence, they have no effect on the final result.
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Fig. 8.29(b) illustrates the computed angle of the Z∞ and VSLAM algorithm and

Table 8.3 shows some key-values regarding the result. The VSLAM method proves its

accuracy with only 3.8◦ absolute error, even though the ill-conditioned images. On

the other hand, Z∞ accumulates an absolute error of 16◦ during the sequence. This

seems to be a large error before taking into account two facts: The difference between

both rotation estimations is not zero-mean as expected. This can be easily explained

reminding again the problem to detect translation-variant landmarks at such a small

translational motion. Close landmarks are also used for rotation estimation, as shown

in Fig. 8.28(b), and because the translation is always done in the same direction on a

circular path, the estimation error corresponds to a measurement bias.

Table 8.3: Keyvalues of the comparison between Z∞and VSLAM for the circle experiment.
The absolute rotation error for all three axes, the number of error accumulations of each
method, the average rotational error about the Y-axis for each error accumulation and the
average rotation per frame are listed.

abs.
X-rot.
error (◦)

abs.
Y-rot.
error (◦)

abs.
Z-rot.
error (◦)

no. of
error accu-
mulations

aver. Y-rot.
error per
acc. (◦)

average
rotation
(◦)

VSLAM 3.8 2.87 -0.01 116 0.03 0.21
Z∞ 16.0 -1.14 1.37 1920 0.008 0.19

The other advantage of the VSLAM approach is its bias reduction strategy. As

explained in Section 5.2, the pose estimation is based on initialized feature sets. The

distance of each feature is estimated by stereo triangulation and is not updated any-

more. The poses are always calculated respective to the image, where the landmarks

were initialized and a bias is accumulated only at keyframe-switches. The memory

consumption grows continuously as with all VSLAM approaches. That prevents the

VSLAM algorithm to be used on platforms operating in large workspaces like out-

door mobile robots. In this experiment 116 keyframes were necessary. In contrast, the

Z∞-method computes only a vision-based odometry from image to image and, hence,

does not require a keyframe management. This makes it adequate for outdoor appli-

cations without environment restrictions and makes it applicable to resource-limited

platforms. As drawback it suffers from an error accumulation like all the non-map-

based algorithms without a global reference. Considering the relative error in the sense

of error per accumulation step, we achieve a much smaller error for the Z∞-algorithm

than the VSLAM approach. For the Z∞-method with 1920 steps, only an average

error of 0.008◦ arises despite the bias-prone conditioning of the experiment. This is

almost four times less than for the VSLAM solution, where 116 steps yield an error of

0.03◦ each. The larger error can be explained by the KLT-tracking drifts between the
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8.3 Comparison of the Zinf-Algorithm and Keyframe-Based VSLAM

keyframes. The computed angles for each frame are plotted in Fig. 8.29(c). Only a few

outlier can be identified, whereas VSLAM seems to have more outliers than Z∞, but

which do not worsen the overall performance of it due to its keyframe-based nature.

Fig. 8.29(d) shows again the differences between the estimated rotations of both meth-

ods for each image. The mean difference corresponds to the explained bias of −0.02◦
with a standard deviation of 0.14◦.
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8. EXPERIMENTS

8.4 Evaluation of the First Order Error Propagation

We derived a first order accuracy prediction for the eight-point algorithm and the Z∞-

algorithm in Section 6. The following experiments will tackle and compare these error

propagation formulas on synthetic data.

We use MATLAB simulations, to prove the quality of the first order error estimation

and show how it correlates with the real error by varying the simulation parameters.

Following parameters are evaluated here: aperture angle, number of features N , and

feature detection accuracy (noise) which is equivalent to varying the resolution. If not

mentioned differently we are using 100 runs per experiment whereas the landmarks are

within a range of 50m and we simulate a translation of 5m and a rotation of up to 5◦,

both in random directions.

8.4.1 Error Propagation for the Eight-Point Variants

In Section 6.1, we derived formulas to predict the accuracy of the various introduced

eight-point variants based on the tracking accuracy and/or noise assumption of the

used feature correspondences. In the following, we evaluate these formulas on synthetic

data, whereas we also vary some crucial imaging and feature tracking parameters. All

four eight-point implementations introduced in Section 3.3.1 are used.

For the error propagation analysis we used A as computed in Eq. 3.5. However, in

practice, we can use only the error-corrupted Ã, because it is the value we measure.

However, from a slightly different point of view, we can regard A as noise-corrupted

matrix by adding −∆A to the matrix Ã. Thus, the error is the deviation of the

true solution from the noise-corrupted one. This observation justifies the use of Ã to

estimate the errors.

To compare the real and the estimated error as a scalar we compute the errors of the

estimates fE , fR ft and the estimated errors f̂E , f̂R f̂t by normalizing the Frobenius

norm of the error by the Frobenius norm of the respective matrix

fE =
1√
2

∥∥ES − Ē
∥∥
F

, fR =
1√
3
‖RS −R‖F , ft = ‖tS − t‖F (8.4)

with the subscript S denoting the simulated values. Furthermore, an equivalent to the

normalized Frobenius norm can be computed from the covariance matrices by

f̂E =

√
tr(ΓE)

2
, f̂R =

√
tr(ΓR)

3
and f̂t =

√
tr(Γt) . (8.5)
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8.4 Evaluation of the First Order Error Propagation

Similar results were achieved by comparing the simulated and estimated absolute error

angles ‖d ′
R‖ as proposed in Eq. 6.27.

Fig. 8.30 illustrates the error between the computed and the simulated motion

parameters (continuous lines) and the estimated error (dashed lines) for 100 random

runs. The plots proof that the estimated errors correlate.

The quality of the first order error estimation regarding the aperture angle is de-

noted in Fig. 8.31. It shows that the error can be robustly propagated throughout

the whole range of aperture angles of a projective camera and that the relative error

remains approximately the same. The boxplots on the left hand side show the relative

difference of the estimated error f̂ and measured error f in percentage of f accord-

ing to following formula: f−f̂
f
· 100. The boxplots are grouped by the order: original

eight-point, Hartley-, Mühlich, and Mühlich TLS-FC variation. However, the Mühlich

variant and the Mühlich TLS-FC variant are overlapping so that only the latter one is

visible. Please note that for the sake of visibility not all outliers are shown in the box-

plots – e.g., for the aperture angle plots the translation estimation has outliers down to

approximately −8000% for wide aperture angles and, thus, seems to be more outlier-

prone than the rotation estimation with only about −2500%. This can be explained

by the fact that landmark sets which are only spread over a small region yield even

worse estimates than a narrow field of view, due to less pixel resolution in wide angle

cameras.

The influence of the number of features on the performance of the algorithm is

illustrated in Fig. 8.32. It shows that even though the Essential matrix cannot be

estimated more accurately by increasing the number of features, the prediction of the

rotation matrix and the translation vector error becomes more reliable. This result can

be explained by the normalization step in Eq. 3.16 where the singular values of E are

fixed, which results in a non-predictive error.

Finally, Fig. 8.33 illustrates the performance of the error propagation for varying

noise magnitudes. Again we can see that the error of the estimated Essential matrix

does not go below a certain threshold, which is around 0.03, as we have seen in the

previous plots. However, the rotation matrix and the translation vector error correlate

in a linear way with the standard deviation of the noise and are predicted properly.

While the Essential matrix shows large discrepancies in the error prediction, the

rotational and the translational error estimation works fairly enough. Since for a fusion,

e.g., in a Kalman filter like in Section 4.4, only the motion parameters and not the

Essential matrix are used, this is no problem. Hence, the first order error propagation

is accurate enough to compute the proper error magnitude, which allows the fusion

with other sensors.
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Figure 8.30: This graphic shows the error between the simulated and computed Essential
matrix Ē, rotation matrix R and translation vector t for 100 different runs (continuous
lines). Moreover, the dashed lines denote the estimated error of the presented accuracy
propagation. The simulated camera parameters are: 10 features, noise in both images due
to pixel-discretization of the features (σ2 = 1

12
), 600 × 600 pixel resolution and 250 pixel

focal length (∼100◦ aperture angle.)
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Figure 8.31: This graphic shows on the left hand side the median error of the computed
and the simulated Essential matrix Ē, rotation matrix R and translation vector t for
different aperture angles and for all four introduced eight-point implementation variants.
On the right hand side the relative errors of the uncertainty-propagation are illustrated as
boxplots. The simulated camera parameters are: 10 features, noise in both images due to
pixel-discretization of the features (σ2 = 1

12
) and 600× 600 pixel resolution.
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Figure 8.32: This graphic shows on the left hand side the median error of the computed
and the simulated Essential matrix Ē, rotation matrix R and translation vector t for a
different number of features and for all four introduced eight-point implementation variants.
On the right hand side the relative errors of the uncertainty-propagation are illustrated as
boxplots. The simulated camera parameters are: noise in both images and 600× 600 pixel
resolution and 250 pixel focal length (∼100◦ aperture angle).
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Figure 8.33: This graphic shows on the left hand side the median error of the computed
and the simulated Essential matrix Ē, rotation matrix R and translation vector t for
different noise levels and for all four introduced eight-point implementation variants. On
the right hand side the relative errors of the uncertainty-propagation are illustrated as
boxplots. The same noise is simulated in both images. The value 0.2887 denotes noise by
pixel-discretization as assumed for the former plots. The simulated camera parameters are:
10 features, 600× 600 pixel resolution and 250 pixel focal length (∼100◦ aperture angle).
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8.4.2 Error Propagation for Z∞-Algorithm

Like for the eight-point algorithm in the last section, we cannot use the real R and

t for the Z∞-error propagation, but only the error-corrupted estimates R̃ and t̃ when

propagating the error es described in Section 6.2. Analog to before, we can regard the

real values as deviations of the same magnitude from the noise-corrupted estimates,

which again justifies for the use of the estimation results for the error propagation. We

evaluate the rotation and the translation estimation separately and together to show

possible error correlations.

As before we compare the real and the estimated error as a scalar: we compute the

errors of the calculated results fR, ft and the estimated errors f̂R, f̂t as in Eq. 8.4 and

Eq. 8.5.

Fig. 8.34 illustrates the error between the computed and the simulated motion

parameters (blue continuous lines) and the estimated error (red dashed lines). The

plots proof the correlation of the propagated and the effective errors.

The first four plots in Fig. 8.35 to Fig. 8.37 show on the left hand side the median

rotation and translation estimate and on the right hand side boxplots of the relative

error according to the formula f−f̂
f
· 100. Please note that not all outliers are shown

in the boxplots for the sake of visibility. These four plots are generated by simulating

only rotation or only translation. The last two plots are created by simulating a mixed

motion and the dashed lines represent the prediction based on all features (green) or

on the detected inliers only (red).

The first order error prediction of only rotation or only translation for a varying

aperture angle (Fig. 8.35), a varying number of features (Fig. 8.36) or different levels of

noise (Fig. 8.33) is quite accurate. However, the prediction differences for the rotation

increase if the motion is mixed. This is an obvious consequence of small translational

portions in the optical flow vectors of features which are identified to be translation-

invariant. The effect can be lowered if the threshold of detecting far landmarks is

decreased - a trade-off of increasing estimation accuracy and noise tolerance has to be

found. Interestingly, even though the rotation is estimated worse than predicted, the

translation estimation is not much affected by it. This let reason that the error in the

estimated rotation is tolerable or correlates with the direction of translation. Latter

assumption is highly probable, because the rotation error arises from the translational

component and, apparently, the wrong rotation estimation does not significantly affect

the estimation of the direction of translation.
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Figure 8.34: This graphic shows the error between simulated and computed rotation ma-
trix R and translation vector t for 100 different runs with only rotation or only translation
(continuous lines). Furthermore, the dashed lines denote the estimated error of the pre-
sented accuracy propagation. The simulated camera parameters are: 10 features, noise in
both images due to pixel-discretization of the features (σ2= 1

12
), 600× 600 pixel resolution

and 250 pixel focal length (∼100◦ aperture angle.)
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Figure 8.35: This graphic shows on the upper two left plots the median error of the com-
puted and the simulated rotation matrix R and translation vector t for different aperture
angles. On the right hand side the corresponding relative errors of the error-propagation
are illustrated as boxplots. The lower two images show the performance if both motions,
rotation and translation, are simulated and estimated at the same time. The simulated
camera parameters are: 10 or 20 features depending on whether only one motion compo-
nent (rotation or translation) or both components are simulated, noise in both images due
to pixel-discretization of the features (σ2= 1

12
) and 600× 600 pixel resolution.
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(c) mixed motion - rotation (left), translation (right)

Figure 8.36: This graphic shows on the upper two left plots the median error of the
computed and the simulated rotation matrix R and translation vector t for a varying
number of features. On the right hand side the corresponding relative errors of the error-
propagation are illustrated as boxplots. The lower two images show the performance if
both motions, rotation and translation, are simulated and estimated at the same time.
The simulated camera parameters are: noise in both images due to pixel-discretization of
the features (σ2= 1

12
), 600× 600 pixel resolution and 250 px focal length (≈ 100◦ aperture

angle).

165



8. EXPERIMENTS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6
x 10

−3

noise (σ) [px]

n
o
rm

a
liz

e
d
 e

rr
o
r

 

 

error of computation − Z
inf

estimated error − Z
inf

−1000

−800

−600

−400

−200

0

200

rotation matrix

e
rr

o
r 

[%
]

0.01 0.02 0.05 0.11 0.2 0.2887 0.5 1 1.5 2

noise (σ) [px]

(a) rotation matrix (R)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

noise (σ) [px]

n
o
rm

a
liz

e
d
 e

rr
o
r

 

 

error of computation − Z
inf

 SVD

error of computation − Z
inf

 pseudo−inverse

estimated error − Z
inf

−1000

−800

−600

−400

−200

0

200

e
rr

o
r 

[%
]

0.5 21.510.01 0.02 0.05 0.11 0.2 0.2887

noise (σ) [px]

(b) translation vector (t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6
x 10

−3

noise (σ) [px]

n
o
rm

a
liz

e
d
 e

rr
o
r

 

 

error of computation − Z
inf

estimated error, all features − Z
inf

estimated error, inliers only − Z
inf

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

noise (σ) [px]

n
o
rm

a
liz

e
d
 e

rr
o
r

 

 

error of computation − Z
inf

 SVD

error of computation − Z
inf

 pseudo−inverse

estimated error, all features − Z
inf

estimated error, inliers only − Z
inf

(c) mixed motion - rotation (left), translation (right)

Figure 8.37: This graphic shows on the upper two left plots the median error of the
computed and the simulated rotation matrix R and translation vector t for various levels
of noise. On the right hand side the corresponding relative errors of the error-propagation
are illustrated as boxplots. The lower two images show the performance if both motions,
rotation and translation, are simulated and estimated at the same time. The simulated
camera parameters are: 10 or 20 features depending on whether only one motion component
(rotation or translation) or both components are simulated, 600× 600 pixel resolution and
250 px focal length (≈ 100◦ aperture angle).
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8.5 Evaluation of Sensor Registration and Fusion Tech-

niques

We presented different techniques for temporal and spatial alignment of an IMU-camera

setup as well as concepts for the fusion of the measurements in Chapter 4. First, we

evaluate the temporal and spatial sensor registration on synthetic and real data and

then we show experiments where the motion measurements of the sensors are combined.

For the temporal and spatial alignment we use the same real data, acquired by the

IMU-camera pair illustrated in Fig. 8.38.

Figure 8.38: A PointGrey Flea2G camera with wide angle lens and a Xsens-MTi IMU
(orange box) as it is used in our experiments.

The PointGrey Flea2G camera1 is equipped with a wide angle lens, providing an

approximately 120◦ aperture angle. It is mounted on a Xsens-MTi IMU. Eight runs

have been recorded, where the camera is moved in front of a checkerboard for 10-

40 s each, gathering images and inertial data. The frame-rate is 15Hz while the IMU

has a sampling frequency of 120Hz. The camera rotation is computed by extracting

the corners of a checkerboard and estimating the camera position in an optimization

framework using Calde and Callab [109]. We neglect the correlation of the image-based

rotation estimation with the translation in the experiments where only the rotation is

required. However, this correlation is considered in the batch-optimization where a full

spatial registration is provided. Alternatively, one can also use translation invariant

(far distant) landmarks to estimate the rotation uncoupled from the translation, like

in the Z∞-algorithm explained in Section 5.1. In the case at hand, the scale factor

α for the translation measurements of the monocular camera is known due to the

available geometry information of the checkerboard. Nevertheless, we will estimate

it in our batch-optimization, because the resulting value of α has turned out to be

a good indicator for the success of an optimization run: A value close to 1.0 usually

1http://www.ptgrey.com
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means that a reasonable data alignment could be achieved, while large deviations of

the optimal value indicate a failure of the algorithm. Errors in the intrinsic calibration,

the accelerometer calibration or the checkerboard dimensions typically also cause slight

deviations of α from the ideal value.

8.5.1 IMU-Camera Temporal Alignment

Before the measurements can be aligned, the time-stamps have to be fixed as described

in Section 4.1. Therefore, the sampling period has to be estimated and sample jams

and gaps have to be detected as illustrated in Fig. 8.39.
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Figure 8.39: The blue dots represent the time-stamps of a clipped image sequence. The
red line shows the fixed-time line without data jams and gaps.

In the following, we want to show the advantages and drawbacks of the temporal

methods discussed in Section 4.1. We tested the delay estimation methods with sim-

ulated data based on a weighted overlap of nine sine frequencies on all axes, whereas

the frequencies are in between 0.1Hz and 90Hz. The sampling period of the simu-

lated gyroscopes is 10ms and the one of the camera 40ms. As window function for

the EDFT in the phase congruency method we chose a Hamming window, which is a

good trade-off between high dynamic-range and sensitivity. For the maximum weight

phase shift estimation we used the rectangular window, because it provides the highest

sensitivity.

Fig. 8.40 illustrates a simulated delay between IMU and camera of 0.5 s and the

corresponding cross correlation result. The delay is rather long compared to real world

cases, but it has been chosen to show the limits of the correlation method. Fig. 8.41
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Figure 8.40: The left figure illustrates the unaligned simulated gyroscope (red) and
camera data (blue), while the right figure shows the cross correlation of the data.

depicts the estimated magnitudes and the estimated phases for both sensors. The

phases of corresponding peaks are used for temporal alignment.
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Figure 8.41: This figures illustrate the phase shift based temporal alignment for the
simulated data. The left images show the amplitude and the right the phase spectrum of
the gyroscope (red) and camera (blue) data.

The result of the average phase shift based approach is 0.5193 s, while the phase

shift of the most significant frequency yields 0.5344 s. The correlation-based approach

estimates a 0.14 s time lag. The explanation for this can be found in Fig. 8.42. There we

evaluated the performance on various delays. While the cross-correlation works highly

accurate and reliable for small delays, it finds a wrong optimum if the delay is large

relative to the sample length. The average and maximum phase shift methods seem to
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Figure 8.42: The blue line represents the simulated delay. The green dots are the corre-
lation based results. The red crosses and the magenta circles are the average and the most
significant phase shift output respectively.

be less accurate but more robust as the delay increases. The difference between these

two methods becomes apparent when comparing the result with the real data, as done

in Fig. 8.43. Table 8.4 summarizes some statistical quantities of the outcome. While

Table 8.4: This table lists the statistical quantities, mean, median, standard deviation,
and range (maximum minus minimum), for the results of the presented methods.

method - unit [s] mean median std. dev. range

cross correlation 0.1195 0.1179 0.0047 0.0115
average phase shift 0.1831 0.1246 0.1841 0.5659
most significant phase shift 0.4870 0.2348 0.8704 2.7979

the cross correlation method achieves coherent results in all eight runs, the phase based

approaches proof to be not as reliable for real application. This is because white noise

affects all frequencies and, hence, the phase shift can not be used for accurate temporal

alignment of noisy data.

8.5.2 IMU-Camera Spatial Registration

Before we assess the batch-optimization based registration introduced in Section 4.2 we

evaluate the rotational alignment as described in Section 4.2.4, which is used as rough

registration or as initialization for the optimization.
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Figure 8.43: The cross-correlation reliably estimates the time delay, while the phase
congruency methods are not as robust. Some of their estimates are not even visible because
of the scaling which has been chosen for the sake of detail.

Initialization of Rotational Alignment

We added white Gaussian noise to the synthetic data used for the evaluation of the tem-

poral alignment to evaluate the noise sensitivity of the rotation initialization. Fig. 8.44

shows the performance of the weighted and the unweighted rotation estimation. The

weighted rotation estimation always outperforms the unweighted method.

It is difficult to determine an accurate ground truth for the rotational alignment

between a camera and an IMU without having a CAD drawing of the setup. Therefore,

we performed a brute force search with a resolution of 0.5◦ to find a sort of “ground

truth”. As objective function we used Eq. 4.41. Unfortunately, in one of the runs

a local minimum far off any possible solution has been found which proofs the non-

convexity of the problem and, hence, that filtering and optimization techniques may

easily find a local instead of the global minimum if the starting point is far off the actual

solution. This run has not been considered in Fig. 8.45, which shows the deviation of

the various methods described in Section 4.2.4 relative to the brute-force estimate.

The estimates of the unweighted (original) and the weighted rotation are optimized

according to Eq. 4.42 and not after the nonlinear Eq. 4.54 as it should be. Thus, we

propagate the results by the unscented transformation described in Section 4.2.4, with

the outcome, that the difference between the propagated and original values is negligible

and, thus, the unscented transformation can be spared. Such a transformation becomes

only necessary if the covariance matrix is large, which is not the case for our data. The

weighted approach proves to be more reliable and accurate compared to the original

171



8. EXPERIMENTS

0 50 100 150 200 250 300
20

30

40

50

60

70

80

90

100

signal to noise ratio

e
s
ti
m

a
te

d
 r

o
ta

ti
o

n
 a

n
g

le
 [

°
]

Accuracy of the Rotation Estimation [Signal to Noise Ratio]

 

 

0 50 100 150 200 250 300
−15

−10

−5

0

5

10

15

signal to noise ratio

d
e

v
ia

ti
o

n
 i
n

 r
o

ta
ti
o

n
 a

x
is

 [
°

]
 

 

simulated rotation angle

unweighted estimation

weighted estimation

zero error

unweighted estimation

weighted estimation

Figure 8.44: The left image shows the results for the absolute rotation angle, the right
picture illustrates the angular error between the estimated and simulated rotation axis.
The blue line represents the simulated absolute angle and the zero-error line respectively.
By increasing the signal to noise ratio the performance of both, the weighted (green) and
the unweighted (red) rotation estimation, increases.

hand-eye calibration technique. Moreover, the bias estimates are more coherent with

the weighting method than the covariance minimization approach.

In the next experiments, we want to underline the importance of a proper tempo-

ral alignment. It is difficult to argue based on simulations which temporal accuracy

is relevant for spatial alignment, because it depends strongly on the dynamics of the

registration run, the noise of the sensors, the accuracy of the camera based pose esti-

mation, and so on. Therefore, we run the rotation estimation on misaligned real data.

The time delays have been chosen between the mean estimate of all runs and a delay

of zero, which means that no temporal alignment is provided. Fig. 8.46 compares the

different runs. While the median does only change a little for the different time delays,

the variance increases significantly for bad aligned data. Furthermore, the plot shows

that the weighting of the data samples also increases the robustness against temporal

misalignment.

The batch-based nonlinear optimization shows also to be sensitive to proper tem-

poral alignment. In this experiment, we varied the estimated time delay from 0% to

200% and plotted the box plots of the estimates for the translational scale to evaluate

the effect of a time lag between the measurements. The result worsens significantly

if the measurements are not aligned correctly (100%), as shown in Fig. 8.47. This

experiment stresses the importance of proper temporal alignment also for complex reg-

istration methods. Adding the delay between the IMU and camera measurement as
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parameter to θ would worsen the convergence properties of the optimization and make

the analytical calculation of the Jacobian significantly more complex.
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Figure 8.47: Estimated scale factor α with respect to the temporal alignment: 0%, no
temporal alignment; 100%, correct temporal alignment; 200%, twice the estimated delay
between camera and IMU.

Evaluation of the Batch-Optimization

Let us now evaluate the spatial registration as introduced in Section 4.2. In the following

plots, the X-axis components are colored blue and the Y- and Z-components are in green

and red, respectively. The IMU measurements are marked with dots and the ones of

the camera with crosses.

First, we will show the results of our approach on simulated data to evaluate its

performance based on ground truth. In our simulation we assume, that the camera

provides images with a frame-rate of 15Hz, while the IMU measurements arrive with a

rate of 120Hz. The length of the simulated registration sequence is about 10 s, which

is similar to our real registration sequences. The simulated rotational and translational

motion corresponds to three superimposed sine waves with varying frequencies and

amplitudes for each degree of freedom. The signals are corrupted by noise with the fol-

lowing standard deviations, which have been chosen to be similar to the ones measured

in the real data: σωI = 28.6 ◦/s, σaI = 0.5m/s2, σωC = 4.3 ◦/s and σvC = 0.05m/s.

The covariance matrix ΣP of the estimated parameters is calculated according to [108]

by

ΣP =
(
JTΣ−1

X J
)+

(8.6)
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with ΣX = diag(σ2
ωI

σ2
aI

σ2
ωC

σ2
vC

). A comparison of the estimated values and their

standard deviation with the simulated values shows that the results are consistent.

Fig. 8.48 and Table 8.5 illustrate the result of the presented optimization approach –
IφC denotes the Euler angles corresponding to IqC .

Table 8.5: This table lists the simulation results for the distance between IMU and
camera, IrIC , and the corresponding standard deviations σr.

run ItIC [mm] IφC [◦]
x y z x y z

simulated 10 0 -5.0 90 0 0
estimated 10.4 3.0 -5.0 89.7 0.8 -0.8
std. dev. σ 5.3 5.5 5.6 0.4 0.4 0.4

The optimization parameters for the experiments on the real data are initialized as

described in Section 4.2.4. The results of the translation estimation and its computed

uncertainty for all eight runs are illustrated in Table 8.6. It shows the estimated values

for ItIC and the corresponding standard deviations σItIC .

Table 8.6: This table lists the estimated distances between IMU and camera, IrIC , and
the corresponding standard deviations σr for the real data sets.

run ItIC [mm] σItIC [mm]
x y z x y z

1 -20.6 69.6 -30.7 37.9 49.6 60.1
2 -3.0 62.9 -31.3 25.9 33.7 38.2
3 -18.7 64.6 -39.4 28.2 32.2 36.9
4 -18.9 68.5 -33.2 18.4 24.5 22.4
5 -21.3 52.5 -33.4 6.5 9.0 8.2
6 -17.9 58.1 -33.5 4.7 12.3 4.3
7 -25.8 60.4 -30.9 6.7 8.5 6.7
8 -20.5 46.9 -25.1 13.9 41.4 16.7

We will now compare our results with the system identification (grey box) approach

described in [188] and a filter approach using an UKF as presented in [183]. The only

modification for the grey box approach is that we do not use an EKF but a more

accurate UKF instead to propagate and update the system state. The parameter

vector θUKF of the optimization consists of:

θUKF =
(
bTωI b

T
aI

I0gT IqTC
ItTIC

)T
(8.7)

The boxplots in Fig. 8.49 illustrate the calibration results of the three different ap-

proaches. The estimation of the relative pose ItIC by the B-spline clearly outperforms
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Figure 8.48: Error between the simulated measurements and the estimated trajectories.
Please note that the crosses represent the camera measurements which are closer to zero
due to less noise assumed for the camera. The upper plot illustrates both angular velocities
ωI and ωC , the middle plot shows aI and the lower one vC . The errors of the estimation
correspond to the simulated noises.
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the filter-based methods, while the angular alignment IqC yields comparable results. A

closer look at the results shows that especially the runs with less dynamics account for

this difference. The B-spline approach seems to be more sensitive and, thus, it achieves

adequate results even though the dynamics of the calibration motion are low.
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Figure 8.49: Estimation of ItIC and the Euler angles IφC corresponding to IqC (boxplots).
1-left : B-spline, 2-middle: grey box, 3-right : UKF.

To evaluate the sensitivity of the presented algorithm regarding the quality of the

initialization, we used a bad initialization to run the optimization. For that, we assumed

no knowledge about the relative and the absolute orientation, setting IqC to zero and
I0g to (0 0 − 9.81). The errors between the trajectories and the measurements resulting

from the two different initializations are illustrated in Fig. 8.50(a) and Fig. 8.50(b). The

wrong initialization of the rotation between camera and IMU becomes apparent in the

angular velocity plots. The bad initialization of the gravity vector becomes obvious in

the much larger scale of the acceleration plot in Fig. 8.50(b) - the gravitation component

in the acceleration measurements can not be compensated properly. Nevertheless, in our

experiments the optimization converges always to the same result, shown in Fig. 8.50(c),

which indicates good convergence properties of this problem. The same experiment is

performed using the grey box and UKF approach. Both can handle the bad initial

orientation, but run into serious problems with the bad initial gravity I0g and cannot

estimate properly the relative pose anymore.

The last two experiments shall illustrate the sensitivity of the optimization with

respect to the number of control points and the quality of the temporal alignment.

The relative pose ItIC and the scale factor α react most sensitive to changes of these

parameters and, thus, they are used to evaluate the quality of the estimation. Fig. 8.51

shows the convergence of the optimization results with increasing number of knots.
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Figure 8.51: Estimated relative pose ItIC (above) and scale α (below) with respect to
the number of knots.

According to this experiment, there are no significant improvements to expect using

more than 0.6 knots per camera frame for our registration sequences. If the spline has

too few knots, it will not allow accurate modeling of the acceleration measurements and,

thus, the velocity measured by the camera does not fit the approximated acceleration.

A large number of knots increases the number of control points and, consequently, the

overall optimization duration.

The accuracy of the spatial registration depends strongly on the measured motion.

No calibration framework will be able to improve the result beyond the calibration errors

which affect the fusion. Thus, assuming that the observability conditions mentioned

in [186] are met, the accuracy of the spatial alignment strongly depends on the signal

to noise ratio. In general, the noise of the sensors cannot be reduced further, thus, one

should aim to provide a calibration run with high dynamic motions. If at least the

same dynamics as a specific application requires are provided, the residual calibration

error can be neglected because the resulting fusion error is not significant compared to

the measured motion.
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Figure 8.52: Estimated scale factor α with respect to the temporal alignment: 0%, no
temporal alignment; 100%, correct temporal alignment; 200%, twice the estimated delay
between camera and IMU.

8.5.3 IMU Aided KLT Tracking

Significantly faster rotations are feasible if any local tracking is supported by an IMU as

explained in Section 4.3. Figure 8.53 depicts a fast sweep of the camera with an average

rotation of 11◦ and a maximum of 14◦ per frame. A maximum feature displacement

of about 45 pixels has been measured. Nevertheless, the landmark location can be

estimated accurately: the yellow squares (feature propagations) match the red circles

(KLT tracking results). The exact feature propagation makes also a change of the

active feature set during such motions feasible. Good matches of the red circles and

the yellow circles (projections of the landmarks according to their 3D location and the

camera pose) confirm an accurate stereo-based initialization (see Section 7.1.1).

8.5.4 EKF Based IMU-Camera Fusion

In the following, we want to show some first results on synthetic data for the EKF

based fusion of a camera and an IMU, as described in Section 4.4. We simulate an

oscillating motion with translational velocities up to 2m/s and angular velocities up to

114 ◦/s as shown in Fig. 8.54. The parameters for the sensors were chosen according

to our experiences with real sensors. The IMU samples are acquired at 500Hz and the

camera images at 120Hz. We simulate a measurement sequence of 60 seconds and,

thus, in total 3000 IMU measurements and 620 image-based motion estimates, to test

the EKF concept. The biases on the accelerometers and gyroscopes drift by a random

process with standard deviation of 10−5 and 10−4 respectively. Each axis of the gyros

suffers from noise of the magnitude σ = 10−3 and the ones of the accelerometers of
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Figure 8.53: The left two images show two screenshots acquired at the beginning and at
the end of a fast camera motion (up to 14◦ per frame). The yellow squares mark the IMU-
supported propagation of the landmarks, while the red circles are the tracked features.
The yellow circles are the reprojection of the features according to the 3D structure. The
right picture illustrates the trajectory (blue) and the camera viewing directions (red).

σ = 0.1. The noise on the image based motion estimation is simulated as σ = 0.01m

and σ = 0.1 ◦ for each component of the translation and rotation, respectively. For every

new keyframe we simulate a random switching-error with σ = 10% of the estimated

scale.

In our first experiment, we assume no translation between IMU and camera and

an exact initialization of the camera scale. Furthermore, we simulate that every 10 s

a new keyframe is used. Fig. 8.55 illustrates the result. The blue line represents

the error of the estimates and the red lines denote the 3σ-bounds of the calculated

uncertainty. The continuous growth of the uncertainty is clearly notable, which is

due to the relative measurements between the keyframes. However, the estimation

error remains small. Especially for the attitude, the uncertainty jumps when switching

between two keyframes become apparent. Nonetheless, the filter is able to correctly

level off the new scale after each switch of keyframe. The real trajectories, with ground

truth, filter estimate and 3σ-bounds are shown in Fig. 8.56. We also draw the time

instances of camera measurements and the keyframe switches in these plots, showing

that the motion can be smoothly estimated despite these events.

The question how stable the feature tracking has to be, is evaluated in Fig. 8.57. We

run the simulation for different times between a keyframe switching, with the expected

result, that if the features get lost too quickly, the filter does not have enough time to

converge. Hence, a large number of features and a high frame-rate should be preferred,

which allow for a more robust tracking.
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Figure 8.54: These plots denote the simulated motion for the filter experiments. We
implemented an oscillating translational acceleration and rotational velocity, together with
white Gaussian noise of the same magnitude as seen for real sensors.
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Figure 8.55: This figure illustrates the errors between estimate and simulation (blue) as
well as the 3σ-bounds of the calculated uncertainty (red). The errors are always within
these bounds, which proofs the proper operation of the filter.
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Figure 8.56: These plots show the full motion estimation for the X-axis on the left and
a small clipping in detail on the right.
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Figure 8.57: The effect on the convergence of the EKF for different keyframe time-spans
is illustrated in these plots. Please note the different scaling for the last plot.
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Another aspect which we evaluated is the influence of the lever arm between camera

and IMU on the filter convergence and stability, as suggested in [211]. For that, we

plot the scale estimation results for different lever-lengths against various values for the

scale initializations and the time-spans between keyframes in Fig. 8.58. A large lever

stabilizes the scale estimation significantly due to the lever effect in H1,8 of Eq. 4.100.

Wrong scale initializations can be compensated by a large distance between IMU and

camera (provided that there are significant rotations). Moreover, the scale converges

much faster, which can be seen by a small standard deviation of the scale estimation

also for short time-spans between two keyframes.
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Figure 8.58: The left plot illustrates the relation between IMU-camera lever and the
quality of the scale initialization. It shows, that a large lever can compensate for a bad
initialization. The right plot illustrates the standard deviation of the scale estimation for
a different time-span between keyframes and changing IMU-camera lever sizes. It confirms
that a large lever size leads to a much quicker scale convergence than a short one.
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Chapter 9

Applications

The presented methods and algorithms were also integrated in more complex applica-

tions than the experimental validations discussed in Chapter 8. In the following, we will

present three of them: the self-referenced 3D-modeling with the DLR 3D-Modeler, vir-

tual environment modeling for surprise detection and a fully autonomous quadrocopter

flight.

9.1 Self-Referenced 3D-Modeling

The DLR 3D-Modeler is a multi-purpose platform for geometric and visual percep-

tion [222]. It combines multiple sensors in a compact way. Current applications com-

prise 3D-modeling, tracking, visual servoing, exploration, path planning, and object

recognition, e.g., as perception system of the humanoid robot Justin [223]. The system

is equipped by following main sensors as illustrated in Fig 9.1:

• The DLR Laser-Range Scanner (LRS) [224] is based on laser light triangulation.

A visible, harmless laser ray is continuously rotated and its reflection is recorded

and used for triangulation of the distance.

• The DLR Laser Stripe Profiler (LSP) [225] includes one or two (depending on

the configuration) laser beams that project stripes on a surface. These stripes are

recorded by cameras which allow to triangulate the distance. The laser stripe de-

tection is done without optical filters to allow for other image processing methods,

such as stereo vision, visual egomotion or texturing, to be performed simultane-

ously.

• The stereo camera consists of two AVT Marlin F-046C progressive scan cameras

with 6 mm Sony VCL-06S12XM objectives mounted on them. They provide a
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resolution of 780×582 at a baseline of 50mm1. The implemented stereo algorithm

is detailed in [226, 227].

• The rigidly attached IMU is the AscTec AutoPilot from Ascending Technologies

GmbH2. It estimates the 6-DoF based on three gyroscopes, three accelerometers,

and three magnetometers at 1 kHz.

Laser Stripe Profiler

Stereo camera

FireWire
connection

IMU

Laser-Range Scanner

Figure 9.1: The major sensors of the DLR 3D-Modeler are the stereo cameras, the LSP,
the LRS and an IMU.

One main application of the DLR 3D-Modeler is as hand-held 3D-modeling system

for close-range applications. Several close-range 3D-modeling devices are currently

offered - for a large review please refer to [228, 229]. However, the DLR 3D-Modeler is

the first extensively mutisensory, passively self-referenced high-rate modeling device.

In general, it is not sufficient to reconstruct an object from a single view, due

to object self-occlusions, the object size, or the limited field of operation of the used

sensor. Hence, several measurements from different locations have to be fused, which

results in two tasks for a 3D-modeling device: The distance to the object’s surface has

to be measured (range measurement) while for all the different viewpoints a relative

alignment in terms of rotation and translation has to be known (relative localization)

to allow for proper data fusion.

The 3D-modeling solutions available in literature commonly use external devices to

estimate the sensor pose: external tracking systems, turntables, active or passive robotic

manipulators, electromagnetic devices, and so on. They all have the drawbacks to limit

the user’s workspace, to require an error-prone registration of the spatial and temporal

1The base distance and the focal length allow for a range sensing from approx. 30 cm up to 2m.
2www.asctec.de
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alignment and, lastly, they are in general the most expensive part of the modeling

system. The DLR 3D-Modeler provides three solutions to measure the distance to an

object: the LRS, stereo-triangulation or the LSP (as illustrated in Fig. 9.2).

Figure 9.2: This figure illustrates the modules provided within the DLR 3D-Modeler.
Due to the visual localization module, there is no external device necessary anymore.

The pose of the device, which is required for measurement fusion, can be measured

by an external tracking system1 or by the inverse kinematics when mounted on the

wrist of a robot arm as illustrated in Fig. 9.3.

Figure 9.3: The upper left-hand side picture shows the DLR 3D-Modeler with the IMU
module and the PC running the software. The other two images demonstrate each a global
registration variant for the scan device: a robot arm (lower left), and an external tracking
system (right).

1ARTtrack1 cameras from ART, www.ar-tracking.com

189

www.ar-tracking.com


9. APPLICATIONS

By applying image-based motion estimation techniques which are based on the on-

system stereo cameras, we do not depend on external devices anymore, but can simply

rely on the compact 3D-Modeler to solve the two necessary tasks for 3D-modeling. The

3D-model is generated online, hence the depth-measurements are fused immediately

which requires the poses in real-time. It cannot be fixed by optimizing all measure-

ments, because not all the information is available anymore due to the online fusion

and mesh generation which makes it difficult to realize an offline bundle-adjustment.

Hence, the estimated poses have to be highly accurate and reliable. Furthermore, it

is appreciable that the localization is not only valid within one scan, but it provides a

global reference, so that repeated scans, which are acquired at different time instances,

can be merged. This results in three major requirements for visual localization algo-

rithms when applied to online 3D-modeling: real-time pose estimation, high positioning

accuracy and a global reference.

Our solution for the real-time image-based egomotion estimation of the 3D-Modeler

consists of the following modules (as illustrated in Fig. 9.4):

• Shi and Tomasi features are extracted from both images of the stereo camera

system and initialized as described in Section 7.1.1.

• The features are tracked by the sped up extended KLT tracker implementation

introduced in Section 7.1. The tracking is supported by the IMU as denoted in

Section 4.3.

• A feature-set management system allows for keyframe-based VSLAM as men-

tioned in Section 5.2.

• The pose is estimated using RVGPS as explained in Section 5.2.1.

• To provide a global reference we use SURF features as described in more detail

in Appendix A.3.

Fig. 9.5 shows modeling results acquired by a two-turn sweep of the DLR 3D-

Modeler. Because the device is manually guided, the points are not uniformly dis-

tributed on the object’s surface.1

1An example of the operation is available at
http://www6.in.tum.de/∼maire/videos/3dMo putto.mp4.
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Figure 9.4: This block diagram illustrates the modules, which are used for the image-
based localization.

(a) 3D point-cloud: statue in front of a box. (b) 3D point-cloud of a putto.

Figure 9.5: Two 3D point clouds acquired by the DLR 3D-Modeler using the presented
visual navigation algorithm.
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9.1.1 Accuracy Evaluation

In the following experiment, the ART-system, a robot arm (KUKA KR16) and our

visual navigation approach are compared (see Fig. 9.3). Therefore, the 3D-Modeler

is mounted on the flange of the KR16 and while measuring the poses with the ART-

system and the robot’s kinematics, the images for the visual localization algorithm

are acquired. To simulate an ordinary scan sweep, the robot arm was commanded to

move down 40 cm and up again in front of an object. Fig. 9.6 illustrates the estimated

(a) trajectories

(b) rotational error (c) translational error

Figure 9.6: a) The scan trajectories computed by three different references. By zooming
in the x-axis (small plot) the error becomes evident. The absolute rotational error (b) and
the absolute translational error (c) are referenced to the KUKA poses.

trajectories of the scanner and the absolute rotational and translational difference of
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the ART-system and the visual navigation to the KUKA robot. While with equally

scaled axes the differences in the trajectories are not really recognizable, the zoom

in the left figure makes them visible. Due to the inaccuracies of the robot-to-camera

(hand-eye) and ART-to-camera calibration, a small discrepancy between the results of

the robot and the ART exists. This error is also illustrated in the blue dots of the

right plots, where the KUKA robot estimates are used as ground truth due to its high

accuracy. The visual localization result is noisier, but the average error is comparable

to the ART-system. Five keyframes are acquired during the sweep and refound on the

way back.

During longer sweeps without loop closure, the visual navigation results are drift-

ing like in every SLAM-based method, while the ART-system provides drift-less re-

sults within its workspace. This is the most problematic drawback regarding external

registration devices and the price for compactness, low costs and especially arbitrary

workspace location and size.

Fig. 9.7 shows online computed triangle-meshes for the statue in Fig. 9.7(a), once

acquired with the ART-based global registration (Fig. 9.7(b)) and once with the pre-

sented visual navigation approach (Fig. 9.7(c)). The 3D-Modeler was hand-guided in

front of the putto, in the same way as in the experiment with the KUKA1. The dis-

tance to the object is measured by a laser-stripe profiler (LSP) and the acquired data

is fused, together with the global pose, to 3D-meshes [230]. Due to the smoothing by

the data fusing process, the noise in the visual navigation estimates is removed and

the results are comparable. The differences in the meshes result from the fact that two

hand-held runs were necessary to evaluate the online processing performance, which

provides unequal views for the LSP.

Regarding the quality of the pose estimation, the following points are worth men-

tioning: The visual navigation is well-conditioned if the features are spread out over

the whole image. Furthermore, accurate results are provided if the landmarks are ac-

curately initialized, which depends on the features’ distance and the base-line of the

cameras. The ART-system has the systematical drawback of its inaccurate calibration

capabilities. It is difficult to calibrate the setup only by the six small and tight spheres,

which are quite far away from the cameras. If the markers are occluded by the sensor

device or by the object to scan, the accuracy of the pose estimation is massively re-

duced. Moreover, the errors of the LSP and the ART do not rely on the same images

and, thus, the error correlation is worse compared to the visual navigation. The robot

arm is the most precise of the three variants, provided an accurate hand-eye calibration.

1An example of the operation is available at
http://www6.in.tum.de/∼maire/videos/3dMo liveModeling.avi.
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(a) putto statue (b) mesh based on ART (c) mesh based on visual ego-
motion estimation

Figure 9.7: a) the scanned putto-statue. b) triangle-meshes based on the ART-system.
c) triangle-meshes based on the visual localization. All measurements were done in real-
time and also the meshes where computed online.
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However, it lacks the same drawbacks as the ART-system and, in addition, the degrees

of freedom of the scan device are reduced at the workspace border.

In Section 3.3.4, we explained the concept of active matching (AM). While related

approaches use this technique for monocular motion estimation with unknown struc-

ture, we can measure the features’ depth which drastically reduces the search area for

features by applying AM. Non-stochastic AM with known structure can be seen as best

case scenario for AM because it achieves an especially good performance if the priors on

the relative location is strong - we actually assume to have an error-free 3D structure.

On the other side the performance of AM is not so much influenced by weak priors

on the absolute location. Again we assume a linear translational motion model in 2D

and propagate the features according to this model. As next step, we look for a strong

feature in an image corner by exhaustive template matching over a large search area.

Based on this match we can solve for two DoFs of the rotation. This reduces the search

area of the second feature significantly, which is chosen from the opposite image corner.

Using the second match one can solve for the total rotation and propagate the rest of

the features. The real features are in general found within a few pixels of the estimated

location. By applying the AM concept, we can track features at similar high dynamic

motions, solely based on the camera, as by using the IMU based feature propagation1.

1An example of operation is available at
http://www6.in.tum.de/∼maire/videos/3dmo AM iros10 video.avi.
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9.2 Visual Environment Modeling

Geometric environment models are still the preferred space representations in robotics.

They are intuitive and allow for a reliable navigation and manipulation of mobile robots.

Laser-range devices are the preferred sensors to generate such models. However, there

are many objects which cannot be reconstructed reliably, e.g. glasses, specular objects

or complex structured plants. To deal with such objects it is often of advantage to not

consider them in the geometric but in the visual domain.

One type of image-based scene representation that recently has become very popular

uses view-dependent geometry and texture. Instead of computing a global geometry

model which is valid for any view point and viewing direction, the geometry of the

scene is estimated locally and holds only for a small region in the viewpoint space.

It has been shown that this approach is suitable especially when the scene contains

specular and translucent objects. Hence, per-pixel depth maps are calculated for each

reference image. While this is done off-line, the view selection and view synthesis

are performed on-line. The view selection only chooses a small subset of all reference

images which contribute to view interpolation, each time a new frame is rendered.

In real-world environments, most surfaces are non-Lambertian which means that the

reflected intensity depends on the position of the viewer. Hence, in our approach,

the reference cameras are ranked in terms of their orthogonal distance with respect

to predefined rays within the viewing frustum of the virtual camera. Novel virtual

views are synthesized in a two-pass procedure: the color data of the selected reference

images is warped into the virtual view where afterwards the final color of each pixel is

determined using probabilistic models. These virtual environment modeling has been

used within the elite cluster “Cognition for Technical Systems” (CoTeSys1) to develope

image-based surprise trigger which can detect missing objects or changes on objects,

which are difficult to detect by LSR sensors or/and to model in geometric space. Three

steps are necessary to achieve this:

• Scene acquisition and pre-processing: An image sequence of the scene for

which the virtual environment model needs to be generated has to be acquired.

The camera-pose of each viewpoint has to be known. For that we use the same

keyframe-based visual localization algorithm as described in Section 9.1. Once the

images are registered, image-depthmaps are generated by stereo-triangulation. If

several runs are performed at varying lighting conditions it is possible to com-

pute an illumination-invariant scene representation, which allows render lighting-

independent views of a scene (see [5] for more details).

1http://www.cotesys.org/
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• Relative localization and virtual view rendering: Once a current view shall

be compared with the previously acquired data set, the actual position relative

to the scene acquisition origin has to be determined. For that we use global

features from natural landmarks as described in Appendix A.3. Knowing the

spatial relation, the virtual image can be rendered.

• Surprise detection: We propose a scheme for Bayesian visual surprise detection

based on the probabilistic concept for view synthesis. Similar to the processing

of color information in the human visual system, we compute from each RGB

reference image a luminance signal and two color opponency signals (red-green

and blue-yellow), respectively. Thus, surprise detection does not have to be per-

formed jointly in RGB-space but can be done independently in three decoupled

pathways. The luminance samples warped into the virtual view from the refer-

ence images are assumed to be drawn from a Gaussian distribution. We put a

prior distribution over the precision, which is equivalent to the reciprocal vari-

ance of the Gaussian distribution. The Kullback-Leibler divergence (KLD) as the

difference between the posterior distribution and the prior distribution serves as

a quantitative measure for surprise. The KLD is evaluated for each pixel in the

virtual image which yields a pixel-wise surprise trigger.

In the following we are going to denote two CoTeSys-scenarios where we applied

the presented surprise trigger.

9.2.1 Cognitive Household

The episode we envisioned within the assistive household scenario is the acquisition

of an image-based model of a typical household environment, which is the basis for

cognitive processes. With our module a cognitive robot in the household should be

able to update its environment model at any time by surprise detection and classify the

objects around it into static or dynamic ones. Moreover, surprise about unexpected

events should influence the robot’s action plans. Robust visual localization should

enable it to retrieve its current position in the environment and to evaluate its current

observation with respect to the already acquired reference model.

Fig. 9.8 illustrates the localization results on an image sequence acquired while

performing a quarter circle with 0.9m diameter. The odometry of the Pioneer 3-DX

is not accurate enough to build a model of the environment from the measurements.

The results of the different processing steps on the acquired image-sequence are shown

in Fig. 9.9. The glasses, which have been removed in a second run are clearly detected

by the surprise trigger as shown in Fig. 9.9(c).
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Figure 9.8: Localization results of a Pioneer 3-DX performing a quarter circle as illus-
trated in the left image. The blue lines show the viewing direction of the capturing camera.
The white gaps in the trajectory are due to swapping on the hard disk. The cameras were
slightly tilted to the floor and so the trajectory is not only within the X-Z plane.

9.2.2 Cognitive Factory

This application was a joint project with JAHIR (“Joint-Action for Humans and Indus-

trial Robots”). The goal is that a robot mounts a product while communicating with

a human worker by speech and virtual buttons which are projected onto the working

table. We are going to integrate our algorithms described in this work into the quality

assessment step after the product is mounted. To this end, an image sequence of the

mounted error-free product is first captured and processed for a reference image-based

model. Our algorithm for surprise detection detects unforeseen changes in the product

which might be due to failures in the single production steps. It is desirable, that

the inspecting camera is localized with respect to the product and not with respect to

the robot’s coordinate system since this does not require that the product is exactly

at the same position as during the acquisition of the reference model. The cognitive

robot uses this surprise trigger for making decisions about repair strategies and the

next production steps.

The results of the VEM-based surprise trigger on the JAHIR sequence are shown in

Fig. 9.10. As one can easily recognize, the visual pose estimation is not always accurate.

This is due to the highly specular surface of the workpiece and that features can only

be found in a limited field of view which reduces the localization accuracy significantly

as seen in Section 8.2.1. Nevertheless, the virtual rendering works fine, because the

motion estimation and the rendering rely on the image domain and, hence, the errors

correlate. The camera cannot be localized accurately if there is not much difference

between two views, but this also means that one cannot find any visible error in the

rendered image neither.
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9.2 Visual Environment Modeling

(a) preprocessing: visual localization, depth map generation and virtual rendering.

(b) virtual view rendering: left : observation, middle: rendered view and right : reference image for
comparison (closest view - manually chosen)

(c) surprise detection: left : image differences (manual sub-pixel accurate alignment using KLT),
middle: Bayesian inference (manual sub-pixel accurate alignment using KLT) and right : Bayesian
inference (automatic global referencing using SURF)

Figure 9.9: This image sequence visualizes the various processing steps for the VEM-
based surprise trigger. In order to test our algorithm for surprise detection, we captured
another image sequence on a trajectory which was close to the first one but not identical.
We changed the scene by removing the two glasses. The task of the cognitive system is
to detect these changes. This image is depicted in the middle row on the left together
with a photorealistic virtual image (middle) rendered from reference images which were
selected only from the first image sequence. The right picture shows a view of the reference
sequence which has been manually picked as comparison with the virtual rendered image –
Please note that there is no real camera image which was acquired exactly at the position
of the observation.
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(a) left estimated camera locations, middle observation and right : rendered view

(b) surprise detection: left : image differences and right :
Bayesian inference

Figure 9.10: This image sequence visualizes the VEM-based surprise trigger results on
the JAHIR sequence. The upper left image shows the acquired camera views and the upper
middle and right picture illustrate the observation and the virtual rendering. The bottom
row denotes the surprise trigger result based on image differences and Bayesian inference.
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9.3 Autonomous Quadrocopter Flight

9.3 Autonomous Quadrocopter Flight

A first step towards fully autonomous flying micro aerial vehicles (MAVs) has been

shown at the Automatica 20101. We equipped a Hummingbird quadrocopter from As-

cending Technologies GmbH2 with a Beagleboard3 (revision C3) and a Philips webcam

SPC900NC4. The demonstration should show that it is possible to process camera im-

ages on a resource-limited system as available on MAVs in real-time for autonomous

flight control. In the case at hand, we were limited to the ARMv7 core of the Bea-

gleboard running at 600MHz. The quadrocopter platform is equipped with an IMU

and a low-level controller which stabilizes the quadrocopter in-flight but cannot prevent

its drifting. Our image-based motion estimation provides a local reference and, thus,

suppresses drifting.

(a) system setup (b) in-flight

Figure 9.11: The left picture illustrates the bottom-view of the system setup, showing the
Beagleboard and the Philips webcam. On the right hand side the quadrocopter is shown
while hovering fully autonomously above a hand-held board with the artificial markers
printed on top.

In this scenario, five blue blobs are chosen as artificial markers, defining a coordinate

frame. A highly efficient blob detection algorithm is used to identify the sub-pixel accu-

rate location of the blobs in the image. We use RVGPS, as described in Section 5.2.1, to

estimate the image based pose relative to the blob-frame. This pose is then fused with

the IMU measurements in an EKF and the result is fed into the non-linear controller.

Due to the artificial markers we can move the reference frame while the quadrocopter

is following it5. The setup of the system and an image of the flight are illustrated in

1http://www.automatica-munich.com/
2www.asctec.de
3http://beagleboard.org/
4http://www.philips.com/
5An example of operation is available at
http://www6.in.tum.de/∼maire/videos/quadro automatica.wmv.
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Fig. 9.11.

The images are processed at 25Hz but due to a long delay between image acquisition

and availability at the host (up to 100ms) the artificial landmarks left several times

the FOV of the quadrocopter. If the blobs can not be seen for a long time, the drifts

of the strapdown computation lead to the divergence of the pose estimation and the

quadrocopter can not find his way back anymore. Due to the lack of robustness of this

concept no further experiments with artificial markers have been made and we have

been focusing on a solution with natural landmarks. The required modules for such an

approach have been presented in this thesis. The integration of the motion estimation

on a flying platform is part of current research.
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Chapter 10

Conclusion

In this work, we presented technical solutions for the biologically motivated naviga-

tion approach as introduced in Chapter 1. Solutions for several parts of the proposed

navigation flow, illustrated in Fig. 10.1, are provided, together with experimental val-

idations and comparisons of the algorithms. Starting at the low-level processing, we

worked on feature detection and tracking solutions, motion estimation and its error

propagation as well as sensor registration and sensor fusion methods. Assuming feasi-

ble state-of-the-art camera and IMU calibration techniques as well as a valid strapdown

computation, we are able to provide efficient inertial-visual odometry which also works

for high dynamic motions, while limiting its drift.

In the following few sections, we discuss the presented algorithms in a methodic

and task-specific context, we summarize our contribution and discuss future work.

10.1 Discussion

In this work, we aim for an efficient and robust navigation concept which works also with

high dynamic motions. A sensor and navigation framework based on the physiology

of insects and behavioral experiments on them has been derived in the introduction.

Based on this proposal, we extracted constraints for the image-based motion estimation

and attempted to realize them in our algorithms. We achieved efficient feature detection

and tracking solutions, like AGAST, which allow for the processing of a large number of

features at high frame-rates similar as in the visual system of insects. Furthermore, we

mentioned that insects behaviorally separate rotational and translational motion. This

is a restriction which is in general difficult to realize on technical systems. Nevertheless,

we presented the Z∞-algorithm, a method which implements a separated translation

and rotation estimation under certain circumstances, which are in general provided for
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Figure 10.1: In this figure, we illustrate again the flow diagram which we proposed in the
motivation and already depicted in Fig. 1.3. However, this time we highlight the modules
for which we presented contributions in this thesis and greyed out the ones which are in the
focus of future work. At this point we are able to provide efficient inertial-visual odometry.
The next major steps consist in providing a sort of topological map as global reference and
implementing efficient homing algorithms.

outdoor applications. In simulations we have shown, that such a motion estimation

yields a more accurate pose computation than state-of-the-art closed-form solutions

which estimate rotation and translation together1.

A crucial aspect is also the identification of a camera system which yields the most

accurate motion estimation. Thus, we evaluated the performance of motion estimation

algorithms regarding tracking accuracy, number of features and aperture angle. The

compound eye of insects offers a large FOV which covers almost the whole sphere, while

providing only a rather small angular resolution compared to conventional cameras.

According to our experiments, the accuracy of the motion estimation does not increase

continuously with the FOV. The results reveal, that a trade-off between conditioning

of the landmark set and accuracy of the feature correspondences has to be found. An

unduly small aperture angle yields bad results since the motion estimation is ill-posed,

while an inadequate large FOV for the same number of pixels also yields bad results

due to the decreasing accuracy. There is an optimum around 90◦ aperture angle where

the conditioning is saturated and cannot get better. The large FOV of insects could be

explained by the fact that their visual sensor does not only have to provide odometry

1This is, of course, only valid under the premise that sufficient translation-invariant features are
available.
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measurements, but it also has to allow for a reliable scene monitoring and other vision-

related tasks (e.g., the visual compass). Furthermore, the accuracy of the visual motion

estimation does not only depend on the FOV and the tracked landmarks, but also on the

computation method. As already mentioned in Section 3.3, several motion computation

techniques are known which require an omnidirectional view. It is not clear yet, how

the visual odometry is determined in the insect’s brain and, thus, a large FOV could

also be a stringent condition for insects, even though it is not a general requirement

for motion calculation. The simulations have also shown that the accuracy of the pose

estimation can be improved by increasing the number of features, the tracking accuracy

or, of course, both. However, it is obvious, that the former yields a more robust solution

in the presence of outliers.

For a proper fusion of measurements, it is essential to provide an estimate of the

expected motion accuracy based on a given feature set. The presented first order

propagation has shown to provide adequate error estimates. However, we still needed

to provide the embodiment of the camera and the IMU in terms of a spatial and

temporal registration. We have shown, that a proper temporal alignment is crucial

if high dynamics are applied. Once the registration is known, it is still not trivial to

fuse both sensors due to the lack of translational scale of the camera. This estimate

suffers from long convergence rates, which can be reduced by high frame-rates or a large

distance between IMU and camera, assuming that a significant rotation is provided.

We proposed an indirect Kalman filter where the state transition and the measurement

uncertainties can be taken into account in their respective coordinate frame. Moreover,

it is possible to fuse relative pose measurements, which is required for methods which

do not rely on global references, like a map. We also suggest to support the feature

tracking with the IMU measurements, which allows to use local trackers also for high

dynamic motions.

10.2 Contributions

The three most significant contributions of this thesis are:

• AGAST-based tracker: The currently most efficient corner detector and fea-

ture tracker. At the time of writing this thesis the open-source package has been

downloaded about one thousand times. Further, it is planned to be released as

part of the next OpenCV1 and PCL2 release. Nonetheless, it is already used in

other algorithms with high impact, such as BRISK. [4]

1http://opencv.willowgarage.com
2http://openpcl.sourceforge.net

205

http://opencv.willowgarage.com
http://openpcl.sourceforge.net
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• Batch-optimization based IMU-camera registration: Our presented spline-

based spatial alignment achieves more consistent results than state-of-the-art so-

lutions, due to the batch-optimization and a more accurate motion representa-

tion. [2]

• DLR-3dMo egomotion estimation: The VSLAM-based egomotion estima-

tion reduces the DLR 3D-Modeler to a compact, handy device without physical

workspace limitations. As result, the system is the first extensively mutisensory,

passively self-referenced high-rate modeling device. [8, 6]

Other major contributions are the Z∞-algorithm, which is an accurate and ef-

ficient alternative for motion estimation in outdoor applications [7]. We derived an

error propagation for this algorithm as well as for the eight-point algorithm. For the

latter we consider also the different implementation variants and derive the uncertainty

propagation for the rotation matrix. Moreover, we proposed an EKF based fusion of

IMU and camera which allows for relative motion updates and considers the mea-

surement and state uncertainties in their respective spatial dimensions. Beside this, we

were one of the first showing a fully autonomous MAV processing images for pose

estimation on-board at high frame-rates.

Our contributions have been published in multiple publications listed in the publi-

cations section.

10.3 Future Work

Before the discussion of the future work towards the task of efficient and reliable mobile

robot navigation, we will treat each of the presented algorithms independently.

10.3.1 Methods Specific Future Work

Spatial Alignment

To allow for higher dynamics, we want to evaluate sequences with natural landmarks

in the future. However, without any knowledge about the environment we can only

estimate the camera translation up to scale. The presented framework already provides

such a scale parameter, which makes it easy to adapt. It would be interesting to

evaluate, whether the higher signal to noise ratio of the IMU would allow for still more

accurate calibration even with less precise landmark tracking.

The number and the location of the B-spline knots has been determined empirically

in this work. Estimating the optimal number and location of the knots would speed
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up processing and make it adaptive to arbitrary dynamics. First experiments in this

direction are promising.

Another possible improvement is a direct fusion of the landmark locations with the

IMU motion, avoiding the currently preceding camera pose estimation. While this will

increase the complexity of the optimization framework, we expect higher accuracy.

Sensor Fusion

The presented sensor fusion framework is going to be tested and evaluated on real

data, combining efficient tracking, pose estimation and fusion. Furthermore, it will

be interesting to see which effects the cross-correlation, introduced by the pseudo-

measurement update, has on the fusion stability. We do not exclude, that one gets a

more stable filter with better convergence properties by keeping the unmodeled cross-

correlations in the measurement uncertainties. Furthermore, we would like to address

the cross-correlation between the camera based scale and pose estimation as well as the

bias of the accelerometers to improve the stability of the filter.

Motion Estimation

A combination of the eight-point and the Z∞-algorithm could overcome the limitations

of the Z∞-approach to outdoor environments, while still yielding a higher accuracy than

the eight-point algorithm. A nonlinear optimization step at the end, which uses the

closed-form solution as starting point, could further improve the estimate. However,

it depends on the application whether such a high accuracy at the cost of processing

time is required.

An intelligent parameter adaption for the Z∞-algorithm would simplify and gen-

eralize its application. The parameters could, e.g., be adapted based on the previous

estimation step.

Feature Tracking

It would be interesting to improve the tracking of AGAST to sub-pixel precision. Thus,

one could adapt the accuracy of the motion estimation depending on the application

and the processing resources. Beside that, image pyramids can be used to preserve the

local tracking assumptions even at low frame-rates.
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10.3.2 Task Specific Future Work

Considering again the proposed navigation concept as illustrated in Fig. 1.3 and 10.1,

we presented solutions for the modules IMU-camera registration, measurement fusion,

optical flow estimation, motion estimation, and its error propagation. Moreover, we

assume that the state-of-the-art provides feasible approaches for camera and IMU cal-

ibration and strapdown computation. Hence, the next steps will be to implement a

topological map based on image features and to come up with efficient homing strate-

gies, which allow the robot to find back to an exact position. Which features to use

and how the map should be organized is still an open question and part of current

research. However, we are of the opinion that not only one kind of features, but several

different and complementary features should be used. Moreover, the idea of a visual

compass based on omnidirectional cameras is also highly interesting and in focus of

current work.
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M. Suppa, D. Burschka, and G. Hirzinger. The self-referenced DLR 3D-

modeler. In International Conference on Intelligent Robots and Systems (IROS),

pages 21–28. IEEE/RSJ, 2009. Best Paper Finalist.

[10] W. Maier, Mair, E., D. Burschka, and E. Steinbach. Visual homing

and surprise detection for cognitive mobile robots using image-based

environment representations. In International Conference on Robotics and

Automation (ICRA), pages 807–812. IEEE, 2009.

[11] D. Burschka and Mair, E. Direct Pose Estimation with a Monocular

Camera. In 2nd International Workshop on Robot Vision, pages 440–453, 2008.

[12] D. Burschka and Mair, E. Biologically Motivated Optical Flow-Based

Navigation. In Workshop Biological Models in Spatial Cognition, 2008.

[13] W. Maier, Mair, E., D. Burschka, and E. Steinbach. Surprise Detection

and Visual Homing in Cognitive Technical Systems. In 1st International

Workshop on Cognition for Technical Systems, 2008.

[14] Mair, E., W. Maier, D. Burschka, and E. Steinbach. Image-Based Envi-

ronment Perception for Cognitive Technical Systems. In 1st International

Workshop on Cognition for Technical Systems, 2008.

210



Appendix A

Appendix

A.1 Image Pyramids

The concept of image pyramids is a powerful way to reduce processing time by itera-

tively refine an image processing task. For that, the image is downsampled into one or

more images of lower resolution and the required task is executed first on the smallest

image and its result is used as starting point on the next higher level of resolution.

This process is repeated until the original image is reached.

Most processing libraries support image pyramids but most of them have prebuilt

methods which reduce the image size by a factor of four in each step. There is no

way to define other subsampling step-sizes or to change the smoothing factor before

subsampling. In this section, we want to show how a proper filter-length for a certain

step-size is calculated.

Subsampling suffers from aliasing if the signal, in our case the image, is not lowpass-

filtered (smoothed) in advance. In general Binomial filters are used to allow for an

efficient implementation. This filter type is an approximation of Gaussian filters with

the characteristic to converge to a Gaussian for large filter orders. The coefficients of

a Binomial filter can be computed by the binomial formula

(
n
k

)
=

n!

k! (n− k)! (A.1)

and correspond to the respective level n of the Pascal’s triangle as illustrated in Ta-

ble A.1.

The question we want to answer here is which filter mask should be applied for

a certain downsampling. To prevent aliasing in the downsampled pyramid levels, all

the frequencies larger than the cut-off frequency fc should be suppressed. The cut-off
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Table A.1: Binomial coefficients (Pascal’s triangle) as used for the Binomial filter of order
n, with the normalization factor s = 2−n and the filter variance σ2 = n

4
. To compute an

image pyramid only the bold masks should be used due to their symmetry characteristic
required for image pyramids.

n s filter coefficients σ2

0 1 1 0

1 1
2 1 1 1

4

2 1
4 1 2 1 1

2

3 1
8 1 3 3 1 3

4

4 1
16 1 4 6 4 1 1

5 1
32 1 5 10 10 5 1 5

4

6 1
64 1 6 15 20 15 6 1 3

2

7 1
128 1 7 21 35 35 21 7 1 7

4

8 1
256 1 8 28 56 70 56 28 8 1 2

frequency has to be chosen according to the Shannon-Nyquist theorem which says that

only frequencies up to half the sampling frequency fs can be represented

f <
fs
2

⇒ fc
!
=

fs
2 pss

, (A.2)

with pss denoting the number of pixels skipped by the subsampling.

The attenuation of a certain frequency can be obtained by the frequency response

of the 1D binomial filter nB1 which is

nB1 ←→ nb1 = cosn
(π
2
k
)
, (A.3)

where k is the normalized wavenumber with the following relation to the sampling

frequency

f = k
fs
2
. (A.4)

The relation to the subsampling can be determined by inserting Eq. A.4 and the cut-off

frequency in Eq. A.3

nb1,c = cosn
(
π
fc
fs

)
= cosn

(
π

2 pss

)
. (A.5)
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Solving the above equation for n we yield

n =
log (b1,c)

log
(
cos
(

π
2 pss

)) . (A.6)

In general, 3 dB are used as cut-off attenuation (b1,c = 0.5). Finally, the next larger

even integer number n̂ should be used to fulfill the symmetry condition of the filter,

which is required to preserve the pixel-correspondences between the pyramid levels

n̂ = ⌈n⌉even . (A.7)

The transfer function of a 2D Binomial filter can be easily derived by the one

dimensional one (see [231]) and yields

nB2 ←→ nb2 = nb1,x
nb1,y = cosn

(π
2
kx

)
cosn

(π
2
ky

)
. (A.8)

A Taylor series evaluation in cylinder coordinates (k,θ) shows that the resulting filter

is isotropic up to the second order

nb2 ≈ 1− n

8
(πk)2 +

2n2 − n
256

(πk)4 − n cos (4θ)

768
(πk)4 . (A.9)

The fourth order term contains an isotropic and an anisotropic part. However, the

influence of the anisotropic part gets reduced by increasing the filter order, because

it increases only linearly as opposed to the quadratic growth of the isotropic term.

However, frequencies which are diagonal to the image axes are sampled by less than

the factor of
√
2, but, due to the larger sampling, they are also attenuated stronger,

which guarantees aliasing suppression in all directions.
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A.2 Boxplots

A box-and-whisker diagram or simply boxplot is a convenient way of graphically de-

picting a set of samples. Plotting only the median or mean of a set of samples does not

reveal much information about its distribution. To compare the robustness of different

algorithms, also the variance and the amount of outliers should be visualized. All this

is provided by boxplots.

Boxplots depict following characteristics of a population which are illustrated in

Fig. A.1:

• Bottom and top of the box are the 1st- and 3rd-quartile (25th and 75th percentile)

• The red line within the box is the median (50th percentile)

• Points are interpreted as outliers and drawn as red plusses, if they are smaller or

larger than 1.5 of the interquartile range (IQR=3-quartile minus 1-quartile) from

the first or third quartile respectively. Hence, the lower and the upper limits are

1-quartile - 1.5 IQR and 3-quartile + 1.5 IQR. The default of 1.5 corresponds to

approximately ±2.7σ and 99.3% coverage if the data is normally distributed.

• The whiskers denote the adjacent value, which is the most extreme data value

that is not identified as an outlier according to the above criteria.
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Figure A.1: A boxplot is a convenient way to illustrate the distribution characteristics of

statistical population. The median, the 1st- and 3rd-quartile, the extend of the distribution
and outliers are visualized by this representation. This plot has been generated by 1000
normal distributed random samples.
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A.3 Image-Based Global Referencing

The localization introduced in Section 9.1 uses natural landmarks. However, based on

local tracking it is not possible to set up a pose estimation with the same origin and

coordinate frame again. Hence, a global reference is required. This can be achieved by

using global feature trackers which allow to find natural landmarks even after larger

affine distortion. The most popular examples are SIFT [120, 121] or SURF [122, 123].

The latter is more efficient providing similar performance and, thus, we use this in our

implementation.

The SURF features can be initialized by structure-from-motion or by stereo. Ex-

periments have shown that the accuracy is higher, if the feature depth is computed by

stereo triangulation with a shorter baseline instead of a larger but error-prone baseline.

One has to consider that the matching accuracy of SURF is also reduced if the affine

transformation increases at large baselines.

Further, it is possible to estimate the pose in 3D space or using RVPGS (see Sec-

tion 5.2.1). The former method needs four images while the latter requires only three.

Fig. A.2 depicts the principle of the algorithms. In the following we sketch the two

methods:

The 3-images global referencing approach consists of two steps: First, the 3D-

structure of the SURF features of the image at the origin has to be initialized. Then,

an arbitrary image with enough SURF correspondences can be spatially related to the

reference landmark set using RVGPS.

On the other hand the 4-images global referencing approach consists of three

steps: Not only the 3D-structure of the SURF feature set at the origin has to be

computed, but also of the landmarks which shall be spatially aligned. Then, one can

simply align the two 3D point clouds using, e.g., the Umeyama algorithm described

in [214].

The 4-image-based approach is supposed to be more accurate, because we do not

estimate the transformation matrix and the structure of the point set at the same time,

like in the 3-images approach. The drawback is, that we need to find SURF matches

in four images, which is more problematic than with three due to less intersection of

common features. Which algorithm to use, therefore, strongly depends on the appli-

cation and the scene. Since the errors do not vary much (compare the subfigures in

Fig. A.3), the more robust but less accurate 3-images algorithm should be preferred in

most cases.

One problem arises using an image-based global reference for 3D-modeling. A

drawback of global feature trackers is that they, in general, are not real-time capable
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(a) global referencing using three images (b) global referencing using four images

Figure A.2: These drawings sketch the principles of the 3- and the 4-images global
referencing methods.

(a) (b)

Figure A.3: This pictures show the output of the Bayesian surprise trigger as described
in Section 9.2, whereas the left image is generated by using the 3-images global referencing
algorithm and the right one using the 4-images method. Even if the results for the 4-
images approach seem to be more accurate, the one based on 3-images is preferable due to
its improved robustness.
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A.3 Image-Based Global Referencing

on conventional processors. Hence, three tasks run in parallel: feature tracking, feature

initialization and global referencing. This requires a state machine to synchronize the

different image processing modules, as it is sketched in Fig. A.4.

System Booted

SURF Features

Initialization

SURF Features

Relocalization

Feature Set Initialization

Track Current

Feature Set

Store Initialized

SURF Features

tracking 

successfull?

Determine Closest

Keyframe

update global pose

add keyframe

is a new 

keyframe 

required?

initialized 

SURF features 

available?

yesno

yes

no

initialization

successfull?

yes

no

initialization

successfull?

yes

no

relocalization

successfull?

yes no

yes

no

Feature Tracking

trigger

Global Referencing

Stereo Initialization

reset

trigger

Figure A.4: The image-processing modules used for localization and global referenc-
ing. The synchronization triggers to ensure that the images of the different modules are
synchronized are not illustrated for the sake of clarity.
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A.4 Linear System Reduction

The skew symmetric matrices in Eq. 4.42 represent cross-products. By using a dot-

product at this point and, thus, stacking all
(
C p̂∆i +

Gp̂∆i

)T
row-wise, the size of the

matrix for the SVD, BC+G
T , would be reduced to a third

UTΣTV
T
T = SVD

(
BC+G
T

)
. (A.10)

In the following we show how the results of Eq. A.10 can be used to calculate the

covariance of PGp′
C
.

The right singular vectors of a matrix B correspond to the eigenvectors of BTB

and the the singular values of B are the square root of the eigenvalues of BTB. Let

us compare the eigenvalues and eigenvectors of BC+G
T

T
BC+G
T and BC+G

[ · ]×
T
BC+G

[ · ]× :

BC+G
T

T
BC+G
T =

N∑

i=1

aia
T
i (A.11)

BC+G
[ · ]×

T
BC+G

[ · ]× = −
N∑

i=1

[ai]
2
× =

N∑

i=1

aTi aiI − aiaTi (A.12)

with ai being the single vector sums C p̂∆i +
Gp̂∆i . In the following S =

∑N
i=1 aia

T
i and

d =
∑N

i=1 ‖ai‖2. Eq. A.11 and A.12 can then be rewritten as

BC+G
T

T
BC+G
T = S and BC+G

[ · ]×
T
BC+G

[ · ]× = dI − S (A.13)

The eigenvalues can now be calculated by solving equation det (A− λI) = 0, which

yields for the dot-product

det (S − λT I) = 0 (A.14)

and for the cross-product

det
(
(dI − S)− λ[ · ]×I

)
= 0 (A.15)

det
(
S −

(
d− λ[ · ]×

)
I
)
= 0 , (A.16)
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resulting in the relations

λT = d− λ[ · ]× and (A.17)

σT =
√
d− σ2[ · ]× =

√√√√
3∑

i=1

σ2[ · ]× − σ
2
[ · ]× (A.18)

for the singular values σ. This corresponds to the sine and cosine relation between the

magnitudes of the cross- and dot-product

‖ai‖sin(ϕ) =
√
‖ai‖2 − ‖ai‖2cos2(ϕ) (A.19)

and leads to

Σ[ · ]× = IM

√
tr
(
Σ2
T

)
I −Σ2

T IM (A.20)

with the mirrored identity matrix IM which switches the rows and columns to preserve

the descending order of the singular values

IM =









0 0 1

0 1 0

1 0 0









.

The eigenvectors vT and v[ · ]× and, hence, VT and V[ · ]× of BC+G
T

T
BC+G
T and

BC+G
[ · ]×

T
BC+G

[ · ]× are equal, which can be shown by applying Eq. A.17:

SvT = λTvT (A.21)

(dI − S)v[ · ]× = λ[ · ]×v[ · ]×
dv[ · ]× − Sv[ · ]× = dv[ · ]× − λTv[ · ]×

Sv[ · ]× = λTv[ · ]× . (A.22)

However, the SVD may yield different signs for the eigenvectors, but since we multi-

ply VT with its transposed to compute the covariance matrix PGp′
C
, the signs of the

eigenvectors become insignificant in our application in Section 4.2.4. Further, the SVD

yields the singular values in descending order and, hence, the columns of the V s and

the rows of the Σs will be inverted. Combining the matrices to compute PGp′
C
, one will

see that the permutations are neutralized, such that

PGp′
C
= VT

(
tr
(
Σ2
T

)
I −Σ2

T

) 1
2 V T

T . (A.23)

219



A. APPENDIX

A.5 Electronically Synchronized IMU-Camera Setup

We have seen in Section 8.5.1, that it is crucial to provide a proper temporal alignment

of the sensors, especially if high dynamic motions are applied. In general, IMUs do not

allow to trigger their measurements, thus, the synchronization concepts are not trivial

anymore.

In a student project, we tried to realize an electronically synchronized embedded

sensor-system. As embedded processing platform we chose the Beagleboard. To al-

low for a fast and DMA (direct memory access) capable image transmission, without

blocking the USB-bus, we designed a frame-grabber which is based on the MMC (multi

media card) bus. The major components of the frame-grabber are an FPGA, a video

converter and two fast SRAM units. For more details please refer to [232].

The vertical synchronization signal of the video codec is used to trigger a self-

made IMU (consisting of 3 gyroscopes and 3 accelerometers). An on-board RISC

processor (ARM) pre-processes and stores the high-rate measurements of the sensors.

Each time a trigger arrives, the samples are sent as bundle to the Beagleboard where

the image and the corresponding IMU information can be fused [233]. The Linux

kernel on the Beagleboard is enhanced by respective modules which allow for a regular

communication with the new devices [234].
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Figure A.5: This graphic illustrates the components of the hardware-synchronized IMU-
camera setup. The IMU generates image specific inertial measurement bundles, triggered
by the vertical synchronization signal of the camera.

Fig. A.5 sketches a block diagram for the hardware modules and communication
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A.5 Electronically Synchronized IMU-Camera Setup

interfaces of the synchronized IMU camera setup and Fig. A.6 shows the first iteration

of the system’s prototype.

Figure A.6: This picture shows the first iteration of a prototypic hardware-synchronized
IMU-camera setup. The processing platform is the Beagleboard (red bottom board on the
left hand side). The MMC-based frame-grabber is on the top of it and the IMU-board,
which would be the top layer of the staple, is put aside for the sake of visibility.
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Mathematical Notation

Table A.2: Explanation of the mathematical notation.

Symbols / Examples Description

n Scalar variables are italic lower case letters.

N Scalar constants are italic upper case letters.

v Vectors are bold, italic lower case letters.

M Matrices are bold, italic upper case letters. This notation is

also used for points in 3D space.

f(x), cos(x), R(x) Functions are one or more regular lower case letters or upper

case letters, depending on whether scalars or matrices are re-

turned.

S, W Sets and coordinate frames are represented by upper case cal-

ligraphic literals.

|S|, |x| Represents the number of elements in the set S or the absolute

value of a scalar x.

{ · }Bi=A Denotes a set which contains all elements for i ∈ [A . . . B] ⊂ Z.

M2,3, M−,3 Elements of matrices are accessed by index-tuples as following

subscripts in the order row then column, whereas a dash rep-

resents the whole row or column respectively. Counting starts

at one.

M3×4 The dimensions of a matrix are described as subscript, e.g. a

matrix with 3 rows and 4 columns would be written as shown

left.

Continued on next page
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Mathematical Notation

Table A.2 – continued from previous page

Symbols / Examples Description

IN The N -dimensional identity matrix is denoted as shown left.

0N and 1N These are column vectors of 0 or 1, respectively. The N may

also be spared, if the size of the vector is clear from the context.

0R×C and 1R×C These are matrices of 0 or 1 respectively, where R denotes the

number of rows and C the number of columns.

tr(M) The trace of a matrix M is expressed as shown left.

diag(x) This function is used twofold, if it is applied to a vector it

transforms it to a diagonal matrix and if it is applied to a ma-

trix it extracts the diagonal elements of the matrix as column

vector.

Diag(x) This function transforms a matrix into a block-diagonal one.

⊗ This operator denotes the Kronecker product.

◦ This symbol is used for the Hadamard product (entry-wise ma-

trix multiplication).

∼= Linear approximations are expressed by this symbol.

def
= If a new variable is introduced at the end of an equation it is

expressed by this symbol, so that the reader is not surprised

by an unknown variable.

!
= To emphasize that the equation is valid by definition, we use

this representation.

E [x] This function computes the expectation value of a random vari-

able x.

x− A minus as successive superscript denotes the prior estimate,

e.g., before applying the update step of a Kalman filter.

x+ A plus as successive superscript denotes the posterior estimate,

e.g., after applying the update step of a Kalman filter.

Continued on next page
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Table A.2 – continued from previous page

Symbols / Examples Description

[ · ]col, [ · ]row For some derivations it will be necessary to reshape a matrix

to a single column or row vector. For that we introduce these

operators which stack all the columns or rows on top or aside

of each other, respectively, e.g.,

a = [A3×3]col =




A1,1

A2,1

A3,1

A1,2

...

A3,3




.

col [ · ]Ni=1, row [ · ]Ni=1 If indices are required for the expression to stack, it may also

be denoted as shown left.

perm
row (1,3,2,4)

This function permutes the rows of a matrix according to the

indices in the subscript.

‖ · ‖ If no matrix norm is specified the Euclidean norm ‖ · ‖2 is as-

sumed.

‖ · ‖F This operator represents the Frobenius norm.

rk(M) This function returns the rank of a matrix M .

SVD(M) This function returns three matrices as the result of the singu-

lar value decomposition of the matrix M (M = UΣV ). The

singular values are in decreasing order.

EVD(M) This function computes the eigenvalue decomposition of the

matrix M and returns two matrices(M = QΛQ−1). The

eigenvalues are in decreasing order.

[ · ]× This operator denotes the mapping from a vector into a skew-

symmetric matrix which replaces the cross product:

[ · ]× :



x

y

z


→




0 −z y

z 0 −x
−y x 0


.

Continued on next page
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Table A.2 – continued from previous page

Symbols / Examples Description

SO This abbreviation denotes the special orthogonal group (space

of rotation matrices).

F (ω) This function transforms the signal into the frequency domain.

←→ This sign denotes the same signal in time and frequency do-

main.

arg(c) This function computes the argument of a complex number c,

which corresponds to its phase.

Ix A leading superscript denotes the frame of reference in which

a measure is expressed.

xC A successive superscript denotes the sensor with which a mea-

sure has been gathered.

xi, xt Successive subscripts are in general indices or time references.

xA;i If more subscripts are necessary to specify a variable, they are

separated by a semicolon.

BRA This expression denotes a rotation from the coordinate frame

A to B represented by a DCM.

CtAB This term represents the translation from coordinate frame A

to B expressed in the coordinate frame C.

DCM(. . .) This function converts an arbitrary rotation representation into

a DCM (see [111]).

Q(. . .) This function converts an arbitrary rotation representation into

a quaternion (see [111]).

q̄ The bar over a quaternion denotes the inverse rotation.

med(S) Computes the median of the set S.

⊙ This operator denotes the quaternion multiplication.
∏N
i=1⊙ This symbol represents the quaternion product operator which

computes the product of successive rotations.
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List of Abbreviations

Table A.3: List of abbreviations used within this work.

Abbreviation Description

AGAST adaptive and generic AST

AM active matching

AST accelerated segment test

ARM advanced RISC computer

BFGS Broyden-Fletcher-Goldfarb-Shanno (method)

BRIEF binary robust independent elementary features

BRISK binary robust invariant scalable keypoints

CenSurE center surround extrema

CoTeSys cognition for technical systems - elite cluster

CPU central processing unit

DCM direction cosine matrix (rotation matrix)

DMA direct memory access

DOF, DOFs degree(s) of freedom

DoG difference of Gaussians

DRA dorsal rim area

EKF extended Kalman f ilter

FAST features from AST

FOC focus of contraction

Continued on next page
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List of Abbreviations

Table A.3 – continued from previous page

Abbreviation Description

FOE focus of expansion

FOV f ield of view

FPGA f ield-programmable gate arrays

GPS global positioning system

GPU graphics processing unit

IMU inertial measurement unit

IR infrared

IQR interquartile range

KLD Kullback-Leibler divergence

KLT Kanade-Lucas-Tomasi (feature tracker)

LADAR laser detection and ranging

LIDAR light detection and ranging

LOS line-of-sight (coordinate system)

LRS laser range scanner

LSP laser stripe profiler

MEMS micro-electro-mchanical systems

ML maximum likelihood

MMC multi media card

MRID minimal rotation-invariant descriptor

NMSM non-maximum suppression measure

OAST optimal AST

PTAM parallel tracking and mapping

RGB red-gree-blue (color space)

RISC reduced instraction set

ROI region of interest

RVGPS robustified VGPS

Continued on next page
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List of Abbreviations

Table A.3 – continued from previous page

Abbreviation Description

S/N signal to noise ratio

SIFT scale-invariant feature transform

SLAM simultaneous localization and mapping

SRAM synchronous random-access memory

SSD sum of squared differences

SURF speeded up robust features

SUSAN smallest USAN

TOF time of f light

UKF unscented Kalman f ilter

USAN uni-value segment assimilating nucleus

USB universal serial bus

VEM visual environment modeling

VGPS visual GPS
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