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Zusammenfassung

Der erste Teil dieser Dissertation analysiert die bedingten Verteilungen fraktionaler Pro-

zesse, wie der fraktionalen Brownschen Bewegung und der (multivariaten) fraktionalen

Lévy Prozesse, welche über Molchan-Golosov Kerne eingeführt werden. Mithilfe einer

Formel für die bedingte Erwartung der fraktionalen Brownschen Bewegung und klas-

sischen Eigenschaften der Gaussverteilung wird die bedingte charakteristische Funktion

der fraktionalen Brownschen Bewegung und verwandter Prozesse (wie fraktionaler Analo-

gien bekannter affiner Prozesse, inklusive fraktionaler Ornstein-Uhlenbeck und fraktionaler

Cox-Ingersoll-Ross Modelle) hergeleitet. In einem nächsten Schritt wird eine bivariate

fraktionale Brownsche Bewegung betrachtet, wobei eine bestimmte Abhängigkeitsstruktur

vorausgesetzt wird. Danach werden die vorherigen Ergebnisse auf fraktionale Lévy Prozesse

verallgemeinert.

Motiviert durch empirische Untersuchungen, welche Evidenz von Langfristabhängigkeit

in makroökonomischen Variablen, wie Zinsen, BIP oder Angebot- und Nachfrageraten,

zeigen, werden verschiede fraktionale Vasicek Marktmodelle (inklusive Kreditrisiko) vorge-

schlagen und untersucht. Mit den vorherigen Ergebnissen werden (analytische) Preis-

formeln für (ausfallbare) Nullkuponanleihen und allgemeine Kreditderivate bewiesen.

Lévy Prozesse mit ganzzahligen Werten können herangezogen werden, um hochfrequente

Finanzdaten zu modellieren. Dabei werden Preisticks nach oben und unten separat

beschrieben. Allerdings spiegelt dieser Ansatz nicht die sogenannten ’stilisierten Eigen-

schaften’ wieder, die oft in empirischen Untersuchungen nachgewiesen werden. Im zweiten

Teil dieser Dissertation werden die ganzzahligen Lévy Modelle erweitert, so dass sie Effekte,

wie Volatilitätsclustering und statistische Hebelwirkung, beinhalten. Dies wird durch eine

bestimmte Art von Zeittransformation erreicht. Die Eigenschaften dieser Modellklasse

wird analysiert und ein Anwendungsbeispiel vorgeschlagen.





Abstract

The first part of this thesis analyses the conditional distributions of fractional processes

like fractional Brownian motion (fBm) and (multivariate) Molchan-Golosov fractional Lévy

processes (MG-fLps) which will be introduced by Molchan-Golosov kernels. Using a sim-

ple prediction formula for the conditional expectation of a fBm and its Gaussianity, the

conditional characteristic function of fBm and related processes (like fractional analogies

of prominent affine processes including fractional Ornstein-Uhlenbeck and fractional Cox-

Ingersoll-Ross models) is derived. In a next step a bivariate fBm is considered by assuming

a certain dependence structure and afterwards the previous results are generalized to MG-

fLps including multivariate fBm and fractional subordinators, i.e. almost surely increasing

MG-fLps.

Motivated by empirical evidence of long range dependence in macroeconomic variables

like interest rates, domestic gross products or supply and demand rates, various fractional

Vasicek bond market models (including credit risk) driven by fBms and MG-fLps are pro-

posed. Using the results on conditional characteristic functions, tractable pricing formulas

of (defaultable) zero coupon bonds and general credit derivatives are proven.

Integer-valued Lévy processes, which model up and down ticks separately, can be used

as price processes for low latency financial data. However this approach does not reflect

the so-called ’stylized facts’ that can be found in empirical studies. In the second part of

this thesis these models are extended to allow for diurnal features, volatility clustering and

statistical leverage. These features are obtained using different time-changes for up and

down ticks. The properties of this model class is analysed and an application is provided.
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2.2.1 Fractional Lévy Ornstein-Uhlenbeck processes . . . . . . . . . . . . . 28

2.2.2 Solutions of fractional sde’s by state space transforms and proper

triples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.3 Examples by means of strongly proper triples . . . . . . . . . . . . . 31

2.2.4 Fractional Cox-Ingersoll-Ross models . . . . . . . . . . . . . . . . . . 34

I Conditional distributions of fractional processes 39

3 Fractional Brownian motion and related processes 41



3.1 One-dimensional fractional Brownian motion . . . . . . . . . . . . . . . . . 42

3.2 d-dimensional fractional Brownian motion with independence . . . . . . . . 52

3.3 Application: Fractional bond market . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 The fractional market model . . . . . . . . . . . . . . . . . . . . . . 55

3.3.3 Modeling under Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.4 Zero coupon bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Two-dimensional case with same driving factor . . . . . . . . . . . . . . . . 67

3.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.2 Prediction results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Application: Defaultable bonds and credit derivatives . . . . . . . . . . . . 74

3.5.1 Defaultable claims . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5.2 Defaultable zero coupon bonds . . . . . . . . . . . . . . . . . . . . . 77

3.5.3 Option pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Molchan-Golosov fractional Lévy processes 89
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Introduction

The so called classical models of mathematical finance belong to the repertoire of nearly ev-

ery researcher and practitioner in finance. They include the Black-Scholes model for stock

option pricing (developed by Black and Scholes [22] and Merton [93]) and the Vasicek

model (cf. Vasicek [130]) for interest rates or (by extension) for credit markets. In math-

ematical terms, the Black-Scholes model describes the stock price process S = (S(t))t≥0

under the real-world measure by the stochastic differential equation

dSt = St(µdt+ σdBt), t ≥ 0, S(0) ∈ R+, (0.1)

for µ ∈ R and σ > 0. The model is driven by a Brownian motion B = (B(t))t≥0 which

lies in the class of semimartingales. Consequently, an extensive theory for stochastic in-

tegration is available, giving sense to (0.1), cf. Protter [108]. The main advantage of the

Black-Scholes model is that it provides easily tractable pricing formulas for plain vanilla

options and even more complicated payoffs. Since practitioners have to rely on fast cal-

culations, this explains its popularity and manifold use in different areas of mathematical

finance.

However this comes at a high price: Empirical studies of logarithmic stock price returns

show that they are clearly not Gaussian but heavy tailed. As consequence the Black-

Scholes model underestimates the probability of large price moves. This drawback can be

avoided by using a Lévy process instead of a Brownian motion to describe the dynamics

of (0.1) (cf. early work of Mandelbrot [87] and Press [107], followed by Eberlein and

Keller [50] or Eberlein, Keller and Prause [51].

Another disadvantage of (0.1) is the constant volatility of logarithmic stock price re-

turns, a property which is also not supported by empirical studies. Many models were

suggested to deal with this situation by considering volatility to be stochastic itself, cf. the

subordination approach of Clark [33], the discrete time (G)ARCH setting of Engle [54] or

the general survey of Shephard [123]. In particular, Barndorff-Nielsen and Shephard [11]



proposed an extension of the Black-Scholes model by introducing stochastic volatility σ

through an Ornstein-Uhlenbeck process σ = (σ(t))t≥0 driven by a Lévy subordinator

L = (L(t))t≥0, i.e. an a.s. increasing Lévy process:

dSt = St(µdt+ σdBt + ρd(Lλt − E[Lλt])), t ≥ 0, S(0) ∈ R+,

dσ2
t = −λσ2

t dt+ dLλt, t ≥ 0, σ(0) ∈ R+, (0.2)

for λ > 0 and ρ < 0. This setting also allows for statistical leverage, i.e. negative

correlation between volatility and stock price.

Another approach has been developed by Klüppelberg, Lindner and Maller [80] who

introduced a continues time GARCH model (COGARCH), cf. Klüppelberg, Lindner and

Maller [81] for a comparison with the setting of (0.2). Further steps lead to continuous

time ARMA (CARMA) processes (cf. Brockwell [26]) and fractional integrated CARMA

(FICARMA) processes (cf. Brockwell and Marquardt [27] and Marquardt [92]), allowing

for stronger autocorrelation in the volatility process.

In real markets, prices are usually quoted only up to a specific tick size (depending

on the individual financial object), making them basically (after a straightforward trans-

formation) integer-valued, while (0.1) and (0.2) are not. Therefore, especially for high

tick (also called low latency) data other approaches might be more suitable. This kind of

data is recorded and provided usually less than 1 millisecond after leaving the exchange, cf.

Russel and Engle [114] and Bauwens and Hautsch [13] for recent reviews on the importance

of low latency data.

Of course it is possible to use the continuous Black-Scholes model in a low latency

setting. However other approaches might be more appropriate. Delattre and Jacod [37]

considered diffusion processes with round-off errors and their stochastic properties. Rosen-

baum [112] used their results to propose a model for asset prices with focus on estimating

integrated volatility. Statistical approaches, working directly with the discrete-valued ob-

servations, have been considered e.g. by Müller and Czado [97] who used an autoregressive

probit model to describe absolute price changes, and Haug and Czado [70] who applied

an ARMA approach.

Barndorff-Nielsen, Pollard and Shephard [10] recently suggested to describe the price

process P = (P (t))t≥0 of low latency data by the difference of two discrete-valued Lévy

subordinators L+ = (L+(t))t≥0 and L− = (L−(t))t≥0, i.e.

P (t) = P (0) + L+(t)− L−(t), t ≥ 0, P (0) ∈ N. (0.3)
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This approach has the advantage that up and down ticks can be analysed separately which

simplifies estimation.

Turning to interest rate markets, a simple classical model has been proposed by Va-

sicek [130]. The instantaneous short rate r = (r(t))t≥0 is described by a stochastic differ-

ential equation of the Gaussian Ornstein-Uhlenbeck type:

dr(t) = (k − ar(t))dt+ σdB(t), t ≥ 0, r(0) ∈ R+, (0.4)

for k, a, σ > 0. Therefore the model implies not only a stationary but also mean-reverting

short rate with respect to the long-term mean k/a, properties, which are supported by

empirical observations. Note, that as it is common for short rate models, (0.4) describes

the dynamics of r directly under a risk-neutral measure. Similar to the Black-Scholes

model (0.1), the Vasicek approach (0.4) provides fast and efficient pricing formulas for zero

coupon bonds, the building blocks of interest rate markets (cf. Brigo and Mercurio [24]).

As a Gaussian process, r can also take negatives values which is one of the major

disadvantages of the Vasicek model. Of course one can always shift and scale the model

to make the probability of a negative r as small as possible. Another way of avoiding this

issue was suggested by Cox, Ingersoll and Ross [35] who used a square root process to

model the short rate. In such a setting, the random term dB(t) is multiplied with the

square root of the short rate process. Consequently, if r gets close to zero, the influence

of the Brownian term vanishes and the mean reversion pushes r away from zero again,

ensuring that the short rate always stays positive.

Similar to the Black-Scholes situation, (0.4) assumes a constant volatility parameter.

The introduction of a time dependent but deterministic volatility into (0.4) leads to the

Hull-White model (cf. Hull and White [74])

dr(t) = (k(t)− a(t)r(t))dt+ σ(t)dB(t), t ≥ 0, r(0) ∈ R+, (0.5)

where a(·), k(·), σ(·) are positive deterministic functions. In the literature this is also often

called the extended Vasicek model and from now on we will always imply time-dependent

parameters when speaking of a Vasicek model. Another very important extension has

been developed by Heath, Jarrow and Morton [72]) who modeled not only the short rate,

but the whole forward curve.

Further approaches include Eberlein and Raible [52] who described the dynamics of

the term structure by general Lévy processes and Duffie [44] and Duffie, Filipovic and

3



Schachermayer [45] who used not only Brownian motion but general affine Markov pro-

cesses.

However all these interest rate models have one drawback. Empirical observations

(cf. Henry and Zaffaroni [73] and Backus and Zin [7]) suggest that the Markov structure

inherent in these models might not be able to capture the situation at the real markets.

In fact there is evidence of long range dependence in the short rate (Section 4 of Backus

and Zin [7]).

The last observation is the starting point of Part I of this thesis. We aim to replace the

Brownian motion in (0.5) by fractional Brownian motion or, more general, fractional Lévy

processes to capture the long range dependence effect in the data. Doing that, we leave the

Markov setting, implying that the whole past paths will enter prices of financial derivatives

now. As mentioned earlier it is very important for practitioners to have tractable pricing

formulas. Therefore we extensively consider conditional distributions of such fractional

processes and show that they still allow for fairly explicit calculations. We propose various

settings for interest rate and credit markets and motivate our approach by deriving a

fractional Brownian Vasicek model from the fractional Heath-Jarrow-Morton approach of

Ohashi [100] who ruled out arbitrage in this fractional market.

The starting point of Part II is the simple Lévy model (0.3) of Barndorff-Nielsen et

al. [10]: a major drawback is the fact that this leads to independent and stationary returns.

In reality, stock prices often show strong diurnal features and time-varying volatility. Since

the classical ideas of Barndorff-Nielsen and Shephard [11] cannot be applied, we develop

a new approach to model stochastic volatility in integer-valued markets that allow for

volatility clustering and statistical leverage. Our model setting will also include fractional

Lévy processes as driving processes of the volatility. We consider no-arbitrage properties,

market completeness, estimation methods and provide an application to the prices of the

Euro-Dollar IMM FX futures contract.

Outline of the thesis

The first two chapters state the main preliminaries for the content of this thesis: Chapter 1

includes a short introduction into the notation and gives brief outlines of the main mathe-

matical concepts used later. Chapter 2 provides preliminaries regarding (unique) solutions

4



of fractional stochastic differential equations. Section 2.1 outlines the fractional Brown-

ian case which has been investigated by Buchmann and Klüppelberg [28]. The case of the

fractional Lévy processes defined via Mandelbrot-Van Ness kernels has been developed by

Fink and Klüppelberg [59] and is stated in Section 2.2. It will also provide motivation why

later in this thesis we will use Molchan-Golosov instead of Mandelbrot-Van Ness kernels.

The chapters that follow constitute the new work for this thesis, are all based on in-

dividual papers and therefore can mostly be considered self-contained. A brief outline

follows.

Part I of this thesis mainly focuses on fractional processes and possible applications in

interest rate, credit and stochastic volatility models.

Chapter 3 is based on Fink, Klüppelberg and Zähle [60] entitled Conditional distribu-

tions of processes related to fractional Brownian motion and the work of Biagini, Fink

and Klüppelberg [18], entitled A fractional credit model with long range dependent hazard

rate. In Section 3.1, the conditional characteristic functions of integrals driven by uni-

variate fractional Brownian motion (including the conditional expectation of geometric

fractional Brownian motion, cf. Valkeila [129]) are obtained by discrete approximations

of the σ-algebra we condition on, well-known facts about the multivariate Gaussian dis-

tribution and early results of Gripenberg and Norros [64] and Pipiras and Taqqu [104].

Afterwards we extend these results to solutions of stochastic differential equations driven

by a fractional Brownian motion. The case of d-dimensional fractional Brownian motion

with independent entries follows directly and is briefly outlined in Section 3.2 for the sake

of completeness.

As an application we present an interest rate model where the short rate is described

by fractional Brownian Vasicek dynamics in Section 3.3. After a short motivation in

Section 3.3.1, we derive the model from the fractional Heath-Jarrow-Morton approach of

Ohashi [100] (which is based on previous work of Guasoni, Rásonyi and Schachermayer [65,

66]) in Sections 3.3.2 and 3.3.3. Even in this non-Markovian setting, zero coupon bond

prices can still be calculated explicitly which we do in Section 3.3.4.

In Sections 3.4 and 3.5, based on [18], we derive the conditional distribution of a bi-

variate fractional Brownian motion (where the dependence is given as in Elliott and van

der Hoek [53]) by using special properties of the Wick product. Invoking these results we

introduce credit risk in the interest rate market of Section 3.3 and calculate the prices of

5



defaultable bonds (Sections 3.5.1 and 3.5.2 ) and general credit derivatives (Section 3.5.3 ).

Chapter 4, which consists of Fink [58], entitled Conditional characteristic functions of

Molchan-Golosov fractional Lévy processes with application to credit risk, generalizes the

results from Chapter 3 to the situation of multivariate Molchan-Golosov fractional Lévy

processes. In Section 4.1.1 these kind of processes are defined by a Molchan-Golosov

kernel extending the univariate definition of Tikanmäki and Mishura [127] and in Sec-

tion 4.1.2 integration is specified by an L2 approach. Prediction results are presented

in Section 4.2.1, while Section 4.2.2 considers important examples including Ornstein-

Uhlenbeck and Cox-Ingersoll-Ross type processes. As a first application we present in

Section 4.3 a credit model (similar to Section 3.5 ) driven by almost surely increasing

fractional processes avoiding the problem of potential negative interest and hazard rates.

In a second application we briefly review the Black-Scholes market with fractional volatil-

ity introduced by Bender and Marquardt [16] in Section 4.4.1 Afterwards we show in

Section 4.4.2 that our prediction results can be used to explicitly derive the whole price

process of a European call option in this model.

In Chapter 5 we consider prices of zero coupon bonds in two different fractional Vasicek

markets - one driven by a fractional Brownian motion and one driven by a Molchan-Golosov

fractional Poisson process. The derivates with respect to the individual parameters are

calculated, we carry out a numerical analysis to study the impact of parameter changes

on prices and compare our results to classical Markov cases.

Part II of the thesis considers financial models especially designed for high tick data

using differences of discrete-valued Lévy subordinators.

Chapter 6 is based on Fink and Shephard [61], entitled Integer-valued volatility clus-

tering and statistical leverage for low latency financial data. First we briefly review the

basic model developed in Barndorff-Nielsen, Pollard and Shephard [10] in Section 6.1 and

extend it afterwards to mirror stylized facts of financial time series like volatility clustering

and statistical leverage by a certain kind of time change (Sections 6.2.1 - 6.2.4 ). We obtain

the classical stochastic volatility model of Barndorff-Nielsen and Shephard [11] as a limit

in Section 6.2.5 and consider no-arbitrage properties in Section 6.2.6. We briefly outline

different ways of estimating our model in Section 6.3 and provide an example using price

6



quotes of the Euro-Dollar IMM FX futures contract on 11th December 2009 in Section 6.4.

Chapter 7 provides a brief outlook and concludes this thesis.
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Chapter 1

Preliminaries - Basics and

fractional processes

In this section we will state the necessary preliminaries for our further work. The short

introduction into the notation of this thesis is followed by brief sections about fractional

calculus, Riemann-Stieltjes integration and p-variation. Afterwards we introduce general

Lévy processes (including Brownian motion) which will be used to derive their fractional

counterparts by integration. This can either be done by a Mandelbrot-Van Ness (cf. Man-

delbrot and Van Ness [89]) or a Molchan-Golosov kernel (cf. Molchan and Golosov [95]

and Kleptsyna, LeBreton and Roubaud [79], Norros, Valkeila and Virtamo [99] and De-

creusefond and Üstünel [36]). Both approaches lead to the same process in distribution, a

fractional Brownian motion, in the Gaussian case. However we will see that the resulting

processes differ for Lévy processes. Since we shall only state properties and results which

will be needed later, further literature is provided for the interested reader.

1.1 Notation

If nothing else is mentioned we shall always assume a complete probability space (Ω,F ,P).

Denote by L2(Ω) the space of square integrable random variables. For a family of random

variables (X(i))i∈I , I some index set, let σ{X(i), i ∈ I} denote the completion of the

generated σ-algebra. For A ⊆ R and n ∈ N, the spaces of integrable, square integrable

and continuous functions f : A→ Rn are denoted by L1(A,Rn), L2(A,Rn) and C0(A,Rn).

In the case n = 1 we shall just write L1(A), L2(A) and C0(A). Furthermore, Lip(A) and

C1(A) are the spaces of real functions on A, which are Lipschitz continuous on compacts
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and continuously differentiable, respectively. Moreover for T > 0, ‖ ·‖L2,T (‖ ·‖L2,∞) is the

L2-norm and 〈·, ·〉L2,T (〈·, ·〉L2,∞) the corresponding Euclidian scalar product on L2([0, T ])

(L2(R)). R+ (R−) are the positive (negative) real half lines. For a matrix A, A> shall be

the adjoint. The gamma function shall be denoted by Γ. For d ∈ N let Sd×d denote the

space of all positive semidefinite symmetric matrices of dimension d. The expression
d
=

means equality of finite dimensional distributions. For x ∈ R, define (x)+ := max(0, x).

Let a ∈ Rn, n ∈ N, then denote by δa the Dirac measure with respect to a.

1.2 Fractional calculus

Fractional integrals and derivatives are at the core of fractional processes like fractional

Brownian motion or fractional Lévy processes. Both possible integration kernels, the

Mandelbrot-Van Ness and the Molchan-Golosov, can be represented using fractional cal-

culus. In this section we will briefly introduce the main concepts and state the necessary

results which will be needed later in this thesis.

A very detailed survey on fractional calculus can be found in Samko, Kilbas and

Marichev [117]. The main concept is also closely related to Riemann-Stieltjes integration

and stochastic calculus and we refer the interested reader to Zähle [135, 136].

Fractional integrals and derivatives can be introduced on compacts and on the whole

real line. There is also a distinction between the left- and right-sided integrals and deriva-

tives. However in this thesis only the right-sided types will appear and therefore we will

drop this specification in the definition.

1.2.1 On compacts

We will work on the compact interval [0, T ] for some fixed T > 0.

Definition 1.2.1. For 0 < α < 1 and f ∈ L1([0, T ]) define the fractional Riemann-

Liouville integral of f of order α with finite time horizon by

(IαT−f)(s) =
1

Γ(α)

∫ T

s
f(r)(r − s)α−1dr, 0 < s < T, (1.1)

where Γ denotes the Gamma-function.

For f ∈ L1([0, T ]) this always exists almost everywhere, cf. (7) of Zähle [135]. We

shall also need the fractional derivative with finite time horizon for α ∈ (0, 1) which can

be introduced as an inverse operation to fractional integration, although its existence is

10
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much more sophisticated. However it is sufficient for this thesis to work with a class of

functions for which this operation is well-defined.

Definition 1.2.2. For 0 < α < 1 let g ∈ L1([0, T ]) such that there exists ψg ∈ L1([0, T ])

satisfying

g(s) = IαT−(ψg(·))(s), 0 < s < T. (1.2)

Then define the fractional Riemann-Liouville derivative of g of order α by

(Dα
T−g)(u) =

1

Γ(1− α)

( g(u)

(T − u)α
+ α

∫ T

u

g(u)− g(s)

(s− u)α+1
ds
)
, 0 < u < T. (1.3)

Remark 1.2.3. In the literature the above definition of the fractional derivative is called

the Weyl representation. Further it can be shown that the function ψg is unique in

L1([0, T ]) if it exists. We refer to Section 1 of Zähle [135].

As it is convention in the literature, we shall often write I−αT− = Dα
T−. For α = 0 we

set IαT− = Dα
T− = id.

1.2.2 On the real line

Fractional integrals and derivatives on the whole real line are defined as follows.

Definition 1.2.4. For 0 < α < 1 and f ∈ L1(R) the fractional Riemann-Liouville integral

of f of order α is defined by

(Iα−f)(s) =
1

Γ(α)

∫ ∞
s

f(t)(t− s)α−1dt, s ∈ R.

Remark 1.2.5. Samko, Kilbas and Marichev [117], p.94, showed that the fractional in-

tegral above exists for almost all x ∈ R.

Again we shall also need the fractional derivatives. Also, we will only take derivatives

when existence will is ensured and use the so called Marchaud fractional derivatives, cf.

Section 5.4 of Samko, Kilbas and Marichev [117].

Definition 1.2.6. For 0 < α < 1 let g ∈ L1(R) such that there exists ψg ∈ L1(R) such

that

g(s) = Iα−(ψg(·))(s), s ∈ R. (1.4)

Then define the fractional Marchaud derivative of g of order α by

(Dα−g)(u) =
α

Γ(1− α)

∫ ∞
0

g(u)− g(u+ s)

sα+1
ds, u ∈ R.

11
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1.3 Riemann-Stieltjes integration and p-variation

Let a, b ∈ R, a < b. Besides fractional calculus we will also need Riemann-Stieltjes inte-

gration in this thesis. That is, for functions f, h : [a, b] 7→ R, we take the limit of

S(f, g, κ, ρ) :=
n∑
i=1

f(yi)[h(xi)− h(xi−1)] (1.5)

where κ = (xi)i=0,...,n is a partition and ρ = (yi)i=1,...,n an intermediate partition of [a, b],

i.e.

a = x0 < x1 < · · · < xn−1 < xn = b, xi−1 ≤ yi ≤ xi, for all i ∈ {1, . . . , n},

while letting mesh(κ) := supi=1,...,n |xi − xi−1| go to zero. Using the Banach-Steinhaus

Theorem one can prove that, if for a right-continuous h and all continuous f the Riemann-

Stieltjes sums of (1.5) converge, h is already of bounded variation. However, we can weaken

this assumption on the integrator by restricting the space of possible integrands.

We recall the definition of p-variation over a compact interval [a, b] ⊂ R:

Definition 1.3.1. Let f : [a, b] 7→ R. We define for 0 < p <∞ the p-variation of f as

vp(f, [a, b]) := sup
κ

n∑
i=1

|f(xi)− f(xi−1)|p, (1.6)

where the supremum is taken over all subdivisions κ of [a, b]. If vp(f, [a, b]) <∞, then we

say that f is of bounded p-variation on [a, b].

Mostly it will be enough for our purposes to work with continuous functions. However

we want to mention that the concept is far more general.

We will further call a stochastic process X = (X(t))t∈A, A ⊂ R, of bounded p-variation,

if it is a.s. of bounded p-variation on compacts. Also for A ⊂ R we define

Wcon
p (A) := {f ∈ C0(A) : vp(f, [s, t]) <∞∀ [s, t] ⊆ R}. (1.7)

Exploiting the concept of p-variation we now state an existence theorem for Riemann-

Stieltjes integrals proven by Young [134]:

Theorem 1.3.2. Let [a, b] ⊂ R be a compact interval, f ∈Wcon
q ([a, b]) and h ∈Wcon

p ([a, b])

for some p, q > 0 with p−1 +q−1 > 1. Then
∫ b
a fsdhs exists in the Riemann-Stieltjes sense.

As in the classical Riemann-Stieltjes calculus a chain rule can be proven; see Zähle

[135] Theorem 3.1.

12
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Theorem 1.3.3 (Chain rule). Let [a, b] be a compact interval and g ∈Wcon
p ([a, b]) for some

p ∈ (0, 2). Furthermore, let F ∈ C1(R) with F ′ ∈ Lip(R). Then the Riemann-Stieltjes

integral
∫ b
a (F ′ ◦ g)sdgs exists and we have

(F ◦ g)(b)− (F ◦ g)(a) =

∫ b

a
(F ′ ◦ g)sdgs. (1.8)

At last we state a density formula, which we have not found in the literature; for a

proof we refer to Fink [57], Theorem 4.3.2.

Theorem 1.3.4 (Density formula). Let [a, b] ⊂ R be a compact interval, f, h ∈Wcon
q ([a, b])

and g ∈ Wcon
p ([a, b]) for some q > 0 and p > 1 with p−1 + q−1 > 1. For all x ∈ [a, b] we

define φ(x) :=
∫ x
a hsdgs. Then we have φ ∈Wcon

p ([a, b]) and∫ b

a
fsdφs =

∫ b

a
fshdgs. (1.9)

1.4 Lévy processes

In this section we will provide the necessary preliminaries on multivariate Lévy processes.

For more details we refer to the very exhaustive work of Sato [120]. We start this section

by the general definition of a Lévy process.

Definition 1.4.1. For n ∈ N, let L = (L(t))t≥0 = (L1(t), . . . , Ln(t))>t≥0 be a stochastic

process in Rn with the following conditions satisfied:

(i) L(0) = 0 a.s.

(ii) L(tn)− L(tn−1),. . . , L(t2)− L(t1) are independent for 0 ≤ t1 ≤ · · · ≤ tn, n ∈ N;

(iii) L(t)− L(s)
d
= L(u)− L(v) for s ≤ t and v ≤ u with t− s = u− v;

(iv) L is stochastically continuous, i.e. for all ε > 0 and all s > 0

lim
t→s
P(|L(t)− L(s)| > ε) = 0.

Then L is called a Lévy process.

Remark 1.4.2. (i) In this work also Lévy processes on a compact time set will appear,

i.e. L = (L(t))t∈[0,T ] = (L1(t), . . . , Ln(t))>t∈[0,T ] for T > 0.

13
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(ii) A one-dimensional two-sided Lévy process L = (L(t))t∈R is defined by the following

procedure: given two independent copies of the same one-dimensional Lévy process,

L1 and L2, we take

L(t) := L1(t)1{t≥0} + L2(−t−)1{t<0}, t ∈ R. (1.10)

Remark 1.4.3. Every Lévy process has a unique càdlàg modification, i.e. almost all

sample paths have left limits and are right-continuous, and we shall always work with this

modification from now on.

Mostly we will always consider a given multivariate Lévy process

L = (L(t))t∈[0,T ] = (L1(t), . . . , Ln(t))>t∈[0,T ],

for n ∈ N and T > 0, on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P) satisfying the

usual conditions of right-continuity and completeness. The filtration (after possible aug-

mentation) is assumed to be generated by L (cf. Theorem 2.1.9 of Applebaum [4]).

Then L can be described in terms of the characteristic triple (γ,Σ, ν) by its charac-

teristic function E[exp{i〈u,L(t)〉}] = exp{tψ(u)}, t ∈ [0, T ], with

ψ(u) = i〈γ, u〉 − 1

2
u>Σu+

∫
Rn

(exp{i〈u, x〉} − 1− i〈u, x〉1{‖x‖<1})ν(dx),

for u ∈ Rn. Here we have γ ∈ Rn, Σ ∈ Rn×n is symmetric and positive semidefinite, and

the measure ν satisfies

ν({0}) = 0 and

∫
Rn

(‖x‖2 ∧ 1)ν(dx) <∞.

Also we will only consider finite second moment Lévy processes. Therefore we also have

that ∫
Rn
‖x‖2ν(dx) <∞.

Remark 1.4.4. A one-dimensional Lévy process with characteristic triple given by (γ,Σ, 0),

γ ∈ R and Σ > 0, is a Brownian motion with drift γ and variance Σ.

Integration with respect to Lévy processes shall be understood in the usual L2(Ω)-

sense (e.g. see Rajput and Rosinski [109] or Sato [121]). For fixed T > 0 consider simple

functions of the form

f(·) =
m∑
k=1

ak1[tk,tk+1)(·),

14
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where 0 ≤ t1 ≤ · · · ≤ tm ≤ T and ak ∈ Rn×n for 1 ≤ k ≤ n. The integral with respect to

f is defined by∫ T

0
f(s)dL(s) :=

m∑
k=1

ak(L(tk+1)− L(tk))

=
m∑
k=1


∑n

j=1(ak)1j(L
j(tk+1)− Lj(tk))
...∑n

j=1(ak)nj(L
j(tk+1)− Lj(tk))

 .

Then we have the following theorem which will be crucial in Section 4. It is the

multivariate version of Theorem 2.7 of Rajput and Rosinski [109] and can be obtained

using Proposition 2.17 of Sato [121].

Theorem 1.4.5. For f ∈ L2([0, T ],Rn×n) the integral
∫ T

0 f(t)dL(t) exists as an L2(Ω)-

limit of approximating step functions in L2([0, T ],Rn×n). Moreover, we have for u ∈ Rn

E
[

exp
{
i
〈
u,

∫ T

0
f(t)dL(t)

〉}]
= exp

{∫ T

0
ψ(f(t)>u)dt

}
.

We will end this section with a well-known property of the multivariate normal distri-

bution which will be important in Section 3.1.

Lemma 1.4.6. Let Z ∼ N(µ,Σ); i.e. Z = (z1, . . . , zd)
T is multivariate normally dis-

tributed with mean µ ∈ Rd and variance-covariance matrix Σ ∈ Sd×d. For k ∈ {1, . . . , d−
1}, set X = (z1, . . . , zk)

T and Y = (zk+1, . . . , zd)
T . Partition

µ =

 µ1

µ2

 and Σ =

 Σ11 Σ12

Σ21 Σ22


with µ1 ∈ Rk, µ2 ∈ Rd−k, Σ11 ∈ Sk×k, Σ22 ∈ S(d−k)×(d−k) and ΣT

12 = Σ21 ∈ R(d−k)×k.

Then we have

X|{Y = y} ∼ N(µ1 + Σ12Σ−1
22 (y − µ2),Σ11 − Σ12Σ−1

22 Σ21).

1.5 Fractional Brownian motion

We will now briefly review the definition and basic properties of fractional Brownian

motion, already assuming its existence. For general background we refer to Samorodnitsky

and Taqqu [119]. Questions related to integration and integrand spaces are considered in

Pipiras and Taqqu [103, 104].
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Definition 1.5.1. For H ∈ (0, 1) let BH = (BH(t))t∈R be a Gaussian process with the

following properties:

(i) BH(0) = 0 a.s.,

(ii) E(BH(t)) = 0,

(iii) Cov(BH(t)BH(s)) = 1
2 [|t|2H + |s|2H − |t− s|2H ] for all t, s ∈ R.

Then BH is called a fractional Brownian motion (fBm) with Hurst index H.

Therefore by our definition, fBm is always standard; i.e. that E[BH(1)2] = 1. It follows

e.g. by Corollary 7.2.3 of [119] that fBm has stationary increments and is self-similar with

index H, i.e. (BH(ct))t∈R
d
= cH(BH(t))t∈R for every c > 0.

Remark 1.5.2. It is appropriate in our context to use fractional calculus, which suggests

to replace H by the fractional (integration) parameter κ = H − 1
2 ∈ (−1

2 ,
1
2). We also

recall that κ = 0 refers to standard Brownian motion and we shall write B0 = B.

Remark 1.5.3. In this thesis will also work with fBm on a compact time set, i.e.

Bκ = (Bκ(t))t∈[0,T ] for T > 0.

An important fact about the paths of fBm follows in the next lemma.

Lemma 1.5.4 (Version of Theorem 3.1 of Decreusefond and Üstünel [36]). For κ ∈ (−1
2 ,

1
2)

and every 0 < α < κ + 1
2 there exists a modification of Bκ whose sample paths are a.s.

locally Hölder continuous of order α. Moreover Bκ has a.s. continuous sample paths.

We shall from now on always work with this modification.

One of the most prominent facts of fBm is that for κ ∈ (0, 1
2) its increments exhibit a

feature called long range dependence. In the literature there are various definitions of this

property and we refer to Samorodnitsky [118] for a detailed overview. As outlined there,

early considerations of Mandelbrot, e.g. Mandelbrot [88] and Mandelbrot and Wallis [90],

were motivated by studies on the flow of water in the Nile river carried out by Hurst [75, 76].

In the context of this thesis we will define long range dependence by the rate of decrease

of the autocovariance function, as also has been done by Marquardt [92]:

Definition 1.5.5. Let X = (X(t))t∈R be a stationary process and let

γX(h) := Cov(X(t+ h), X(t)), h ∈ R,
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be its autocovariance function. The process X exhibits long range dependence if d ∈ (0, 1
2)

and cγ > 0 exists such that

lim
h→∞

γX(h)

h2d−1
= cγ . (1.11)

Consider for κ ∈ (0, 1
2) the covariance between two increments of a fBm. Then we get

by stationarity

γBκ(h) := Cov(Bκ(k)−Bκ(k − 1), Bκ(k + h)−Bκ(k + h− 1))

=
1

2
[|h+ 1|2κ+1 − |h− 1|2κ+1 − 2|h|2κ+1], h, k ∈ N. (1.12)

Corollary 1.5.6. For κ ∈ (0, 1
2) the increments of fBm exhibit long range dependence.

Proof. This follows by equation (1.12) with d := κ = H − 1
2 since we have

γBκ(h) ∼ Ch2κ−1, as h→∞ for some fixed C > 0.

Remark 1.5.7. For κ = 0 we have γBκ(h) = 0 for all h ∈ N since the increments of a

Brownian motion are independent.

Fractional Brownian motion can be introduced by various integral representations and

we will review two concepts. For details we refer to the quoted literature.

Proposition 1.5.8 (Version of Proposition 7.2.6 of Samorodnitsky and Taqqu [119]). Let

B be a two-sided standard Brownian motion and κ ∈ (−1
2 ,

1
2). Then the process given by√

Γ(2κ+ 2) sin(π(κ+ 1
2))

Γ(κ+ 1)

∫ ∞
−∞

(
(t− s)κ+ − (−s)κ+

)
dB(s) (1.13)

=
√

Γ(2κ+ 2) sin((κ+ 1/2)π)

∫ ∞
−∞
Iκ−1[0,t)(s)dB(s), t ∈ R, (1.14)

is a fBm.

Remark 1.5.9. The integrand in (1.13) is often called Mandelbrot-Van Ness kernel since

this representation was introduced in Mandelbrot and Van Ness [89].

Proposition 1.5.10 (Version of Proposition 3.1 of Pipiras and Taqqu [104]). Let T > 0,

B be a standard Brownian motion on [0, T ] and κ ∈ (−1
2 ,

1
2). Then the process given by( πκ(2κ+ 1)

Γ(1− 2κ) sin(πκ)

) 1
2

∫ T

0
s−κIκT−((·)κ1[0,t)(·))(s)dB(s), t ∈ [0, T ], (1.15)

is a fBm.
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Remark 1.5.11. Integrands of the type as in (1.15) are often called Molchan-Golosov

kernels. For more details we refer to Molchan and Golosov [95], Kleptsyna, LeBreton and

Roubaud [79], Norros, Valkeila and Virtamo [99] and Decreusefond and Üstünel [36].

Remark 1.5.12. Both kernels can be used to introduce fractional Lévy processes. How-

ever in contrast to fBm this leads to two different processes in general. Details will follow

in Section 1.6.

If we want to consider integrals with respect to fBm on compacts, possible spaces of

integrands have been introduced by Pipiras and Taqqu [104]: Define for κ ∈ (0, 1
2)

Λ̃κT :=
{
f : [0, T ]→ R

∣∣∣ ∫ T

0
[s−κIκT−((·)κf(·))(s)]2ds <∞

}
,

and for κ ∈ (−1
2 , 0)

Λ̃κT :=
{
f : [0, T ]→ R

∣∣∣∃φf ∈ L2([0, T ]) : f(s) = s−κI−κT−((·)κφf (·))(s)
}
.

In the light of Lemma 4.3 of Bender and Elliott [14] we shall adjust these spaces such that

they are closed with respect to multiplication with an indicator function. Therefore define

for κ ∈ (−1
2 ,

1
2)

ΛκT :=
{
f : [0, T ]→ R

∣∣∣∀[s, t] ⊆ [0, T ] : f1[s,t] ∈ Λ̃κT

}
.

By Remark 4.2 of Pipiras and Taqqu [104] follows that for κ ∈ (0, 1
2) the inclusion

L2([0, T ]) ⊂ ΛκT holds. For κ = 0 both spaces coincide and are equal to L2([0, T ]). For

κ ∈ (−1
2 ,

1
2) and f, g ∈ ΛκT define the scalar product

〈f, g〉κ,T :=
πκ(2κ+ 1)

Γ(1− 2κ) sin(πκ)

∫ T

0
s−2κ[IκT−((·)κf(·))(s)][IκT−((·)κg(·))(s)]ds,

(1.16)

where we set 〈f, g〉κ,T = 〈f, g〉L2,T for κ = 0. Denote the corresponding norm by ‖ · ‖κ,T .

For κ = 0 we have ‖ · ‖0,T = ‖ · ‖L2,T .

If c is a step function,
∫ T

0 c(s)dBκ(s) can be reduced to a finite sum. We then have

the isometry ∥∥∥∫ T

0
c(s)dBκ(s)

∥∥∥
2

= ‖c(·)‖κ,T (1.17)

and, by using approximating sequences of step functions, integration for general c ∈ ΛκT

is defined in the L2(Ω)-sense, while (1.17) still holds true, cf. Pipiras and Taqqu [104],

Theorems 4.1 and 4.2.
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Remark 1.5.13. In Section 3.4 also integrals over the whole real line will appear, details

will be provided in Remark 3.4.2.

Let sp[0,T ](B
κ) be the closure in L2(Ω) of all possible linear combinations of the incre-

ments of fBm on [0, T ]. Assume we want to calculate an expression for the prediction

Xt(s, κ) := E[Bκ(t)|Bκ(v), v ∈ [0, s]], 0 ≤ s ≤ t.

If Xt(s, κ) ∈ sp[0,s](B
κ), we would hope that there exists some function c ∈ ΛκT such that

Xt(s, κ) =
∫ s

0 c(v)dBκ(v). This is not clear immediately because it has been shown in

[104] that, while for κ ∈ (−1
2 , 0] the space (ΛκT , 〈, 〉κ,T ) is complete, i.e. a Hilbert space,

for κ ∈ (0, 1
2) this is not true.

However, it has been derived by Gripenberg and Norros [64], Theorem 3.1, that such a

suitable c still exists for κ ∈ (0, 1
2) and a fBm defined via a Mandelbrot-Van Ness kernel. An

explicit formula for c has been calculated. In fact Theorem 7.1 of Pipiras and Taqqu [104]

shows that the same formula holds true for κ ∈ (−1
2 , 0] and a Molchan-Golosov fBm:

Lemma 1.5.14. Let 0 ≤ s ≤ t ≤ T and κ ∈ (−1
2 ,

1
2). Then

E[Bκ(t)|Bκ(v), v ∈ [0, s]] = Bκ(s) +

∫ s

0
Ψκ(s, t, v)dBκ(v) , (1.18)

where for v ∈ (0, t),

Ψκ(s, t, v) = v−κ(I−κs− (Iκt−(·)κ1[s,t](·)))(v)

=
sin(πκ)

π
v−κ(s− v)−κ

∫ t

s

zκ(z − s)κ

z − v
dz (1.19)

and for v ∈ {0, s}, we have that Ψκ(s, t, v) = 0.

If we write now

E[Bκ(t)−Bκ(s)|Bκ(v), v ∈ [0, s]] =

∫ s

0
Ψκ(s, t, v)dBκ(v)

it is immediately clear, that this prediction formula can be extended to integrals of fBm,

which has been done in Lemma 1 of Duncan [46]:

Proposition 1.5.15. For 0 ≤ s ≤ t ≤ T and κ ∈ (−1
2 ,

1
2) let c ∈ ΛκT . Then

E

[∫ t

0
c(v)dBκ(v)

∣∣∣Bκ(v), v ∈ [0, s]

]
=

∫ s

0
c(v)dBκ(v) +

∫ s

0
Ψκ
c (s, t, v)dBκ(v),
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where for v ∈ (0, s),

Ψκ
c (s, t, v) = v−κ(I−κs− (Iκt−z

κc(z)1[s,t](z)))(v)

=
sin(πκ)

π
v−κ(s− v)−κ

∫ t

s

zκ(z − s)κ

z − v
c(z)dz. (1.20)

and for v ∈ {0, s}, we have that Ψκ
c (s, t, v) = 0.

1.6 Fractional Lévy processes

Fractional Lévy processes can be introduced as natural generalizations of the integral

representations of fractional Brownian motion (fBm). In the literature there are many

possible approaches to define such processes and a readable overview of the two main

concepts can be found in Tikanmäki and Mishura [127]. Both ways are mainly based on the

idea of integrating memory into a Lévy process by choosing an appropriate kernel function.

This can either be done by integration over the whole real line by a Mandelbrot-Van

Ness kernel like in Marquardt [92] or on a compact interval by a Molchan-Golosov kernel

(cf. Molchan and Golosov [95]) which has been done by Tikanmäki and Mishura [127].

In contrast to the Brownian case this does not necessarily lead to the same fractional

Lévy process. Chapter 2 will consider fractional Lévy processes and stochastic differential

equations based on the Mandelbrot-Van Ness kernel. In Chapter 4 we are aiming on

fractional bond and stochastic volatility models. Therefore we will choose and generalize

the Molchan-Golosov kernel approach (since it allows for fractional subordinators) to the

multivariate case.

We shortly review the two main concepts, see Marquardt [92], Section 3, and Tikanmäki

and Mishura [127] for details and more background. For notational convenience we work

(similar to fBm) with the fractional integration parameter d ∈ (−1
2 ,

1
2) instead of the Hurst

index H, where d = H − 1
2 . Furthermore we only consider processes with existing second

moments.

1.6.1 Definition by Mandelbrot-Van Ness kernel

We will restrict ourselves to d ∈ (0, 1
2) here. Analogously to Mandelbrot and Van Ness [89]

for fBm we choose (like Marquardt [92]) the following definition.

Definition 1.6.1. Let L = (L(t))t∈R be a zero-mean two-sided Lévy process with
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E[L(1)2] <∞ and without Brownian component. For d ∈ (0, 1
2) we define

Ld(t) :=
1

Γ(d+ 1)

∫ ∞
−∞

[(t− s)d+ − (−s)d+]L(ds), t ∈ R. (1.21)

We call Ld = (Ld(t))t∈R a Mandelbrot-Van Ness fractional Lévy process (MVN-fLp) and

L the driving Lévy process of Ld.

The integrals above exist in the L2(Ω)-sense; see Marquardt [92], Theorem 3.5, for

details.

Recall that, by the Lévy-Itô decomposition, every Lévy process can be represented as

the sum of a Brownian motion and an independent jump process. The Brownian motion

gives rise to a fBm, which has been studied extensively; see for instance Samorodnitsky

and Taqqu [119] for general background, or Buchmann and Klüppelberg [28] in the context

of Chapter 2.

The next result ensures that there is in fact a modification of (1.21), which equals a

pathwise improper Riemann integral, and gives first properties.

Proposition 1.6.2 (Marquardt [92], Theorem 3.7, Theorem 4.1 and Theorem 4.4). Let

Ld be a MVN-fLp with d ∈ (0, 1
2). Then the following assertions hold:

(i) Ld has a modification, which equals the improper Riemann integral

1

Γ(d)

∫
R

[(t− s)d−1
+ − (−s)d−1

+ ]L(s)ds, t ∈ R. (1.22)

Furthermore, (1.22) is continuous in t.

(ii) For s, t ∈ R we have

Cov(Ld(t), Ld(s)) =
E[L(1)2]

2Γ(2d+ 2) sin(π(d+ 1
2))

(|t|2d+1 + |s|2d+1− |t− s|2d+1). (1.23)

(iii) Ld has stationary increments and is symmetric, i.e.

(Ld(−t))t∈R
d
= (−Ld(t))t∈R.

Remark 1.6.3. Equation (1.23) of Proposition 1.6.2 shows that for d ∈ (0, 1
2) the incre-

ments of a MVN-fLp exhibit long range dependence.

From now on, we always work with the modification of Proposition 1.6.2 (i).

Next we want to define integration with respect to MVN-fLps.

21



CHAPTER 1. PRELIMINARIES - BASICS AND FRACTIONAL PROCESSES

Remark 1.6.4. As has been shown in Marquardt [92], Theorem 4.10, MVN-fLps may

not be semimartingales, and integration in the L2(Ω)-sense has been developed in Mar-

quardt [92], Section 5. Theorem 4.4 in Marquardt [92] also shows that MVN-fLps are only

Hölder continuous up to the fractional integration parameter d and not to the Hurst index

H as in the case for fBm.

Therefore, pathwise Riemann-Stieltjes integration by Hölder continuity does not make

sense for sde’s. On the other hand, using an approach like Young [134] based on p-variation

of the sample paths, integration in a pathwise Riemann-Stieltjes sense can be defined; for

details see Section 1.3. This means we have a chain rule and a density formula provided

the integrator is of bounded p-variation for p ∈ [1, 2). Let Ld be a MVN-fLp of bounded

p-variation, d ∈ (0, 1
2) and p ∈ [1, 2).

Then we define for every stochastic process with sample paths H ∈Wcon
q (R) a.s. and

for p, q > 0 with p−1 + q−1 > 1 the integral∫ b

a
H(s)dLd(s), −∞ ≤ a ≤ b ≤ ∞, (1.24)

pathwise in the Riemann-Stieltjes sense.

As stated in Theorem 1.3.2 the integral in (1.24) always exists on finite intervals [a, b].

We will consider also improper integrals, where a = ∞ or b = −∞. The existence of the

tail integral has then to be justified.

Example 1.6.5. (i) If the driving Lévy process is of finite activity, then the corre-

sponding MVN-fLp is of bounded p-variation for all p ≥ 1, cf. Theorem 2.25 of

Marquardt [92].

(ii) Theorem 2.1 of Bender, Lindner and Schicks [15] states: A MVN-fLp is of finite

variation if and only if the Lévy measure ν of the driving Lévy process satisfies∫ 1

−1
|x|

1
1−d ν(dx) <∞.

1.6.2 Definition by Molchan-Golosov kernel

To avoid confusion with the Mandelbrot-Van Ness concept we call this class of processes

Molchan-Golosov fractional Lévy processes (MG-fLps). We shall only state a version of

the definition of Tikanmäki and Mishura [127] here.
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Definition 1.6.6. For T > 0 let L = (L(t))t∈[0,T be a zero-mean Lévy process with

E[L(1)2] < ∞ and without Brownian component. For d ∈ (−1
2 ,

1
2) define for s, t ∈ [0, T ]

the kernel function

zd(t, s) := 1{s≤t}cds
−dIdT−((·)d1[0,t)(·))(s)

where

cd =
((2d+ 1)Γ(d+ 1)Γ(1− d)

Γ(1− 2d)

) 1
2
.

We call Ld = (Ld(t))t∈[0,T ] with

Ld(t) =

∫ t

0
zd(t, s)dL(s), t ∈ [0, T ],

a Molchan-Golosov fractional Lévy processes (MG-fLps) and L the driving Lévy process

of Ld.

The integrals above exist in the L2(Ω)-sense, cf. Remark 4.1.2 for more details. We

have for its autocovariance function by Proposition 3.5 of Tikanmäki and Mishura [127]:

Proposition 1.6.7. For 0 ≤ s, t ≤ T we have

Cov(Ld(t), Ld(s)) =
E[L(1)2]

2
(t2d+1 + s2d+1 − |t− s|2d+1).

Remark 1.6.8. In contrast Proposition 1.6.2, (iii), the increments of a MG-fLp do not

necessarily have to be stationary, cf. Proposition 3.11 of Tikanmäki and Mishura [127].

Therefore the processes obtained by a Mandelbrot-Van Ness and Molchan-Golosov kernel

are (even when scaled with the same coefficients) in general not the same in distribution.

Remark 1.6.9. In Chapter 4 we extend Definition 1.6.6 to the multivariate case, including

Brownian components. Further concepts as integration will by stated and proven.
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Chapter 2

Preliminaries - Fractional

stochastic differential equations

Stochastic differential equations are at the core of many theoretical and practical appli-

cations. In this section we want to recall the results of Buchmann and Klüppelberg [28]

on fractional Brownian stochastic differential equations and state the extension of their

work to the fractional Lévy case which has been developed by Fink and Klüppelberg [59].

We want to remark that for the rest of the section we shall only consider the case of long

range dependence, i.e. κ, d ∈ (0, 1
2).

2.1 Fractional Brownian stochastic differential equations

Buchmann and Klüppelberg [28] provided an extensive theory on sde’s driven by fractional

Brownian motion. They used the Hölder continuity of the fBm paths to explicitly solve

general pathwise sde’s by monotone transformations of fractional Ornstein-Uhlenbeck type

processes. We want to briefly recall their results and implications for fractional Brownian

sde’s.

Definition 2.1.1. Let Bκ be a fBm, κ ∈ (0, 1
2) and λ > 0. Then

Od,λ(t) :=

∫ t

−∞
e−λ(t−s)dBκ(s) , t ∈ R, (2.1)

is called fractional Ornstein-Uhlenbeck process (fOUp).

The integral in the definition above is understood in the pathwise Riemann-Stieltjes

sense, cf. Cheridito, Kawaguchi and Maejima [32], Mikosch and Norvaǐsa [94] or Buchmann

and Klüppelberg [28].
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The following theorem is a stronger version of Proposition A.1 c) of [32] and can be

found as Theorem 2.3 of [28].

Theorem 2.1.2. Let λ > 0 and κ ∈ (0, 1
2). Then the unique stationary pathwise solution

of

dOκ,λ(t) = −λOκ,λ(t)dt+ dBκ(t), t ∈ R. (2.2)

is given a.s. by the fOUp (2.1).

Before stating the main theorems on existence and uniqueness of pathwise solutions to

fractional Brownian sde’s we have to fix a few definitions. First we will make use of the

following Hölder continuity spaces:

Cβ−(R) := {f : R→ R : ∀K ⊂ R, K compact:

f |K is Hölder continuous of all orders d < β}

and

Cβ+(R) := {f : R→ R : ∀K ⊂ R, K compact:

f |K is Hölder continuous of some order d(K) > β} .

Definition 2.1.3. Let κ ∈ (0, 1
2). Suppose that I ⊆ R is a non-empty interval and

µ, σ ∈ C0(I). We refer to a stochastic process X := (X(t))t∈R as a pathwise solution of

the sde

dX(t) = µ(X(t))dt+ σ(X(t))dBκ(t), t ∈ R, (2.3)

if for almost all sample paths the following conditions are satisfied:

X ∈ C(1/2+κ)−(R) and X takes only values in I such that for s ≤ t

(S1) σ ◦X is a.s. Riemann-Stieltjes integrable with respect to Bκ on [s, t];

(S2) the following integral equation holds:

X(t)−X(s) =

∫ t

s
µ(X(u))du+

∫ t

s
σ(X(u))dBκ(u).

The space of all solutions of (2.3) is denoted by Sκ(I, µ, σ,Bκ).

Of special importance are the following technical definitions.

Definition 2.1.4 (Version of Definition 3.2 and 3.3 of [28]). (i) A triple (I, µ, σ) is called

proper if and only if it satisfies the following properties:
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(P1) I = (a, b) ⊆ R is an open interval, where −∞ ≤ a < b ≤ ∞ and µ, σ ∈ C0(I).

(P2) There exists a strictly decreasing ψ, absolutely continuous with respect to Lebesgue

measure such that ψ = µ/σ on I \ Z(σ), where Z(σ) are the zeros of σ, and

lim
x↗b

ψ(x) = − lim
x↘a

ψ(x) = −∞ .

(P3) There exists λ > 0 such that σψ′ ≡ λ holds on I Lebesgue-a.e.

(ii) We call the triple (I, µ, σ) κ-proper if in addition to (P1)-(P3) also the following

condition is satisfied:

(P4) The inverse function ψ−1 : R→ ψ−1(R) = I is differentiable and

(ψ−1)′ ∈ C
(

1/2−κ
1/2+κ

)
+

(R).

(iii) The interval I is called the state space, the unique constant λ > 0 in (P3) is called

the friction coefficient (FC) and the unique function f : R→ I = f(R), f(x) := ψ−1(−λx),

is called the state space transform (SST) for (I, µ, σ).

Solutions to sde’s with different starting values will be constructed by changing the

starting value of the fOUp:

Definition 2.1.5. Let κ ∈ (0, 1
2) and λ > 0. We define the Ornstein-Uhlenbeck operator

by

Oλ(Bκ, ·, ·) : R× R −→ C0(R), (τ, z) 7−→ Oκ,λ(t)− e−λ(t−τ)Oκ,λ(τ) + e−λ(t−τ)z.

(2.4)

Assume further that (I, µ, σ) is κ-proper with SST f and FC λ. Then we set

Xf,λ(Bκ, ·, ·) : R× I −→ C0(R), (τ, z) 7−→ f(Oλ(Bκ, τ, f−1(z))(t)) (2.5)

where Oλ(t) as in (2.4). Then the following theorem states one of the main results of [28].

Let M(Ω, I) denote all mappings from Ω into I.

Theorem 2.1.6 (Version of Theorem 3.4 and 3.5 of [28]). Let κ ∈ (0, 1
2). If (I, µ, σ) is

κ-proper with SST f and FC λ > 0, then

{Xf,λ(Bκ, τ,W ) : τ ∈ R,W ∈ M(Ω, I)} ⊆ Sκ(I, µ, σ,Bκ).

Furthermore, if we assume that Z(σ) = ∅, then we have

{Xf,λ(Bκ, τ,W ) : τ ∈ R,W ∈ M(Ω, I)} = Sκ(I, µ, σ,Bκ).
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2.2 Fractional Lévy stochastic differential equations

As explained in Remark 1.6.4 and in contrast to fBm, MVN-fLps are only Hölder con-

tinuous up to the fractional integration parameter d and not to the Hurst index H =

κ + 1
2 . Therefore the approach of Section 2.1 has to be modified and detailed motiva-

tion is provided in Section 2.2.2. The following results have been developed in Fink and

Klüppelberg [59]. We shall only state the main results and examples of [59] and refer to

the paper for details.

2.2.1 Fractional Lévy Ornstein-Uhlenbeck processes

Similar to Section 2.1 fractional Lévy Ornstein-Uhlenbeck processes (fLOUps) are in-

troduced in [59] as improper Riemann-Stieltjes integrals and stationary solutions of the

corresponding pathwise Langevin equation

dLd,λ(t) = −λLd,λ(t)dt+ dLd(t), t ∈ R. (2.6)

The definition follows.

Definition 2.2.1. Let Ld be a MVN-fLp, d ∈ (0, 1
2) and λ > 0. Then

Ld,λ(t) :=

∫ t

−∞
e−λ(t−s)dLd(s) , t ∈ R, (2.7)

is called fractional Lévy Ornstein-Uhlenbeck process (fLOUp).

Theorem 2.2.2. Let Ld be a MVN-fLp, d ∈ (0, 1
2) and λ > 0. Then the unique stationary

pathwise solution of (2.6) is given a.s. by the corresponding fLOUp Ld,λ.

The following Ornstein-Uhlenbeck operator will be used to obtain solutions to sde’s

with different starting values. The operator here modifies the starting value of the fLOUp

and the next lemma shows that this modified process still solves the Langevin equation.

Definition 2.2.3. Let Ld be a MVN-fLp, d ∈ (0, 1
2), λ > 0 and Ld,λ the corresponding

fLOUp. We define the Ornstein-Uhlenbeck operator by

Lλ(Ld, ·, ·) : R× R −→ C0(R), (τ, z) 7−→ Ld,λ(t)− e−λ(t−τ)Ld,λ(τ) + e−λ(t−τ)z.

(2.8)

It is immediate from this definition that Lλ(Ld, τ, z)(τ) = z a.s. for (τ, z) ∈ R2.

The next lemma shows that Ld transformed by the OU operator still satisfies the

Langevin equation, its proof follows directly by the definition.

28



CHAPTER 2. PRELIMINARIES - FRACTIONAL STOCHASTIC DIFFERENTIAL
EQUATIONS

Lemma 2.2.4. Let Ld be a MVN-fLp, d ∈ (0, 1
2), λ > 0 and Ld,λ be the corresponding

fLOUp. For a continuous process l := (l(t))t∈R the identity l(t) = Lλ(Ld, τ, l(τ))(t) holds

for all τ, t ∈ R if and only if

dl(t) = −λl(t)dt+ dLd(t) , t ∈ R. (2.9)

2.2.2 Solutions of fractional sde’s by state space transforms and proper

triples

In this section we consider sde’s driven by MVN-fLps. Similar to Section 2.1, using

pathwise integration we must solve for almost all ω ∈ Ω a deterministic integral equa-

tion. Consequently, we build on an extensive theory starting with the seminal work by

Young [134]. We also recall that for Brownian motion the pathwise approach goes back

to Doss [42] and Sussman [126] leading to the Fisk-Stratonovich integral. Required is

that µ is Lipschitz-continuous and σ ∈ C2(R) with bounded first and second derivatives.

Readable accounts on the history can be found in Karatzas and Shreve [78] and in Ikeda

and Watanabe [77].

Regularity assumptions of sample paths of the driving process like Hölder continuity

or bounded p-variation for p < 2 have been considered by Lyons [86]. We shall work in

the framework of p-variation, however, go beyond the work of Lyons, who proves only

existence and uniqueness theorems under certain Lipschitz assumptions on the coefficient

functions and gives no analytical form of the solution.

The approach by Zähle [136] is indeed comparable to [59], where explicit solutions can

be given under differentiability and Lipschitz conditions on the coefficient functions. Most

of her results can be applied to sde’s driven by a MVN-fLp of bounded p-variation for

p < 2. The contribution of [59] is two-fold. Firstly, the assumptions are easy to verify

and, secondly, [59] is able to present analytic solutions to sde’s of the form

dX(t) = (α|X(t)|γ + βX(t))dt+ σ|X(t)|γdLd(t) , t ∈ R. (2.10)

In this situation we cannot apply the results of Zähle [136], since the volatility coefficient

does not match the required differentiability assumption. Lyons [86] provides us at least

with an existence theorem, but gives no closed form solution.

Similar to Section 2.1 (cf. Buchmann and Klüppelberg [28]) we have to establish

certain regularity conditions on the coefficient functions µ and σ.

Definition 2.2.5. A triple (I, µ, σ) is called strongly proper if and only if it is proper

and satisfies the following condition:
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(P4*) The inverse function ψ−1 : R→ ψ−1(R) = I is differentiable and (ψ−1)′ ∈ Lip(R).

Condition (P4*) differs from the κ-proper assumption required in Definition 2.1.4,

because we work with p-variation instead of Hölder continuity.

Again we need to specify, what will be understood to be a solution to a sde.

Definition 2.2.6. Let Ld be a MVN-fLp of bounded p-variation, p ∈ [1, 2) and d ∈ (0, 1
2).

Suppose that I ⊆ R is a non-empty interval and µ, σ ∈ C0(I). We refer to a stochastic

process X := (X(t))t∈R as a pathwise solution of the sde

dX(t) = µ(X(t))dt+ σ(X(t))dLd(t), t ∈ R, (2.11)

if for almost all sample paths the following conditions are satisfied: X ∈Wcon
p (R) and the

image of X is a subset of I such that for s ≤ t

(S1) σ ◦X is a.s. Riemann-Stieltjes integrable with respect to Ld on [s, t];

(S2) the following integral equation holds:

X(t)−X(s) =

∫ t

s
µ(X(u))du+

∫ t

s
σ(X(u))dLd(u).

The space of all solutions of (2.11) is denoted by S(I, µ, σ, Ld).

We consider now a sde as given in (2.11). If we assume that the triple (I, µ, σ) is

strongly proper with SST f and FC λ, we define the following operator

Xf,λ(Ld, ·, ·) : R× I −→ C0(R), (τ, z) 7−→ f(Lλ(Ld, τ, f−1(z))(t)) (2.12)

with OU operator Lλ(t) as in Definition 2.2.3. We also remark that

Xf,λ(Ld, τ, f(Ld,λ(τ)))(t) = f(Ld,λ(t)), t ∈ R. (2.13)

Next we state the existence theorem. Let M(Ω, I) denote all mappings from Ω into I.

Theorem 2.2.7. Let Ld be a MVN-fLp of bounded p-variation, p ∈ [1, 2) and d ∈ (0, 1
2).

If (I, µ, σ) is strongly proper with SST f and FC λ > 0, then

{Xf,λ(Ld, τ,W ) : τ ∈ R,W ∈ M(Ω, I)} ⊆ S(I, µ, σ, Ld).

The following result ensures uniqueness under natural conditions.
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Theorem 2.2.8. Let Ld be a MVN-fLp of bounded p-variation, p ∈ [1, 2) and d ∈ (0, 1
2).

Let also (I, µ, σ) be strongly proper with SST f and FC λ > 0. Furthermore, assume that

Z(σ) = ∅. Then

{Xf,λ(Ld, τ,W ) : τ ∈ R,W ∈ M(Ω, I)} = S(I, µ, σ, Ld).

And the next corollary covers the important case of a stationary solution.

Corollary 2.2.9. Let Ld be a MVN-fLp of bounded p-variation, p ∈ [1, 2) and d ∈ (0, 1
2)

and Ld,λ be the corresponding fLOUp. Furthermore, let (I, µ, σ) be strongly proper with

SST f and FC λ > 0. Set X(t) = f(Ld,λ(t)) for t ∈ R. Then the following assertions

hold:

(i) X is a stationary pathwise solution of the sde

dX(t) = µ(X(t))dt+ σ(X(t))dLd(t) , t ∈ R. (2.14)

(ii) If Z(σ) = ∅, then X is the unique stationary pathwise solution of (2.14).

2.2.3 Examples by means of strongly proper triples

This section is dedicated to examples, which we illustrate by simulations. For those we

consider as driving Lévy process a compensated Poisson process Lθ with intensity θ > 0;

i.e.

Lθ(t) := P θ(t)− tθ, t ∈ R,

where P θ is a Lévy process with drift γ = 0 and Lévy measure ν(dx) = θδ1(dx) without

Brownian component. Of course, we consider this process to be defined on the whole of

R using (1.10).

In a first step we simulate sample paths of Lθ and compute the corresponding MVN-fLp

Ld by a Riemann-Stieltjes approximation; i.e. we approximate

L(t)d ≈ 1

Γ(d+ 1)


0∑

k=−n2

[(
t− k

n

)d
−
(
−k
n

)d](
La,b

(
k + 1

n

)
− La,b

(
k

n

))

+

[nt]∑
k=1

(
t− k

n

)d(
La,b

(
k + 1

n

)
− La,b

(
k

n

)) , t ∈ R.

From Theorem 2.55 of Marquardt [92] we know that the quality of this approximation is

O(nd−
1
2 ) +O(n−

1
2 ) +O(n

1+2d−2d2

2d−3 ).
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Furthermore, the Poisson MVN-fLp is of finite variation by Theorem 2.25 of Marquardt [92]

or by Theorem 2.1 of Bender, Lindner and Schicks [15].

Now we use a version of the explicit Euler method for the sde

dLd,λ(t) = −λLd,λ(t)dt+ dLd(t), t ∈ R,

to compute sample paths of the fLOUp. We want to remark that all these computations

are pathwise. Probability comes in only through the underlying paths of the driving Lévy

processes.

Next we study some examples of solutions to the sde (2.11) given by strongly proper

triples. We will mainly draw from structural results of Buchmann and Klüppelberg [28]

taking into account that their κ-proper condition has to be replaced by Assumption (P4*)

in Definition 2.2.5.

For the rest of this section let Ld be a MVN-fLp of bounded p-variation, p ∈ [1, 2) and

d ∈ (0, 1
2).

Example 2.2.10. As a first example we consider for parameters α, β ∈ R and σ > 0 a

sde of the form

dX(t) = (α|X(t)|γ + βX(t))dt+ σ|X(t)|γdLd(t) , t ∈ R .

We analyse this sde by taking the volatility coefficient σ : R→ [0,∞) defined by σ(x) :=

σ0|x|γ for σ0 > 0 and γ ∈ R as given. The question is now, what drift functions µ and

intervals I lead to strongly proper triples (I, µ, σ) as defined in Definition 2.2.5. More

precisely, we want to find elements in the set

KIσ :=
{

(λ, µ) ∈ R+ × C0(I) : (I, µ, σ) is proper with FC λ
}
.

Using Proposition 5.5 of [28] we see that only γ ∈ [0, 1] leads to a non-empty KIσ. We

consider the cases γ = 0, γ = 1 and γ ∈ (0, 1) separately.

Take first γ = 0. Then for a triple (I, µ, σ) to be proper we must have that σψ′ ≡ −λ
with ψ = µ/σ. This results in

dX(t) = (α+ βX(t))dt+ σdLd(t), t ∈ R,

with state space I = R and SST is affine, more precisely, f(x) = α+ βx for x ∈ R.

If γ = 1, by Proposition 5.6 of [28], the state space can only be either I = (−∞, 0) or

I = (0,+∞). For I = (0,∞) we get

K(0,∞)
σ =

{
(|β|, µ) ∈ R+ × C0(I) : µ(x) = αx+ βx log x, α ∈ R, β < 0, x ∈ (0,∞)

}
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and the state space transform is f(x) = exp
{
σ0x− α

β

}
for x ∈ (0,∞). Simple calculation

ensures that condition (P4*) of Definition 2.2.5 is satisfied, and every element of K(0,∞)
σ

leads to a strongly proper triple. An example to a sde of this kind for α = 0 can be found

in (2.20). The case I = (−∞, 0) can be treated analogously.

Finally, we consider γ ∈ (0, 1). Proposition 5.8 of [28] shows that the only possible

state space is the whole real line R and

KR
σ =

{
((1− γ)|β|, µ) ∈ R+ × C0(I) : µ(x) = α|x|γ + βx, α ∈ R, β < 0, x ∈ R

}
.

Furthermore the SST is given by

f(x) = sign

(
(1− γ)σ0x−

α

β

) ∣∣∣∣(1− γ)σ0x−
α

β

∣∣∣∣ 1
1−γ

.

The derivative of f can easily be calculated yielding that only γ ∈ [1
2 , 1) leads to strongly

proper triples. An example for such a sde (with α = 0) is a fractional Cox-Ingersoll-Ross

type model, which is investigated in detail in Section 2.2.4; cf. the sde in (2.17).

Example 2.2.11. We consider the following sde’s with affine drift.

dX(t) = (α+ βX(t))dt+ σ(X(t))dLd(t) , t ∈ R ,

i.e. µ : R → R is defined by µ(x) := α + βx for α, β ∈ R. To find suitable volatility

coefficients and state spaces we consider the set

ΛIµ :=
{
λ ∈ R+ : ∃σ ∈ C0(I) with (I, µ, σ) is proper with FC λ

}
and, if there is a λ ∈ ΛIµ, we investigate

HIµ,λ =
{
σ ∈ C0(I) : (I, µ, σ) is proper with FC λ

}
.

Proposition 5.1 of [28] implies that there exist I, σ with (I, µ, σ) being proper if and only

if β < 0. In this case it also follows that I = R and ΛIµ = (0, |β|]. A FC λ = |β| leads

again to an affine model, namely σ(x) = σ0x for some σ0 > 0.

If we choose a FC λ = (1− δ)|β| ∈ (0, |β|) for some δ ∈ (0, 1), then by Proposition 5.3

of [28], every σ ∈ HR
µ,(1−δ)|β| is of the form

σ(x) = σ1 |α+ βx|δ 1{x≤−α/β} + σ2 |α+ βx|δ 1{x≥−α/β}

for some σ1, σ2 > 0. Setting fi := |β|
δ

1−δ σ
1

1−δ
i (1− δ)

1
1−δ for i = 1, 2 the SST takes the form

f(x) =
(α
β
− f1 |x|

1
1−δ
)

1{x≤0} +
(α
β

+ f2 |x|
1

1−δ
)

1{x≥0}.
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Calculating the derivative of f we see that a possible proper triple is strongly proper if

and only if δ ∈ [1
2 , 1). An example of such a sde is for parameters α ∈ R and β < 0 given

by

dX(t) = (α+ βX(t))dt+ σ
√
|α+ βX(t)|dLd(t) , t ∈ R. (2.15)

Example 2.2.12. Consider the sde

dX(t) = −σ1 sin(σ2X(t)) cos(σ2X(t))dt− sin2(σ2X(t))dLd(t) , t ∈ R. (2.16)

This example provides a bounded state space model. Define the triple (I, µ, σ) by I :=

(0, πσ2
), µ(x) := −σ1 sin(σ2x) cos(σ2x) and σ(x) := − sin2(σ2x) where σ1, σ2 > 0. It can

be shown that this triple is in fact strongly proper with FC λ = σ1σ2. More precisely, we

have ψ(x) = σ1 cot(σ2x) and, therefore,

X(t) :=
1

σ1
arccot

(
− σ2Ld,σ1σ2(t)

)
, t ∈ R,

is the unique stationary solution of the sde (2.16).

2.2.4 Fractional Cox-Ingersoll-Ross models

Whenever positive phenomena are modeled for instance interest rates, volatilities or default

rates in finance, the Cox, Ingersoll and Ross (CIR) [35] model is the most prominent model.

It is the solution to

dX(t) = (a− γX(t))dt+ σ
√
X(t)dB(t) , X0 = x0 ≥ 0,

where B = (B(t))t∈[0,∞) denotes standard Brownian motion, a, γ ∈ R and σ > 0. General

existence and uniqueness theorems of Brownian sde’s cannot be applied here, because the

square root is clearly not Lipschitz continuous. However, Ikeda and Watanabe [77], p. 221,

showed that for any X0 = x ≥ 0 there exists a unique non-negative solution. We shall

consider analogous sde’s driven by MVN-fLps.

Within the framework of strongly proper triples, Examples 2.2.10 and 2.2.11 show that

the theory of this chapter only covers CIR models with mean reversion to a = 0. Consider

for σ, γ > 0 a solution to the pathwise sde

dX(t) = −γX(t)dt+ σ
√
|X(t)|dLd(t) , t ∈ R. (2.17)

Define σ̃(x) := σ|x|
1
2 , choose µ̃(x) = −γx and take I = R. Example 2.2.10 implies that

(I, µ̃, σ̃) is strongly proper with SST

f(x) = sign(x)
σ2

4
x2,
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and, by Theorem 2.2.7 and Corollary 2.2.9, a stationary solution of (2.17) is given by

(f(Ld,λ(t)))t∈R with λ = γ/2. Obviously, this CIR model takes also negative values.

Figure 2.1: Sample paths of a solution of the Cox-Ingersoll-Ross model (2.17) with X(0) =

0 for varying σ, fixed λ = 2.5 and d = 0.35, using two different MVN-fLp sample paths,

left θ = 0.5, right θ = 2.5.

A natural non-negative transformation of the fLOUp is given by Z(t) := (σL(t)d,λ)2

for t ∈ R, and, using the chain rule from Theorem 1.3.3 and the existence of all appearing

Riemann-Stieltjes integrals, we get

dZ(t) = 2σ2Ld,λ(t)dLd,λ(t) = −2λσ2(Ld,λ(t))2dt+ 2σ2Ld,λ(t)dLd(t)

= −2λZ(t)dt+ 2σ
√
Z(t)dLd(t), t ∈ R.

Defining now κ(z) := −2λz and ι(z) := 2σ
√
z we have Z as a solution to

dZ(t) = κ(Z(t))dt+ ι(Z(t))dLd(t) , t ∈ R.

However the triple ((0,∞), κ, ι) is not strongly proper, because Assumption (P2) of Defi-

nition 2.1.4 is violated.

We can now formulate the following general result:

Proposition 2.2.13. Let L
λ
2 (Ld, ·, ·) be the OU operator from Definition 2.2.3. Then for

τ ∈ R and z ≥ 0 the process

Xλ,τ,z(t) :=
(σ

2
L
λ
2 (Ld, τ, z)(t)

)2
, t ∈ R,
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solves the sde’s

dX(t) = −λX(t)dt+ σ
√
|X(t)|dLd(t) and (2.18)

dX(t) = −λX(t)dt+ σ
√
X(t)dLd(t) , t ∈ R. (2.19)

In fact, any solution to (2.19) also solves (2.18).

This result is not surprising, because Theorem 2.2.8 does not hold for the sde (2.18).

However, the reverse is not true: a solution of (2.18) does not necessarily solve (2.19),

because it can be negative. Also the constant process X(t) := 0, t ∈ R, solves both, (2.19)

and (2.18).

Figure 2.2: Sample paths of squared fLOUps for varying σ, fixed λ = 2.5 and d = 0.35,

using the same sample paths as in Figure 2.1: left θ = 0.5, right θ = 2.5.

Considering a squared Ornstein-Uhlenbeck process leads in the case of a driving Brow-

nian motion to a CIR model with mean reversion to positive values. This approach does

not work for pathwise integrals, neither in the MVN-fLp case nor for fBm, since the

Itô term in the chain rule vanishes by bounded p-variation for some p < 2.

A positive process based on Theorem 2.2.7 is given as solution to

dY (t) = −λ
√
Y (t) log (Y (t)) dt+ σ|Y (t)|dLd(t), t ∈ R, Y0 = y0, (2.20)

for λ, σ > 0. Example 2.2.10 states that the triple for state space I = (0,∞) is strongly

proper and the SST can be calculated as f(x) = eσx.

Remark 2.2.14. As can be seen by the examples of this section, it is not straightforward

to create positive processes using MVN-fLps. Lévy subordinators as driving processes in
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Definition 1.6.1 (cf. Marquardt [92]) are also excluded because (except for the trivial case)

they do not have zero-mean.

In Section 4, Definition 4.1.1, we will introduce (multivariate) fractional Lévy processes

defined by Molchan-Golosov kernels in the sense of Tikanmäki and Mishura [127]. To avoid

confusion between the two concepts we shall call these objects Molchan-Golosov fractional

Lévy processes. They will allow for fractional subordinators, i.e. a.s. increasing fractional

processes, in the sense of Bender and Marquardt [16], cf. Example 4.1.4.

Figure 2.3: Sample paths of a solution of (2.20) for varying σ, fixed λ = 2.5 and d = 0.35,

using the same sample paths as in Figure 2.1, left θ = 0.5, right θ = 2.5.
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Part I

Conditional distributions of

fractional processes





Chapter 3

Fractional Brownian motion and

related processes

In this chapter we will consider conditional distributions and characteristic functions of

fractional Brownian motion and related processes in increasing generality. First we will

cover the one-dimensional case by an approximation of the information up until a time

t ≥ 0, i.e. an approximation of the σ-algebra we condition on, using finite observation

samples. These results can be directly used to analyze the situation of a multivariate frac-

tional Brownian motion with independent entries. In a next step we will assume a certain

dependence structure between two fractional Brownian motions in the two-dimensional

case similar to the situation of Elliott and van der Hoek [53] and apply the properties

of the Wick product to solve the prediction problem for the long range dependence case,

i.e. positive fractional parameters. A more general result about Molchan-Golosov frac-

tional Lévy processes (as we will also call the multivariate extension of Definition 1.6.6),

including (multivariate) fractional Brownian motion, will follow in Chapter 4.

As application we shall consider a fractional bond market where the short rate process is

described by fractional Vasicek dynamics. Our setup includes the classical Brownian model

introduced by Vasicek [130]. Since fractional Brownian motions are no longer semimartin-

gales in general, arbitrage opportunities may arise, cf. Delbaen and Schachermayer [38, 39].

Further details on this fact can be found in Bender, Sottinen and Valkeila [17] or Cherid-

ito [31].

Therefore we derive the Vasicek model from the fractional Heath-Jarrow-Morton (HJM)

approach of Ohashi [100] based on previous work of Guasoni, Rásonyi and Schacher-

mayer [65, 66]: Similar to the classical Brownian HJM setting of Heath et al. [72] the
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dynamics of the whole forward curve are described by fractional Brownian motions under

a measure P.

However since - in general - fractional Brownian motions are not semimartingales,

arbitrage opportunities may occur. However in a more realistic setting with proportional

transaction costs, Ohashi showed that arbitrage strategies cannot be constructed anymore.

The existence of an average risk-neutral measure Q can be proven and we can formally

calculate prices of defaultable bonds or more general contingent claims under this measure

as suggested in Sottinen and Valkeila [125]. On the other hand it is of course always

possible to directly define prices via conditional expectations leading in general to an

arbitrage-free model.

Afterwards credit risk is introduced by assuming a certain dependence structure (cf.

Elliott and van der Hoek [53]) between the short and hazard rate. This will allow us to

price defaultable zero bonds as special contingent claims in the fractional Vasicek market

model. In a next step we will price a call option on a bond by invoking a Girsanov-like

measure change (cf. Norros, Valkeila and Virtamo [99], Theorem 4.1, and Theorem 3.3 of

Duncan, Hu and Pasik-Duncan [48]). For general options Fourier methods will be applied.

Remark 3.0.15. Recall that for µ ∈ R and σ > 0 a random variable X is normally

distributed with expectation µ and variance σ2 if and only if

E[eiuX ] = exp{iuµ− u2

2
σ2}

for u ∈ R. We will repeatedly use this relationship without further comment.

3.1 One-dimensional fractional Brownian motion

Calculating conditional distributions by conditional characteristic functions means essen-

tially predicting exponentials. A possible way to approach this problem for fBm driven

integrals has been considered in Duncan [46] by transforming the exponential function

to a Wick exponential. While this idea works well, Proposition 2 of that paper is not

correct. This can be seen immediately, because its result suggests that the prediction

is deterministic. The correct version with proof can be found in Duncan and Fink [47].

A similar prediction formula for the conditional expectation of an univariate geometric

Brownian motion has been developed in the unpublished work of Valkeila [129]. The

basic idea of [46, 47] will be extended later for the two-dimensional dependent case in

Section 3.4. Our chosen approach in the present section is based on an approximation
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of the σ-algebra we condition on using finite observation samples, the simple prediction

formula of Lemma 1.5.14 and classical results on conditional Gaussian distributions. We

want to emphasize that our approach also covers the range κ ∈ (−1
2 , 0).

For notational convenience we fix for the rest of this section a Molchan-Golosov fBm

(Bκ(t))t∈[0,T ], T > 0, with κ ∈ (−1
2 ,

1
2). Denote further Fs := σ{Bκ(v), v ∈ [0, s]} for

0 ≤ s ≤ T . The main theorem of this section follows.

Theorem 3.1.1. Let c ∈ ΛκT and 0 ≤ s ≤ t ≤ T . Then we have for u ∈ R

E
[
eiu

∫ t
0 c(v)dBκ(v)

∣∣∣Fs] = exp

{
iu
[ ∫ s

0
c(v)dBκ(v) +

∫ s

0
Ψκ
c (s, t, v)dBκ(v)

]}
× exp

{
−u

2

2

[
‖c(·)1[s,t](·)‖2κ,T − ‖Ψκ

c (s, t, ·)1[0,s](·)‖2κ,T
]}

,

i.e.
∫ t

0 c(u)dBκ(u)|Fs is normally distributed with

E
[ ∫ t

0
c(v)dBκ(v)

∣∣∣Fs] =

∫ s

0
c(v)dBκ(v) +

∫ s

0
Ψκ
c (s, t, v)dBκ(v)

V ar
[ ∫ t

0
c(v)dBκ(v)

∣∣∣Fs] = ‖c(·)1[s,t](·)‖2κ,T − ‖Ψκ
c (s, t, ·)1[0,s](·)‖2κ,T .

Before we start with the proof of Theorem 3.1.1 we want to compare it to the classical

Brownian case with its Markov property and independent increments.

Remark 3.1.2. (a) The variance formula above corresponds to

V ar[X(t)|Fs] = V ar[X(t)]− V ar[E[X(t)|Fs]]

for X(t) =
∫ t

0 c(v)dBκ(v).

(b) Setting c(·) = 1[0,t](·) we get by Theorem 3.1.1 for the conditional characteristic

function of a fBm

E
[
eiuB

κ(t)
∣∣∣Fs] = exp

{
iu
[
Bκ(s) +

∫ s

0
Ψκ(s, t, v)dBκ(v)

]}
× exp

{
−u

2

2

[
‖1[s,t](·)‖2κ,T − ‖Ψκ(s, t, ·)1[0,s](·)‖2κ,T

]}
, u ∈ R.

If we compare this to the standard Brownian motion case, i.e. setting κ = 0, we get

E
[
eiuB

0(t)
∣∣∣Fs] = exp

{
iuB0(s)− u2

2
‖1[s,t](·)‖22

}
, u ∈ R.

It is not surprising that for κ 6= 0 the whole past path plays a role in the prediction.

Theorem 3.1.1 and the equations above show that the conditional expectation changes by

the term
∫ s

0 Ψκ(s, t, v)dBκ(v).
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The proof of Theorem 3.1.1 follows.

Proof. There are different ways of proving Theorem 3.1.1, one possibility is to use Re-

mark 3.1.2(a) for X =
∫ t
s c(v)dBκ(v). However, having discrete observations in mind (as

is the realistic statistical set-up), we base our proof on a discretization scheme for the

past. Given the grid size and also κ we obtain then not only a limit result, but also an ap-

proximation based on the correct approximating matrices (Σn
22)−1Σn

21 and Σn
12(Σn

22)−1Σn
21.

For this discrete approximation we shall need the well-known property of the multivariate

normal distribution from Lemma 1.4.6.

Let 0 ≤ s ≤ t ≤ T . To calculate the conditional characteristic function of
∫ t

0 c(v)dBκ(v)

we invoke the fact that by Gaussianity and Lemma 1.4.6 the conditional random variable∫ t
0 c(v)dBκ(v)|Fs is again normally distributed. Since

∫ s
0 c(v)dBκ(v) is Fs-measurable, it

suffices to consider
∫ t
s c(v)dBκ(v)|Fs.

As we know from Proposition 1.5.15,

E

[∫ t

s
c(v)dBκ(v)

∣∣∣Fs] =

∫ s

0
Ψκ
c (s, t, v)dBκ(v).

Therefore we need only to calculate the conditional variance V ar[
∫ t
s c(v)dBκ(v)|Fs].

Choose a sequence of partitions (πn)n∈N of [0, s] such that for n ∈ N we have

πn = (sni )i=0,...,mn for mn ∈ N with

0 = sn0 < sn1 < · · · < snmn ≤ s and sup
i=1,...,mn

|sni − sni−1| → 0 as n→∞.

Using this notation we know by Lemma 1.4.6 for n ∈ N

E

[∫ t

s
c(v)dBκ(v)

∣∣∣(Bκ(sni )−Bκ(sni−1))i=1,...,mn

]

= Σn
12(Σn

22)−1


...

Bκ(sni )−Bκ(sni−1)
...

 ,

V ar

[∫ t

s
c(v)dBκ(v)

∣∣∣(Bκ(sni )−Bκ(sni−1))i=1,...,mn

]
= Σn

11 − Σn
12(Σn

22)−1Σn
21, (3.1)
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where Σn
11 = V ar[

∫ t
s c(v)dBκ(v)],

(Σn
12)T = Σn

21 =


...

Cov
[ ∫ t

s c(v)dBκ(v), Bκ(sni )−Bκ(sni−1)
]

...

 ∈ Rmn

Σn
22 =

(
Cov

[
Bκ(sni )−Bκ(sni−1), Bκ(snj )−Bκ(snj−1)

])
i,j=1,...,mn

∈ Smn×mn .

It follows by Lemma 1.4.6 and p. 290 of Dudley [43] that a.s. and in L1(Ω) as n→∞,

E

[∫ t

s
c(v)dBκ(v)

∣∣∣(Bκ(sni )−Bκ(sni−1))i=1,...,mn

]
→ E

[∫ t

s
c(v)dBκ(v)

∣∣∣Fs] ,
V ar

[∫ t

s
c(v)dBκ(v)

∣∣∣(Bκ(sni )−Bκ(sni−1))i=1,...,mn

]
→ V ar

[∫ t

s
c(v)dBκ(v)

∣∣∣Fs] .
(3.2)

This implies by (3.1) and Proposition 1.5.15 that a.s. and in L1(Ω) as n→∞,

Σn
12(Σn

22)−1


...

Bκ(sni )−Bκ(sni−1)
...

 =

mn∑
i=1

(Σn
12(Σn

22)−1)i[B
κ(sni )−Bκ(sni−1)]

→
∫ s

0
Ψκ
c (s, t, v)dBκ(v). (3.3)

Therefore, it follows pointwise and in ‖ · ‖κ,T as n→∞,

mn∑
i=1

(Σn
12(Σn

22)−1)i1[sni−1,s
n
i ](·)→ Ψκ

c (s, t, ·)1[0,s](·). (3.4)

With this result we can now calculate the conditional variance, since using the isome-

try (1.17)

Σn
12(Σn

22)−1Σn
21 = Σn

12(Σn
22)−1


...

Cov
[ ∫ t

s c(v)dBκ(v), Bκ(sni )−Bκ(sni−1)
]

...


=

mn∑
i=1

(Σn
12(Σn

22)−1)iCov

[∫ t

s
c(v)dBκ(v), Bκ(sni )−Bκ(sni−1)

]

=

mn∑
i=1

(Σn
12(Σn

22)−1)i < c(·)1[0,s](·),1[sni−1,s
n
i ](·) >κ,T

= < c(·)1[0,s](·),
mn∑
i=1

(Σn
12(Σn

22)−1)i1[sni−1,s
n
i ](·) >κ,T

→ < c(·)1[0,s](·),Ψκ
c (s, t, ·)1[0,s](·) >κ,T as n→∞
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where we used in the last line the continuity of the scalar product.

It remains to observe that again by the isometry (1.17)

< c(·)1[0,s](·),Ψκ
c (s, t, ·)1[0,s](·) >κ,T

= E

[∫ t

s
c(v)dBκ(v)

∫ s

0
Ψκ
c (s, t, v)dBκ(v)

]
= E

[(∫ t

s
c(v)dBκ(v)− E

[∫ t

s
c(v)dBκ(v)

∣∣∣Fs])E [∫ t

s
c(v)dBκ(v)

∣∣∣Fs]]
+E

[
E

[∫ t

s
c(v)dBκ(v)

∣∣∣Fs]2
]

= E

[
E

[∫ t

s
c(v)dBκ(v)

∣∣∣Fs]2
]

= ‖Ψκ
c (s, t, ·)1[0,s](·)‖2κ,T

by the projection property of the conditional expectation in L2(Ω).

Finally we conclude that a.s.

V ar

[∫ t

s
c(v)dBκ(v)

∣∣∣Fs]
= lim

n→∞
V ar

[∫ t

s
c(v)dBκ(v)

∣∣∣(Bκ(sni )−Bκ(sni−1))i=1,...,mn

]
= lim

n→∞
(Σn

11 − Σn
21(Σn

22)−1Σn
12)

= ‖c(·)1[s,t](·)‖κ,T− < c(·)1[0,s](·),Ψκ
c (s, t, ·)1[0,s](·) >κ,T

= ‖c(·)1[s,t](·)‖κ,T − ‖Ψκ
c (s, t, ·)1[0,s](·)‖2κ,T .

Our aim is now to use the results of Theorem 3.1.1 to derive the conditional distribu-

tions of more general fractional processes described by fractional Brownian sde’s. Recall

the results of Section 2.1:

Consider a general pathwise sde with fractional Brownian noise, i.e.

dZ(t) = µ(Z(t))dt+ σ(Z(t))dBκ(t), Z(0) ∈ R, t ∈ [0, T ], (3.5)

for κ ∈ (0, 1
2) and a κ-proper triple (I, µ, σ). Section 2.1, especially Theorem 2.1.6, states

that solutions for (3.5) are given by

Z(t) = f(X(t)) (3.6)

dX(t) = −aX(t)dt+ dBκ(t) , X(0) = f−1(Z(0)), t ∈ [0, T ], (3.7)

for SST f : R → R and FC a > 0. In the light of the Ornstein-Uhlenbeck operator of

Definition 2.1.5, the above restriction to [0, T ] is possible.
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Motivated by this, we want to predict general OU-type processes driven by fBm in a

next step. Therefore, we consider the sde with time dependent coefficient functions

dX(t) = (k(t)− a(t)X(t))dt+ σ(t)dBκ(t) , X(0) ∈ R, t ∈ [0, T ], (3.8)

where integration is defined in Section 1.5. Here k(·), a(·) are locally integrable and con-

tinuous on R+, σ(·) 6= 0, continuous and σ(·) ∈ ΛκT . For κ ∈ (−1
2 , 0) assume further that

e−
∫ t
· a(w)dwσ(·) ∈ ΛκT for 0 ≤ t ≤ T . Then the unique solution to (3.8) is given by the

process X = (X(t))t∈[0,T ], defined for t ∈ [0, T ] by

X(t) = X(0)e−
∫ t
0 a(s)ds +

∫ t

0
e−

∫ t
s a(u)duk(s)ds+

∫ t

0
e−

∫ t
s a(u)duσ(s)dBκ(s). (3.9)

Because σ does not hit zero, we have the equality Fs = σ{X(v), v ∈ [0, s]} for 0 ≤ s ≤ T .

Theorem 3.1.3. Let 0 ≤ s ≤ t ≤ T . Set c(·) = e−
∫ t
· a(w)dwσ(·) and recall Ψκ

c from (1.20).

Then we have for u ∈ R

E
[
eiuX(t)

∣∣∣Fs]
= exp

{
iu
[
X(s)e−

∫ t
s a(v)dv +

∫ t

s
e−

∫ t
v a(w)dwk(v)dv +

∫ s

0
Ψκ
c (s, t, v)dBκ(v)

]}
× exp

{
−u

2

2

[
‖c(·)1[s,t](·)‖2κ,T − ‖Ψκ

c (s, t, ·)1[0,s](·)‖2κ,T
]}

,

i.e. X(t)|Fs is normally distributed with

E[X(t)|Fs] = X(s)e−
∫ t
s a(v)dv +

∫ t

s
e−

∫ t
v a(w)dwk(v)dv +

∫ s

0
Ψκ
c (s, t, v)dBκ(v)

V ar[X(t)|Fs] = ‖c(·)1[s,t](·)‖2κ,T − ‖Ψκ
c (s, t, ·)1[0,s](·)‖2κ,T .

Proof. By (3.9) it follows that for 0 ≤ s ≤ t ≤ T

X(t) = X(s)e−
∫ t
s a(v)dv +

∫ t

s
e−

∫ t
v a(w)dwk(v)dv +

∫ t

s
e−

∫ t
v a(w)dwσ(v)dBκ(v). (3.10)

Therefore X(t)|Fs is again Gaussian distributed. Since X(s) is Fs-measurable, a direct

consequence is now that

E
[
X(t)

∣∣∣Fs] = X(s)e−
∫ t
s a(v)dv +

∫ t

s
e−

∫ t
v a(w)dwk(v)dv

+ E
[ ∫ t

s
e−

∫ t
v a(w)dwσ(v)dBκ(v)

∣∣∣Fs],
V ar

[
X(t)

∣∣∣Fs] = V ar
[ ∫ t

s
e−

∫ t
v a(w)dwσ(v)dBκ(v)

∣∣∣Fs].
Invoking Theorem 3.1.1 with c(·) = e−

∫ t
· a(w)dwσ(·) concludes the proof.
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If we assume further that σ(·) and 1/σ(·) are of bounded p-variation for some 0 < p <

1/(1
2 − κ), cf. Young [134] and Section 1.3, we can consider (3.8) as a pathwise sde and

the fBm driven integral in (3.9) exists further as pathwise limit of Riemann-Stieltjes sums

(Section 10 of Young [134]). An advantage of these stronger assumptions on σ(·) is that

we are now able to invert the sde (3.8) (since a density formula like in Theorem 1.3.4 is

needed for this step) and rewrite the prediction in terms of X:

Proposition 3.1.4. In the situation of Theorem 3.1.3 assume that σ(·) and 1/σ(·) are

of bounded p-variation for some 0 < p < 1/(1
2 − κ). Let 0 ≤ s ≤ t ≤ T . Set c(·) =

e−
∫ t
· a(w)dwσ(·) and recall Ψκ

c from (1.20). Then we have for u ∈ R

E
[
eiuX(t)

∣∣∣Fs]
= exp

{
iu
[
X(s)e−

∫ t
s a(v)dv +

∫ t

s
e−

∫ t
v a(w)dwk(v)dv −

∫ s

0
Ψκ
c (s, t, v)

k(v)

σ(v)
dv

+

∫ s

0
Ψκ
c (s, t, v)

a(v)

σ(v)
X(v)dv +

∫ s

0
Ψκ
c (s, t, v)

1

σ(v)
dX(v)

]}
× exp

{
−u

2

2

[
‖c(·)1[s,t](·)‖2κ,T − ‖Ψκ

c (s, t, ·)1[0,s](·)‖2κ,T
]}

,

i.e. X(t)|Fs is normally distributed with

E[X(t)|Fs] = X(s)e−
∫ t
s a(v)dv +

∫ t

s
e−

∫ t
v a(w)dwk(v)dv −

∫ s

0
Ψκ
c (s, t, v)

k(v)

σ(v)
dv

+

∫ s

0
Ψκ
c (s, t, v)

a(v)

σ(v)
X(v)dv +

∫ s

0
Ψκ
c (s, t, v)

1

σ(v)
dX(v)

V ar[X(t)|Fs] = ‖c(·)1[s,t](·)‖2κ,T − ‖Ψκ
c (s, t, ·)1[0,s](·)‖2κ,T .

Proof. The main step of the proof of Proposition 3.1.4 is an application of a density

formula for Riemann-Stieltjes integrals. By assumption on the coefficient functions, all

appearing integrals in this proof can be considered in the pathwise Riemann-Stieltjes sense,

cf. Young [134], Section 10.

Our goal is now to invert (3.8). By (3.9) we have for 0 ≤ s ≤ t ≤ T

∫ t

s
e−

∫ t
v a(w)dwσ(v)dBκ(v) = X(t)−X(s)e−

∫ t
v a(w)dw −

∫ t

s
e−

∫ t
v a(w)dwk(v)dv
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and, invoking the density formula of Theorem 1.3.4 we get for

Bκ(t)−Bκ(s)

=

∫ t

s

e
∫ t
v a(w)dw

σ(v)
d

(
−
∫ t

v
e−

∫ t
z a(w)dwσ(z)dBκ(z)

)
=

∫ t

s

e
∫ t
v a(w)dw

σ(v)
d

(∫ t

v
e−

∫ t
z a(w)dwk(z)dz +X(v)e−

∫ t
v a(w)dw −X(t)

)
= −

∫ t

s

k(v)

σ(v)
dv +

∫ t

s

a(v)

σ(v)
X(v)dv +

∫ t

s

1

σ(v)
dX(v). (3.11)

It remains to plug this result into the formulas of Theorem 3.1.3 and the proof is finished.

Equation (3.6) shows that the fractional Ornstein-Uhlenbeck process with time-independent

coefficient functions is important when considering general fractional sde’s.

Corollary 3.1.5. Consider in the sde (3.8) with k(·) = 0, a(·) = a > 0 and σ(·) = 1.

Then the solution X is given by

X(t) = X(0)e−at +

∫ t

0
e−a(t−s)dBκ(s) , t ∈ [0, T ]. (3.12)

Let 0 ≤ s ≤ t ≤ T and set c(·) = e−a(t−·). For u ∈ R we have

E
[
eiuX(t)

∣∣∣Fs]
= exp

{
iu
[
X(s)e−a(t−s) + a

∫ s

0
Ψκ
c (s, t, v)X(v)dv +

∫ s

0
Ψκ
c (s, t, v)dX(v)

]}
× exp

{
−u

2

2

[
‖c(·)1[s,t](·)‖2κ,T − ‖Ψκ

c (s, t, ·)1[0,s](·)‖2κ,T
]}

, (3.13)

i.e. X(t)|Fs is normally distributed with

E[X(t)|Fs] = X(s)e−a(t−s) + a

∫ s

0
Ψκ
c (s, t, v)X(v)dv +

∫ s

0
Ψκ
c (s, t, v)dX(v)

V ar[X(t)|Fs] = ‖c(·)1[s,t](·)‖2κ,T − ‖Ψκ
c (s, t, ·)1[0,s](·)‖2κ,T .

Proof. Set k(·) = 0, a(·) = a > 0 and σ(·) = 1 in Proposition 3.1.4. The conditions on the

p-variation are therefore satisfied.

When calculating prices in a bond market the situation arises that not the short rate

process r has to be predicted, but the integrated process. The next proposition will deal

with this situation. For notational convenience we set

D(·, t) =

∫ t

·
e−

∫ v
· a(w)dwdv, t ∈ [0, T ]. (3.14)
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Proposition 3.1.6. Denote by X the process given in (3.9) and let 0 ≤ s ≤ t ≤ T .

Set c(·) = D(·, t)σ(·) and recall Ψκ
c from (1.20). For κ ∈ (−1

2 , 0) assume further that

D(·, t)σ(·) ∈ ΛκT . Then for u ∈ R we have

E
[
eiu

∫ t
0 X(v)dv

∣∣∣Fs] = exp

{
iu
[ ∫ s

0
X(v)dv +D(s, t)X(s) +

∫ t

s
D(v, t)k(v)dv

+

∫ s

0
Ψκ
c (s, t, v)dBκ(v)

]}
× exp

{
−u

2

2

[
‖c(·)1[s,t](·)‖2κ,T − ‖Ψκ

c (s, t, ·)1[0,s](·)‖2κ,T
]}

,

i.e.
∫ t

0 X(v)dv
∣∣∣Fs is normally distributed with

E
[ ∫ t

0
X(v)dv

∣∣∣Fs] =

∫ s

0
X(v)dv +D(s, t)X(s) +

∫ t

s
D(v, t)k(v)dv

+

∫ s

0
Ψκ
c (s, t, v)dBκ(v)

V ar
[ ∫ t

0
X(v)dv

∣∣∣Fs] = ‖c(·)1[s,t](·)‖2κ,T − ‖Ψκ
c (s, t, ·)1[0,s](·)‖2κ,T .

If we assume further that σ(·) and 1/σ(·) are of bounded p-variation for some 0 < p <

1/(1
2 − κ), then we have

E
[
eiu

∫ t
0 X(v)dv

∣∣∣Fs] = exp

{
iu
[ ∫ s

0
X(v)dv +D(s, t)X(s) +

∫ t

s
D(v, t)k(v)dv

−
∫ s

0
Ψκ
c (s, t, v)

k(v)

σ(v)
dv +

∫ s

0
Ψκ
c (s, t, v)

a(v)

σ(v)
X(v)dv

+

∫ s

0
Ψκ
c (s, t, v)

1

σ(v)
dX(v)

]}
× exp

{
−u

2

2

[
‖c(·)1[s,t](·)‖2κ,T − ‖Ψκ

c (s, t, ·)1[0,s](·)‖2κ,T
]}

.

Proof. Let 0 ≤ s ≤ t ≤ T . By Gaussianity we see again that
∫ t

0 X(v)dv|Fs is normally

distributed and as before it remains to calculate its expectation and variance to achieve

the conditional characteristic function. Since
∫ s

0 X(v)dv is Fs-measurable we just consider∫ t
s X(v)dv|Fs. From (3.9) we obtain by (3.10) and Fubini’s Theorem (Theorem 1 of

Krvavich and Mishura [83])∫ t

s
X(v)dv

=

∫ t

s

{
X(s)e−

∫ v
s a(w)dw +

∫ v

s
e−

∫ v
z a(w)dwk(z)dz +

∫ v

s
e−

∫ v
z a(w)dwσ(z)dBκ(z)

}
dv

= D(s, t)X(s) +

∫ t

s
D(v, t)k(v)dv +

∫ t

s
D(v, t)σ(v)dBκ(v).
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It follows

E
[ ∫ t

0
X(v)dv

∣∣∣Fs] =

∫ s

0
X(v)dv +D(s, t)X(s) +

∫ t

s
D(v, t)k(v)dv

+E
[ ∫ t

s
D(v, t)σ(v)dBκ(v)

∣∣∣Fs],
V ar

[ ∫ t

0
X(v)dv

∣∣∣Fs] = V ar
[ ∫ t

s
D(v, t)σ(v)dBκ(v)

∣∣∣Fs].
Applying Theorem 3.1.1 with c(·) = D(·, t)σ(·) shows the first assertion. The second one

follows by applying (3.11).

The next theorem presents the conditional characteristic function of a process

Z = f ◦X as in (3.6). In general Z is no longer Gaussian. Note, however, that because of

the assumptions on f , we have Fs = σ{Z(v), v ∈ [0, s]} for 0 ≤ s ≤ T .

Theorem 3.1.7. Let the process Z be given by (3.6) with X as in (3.7) and 0 ≤ s ≤ t ≤ T .

Then we have for u ∈ R

E
[
eiuZ(t)

∣∣∣Fs] =

∫
R

(
E
[
e(iξ+1)X(t)

∣∣∣Fs]ĝ+(ξ, u) + E
[
e(iξ−1)X(t)

∣∣∣Fs]ĝ−(ξ, u)
)
dξ

with ĝ±(ξ, u) = (2π)−1
∫
R±

e−(iξ±1)x+iuf(x)dx and E[e(iξ+1)X(t)|Fs] is given by the contin-

uation of the characteristic function of X(t)|Fs to C. This continuation exists due to the

fact that X(t)|Fs is Gaussian.

Since the process Z as given in (3.6) does not have to be Gaussian any longer, there is

no closed form for the prediction. However by Theorem 3.1.7 we can reduce this problem

to an improper integral and the prediction of Ornstein Uhlenbeck type processes.

Proof. The proof uses Fourier techniques. Let x ∈ R and set g(x, u) = exp(iuf(x)). First

we decompose g into

g(x, u) = ex[e−xg(x, u)1[0,∞)(x)] + e−x[exg(x, u)1(−∞,0)(x)]

=: exg+(x, u) + e−xg−(x, u).

Denote for fixed u ∈ R with ĝ+(·, u) and ĝ−(·, u) the Fourier transforms of g+(·, u) and

g−(·, u) respectively. Using classical Fourier analysis we obtain for x, ξ ∈ R

ĝ±(ξ, u) =
1

2π

∫
R
e−iξxg±(x, u)dx =

1

2π

∫
R±

e−(iξ±1)x+iuf(x)dx,

g±(x, u) =

∫
R
eiξxĝ±(ξ, u)dξ,
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where we used the fact that g+(·, u) and g−(·, u) are in L1(R) ∩ L2(R) since g(·, u) is

bounded. It also follows that ĝ+(·, u) and ĝ−(·, u) are in L1(R) ∩ L2(R). Now we obtain

E
[
eiuZ(t)

∣∣∣Fs]
= E[g(X(t))|Fs] = E[eX(t)g+(X(t), u)|Fs] + E[e−X(t)g−(X(t), u)|Fs]

= E
[
eX(t)

∫
R
eiξX(t)ĝ+(ξ, u)dξ

∣∣∣Fs]+ E
[
e−X(t)

∫
R
eiξX(t)ĝ−(ξ, u)dξ

∣∣∣Fs].
Since E[ebX(t)] <∞ for all b ∈ C we can interchange conditional expectation and integra-

tion and get

E
[
eiuZ(t)

∣∣∣Fs] =

∫
R

(
E
[
e(iξ+1)X(t)

∣∣∣Fs]ĝ+(ξ, u) + E
[
e(iξ−1)X(t)

∣∣∣Fs]ĝ−(ξ, u)
)
dξ.

The following example considers the conditional characteristic function of a CIR type

process.

Example 3.1.8. We consider for κ ∈ (0, 1
2) a fractional CIR model given by the pathwise

solution to the sde

dZ(t) = −λZ(t)dt+ σ
√
|Z(t)|dBκ(t), Z(0) ∈ R, t ∈ [0, T ],

for some λ, σ > 0. Then by Theorem 2.1.6 we know that a solution is given by

Z(t) = f(X(t))

dX(t) = −λ
2
X(t)dt+ dBκ(t) , X(0) = f−1(Z(0)), t ∈ [0, T ],

where f(x) = sign(x)σ
2

4 x
2. We want to emphasize that this solution is in contrast to

the classical Brownian case (κ = 0) not unique; further details have been provided in

Section 2.2.4. We considered there a similar case for fractional Lévy driven processes.

The following section covers the case of a multivariate fractional Brownian motion with

independent entries. The proofs are straightforward and we will state them for the sake

of completeness only.

3.2 d-dimensional fractional Brownian motion with inde-

pendence

This short and straightforward section shall be dedicated to the case of multivariate frac-

tional Brownian motion with independent entries. Nevertheless we shall state the result
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and its short proof to compare the situation to Section 3.4 where we will introduce a

certain dependence structure (cf. Elliott and van der Hoek [53]) into a two-dimensional

fractional Brownian motion.

For d ∈ N and κ ∈ (−1
2 ,

1
2)d let Bκ(t) = (B

κ(1)
(1) (t), . . . , B

κ(d)
(d) (t))T , t ∈ [0, T ], be a

d-dimensional fractional Brownian motion. Furthermore the individual components B
κ(i)
(i)

for i = 1 . . . , d are assumed to be independent. We shall state the prediction theorem just

in its simplest form without giving further thought to integration.

We fix for the rest of this section Fs := σ{Bκ(v), v ∈ [0, s]} for 0 ≤ s ≤ T .

Theorem 3.2.1. Let 0 ≤ s ≤ t ≤ T . Then we have for u ∈ Rd

E
[
e
i
∑d
j=1 ujB

κ(j)
(j)

(t)
∣∣∣Fs]

= exp

i
d∑
j=1

uj

[
B
κ(j)
(j) (t) +

∫ s

0
Ψκ(j)(s, t, v)dB

κ(j)
(j) (v)

]
× exp

−1

2

d∑
j=1

u2
j

[
‖1[s,t](·)‖2κ(j),T − ‖Ψ

κ(j)(s, t, ·)1[0,s](·)‖2κ(j),T

] .

Proof. Follows by independence and Theorem 3.1.1.

Example 3.2.2. [2-dimensional case] If we set d = 2 in Theorem 3.2.1 above we get for

0 ≤ s ≤ t ≤ T and u ∈ R2

E
[
e
i(u1B

κ(1)
(1)

(t)+u2B
κ(2)
(2)

(t))
∣∣∣Fs]

= exp

{
iu1

[
B
κ(1)
(1) (t) +

∫ s

0
Ψκ(1)(s, t, v)dB

κ(1)
(1) (v)

]}
× exp

{
iu2

[
B
κ(2)
(2) (t) +

∫ s

0
Ψκ(2)(s, t, v)dB

κ(2)
(2) (v)

]}
× exp

{
−u

2
1

2

[
‖1[s,t](·)‖2κ(1),T − ‖Ψ

κ(1)(s, t, ·)1[0,s](·)‖2κ(1),T

]}
× exp

{
−u

2
2

2

[
‖1[s,t](·)‖2κ(2),T − ‖Ψ

κ(2)(s, t, ·)1[0,s](·)‖2κ(2),T

]}
.

3.3 Application: Fractional bond market

In this section we will consider an application of our results to bond markets. Recall that

in many cases characteristic functions can be extended from arguments in R to C.
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3.3.1 Motivation

In a bond market driven by an adapted short rate process r = (r(v))v∈[0,T ] the price of a

non-defaultable zero coupon bond with maturity T ≥ 0 at time 0 ≤ s ≤ t ≤ T is given by

the conditional expectation

B(s, t) = EQ
[
e−

∫ t
s r(v)dv

∣∣∣r(v), v ∈ [0, s]
]

(3.15)

under some risk-neutral measure Q.

For a broad class of stochastic processes, in particular affine models (see e.g. Duffie [44]

and Duffie, Filipovic and Schachermayer [45]), such predictions are easy to calculate and

do only depend on the level of the process at time t due to their Markov property. However,

staying in the bond framework above, Markov models may not be sufficient to catch the

real market structure as was shown by the ongoing financial crisis. One reason behind

this is that short rates, which are driven by macroeconomic variables like domestic gross

products, supply and demand rates or volatilities, exhibit long range dependence, which

cannot be captured by Markov models. Empirical evidence has been reported over the

years and we refer to Henry and Zaffaroni [73] for a good overview on this research and

further references. In particular, Backus and Zin [7] provide in their Section 4 evidence

for long memory in the short rate process.

In this section we will derive a Vasicek model from the Heath-Jarrow-Morton (HJM)

approach of Ohashi [100]. As in the classical setting of Heath et al. [72] we model the

whole term structure under a measure P and show that with proportional transaction

costs with proportionality factor k > 0 arbitrage can be ruled out. The existence of an

average risk-neutral measure Q can be proven and we can formally calculate prices of

defaultable bonds or more general contingent claims under this measure as suggested in

Sottinen and Valkeila [125]. On the other hand it is - as said before - always possible to

directly define prices via conditional expectations leading in general to an arbitrage-free

model. We apply our formulas to calculate the price of zero coupon bonds.

The proportional transaction costs are crucial for this approach since the Markov

setting of Duffie [44] and Duffie, Filipovic and Schachermayer [45] does not apply for

fractional Brownian markets.

Ohashi’s [100] work on a fractional HJM bond model with proportional transaction

costs is based on an extension of the full support property of the logarithmic price processes

in the set of continuous functions. This basic idea and its relevance to the absence of

arbitrage was fully investigated by Guasoni, Rásonyi and Schachermayer [65]. Its remains
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to observe that these properties are only sufficient for the market to be arbitrage-free.

In Guasoni, Rásonyi and Schachermayer [66] a fundamental theorem with necessary and

sufficient conditions for risk-neutral asset pricing under proportional transaction costs has

been derived.

3.3.2 The fractional market model

The final time horizon of the market shall be T ? > 0. We model on a probability space

(Ω,F ,P) endowed with a filtration (Ft)0≤t≤T ? , representing the complete market infor-

mation and satisfying the usual conditions of completeness and right continuity. Assume

further the existence of the forward rate process

f = (f(t, T ))0≤t≤T≤T ?

on (Ω,F ,P) such that for each 0 ≤ T ≤ T ? the stochastic process (f(t, T ))0≤t≤T is adapted

to (Ft)0≤t≤T . The stochastic process r = (r(t))0≤t≤T ? := (f(t, t))0≤t≤T ? models the short

rate.

3.3.2.1 Tradable bonds and numeraire

We specify the dynamics of f by the linear stochastic differential equation

f(t, T ) = f(0, T ) +

∫ t

0
α(s, T )ds+

d∑
i=1

∫ t

0
σ(i)(s, T )dB

κ(i)
(i) (s), 0 ≤ t ≤ T ≤ T ?, (3.16)

with a multivariate fBm given by Bκ(t) = (B
κ(1)
(1) (t), . . . , B

κ(d)
(d) (t))T , t ∈ [0, T ?], for d ∈ N

and κ ∈ (0, 1
2)d. The components B

κ(i)
(i) for i = 1 . . . , d are assumed to be independent.

Further we will from now on impose the following assumptions:

(A1) The function f : [0, T ?]→ R, T 7→ f(0, T ) is continuously differentiable.

(A2) The functions α, σ(i) : [0, T ?]2 → R are continuous and bounded with σ(i) > 0 on

[0, T ?]2, i ∈ {1, . . . , d}.

Remark 3.3.1. Under the conditions (A1) and (A2) the technical integrability assump-

tions (2.6)− (2.9) of Ohashi [100] are satisfied.

We assume the existence of the following tradable bonds:

P (t, T ) = exp
(
−
∫ T

t
f(t, s)ds

)
, 0 ≤ t ≤ T ≤ T ?.
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Definition 3.3.2. Define for 0 ≤ T ≤ T ? the relative bond price of a T -maturity bond by

Zt(T ) := P (t, T )/S0(t), 0 ≤ t ≤ T,

with

(S0(t))0≤t≤T ? :=
(

exp
( ∫ t

0
r(s)ds

))
0≤t≤T ?

for the short rate

(r(t))0≤t≤T ? := (f(t, t))0≤t≤T ? .

We will take the process (S0(t))0≤t≤T ? as the numeraire.

Remark 3.3.3. We are aware that, as a Gaussian process, the forward rate f and the

short rate r can also take negative values. However, it is always possible to shift and

perhaps also scale the model such that the probability of becoming negative is arbitrarily

small. On the other hand it is attractive and useful to have a benchmark model where

quantities can be calculated explicitly.

3.3.2.2 Trading strategies and the wealth process

We will now describe which trading strategies are allowed. Therefore, we define the wealth

process of a trading strategy by an integral over the whole relative bond price surface given

by Z from Definition 3.3.2.

First we have to specify the idea above following Section 3 of Ohashi [100]: Let

B([0, T ?]) denote the Borel sets of [0, T ?]. Define admissible trading strategies in our

market by the following procedure: LetMT ? be the space of all finite signed measures on

B([0, T ?]) endowed with the total variation norm defined by

‖m‖TV := sup{m(A)|A ∈ B([0, T ?])}+ | inf{m(A)|A ∈ B([0, T ?])}|

for m ∈MT ? . Define further the total variation measure by

|m|(E) := sup{m(A)|A ∈ B([0, T ?]), A ⊂ E}+ | inf{m(A)|A ∈ B([0, T ?]), A ⊂ E}|,

for E ∈ B([0, T ?]). Let ϕ be a measure-valued elementary process of the form

ϕt(ω,A) =

N−1∑
i=0

1Fi×(ti,ti+1](ω, t)mi(A), 0 ≤ t ≤ T ?, (3.17)
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for ω ∈ Ω, A ∈ F , mi ∈ MT?, 0 = t0 < · · · < ti < · · · < tN ≤ T ? and Fi ∈ Fti for

i ∈ {0, . . . , N − 1} and N ∈ N. The process ϕ represents an elementary trading strategy.

Denote by S the set of all elementary processes of the form (3.17) endowed with the norm:

‖ϕ‖S := E
[

sup
0≤t≤T ?

‖ϕt‖2TV
]
.

To define the wealth process we must specify integration with respect to ϕ and Z: For

ϕ ∈ S define the random variable

(∫ t

0
ϕsdZs

)
(ω) :=

N−1∑
i=0

1Fi(ω)([Zti+1∧t − Zti∧t] •mi)(ω), ω ∈ Ω

where we set

(X •m)(ω) :=

∫ T ?

0
X(s)(ω)m(ds), ω ∈ Ω,

for a stochastic process X = (X(s))0≤s≤T ? and m ∈ MT?. From now on we will omit ω

in the notation.

For ϕ ∈ S and proportional transactions costs with proportionality factor k > 0 define

the wealth process V k(ϕ) via

V k
t (ϕ) :=

N−1∑
i=0

1Fi [Zti+1∧t − Zti∧t] •mi − k
N−1∑
i=0

1FiZti∧t • |ϕti+1∧t − ϕti1∧t| − kZt • |ϕt|,

for 0 ≤ t ≤ T ?.
Let S̄ be the completion of S with respect to the norm ‖ · ‖S . Then equation (3.4)

of Ohashi [100] shows that
∫ ·

0 ϕsdZs and V k
· (ϕ) can be defined for all ϕ ∈ S̄, as the next

theorem states. The proof can be found in Ohashi [100], p.1559-1560.

Theorem 3.3.4. For ϕ ∈ S̄ assume that the random variable

sup
π

∑
ti∈π
‖ϕti+1 − ϕti‖TV (3.18)

is square-integrable, where the supremum is taken over all partitions π of [0, T ?]. Then

for each sequence ϕn of elementary processes with limn→∞ ϕ
n = ϕ in S̄ we have that

lim
n→∞

E
[

sup
0≤t≤T ?

|V k
t (ϕn)− V k

t (ϕ)|
]

= 0, k > 0,

where

V k
t (ϕ) :=

∫ t

0
ϕsdZs − k

∫ t

0
Zsd|ϕs| − kZt • |ϕt|, 0 ≤ t ≤ T ?.

Now we can define admissible trading strategies in our bond market.
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Definition 3.3.5. (a) For proportional transactions costs with proportionality factor

k > 0 a trading strategy ϕ ∈ S̄ is called admissible, if it is adapted, the random

variable (3.18) is square-integrable and if there exists M > 0 such that V k
t (ϕ) ≥ −M

a.s. for every 0 ≤ t ≤ T ?.

(b) An admissible trading strategy ϕ ∈ S̄ is called an arbitrage opportunity with pro-

portional transactions costs with proportionality factor k > 0 if V k
T ?(ϕ) ≥ 0 a.s. and

P (V k
T ?(ϕ) > 0) > 0.

(c) The market is called k-arbitrage free with proportional transactions costs with pro-

portionality factor k > 0, if for every admissible trading strategy ϕ ∈ S̄, V k
T ?(ϕ) ≥ 0

a.s. implies V k
T ?(ϕ) = 0 a.s.

3.3.2.3 No-arbitrage and average risk-neutral measure

Set φκ(x) := κ(2κ+ 1)|x|2κ−1 for x ∈ R, κ ∈ (0, 1
2) and define for 0 ≤ s ≤ T ≤ T ?

α̃(s, T ) :=
d∑
i=1

{
σ(i)(s, T )

∫ s

0

∫ T−θ

0
σ(i)(θ, θ + x)φκ(i)(s− θ)dxdθ

+

∫ T−s

0
σ(i)(s, s+ x)dx

∫ s

0
σ(i)(θ, T )φκ(i)(s− θ)dθ

}
. (3.19)

Furthermore we impose from now on the following assumptions:

(A3) For all i ∈ {1, . . . , d}, the function (t, T ) 7→
∫ T−t

0 σ(i)(t, t+s)ds is λ-Hölder continuous

on 0 ≤ t ≤ T ≤ T ? for all 1/2 < λ < 1.

(A4) There exists an integrable function γ : [0, T ?] → Rd such that < σ(t, T ), γ(t) >=

α̃(t, T ) − α(t, T ) for 0 ≤ t ≤ T ≤ T ?. Furthermore there is ϑ : [0, T ?] → R square

integrable satisfying for 0 ≤ t ≤ T ?∫ t

0
γ(s)ds =

( πκ(2κ+ 1)

Γ(1− 2κ) sin(πκ)

) 1
2

∫ t

0
[s−κIκT−((·)κ1[0,t)(·))(s)]ϑ(s)ds. (3.20)

Now we can state the main theorem of this section.

Theorem 3.3.6. Let the proportionality factor k > 0. Then there exists a probability

measure Q ∼ P (called average risk-neutral measure) such that for all 0 ≤ t ≤ T ≤ T ?

EQ[Zt(T )] = P (0, T ) (3.21)

holds. The market is k-arbitrage free with proportional transactions costs with proportion-

ality factor k > 0.

58



CHAPTER 3. FRACTIONAL BROWNIAN MOTION AND RELATED PROCESSES

Proof. Since σ(·, ·) > 0 is continuous and bounded by assumption (A2), it is also square-

integrable on [0, T ?]2. Therefore, the conditions of Lemma 2.3 and Theorem 3.1 of

Ohashi [100] are met. It follows that the market is k-arbitrage free with proportional

transactions costs with proportionality factor k > 0 and a measure Q, satisfying equa-

tion (3.21), exists.

Motivated by equation (3.21) and using Remark 3.8 of Ohashi [100], we can price con-

tingent claims under the measure Q in a formal way similar to Sottinen and Valkeila [125]:

The price of an integrable, FT -measurable contingent claim X with maturity T ∈ [0, T ?]

at time t is given by

EQ

[
X exp

(
−
∫ T

t
r(s)ds

)∣∣∣Ft]. (3.22)

Remark 3.3.7. As explained before Corollary 3.1 in Ohashi [100], there is a canonical

choice for the measure change under which (3.21) holds. This leads to Q from Theo-

rem 3.3.6.

3.3.2.4 Dynamics of the short rate under Q

We need to be aware of the dynamics of the forward rate process under the measure Q.

Recall (3.19), then by Theorem 3.1 Ohashi [100] we have that the model (3.16) under Q
has the form

f(t, T ) = f(0, T ) +

∫ t

0
α̃(s, T )ds+

d∑
i=0

∫ t

0
σ(i)(s, T )dB̃

κ(i)
(i) (s), 0 ≤ t ≤ T ≤ T ?, (3.23)

where B̃
κ(i)
(i) , i ∈ {1, . . . , d}, are independent Q-fBms.

Equation (3.22) shows that the payoff of a contingent claim must be discounted by the

short rate r before taking the conditional expectation. In the following we are interested in

models for which r is given by a fractional Vasicek model. To derive the Vasicek dynamics

we have to impose an additional separability assumption on the volatility coefficient. This

is similar to the situation in the classical Brownian HJM model of Heath et al. [72]. For

details we refer to Section 5.3 of Brigo and Mercurio [24] and, in particular, Proposition 2.1

of Carverhill [30].

Assumption 3.3.8. In addition to Assumptions (A1) - (A4) the volatility coefficients

σ(i)(·, ·) factorizes: σ(i)(t, T ) = ξ(i)(t)ν(T ), 0 ≤ t ≤ T ≤ T ?, where ξ(i)(·) and ν(·) are

strictly positive and ν(·) is differentiable, i ∈ {1, . . . , d}. Further ξ(i)(·) is of bounded

p(i)-variation for some 0 < p(i) < 1/(1
2 − κ

(i)), i ∈ {1, . . . , d}.
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Now we calculate the short rate for 0 ≤ t ≤ T ? under Q

r(t) = f(t, t) = f(0, t) +

∫ t

0
α̃(s, t)ds+

d∑
i=0

∫ t

0
σ(i)(s, t)dB̃

κ(i)
(i) (s)

= f(0, t) +

∫ t

0
α̃(s, t)ds+ ν(t)

d∑
i=0

∫ t

0
ξ(i)(s)dB̃

κ(i)
(i) (s).

Furthermore for 0 ≤ t ≤ T ?∫ t

0
α̃(s, t)ds =

d∑
i=0

{∫ t

0

[
σ(i)(s, t)

∫ s

0

∫ t−θ

0
σ(i)(θ, θ + x)φκ(i)(s− θ)dxdθ

+

∫ t−s

0
σ(i)(s, s+ x)dx

∫ s

0
σ(i)(θ, t)φκ(i)(s− θ)dθ

]
ds
}

=
d∑
i=0

{∫ t

0

[
σ(i)(s, t)

∫ s

0

∫ t−θ

0
σ(i)(θ, θ + x)φκ(i)(s− θ)dxdθ

+

∫ t−s

0
σ(i)(s, s+ x)dx

∫ s

0
σ(i)(θ, t)φκ(i)(s− θ)dθ

]
ds
}

= ν(t)
d∑
i=0

{∫ t

0

[ ∫ s

0

∫ t

θ
ξ(i)(s)ξ(i)(θ)ν(x)φκ(i)(s− θ)dxdθ

+

∫ t

s
ξ(i)(s)ν(x)dx

∫ s

0
ξ(i)(θ)φκ(i)(s− θ)dθ

]
ds
}

= ν(t)
d∑
i=0

{[∫ t

0

∫ s

0
ξ(i)(s)ξ(i)(θ)ε(i)(θ, t)φκ(i)(s− θ)dθds

+

∫ t

0

∫ s

0
ξ(i)(s)ξ(i)(θ)ε(s, t)φκ(i)(s− θ)dθds

]}
,

where ε(s, t) :=
∫ t
s ν(x)dx, i ∈ {1, . . . , d}.

The function t 7→ f(0, t) is by assumption differentiable. Further we have the following

lemma.

Lemma 3.3.9. The function [0, T ?]→ R, t 7→
∫ t

0 α̃(s, t)ds is differentiable.

Proof. Since ν is by Assumption 3.3.8 differentiable, we just need to show that for

i ∈ {1, . . . , d} the functions

t 7→
∫ t

0

∫ s

0
(ξ(i)(s)ξ(i)(θ)ε(θ, t)φκ(i)(s− θ)dθds and (3.24)

t 7→
∫ t

0

∫ s

0
(ξ(i)(s)ξ(i)(θ)ε(s, t)φκ(i)(s− θ)dθds, (3.25)

are differentiable. Fix i ∈ {1, . . . , d}. We start by showing that the integrand function of

(3.24) is differentiable in t. This follows by the classical rule for differentiation under the
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integral sign since for all 0 ≤ t ≤ T ?∣∣∣ ∂
∂t
ξ(i)(s)ξ(i)(θ)ε(θ, t)φκ(i)(s− θ)

∣∣∣ = ξ(i)(s)ξ(i)(θ)φκ(i)(s− θ)ν(t)

≤ Cξ(i)(s)ξ(i)(θ)φκ(i)(s− θ)

for some constant C > 0 since ν is differentiable. Applying the Leipniz rule a second time

shows that (3.24) is differentiable. Similar arguments work for (3.25).

By Lemma 3.3.9 we conclude that t 7→ A(t) := f(0, t) +
∫ t

0 α̃(s, t)ds is differentiable.

Under Q we have that for 0 ≤ t ≤ T ?

r(t) = A(t) + ν(t)
d∑
i=0

∫ t

0
ξ(i)(s)dB̃

κ(i)
(i) (s)

and therefore for 0 ≤ s ≤ t ≤ T ? by using a pathwise product rule and density formula

(like in Theorem 1.3.4)

r(t)− r(s)

= A(t)−A(s) +
d∑
i=0

ν(t)

∫ t

0
ξ(i)(u)dB̃

κ(i)
(i) (u)− ν(s)

d∑
i=0

∫ s

0
ξ(i)(u)dB̃

κ(i)
(i) (u)

=

∫ t

s
A′(u)du+

d∑
i=0

{∫ t

s

(∫ u

0
ξ(i)(v)dB̃

κ(i)
(i) (v)

)
dν(u)

+

∫ t

s
ν(u)d

(∫ u

0
ξ(i)(v)dB̃

κ(i)
(i) (v)

)}
=

∫ t

s
A′(u)du+

d∑
i=0

{∫ t

s
ν ′(u)

(∫ u

0
ξ(i)(v)dB̃

κ(i)
(i) (v)

)
du

+

∫ t

s
ν(u)ξ(i)(u)dB̃

κ(i)
(i) (u)

}
=

∫ t

s

[
A′(u) + ν ′(u)

d∑
i=0

(∫ u

0
ξ(i)(v)dB̃

κ(i)
(i) (v)

)]
du

+

d∑
i=0

∫ t

s
ν(u)ξ(i)(u)dB̃

κ(i)
(i) (u)

=

∫ t

s

[
A′(u) + ν ′(u)

r(u)−A(u)

ν(u)

]
du+

d∑
i=0

∫ t

s
ν(u)ξ(i)(u)dB̃κ(i)(u)

=

∫ t

s

[
k(u)− a(u)r(u)

]
du+

d∑
i=0

∫ t

s
σ(i)(u)dB̃κ(i)(u),
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where

k(t) = A′(t)− ν ′(t)

ν(t)
A(t), (3.26)

a(t) = −ν
′(t)

ν(t)
, (3.27)

σ(i)(t) = σ(i)(t, t) = ξ(i)(t)ν(t), i ∈ {1, . . . , d}, t ∈ [0, T ?]. (3.28)

Therefore the short rate is described by a Vasicek dynamic under Q.

From now on we want to model directly under the measure Q. The only question

which remains is that given k(·), a(·), σ(i)(·), i ∈ {1, . . . , d}, continuous on [0, T ?], is it

possible to find (not necessarily unique) ξ(·), ν(·), f(0, ·) such that (3.26) - (3.28) holds?

The next lemma addresses this problem.

Lemma 3.3.10. Given k(·), a(·), σ(i)(·), i ∈ {1, . . . , d}, continuous on [0, T ?], take

ν(t) = exp
(
−
∫ t

0
a(s)ds

)
,

ξ(i)(t) = σ(i)(t) exp
(∫ t

0
a(s)ds

)
, i ∈ {1, . . . , d},

and let f(0, ·) be a solution of the first order linear differential equation

∂

∂t
f(0, t) = −a(t)f(0, t) +

[
k(t)− a(t)

∫ t

0
α̃(s, t)ds− ∂

∂t

∫ t

0
α̃(s, t)ds

]
, t ∈ [0, T ?].

Then (3.26) - (3.28) are satisfied.

Proof. A solution to equation (3.27) is given by ν(t) = exp(−
∫ t

0 a(s)ds), t ∈ [0, T ?] and

therefore we get for i ∈ {1, . . . , d}

ξ(i)(t)ν(t) = σ(i)(t) exp
(∫ t

0
a(s)ds

)
ν(t) = σ(i)(t), t ∈ [0, T ?],

which shows (3.28). Remark that
∫ ·

0 α̃(s, ·)ds is already fully specified by ξ(i)(·), t ∈ [0, T ?],

and ν(·). If f(0, ·) solves the first order linear differential equation in the assertion we get

for t ∈ [0, T ?]

∂

∂t
f(0, t) = −a(t)f(0, t) +

[
k(t)− a(t)

∫ t

0
α̃(s, t)ds− ∂

∂t

∫ t

0
α̃(s, t)ds

]
⇐⇒ ∂

∂t

(
f(0, t) +

∫ t

0
α̃(s, t)ds

)
= −a(t)

[
f(0, t) +

∫ t

0
α̃(s, t)ds

]
+ k(t)

⇐⇒ A′(t) =
ν ′(t)

ν(t)
A(t) + k(t)

which shows that (3.26) is satisfied.
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3.3.3 Modeling under Q

Motivated by Section 3.3.2 we shall from now on for simplicity directly model under an

(average) risk-neutral measure Q and consider prices as (discounted) conditional expec-

tations. Remaining in this framework and given a maturity date T ? > 0 we consider a

multivariate fBm given by Bκ(t) = (B
κ(1)
(1) (t), . . . , B

κ(d)
(d) (t))T , t ∈ [0, T ?], for d ∈ N and

κ ∈ (−1
2 ,

1
2)d. The components B

κ(i)
(i) for i = 1 . . . , d are assumed to be independent. We

remark that although empirical evidence shows long range dependence in short rates and

Section 3.3.2 considered only this case, our calculations here also include κ(i) ∈ (−1
2 , 0).

Consider now for X(0) = (X(1)(0), . . . , X(n)(0))T ∈ Rd a system of d fractional Vasicek

sde’s given for i = 1, . . . , d by

dX(i)(t) = (k(i)(t)− a(t)X(i)(t))dt+ σ(i)(t)dB
κ(i)
(i) (t) , t ∈ [0, T ?]. (3.29)

We assume that k(i)(·), a(·) are continuous on [0, T ?], σ(i)(·) 6= 0, continuous with

σ(i)(·) ∈ Λ
κ(i)
T . If κ(i) ∈ (−1

2 , 0) assume further that D(i)(·, t)σ(i)(·) ∈ Λ
κ(i)
T ? for 0 ≤ t ≤ T ?

with D defined as in (3.14). Furthermore, let σ(i)(·) and 1/σ(i)(·) are of bounded p(i)-

variation for some 0 < p(i) < 1/(1
2−κ(i)). Considering (3.8), the unique solution of (3.29)

is given by X(t) = (X(1)(t), . . . , X(d)(t))T , where X(i) is defined as in (3.9).

Now for b ∈ (R+)d fixed with b 6= 0, define for t ∈ [0, T ?],

r(t) = bTX(t). (3.30)

Then it follows that Fs = σ{r(v), v ∈ [0, s]} for 0 ≤ s ≤ T ?.

3.3.4 Zero coupon bonds

The price of a zero coupon bond for a short rate given in (3.30) is calculated in the next

theorem.

Theorem 3.3.11. Assume the situation above and let 0 ≤ s ≤ t ≤ T ?. For i = 1, . . . , d

set ci(·) = D(i)(·, t)σ(i)(·) with D defined as in (3.14), and recall Ψκ
c from (1.20). For

κ ∈ (−1
2 , 0) assume further that D(i)(·, t)σ(i)(·) ∈ Λ

κ(i)
T ? . Then the price of a zero coupon
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bond B(s, t) at time s with maturity t is given by

B(s, t) = E
[
e−

∫ t
s r(v)dv

∣∣∣Fs]
=

d∏
i=1

exp

{
−b(i)

[
D(i)(s, t)X(i)(s) +

∫ t

s
D(i)(v, t)k(i)(v)dv

−
∫ s

0
Ψ
κ(i)

c(i)
(s, t, v)

k(i)(v)

σ(i)(v)
dv

+

∫ s

0
Ψ
κ(i)

c(i)
(s, t, v)

a(v)

σ(i)(v)
X(i)(v)dv

+

∫ s

0
Ψ
κ(i)

c(i)
(s, t, v)

1

σ(i)(v)
dX(i)(v)

]}
× exp

{
(b(i))2

2

[
‖c(i)(·)1[s,t](·)‖2κ(i),T ? − ‖Ψ

κ(i)

c(i)
(s, t, ·)1[0,s](·)‖2κ(i),T ?

]}
.

Proof. We calculate

B(s, t) = E
[
e−

∫ t
s r(v)dv

∣∣∣Fs] = E
[
e−

∫ t
s b

TX(v)dv
∣∣∣Fs]

=

d∏
i=1

E
[
e
∫ t
s b

(i)X(i)(v)dv
∣∣∣Fs], (3.31)

where we used the independence of the X(i) in the last equality. The result follows now

by an application of Proposition 3.1.6. The extension of the conditional characteristic

function to the whole of the complex plane C exists because of Gaussianity.
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Figure 3.1: Calculation of ‖D(·, T )1[0,T ](·)‖2κ,T ? in the fractional one-factor model for

varying κ and maturity t, using a = 4. The case κ = 0 has been calculated analytically.

Figure 3.2: Bond prices B(0, T ) in the fractional one-factor Vasicek model (3.32) for

varying κ ≥ 0 and maturity T , using constant coefficients a = 4, k = 1.5, σ = 1 and

X(0) = r(0) = 0.1. Negative κ is not relevant as explained in the introduction to this

section. Recall that κ = 0 corresponds to the Brownian Vasicek model. Prices increase

with κ as a consequence of long range dependence.

Example 3.3.12. [Fractional one-factor model] We want to compare prices in our frac-

tional model to the classical Brownian case, i.e. κ = 0. For simplicity we assume constant

coefficient functions in (3.29) and set d = 1 with b = 1. Today’s prices of the zero coupon

bonds are given by

B(0, t) = exp

{
−D(0, t)X(0)− k

∫ t

0
D(v, t)dv +

σ2

2
‖D(·, t)1[0,t](·)‖2κ,T ?

}
, (3.32)

for 0 ≤ t ≤ T ?.

Since negative κ is not relevant as explained in Section 3.3.1, we allow only for κ ∈ [0, 1
2)
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in the following steps. Standard numerical methods may be instable here, because of the

singularities in the norms in (3.32) whose exact values cannot be computed. Therefore we

apply the following discretization scheme.

Remark 3.3.13 (Numerical procedure). For κ ∈ (0, 1
2) and t ∈ [0, T ?]. We have

‖D(·, t)1[0,t](·)‖2κ,T ?

=
πκ(2κ+ 1)

Γ(1− 2κ) sin(πκ)(Γ(κ))2

∫ T ?

0
s−2κ

(∫ T ?

s

rκD(r, t)1[0,t](r)

(r − s)1−κ dr
)2
ds. (3.33)

In a first step we decompose the outer integral for n ∈ N and

0 = s0 ≤ s1 ≤ · · · ≤ sn = t∫ T ?

0
s−2κ

(∫ T ?

s

rκD(r, t)1[0,t](r)

(r − s)1−κ dr
)2
ds

=
n−1∑
i=0

∫ si+1

si

s−2κ
(∫ T ?

s

rκD(r, t)1[0,t](r)

(r − s)1−κ dr
)2
ds.

For sufficiently small intervals [si, si+1] we get a reasonable approximation by∫ T ?

s

rκD(r, t)1[0,t](r)

(r − s)1−κ dr ≈
∫ T ?

si

rκD(r, t)1[0,t](r)

(r − si)1−κ dr.

Now we take for i = 0, . . . , n − 1 a partition si = ui0 ≤ ui1 ≤ · · · ≤ uimi = si+1 for some

mi ∈ N

∫ T ?

si

rκD(r, t)1[0,t](r)

(r − si)1−κ dr =

mi−1∑
j=0

∫ uij+1

uij

rκD(r, t)1[0,t](r)

(r − si)1−κ dr

≈ 1

κ

mi−1∑
j=0

[(uij+1 − si)κ − (uij − si)κ]
(uij)

κD(uij , t) + (uij+1)κD(uij+1, t)

2

Putting everything together and using Γ(κ) · κ = Γ(κ+ 1), we obtain

‖D(·, t)1[0,t](·)‖2κ,T ?

≈ πκ(2κ+ 1)

Γ(2− 2κ) sin(πκ)(2Γ(κ+ 1))2

n−1∑
i=0

[s1−2κ
i+1 − s

1−2κ
i ]

×
[mi−1∑
j=0

[(uij+1 − si)κ − (uij − si)κ](uij)
κD(uij , t) + (uij+1)κD(uij+1, t)

]2
.

Choosing now si = 0.01i for i = 0, . . . , 100t, and uij = 0.01(i + j) for j = 0, . . . , 100t − i,
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we obtain

‖D(·, t)1[0,t](·)‖2κ,T ?

≈ πκ(2κ+ 1)

Γ(2− 2κ) sin(πκ)2Γ(κ+ 1)2
0.011+2κ

100t−1∑
i=0

(
[(i+ 1)1−2κ − i1−2κ]

×
( 100t−i−1∑

j=0

[(j + 1)κ − jκ][(i+ j)κD(0.01(i+ j), t)

+(i+ j + 1)κD(0.01(i+ j + 1), t)]
)2)

. (3.34)

Finally, examples of the norms and bond prices can be found in Figures 3.1 and 3.2.

3.4 Two-dimensional case with same driving factor

In this section we will consider the conditional characteristic function of a two-dimensional

fractional Brownian motion. In contrast to the situation of Section 3.2 we shall use a

Mandelbrot-Van Ness representation and introduce a certain dependence structure. How-

ever firstly, we want to provide a short motivation.

3.4.1 Motivation

The financial crisis of 2008/2009 showed that the counterparty risk can be significant

when considering interest rate or credit derivatives. Therefore a natural extension of

the fractional interest rate market of Section 3.3 would be the introduction of default

possibilities. The simplest structure in such a market will be a defaultable zero coupon

bond.

There are many examples, which consider the short (r) and default rate (λ) as functions

of state vectors of Markov processes; see e.g. Duffie, Filipovic and Schachermayer [45] or

Schönbucher [122], Chapter 7. Processes driven by Brownian motion are the most promi-

nent ones. We will focus on the case where r and λ are given by Vasicek models, with

possibly time-dependent coefficients, driven by fBms with fractional integration parameter

κ strictly greater than zero. As explained in Section 3.3.1 this choice is motivated by the

fact that macroeconomic variables like demand and supply, interest rates, or other eco-

nomic activity measures often exhibit long range dependence (cf. Henry and Zaffaroni [73]

for an overview).
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3.4.2 Prediction results

The case of a one-dimensional fractional Brownian motion has already been covered in

Section 3.1 and its multivariate extension with independent components followed directly

(cf. Section 3.2). Of course we can describe the dynamics of short and default rate by

such a two-dimensional Brownian motion with independent entries, however this assump-

tion would be quite unrealistic for practical applications. Instead we introduce a certain

dependence structure between two fractional Brownian motions as will be explained in a

moment. A more general approach for Molchan-Golosov fractional Lévy processes will be

covered in Chapter 4.

We introduce a bivariate fBm (Bκ, B̄κ̄) = (Bκ(t), B̄κ̄(t))t∈R with κ, κ̄ ∈ (0, 1
2). The

dependence structure between the fBm’s will be modeled as in Elliott and van der Hoek [53]

by assuming that both processes arise through an integral representation driven by the

same two-sided Brownian motion B = (B(t))t∈R, which holds in L2(Ω) and is stated in

Proposition 1.5.8:

Bκ(t) = Γ(κ+ 1)cκ

∫ ∞
−∞
Iκ−1[0,t)(s)dB(s), cκ :=

√
Γ(2κ+ 2) sin((κ+ 1/2)π)

Γ(κ+ 1)
,

B̄κ̄(t) = Γ(κ̄+ 1)cκ̄

∫ ∞
−∞
I κ̄−1[0,t)(s)dB(s), cκ̄ :=

√
Γ(2κ̄+ 2) sin((κ̄+ 1/2)π)

Γ(κ̄+ 1)
,

(3.35)

for t ∈ R, with gamma function Γ and the classical Riemann-Liouville fractional integral

from Definition 1.2.4.

Remark 3.4.1. The two fBms arising from the same Brownian motion have the econom-

ical interpretation that short rate and default rate are driven by the same market noise

and macroeconomic factors. However, the influence of this noise may be different and

depends on the long range dependence parameters as well as on the coefficient functions

of the Langevin equations.

Also it is always possible to add several independent factors driven by independent Brow-

nian motions. Using such a technique different dynamics for short and default rate can be

constructed.

The dependence between Bκ and B̄κ̄ is then given by the covariance function (see

(2.17) of Elliott and van der Hoek [53]) for 0 ≤ s, t ≤ T ? as

Cov(Bκ(t), B̄κ̄(s))

=
cκcκ̄Γ(κ+ 1)Γ(κ̄+ 1)

2 sin(π(κ+ κ̄+ 1)/2)Γ(κ+ κ̄+ 2)
[|t|κ+κ̄+1 + |s|κ+κ̄+1 + |t− s|κ+κ̄+1]. (3.36)
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Remark 3.4.2. In Section 3.4 and 3.5 we will understand integration with respect to

fBm in the L2(Ω)-sense of Pipiras and Taqqu [103]. However under certain additional

assumptions also pathwise integrals will appear. When both types of integrals exists,

they are the same in probability and therefore in distribution. For simplicity we shall

furthermore restrict ourselves to integrands in L1(R)∩L2(R). It is however not difficult to

weaken this assumption using the integration theory of Pipiras and Taqqu [103] (similar

to Section 3.1).

Using (3.35) we can show the following proposition by approximation with step func-

tions.

Proposition 3.4.3. Let f, g ∈ L1(R) ∩ L2(R). Then

E

[∫
R
f(s)dBκ(s)

∫
R
g(s)dB̄κ̄(s)

]
=

cκcκ̄Γ(κ+ 1)Γ(κ̄+ 1)(κ+ κ̄)(κ+ κ̄+ 1)

2 sin(π(κ+ κ̄+ 1)/2)Γ(κ+ κ̄+ 2)

∫
R

∫
R
f(u)g(v)|u− v|κ+κ̄−1dudv.

The following proposition is a consequence of (3.13) of Pipiras and Taqqu [103] and

equation (3.32) above.

Proposition 3.4.4. Let (Bt)t∈R be the two-sided Brownian motion of (3.35) and

κ, κ̄ ∈ (0, 1
2). For every f ∈ L1(R) ∩ L2(R) the following integrals are equal in the L2(Ω)-

sense: ∫
R
f(s)dBκ(s) = cκΓ(κ+ 1)

∫
R
Iκ−(f(·))(s)dB(s)

and ∫
R
f(s)dB̄κ̄(s) = cκ̄Γ(κ̄+ 1)

∫
R
Iκ−(f(·))(s)dB(s).

For f, g ∈ L1(R) ∩ L2(R) and κ ∈ (0, 1
2) the following inner product is finite by

Proposition 3.2 of Pipiras and Taqqu [103]:

〈f, g〉κ,∞ := κ(2κ+ 1)

∫
R

∫
R
f(u)g(v)|u− v|2κ−1dudv.

We shall denote the induced norm by ‖ · ‖κ,∞. Define further f, g ∈ L1(R) ∩ L2(R) and

κ, κ̄ ∈ (0, 1
2)

〈f, g〉κ,κ̄,∞

:=
cκcκ̄Γ(κ+ 1)Γ(κ̄+ 1)(κ+ κ̄)(κ+ κ̄+ 1)

2 sin(π(κ+ κ̄+ 1)/2)Γ(κ+ κ̄+ 2)

∫
R

∫
R
f(u)g(v)|u− v|κ+κ̄−1dudv

and denote the induced norm by ‖ · ‖κ,κ̄,∞
As a first result we provide an extension of Proposition 3.4.4:
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Lemma 3.4.5. For 0 ≤ t ≤ T let c ∈ L2([t, T ]). Let Bκ and B̄κ̄ be fBm’s as in (3.35).

Assume further that κ ≤ κ̄. Then the equality of both integrals holds in the L2(Ω)-sense:∫ T

t
c(v)dB̄κ̄(v) =

cκ̄Γ(κ̄+ 1)

cκΓ(κ+ 1)

∫
R
I κ̄−κ− (1[t,T ](·)c(·))(v)dBκ(v). (3.37)

Proof. Set aκ := cκΓ(κ+1) and aκ̄ := cκ̄Γ(κ̄+1). Then using repeatedly Proposition 3.4.4

we get ∫ T

t
c(v)dB̄κ̄(v) =

∫
R

1[t,T ](v)c(v)dB̄κ̄(v)

= aκ̄

∫
R
I κ̄−(1[t,T ](·)c(·))(v)dB(v)

=
aκ̄
aκ

∫
R
Dκ−I κ̄−(1[t,T ](·)c(·))(v)dBκ(v)

=
aκ̄
aκ

∫
R
Dκ−Iκ−I κ̄−κ− (1[t,T ](·)c(·))(v)dBκ(v)

=
aκ̄
aκ

∫
R
I κ̄−κ− (1[t,T ](·)c(·))(v)dBκ(v),

where we applied Theorem 6.1 of Samko, Kilbas and Marichev [117] in the last line.

In Section 3.1 we calculated the conditional characteristic function by using an ap-

proximation of the conditional expectation by finite sample observations. Another way of

approaching the prediction problem has been considered in Duncan [46] where the author

used a special property of the Wick product to exchange the conditional expectation and

the exponential function. However, Proposition 2 of that paper is not correct and an

erratum is Duncan and Fink [47]. For the two-dimensional case considered in this section

we shall apply a similar method as in Duncan and Fink [47]. The dependence structure

of (Bκ, B̄κ̄) will be used to apply the results of Elliott and van der Hoek [53].

First we recall some basic properties of the Wick product for fBm and refer to Biagini,

Hu, Øksendal and Zhang [20], Section 3, Elliott and van der Hoek [53] or Duncan, Hu and

Pasik-Duncan [48] for details and background.

There are various ways to introduce the Wick product and we will follow mainly

Section 3.1 of Biagini et al. [20]. Let κ ∈ (0, 1
2). First we consider for c : R → R with

‖c‖κ,∞ <∞ exponentials of the form

ε(c) := exp

{∫
R
c(s)dBκ(s)− 1

2
‖c‖κ,∞

}
(3.38)

like in (3.7) of [20]. The set E of linear combinations of these exponentials is dense in

Lp(Ω) for all p ≥ 1.
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Definition 3.4.6. For c, h : R → R with ‖c‖κ,∞, ‖h‖κ,∞ < ∞ the Wick product of the

exponentials of c, h is defined as

ε(c) � ε(h) := ε(c+ h). (3.39)

By bilinearity the Wick product is defined on the whole of E . A classical density

argument (see Theorem 3.1 of [20]) extends this definition now to Lp(Ω) for all p ≥ 1. The

two main properties of the Wick product we need in this section are summarized in the

next proposition.

Proposition 3.4.7. Let c : R→ R with ‖c‖κ,∞ <∞.

(1) Define the Wick exponential by exp�(·) :=
∑∞

i=0((·)�i/i!). Then

exp�
{∫

R
c(s)dBκ(s)

}
= exp

{∫
R
c(s)dBκ(s)− 1

2
‖c‖κ,∞

}
= ε(c). (3.40)

(2) Define Gt := σ{Bκ(s), s ∈ (a, t]} for −∞ ≤ a < t <∞. Then

E

[
exp�

{∫
R
c(s)dBκ(s)

}∣∣∣∣Gt] = exp�
{
E

[∫
R
c(s)dBκ(s)

∣∣∣∣Gt]}
Proof. Part (1) is given by (3.25) of Biagini et al. [20] and part (2) is a consequence of

(17) of Duncan [46] and the uniform convergence of the exponential Wick series.

Remark 3.4.8. For the remainder of this section define

Gt := σ{(Bκ
s , B̄

κ̄
s ), s ∈ [0, t]}, t ≥ 0.

Consider for T > 0 a bivariate fBm defined by fractional integration via a Molchan-

Golosov kernel on a compact interval (W κ, W̄ κ̄) = (W κ
t , W̄

κ̄
t )t∈[0,T ] (for details cf. Molchan

and Golosov [95], Kleptsyna, LeBreton and Roubaud [79] and Norros, Valkeila and Vir-

tamo [99]) driven by the same Bm W = (Wt)t∈[0,T ]. A straightforward calculation shows

that (W κ
t , W̄

κ̄
t )t∈[0,T ] has the same second order structure as (Bκ

t , B̄
κ̄
t )t∈[0,T ]. The equality

of the finite dimensional distributions, i.e.

(W κ
t , W̄

κ̄
t )t∈[0,T ]

d
= (Bκ

t , B̄
κ̄
t )t∈[0,T ] (3.41)

follows because both are Gaussian processes. Furthermore we have

(FWκ

t )t∈[0,T ] = (FWt )t∈[0,T ] = (FW̄ κ̄

t )t∈[0,T ]

and therefore

E[f(W κ(t))|FWκ

s ] = E[f(W κ(t))|FWκ

s ∨ FW̄ κ̄

s ]
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for all measurable functions f : R→ R such that the conditional expectation exists. From

(3.41) follows also the equality of the conditional distributions and therefore by p. 290 of

Dudley [43] that

E[f(Bκ(t))|FBκs ] = E[f(Bκ(t))|FBκs ∨ F B̄κ̄s ].

Next we need an analog of the Theorem 3.1.1 for (Bκ, B̄κ̄), where now in the expo-

nential there is the sum of two integrals and the dependence between Bκ and Bκ̄ matters.

We shall proceed as follows. First we transform both integrals with respect to Bκ and B̄κ,

respectively, into one integral with respect to Bκ and invoke afterwards Proposition 1.5.15.

The proof will rely on the following technical lemma.

Lemma 3.4.9. Given κ, κ̄ ∈ (0, 1
2) assume κ̄ ≥ κ. Let f : R→ R with norm

||f(·)||κ,∞ <∞ and g ∈ L1(R) ∩ L2(R). Then we have(
aκ̄
aκ

)2 ∥∥I κ̄−κ− (g(·))(·)
∥∥2

κ,∞ = ‖g(·)‖2κ̄,∞ , (3.42)

aκ̄
aκ

〈
f(·), I κ̄−κ− (g(·))(·)

〉
κ,∞ = 〈f(·), g(·)〉κ,κ̄,∞ , (3.43)

where aκ := cκΓ(κ+ 1) and aκ̄ := cκ̄Γ(κ̄+ 1).

Proof. We know from Lemma 3.4.5 that in the L2(Ω)-sense∫
R
g(v)dB̄κ̄(v) =

aκ̄
aκ

∫
R
I κ̄−κ− (g(·))(v)dBκ(v)

and, therefore, variances are equal. Equation (3.42) follows. Furthermore, since equality

in L2(Ω) implies a.s. equality, we have with Lemma 3.4.5 again in the L2(Ω)-sense∫
R
f(v)dBκ(v)

∫
R
g(v)dB̄κ̄(v) =

∫
R
f(v)dBκ(v)

aκ̄
aκ

∫
R
I κ̄−κ− (g(·))(v)dBκ(v).

and, therefore, by Proposition 3.4.3

〈f(·), g(·)〉κ,κ̄,∞ = E

[∫
R
f(v)dBκ(v)

∫
R
g(v)dB̄κ̄(v)

]
= E

[∫
R
f(v)dBκ(v)

aκ̄
aκ

∫
R
I κ̄−κ− (g(·))(v)dBκ(v)

]
=

aκ̄
aκ

〈
f(·), I κ̄−κ− (g(·))(·)

〉
κ,∞

Now we are ready to state and prove the result regarding the conditional distribution

of (Bκ, B̄κ̄). Since we want to use the following formula for pricing defaultable zero bonds

in Section 3.5 we will directly state it in the form of the Laplace transform.
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Theorem 3.4.10. For 0 ≤ t < T let c, c̄ ∈ L2([t, T ]). Further let Bκ and B̄κ̄ be fBm’s as

in (3.35). Then

E

[
exp

{∫ T

t
c(v)dBκ(v) +

∫ T

t
c̄(v)dB̄κ̄(v)

}∣∣∣∣Gt]
= eW (t,T )−V (t,T ) exp

{∫ t

0
Ψκ
c (t, T, v)dBκ(v) +

∫ t

0
Ψκ̄
c̄ (t, T, v)dB̄κ̄(v)

}
.

(3.44)

where

W (t, T ) =
1

2

(∥∥1[t,T ](·)c(·)
∥∥2

κ,∞ + 2
〈
1[t,T ](·)c(·),1[t,T ](·)c̄(·)

〉
κ,κ̄,∞

+
∥∥1[t,T ](·)c̄(·)

∥∥2

κ̄,∞

)
,

V (t, T ) =
1

2

(∥∥1[0,t](·)Ψκ
c (t, T, ·)

∥∥2

κ,∞

+2
〈
1[0,t](·)Ψκ

c (t, T, ·),1[0,t](·)Ψκ̄
c̄ (t, T, ·)

〉
κ,κ̄,∞

+
∥∥1[0,t](·)Ψκ̄

c̄ (t, T, ·)
∥∥2

κ̄,∞

)
.

and Ψκ
c (t, T, ·), Ψκ̄

c̄ (t, T, ·) are as in (1.20) and belong to L2([0, t]) for all 0 ≤ t ≤ T .

Proof. To predict the exponential we transform it into a Wick exponential using Lemma 3.4.5

and then Proposition 3.4.7 as follows. W.l.o.g. assume that κ ≤ κ̄. Define aκ = cκΓ(κ+1)

and aκ̄ = cκ̄Γ(κ̄+ 1). Then by Lemma 3.4.5 and Proposition 3.4.7

exp

{∫ T

t
c(v)dBκ(v) +

∫ T

t
c̄(v)dB̄κ̄(v)

}
= exp

{∫
R

(
1[t,T ](v)c(v) +

aκ̄
aκ
I κ̄−κ− (1[t,T ](·)c̄(·))(v)

)
dBκ(v)

}
= eW (t,T ) exp�

{∫
R

(
1[t,T ](v)c(v) +

aκ̄
aκ
I κ̄−κ− (1[t,T ](·)c̄(·))(v)

)
dBκ(v)

}
and, as preliminary version,

W (t, T ) =
1

2

∫
R

∫
R

(
1[t,T ](u)c(u) +

aκ̄
aκ
I κ̄−κ− (1[t,T ](·)c̄(·))(u)

)
×
(

1[t,T ](v)c(v) +
aκ̄
aκ
I κ̄−κ− (1[t,T ](·)c̄(·))(v)

)
|u− v|2κ−1dudv

=
1

2

(∥∥1[t,T ](·)c(·)
∥∥2

κ,∞ + 2
aκ̄
aκ

〈
1[t,T ](·)c(·), I κ̄−κ− (1[t,T ](·)c̄(·))(·)

〉
κ,∞

+

(
aκ̄
aκ

)2 ∥∥I κ̄−κ− (1[t,T ](·)c̄(·))(·)
∥∥2

κ,∞

)
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Next we take conditional expectation of the exponential integral which is nothing else than

an L2(Ω) projection. Therefore, Proposition 3.4.7 and Remark 3.4.8 apply, giving

E

[
exp

{∫ T

t
c(v)dBκ(v) +

∫ T

t
c̄(v)dB̄κ̄(v)

}∣∣∣∣Gt]
= eW (t,T )E

[
exp�

{∫
R

(
1[t,T ](v)c(v) +

aκ̄
aκ
I κ̄−κ− (1[t,T ](·)c̄(·))(v)

)
dBκ(v)

}∣∣∣∣Gt]
= eW (t,T ) exp�

{
E

[∫
R

(
1[t,T ](v)c(v) +

aκ̄
aκ
I κ̄−κ− (1[t,T ](·)c̄(·))(v)

)
dBκ(v)

∣∣∣∣Gt]} .
Now transform the integral in the conditional expectation back and apply the predic-

tion formula from Proposition 1.5.15. Transforming the Wick exponential in a classical

exponential yields the term

V (t, T )

=
1

2

∫
R

∫
R

(
1[0,t](u)Ψκ

c (t, T, u) +
aκ̄
aκ
I κ̄−κ− (1[0,t](·)Ψκ̄

c̄ (t, T, ·))(u)

)
×
(

1[0,t](v)Ψκ
c (t, T, v) +

aκ̄
aκ
I κ̄−κ− (1[0,t](·)Ψκ̄

c̄ (t, T, ·))(v)

)
|u− v|2κ−1dudv

=
1

2

(∥∥1[0,t](·)Ψκ
c (t, T, ·)

∥∥2

κ,∞

+2
aκ̄
aκ

〈
1[0,t](·)Ψκ

c (t, T, ·), I κ̄−κ− (1[0,t](·)Ψκ̄
c̄ (t, T, ·))(·)

〉
κ,∞

+

(
aκ̄
aκ

)2 ∥∥I κ̄−κ− (1[0,t](·)Ψκ̄
c̄ (t, T, ·))(·)

∥∥2

κ,∞

)
.

Finally, we transform the indefinite integral I κ̄−κ− within the conditional expectation back

using Lemma 3.4.5. Combining these two steps yields (3.44). The final versions of V (t, T )

and W (t, T ) can be calculated by Lemma 3.4.9.

3.5 Application: Defaultable bonds and credit derivatives

Using the results of Section 3.3 we will again directly model under an (average) risk-neutral

measure Q from now on and consider prices as conditional expectations. Given T ? > 0

and a complete probability space (Ω,F ,Q) we will for notational convenience work with

the bivariate fBm (Bκ, B̄κ̄) from Section 3.4 which shall be a fBm under Q and adapted

to the filtration (Ft)0≤t≤T ? by assumption for the rest of the section.

Now we will consider defaultable bonds as specific contingent claims.
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3.5.1 Defaultable claims

Let H be the default indicator process given by

H(t) = 1{τ≤t}, 0 ≤ t ≤ T ?,

where τ is an (Ft)0≤t≤T ?-stopping time, representing the default time of some firm or

financial instrument. We denote by (Ht)0≤t≤T ? the filtration generated by H. We assume

further that there exists a subfiltration (Gt)0≤t≤T ? of (Ft)0≤t≤T ? such that

Ft := Gt ∨Ht, 0 ≤ t ≤ T ?,

Assumption 3.5.1 (Market structure; cf. Frey and Backhaus [62], Ass. 3.1). Remain-

ing in the framework of the most reduced-form credit risk models in the literature we

assume that there is a (Gt)0≤t≤T ?-progressive stochastic process λ = (λt)0≤t≤T ? modeling

the intensity of H with the following properties (see also Corollary 5.1.5 of Bielecki and

Rutkowski [21]): λ is positive,
∫ t

0 λ(s)ds <∞ a.s. for all 0 ≤ t ≤ T ? and it satisfies

P (τ > t | Gt) = E[1−H(t) | Gt] = exp

{
−
∫ t

0
λ(s)ds

}
. (3.45)

Moreover, defining G∞ :=
∨

0≤t≤T ? Gt, for all bounded G∞-measurable random variables η,

we have

E[η | Ft] = E[η | Gt], 0 ≤ t ≤ T ?. (3.46)

We call λ the default rate.

Now we have to specify the joint dynamics of r and λ. Recall the bivariate fBm from

Section 3.4. We model the short rate r and the default rate λ as pathwise solutions to

Langevin equations on [0, T ?]:

dr(t) = (k(t)− a(t)r(t))dt+ σ(t)dBκ(t), r(0) = r0 ∈ R,

dλ(t) = (k̄(t)− ā(t)λ(t))dt+ σ̄(t)dB̄κ̄(t) λ(0) = λ0 ∈ R, (3.47)

where k(·), k̄(·), a(·), ā(·) are continuous and locally integrable on [0, T ?]. Further we as-

sume that σ(·), σ̄(·) > 0 are continuous and that σ(·), 1/σ(·) are of bounded p-variation

for some 0 < p < 1/(1
2 − κ) and that σ̄(·), 1/σ̄(·) are of bounded p̄-variation for some

0 < p̄ < 1/(1
2 − κ̄) on [0, T ?].

Although both fBms are driven by the same noise, its influence can vary through

different coefficient functions of the Langevin equations.

Note that it is also possible to model different dynamics in r and λ by adding several in-

dependent factors driven by independent Brownian motions as explained in Remark 3.4.1.
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Lemma 3.5.2. Under the above conditions the pathwise solutions of the sde’s (3.47) are

given for 0 ≤ t ≤ T ≤ T ? by

r(T ) = r(t)e−
∫ T
t a(u)du +

∫ T

t
e−

∫ T
s a(u)duk(s)ds+

∫ T

t
e−

∫ T
s a(u)duσ(s)dBκ(s),

(3.48)

λ(T ) = λ(t)e−
∫ T
t ā(u)du +

∫ T

t
e−

∫ T
s ā(u)duk̄(s)ds+

∫ T

t
e−

∫ T
s ā(u)duσ̄(s)dB̄κ̄(s),

(3.49)

where the fBm integrals can be considered in the L2(Ω)- or pathwise sense, cf. Young [134]

and Section 1.3.

Now the non-observable fBms can be replaced by observable processes given by solu-

tions to (3.47).

Proposition 3.5.3. Under the above conditions we have for 0 ≤ t ≤ T ≤ T ?

dBκ(t) =

(
−k(t)

σ(t)
+
a(t)

σ(t)
r(t)

)
dt+

1

σ(t)
dr(t) and

dB̄κ̄(t) =

(
− k̄(t)

σ̄(t)
+
ā(t)

σ̄(t)
λ(t)

)
dt+

1

σ̄(t)
dλ(t).

Proof. By Lemma 3.5.2 we have for 0 ≤ t ≤ T ≤ T ?∫ T

t
e−

∫ T
s a(v)dvσ(s)dBκ(s) = r(T )− r(t)e−

∫ T
t a(v)dv −

∫ T

t
e−

∫ T
s a(v)dvk(s)ds

and, applying the density formula of Theorem 1.3.4 we get for 0 ≤ t ≤ T ≤ T ?

Bκ(T )−Bκ(t)

=

∫ T

t

e
∫ T
u a(v)dv

σ(u)
d

(
−
∫ T

u
e−

∫ T
s a(v)dvσ(s)dBκ(s)

)
=

∫ T

t

e
∫ T
u a(v)dv

σ(u)
d

(∫ T

u
e−

∫ T
s a(v)dvk(s)ds+ r(u)e−

∫ T
u a(v)dv − r(T )

)
= −

∫ T

t

k(u)

σ(u)
du+

∫ T

t

a(u)

σ(u)
r(u)du+

∫ T

t

1

σ(u)
dr(u).

The second equation can be obtained similarly.

Corollary 3.5.4. Let 0 ≤ t ≤ T ?. Then the sum r(t) + λ(t) is normally distributed with
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mean zero and variance given by

κ(2κ+ 1)

∫ t

0

∫ t

0
e−

∫ t
u a(w)dw−

∫ t
v a(w)dwσ(u)σ(v)|u− v|2κ−1dudv

+ 2ρ(κ+ κ̄)(κ+ κ̄+ 1)

∫ t

0

∫ t

0
e−

∫ t
u a(w)dw−

∫ t
v ā(w)dwσ(u)σ̄(v)|u− v|κ+κ̄−1dudv

+ κ̄(2κ̄+ 1)

∫ t

0

∫ t

0
e−

∫ t
u ā(w)dw−

∫ t
v ā(w)dwσ̄(u)σ̄(v)|u− v|2κ̄−1dudv, (3.50)

where the covariance of the two integrals is given by the second term of (3.50). Here

ρ =
cκcκ̄Γ(κ+ 1)Γ(κ̄+ 1)

2 sin(π(κ+ κ̄+ 1)/2)Γ(κ+ κ̄+ 2)
≥ 0.

Remark 3.5.5. Corollary 3.5.4 implies that short rate and default rate are positively

correlated, which makes sense economically. A high default rate indicates a higher prob-

ability of default before maturity. An investor will, therefore, request a compensation by

a higher interest rate before taking this risk.

The information filtration given by the short rate and the default rate processes is now

Gt = σ{(rs, λs), s ∈ [0, t]} = σ{(Bκ
s , B̄

κ̄
s ), s ∈ [0, t]}, 0 ≤ t ≤ T ?.

Let 0 ≤ t ≤ T ≤ T ? and X be FT -measurable. Since the contingent claim 1{τ>T} is

also FT -measurable we can apply equation (3.22) to get for the price of the defaultable,

FT -measurable, integrable contingent claim 1{τ>T}X at time t

E
[
1{τ>T}Xe

−
∫ T
t r(s)ds

∣∣∣Ft]. (3.51)

Considering (3.51) and Lemma 13.2 of Filipovic [56] the price of a defaultable, FT -

measurable, integrable contingent claim 1{τ>T}X is for 0 ≤ t ≤ T ≤ T ? given by

B(t, T ) = E
[
1{τ>T}Xe

−
∫ T
t r(s)ds

∣∣∣Ft] = 1{τ>t}E
[
e−

∫ T
t (r(s)+λ(s))dsX

∣∣∣Gt]. (3.52)

Remark 3.5.6. Setting X = 1 we get the situation of a defaultable zero coupon bond:

B(t, T ) = 1{τ>t}E
[
e−

∫ T
t (r(s)+λ(s))ds

∣∣∣Gt].
3.5.2 Defaultable zero coupon bonds

Using the Remark 3.5.6 the pricing of a defaultable zero coupon bond boils down to the

situation of a two-factor short rate model. However in contrast to Section 3.3.4 the two

processes are dependent. Invoking Theorem 3.4.10 solves this issue and provides us with

a analytic formula for the bond price manifesting a similar structure for the price as in

the affine Markovian case.
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Theorem 3.5.7. Let 0 ≤ t < T ≤ T ?. Set D(t, T ) :=
∫ T
t e−

∫ s
t a(u)duds,

D̄(t, T ) :=
∫ T
t e−

∫ s
t ā(u)duds and assume that D(·, T )σ(·), D̄(·, T )σ̄(·) ∈ L2([t, T ]). Then

B(t, T ) = 1{τ>t}e
−A(t,T )−D(t,T )r(t)−D̄(t,T )λ(t), (3.53)

where

A(t, T ) = V (t, T )−W (t, T ) +

∫ T

t

(
D(v, T )k(v) + D̄(v, T )k̄(v)

)
dv

+

∫ t

0
Ψκ
c (t, T, v)dBκ(v) +

∫ t

0
Ψκ̄
c̄ (t, T, v)dB̄κ̄(v).

Here V (t, T ), W (t, T ) are given in Theorem 3.4.10 and Ψκ
c (t, T, ·), Ψκ̄

c̄ (t, T, ·) are as in

(1.20) with c(·) = D(·, T )σ(·), c̄(·) = D̄(·, T )σ̄(·). Furthermore log(B(t, T )) is normally

distributed with

E[log(B(t, T ))] = −D(t, T )e−
∫ t
0 a(u)dur(0)− D̄(t, T )e−

∫ t
0 ā(u)duλ(0)

−D(t, T )

∫ t

0
e−

∫ t
v a(u)duk(v)dv − D̄(t, T )

∫ t

0
e−

∫ t
v ā(u)duk̄(v)dv

−
∫ T

t
(D(v, T )k(v) + D̄(v, T )k̄(v))dv − V (t, T ) +W (t, T ) ,

Var(log(B(t, T )) =
∥∥∥(Ψκ

c (t, T, ·) +D(t, T )e−
∫ t
· a(u)duσ(·)

)
1[0,t](·)

∥∥∥2

κ,∞

+2
〈(

Ψκ
c (t, T, ·) +D(t, T )e−

∫ t
· a(u)duσ(·)

)
1[0,t](·),(

Ψκ̄
c̄ (t, T, ·) + D̄(t, T )e−

∫ t
· ā(u)duσ̄(·)

)
1[0,t](·)

〉
κ,κ̄,∞

+
∥∥∥(Ψκ̄

c̄ (t, T, ·) + D̄(t, T )e−
∫ t
· ā(u)duσ̄(·)

)
1[0,t](·)

∥∥∥2

κ̄,∞
.

Proof. The case t = 0 is trivial by (3.50), so let t > 0. We obtain from Lemma 3.5.2 and

Fubini’s Theorem (Theorem 1 of Krvavich and Mishura [83])∫ T

t
(r(s) + λ(s))ds

=

∫ T

t

[
r(t)e−

∫ s
t a(u)du +

∫ s

t
e−

∫ s
v a(u)duk(v)dv +

∫ s

t
e−

∫ s
v a(u)duσ(v)dBκ(v)

]
ds

+

∫ T

t

[
λ(t)e−

∫ s
t ā(u)du +

∫ s

t
e−

∫ s
v ā(u)duk̄(v)dv +

∫ s

t
e−

∫ s
v ā(u)duσ̄(v)dB̄κ̄(v)

]
ds

= D(t, T )r(t) +

∫ T

t
D(v, T )k(v)dv +

∫ T

t
D(v, T )σ(v)dBκ(v)

+D̄(t, T )λ(t) +

∫ T

t
D̄(v, T )k̄(v)dv +

∫ T

t
D̄(v, T )σ̄(v)dB̄κ̄(v). (3.54)
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By Theorem 3.4.10 we have

E

[
exp

{∫ T

t
D(v, T )σ(v)dBκ(v) +

∫ T

t
D̄(v, T )σ̄(v)dB̄κ̄(v)

}∣∣∣∣Gt]
= eW (t,T )−V (t,T ) exp

{∫ t

0
Ψκ
c (t, T, v)dBκ(v) +

∫ t

0
Ψκ̄
c̄ (t, T, v)dB̄κ̄(v)

}
.

Now we get for the price of the defaultable zero coupon bond by

B(t, T ) = 1{τ>t}E
[
e−

∫ T
0 (r(s)+λ(s))ds

∣∣∣Gt]
= 1{τ>t}e

−D(t,T )r(t)−
∫ T
t D(v,T )k(v)dv−D̄(t,T )λ(t)−

∫ T
t D̄(v,T )k̄(v)dv

×E
[
exp

{
−
∫ T

t
D(v, T )σ(v)dBκ(v)−

∫ T

t
D̄(v, T )σ̄(v)dB̄κ̄(v)

} ∣∣∣Gt]
= 1{τ>t}e

−D(t,T )r(t)−
∫ T
t D(v,T )k(v)dv−D̄(t,T )λ(t)−

∫ T
t D̄(v,T )k̄(v)dv

×eW (t,T )−V (t,T ) exp

{
−
∫ t

0
Ψκ
c (t, T, v)dBκ(v)−

∫ t

0
Ψκ̄
c̄ (t, T, v)dB̄κ̄(v)

}
= 1{τ>t}e

−A(t,T )−D(t,T )r(t)−D̄(t,T )λ(t)

with A(t, T ), c and c̄ as given in the assertion. The formulas for the expectation and

variance of log(B(t, T )) can be obtained by simple calculations.

Remark 3.5.8. If we compare (3.53) with Proposition 7.2 of Schönbucher [122], we realize

that in the case t = 0 the zero coupon bond prices differ only by a deterministic factor.

However, if we calculate the price at time t > 0, the whole paths of the fractional Brownian

motions up to time t enter because of the dependent increments. Those integrals do not

appear in a Markovian model.

By Proposition 3.5.3 we rewrite the bond price in terms of r and λ.

Corollary 3.5.9. In the situation of Theorem 3.5.7 we have for 0 ≤ t < T ≤ T ?

B(t, T ) = 1{τ>t} exp
{
− Ã(t, T )−D(t, T )r(t)− D̄(t, T )λ(t)

}
× exp

{
−
∫ t

0
(Ψκ

c (t, T, v)
a(t)

σ(t)
r(t) + Ψκ̄

c̄ (t, T, v)
ā(t)

σ̄(v)
λ(t))dv

}
× exp

{
−
∫ t

0
Ψκ
c (t, T, v)

1

σ(v)
dr(v)−

∫ t

0
Ψκ̄
c̄ (t, T, v)

1

σ̄(v)
dλ(v)

}
where Ψκ

c (t, T, ·), Ψκ̄
c̄ (t, T, ·) are as in (1.20) with c(·) = D(·, T )σ(·), c̄(·) = D̄(·, T )σ̄(·) and

Ã(t, T ) = V (t, T )−W (t, T ) +

∫ T

t

(
D(v, T )k(v) + D̄(v, T )k̄(v)

)
dv

with W (t, T ) and V (t, T ) as in Theorem 3.4.10.
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3.5.3 Option pricing

Now we explain how derivatives prices can be calculated. First we aim for a European

call price with a defaultable zero coupon bond as underlying. Today’s price can be found

similar to the classical Brownian case and a closed formula is obtained. For more general

options and times, Fourier techniques can be applied and we show, how to do this.

In Theorem 3.5.11 below we will price a European call option invoking a change of

numéraire. Therefore, we need a Girsanov theorem. For the elementary case, where we

the drift of a fBm is changed by a deterministic factor, the measure change has been

derived in Norros, Valkeila and Virtamo [99], Theorem 4.1, using pathwise integration. In

our case we need some result for the other direction. We need to know the distribution

of a fBm after a given measure change. Theorem 3.3 of Duncan et al. [48] considers a

general situation, which we can use. Moreover, their result also covers the result of Norros,

Valkeila and Virtamo [99].

Proposition 3.5.10. Let 0 ≤ t < T < S ≤ T ?. Consider a European call at strike K > 0

and maturity T based on a defaultable zero coupon bond maturing at time S as underlying

given by the contingent claim

1{τ>T}(B(T, S)−K)+.

At time t the price V(t, T, S) is given by

V(t, T, S) = 1{τ>t}E
[
e−

∫ T
t (r(s)+λ(s))ds(B(T, S)−K)+

∣∣∣Gt]
= 1{τ>t}B(t, T )ET

[
(B(T, S)−K)+

∣∣Gt] , (3.55)

where ET is the expectation with respect to the T -forward measure defined by the Radon-

Nikodym derivative

dQT

dQ
= exp

{
−
∫ T

0
(r(s) + λ(s))ds

}
e−B(0,T ). (3.56)

Proof. The first equality follows by (3.52). As in the classical Brownian motion case we

calculate the European call price by means of a T -forward measure (using the expressions

defined in Theorem 3.5.7)

dQT

dQ
= exp

{
−
∫ T

0
(r(s) + λ(s))ds

}
e−B(0,T )

= exp

{
−
∫ T

0
D(v, T )σ(v)dBκ(v)−

∫ T

0
D̄(v, T )σ̄(v)dB̄κ̄(v)−W (0, T )

}
Using Bayes’ theorem for conditional expectations we obtain (3.55).
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Denote by N the standard normal distribution function.

Theorem 3.5.11. Let 0 < T < S ≤ T ?. At time 0 the price V(0, T, S) of a European call

at strike K > 0 and maturity T based on a defaultable zero coupon bond maturing at time

S as underlying is given by

V(0, T, S) = B(0, T )

×
{
e

Σ(0,T,S)2

2
−A(0,T,S)N

(
−A(0, T, S) + log(K)

Σ(0, T, S)
+ Σ(0, T, S)

)
−KN

(
−A(0, T, S) + log(K)

Σ(0, T, S)

)}
with

A(0, T, S) = V (T, S)−W (T, S) +

∫ S

T

(
D(v, S)k(v) + D̄(v, S)k̄(v)

)
dv

+D(T, S)

(
r(0)e−

∫ T
0 a(u)du +

∫ T

0
e−

∫ T
v a(u)duk(v)dv

)
+D̄(T, S)

(
λ(0)e−

∫ T
0 ā(u)du +

∫ T

0
e−

∫ T
v ā(u)duk̄(v)dv

)
−
〈
Φ(·)1[0,T ](·), D(·, T )σ(·)1[0,T ](·)

〉
κ,∞

−
〈
Φ(·)1[0,T ](·), D̄(·, T )σ̄(·)1[0,T ](·)

〉
κ,κ̄,∞

−
〈
Φ̄(·)1[0,T ](·), D(·, T )σ(·)1[0,T ](·)

〉
κ,κ̄,∞

−
〈
Φ̄(·)1[0,T ](·), D̄(·, T )σ̄(·)1[0,T ](·)

〉
κ̄,∞

where V (T, S),W (T, S) are as in Theorem 3.4.10. Furthermore,

Σ(0, T, S)2 = V ar

(
−
∫ T

0
Φ(v)dBκ(v)−

∫ T

0
Φ̄(v)dB̄κ̄(v)

)
=

∥∥1[0,T ](·)Φ(·)
∥∥2

κ,∞ + 2
〈
1[0,T ](·)Φ(·),1[0,T ](·)Φ̄(·)

〉
κ,κ̄,∞

+
∥∥1[0,T ](·)Φ̄(·)

∥∥2

κ̄,∞ . (3.57)

Here we have set

Φ(·) := Ψκ
c (S, T, ·) +D(T, S)e−

∫ S
· a(u)duσ(·) and

Φ̄(·) := Ψκ̄
c̄ (S, T, ·) + D̄(T, S)e−

∫ S
· ā(u)duσ̄(·), (3.58)

where Ψκ
c (S, T, ·), Ψκ̄

c̄ (S, T, ·) are as in (1.20) with c(·) = D(·, S)σ(·), c̄(·) = D̄(·, S)σ̄(·).

Proof. W.l.o.g. assume κ̄ ≥ κ. Recall B(S, T ) from Theorem 3.5.7. We replace r(S) and

λ(S) as in the proof of Theorem 3.5.7 by the solutions to the sde’s given in Lemma 3.5.2.
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Then we collect those terms, which are deterministic and those, which are not. This yields

the following definition of a function F on the paths of the fBm Bκ as

F (Bκ) :=(
exp

{
−A(0, T, S)−

∫
R

(
Φ(v)1[0,T ](v) +

aκ̄
aκ
I κ̄−κ− (1[0,T ](·)Φ̄(·))(v)

)
dBκ(v)

}
−K

)
+

with Φ and Φ̄ as in (3.58) and

A(0, T, S) = V (T, S)−W (T, S) +

∫ S

T

(
D(v, S)k(v) + D̄(v, S)k̄(v)

)
dv

+D(T, S)

(
r(0)e−

∫ T
0 a(u)du +

∫ T

0
e−

∫ T
v a(u)duk(v)dv

)
+D̄(T, S)

(
λ(0)e−

∫ T
0 ā(u)du +

∫ T

0
e−

∫ T
v ā(u)duk̄(v)dv

)

where V (T, S),W (T, S) are as in Theorem 3.4.10. Starting with (3.55) from Proposi-

tion 3.5.10 we obtain

V(0, T, S) = B(0, T )ET [(B(T, S)−K)+]

= B(0, T )ET [F (Bκ)]

= B(0, T )E

[
F

(
Bκ + κ(2κ+ 1)

∫ ·
−∞

∫ ∞
−∞

Υ(v)|v − s|2κ−1dv

)
ds

]

with

Υ(v) := −
(
D(v, T )σ(v)1[0,T ](v) +

aκ̄
aκ
I κ̄−κ− (1[0,T ](·)D̄(·, T )σ̄(·))(v)

)
.

For the last equality we applied Theorem 3.3 of Duncan et al. [48] to calculate the expec-

tation under the T -forward measure QT . (In fact, we have to extend their result to Wick

exponentials defined on the whole of R as in (3.38).) We further calculate

F

(
Bκ + κ(2κ+ 1)

∫ ·
−∞

∫ ∞
−∞

Υ(v)|v − s|2κ−1dvds

)
=

(
exp

{
−A(0, T, S)−

∫
R

(
Φ(v)1[0,T ](·) +

aκ̄
aκ
I κ̄−κ− (1[0,T ](·)Φ̄(·))(v)

)
dBκ(v)

−
〈

Φ(·)1[0,T ](·) +
aκ̄
aκ
I κ̄−κ− (1[0,T ](·)Φ̄(·))(·),Υ(·)

〉
κ,∞

}
−K

)
+

.
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With Lemma 3.4.9 we can show that

−
〈

Φ(·)1[0,T ](·) +
aκ̄
aκ
I κ̄−κ− (1[0,T ](·)Φ̄(·))(·),Υ(·)

〉
κ,∞

=
〈
Φ(·)1[0,T ](·), D(·, T )σ(·)1[0,T ](·)

〉
κ,∞

+
〈
Φ(·)1[0,T ](·), D̄(·, T )σ̄(·)1[0,T ](·)

〉
κ,κ̄,∞

+
〈
Φ̄(·)1[0,T ](·), D(·, T )σ(·)1[0,T ](·)

〉
κ,κ̄,∞

+
〈
Φ̄(·)1[0,T ](·), D̄(·, T )σ̄(·)1[0,T ](·)

〉
κ̄,∞ .

Collecting all terms and transforming the integral back we finally arrive at

F

(
Bκ + κ(2κ+ 1)

∫ ·
−∞

(∫ ∞
−∞

Υ(v)|v − s|2κ−1dv

)
ds

)
=

(
exp

{
−A(0, T, S)−

∫ T

0
Φ(v)dBκ(v)−

∫ T

0
Φ̄(v)dB̄κ̄(v)

}
−K

)
+

,

where

A(0, T, S)

:= A(0, T, S)−
〈
Φ(·)1[0,T ](·), D(·, T )σ(·)1[0,T ](·)

〉
κ,∞

−
〈
Φ(·)1[0,T ](·), D̄(·, T )σ̄(·)1[0,T ](·)

〉
κ,κ̄,∞

−
〈
Φ̄(·)1[0,T ](·), D(·, T )σ(·)1[0,T ](·)

〉
κ,κ̄,∞

−
〈
Φ̄(·)1[0,T ](·), D̄(·, T )σ̄(·)1[0,T ](·)

〉
κ̄,∞ .

Finally, we can calculate the expectation in the pricing formula. This works now exactly

as in the case of the classical Black-Scholes setting, since the appearing integrals are

Gaussian. This results in

V(0, T, S) = B(0, T )

×E
[(

exp

{
−A(0, T, S)−

∫ T

0
Φ(v)dBκ(v)−

∫ T

0
Φ̄(v)dB̄κ̄(v)

}
−K

)
+

]
= B(0, T )

× e−A(0,T,S)E

[(
exp

{
−
∫ T

0
Φ(v)dBκ(v)−

∫ T

0
Φ̄(v)dB̄κ̄(v)

}
− eA(0,T,S)K

)
+

]
= B(0, T )×

{
e

Σ(0,T,S)2

2
−A(0,T,S)N

(
−A(0, T, S) + log(K)

Σ(0, T, S)
+ Σ(0, T, S)

)
−KN

(
−A(0, T, S) + log(K)

Σ(0, T, S)

)}
where Σ(0, T, S)2 is defined in (3.57). The expression for the variance can be deduced

by calculating the characteristic function analogously to the moment generating function
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in Theorem 3.4.10, then apply Lemma 3.4.9 to rewrite the appearing norms and scalar

products.

Remark 3.5.12. We want to compare the price of Theorem 3.5.11 to the European

call price in a classical Brownian Vasicek model. For simplicity we choose a model with

constant coefficient functions. Given two dependent standard Brownian motions B, B̄

with correlation ρ > 0, we model the short and hazard rate by the sde’s

dr(t) = (k − ar(t))dt+ σdB(t), r(0) = r0 ∈ R,

dλ(t) = (k̄ − āλ(t))dt+ σ̄dB̄(t), λ(0) = λ0 ∈ R,

where we will assume that σ, σ̄ > 0. We know by Proposition 5.3 of Schönbucher [122]

that this model eventually boils down to a two-factor short rate model. Using for example

Theorem 4.2.1 of Brigo and Mercurio [24], today’s price of the defaultable zero coupon

bond is given by

B(0, T ) = exp

{
−A(0, T )− k

a

[
T − e−aT − 1

a

]
− k̄

ā

[
T − e−āT − 1

ā

]
− 1− e−aT

a
r0 −

1− e−āT

āλ0

}
with

A(0, T ) = −1

2

(
σ2

a2

[
T +

2

a
e−aT − 1

2a
e−2aT − 3

2a

]
+
σ̄2

ā2

[
T +

2

ā
e−āT − 1

2ā
e−2āT − 3

2ā

]
+ 2ρ

σσ̄

aā

[
T +

e−aT − 1

a
+
e−āT − 1

ā
− e−(a+ā)T − 1

a+ ā

])
.

Let 0 ≤ T ≤ S ≤ T ?. Applying Theorem 4.2.2 of Brigo and Mercurio [24] we get for

the price V(0, T, S) of a call option with maturity T and strike K, written on a defaultable

zero coupon bond maturing at time S:

V(0, T, S)

= B(0, S)N

 log
(

B(0,S)

KB(0,T )

)
Σ(0, T, S)

+
1

2
Σ(0, T, S)


−B(0, T )KN

 log
(

B(0,S)

KB(0,T )

)
Σ(0, T, S)

− 1

2
Σ(0, T, S)

 ,
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where

Σ2(0, T, S) =
σ2

2a3

(
1− e−a(S−T )

)2(
1− e−2a(T−t)

)
+
σ̄2

2ā3

(
1− e−ā(S−T )

)2(
1− e−2ā(T−t)

)
+2ρ

σσ̄

aā(a+ ā)

(
1− e−a(S−T )

)(
1− e−ā(S−T )

)2(
1− e−(a+ā)(T−t)

)
.

Note now that the main structure of bond and call prices is the same in both models,

especially today’s bond prices differ only by a deterministic multiplicative factor; however,

if we look further “into the future” the path of the fBm does matter, which results in a

more complex option price.

We want to emphasize that we have in the situation of Theorem 3.5.11

B(0, T )e
Σ(0,T,S)2

2
−A(0,T,S) 6= B(0, S)

and, therefore, cannot get exactly the same structure as in the Brownian case.

Numerical evaluations of the formulas in the fractional case are significantly more

complicated than in the classical Brownian model. Especially calculating the norms ‖·‖κ,∞
is challenging due to the singularity of the weight function (x, y) 7→ |x − y|2κ−1 on the

diagonal.

The following pricing method allows for more general payoff functions, but it is less

explicit. Note that it also includes the European call price calculated explicitly in Theo-

rem 3.5.11.

Theorem 3.5.13. Let 0 ≤ t < T ≤ T ?. Denote by X an FT -measurable payoff of the

form

X = 1{τ>T}f

(∫ T

0
φ(s)dBκ(s) +

∫ T

0
φ̄(s)dB̄κ̄(s)

)

for some f : R → R and φ, φ̄ ∈ L2([0, T ]). Assume further that there exist b > 0 and

z ∈ R such that f b,z+ (·) := e−b·f(·)1[z,∞)(·), f
b,z
− (·) := eb·f(·)1(−∞,z)(·) and their Fourier

transforms f̂ b,z+ (·), f̂ b,z− (·) are in L1(R) ∩ L2(R). Define for ξ ∈ R and ? ∈ {+,−}

Φξ,?(·) := D(·, T )σ(·)− (iξ ? b)φ(·), Φ̄ξ,?(·) := D̄(·, T )σ̄(·)− (iξ ? b)φ̄(·). (3.59)
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Then the price of X at time t is given by

V(t, T ) = 1{τ>t}E
[
e−

∫ T
t

(r(s)+λ(s))dsX
∣∣∣Gt]

= 1{τ>t} exp

{
−
∫ T

t

D(s, T )k(s)ds−
∫ T

t

D̄(s, T )k̄(s)ds−D(t, T )r(t)− D̄(t, T )λ(t)

}

×
∫
R

[
exp

{
V ξ(t, T )−W ξ(t, T )−

∫ t

0

Ψκ
c+ξ

(t, T, v)dBκ(v)−
∫ t

0

Ψκ̄
c̄+ξ

(t, T, v)dB̄κ̄(v)

}
f̂ b,z+ (ξ)

+ exp

{
V ξ(t, T )−W ξ(t, T )−

∫ t

0

Ψκ
c−ξ

(t, T, v)dBκ(v)−
∫ t

0

Ψκ̄
c̄−ξ

(t, T, v)dB̄κ̄(v)

}
f̂ b,z− (ξ)

]
dξ

(3.60)

where c?ξ(·) = Φξ,?(·) and c̄?ξ(·) = Φ̄ξ,?(·),

W ξ,?(t, T ) =
1

2

(∥∥∥1[t,T ](·)Φξ,?(·)
∥∥∥2

κ,∞
+ 2

〈
1[t,T ](·)Φξ,?(·),1[t,T ](·)Φ̄ξ,?(·)

〉
κ,κ̄,∞

+
∥∥∥1[t,T ](·)Φ̄ξ,?(·)

∥∥∥2

κ̄,∞

)
,

V ξ,?(t, T ) =
1

2

(∥∥∥1[0,t](·)Ψκ
c?ξ

(t, T, ·)
∥∥∥2

κ,∞
+ 2

〈
1[0,t](·)Ψκ

c?ξ
(t, T, ·),1[0,t](·)Ψκ̄

c̄?ξ
(t, T, ·)

〉
κ,κ̄,∞

+
∥∥∥1[0,t](·)Ψκ̄

c̄?ξ
(t, T, ·)

∥∥∥2

κ̄,∞

)
, (3.61)

with f̂ b,z+ and f̂ b,z− the Fourier transforms of f b,z+ and f b,z− respectively.

Proof. Applying - as in the theorem before - equation (3.52) we obtain the first equality

in (3.60). For some a < 0 and z ∈ R we have

f(x) = ebx[e−bxf(x)1[z,∞)(x)] + e−bx[ebxf(x)1(−∞,z)(x)]

=: ebxf b,z+ (x) + e−bxf b,z− (x). (3.62)

Denote by f̂ b,z+ and f̂ b,z− the Fourier transforms of f b,z+ and f b,z− respectively. Using classical

Fourier analysis we obtain for ξ, x ∈ R and ? ∈ {+,−}

f̂ b,z? (ξ) =
1

2π

∫
R
e−iξxf b,z? (x)dx, f b,z? (x) =

∫
R
eiξxf̂ b,z? (ξ)dξ,

where we used the fact that f b,z+ and f b,z− are in L1(R) ∩ L2(R). Set

J(t, T ) :=

∫ T

t
φ(s)dBκ(s) +

∫ T

t
φ̄(s)dB̄κ̄(s).

We get by the definition and (3.62)

X = f (J(0, T ))

= ebJ(0,T )f b,z+ (J(0, T )) + e−bJ(0,T )f b,z− (J(0, T ))

=

∫
R

(
e(iξ+b)J(0,T )f̂ b,z+ (ξ) + e(iξ−b)J(0,T )f̂ b,z− (ξ)

)
dξ
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Since by Gaussianity E[ebJ(0,T )] < ∞ for all b ∈ R, we can interchange expectation and

integration as follows using (3.54)

V(t, T )

= 1{τ>t}E
[
e−

∫ T
t (r(s)+λ(s))dsX

∣∣∣Gt]
= 1{τ>t}E

[
e−

∫ T
t (r(s)+λ(s))ds

∫
R

[
e(iξ+b)J(0,T )f̂ b,z+ (ξ) + e(iξ−b)J(0,T )f̂ b,z− (ξ)

]
dξ

∣∣∣∣Gt]
= 1{τ>t}e

C(t,T )+D(t,T )r(t)+D̄(t,T )λ(t)

×
∫
R

[
E
[
eG(t,T )+(iξ+b)J(0,T )

∣∣∣Gt] f̂ b,z+ (ξ) + E
[
eG(t,T )+(iξ−b)J(0,T )

∣∣∣Gt] f̂ b,z− (ξ)
]
dξ

with

C(t, T ) := −
∫ T

t
D(v, T )k(v)dv −

∫ T

t
D̄(v, T )k̄(v)dv

and

G(t, T ) := −
∫ T

t
D(s, T )σ(s)dBκ(s)−

∫ T

t
D̄(s, T )σ̄(s)dB̄κ̄(s).

The case t = 0 is again simple because we just need to calculate the expectations. Let

further be t > 0. Prediction works now the same way as in Theorem 3.4.10 and we obtain

for ? ∈ {+,−} with Φξ,? and Φ̄ξ,? as in (3.59):

E
[
eG(t,T )+(iξ?b)J(0,T )

∣∣∣Gt] = e(iξ?b)J(0,t)E
[
eG(t,T )+(iξ?b)J(t,T )

∣∣∣Gt]
= e(iξ?b)J(0,t)E

[
e−

∫ T
t (D(s,T )σ(s)−(iξ?b)φ(s))dBκ(s)−

∫ T
t (D̄(s,T )σ̄(s)−(iξ?b)φ̄(s))dB̄κ̄(s)

∣∣∣Gt]
= e(iξ?b)J(0,t)E

[
e−

∫ T
t Φξ,?(s)dBκ(s)−

∫ T
t Φ̄ξ,?(s)dB̄κ̄(s)

∣∣∣Gt]
= e(iξ?b)J(0,t)+V ξ,?(t,T )−W ξ,?(t,T ) exp

{
−
∫ t

0
Ψκ
c?ξ

(t, T, v)dBκ(v)−
∫ t

0
Ψκ̄
c̄?ξ

(t, T, v)dB̄κ̄(v)

}
where c?ξ(·) = Φξ,?(·) and c̄?ξ(·) = Φ̄ξ,?(·) and W ξ,?(t, T ), V ξ,?(t, T ) are as in (3.61).
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Chapter 4

Molchan-Golosov fractional Lévy

processes

In this chapter we introduce the class of (multivariate) Molchan-Golosov fractional Lévy

processes (MG-fLps), including fractional Brownian motion and fractional subordinators

(as defined in Bender and Marquardt [16]) by a Molchan-Golosov transformation (cf.

Molchan and Golosov [95]) based on general finite second moment Lévy processes. This

idea has been proposed by Tikanmäki and Mishura [127], who however considered only

the univariate case and used centered, i.e. zero-mean, driving Lévy processes without

Brownian parts, basically excluding fBm and fractional subordinators, cf. Definition 1.6.6.

We calculate the conditional characteristic functions of MG-fLp-related processes us-

ing fractional calculus and results on infinitely divisible distributions. Important examples

like fractional Lévy Ornstein-Uhlenbeck processes or Cox-Ingersoll-Ross processes are con-

sidered.

As a first application we propose a credit market similar to Section 3.5. However

the Vasicek sde’s describing the dynamics of the short and default rate will be driven by

dependent MG-fLps which will also rule out the problem of potential negative paths. The

model will still allow for fairly explicit calculations of zero coupon bond prices.

In a second application we use our prediction results to calculate the prices of European

call options in the framework of Bender and Marquardt [16] who introduced a Black-

Scholes stock market time changed by convoluted Lévy processes.



CHAPTER 4. MOLCHAN-GOLOSOV FRACTIONAL LÉVY PROCESSES

4.1 Multivariate Molchan-Golosov fractional Lévy processes

As already mentioned in Remark 1.6.9, we will generalize the concept introduced in the

work of Tikanmäki and Mishura [127], cf. Definition 1.6.6, to the multivariate case. There-

fore, our processes will also be defined by a compactly supported Molchan-Golosov trans-

formation (cf. Molchan and Golosov [95]). However, in contrast to [127] we will also

allow for Brownian components which can result in fractional Brownian motions, and

non-centered driving Lévy processes, possibly leading to fractional subordinators as intro-

duced by Bender and Marquardt [16].

4.1.1 Definition

Recall from Section 1.4 that we will only consider Lévy processes with existing second

moments. The very general definition of MG-fLps follows.

Definition 4.1.1. For d = (d(1), . . . , d(n))> ∈ (−1
2 ,

1
2)n, n ∈ N, we define the kernel

function zd : [0, T ]× [0, T ]→ Rn×n by the diagonal matrix

zd(t, s) :=

1{s≤t}


cd(1)s

−d(1)I
d(1)
T− ((·)d(1)1[0,t)(·))(s) . . . 0

...
. . .

...

0 . . . cd(n)s
−d(n)I

d(n)
T− ((·)d(n)1[0,t)(·))(s)


where for 1 ≤ j ≤ n

cd(j) =
((2d(j) + 1)Γ(d(j) + 1)Γ(1− d(j))

Γ(1− 2d(j))

) 1
2
.

Then a Molchan-Golosov fractional Lévy process (MG-fLp)

Ld = (Ld(t))t∈[0,T ] = (Ld(1)(t), . . . , Ld(n)(t))>t∈[0,T ]

is defined by

Ld(t) =

∫ t

0
zd(t, s)dL(s), t ∈ [0, T ]. (4.1)

Remark 4.1.2. The integral in (4.1) can be considered in the L2(Ω)- or in the path-

wise Riemann-Stieltjes-sense. The first assertion is clear by Rajput and Rosinski [109]

and the fact that the kernel is square-integrable. The second one follows because as a

finite second moment Lévy process, L is of bounded p-variation for all p > 2 (cf. Mon-

roe [96], Theorem 2, based on the Blumenthal-Getoor-index introduced in Blumenthal and
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Getoor [23]) and zd(t, s) is on (0, t) componentwise of bounded variation in the variable

s, cf. Young [134].

Remark 4.1.3. Clearly Ld is adapted to the filtration (Ft)t∈[0,T ]. Further we want to

remark that this is not the case for MVN-fLps as in Definition 1.6.1. However in contrast

to those processes, MG-fLps do not have stationary increments in general, cf. Proposi-

tion 3.11 of Tikanmäki and Mishura [127].

Using the Lévy-Itô decomposition we obtain

L(t) = E[L(t)] + (L(t)− E[L(t)])

d
= E[L(1)] · t+ B(t) + S(t), t ∈ [0, T ],

where B is a n-dimensional Brownian motion with B(1) ∼ N(0,Σ), Σ ∈ Sn×n, and S is a

zero-mean Lévy process without Brownian part. Furthermore B and S are independent.

This leads to the MG-fLp decomposition

Ld(t)
d
=

∫ t

0
zd(t, s)ds · E[L(1)] + Bd(t) + Sd(t), t ∈ [0, T ], (4.2)

where the first integral is understood componentwise. Bd and Sd are defined as in (4.1),

i.e. are a multivariate fBm and a zero-mean MG-fLp.

Example 4.1.4. Let n = 1 in Definition 4.1.1.

(i) Choosing as driving Lévy process a standard Brownian motion, we get a classical

fBm on [0, T ], cf. Proposition 1.5.10 or Samorodnitsky and Taqqu [119].

(ii) Taking a strictly increasing subordinator as driving Lévy process leads to a fractional

subordinator in the sense of Example 1 of Bender and Marquardt [16]. In particular,

the resulting MG-fLp is a.s. increasing.

The next results follow by standard properties of Lévy processes, see e.g. Rajput and

Rosinski [109], Marcus and Rosinski [91] or Sato [120]. A brief look at the autocovariance

of a MG-fLp leads to the following proposition.

Proposition 4.1.5. For s, t ∈ [0, T ] we have for the mean-value and autocovariance

function

(i) E[Ld(t)] =
∫ t

0 z
d(t, s)ds · E[L(1)].
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(ii) Cov[Ld(t),Ld(s)]

= 1
2

(
cd(i),d(j)Cov[Li(1), Lj(1)](td(i)+d(j)+1 + sd(i)+d(j)+1 − |t− s|d(i)+d(j)+1)

)
1≤i,j≤n

where

cd(i),d(j) =

√
Γ(2d(i) + 2) sin(π(d(i) + 1

2))
√

Γ(2d(j) + 2) sin(π(d(j) + 1
2))

Γ(d(i) + d(j) + 2) sin(π(d(i) + d(j) + 1)/2)
.

Proof. The first part is clear using the decomposition (4.2). The second one follows by

Cov[Ld(t),Ld(s)] =

∫ T

0
zd(t, u)Cov[L(t),L(s)](zd(s, u))>du

=
(
Cov[Li(t), Lj(s)]

∫ T

0
zdii(t, u)zdjj(s, u)du

)
1≤i,j≤n

.

The calculation of the last integrals is similar to (2.17) of Elliott and van der Hoek [53].

Remark 4.1.6. Proposition 4.1.5 (ii) shows that MG-fLps have the same second-order

structure as fBm (up to a constant) and therefore it is clear that for all 1 ≤ i ≤ n the

increments of the univariate process Ld(i) exhibit a similar memory structure as in the

case of fBm.

The next theorem states the characteristic function of a MG-fLp which determines its

distribution. The proof uses Theorem 1.4.5 and the fact that zd(t, s) is Hermitian and

symmetric for s, t ∈ [0, T ].

Theorem 4.1.7. For each fixed t ∈ [0, T ] the random vector Ld(t) is infinitely divisible

and its characteristic function is for u ∈ Rn given by

E[exp{i〈u,Ld(t)〉}] = exp
{∫ T

0
ψ(zd(t, s)u)ds

}
= exp

{
i

∫ T

0
〈zd(t, s)γ, u〉ds− 1

2

∫ T

0
u>zd(t, s)Σzd(t, s)uds

+

∫ T

0

∫
Rn

(
ei〈u,z

d(t,s)x〉 − 1− i〈u, zd(t, s)x〉1{‖zd(t,s)x‖<1}

)
ν(dx)ds

}
The next lemma summarizes main properties of MG-fLps and is the multivariate ex-

tension of Proposition 3.7 of Tikanmäki and Mishura [127].

Lemma 4.1.8. We have for d = (d(1), . . . , d(n))>:

(i) A MG-fLp without Gaussian component has a.s. continuous paths if and only if

d ∈ (0, 1
2)n.
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(ii) A MG-fLp without Gaussian component has a.s. Hölder continuous paths of any

order α < min[d] if and only if d ∈ (0, 1
2)n.

(iii) If d(i) ∈ (−1
2 , 0) for some 1 ≤ i ≤ n, then the MG-fLp has discontinuous and

unbounded sample paths with positive probability.

4.1.2 Integration

Before coming to the prediction of MG-fLps we need to define integration. This will be

done by the usual L2(Ω)-approach, as e.g. in Pipiras and Taqqu [103, 104], Marquardt [92]

or Tikanmäki and Mishura [127].

For d = (d(1), . . . , d(n))> ∈ (−1
2 ,

1
2)n, n ∈ N, define

ΛdT :=
{
f : [0, T ]→ Rn×n

∣∣∣fij ∈ Λ
d(j)
T , 1 ≤ i, j ≤ n

}
,

where fij denotes the ij-th component of f .

Consider simple functions of the form

f(·) =
m∑
k=1

ak1[tk,tk+1)(·),

where m ∈ N, m ≥ 1, 0 ≤ t1 ≤ · · · ≤ tm ≤ T and ak ∈ Rn×n for 1 ≤ k ≤ m. Then we

define ∫ T

0
f(s)dLd(s) :=

m∑
k=1

ak(L
d(tk+1)− Ld(tk))

=

m∑
k=1


∑n

j=1(ak)1j(L
d(j)(tk+1)− Ld(j)(tk))

...∑n
j=1(ak)nj(L

d(j)(tk+1)− Ld(j)(tk))

 .

A simple calculation leads to∫ T

0
f(s)dLd(s) =

∫ T

0
zd(f, s)dL(s),

where

zd(f, s) :=
cd(1)s

−d(1)I
d(1)
T− ((·)d(1)f11(·)(·))(s) . . . cd(n)s

−d(n)I
d(n)
T− ((·)d(n)f1n(·)(·))(s)

...
. . .

...

cd(1)s
−d(1)I

d(1)
T− ((·)d(1)fn1(·)(·))(s) . . . cd(n)s

−d(n)I
d(n)
T− ((·)d(n)fnn(·)(·))(s)

 .

Now we obtain from the definition of ΛdT and Theorem 1.4.5:
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Theorem 4.1.9. For d = (d(1), . . . , d(n))> ∈ (−1
2 ,

1
2)n, n ∈ N, let f ∈ ΛdT . Then

the integral
∫ T

0 f(s)dLd(s) exists as a (componentwise) L2(Ω)-limit of approximating step

functions in ΛdT (also componentwise). Furthermore, we have the identity∫ T

0
f(s)dLd(s) =

∫ T

0
zd(f, s)dL(s),

which holds (componentwise) in L2(Ω).

Further we find some distributional results on MG-fLp driven integrals.

Theorem 4.1.10. For d = (d(1), . . . , d(n))> ∈ (−1
2 ,

1
2)n, n ∈ N, let f ∈ ΛdT . Then we

have for all u ∈ Rn

E
[

exp
{
i
〈
u,

∫ T

0
f(s)dLd(s)

〉}]
= exp

{∫ T

0
ψ(zd(f, s)>u)ds

}
= exp

{
i

∫ T

0
〈zd(f, s)γ, u〉ds− 1

2

∫ T

0
u>zd(f, s)Σzd(f, s)>uds

+

∫ T

0

∫
Rn

(
ei〈u,z

d(f,s)x〉 − 1− i〈u, zd(f, s)x〉1{‖zd(f,s)x‖<1}

)
ν(dx)ds

}
.

Proof. We calculate

E
[

exp
{
i
〈
u,

∫ T

0
f(s)dLd(s)

〉}]
= E

[
exp

{
i
n∑
k=1

uk

(∫ T

0
f(s)dLd(s)

)
k

}]
= E

[
exp

{
i
n∑
l=1

∫ T

0

( n∑
l=1

ukf
kl(s)

)
dLd(l)(s)

}]
= E

[
exp

{
i
n∑
l=1

∫ T

0

( n∑
l=1

ukf
kl(s)

)
dLd(l)(s)

}]
= E

[
exp

{
i
n∑
l=1

∫ T

0
cd(l)s

−d(l)I
d(l)
T−

(
(·)d(l)

n∑
l=1

ukf
kl(·)

)
(s)dLl(s)

}]
.

Using Theorem 1.4.5 we obtain the assertion.

Remark 4.1.11. When d ∈ (0, 1
2)n, it is also possible to define pathwise integration with

respect to MG-fLps using Hölder continuity like in Buchmann and Klüppelberg [28] or a

p-variation approach like in Section 1.6.1.

4.2 Prediction results

In this section we will state and prove our main theorems about the conditional charac-

teristic functions of MG-fLp driven integrals and related processes. Recall that by Re-

mark 4.1.3 a MG-fLp is adapted to the filtration (Ft)t∈[0,T ] generated by the corresponding

Lévy process.
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4.2.1 Prediction of integrals

First we need a technical lemma, which will be crucial to derive the prediction formula.

Define for d ∈ (−1
2 ,

1
2) and suitable f : [0, T ]→ Rn×n the deconvolution operator

zd?(f, s) :=
c−1
−d(1)s

d(1)I
d(1)
T− ((·)−d(1)f11(·)(·))(s) . . . c−1

−d(n)s
d(n)I

d(n)
T− ((·)−d(n)f1n(·)(·))(s)

...
. . .

...

c−1
−d(1)s

d(1)I
d(1)
T− ((·)−d(1)fn1(·)(·))(s) . . . c−1

−d(n)s
d(n)I

d(n)
T− ((·)−d(n)fnn(·)(·))(s)

 .

Lemma 4.2.1. For d = (d(1), . . . , d(n))> ∈ (−1
2 ,

1
2)n, n ∈ N, let f ∈ ΛdT . Then the

following assertions hold for all 0 ≤ s ≤ t ≤ T :

(i) For all 1 ≤ i, j ≤ n we have that zdij(f1[s,t], ·) ∈ L2([0, T ]) ⊂ L1([0, T ]).

(ii) The function

[0, s]→ Rn×n, v 7→ z−d? (1[0,s]z
d(f1[s,t], ·), v)

exists componentwise and belongs to Λ̃ds.

(iii) For all v ∈ [0, T ],

zd(z−d? (1[0,s]z
d(f1[s,t], ·), ·), v) = 1[0,s](v)zd(f1[s,t], v).

Proof. Since f ∈ ΛdT it follows that f1[s,t] ∈ ΛdT . By definition of ΛdT we therefore get that

zdij(f1[s,t], ·) ∈ L2([0, T ]) ⊂ L1([0, T ]), which leads to (i). The existence of the function in

assertion (ii) can be obtained by using a similar approximation argument as in the proof of

Lemma 1 of Duncan [46]. The second statement in (ii) and (iii) follows by definition of Λ̃ds

and by applying Theorem 2.5 of Samko, Kilbas and Marichev [117] componentwise.

Theorem 4.2.2. For d = (d(1), . . . , d(n))> ∈ (−1
2 ,

1
2)n, n ∈ N, let f ∈ ΛdT and

Ft = σ
{∫ s

0
f(v)dLd(v), s ∈ [0, t]

}
, t ∈ [0, T ].

Then we have for all 0 ≤ s ≤ t ≤ T and u ∈ Rn

E
[

exp
{
i
〈
u,

∫ t

0
f(v)dLd(v)

〉∣∣∣Fs}]
= exp

{
i
〈
u,

∫ s

0
f(v)dLd(v) +

∫ s

0
z−d? (1[0,s]z

d(f1[s,t], ·), v)dLd(v)
〉}

×
{∫ t

s
ψ(zd(f1[s,t], v)>u)dv

}
.
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Proof. Since the random variable
∫ t

0 f(v)dLd(v) is Fs-measurable, it is enough to consider

the conditional characteristic function of
∫ t
s f(v)dLd(v). Applying Theorem 4.1.9 we switch

from the MG-fLp to the corresponding Lévy process and obtain∫ t

s
f(v)dLd(v) =

∫ T

0
zd(f1[s,t], v)dL(v)

=

∫ s

0
zd(f1[s,t], v)dL(v) +

∫ T

s
zd(f1[s,t], v)dL(v).

The first summand on the righthand side is again Fs-measurable and therefore we obtain

E
[

exp
{
i
〈
u,

∫ t

0
f(v)dLd(v)

〉∣∣∣Fs}]
= exp

{
i
〈
u,

∫ s

0
f(v)dLd(v) +

∫ s

0
zd(f1[s,t], v)dL(v)

〉}
×E
[

exp
{
i
〈
u,

∫ T

s
zd(f1[s,t], v)dL(v)

〉∣∣∣Fs}].
However due to independent increments of Lévy processes we have

E
[

exp
{
i
〈
u,

∫ T

s
zd(f1[s,t], v)dL(v)

〉∣∣∣Fs}] = E
[

exp
{
i
〈
u,

∫ T

s
zd(f1[s,t], v)dL(v)

〉}]
and applying Theorem 1.4.5 leads to

E
[

exp
{
i
〈
u,

∫ T

s
zd(f1[s,t], v)dL(v)

〉}]
= exp

{∫ t

s
ψ(zd(f1[s,t], v)>u)dv

}
,

where we have used the fact that zd(f1[s,t], v) = 0 if v ∈ [t, T ]. Since we want the prediction

formula in terms of the MG-fLp and not the driving Lévy process, we invoke Lemma 4.2.1

(ii) and apply again Theorem 4.1.9 to obtain∫ s

0
zd(f1[s,t], v)dL(v) =

∫ s

0
z−d? (1[0,s]z

d(f1[s,t], ·), v)dLd(v).

Putting everything together we get the assertion.

Remark 4.2.3. Every f ∈ ΛdT , with fij(u) 6= 0 for all u ∈ [0, T ] and 1 ≤ i, j ≤ n, satisfies

the conditions of Theorem 4.2.2.

Example 4.2.4. [Univariate fBm] Choose in Theorem 4.2.2 n = 1, f = 1[0,t), 0 ≤ t ≤ T ,

and take as driving Lévy process a standard Brownian motion, i.e. L = B. Then Ld = Bd

is an univariate fBm. Using Theorem 3.1.1, the conditional characteristic function is for

0 ≤ s ≤ t ≤ T given by

E[exp{iuBd(t)|Fs}]

= exp
{
iu
[
Bd(s) +

∫ s

0
Ψd(s, t, v)dBd(v)

]
− u2

2

[
‖1[s,t]‖2d,T − ‖Ψd(s, t, ·)1[0,s]‖2d,T

]}
,
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where

Ψd(s, t, v) = v−d(I−ds− (Idt−(·)d1[s,t](·)))(v), v ∈ (0, s),

and ‖ · ‖2d,T as defined in Section 1.5. This matches the result of Theorem 4.2.2 since

I−dt− 1[0,s](·)f(·) = I−ds− f(·) in the situation above. Furthermore we have

‖1[s,t]‖2d,T − ‖Ψd(s, t, ·)1[0,s]‖2d,T = ‖zd(1[s,t], ·)1[s,t](·)‖2.

Example 4.2.5. [Univariate Gamma MG-fLp] In Theorem 4.2.2 choose n = 1, f = 1[0,t),

0 ≤ t ≤ T , and take as driving Lévy process a univariate Gamma process G = (G(t))t∈[0,T ].

Its distribution is then characterized by

ψ(u) = −γ log
(
1− u

λ

)
1[0,λ)(u),

with γ, λ > 0. By Theorem 4.2.2 we obtain for the Gamma MG-fLp Gd = (Gd(t))t∈[0,T ]

and 0 ≤ s ≤ t ≤ T

E[exp{iuGd(t)|Fs}]

= exp
{
iu
[
Gd(s) +

∫ s

0
z−d? (1[0,s]z

d(1[s,t], ·), v)dGd(v)
]}

× exp
{
γ log(λ)[t− s]− γ

∫ t

s
log(λ− zd(1[s,t], v)u)dv

}
.

Example 4.2.6. [Bivariate Poisson MG-fLp] Choose in Theorem 4.2.2 n = 2, f = 1[0,t),

0 ≤ t ≤ T , and take as driving Lévy process a bivariate Poisson process, i.e. here take

independent Poisson processes Zi on [0, T ] with intensities ηi ≥ 0 for i = 1, 2, 3 and define

L := (Z1 + Z2, Z2 + Z3)>.

The distribution of this bivariate Lévy process is then characterized by

ψ(u) =

∫
R2

(exp{i〈u, x〉 − 1− i〈u, x〉1{‖x‖<1})ν(dx)

=

∫
R2

(exp{i〈u, x〉} − 1)ν(dx), u ∈ R2,

with ν(dx) = η1δ{1}×{0}(dx) + η2δ{1}×{1}(dx) + η3δ{0}×{1}(dx). Theorem 4.2.2 leads now
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for 0 ≤ s ≤ t ≤ T to

E[exp{i〈u,Ld(t)〉|Fs}]

= exp
{
i
〈
u,Ld(s) +

∫ s

0
z−d? (1[0,s]z

d(1[s,t], ·), v)dLd(v)
〉}

× exp
{
η1

∫ t

s

(
exp

(
i

2∑
j=1

zd1j(1[s,t), v)uj
)
− 1
)
dv
}

× exp
{
η2

∫ t

s

(
exp

( 2∑
k=1

2∑
j=1

zdkj(1[s,t), v)uj
)
− 1
)
dv
}

× exp
{
η3

∫ t

s

(
exp

(
i

2∑
j=1

zd2j(1[s,t), v)uj
)
− 1
)
dv
}

4.2.2 Ornstein-Uhlenbeck type processes

In a next step we will consider MG-fLp-driven Ornstein-Uhlenbeck processes, starting with

the definition. Similar processes were considered by Marquardt [92], Klüppelberg and

Matsui [82] and in Fink and Klüppelberg [59], cf. Section 2.2. However, in contrast to our

work, they define their underlying fractional Lévy processes by an integral representation

over the whole real line as in Definition 1.6.1. Postponing the usual question of existence

and uniqueness until Proposition 4.2.8 we define:

Definition 4.2.7. For d = (d(1), . . . , d(n))> ∈ (0, 1
2)n, take σ ∈ ΛdT , k : [0, T ] → Rn and

a : [0, T ]→ Rn×n, k, a componentwise locally integrable such that e−
∫ t
· a(v)dvσ(·) ∈ ΛdT for

all t ∈ [0, T ]. Then the (unique) solution to the sde

dLd(t) = (k(t)− a(t)Ld(t))dt+ σ(t)dLd(t), t ∈ [0, T ], Ld(0) ∈ Rn.

is called a fractional Lévy Ornstein-Uhlenbeck process.

The next proposition ensures the existence of a solution. Its uniqueness follows by a

simple application of Gronwall’s Lemma (e.g. Theorem 3.1 of Ikeda and Watanabe [77])

similar to the classical Brownian case.

Proposition 4.2.8. In the situation of Definition 4.2.7 assume further that σij is of

bounded p(j)-variation for some 0 < p(j) < 1/(1−d(j)) (cf. Young [134] and Section 1.3)

for all 1 ≤ i, j ≤ n. Then we have for t ∈ [0, T ]

Ld(t) = e−
∫ t
0 a(s)dsLd(0) +

∫ t

0
e−

∫ t
s a(v)dvk(s)ds+

∫ t

0
e−

∫ t
s a(v)dvσ(s)dLd(s),

where the matrix exponential is defined as usual.
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Proof. Define Ld as above and calculate for 0 ≤ s ≤ t ≤ T

−
∫ t

s
a(z)Ld(z)dz

= −
∫ t

s
a(z)e−

∫ z
0 a(v)dvdzLd(0)−

∫ t

s
a(z)

∫ z

0
e−

∫ z
w a(v)dvk(w)dwdz

−
∫ t

s
a(z)

∫ z

0
e−

∫ z
w a(v)dvσ(w)dLd(w)dz

=
[
e−

∫ t
0 a(v)dv − e−

∫ s
0 a(v)dv

]
Ld(0)

−
∫ t

s
a(z)

∫ s

0
e−

∫ z
w a(v)dvk(w)dwdz −

∫ t

s
a(z)

∫ z

s
e−

∫ z
w a(v)dvk(w)dwdz

−
∫ t

s
a(z)

∫ s

0
e−

∫ z
w a(v)dvσ(w)dLd(w)dz −

∫ t

s
a(z)

∫ z

s
e−

∫ z
w a(v)dvσ(w)dLd(w)dz

=
[
e−

∫ t
0 a(v)dv − e−

∫ s
0 a(v)dv

]
Ld(0)

−
∫ s

0

∫ t

s
a(z)e−

∫ z
w a(v)dvk(w)dzdw −

∫ t

s

∫ t

w
a(z)e−

∫ z
w a(v)dvk(w)dzdw

−
∫ s

0

∫ t

s
a(z)e−

∫ z
w a(v)dvσ(w)dzdLd(w)−

∫ t

s

∫ t

w
a(z)e−

∫ z
w a(v)dvσ(w)dzdLd(w)

=
[
e−

∫ t
0 a(v)dv − e−

∫ s
0 a(v)dv

]
Ld(0)

+

∫ s

0

[
e−

∫ t
w a(v)dv − e−

∫ s
w a(v)dv

]
k(w)dw +

∫ t

s

[
e−

∫ t
w a(v)dv − I

]
k(w)dw

+

∫ s

0

[
e−

∫ t
w a(v)dv + e−

∫ s
w a(v)dv

]
σ(w)dLd(w) +

∫ t

s

[
e−

∫ t
w a(v)dv − I

]
σ(w)dLd(w)

= Ld(t)− Ld(s)−
∫ t

s
σ(w)dLd(w)−

∫ t

s
k(w)dw

where I is the unit matrix of size n.

Remark 4.2.9. Using potential Hölder continuity of the MG-fLp paths (Lemma 4.1.8

(ii)), we can also define integration via a pathwise approach, cf. Young [134]. If the

pathwise and the L2-integral both exist, they have to be equal. The next lemma is based

on this fact.

Lemma 4.2.10. In addition to the assumptions of Definition 4.2.7, let the matrix σ(t)

be non-singular for every 0 ≤ t ≤ T and d = (d(1), . . . , d(n))> ∈ (0, 1
2)n. Furthermore

assume σij and (σ)−1
ij are of bounded p(j)-variation for some 0 < p(j) < 1/(1− d(j)) (cf.

Young [134] and Section 1.3) for all 1 ≤ i, j ≤ n. Then we have

dLd(t) =
(
−σ(t)−1k(t) + σ(t)−1a(t)Ld(t)

)
dt+ σ(t)−1dLd(t), 0 ≤ t ≤ T.

Proof. The proof is analogous to the proof of Proposition 4.2.8 and the univariate inversion

part of Proposition 3.1.4.
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The prediction result follows. The proof is a combination of Theorem 4.2.2 and

Lemma 4.2.10.

Theorem 4.2.11. For d = (d(1), . . . , d(n))> ∈ (0, 1
2)n take σ ∈ ΛdT , k : [0, T ] → Rn and

a : [0, T ]→ Rn×n, k, a componentwise locally integrable such that e−
∫ t
· a(v)dvσ(·) ∈ ΛdT for

all t ∈ [0, T ]. Let further σ(t) be non-singular for every 0 ≤ t ≤ T . Then we have for

0 ≤ s ≤ t ≤ T and u ∈ Rn

E[exp{i〈u,Ld(t)〉|Fs}]

= exp
{
i
〈
u, e−

∫ t
s a(v)dvLd(s) +

∫ t

s
e−

∫ t
w a(v)dvk(w)dw

〉}
× exp

{
i
〈
u,

∫ s

0
z−d? (1[0,s]z

d(h1[s,t], ·), v)dLd(v)
〉

+

∫ t

s
ψ(zd(h1[s,t], v)>u)dv

}
= exp

{
i
〈
u, e−

∫ t
s a(v)dvLd(s) +

∫ t

s
e−

∫ t
w a(v)dvk(w)dw

〉}
× exp

{
− i
〈
u,

∫ s

0
z−d? (1[0,s]z

d(h1[s,t], ·), v)σ(v)−1k(v)dv
〉}

× exp
{∫ s

0
z−d? (1[0,s]z

d(h1[s,t], ·), v)σ(v)−1a(v)Ld(v)dv
}

× exp
{∫ s

0
z−d? (1[0,s]z

d(h1[s,t], ·), v)σ(v)dLd(v) +

∫ t

s
ψ(zd(h1[s,t], v)>u)dv

}
,

(4.3)

where h(·) = e−
∫ t
· a(v)dvσ(·).

Remark 4.2.12. [General sde’s] Using the MG-fLp decomposition (4.2) and Proposition

3.9 of Tikanmäki and Mishura [127] we see that the i-th component of a MG-fLp is of zero-

quadratic variation if d(i) ∈ (0, 1
2). Therefore for d = (d(1), . . . , d(n))> ∈ (0, 1

2)n, general

sde’s driven by MG-fLps can be considered using for example the theory of Zähle [136],

Section 5. However as already mentioned in the introduction of Section 2.2.2, this does not

cover CIR type processes. Using the zero-quadratic variation property and the integration

concept of Russo and Vallois [115], a similar theory as in [59] can be proven (at least up to

stationary solutions, where we have to face Remark 4.1.3). Therefore it will be interesting

to calculate the prediction of transforms of MG-fLp driven integrals, which can be achieved

by Fourier methods (cf. Theorem 3.1.7 for the univariate fBm case). An example is the

next theorem.

Theorem 4.2.13. For d ∈ (0, 1
2) and a > 0 let X = (X(t))t∈[0,T ] be the solution to the

sde

dX(t) = −a
2
X(t)dt+ dLd(t), t ∈ [0, T ], X(0) ∈ R.
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Assume further that E[exp{X(t)}] < ∞ for t ∈ [0, T ]. Take f(x) = sign(x)x2 σ2

4 for

x ∈ R and σ > 0. Define the process Z = (Z(t))t∈[0,T ] by Z(t) = f(X(t)). Then for

0 ≤ s ≤ t ≤ T

Z(t)− Z(s) = −a
∫ t

s
Z(v)dv + σ

∫ t

s

√
|Z(v)|dRVLd(v)

holds with Z(0) = f(X(0)). Here the integral
∫ t
s

√
|Z(v)|dRVLd(v) is the forward integral

of Definition 1 of Russo and Vallois [115]. Furthermore for u ∈ R we have

E
[
eiuZ(t)

∣∣∣Fs] =

∫
R

(
E
[
e(iξ+1)X(t)

∣∣∣Fs]g+(ξ, u) + E
[
e(iξ−1)X(t)

∣∣∣Fs]g−(ξ, u)
)
dξ

with g?(ξ, u) = (2π)−1
∫
R? e

−(iξ?1)x+iuf(x)dx, ? ∈ {+,−}, where E[e(iξ+1)X(t)|Fs] is given

by the analytic extension of (4.3) to C.

Proof. Observe that for g ∈ ΛdT with bounded variation the equality

∫ T

0
g(v)dLd(v) =

∫ T

0
g(v)dRVLd(v)

holds in the L2(Ω)-sense by Proposition 1 of [115]. Therefore the sde’s

dX(t) = −a
2
X(t)dt+ dLd(t), t ∈ [0, T ], X(0) ∈ R,

dRVX(t) = −a
2
X(t)dt+ dRVLd(v), t ∈ [0, T ], X(0) ∈ R.

lead to the same process. Now we calculate for 0 ≤ s ≤ t ≤ T using an Itô formula

(Proposition 12 of [115]),

Z(t)− Z(s) =

∫ t

s
f ′(X(v))dRVX(v)

= −a
2

∫ t

s
f ′(X(v))X(v)dv +

∫ t

s
f ′(X(v))dRVLd(v)

= −a
2

∫ t

s
f ′(f−1(Z(v)))f−1(Z(v))dv +

∫ t

s
f ′(f−1(Z(v)))dRVLd(v),

where −a
2f
′(f−1(x))f−1(x) = −ax and f ′(f−1(x)) = σ

√
|x| for x ∈ R by Proposition 5.7

of Buchmann and Klüppelberg [28].

The prediction part follows similar to the proof of Theorem 3.1.7 and Example 3.1.8

using E[exp{X(t)}] <∞.
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4.3 Application: Interest rates with credit risk

Similar to Section 3.5 we shall work in the framework of the most reduced-form credit

risk models in the literature. Given a finite time horizon T ? > 0, a credit market shall be

described by the bivariate process (r,H) = (r(t), H(t))0≤t≤T ? on a given probability space

(Ω,F ,Q) endowed with the filtration (Ft)0≤t≤T ? , which represents the market information

and satisfies the usual conditions of completeness and right continuity. The process r

models the short rate and H the default indicator, i.e.

H(t) = 1{τ≤t}, 0 ≤ t ≤ T ?,

for a given (Ft)0≤t≤T ?-stopping time τ , the default time. Denote by (Ht)0≤t≤T ? the filtra-

tion generated by H.

We will extend Assumption 3.5.1 such that it fits to the situation of this section:

Assumption 4.3.1 (Market structure; cf. Frey and Backhaus [62], Ass. 3.1).

(i) We assume that there is a subfiltration (Gt)0≤t≤T ? of (Ft)0≤t≤T ? with

Ft := Gt ∨Ht , 0 ≤ t ≤ T ?,

r is (Gt)0≤t≤T ?-progressive, and that there exists a positive (Gt)0≤t≤T ?-progressive

process λ = (λt)0≤t≤T ?, called the default rate, describing the intensity of H (cf.

Corollary 5.1.5 of Bielecki and Rutkowski [21]) with
∫ t

0 λ(s)ds < ∞ a.s. for all

0 ≤ t ≤ T ?. Furthermore assume that

P (τ > t | Gt) = E[1−H(t) | Gt] = exp

{
−
∫ t

0
λ(s)ds

}
. (4.4)

Setting G∞ :=
∨

0≤t≤T ? Gt, assume that for all bounded G∞-measurable random vari-

ables η,

E[η | Ft] = E[η | Gt] (4.5)

holds.

(ii) Q is a risk-neutral pricing measure, such that the price of any FT -measurable claim

X ∈ L1(Ω) with maturity 0 ≤ T ≤ T ? at time 0 ≤ t ≤ T is given by

V(t, T ) = E[X | Ft] for 0 ≤ t ≤ T .

In the framework above, the default history (Ft)0≤t≤T ? is the investor information at

time t, meaning that the investor knows the short rate r, the default rate λ and the default
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indicator process H at time t. Using Lemma 13.2 of Filipovic [56] we see that the price of

a defaultable zero coupon bond is for 0 ≤ t ≤ T ≤ T ? given by

B(t, T ) = E
[
1{τ>T}e

−
∫ T
t r(s)ds

∣∣∣Ft] = 1{τ>t}E
[
e−

∫ T
t (r(s)+λ(s))ds

∣∣∣Gt].
Therefore it is sufficient to specify the dynamics of the bivariate process (r, λ), forgetting

H. We propose a fractional Vasicek model:

Assumption 4.3.2 (Fractional Vasicek model). For d = (d(1), . . . , d(n))> ∈ (0, 1
2)n,

n ∈ N, take σ ∈ ΛdT ?, k : [0, T ?] → Rn and a : [0, T ?] → Rn×n, k, a componentwise locally

integrable such that e−
∫ t
· a(v)dvσ(·) ∈ ΛdT ? for all t ∈ [0, T ?]. Consider the corresponding

Ornstein-Uhlenbeck sde

dLd(t) = (k(t)− a(t)Ld(t))dt+ σ(t)dLd(t), t ∈ [0, T ?], Ld(0) ∈ Rn×n.

Assume further as in Lemma 4.2.10 that σ(t) is non-singular for every 0 ≤ t ≤ T ? and σij

and (σ)−1
ij are of bounded p(j)-variation for some 0 < p(j) < 1/(1−d(j)) (cf. Young [134]

and Section 1.3) for all 1 ≤ i, j ≤ n. Then define for fixed weights θ, φ ∈ (R+)n, where

θ 6= 0,

r(t) = 〈θ,Ld(t)〉 and λ(t) = 〈φ,Ld(t)〉, t ∈ [0, T ?]. (4.6)

Therefore we have Gt = σ{Ld(s), s ∈ [0, t]} for all t ∈ [0, T ?].

The following theorem considers the price of a defaultable zero coupon bond in the

fractional Vasicek credit market 4.3.2.

Theorem 4.3.3. Let 0 ≤ t ≤ T ≤ T ?. In the model of Assumption 4.3.2, set

D(t, T ) :=
∫ T
t e−

∫ s
t a(v)dvds where the integral is taken componentwise. Assume further

that D(·, T )σ(·) ∈ ΛdT and

E
[

exp
{
−
〈
θ + φ,

∫ T

t
D(w, T )σ(w)dLd(w)

〉}]
<∞. (4.7)

Then we have

B(t, T ) = 1{τ>t}E
[
e−

∫ T
t (r(s)+λ(s))ds

∣∣∣Gt]
= 1{τ>t} exp

{
−
〈
θ + φ,D(t, T )Ld(t) +

∫ T

t
D(v, T )k(v)dv

〉}
× exp

{
−
〈
θ + φ,

∫ t

0
z−d? (1[0,t]z

d(h1[t,T ], ·), v)dLd(v)
〉}

× exp
{∫ T

t
ψ(zd(h1[t,T ], v)>i(θ + φ))dv

}
,

with h(·) = D(·, T )σ(·).
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Proof. By Assumption 4.3.2 the stochastic integrals also exist in the pathwise sense. By

the proof of Proposition 4.2.8 and Fubini’s Theorem (pathwise) we get∫ T

t
(r(s) + λ(s))ds = (θ + φ)>

∫ T

t
Ld(s)ds

= (θ + φ)>
∫ T

t

[
e−

∫ s
t a(v)dvLd(t) +

∫ s

t
e−

∫ s
w a(v)dvk(w)dw

+

∫ s

t
e−

∫ s
w a(v)dvσ(w)dLd(w)

]
ds

= (θ + φ)>
[
D(t, T )Ld(t) +

∫ T

t
D(v, T )k(v)dv +

∫ T

t
D(w, T )σ(w)dLd(w)

]
.

We calculate

E
[
e−

∫ T
t (r(s)+λ(s))ds

∣∣∣Gt]
= exp

{
−
〈
θ + φ,

[
D(t, T )Ld(t) +

∫ T

t
D(v, T )k(w)dw

〉}
×E
[

exp
{
−
〈
θ + φ,

∫ T

t
D(w, T )σ(w)dLd(w)

〉}∣∣∣Gt].
By assumption, the conditional expectation is a.s. smaller than infinity and therefore we

can invoke the prediction result of Theorem 4.2.2 (by extending it to u ∈ C) to achieve

E
[

exp
{
−
〈
θ + φ,

∫ T

t
D(w, T )σ(w)dLd(w)

〉}∣∣∣Gt]
= exp

{
−
〈
θ + φ,

∫ t

0
z−d? (1[0,t]z

d(h1[t,T ], ·), v)dLd(v)
〉}

× exp
{∫ T

t
ψ(zd(h1[t,T ], v)>i(θ + φ))dv

}
,

with h(·) = D(·, T )σ(·). Putting everything together we obtain the assertion.

Remark 4.3.4. Condition (4.7) is met if we assume the components of Ld to be fractional

subordinators and the function σ(·) to be componentwise positive. These assumptions are

economically justified since interest rates should be positive in most cases. We refer to

Theorem 3.3 of Rajput and Rosinski [109] for more general conditions.

Remark 4.3.5. The Gaussian Vasicek model was already considered in Section 3.3 and

3.5 using different, partly more direct approaches. As explained on many occasions, it

has the serious drawback that processes like the short rate could be negative. However

in practice the Gaussian models are fast to implement, very tractable and, of course, it

is always possible to scale and shift a Gaussian Vasicek model such that the probability
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of becoming negative is arbitrarily small. However with the theory of this section we

can propose models with non-negative short and default rates where bond prices still are

comparably easy to calculate.

The remainder of the section is dedicated to the consideration of a specific example

using the bivariate Poisson MG-fLp of Example 4.2.6. The components of this process are

fractional subordinators in the sense of Remark 4.1.4 and have therefore the advantage of

delivering non-negative short and hazard rates.

Example 4.3.6. [Fractional Poisson market] Assume d(1), d(2) > 0. Take the bivari-

ate Poisson MG-fLp of Example 4.2.6 as driving process in the fractional market 4.3.2.

Further, for simplicity, take k(·) = (k1, k2)>, with k1, k2 > 0,

a(·) =

 a1 0

0 a2

 , σ(·) =

 σ1 0

0 σ2


for a1, a2, σ1, σ2 > 0 and θ = (1, 0)>, φ = (0, 1)>. Therefore

dr(t) = (k1 − a1r(t))dt+ σ1dL
d(1)(t), r(0) = r0 ∈ R,

dλ(t) = (k2 − a2λ(t))dt+ σ2dL
d(2)(t), λ(0) = λ0 ∈ R,

where Ld(1) and Ld(2) are dependent.

We apply now Theorem 4.3.3. Condition (4.7) is met since the process in the expo-

nential is non-positive. Further we have

D(t, T ) =

∫ T

t
e−

∫ s
t a(v)dvds =

 ∫ T
t e−a1(s−t)ds 0

0
∫ T
t e−a2(s−t)ds


=:

 D1(t, T ) 0

0 D2(t, T )

 .

Therefore we have

−
〈
θ + φ,D(t, T )Ld(t) +

∫ T

t
D(v, T )k(v)dv

〉
= −D1(t, T )r(t)−D2(t, T )λ(t)− k1

∫ T

t
D1(v, T )dv − k2

∫ T

t
D2(v, T )dv
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and

−
〈
θ + φ,

∫ t

0
z−d? (1[0,t]z

d(h(·)1[t,T ], ·), v)dLd(v)
〉

= −σ1

∫ t

0
z−d? (1[0,t]z

d(D1(·, T )1[t,T ], ·), v)dLd(1)(v)

−σ2

∫ t

0
z−d? (1[0,t]z

d(D2(·, T )1[t,T ], ·), v)dLd(2)(v)

= −
∫ t

0
z−d? (1[0,t]z

d(D1(·, T )1[t,T ], ·), v)(−k1dv + a1r(v)dv + dr(v))

−
∫ t

0
z−d? (1[0,t]z

d(D2(·, T )1[t,T ], ·), v)(−k2dv + a2λ(v)dv + dλ(v))

where we used Lemma 4.2.10 in the last line. Applying the characterization of the Lévy

measure from Example 4.2.6, we calculate

ψ(zd(h1[t,T ], v)>i(θ + φ))

= ψ

 σ1z
d(1)(D1(·, T )1[t,T ], v) 0

0 σ2z
d(2)(D2(·, T )1[t,T ], v)

 i(θ + φ)


= ψ

 iσ1z
d(1)(D1(·, T )1[t,T ], v)

iσ2z
d(2)(D2(·, T )1[t,T ], v)


= η1(exp(−σ1z

d(1)(D1(·, T )1[t,T ], v))− 1)

+η2(exp(−σ1z
d(1)(D1(·, T )1[t,T ], v)− σ2z

d(2)(D2(·, T )1[t,T ], v))− 1)

+η3(exp(−σ2z
d(2)(D2(·, T )1[t,T ], v))− 1)

Putting everything together and applying Theorem 4.3.3 leads for all 0 ≤ t ≤ T ≤ T ? to
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the bond prices

B(t, T )

= 1{τ>t}E
[
e−

∫ T
t (r(s)+λ(s))ds

∣∣∣Gt]
= 1{τ>t} exp

{
−D1(t, T )r(t)−D2(t, T )λ(t)− k1

∫ T

t
D1(v, T )dv − k2

∫ T

t
D2(v, T )dv

}
× exp

{
−
∫ t

0
z−d? (1[0,t]z

d(D1(·, T )1[t,T ], ·), v)(−k1dv + a1r(v)dv + dr(v))
}

× exp
{
−
∫ t

0
z−d? (1[0,t]z

d(D2(·, T )1[t,T ], ·), v)(−k2dv + a2λ(v)dv + dλ(v))
}

× exp
{
η1

∫ T

t
(exp(−σ1z

d(1)(D1(·, T )1[t,T ], v))− 1)dv
}

× exp
{
η2

∫ T

t
(exp(−σ1z

d(1)(D1(·, T )1[t,T ], v)− σ2z
d(2)(D2(·, T )1[t,T ], v))− 1)dv

}
× exp

{
η3

∫ T

t
(exp(−σ2z

d(2)(D2(·, T )1[t,T ], v))− 1)dv
}
.

Remark 4.3.7. If we want to choose d = (0, 0)> in the context of Example 4.3.6, short and

hazard rate are driven by Lévy processes which are a subclass of affine Markov processes.

Therefore the bond prices can be calculated to

B(t, T )

= 1{τ>t} exp
{
−D1(0, T )r(0)−D2(0, T )λ(0)− k1

∫ T

0
D1(v, T )dv − k2

∫ T

0
D2(v, T )dv

}
× exp

{
η1

∫ T

t
(exp(−σ1D1(v, T ))− 1)dv + η3

∫ T

t
(exp(−σ2D2(v, T ))− 1)dv

}
× exp

{
η2

∫ T

t
(exp(−σ1D1(v, T )− σ2D2(v, T ))− 1)dv

}
,

which represents the affine structure, see e.g. Duffie [44] and Duffie, Filipovic and Schacher-

mayer [45]. However, if d 6= (0, 0)>, the past paths of short and default rate matter and

will enter the prices.

To compare prices we consider the case t = 0.
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Figure 4.1: Bond prices B(0, t) in the fractional Poisson market 4.3.6 for varying d(1) and

maturity t, using (η1, η2, η3)> = (2, 1, 2)>, (r(0), λ(0))> = (0.1, 0.05)>, k1 = 0.5, k2 = 1,

a1 = 4, a2 = 8, σ1 = 2, σ2 = 1 and d(2) = 0.25. Recall that (d(1), d(2))> = (0, 0)>

corresponds to the Lévy Vasicek model of Remark 4.3.7. Prices decrease with d(1) as a

consequence of the long range dependence, which is very surprising, cf. Remark 4.3.9.

Example 4.3.8. In the situation of Example 4.3.6 we have

B(0, T )

= exp
{
−D1(0, T )r(0)−D2(0, T )λ(0)− k1

∫ T

0
D1(v, T )dv − k2

∫ T

0
D2(v, T )dv

}
× exp

{
η1

∫ T

0
(exp(−σ1z

d(1)(D1(·, T )1[0,T ], v))− 1)dv
}

× exp
{
η2

∫ T

0
(exp(−σ1z

d(1)(D1(·, T )1[0,T ], v)− σ2z
d(2)(D2(·, T )1[0,T ], v))− 1)dv

}
× exp

{
η3

∫ T

0
(exp(−σ2z

d(2)(D2(·, T )1[0,T ], v))− 1)dv
}
.

Because of the singularities in the operator zd classical numerical methods have to be

used with care. We will choose a similar discretization scheme, as in the fBm case, cf.

Remark 3.3.13. This will be explained for the first occurring fractional integration:
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For d(1) ∈ (0, 1
2) and 0 ≤ t ≤ T ≤ T ? we have

∫ T

0
exp(−σ1z

d(1)(D1(·, T )1[0,T ], v))dv

=

∫ T

0
exp

(
− σ1cd(1)v

−d(1)

∫ T ?

v

rd(1)D(r, T )1[0,T ](r)

(r − v)1−d(1)
dr
)
dv.

First we decompose the outer integral for m ∈ N and 0 = v0 ≤ v1 ≤ · · · ≤ vm = T

=

n−1∑
i=0

∫ vi+1

vi

exp
(
− σ1cd(1)v

−d(1)

∫ T

v

rd(1)D(r, T )1[0,T ](r)

(r − v)1−d(1)
dr
)
dv.

Now by Remark 3.3.13 we have for sufficiently small intervals [vi, vi+1], subpartitions

vi = wi0 ≤ wi1 ≤ · · · ≤ wimi = vi+1 for some mi ∈ N, i = 0, . . . ,m− 1, and v ∈ [vi, vi+1]

Figure 4.2: Bond prices B(0, t) in the fractional Poisson market 4.3.6 for varying d(2) and

maturity t, using (η1, η2, η3)> = (2, 1, 2)>, (r(0), λ(0))> = (0.1, 0.05)>, k1 = 0.5, k2 = 1,

a1 = 4, a2 = 8, σ1 = 2, σ2 = 1 and d(1) = 0.25. Recall that (d(1), d(2))> = (0, 0)>

corresponds to the Lévy Vasicek model of Remark 4.3.7. Prices decrease with d(2) as a

consequence of the long range dependence, cf. Remark 4.3.9.
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∫ T

v

rd(1)D(r, T )1[0,T ](r)

(r − v)1−d(1)
dr

≈ 1

2d(1)

mi−1∑
j=0

[(wij+1 − vi)d(1) − (wij − vi)d(1)][(wij)
d(1)D(wij , T ) + (wij+1)d(1)D(wij+1, T )]

=: A(vi)

Putting everything together we get∫ T

0
exp(−σ1z

d(1)(D1(·, T )1[0,T ], v))dv

=

n−1∑
i=0

∫ vi+1

vi

exp
(
− σ1cd(1)v

−d(1)

∫ T

v

rd(1)D(r, T )1[0,T ](r)

(r − v)1−d(1)
dr
)
dv

≈
n−1∑
i=0

∫ vi+1

vi

exp
(
− σ1cd(1)A(vi)v

−d(1)
)
dv

≈
n−1∑
i=0

[vi+1 − vi] exp
(
− σ1cd(1)A(vi)[vi+1 − vi]/2

)
.

Choosing now vi = 0.01i, i = 0, . . . , 100t, and wij = 0.01(i + j), j = 0, . . . , 100t − i, we

obtain

A(vi) =

100t−i−1∑
j=0

[(j + 1)κ − jκ][(i+ j)κD(0.01(i+ j), t) + (i+ j + 1)κD(0.01(i+ j + 1), t)]

and ∫ T

0
exp(−σ1z

d(1)(D1(·, T )1[0,T ], v))dv ≈ 0.01
n−1∑
i=0

exp
(
− 0.005σ1cd(1)A(vi)

)
. (4.8)

Remark 4.3.9. At first sight it is surprising that in the case of a fractional Poisson

market prices decrease with d(1) and d(2), since in the Gaussian case the contrary is the

case (cf. Section 3.3 and further considerations in Chapter 6). The reason behind this

is the following: in a fractional Poisson market, short and default rate increase with the

shocks of the driving Poisson subordinators and decrease between these exponentially. An

increase in d(1) and d(2) means an increase in the (positive) correlation between these

shocks. Therefore short and default rate are more likely to go up, which leads the bond

price to drop.

In the Gaussian case, the driving processes are not increasing and an increase in d(1)

and d(2) does no longer affect short and default rate as above, since there is now also a

(positive) correlation between decreases of the driving processes.
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4.4 Application: Fractional volatility in a Black Scholes

market

In this section we want to show another possible application of our prediction result from

Theorem 4.2.2. While we concentrated mainly on interest rate and credit markets in the

previous sections, we will now focus on classical stock markets. It is our aim to price

classical vanilla call options in a Black-Scholes market with fractional volatility.

In the following we will use the setup of Bender and Marquardt [16] who introduced

a financial market model driven by a standard Brownian motion, time changed by a

univariate convoluted Lévy process. For the later, [16] allows for many different kernel

functions including the fractional subordinators of Example 4.1.4, (ii). However we will

directly state the model of [16] using such fractional subordinators. By Theorem 4.2.2 we

are able to calculate the whole price process of a European call.

4.4.1 The market model

For a time horizon T ? > 0 assume a filtered probability space (Ω,F , (Ft)0≤t≤T ? ,P) where

the filtration satisfies the usual conditions of completeness and right continuity. Let

W = (W (t))0≤t≤T ? be a standard Brownian motion adapted to the filtration (Ft)0≤t≤T ? .

Furthermore let Ld = (Ld(t))0≤t≤T ? , d ∈ (0, 1
2), be a fractional subordinator in the sense

of Example 4.1.4, (ii), independent of W and also adapted (Ft)0≤t≤T ? . There exist two

tradable assets: for r ≥ 0, the process

B = (B(t))0≤t≤T ? = (exp(rt))0≤t≤T ?

describes the risk-free money account while the price process of the only stock in the

market is given by

S = (S(t))0≤t≤T ? =
(
S(0) exp

{
rt+

(
µ− σ2

2

)
Ld(t) + σW (Ld(t))

})
0≤t≤T ?

for some S(0) > 0, σ > 0, µ ∈ R.

In a first step we can calculate the conditional characteristic function of the logarithmic

stock price using Theorem 4.2.2.
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Theorem 4.4.1. We have for all 0 ≤ s ≤ t ≤ T ? and u ∈ R

E
[

exp
{
iu log(S(t))

}∣∣∣Fs]
= exp{iu(log(S(0)) + rt)}

× exp
{(
iu
(
µ− σ2

2

)
− u2σ

2

2

)
Ld(s)

}
× exp

{(
iu
(
µ− σ2

2

)
− u2σ

2

2

)∫ s

0
z−d? (1[0,s]z

d(1[s,t], ·), v)dLd(v)
}

× exp
{∫ t

s
ψ
(
zd(1[s,t], v)

(
u
(
µ− σ2

2

)
+ iu2σ

2

2

))
dv
}
.

Proof. Let 0 ≤ s ≤ t ≤ T ?. We calculate using the independence of W and Ld

E
[

exp
{
iu log(S(t))

}∣∣∣Fs]
= ×E

[
exp

{
iu
(

log(S(0)) + rt+
(
µ− σ2

2

)
Ld(t) + σW (Ld(t))

)}∣∣∣Fs]
= exp{iu(log(S(0)) + rt)} × E

[
exp

{
iu
((
µ− σ2

2

)
Ld(t) + σW (Ld(t))

)}∣∣∣Fs]
= exp{iu(log(S(0)) + rt)} × E

[
E
[

exp
{
iu
((
µ− σ2

2

)
Ld(t) + σW (Ld(t))

)}∣∣∣FLdT ? ]∣∣∣Fs]
= exp{iu(log(S(0)) + rt)}

×E
[

exp
{
iu
(
µ− σ2

2

)
Ld(t)

}
E
[

exp
{
iuσW (Ld(t))

}∣∣∣FLdT ? ]∣∣∣Fs]
= exp{iu(log(S(0)) + rt)} × E

[
exp

{(
iu
(
µ− σ2

2

)
− u2σ

2

2

)
Ld(t)

}∣∣∣Fs].
Since Ld is strictly increasing, its conditional Laplace transform E[exp{−wLd(t)}|Fs] ex-

ists for w ∈ R+. Therefore we can invoke Theorem 4.2.2 for f = 1[0,t] and

u? :=
(
u
(
µ− σ2

2

)
+ iu2σ

2

2

)
by extending it C−. Then we obtain

E
[

exp
{(
iu
(
µ− σ2

2

)
− u2σ

2

2

)
Ld(t)

}∣∣∣Fs]
= E

[
exp

{
iu?Ld(t)

}∣∣∣Fs]
= exp

{
iu?Ld(s) + iu?

∫ s

0
z−d? (1[0,s]z

d(1[s,t], ·), v)dLd(v) +

∫ t

s
ψ(zd(1[s,t], v)>u?)dv

}
= exp

{(
iu
(
µ− σ2

2

)
− u2σ

2

2

)
Ld(s)

}
× exp

{(
iu
(
µ− σ2

2

)
− u2σ

2

2

)∫ s

0
z−d? (1[0,s]z

d(1[s,t], ·), v)dLd(v)
}

× exp
{∫ t

s
ψ
(
zd(1[s,t], v)

(
u
(
µ− σ2

2

)
+ iu2σ

2

2

))
dv
}
,
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which concludes the proof.

Remark 4.4.2. Setting s = 0 in Theorem 4.4.1 we obtain

E
[

exp
{
iu log(S(t))

}]
= exp

{
iu(log(S(0)) + rt) +

∫ t

0
ψ
(
zd(1[0,t], v)

(
u
(
µ− σ2

2

)
+ iu2σ

2

2

))
dv
}
.

which equals the result of Theorem 2 of Bender and Marquardt [16] for k(t, s) := zd(1[0,t], s).

4.4.2 Absence of arbitrage and option pricing

In a next step Bender and Marquardt [16] showed in their Section 4 that the model above

is arbitrage-free but incomplete by explicitly constructing equivalent martingale measures.

The authors further showed that under such risk-neutral dynamics the stock price equals

S = (S(t))0≤t≤T ? =
(
S(0) exp

{
rt+ σW̃ (Ld(t))− 1

2
σ2Ld(t)

})
0≤t≤T ?

,

where W̃ = (W̃ (t))0≤t≤T ? is a standard Brownian motion independent of Ld. We will from

now on work under such a measure without further comment. Remark that the occurring

option prices are not the only who lead to an arbitrage-free market due to incompleteness.

By conditioning on FLdT ? we have:

Theorem 4.4.3 (Version of Theorem 4 of Bender and Marquardt [16]). Let

X = (S(T ?)−K)+ be a European call option with strike K > 0 and maturity T ?. Then,

for the initial fair price C0(K) of X, we have

C0(K) =

∫ ∞
0

[
S(0)N

( log(S(0)/K) + σ2t/2

σ
√
t

)
−Ke−rT ?N

( log(S(0)/K)− σ2t/2

σ
√
t

)]
FLd(T ?)(dt),

where N is the distribution function of the standard normal distribution and FLd(T ?) is the

distribution function of Ld(T ?).

Using the result from Theorem 4.4.1 we can use Fourier pricing similar to Theo-

rem 3.5.13 to calculate the whole price process C(K) = (Ct(K))0≤t≤T ? of the European

call X:

Theorem 4.4.4. Let X = (S(T ?)−K)+ be a European call option with strike K > 0 and

maturity T ?. Assume that there exists a > 1 such that

E
[
ea log(S(T ?))

]
<∞.
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Then, for the fair price process C(K) of X, we have

Ct(K)

=

∫
R
E
[
e(a+iξ) log(S(T ?))

∣∣∣Ft]f̂a(ξ)dξ
= ea(log(S(0))+rt) exp

{σ2

2
(a2 − a)

(
Ld(t) +

∫ t

0
z−d? (1[0,t]z

d(1[0,T ?], ·), v)dLd(v)
)}

×
∫
R

(
exp

{
iξ(log(S(0)) + rt)

}
exp

{σ2

2
(2iaξ − iξ − ξ2)

(
Ld(t) +

∫ t

0
z−d? (1[0,t]z

d(1[0,T ?], ·), v)dLd(v)
)}

× exp
{∫ T ?

t
ψ
(σ2zd(1[0,T ?], v)

2

(
(ia− ξ) + (2aξ + i(ξ2 − a2))

))
dv
}
f̂a(ξ)

)
dξ

for 0 ≤ t ≤ T ? with

f̂a(ξ) =
e−(a−1+iξ) log(K)

(a+ iξ)(a− 1 + iξ)
, ξ ∈ R.

Proof. Define for a > 1 the function

fa(x) := e−ax(ex −K)+, x ∈ R.

Then fa ∈ L1(R)∩L2(R). By Example 5.6, (B), of Biagini, Fuschini and Klüppelberg [19]

we get for the Fourier transform f̂a

f̂a(ξ) =

∫ ∞
log(K)

e−iξxfa(x)dx =

∫ ∞
log(K)

e−x(a+iξ)(ex −K)dx =
e−(a−1+iξ) log(K)

(a+ iξ)(a− 1 + iξ)
, ξ ∈ R.

Further Example 5.6, (B), of [19] shows that f̂a ∈ L1(R) ∩ L2(R). Therefore we have by

classical Fourier analysis

fa(x) =

∫
R
eiξxf̂a(ξ)dξ, x ∈ R.

Using this we obtain for 0 ≤ t ≤ T ?

Ct(K) = E[(S(T ?)−K)+|Ft] = E
[
ea log(S(T ?))fa(log(S(T ?))

∣∣∣Ft]
= E

[
ea log(S(T ?))fa(log(S(T ?))

∣∣∣Ft]
= E

[
ea log(S(T ?))

∫
R
eiξ log(S(T ?))f̂a(ξ)dξ

∣∣∣Ft]
= E

[
ea log(S(T ?))

∫
R
eiξ log(S(T ?))f̂a(ξ)dξ

∣∣∣Ft]
=

∫
R
E
[
e(a+iξ) log(S(T ?))

∣∣∣Ft]f̂a(ξ)dξ
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where we used the fact that E
[
ea log(S(T ?))

]
< ∞. Therefore we can also extend Theo-

rem 4.4.1 to get

E
[
e(a+iξ) log(S(T ?))

∣∣∣Ft]
= exp{(a+ iξ)(log(S(0)) + rT ?))}

× exp
{σ2

2
(a2 + 2iaξ − a− iξ − ξ2)

(
Ld(t) +

∫ t

0
z−d? (1[0,t]z

d(1[0,T ?], ·), v)dLd(v)
)}

× exp
{∫ T ?

t
ψ
(σ2zd(1[0,T ?], v)

2

(
(ia− ξ) + (2aξ + i(ξ2 − a2))

))
dv
}
.

Putting everything together concludes the proof.

Remark 4.4.5. If we chose t = 0 in Theorem 4.4.4 we get

C0(K) = S(0)a
∫
R

(
exp

{
iξ(log(S(0)))

}
× exp

{∫ T ?

0
ψ
(σ2zd(1[0,T ?], v)

2

(
(ia− ξ) + (2aξ + i(ξ2 − a2))

))
dv
}
f̂a(ξ)

)
dξ
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Chapter 5

Application: Interest rate models

and parameter sensitivity

In Sections 3.3, 3.5 and 4.3 we motivated and introduced two different interest rate models

driven by fractional Vasicek dynamics. In particular the approach in Section 3.3 was based

on a fractional Brownian motion. In the classical work of Vasicek [130] the drawback of

getting a negative short rate r with positive probability was justified by the significant

advantage of having a market model that provides easily tractable bond prices with ana-

lytical formulas. As mentioned in the introduction of Section 3.3 one can always shift and

scale the model to make the probability of a negative short rate as small as possible.

The fractional Brownian Vasicek model of Section 3.3 (which includes the classical

Vasicek model by setting κ = 0) has the same drawback of a potential negative short

rate and still provides an analytical pricing formula for zero coupon bonds (cf. Theo-

rem 3.3.11). However in comparison to [130] the numerics have become more difficult

since the appearing norms cannot be calculated analytically due to fractional integration,

cf. Remark 3.3.13. Still, it is the natural extension of the classical model and allows long

range dependence in the increments of the short rate.

The fractional Lévy models of Section 4.3 addressed the above mentioned drawback

of the Gaussian setting from Section 3.3: When using fractional subordinators as driving

processes it is ensured that the short rate r cannot become negative. Also the model

still allows for fairly explicit calculations of zero coupon bond prices as can be seen by

Theorem 4.3.3. For simplicity we shall set φ = 0 in (4.6) for the following considerations.

As a consequence, no default is possible and we can compare the fractional Lévy models

directly to the fractional Vasicek model from 3.3.
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Figure 5.1: Bond prices BfBm(0, T ) in the fractional Brownian model for varying r(0),

maturity T and fractional parameter κ, using constant coefficients a = 4, k = 1 and σ = 1.

κ = 0 corresponds to the classical Brownian Vasicek model. In particular r(0) increases

by steps of size 0.025 from 0 to 0.225.

The section will be dedicated to a detailed analysis of the bond price dynamics in these

models since in practical considerations parameter sensitivities play an important role. For

example in the classical Black-Scholes model of Black and Scholes [22] these sensitives are

captured by the so-called greeks which are basically the derivatives with respect to the

individual parameters. Market participants can apply the greeks to carry out a ceteris

paribus analysis and approximate how the prices would change under certain assumptions.
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In the Black-Scholes model the greeks also play an important role when building a hedg-

ing strategy. Of course these considerations are only valid if the model assumptions are

fulfilled. Therefore such derivatives should be used with care. Now we want to compare

the following fractional short rate models (cf. Theorem 3.3.11 and Theorem 4.3.3):

Model type Zero bond price for t = 0 and 0 ≤ T ≤ T? Parameters

Fractional exp
{
−D(0, T )r(0)− k

∫ T
0 D(v, T )dv

}
r(0), k, σ ≥ 0

Brownian × exp
{
σ2

2 ‖D(·, T )1[0,T ](·)‖2κ,T ?
}

a > 0, κ ∈ [0, 1
2)

Fractional exp
{
−D(0, T )r(0)− k

∫ T
0 D(v, T )dv

}
r(0), k, σ ≥ 0

Poisson × exp
{
η
∫ T

0 exp(−σzd(D(·, T )1[0,T ], v))dv
}

a, η > 0, d ∈ [0, 1
2)

In the following we will execute a numerical study to analyze the impact of parameter

changes on the bond price and calculate the derivatives with respect to the individual

parameters. Recall that in the case of time independent coefficient functions as above we

have for 0 < T < T ?

D(t, T ) =

∫ T

t
e−

∫ v
t a(w)dwdv =

1− e−a(T−t)

a
, t ∈ [0, T ].

In particular we have

D(0, T ) =
1− e−aT

a
, t ∈ [0, T ].

We will carry out this study by letting one parameter vary while the rest will be fixed for

the time being. Reference parameters shall be

r(0) = 0.1

a = 4

k = 1

σ = 1

For the fractional Poisson model the reference intensity shall be η = 1. As in Sections 3.3

and 4.3 the fractional parameters κ and d will take the values 0, 0.1, 0.25 and 0.45.
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Figure 5.2: Bond prices BPoi(0, T ) in the fractional Poisson model for varying r(0), ma-

turity T and fractional parameter d, using constant coefficients a = 4, k = 1, σ = 1 and

η = 1. In particular r(0) increases by steps of size 0.025 from 0 to 0.225.

Denote for the rest of this section the zero coupon bond price in the fractional Brownian

model by BfBm(0, T ) and in the fractional Poisson model by BPoi(0, T ), 0 ≤ T ≤ T ?.

Considering the bond price as a function with respect to a certain parameter will be

denoted by subscription, e.g. BfBm
r(0) (0, T ).
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5.1 Parameter sensitivity with respect to r(0)

Figure 5.3: Bond prices BfBm(0, T ) in the fractional Brownian model for varying a, matu-

rity T and fractional parameter κ, using constant coefficients r(0) = 0.1, k = 1 and σ = 1.

κ = 0 corresponds to the classical Brownian Vasicek model. In particular a increases by

steps of size 0.5 from 0.5 to 5.

At T = 0 all bond prices are equal to 1 but afterwards a higher start interest rate

r(0) also leads to a lower bond price as can be seen in Figure 5.1 and Figure 5.2. For

higher maturities T this difference becomes smaller since the weighting factor D(0, T ) in

the pricing formula is bounded by a−1. For all κ, d ∈ [0, 1
2) the absolute influence of r(0)
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on the bond price is equal while the relative influence varies. The derivative with respect

to r(0) exists and is given by

∂BfBm
r(0) (0, T )

∂r(0)
= −D(0, T ) ·BfBm

r(0) (0, T ),

∂BPoi
r(0)(0, T )

∂r(0)
= −D(0, T ) ·BPoi

r(0)(0, T ).

5.2 Parameter sensitivity with respect to a

Figure 5.4: Bond prices BPoi(0, T ) in the fractional Poisson model for varying a, maturity

T and fractional parameter d, using constant coefficients r(0) = 0.1, k = 1, σ = 1 and

η = 1. In particular a increases by steps of size 0.5 from 0.5 to 5.
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As can be seen in Figure 5.3, the influence of the parameter a is more difficult now.

The reason behind this is the fact that D(·, T ) (and therefore a) is also involved via the

fractional integration in the bond price formulas. However it can be seen from these

formulas that the impact of the parameter a is still mostly monotone. If the probability

of getting a negative short rate r is small enough, a higher value of a leads to a higher

bond price. This can be explained by the following: the parameter a manages the speed

of mean reversion of the short rate. With high probability any short time divergence from

the mean will lead to a higher short rate (since negative values occur only with small

probability) and therefore to a lower bond price. High values of a leads to a stronger

mean-reversion and therefore the impact of such a potential divergence will be small and

vice versa.

The suddenly increasing prices are explained by the positive probability of getting

a negative short rate. The variance of r increases with the fractional parameter and

therefore the probability of negative values increases. As a consequence bond prices tend

to get higher for longer maturities. Combined with a weaker mean reversion (i.e. small

values of a) this effect is even stronger. Since in the fractional Poisson model the short rate

is always positive the influence of a is more straightforward as Figure 5.4 shows: a higher

value of a leads ceteris paribus to a higher bond price. The calculation of the derivative

with respect to a is more complicated and follows:

∂BfBm
a (0, T )

∂a

=

(
−∂D(0, T )

∂a
r(0)− k

∂
∫ T

0 D(v, T )dv

∂a
+
σ2

2

∂

∂a
‖D(·, T )1[0,T ]‖2κ,T ?

)
BfBm
a (0, T )

where we calculate using (3.33) and the classical rule for differentiation under the integral
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sign

∂

∂a
‖D(·, T )1[0,T ]‖2κ,T ?

=
∂

∂a

πκ(2κ+ 1)

Γ(1− 2κ) sin(πκ)(Γ(κ))2

∫ T ?

0
s−2κ

(∫ T ?

s

rκD(r, T )1[0,T ](r)

(r − s)1−κ dr
)2
ds

=
πκ(2κ+ 1)

Γ(1− 2κ) sin(πκ)(Γ(κ))2

∫ T ?

0
s−2κ ∂

∂a

(∫ T ?

s

rκD(r, T )1[0,T ](r)

(r − s)1−κ dr
)2
ds

=
2πκ(2κ+ 1)

Γ(1− 2κ) sin(πκ)(Γ(κ))2

∫ T ?

0
s−2κ

(∫ T ?

s

rκD(r, T )1[0,T ](r)

(r − s)1−κ dr
)

× ∂

∂a

(∫ T ?

s

rκD(r, T )1[0,T ](r)

(r − s)1−κ dr
)
ds

=
2πκ(2κ+ 1)

Γ(1− 2κ) sin(πκ)(Γ(κ))2

∫ T ?

0
s−2κ

(∫ T ?

s

rκD(r, T )1[0,T ](r)

(r − s)1−κ dr
)

×
(∫ T ?

s

rκ ∂
∂aD(r, T )1[0,T ](r)

(r − s)1−κ dr
)
ds.

We finally see that

∂

∂a
‖D(·, T )1[0,T ]‖2κ,T ? = 2〈D(·, T ),

∂

∂a
D(·, T )〉κ,T ? .

In the fractional Poisson case we have

∂BPoi
a (0, T )

∂a

=

(
−∂D(0, T )

∂a
r(0)− k

∂
∫ T

0 D(v, T )dv

∂a
+ η

∂

∂a

∫ T

0
exp(−σzd(D(·, T )1[0,T ], v))dv

)
×BfBm

a (0, T )

where we obtain again by interchanging differentiation and integration

∂

∂a

∫ T

0
exp(−σzd(D(·, T )1[0,T ], v))dv

=

∫ T

0

∂

∂a
exp(−σzd(D(·, T )1[0,T ], v))dv

= −σ
∫ T

0

∂

∂a
zd(D(·, T )1[0,T ], v) exp(−σzd(D(·, T )1[0,T ], v))dv.

Therefore we have in total

∂BfBm
a (0, T )

∂a

=

(
−∂D(0, T )

∂a
r(0)− k

∫ T

0

∂

∂a
D(v, T )dv + σ2〈D(·, T ),

∂

∂a
D(·, T )〉κ,T ?

)
BfBm
a (0, T )
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and

∂BPoi
a (0, T )

∂a

=

(
−∂D(0, T )

∂a
r(0)− k

∫ T

0

∂

∂a
D(v, T )dv

−ησ
∫ T

0

∂

∂a
zd(D(·, T )1[0,T ], v) exp(−σzd(D(·, T )1[0,T ], v))dv

)
BPoi
a (0, T ).

Figure 5.5: Bond prices BfBm(0, T ) in the fractional Brownian model for varying k, matu-

rity T and fractional parameter κ, using constant coefficients r(0) = 0.1, a = 4 and σ = 1.

κ = 0 corresponds to the classical Brownian Vasicek model. In particular k increases by

steps of size 0.25 from 0 to 2.25.
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5.3 Parameter sensitivity with respect to k

Figure 5.6: Bond prices BPoi(0, T ) in the fractional Poisson model for varying k, maturity

T and fractional parameter d, using constant coefficients r(0) = 0.1, a = 4, σ = 1 and

η = 1. In particular k increases by steps of size 0.25 from 0 to 2.25.

The impact of the parameter k is again a bit more straightforward. Figure 5.5 shows

that a higher value of k results mostly in a lower bond price since for fixed a, the parameter

k controls the long term mean of the process r. For longer maturities the influence of k

becomes stronger. A special case are again the suddenly increasing bond prices. As before

they can be explained by the probability of negative values of the short rate. Lower values
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of k increase this probability. Of course this is not an issue in the fractional Poisson model,

cf. Figure 5.6. The derivative with respect to k exists and is given by

∂BfBm
k (0, T )

∂k
= −

∫ T

0
D(v, T )dv ·BfBm

k (0, T ),

∂BPoi
k (0, T )

∂k
= −

∫ T

0
D(v, T )dv ·BPoi

k (0, T ).

5.4 Parameter sensitivity with respect to σ

Figure 5.7: Bond prices BfBm(0, T ) in the fractional Brownian model for varying σ,

maturity T and fractional parameter κ, using constant coefficients r(0) = 0.1, a = 4

and k = 1. κ = 0 corresponds to the classical Brownian Vasicek model. In particular σ

increases by steps of size 0.25 from 0 to 2.25.
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Figure 5.8: Bond prices BPoi(0, T ) in the fractional Poisson model for varying σ, maturity

T and fractional parameter d, using constant coefficients r(0) = 0.1, a = 4, k = 1 and

η = 1. In particular σ increases by steps of size 0.25 from 0 to 2.25.

The parameter σ has a positive impact on the bond price in the fractional Brownian

model, cf. Figure 5.7. If σ equals zero the short rate r is deterministic and cannot become

negative. Bond prices decrease with longer maturity. However if σ is positive and takes

high values, the probability of r getting negative gets higher, which means that bond

prices will be higher, too. In the fractional Poisson model, cf. Figure 5.8, the influence of
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the parameter σ is very different. Since the short rate is non-negative the impact of σ is

asymmetric. A higher value will increase the probability of seeing higher values of r which

leads to a lower bond price. The derivative with respect to σ is given by

∂BfBm
σ (0, T )

∂σ
= σ‖D(·, T )1[0,T ](·)‖2κ,T ? ·BfBm

σ (0, T ),

∂BPoi
σ (0, T )

∂σ
= −η

∫ T

0
zd(D(·, T )1[0,T ], v)) exp(−σzd(D(·, T )1[0,T ], v)dv ·BPoi

σ (0, T ),

where we used the classical rule for differentiation under the integral sign in the fractional

Poisson case.

5.5 Parameter sensitivity with respect to η

Figure 5.9: Bond prices BPoi(0, T ) in the fractional Poisson model for varying η, maturity

T and fractional parameter d, using constant coefficients r(0) = 0.1, a = 4 and k = 1. In
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particular η increases by steps of size 0.25 from 0 to 2.25.

As can be seen in Figure 5.9 the impact of the Poisson parameter η is always monotone:

higher values of η lead to lower bond prices. The reason behind this is that with increasing

η the fractional Poisson subordinator driving the short rate process will have a higher

upward drift. The derivative with respect to η is given by

∂BPoi
η (0, T )

∂η
=

∫ T

0
exp(−σzd(D(·, T )1[0,T ], v)dv ·BPoi

η (0, T ).
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Chapter 6

Discrete-valued Lévy models

In this chapter we develop a new class of continuous time models to describe integer based

prices, which are integer processes when normalized by the tick size. This research is

carried out to give us models to deal with situations where the discrete tick size plays an

important empirical role and is particularly helpful in dealing with low latency financial

data. Our models will allow for volatility clustering and statistical leverage, extending the

Lévy model of Barndorff-Nielsen, Pollard and Shephard [10] which delivers independent

and stationary returns.

Recently low latency data have become available for research. These data from special-

ist data providers are recorded very close to the data exchange itself and are therefore of

the highest available quality. Typically low latency data are added to the data providers

database less than 1 millisecond after they leave the exchange.

There has been considerable interest in using high frequency financial data to aid

decision making. Recent reviews are given by Russell and Engle [114] and Bauwens and

Hautsch [13]. Leading applied reasons include:

(i) Building models to design efficient trading methods with low transaction costs.

These methods are typically implemented electronically and are called “automated trad-

ing”. An interesting recent example being Avellaneda and Stoikov [6]. Such methods often

study the relative utility of market and limit orders, see for example Lehmann [84] for a

theoretical discussion.

(ii) Harnessing the data to better estimate medium term financial volatility or de-

pendence e.g. by Andersen, Bollerslev, Diebold and Labys [3], Barndorff-Nielsen and

Shephard [12], Barndorff-Nielsen, Hansen, Lunde and Shephard [9] and Mykland and

Zhang [98].
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(iii) Studies of the relationships between the many quantities of economic interest.

For example relationships between trade volumes and price changes have been studied by

Potters and Bouchaud [106] and Lo and Wang [85] amongst many and between order flow

and tick price changes by Weber and Rosenow [133] and others.

Our starting point is the recent integer-valued Lévy process based model of Barndorff-

Nielsen et al. [10]. They modeled prices as

Pt = P0 + Lt, Lt = L+
t − L

−
t , t ≥ 0,

where L± = (L±t )t≥0 are independent integer-valued subordinators and P0 ∈ R+.

To improve the readability of this chapter (which includes many time-changed stochas-

tic processes) we shall - in contrast to the first part of the thesis - denote a stochastic

process using the time as a subscript (i.e. L±t ) instead of L±(t).

Recall that subordinators are non-negative Lévy processes and therefore have non-

negative, independent and stationary increments. The simplest example of this, corre-

sponding to one-tick markets, is where L± are Poisson processes. Then Barndorff-Nielsen

et al. [10] called L a Skellam Lévy process.

Related integer-valued econometric models include those discussed by, for example,

Hausman, Lo and MacKinlay [71], Rydberg and Shephard [116], Russel and Engle [113],

Hasbrouck [69], Phillips and Yu [102] and Hansen and Horel [67]. Delattre and Jacod [37]

considered diffusion processes with round-off errors and their stochastic properties while

Rosenbaum [112] used their results to propose a model for asset prices with focus on

estimating integrated volatility. Statistical approaches, working directly with the discrete-

valued observations, can be found in e.g. by Müller and Czado [97] or Haug and Czado [70].

The Barndorff-Nielsen et al. [10] model structure has many interesting advantages,

as it is a continuous time model which obeys the tick structure. The model has the

disadvantage that it delivers integer-valued returns which are independent and stationary,

the latter features are shared with Brownian motion. Clearly this is unsatisfactory for

financial data. However, in the same way that Brownian motion can be time-changed to

deliver Gaussian stochastic volatility, e.g. the reviews by, for example, Shephard [124] and

Ghysels, Harvey and Renault [63], we can adjust integer-valued Lévy processes to make

them more realistic.

Clearly the direct application of non-Gaussian stochastic volatility approaches (e.g.

Renault and Werker [111]), where we would define

Pt = P0 +

∫ t

0
σsdLs, t ≥ 0,
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where σ = (σt)t≥0 is a non-negative stochastic process, is unsatisfactory for low latency

data for the resulting process is not integer-valued in general. Likewise

Pt = P0 + L ◦ Tt, t ≥ 0,

where T = (Tt)t≥0 is a time-change (i.e. a process with non-negative increments) inde-

pendent of L is also unsatisfactory. It will be integer-valued but it does not allow for

statistical leverage effects since the time change will affect upticks and downticks likewise.

Recall the statistical leverage effect is where there is a negative correlation between the

stock price changes and future volatility, meaning that stock price falls are associated with

future high levels of volatility. We develop here a new approach to deliver tick structure,

volatility clustering and statistical leverage. Our model differs from the previous work of

Carr and Wu [29] and the more general discussion given by Veraart and Veraart [132].

Although the models developed in this chapter deal with most of the features we see in

low latency data, this approach is not complete for it ignores some microstructure effects

which deliver autocorrelation in returns. This will inevitably limit its detailed application

until this extension is fully developed.

Firstly, we will introduce our model in Section 6.1 and give a detailed analysis of its

basic properties in Section 6.2. Various econometric methods for inference are outlined in

Section 6.3. An application is provided in Section 6.4.

6.1 Stochastic volatility

Now we want to extend the integer-valued Lévy processes from Barndorff-Nielsen et al. [10]

to allow for volatility clustering and statistical leverage. Throughout this chapter we will

always assume a given Lévy subordinator L+ = (L+
t )t≥0 on a complete filtered probability

space, satisfying the usual hypotheses of right-continuity and completeness.

Using its characteristic triple, L+ can also be described in terms of its cumulant func-

tion (instead of its characteristic function), i.e.

C{θ ‡ L+
t } := logE[exp{iuL+

t }] = tψ+(u), t ≥ 0, u ∈ R.

with

ψ+(u) = iuγ+ +

∫
R+

{
exp (iux)− 1− iux1{|x|<1}

}
ν+(dx), u ∈ R.
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Here we have γ+ ∈ R+ and the Lévy measure ν+ satisfies (cf. Section 1.4)

ν+({0}) = 0, ν+((−∞, 0]) = 0,∫
R+

(x ∧ 1)ν+(dx) < ∞.

We shall also assume that the appearing moments of L+ always exist. Mostly it will be

enough assume the existence of fourth moments, i.e.∫
R+

x4ν+(dx) <∞,

however, when considering cumulant functions of the price process P , we will need the

existence of exponential moments of L+.

The same structure will also be assumed to apply to the subordinator L− which shall

be independent of L+.

6.1.1 Model specification

Recall the tick prices P = (Pt)t≥0 from Barndorff-Nielsen et al. [10] as

Pt − P0 = L+
t − L

−
t , t ≥ 0,

where L+ and L− are independent integer-valued subordinators. This means that P is

integer valued if P0 is and therefore is suitable as a tick price model. As both L+ and L−

are finite activity processes, so P must be as well.

In this chapter we will study the following model in detail:

Pt − P0 = R+
t −R

−
t , t ≥ 0,

where

R+
t = L+ ◦ {Tt + αψtE (Z1)} = L+

Tt+αψtE(Z1), t ≥ 0,

and

R−t = L− ◦ (Tt + ψZt) = L−Tt+ψZt , t ≥ 0.

Here L+
t and L−t are independent integer-valued subordinators, independent of the process

Z = (Zt)t≥0. It is important to note that it is not possible to write the process P as being

an univariate Lévy process which is time-changed by a single process.

In this model T = (Tt)t≥0 and Z are particular types of time-changes, so are non-

decreasing stochastic processes. Later we will think of ψ ≥ 0 as a statistical leverage
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parameter, while α ≥ 0 controls the drift. In this chapter we will often impose the

constraint that

α =
E(L−1 )

E(L+
1 )
,

which means that the component

L+
αψtE(Z1) − L

−
ψZt

, t ≥ 0,

is a martingale. The literature on time-changes in the context of finance is reviewed by,

for example, Veraart and Winkel [131].

Remark 6.1.1. Carr and Wu [29] considered time changed Lévy processes in general.

However after calculating the cumulant functions they focussed in their work mainly on

time changes by Lévy processes or “instantaneous rate of activities”, i.e. continuous and

differentiable processes. This does not match our model, since the process T· + ψZ· is

neither in general a Lévy process nor differentiable. Veraart and Veraart [132] have a

more general discussion of the topic.

Remark 6.1.2. As L± are of finite activity we can write them as compound Poisson

processes

L±t =

N±
t∑

j=1

C±j , t ≥ 0,

where C±j ∈ {1, 2, . . .} are stochastically independent and equally distributed. Further-

more N± = (N±t )t≥0 are Poisson processes. Consequently

R+
t =

N+
Tt+αψtE(Z1)∑

j=1

C+
j , R−t =

N−
Tt+ψZt∑
j=1

C−j , t ≥ 0,

which shows the intensity of the upticks and downticks are changed by the time-changes,

but not the distribution of the jumps which does not change over time. Of course this

means that the increments of R± are dependent (unlike L±), due to the common measures

in the two time changes T and Z.

6.1.2 Linear subordinator

For simplicity of analysis, the non-decreasing time-change T will nearly always be assumed

to be linear in a strictly increasing Lévy subordinator Z, i.e.

Tt = a(t) +

∫ t

0
k(t, s)dZs t ≥ 0.
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Throughout we will impose the following assumptions. The non-stochastic kernel

k : (R+)2 → R+

satisfies (cf. Definition 1 of Bender and Marquardt [16]):

(i) For fixed t ≥ 0, the mapping s 7→ k(t, s) is integrable.

(ii) For fixed s ≥ 0, the mapping t 7→ k(t, s) is continuous and increasing. There exists

an ε > 0 such that t 7→ k(t, s) is strictly increasing on [s, s+ ε].

(iii) For s > t ≥ 0, k(t, s) = 0.

Moreover we will assume that the non-stochastic function

a : R+ → R+

is increasing. Then it follows by Proposition 1 of [16] that T has a.s. increasing and

continuous paths. . Clearly non-linear time-changes could also be used but we will not

explore that here.

Remark 6.1.3. This definition of the time-change also includes fractional subordinators

in the sense of Bender and Marquardt [16], cf. Definition 4.1.1 and Example 4.1.4.

Remark 6.1.4. Straightforwardly the time-changes T and Z are related with the features

E(Tt) = at + E(Z1)

∫ t

0
k(t, s)ds, V ar(Tt) = E(Z2

1 )

∫ t

0
k(t, s)2ds,

Cov (Tt, Zt) = Cov

(∫ t

0
k(t, s)dZs, Zt

)
= E(Z2

1 )

∫ t

0
k(t, s)ds,

for t ≥ 0. This implies T and Z can only be positively correlated.

Example 6.1.5. An example of this is the continuous non-Gaussian OU process driven

time-change

Tt =

∫ t

0
τsds, dτt = −λτtdt+ dZt, λ > 0, t ≥ 0,

where for t ≥ 0

τt = e−λtτ0 +

∫ t

0
e−λ(t−s)dZs, Tt = λ−1(1− e−λt)τ0 + λ−1

∫ t

0

{
1− e−λ(t−s)

}
dZs,
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which was used in the context of Gaussian stochastic volatility by Barndorff-Nielsen and

Shephard [11]. Hence for 0 ≤ s ≤ t

k(t, s) = λ−1
{

1− e−λ(t−s)
}
,∫ t

0
k(t, s)ds = λ−1

{
t+ λ−1 − λ−1e−λt

}
,∫ t

0
k(t, s)2ds = λ−2

{
t+ 2λ−1 − 2λ−1e−λt − (2λ)−1 + (2λ)−1e−2λt

}
.

For small t ↓ 0 we have∫ t

0
k(t, s)ds ' 2tλ−1,

∫ t

0
k(t, s)2ds ' 2tλ−2,

while for large t we obtain

1

λ

∫ t

0
k(t, s)ds→ λ−1,

1

λ

∫ t

0
k(t, s)2ds→ λ−2.

Extensions to ARMA type processes include Brockwell [25], Brockwell and Marquardt [27]

and Todorov and Tauchen [128]. Long-memory versions can be found in Barndorff-

Nielsen [8], Marquardt [92] and Fink and Klüppelberg [59]. Figure 1 shows three simulated

sample paths.

Figure 6.1: Sample paths of the process P using for τ an OU process with λ = 2 driven

by a gamma subordinator Z with expectation 1 and variance 2, Poisson processes L+ and

L− with common intensity 1 and ψ = 1.
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6.2 Properties of the model

In a next step will consider the higher order properties of our model, showing that it leads

to volatility clustering and statistical leverage.

6.2.1 Second moments

From now on we shall denote for i ∈ N the i-th cumulant (i.e. the i-th differential of the

cumulant function at 0) of L± by κ±i and that of Z by ηi.

Remember the following well-known property. For a Lévy process X = (Xt)t≥0 with

existing second moments and 0 ≤ s ≤ t we have

E (XtXs) = V ar (Xs) + E (Xt)E (Xs) = V ar (X1) s+ E (X1)2 ts. (6.1)

In a first step we consider returns in the model. Define for 0 ≤ s ≤ t

rs,t = r+
s,t − r

−
s,t, r±s,t = R±t −R±s .

Then

r+
s,t = L+ ◦ {Tt + αψtE (Z1)} − L+ ◦ {Ts + αψsE (Z1)}

and

r−s,t = L− ◦ (Tt + ψZt)− L− ◦ (Ts + ψZs) .

Proposition 6.2.1 and Proposition 6.2.2 give the mean and covariance of the returns,

respectively. Set FZ∞ = σ{Zt, t ∈ [0,∞)}.

Proposition 6.2.1. For α = κ−1 /κ
+
1 we have for 0 ≤ s ≤ t

E(rs,t) = (κ+
1 − κ

−
1 )E(Tt − Ts)

and in general

E(r+
s,t) = κ+

1 {E(Tt−Ts) +αψ(t− s)E(Z1)}, E(r−s,t) = κ−1 {E(Tt−Ts) +ψ(t− s)E(Z1)}.
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Proof. Consider

E(r+
s,t) = EE(L+ ◦ {Tt + αψtE (Z1)} |FZ∞)− EE(L+ ◦ {Ts + αψsE (Z1)} |FZ∞)

= E(Tt + αψtE(Z1))κ+
1 − E(Ts + αψtE(Z1))κ+

1

= κ+
1 {E(Tt − Ts) + αψ(t− s)E(Z1)}.

The calculations for E(r−s,t) and E(rs,t) work similar.

Proposition 6.2.2. In general we have for 0 ≤ s ≤ t

V ar(rs,t) = (κ+
1 − κ

−
1 )2V ar(Tt − Ts) + (κ+

2 + κ−2 )
(
E(Tt − Ts) + αψ(t− s)E(Z1)

)
+2ψ((κ−1 )2 − κ+

1 κ
−
1 )Cov(Tt − Ts, Zt − Zs) + ψ2(κ−1 )2V ar(Zt − Zs)

where

V ar(r+
s,t) = (κ+

1 )2V ar(Tt − Ts) + κ+
2

(
E(Tt − Ts) + αψ(t− s)E(Z1)

)
,

V ar(r−s,t) = (κ−1 )2
(
V ar(Tt − Ts) + ψ2V ar(Zt − Zs) + 2ψCov(Tt − Ts, Zt − Zs)

)
+κ−2

(
E(Tt − Ts) + αψ(t− s)E(Z1)

)
,

Cov(r+
s,t, r

−
s,t) = κ+

1 κ
−
1 Cov(Tt − Ts, Tt − Ts + ψ(Zt − Zs)).

Furthermore for 0 ≤ u ≤ v ≤ s ≤ t

Cov(rs,t, ru,v)

= Cov(r+
s,t, r

+
u,v)− Cov(r+

s,t, r
−
u,v)− Cov(r−s,t, r

+
u,v) + Cov(r−s,t, r

−
u,v)

= (κ+
1 − κ

−
1 )2Cov(Tt − Ts, Tv − Tu) + ψ

(
(κ−1 )2 − κ+

1 κ
−
1

)
Cov(Tt − Ts, Zv − Zu),

with

Cov(r+
s,t, r

+
u,v) = (κ+

1 )2Cov(Tt − Ts, Tv − Tu),

Cov(r+
s,t, r

−
u,v) = κ+

1 κ
−
1 Cov(Tt − Ts, Tv − Tu + ψ(Zv − Zu)),

Cov(r−s,t, r
+
u,v) = κ+

1 κ
−
1 Cov(Tt − Ts, Tv − Tu),

Cov(r−s,t, r
−
u,v) = (κ−1 )2Cov(Tt − Ts, Tv − Tu + ψ(Zv − Zu)).

Proof. Let 0 ≤ u ≤ v ≤ s ≤ t. We will provide the calculation for Cov(r+
s,t, r

+
u,v). The rest

follows by similar arguments. Consider

Cov(r+
s,t, r

+
u,v) = E(r+

s,tr
+
u,v)− E(r+

s,t)E(r+
u,v).
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We have

r+
s,tr

+
u,v = L+ ◦ {Tt + αψtE (Z1)}L+ ◦ {Tv + αψvE (Z1)}

−L+ ◦ {Tt + αψtE (Z1)}L+ ◦ {Tu + αψuE (Z1)}

−L+ ◦ {Ts + αψsE (Z1)}L+ ◦ {Tv + αψvE (Z1)}

+L+ ◦ {Ts + αψsE (Z1)}L+ ◦ {Tu + αψuE (Z1)} .

Therefore it is sufficient to calculate E(L+ ◦ {Tt + αψtE (Z1)}L+ ◦ {Tv + αψvE (Z1)}).
Applying (6.1) we obtain

E(L+ ◦ {Tt + αψtE (Z1)}L+ ◦ {Tv + αψvE (Z1)})

= EE(L+ ◦ {Tt + αψtE (Z1)}L+ ◦ {Tv + αψvE (Z1)} |FZ∞)

= E
(
V ar(L+ ◦ {Tv + αψvE (Z1)}) + E(L+ ◦ {Tt + αψtE (Z1)} |FZ∞)

×E(L+ ◦ {Tv + αψvE (Z1)} |FZ∞)
)

= E
(
{Tv + αψvE (Z1)}κ+

2 + {Tt + αψtE (Z1)} {Tv + αψvE (Z1)} (κ+
1 )2
)

= E(Tv + αψvE (Z1))κ+
2 + E({Tt + αψtE (Z1)} {Tv + αψvE (Z1)})(κ+

1 )2.

Using this result repeatedly we get

E(r+
s,tr

+
u,v) = E(Tv + αψvE (Z1))κ+

2 + E({Tt + αψtE (Z1)} {Tv + αψvE (Z1)})(κ+
1 )2

−E(Tu + αψuE (Z1))κ+
2 − E({Tt + αψtE (Z1)} {Tu + αψuE (Z1)})(κ+

1 )2

−E(Tv + αψvE (Z1))κ+
2 − E({Ts + αψsE (Z1)} {Tv + αψvE (Z1)})(κ+

1 )2

+E(Tu + αψuE (Z1))κ+
2 + E({Ts + αψsE (Z1)} {Tv + αψvE (Z1)})(κ+

1 )2

= (κ+
1 )2E

(
{Tt − Ts − αψ(t− s)E(Z1)}{Tv − Tu − αψ(v − u)E(Z1)}

)
.

On the other hand we have by Proposition 6.2.1

E(r+
s,t)E(r+

u,v) = (κ+
1 )2E

(
{Tt − Ts − αψ(t− s)E(Z1)}

)
E
(
{Tv − Tu − αψ(v − u)E(Z1)}

)
.

Putting everything together we obtain the assertion for Cov(r+
s,t, r

+
u,v). For the other

statements of Proposition 6.2.2 we use

Cov((Zt − Zs), Tv − Tu) = 0, and

Cov((Zt − Zs), (Zv − Zu)) = 0.

Hence a sufficient condition for returns to be zero mean weak white noise is κ+
1 = κ−1

and α = 1.
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6.2.2 Statistical leverage

For the statistical leverage effect we would like to have a negative correlation between the

stock price changes and future volatility, meaning that stock price falls are associated with

future high levels of volatility.

The following theorem provides a general expression for this correlation.

Theorem 6.2.3. Now we have for 0 ≤ u ≤ v ≤ s ≤ t

Cov
(
r2
s,t, ru,v

)
= (κ+

1 − κ
−
1 )3Cov

{
(Tt − Ts)2, Tv − Tu

}
+
(
κ+

1 κ
+
2 − κ

−
1 κ

+
2 + κ+

1 κ
−
2 − κ

−
1 κ
−
2

)
Cov (Tt − Ts, Tv − Tu)

+ψ
(
− (κ−1 )3 + 2(κ−1 )2κ+

1 − (κ+
1 )2κ−1

)
Cov

{
(Tt − Ts)2, Zv − Zu

}
+ψ
(
− 2(κ−1 )3 + 4(κ−1 )2κ+

1 − 2(κ+
1 )2κ−1

)
Cov {(Tt − Ts)(Zt − Zs), Tv − Tu}

+ψ2
(
− 2(κ−1 )3 + 2(κ−1 )2κ+

1

)
Cov {(Tt − Ts)(Zt − Zs), Zv − Zu}

+2αψ
(

(κ+
1 )3 + (κ−1 )2κ+

1 − 2(κ+
1 )2κ−1

)
[t− s]E(Z1)Cov (Tt − Ts, Tv − Tu)

+α(ψ2)
(

2(κ−1 )2κ+
1 − 2(κ+

1 )2κ−1

)
[t− s]E(Z1)Cov (Tt − Ts, Zv − Zu)

+ψ
(
−κ−1 κ

−
2 − κ

−
1 κ

+
2

)
Cov (Tt − Ts, Zv − Zu) .

Before we start with the proof, we want to clarify the consequence of Theorem 6.2.3

by considering Example 6.2.4, which gives a clear result in terms of statistical leverage.

Example 6.2.4. Let the expectations of L+ and L− be equal, i.e. κ+
1 = κ−1 . Then we

have for 0 ≤ u ≤ v ≤ s ≤ t

Cov
(
r2
s,t, ru,v

)
= −2κ+

1 (κ+
2 + κ−2 )ψCov (Tt − Ts, Zv − Zu) .

Therefore we have if Cov (Tt − Ts, Zv − Zu) > 0,

Cov
(
r2
s,t, ru,v

)
< 0,

if ψ > 0 and

Cov
(
r2
s,t, ru,v

)
= 0,

if ψ = 0.

For higher moments equation (6.1) gets much more complicated and the cases of third

and fourth moments are considered below.
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Theorem 6.2.5. Let X be a Lévy process with existing third moments. Denote by κi its

cumulants. Then we have for 0 ≤ u ≤ v ≤ s ≤ t

E[XtXsXv] = κ3
1tsv + κ1κ2(tv + 2sv) + κ3v.

If even fourth moments exists, we have

E[XtXsXvXu] = κ4
1tsvu+ κ4u+ κ1κ3

(
tu+ su+ 2vu

)
+ κ2

2

(
sv + 3vu− v2

)
+ κ2

1κ2

(
5svu+ tsu+ 2tvu− s2u+ s2v − 2sv2 − v2u+ v3

)
.

Proof. This is a lengthy calculation and we will only give a sketch. It is well-known that

for t ≥ 0, E[X3
t ] is a polynomial of order 3 in t. Furthermore for v, s ≥ 0 we have the

recursion formula

E[X3
v+s] =

3∑
k=0

 n

k

E[Xk
v ]E[Xn−k

s ].

Using this relation we deduce the coefficients of E[X3
t ]. Now using independent increments

we can rewrite E[XtXsXv] in terms of the moments of X up to order 3 at times t, v, s.

Putting this together with the closed form of E[Xn
· ], n ≤ 3, delivers the assertion. The

proof regarding the fourth moments works similar.

Theorem 6.2.6. Let X and Y be independent Lévy processes with existing third moments.

Denote by κi and ηi their cumulants, i = 1, 2. Further let A and B be increasing processes

independent of X and Y with finite second moments and

σ{At, t ∈ [0,∞)} = σ{Bt, t ∈ [0,∞)}.

Then we have for 0 ≤ v ≤ s ≤ t

(i) Cov[(XAt −XAs)
2, XAv −XAu ] = (κ1)3Cov[(At −As)2, Av −Au]

+ κ1κ2Cov[At −As, Av −Au],

(ii) Cov[(XAt −XAs)
2, YBv − YBu ] = κ2

1η1Cov[(At −As)2, Bv −Bu]

+ κ2η1Cov[At −As, Bv −Bu],

(iii) Cov[(XAt −XAs)(YBt − YBs), YBv − YBu ]

= (κ1)3Cov[(At −As)(Bt −Bs), Bv −Bu].
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Proof. Set FA∞ = σ{At, t ∈ [0,∞)}. Consider (i) first and calculate using Theorem 6.2.5

for 0 ≤ v ≤ s ≤ t,

Cov[XAtXAs , XAv ] = E[XAtXAsYBv ]− E[XAtXAs ]E[YBv ]

= EE[XAtXAsYBv |FA∞]− EE[XAtXAs |FA∞]E[YBv ]

= E
[
(κ1)3AtAsAv + κ1κ2(AtAv + 2AsAv) + κ3Av

]
−κ1κ2E[As]E[Av]− (κ1)3E[AtAs]E[Av]

= (κ1)3Cov[AtAs, Av] + κ1κ2

(
Cov[As, Av] + E[AtAv] + E[AsAv]

)
+ κ3E[Av]

and therefore

Cov[(XAt)
2, XAv ] = (κ1)3Cov[A2

t , Av] + κ1κ2

(
Cov[At, Av] + 2E[AtAv]

)
+ κ3E[Av].

Using this we obtain

Cov[(XAt −XAs)
2, XAv −XAu ]

= (κ1)3Cov[A2
t , Av] + κ1κ2

(
Cov[At, Av] + 2E[AtAv]

)
+ κ3E[Av]

+ (κ1)3Cov[A2
s, Av] + κ1κ2

(
Cov[As, Av] + 2E[AsAv]

)
+ κ3E[Av]

− (κ1)3Cov[A2
t , Au]− κ1κ2

(
Cov[At, Au] + 2E[AtAu]

)
− κ3E[Au]

− (κ1)3Cov[A2
s, Au]− κ1κ2

(
Cov[As, Au] + 2E[AsAu]

)
− κ3E[Au]

− 2(κ1)3Cov[AtAs, Av]− 2κ1κ2

(
Cov[As, Av] + E[AtAv] + E[AsAv]

)
− 2κ3E[Av]

+ 2(κ1)3Cov[AtAs, Au] + 2κ1κ2

(
Cov[As, Au] + E[AtAu] + E[AsAu]

)
+ 2κ3E[Au]

= (κ1)3Cov[(At −As)2, Av −Au] + κ1κ2Cov[At −As, Av −Au].

Now let us have a look at (ii). Invoking (6.1) for 0 ≤ v ≤ s ≤ t, supplies us with

Cov[XAtXAs , YBv ] = E[XAtXAsYBv ]− E[XAtXAs ]E[YBv ]

= EE[XAtXAsYBv |FA∞]− EE[XAtXAs |FA∞]E[YBv ]

= E
[
E[XAtXAs |FA∞]E[YBv |FA∞]

]
− EE[XAtXAs |FA∞]E[YBv ]

= E
[
(κ2As + κ2

1AtAs)E[Y1]E[Bv]
]
− E

[
κ2As + κ2

1AtAs

]
E[Y1]E[Bv]

= κ2
1η1Cov[AtAs, Bv] + κ2η1Cov[As, Bv]

and therefore we obtain

Cov[(XAt −XAs)
2, YBv − YBu ]

= κ2
1η1Cov[(At −As)2, Bv −Bu] + κ2η1Cov[At −As, Bv −Bu].
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Assertion (iii) follows by similar arguments.

Proof. (of Theorem 6.2.3) Again we will have to work through a lengthy calculation. We

start by decomposing the covariance:

Cov[r2
s,t, ru,v] = Cov[(r+

s,t)
2, r+

u,v] + Cov[(r−s,t)
2, r+

u,v]

−Cov[(r+
s,t)

2, r−u,v]− Cov[(r−s,t)
2, r−u,v]

−2Cov[r+
s,tr
−
s,t, r

+
u,v] + 2Cov[r+

s,tr
−
s,t, r

−
u,v].

In the following we will calculate each of these 6 terms, starting with the first. Using

Theorem 6.2.6 (i) we get

Cov[(r+
s,t)

2, r+
u,v] = (κ+

1 )3Cov[(Tt − Ts)2, Tv − Tu]

+ (2(κ+
1 )3αψ[t− s]E(Z1) + bL

+
)Cov[Tt − Ts, Tv − Tu],

Cov[(r−s,t)
2, r−u,v] = (κ−1 )3Cov[(Tt − Ts + ψ(Zt − Zs))2, Tv − Tu + ψ(Zv − Zu)]

+ bL
−
Cov[Tt − Ts + ψ(Zt − Zs), Tv − Tu + ψ(Zv − Zu)].

Theorem 6.2.6 (ii) supplies us with

Cov[(r+
s,t)

2, r−u,v] = (κ+
1 )2κ−1 Cov[(Tt − Ts + αψ[t− s]E(Z1))2, Tv − Tu + ψ(Zv − Zu)]

+κ+
2 κ
−
1 Cov[Tt − Ts + αψ[t− s]E(Z1), Tv − Tu + ψ(Zv − Zu)],

Cov[(r−s,t)
2, r+

u,v] = (κ−1 )2κ+
1 Cov[(Tt − Ts + ψ(Zt − Zs))2, Tv − Tu + αψ[v − u]E(Z1)]

+κ−2 κ
+
1 Cov[Tt − Ts + ψ(Zt − Zs), Tv − Tu + αψ[v − u]E(Z1)].

And at last with Theorem 6.2.6 (iii) we obtain

Cov[r+
s,tr
−
s,t, r

+
u,v] = (κ+

1 )2κ−1 Cov[(Tt − Ts + ψ(Zt − Zs))(Tt − Ts + αψ[t− s]E(Z1)),

Tv − Tu + αψ[v − u]E(Z1)],

Cov[r+
s,tr
−
s,t, r

−
u,v] = (κ−1 )2κ+

1 Cov[(Tt − Ts + αψ[t− s]E(Z1))(Tt − Ts + ψ(Zt − Zs)),

Tv − Tu + ψ(Zv − Zu)].

Now we put everything together and write the covariances out. Reordering the terms leads

to the assertion.

Hence the model is able to deliver statistical leverage.
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6.2.3 Volatility clustering

The following theorem gives the cumbersome general autocovariance function for squared

returns. A simpler special case will be given in a moment.

Theorem 6.2.7. We have for 0 ≤ u ≤ v ≤ s ≤ t

Cov
(
r2
s,t, r

2
u,v

)
= (κ+

1 − κ
−
1 )4Cov

{
(Tt − Ts)2, (Tv − Tu)2

}
+(κ+

1 − κ
−
1 )2
(
κ+

2 + κ−2 + 2((κ+
1 )2 − κ+

1 κ
−
1 )αψ(v − u)E(Z1)

)
×Cov

{
(Tt − Ts)2, Tv − Tu

}
+(κ+

1 − κ
−
1 )2
(
κ−2 ψ − 2κ+

1 κ
−
1 αψ(v − u)E(Z1)

)
Cov

{
(Tt − Ts)2, Zv − Zu

}
+(κ+

1 − κ
−
1 )2(κ−1 )2ψ2Cov

{
(Tt − Ts)2, (Zv − Zu)2

}
+(κ+

1 − κ
−
1 )22ψ

(
(κ−1 )2 − κ+

1 κ
−
1

)
Cov

{
(Tt − Ts)2, (Tv − Tu)(Zv − Zu)

}
+
(
κ+

2 + κ−2 + 2((κ+
1 )2 − κ+

1 κ
−
1 )αψ(v − u)E(Z1)

)
×
{

(κ+
1 − κ

−
1 )2Cov

{
Tt − Ts, (Tv − Tu)2

}
+
(
κ+

2 + κ−2 + 2((κ+
1 )2 − κ+

1 κ
−
1 )αψ(v − u)E(Z1)

)
Cov {Tt − Ts, Tv − Tu}

+
(
κ−2 ψ − 2κ+

1 κ
−
1 αψ(v − u)E(Z1)

)
Cov {Tt − Ts, Zv − Zu}

+(κ−1 )2ψ2Cov
{
Tt − Ts, (Zv − Zu)2

}
+2ψ

(
(κ−1 )2 − κ+

1 κ
−
1

)
Cov {Tt − Ts, (Tv − Tu)(Zv − Zu)}

}
+2κ−1 (κ−1 − κ

+
1 )(κ+

1 − κ
−
1 )2ψCov

{
(Tt − Ts)(Zt − Zs), (Tv − Tu)2

}
+2κ−1 (κ−1 − κ

+
1 )ψ

(
κ+

2 + κ−2 + 2((κ+
1 )2 − κ+

1 κ
−
1 )αψ(v − u)E(Z1)

)
×Cov {(Tt − Ts)(Zt − Zs), Tv − Tu}

+2κ−1 (κ−1 − κ
+
1 )ψ

(
κ−2 ψ − 2κ+

1 κ
−
1 αψ(v − u)E(Z1)

)
Cov {(Tt − Ts)(Zt − Zs), Zv − Zu}

+2κ−1 (κ−1 − κ
+
1 )(κ−1 )2ψ3Cov

{
(Tt − Ts)(Zt − Zs), (Zv − Zu)2

}
+4(κ−1 )2(κ−1 − κ

+
1 )2ψ2Cov {(Tt − Ts)(Zt − Zs), (Tv − Tu)(Zv − Zu)} .

Proof. The lengthy calculation works similar to the one of Theorem 6.2.3 and we will omit

it.

To illustrate the last theorem, we look at the following example where the first cumu-

lants of L± are assumed to be equal.
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Example 6.2.8. Let the expectations of L+ and L− be equal, i.e. κ+
1 = κ−1 . We have for

0 ≤ u ≤ v ≤ s ≤ t

Cov
(
r2
s,t, r

2
u,v

)
= (κ+

2 + κ−2 )2Cov {Tt − Ts, Tv − Tu}

+(κ+
2 + κ−2 )ψ

(
κ−2 − 2(κ+

1 )2α(v − u)E(Z1)
)
Cov {Tt − Ts, Zv − Zu}

+(κ+
2 + κ−2 )(κ−1 )2ψ2Cov

{
Tt − Ts, (Zv − Zu)2

}
.

6.2.4 Cumulant function

From now on, for ease of exposition, we will set P0 = 0. We will consider the cumulants

of

Pt = L+
Tt+αψtE(Z1) − L

−
Tt+ψZt

, t ≥ 0.

Given Z, both terms in P are independent by definition. Now we have for t ≥ 0

C {θ ‡ Pt|Tt, Zt} = log [E exp {iθPt} |Tt, Zt]

= Tt

(
C {θ ‡ L1}+ C

{
−θ ‡ L−1

})
+ αψtE (Z1) C

{
θ ‡ L+

1

}
+ψZtC

{
−θ ‡ L−1

}
.

This conditional form is attractive as it is linear in Tt and Zt. This means that for t ≥ 0

C {θ ‡ Pt} = αψtE (Z1) C
{
θ ‡ L+

1

}
+K

{
C {θ ‡ L1}+ C

{
−θ ‡ L−1

}
, ψC

{
−θ ‡ L−1

}
‡ Tt, Zt

}
where

K {a, b ‡ Tt, Zt} = log [E {exp (aTt + bZt)}] , t ≥ 0,

the is joint cumulant function of Tt and Zt evaluated at the complex a and b.

6.2.5 A small tick size limit

An important model for price processes used in mathematical finance and financial econo-

metrics is the stochastic volatility model presented in Barndorff-Nielsen and Shephard [11].

Hence it is attractive to think through how our new models relate to these established

ones.

The basis of our analysis will be the small jump approximations of Lévy processes.

These are discussed e.g. by Asmussen and Rosinski [5] and Cont and Tankov [34], Chapter

6.3.
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In order to derive a valid approximation we think of the process over a finite time

interval and allow the tick size to go to zero at the same time as the intensity of the

process goes to infinity. Hence this is an active trading approximation.

This type of asymptotic device is necessary for integer-valued processes, for the usual

small jump threshold approximation is not appropriate here due to the discrete nature. We

will work with the conditional compensated versions of the time-changed Lévy processes

L
+
Tt+αψtE(Z1) = (κ+

2 )−1/2
(
L+
Tt+αψtE(Z1) − κ

+
1 (Tt + αψtE(Z1))

)
,

L
−
Tt+ψZt = (κ−2 )−1/2

(
L−Tt+ψZt − κ

−
1 (Tt + ψZt)

)
, t ≥ 0.

Then denote for t ≥ 0

a1/2 {Ra−1t − E (Ra−1t)} := a1/2L
+ ◦
[
a−1 {Tt + αψtE (Z1)}

]
−a1/2L

− ◦
[
a−1 {Tt + ψZt}

]
.

Our main result is as follows. For d > 0 denote by D[0, d] the space of right continuous

functions on [0, d] with left limits equipped with the uniform metric, cf. Pollard [105].

Define limits as follows: for a sequence of stochastic processes (Xt)t≥0 and Y both a.s. in

D[0, d] we write that Xt D→ Y as t→∞ if for every measurable, bounded and continuous

(with respect to the uniform metric) function f : D[0, d]→ R

E[f(Xt)]→ E[f(Y )], t→∞.

Theorem 6.2.9. Fix a time horizon d > 0. Then

a1/2 {Ra−1• − E (Ra−1•)}
D→W+

T•+αψ•E(Z1) −W
−
T•+ψZ•

, a ↓ 0,

as a process, where W+ and W− are independent Brownian motions, independent of the

process Z.

Proof. In a first step let S : R+ → R+ be a deterministic increasing right-continuous

time change with left limits and L an integer-valued zero-mean Lévy process with jumps

bounded by C > 0. Remark that we have for the scaled process ∆[aC−1La−1•] ≤ a.

Therefore the jumps of aC−1La−1• are bounded by a. Further we have the limes condition

lima→0 σ(a)/a = ∞, where σ(a) =
√
V ar(aC−1La−1) and therefore are in the context of

Theorem 2.1 of Asmussen and Rosinski [5]. We can deduce that (at time 1) for θ ∈ R

C{θ ‡ σ(a)−1anLa−1} → −
1

2
θ2, a→ 0.

Considering now the time changed process aC−1La−1S· , we get for t ≥ 0 and θ ∈ R

C{θ ‡ σ(a)−1aC−1La−1St} = StC{θ ‡ σ(a)−1aC−1La−1} → −
1

2
θ2St, a→ 0,
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concluding that σ(a)−1aC−1La−1St →WSt in distribution as a→ 0, where W is a standard

Brownian motion. Since the increments of the time changed process aC−1La−1S• are still

independent, we get that its finite dimensional distributions convergence to those of WS• .

By Theorem V.19 of Pollard [105] follows now that aC−1La−1S•
D→WS• as a→ 0.

Now back to the assertion. Define FZR := σ{Zs, s ∈ [0, R]} and FL+

R := σ{L+
s , s ∈ [0, R]}.

Consider a measurable bounded function f : D[0, R] → R. Then by repeatedly applying

the theorem of dominated convergence and the result from above we get

E[f(a1/2{Ra−1• − E(Ra−1•)})]

= EE[f(a1/2La−1{T•+αψ•E(Z1)} − a1/2La−1{T•−ψZ•})|F
Z
R ,FL

+

R ]

→ EE[f(a1/2La−1{T•+αψ•E(Z1)} −W−T•+ψZ•
)|FZR ,FL

+

R ]

= EE[f(a1/2La−1{T•+αψ•E(Z1)} −W−T•+ψZ•
)|FZR ]

→ EE[f(W+
T•+αψ•E(Z1) −W

−
T•+ψZ•

)|FZ∞]

= E[f(W+
T•+αψ•E(Z1) −W

−
T•+ψZ•

)], a→ 0.

Remark 6.2.10. If ψ = 0, κ+
1 = κ−1 and T is of the form Tt =

∫ t
0 τ

2
udu, then

a1/2Ra−1•
D→
∫ •

0

√
2τudWu, a ↓ 0,

where W is another Brownian motion independent of W+ and W−.

Example 6.2.11. Here we build a non-stochastic T to mimic the diurnal feature of high

frequency data, where financial activity tends to peak at the start and end of the day.

The following is an example of this, for a single day where t ∈ [0, 1]:

Tt =

∫ t

0
(1− 2u)2 du, t ≤ 1/2,

Tt =

∫ t

1/2
8 (u− 1/2)2 du, t ∈ (1/2, 1] .

Let L+ and L− be independent Poisson processes with the same intensities λ = 1 and take

ψ = 0, i.e. no leverage. Then E (Ra−1t) = 0 and we plot in Figure 6.2

a1/2Ra−1•

for a variety of values of a as a ↓ 0. Hence for small a the path looks like a time changed

Brownian motion.

150



CHAPTER 6. DISCRETE-VALUED LÉVY MODELS

Figure 6.2: Convergence of the process a1/2Ra−1• from Example 6.2.11.

6.2.6 No-arbitrage and incompleteness

Denote by (Ft)t≥0 the natural filtration generated by P . An important observation is, that

the process P is a semimartingale which can be validated by the following decomposition

Pt = L+
Tt+αψtE(Z1) − L

−
Tt+ψZt

= Mt +At

where

Mt = L+
Tt+αψtE(Z1) − L

−
Tt+ψZt

+ ψ
{
κ−1 Zt − κ

+
1 tαE(Z1)

}
−
(
κ+

1 − κ
−
1

)
Tt,

At = −ψ
{
κ−1 Zt − κ

+
1 tαE(Z1)

}
+
(
κ+

1 − κ
−
1

)
Tt.

The process M is a (local) martingale and since Z is a subordinator (i.e. a Lévy process

with upward only jumps) and T is a non-decreasing time-change, A is of locally bounded

variation. Thus P is a semimartingale. This has an important consequence when con-

sidering possible arbitrage in the market. Theorem 1 of Delbaen and Schachermayer [40]

states that in this case, the concept of ‘no free lunch without vanishing risk’ (NFLVR) is
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equivalent to the existence of an equivalent martingale measure (EMM). Therefore we are

interested in actually constructing such an EMM.

If we assume that α = κ−1 /κ
+
1 we have

Mt = L+
Tt+αψtE(Z1) − L

−
Tt+ψZt

+ ψκ−1 {Zt − tE(Z1)} −
(
κ+

1 − κ
−
1

)
Tt,

At = −ψκ−1 {Zt − tE(Z1)}+
(
κ+

1 − κ
−
1

)
Tt.

Hence At is a (local) martingale if κ+
1 = κ−1 .

In their work on the Lévy special case, Barndorff-Nielsen et al. [10] obtained an EMM

by simply changing the probability masses in the integer-valued Lévy processes so that

κ+
1 = κ−1 under the EMM. Exactly the same approach solves this problem here, whatever

the form of T and Z. This is rather simple compared to the usual results on EMM obtained

for Gaussian stochastic volatility models.

Markets driven by Lévy processes are usually not complete and therefore there is more

than one EMM. This is also the case in our model, even in the simple Lévy case discussed

by Barndorff-Nielsen et al. [10].

6.3 Econometric inference

Now we will outline various possible methods of estimating our model class.

Given the sample path of the price process we can separately observe up and down

ticks. This means we have to make inference on two conditionally independent processes

R+
t = L+

Tt+αψtE(Z1) =: L+

T+
t

and R−t = L−Tt+ψZt =: L−
T−
t

, (6.2)

although they are linked by a common Tt.

Inference can be made through

• the moments of the R+
t , R

−
t processes or their increments,

• the likelihood of the R+
t , R

−
t sample paths.

6.3.1 Identification

All integer-valued subordinators are simply compound Poisson processes, which have Pois-

son process arrivals and i.i.d. jump sizes of 1 or more. This is discussed extensively in

Barndorff-Nielsen et al. [10]. When we time-change them, all we do is to make the arrival

process time-varying. Hence we can assume, without loss of generality that L± have unit
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arrival rates. In econometrics this is called an identification constraint. In turn this

means we can estimate κ±j simply off the distribution of price up or down moves.

6.3.2 Moment based inference

Recall from Section 6.2 that if 0 ≤ s ≤ t and α = κ−1 /κ
+
1

E(rs,t) = (κ+
1 − κ

−
1 )E(Tt − Ts)

which allows us to identify E(Tt − Ts) if κ+
1 6= κ−1 . Further we know that if

0 ≤ u ≤ v ≤ s ≤ t we have for r+
s,t = R+

t −R+
s

E(r+
s,t) = κ+

1 {E(Tt − Ts) + αψ(t− s)E(Z1)},

Cov(r+
s,t, r

+
u,v) = (κ+

1 )2Cov(Tt − Ts, Tv − Tu),

V ar(r+
s,t)−

κ+
2

κ+
1

E(r+
s,t) =

(
κ+

1

)2
V ar(Tt − Ts).

This means we can non-parametrically identify ψ, V ar(Tt−Ts) and Cov(Tt−Ts, Zt−Zs).
Similar results can be collected for r−s,t = R−t −R−s , with, in particular, for

0 ≤ u ≤ v ≤ s ≤ t

E(r−s,t) = κ−1 {E(Tt − Ts) + ψ(t− s)E(Z1)},

Cov(r−s,t, r
−
u,v) = (κ−1 )2Cov(Tt − Ts, Tv − Tu) + ψ(κ−1 )2Cov(Tt − Ts, Zv − Zu)

V ar(r−s,t)−
κ−2
κ−1

E(r−s,t) =
(
κ−1
)2
V ar {Tt − Ts + ψ(Zt − Zs)} .

Example 6.3.1. If L± are standard Poisson processes, which corresponds to a one-tick

market, then κ±1 = κ±2 = 1 and α = 1. This implies for 0 ≤ u ≤ v ≤ s ≤ t

E(r+
s,t) = E(Tt − Ts) + ψ(t− s)E(Z1),

Cov(r+
s,t, r

+
u,v) = Cov(Tt − Ts, Tv − Tu),

V ar(r+
s,t)− E(r+

s,t) = V ar(Tt − Ts),

Cov(r−s,t, r
−
u,v)− Cov(r+

s,t, r
+
u,v) = ψCov(Tt − Ts, Zv − Zu).

Hence we can non-parametrically estimate the variogram of the increments of T .
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6.3.3 Intensity function inference

Recalling Remark 6.1.2 we know that as L+ and L− are integer-valued Lévy processes,

they are also compound Poisson processes

L±t =

N±
t∑

j=1

C±j , t ≥ 0,

where N± are independent Poisson processes recording the number of times the processes

move and C±j ∈ {1, 2, . . .} are the sizes of the jumps. Under this model the jump sizes are

independent of the times of jumps and the T and Z processes. Hence inference about T

and Z is really inference from a bivariate Cox process

N+ ◦ {Tt + αψtE(Z1)} = N+
Tt+αψtE(Z1) = N+

T+
t

, t ≥ 0,

and

N− ◦ {Tt + ψZt} = N−Tt+ψZt = N−
T−
t

, t ≥ 0.

There is substantial literature about this topic, ranging over martingale inference meth-

ods in Andersen, Borgan, Gill and Keiding [2], nonparametric methods in Diggle [41]

or Ramlau-Hansen [110], Markov Chain Monte Carlo methods in Adams, Murray and

MacKay [1] and particle filters in Fearnhead, Papaspiliopoulos and Roberts [55] and Pa-

paspiliopoulos, Belmonte and Pitt [101].

6.3.3.1 Linear filtering using the counting process

Define the increments of the counting processes by

n±s,t = N±
T±
t

−N±
T±
s
, 0 ≤ s ≤ t,

Using the Poisson setting of Section 3 of Durbin and Koopman [49] we can directly estimate

the path of the time changes T± by approximating their distribution by a Gaussian density.

Another possibility is to linearize the problem. Consider the compensated processes

u+
s,t = n+

s,t − {(Tt − Ts) + αψ(t− s)E(Z1)},

u−s,t = n−s,t − {(Tt − Ts) + ψ(Zt − Zs)}, 0 ≤ s ≤ t.

Then u±s,t are uncorrelated zero mean weak white noise.
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One approach to analysing the model is to use a bivariate linear representation of the

measurements

n+
s,t = {(Tt − Ts) + αψ(t− s)E(Z1)}+ u+

s,t,

n−s,t = {(Tt − Ts) + ψ(Zt − Zs)}+ u−s,t.

This can be combined with a linear representation of the dynamics of the joint T and Z

processes as in the following example.

Example 6.3.2. Suppose

Tt =

∫ t

0
τsds, dτt = −λτtdt+ dZt, λ > 0.

Then

Tt = λ−1(Zt − τt + τ0)

so the state variables are Markovian (Zt, τt, τ0)′. Now

τt = e−λtτ0 +

∫ t

0
e−λ(t−s)dZs = e−λtτ0 +

1

λ

(
1− e−λt

)
E(Z1) +

∫ t

0
e−λ(t−s)dZs,

Zt = tE(Z1) +

∫ t

0
dZs,

where Zt := Zt − tE(Z1). Then

E(τt|τ0) = e−λtτ0 +
1

λ

(
1− e−λt

)
E(Z1),

V ar
( τt

Zt
|τ0

)
= V ar(Z1)

 1
2λ

(
1− e−2λt

)
1
λ

(
1− e−λt

)
1
λ

(
1− e−λt

)
t

 .

Hence we can use the Kalman filter (e.g. Harvey [68] and Durbin and Koopman [49])

to provide a computationally simple way to compute a best linear forecast, filter and

smoothed estimators of (Tt − Ts, Zt − Zs)′ using the time series of (n+
s,t, n

−
s,t).

6.3.3.2 Approximation by piecewise linear time changes

The drawback of 6.3.3.1 is the fact that such a linear model usually has to be approximated

by a Gaussian setting, cf. Durbin and Koopman [49], Section 3. Another possibility

of estimating the counting process is by approximating the time changes. Since N± is

independent of T± we can work with a given but unknown realized path of T±. For

simplicity let κ±1 = 1, i.e. the counting processes have unit intensities.

155



CHAPTER 6. DISCRETE-VALUED LÉVY MODELS

Split the observation period into equally spaced time brackets

[0], (0, δ], (iδ, (i+ 1)δ], . . . , ((M − 1)δ,Mδ]

with δ > 0 and M ∈ N. We assume the time changes T± to be piecewise linear in

((iδ, (i+ 1)δ], i = 0, 1, . . . ,M − 1, i.e.

T±t =
1

δ

[
(t− iδ)T±(i+1)δ + ((i+ 1)δ − t)T±iδ

]
, t ∈ (iδ, (i+ 1)δ], i = 0, 1, . . . ,M − 1,

for some (T±iδ )i=0,1,...,M where we set T±0 = 0. Now we have, given the paths of T±,

N±
T±
t

−N±
T±
s

d
= N±

δ−1(t−s)(T±
(i+1)δ

−T±
iδ )
, t, s ∈ (iδ, (i+ 1)δ], s ≤ t, i = 0, 1, . . . ,M − 1,

For i = 0, 1, . . . ,M − 1 an unbiased estimator for T±(i+1)δ − T
±
iδ is given by

T̂±(i+1)δ − T̂
±
iδ =

1

j − 1

j−1∑
h=1

N±
T±
th+1

−N±
T±
th

(th+1 − th)/δ
,

with observations (N±
T±
th

)h=1,...,j in time period (iδ, (i+ 1)δ], since

E
(
T̂±(i+1)δ − T̂

±
iδ

∣∣∣T±) =
1

j − 1

j−1∑
h=1

E
(
N±
T±
th+1

−N±
T±
th

∣∣∣T±)
(th+1 − th)/δ

= T±(i+1)δ − T
±
iδ .

Now a parametric model can be applied to estimate the process (T+, T−, Z) from (T̂+, T̂−).

A big advantage of this approach is that T± can be estimated separately by splitting

the price process into up and down ticks. An application is provided in Section 6.4.3.4.

6.4 Application

We will follow Barndorff-Nielsen et al. [10] in studying tick price processes in low latency

data from futures exchanges. Futures exchanges trade many assets ranging from equity

indices to interest rate products and commodities. Liquidity on the electronic marketplace

in many of these futures contracts is good and the exchanges well established. They are

able to provide low latency data feeds recording every price and new order update seen

on the matching engines order book.
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6.4.1 Dataset

Figure 6.3: Euro-Dollar IMM FX futures contract on 11th December 2009. Top left: ask

price for the first 80 trades of the day. Top right: returns from ask price. Bottom left:

R+, positive component of the ask. Bottom right: R−, negative component of the ask.

They are all integers.

We study, in particular, futures data for the Euro-Dollar IMM FX futures contract on

11th December 2009. These markets are sufficiently different to demonstrate a range of tick

price behaviours. These data was provided to us by QuantHouse (www.quanthouse.com)

from data feeds at the Chicago Mercantile Exchange (CME) which is one of the largest

Futures exchanges.

Type of cumulant Up ticks Down ticks

Expectation 0.0543 0.0560

Variance 0.0557 0.0702

Figure 6.4: Euro-Dollar IMM FX futures contract on 11th December 2009. Expectation

and variance of the up and down ticks.
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6.4.2 Trades and prices

In a first step we will just consider moments when trades occur. The times at which there

are trades will be written as

τi, i = 1, 2, . . . , N.

The justification being that when trades occur there is agreement by at least two market

participants about the market price and so we have more confidence in its accuracy.

Throughout we will model one side of the spread, focusing on the ask. We then scale

the prices by the tick size, so the resulting series is integer-valued. An alternative integer-

valued process is the pure mid-price suggested by Barndorff-Nielsen et al. [10] but it is not

used here.

Figure 6.5: Euro-Dollar IMM FX futures contract on 11th December 2009. Price process

R+
i −R

−
i , up and down tick processes R+

i and R−i in 30 seconds intervals.
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Figure 6.6: Euro-Dollar IMM FX futures contract on 11th December 2009. Autocorrelation

function Corr(R
±
i , R

±
i+h) for different lags h up to 10 hours.

Figure 6.3 shows this for the Euro-Dollar IMM FX futures contract during 11th De-

cember 2009, which had 66481 trades on the ask that day. For this contract the tick size

is 0.0001 of a unit, i.e. prices move from, for example, 1.4624 to 1.4623 U.S. Dollar to the

Euro. We plotted the ask at the times of the first 80 trades. The corresponding returns are

also given in the figure. It shows integer returns, with most being -1, 0 and 1. However,

there is also a move of 2 ticks. Looking at the whole day we even see a move of 6 ticks.

6.4.3 Summary statistics

6.4.3.1 Distributions of the jumps

Barndorff-Nielsen et al. [10] study the distribution of positive and negative jumps, which

is given in Figure 8 of their paper. Our first interest here is in studying the size of up and

down jumps. The results are given in Figure 6.4, for 11th December 2009. As can be seen

there is a slightly downside trend in the price process on that day. Remark that only the

sizes of the jumps at trade times have been considered here - the actual time at which this
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jumps have occurred has not played a role yet.

This will change now as we apply the procedure provided in Section 6.3.3.2.

6.4.3.2 Avoiding microstructure effects

Since there are many ticks of just size 1 we shall from now on assume L± = N± to be

Poisson processes. Our focus will be on the time series

R±i = N±
T±

(i+1)δ

−N±
T±
iδ

, i = 0, 1, . . . ,M − 1,

where δ > 0 represents a time interval of δ = 30, in order to avoid the worst of the

unmodeled market microstructure effects, and M = 2880 to reflect the whole day. We will

from now on work with the assumption of Section 6.3.3.2, i.e. we will assume T± to be

piecewise linear in (iδ, (i+ 1)δ], i = 0, 1, . . . ,M − 1. Figure 6.5 shows the process R± and

the whole price process for the 11th December 2009 and indicates that there are strong

diurnal features. Remark that there is no more activity at the end of the observation day.

6.4.3.3 Autocorrelation in the jumps

To consider autocorrelation we must first deal with the diurnal features. Therefore we

calculate the average number of up- and downmovements in each 30 second time bracket

which we denote by µi, i = 1, 2 . . . ,M − 1. Then define

R
±
i := R±i − µi, i = 1, 2 . . . ,M − 1.

and consider for lag h ∈ {1, . . .M − 1}

Corr(R
±
i , R

±
i+h), i = 1, 2 . . . ,M − h− 1.

The results for different h can be found in Figure 6.6. The slowly decaying functions

suggest that there is in fact strong autocorrelation in the returns.
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Figure 6.7: Euro-Dollar IMM FX futures contract on 11th December 2009. Up and down

tick processes R+
i and R−i in 30 seconds intervals. Returns of estimated time changes T̂±.

6.4.3.4 Estimating the time changes

Since we assumed L± to be independent Poisson processes with unit intensity we can

directly apply the method from Section 6.3.3.2 for the up and down tick processes. The

estimated time changes T± and their returns can be found in Figure 6.7.
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Chapter 7

Conclusion

In the first part of this thesis we considered conditional distributions of fractional processes

in increasing generality. Starting with a known prediction formula for the conditional ex-

pectation of a univariate fBm we derived its conditional characteristic function and trans-

ferred this result to related processes like fractional Vasicek or CIR models. Afterwards

we introduced a bivariate fBm by assuming a certain dependence structure between two

univariate fBms (cf. Elliott and van der Hoek [53]) and used the Wick product to obtain

similar results for this case. Finally we introduced multivariate fractional Lévy processes

by Molchan-Golosov kernels and investigated again conditional distributions using decon-

volution. This general definition included fractional subordinators and multivariate fBm.

Motivated by the empirical studies of Henry and Zaffaroni [73] and Backus and Zin [7]

which suggest the presence of long range dependence in macroeconomic variables like

short and default rates, we provided several fractional interest rate and credit models as

applications. Starting point was the fractional Brownian HJM approach of Ohashi [100]

which we used to derive an arbitrage-free setting for a fractional Vasicek model. Zero

coupon bonds - the building blocks of interest rate markets - were priced using the earlier

results on conditional distributions. Afterwards we introduced credit risk in this model and

calculated the prices of defaultable zero coupon bonds and general credit derivatives. In a

next step we generalized the fBms to MG-fLps to overcome the issue of potential negative

paths of short and default rate and compared zero coupon bond prices and parameter

sensitivities between those two model types.

Credit default swaps are of a special type of credit derivatives and their pricing is of

crucial importance especially for practitioners in mathematical finance. Their valuation

in the above fractional model is still part of ongoing research.



CHAPTER 7. CONCLUSION

The second part of this thesis focussed on extending the discrete-valued Lévy model of

Barndorff-Nielsen et al. [10] introduced to describe low latency financial data. One of the

major drawbacks of this setting is that it generates independent and stationary returns

which is often not supported by empirical observations. Therefore we introduced stochastic

volatility by two time changes affecting up and down ticks separately. We analysed various

properties of this model and showed that it also captures statistical leverage, volatility

clustering and diurnal features which are often observed in financial data. Even if the price

process is no longer a Lévy process in general, it is still a semimartingale and the known

theorems of no-arbitrage-pricing are valid. The classical Ornstein-Uhlenbeck stochastic

volatility model of Barndorff-Nielsen and Shephard [11] was obtained by a limit process.

Finally we outlined several estimation techniques and provided an example using the

Euro-Dollar IMM FX futures.

However the proposed model leaves market microstructure effects still unmodelled

which provides a good starting point for further research.
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[36] L. Decreusefond and A. S. Üstünel. Stochastic analysis of the fractional Brownian

motion. Potential Analysis, 10:177–214, 1999.

[37] S. Delattre and J. Jacod. A central limit theorem for normalized functions of the

increments of a diffusion process in the presence of round off errors. Bernoulli,

3:1–28, 1997.

[38] F. Delbaen and W. Schachermayer. The fundamental theorem of asset pricing for

unbounded stochastic processes. Math. Annalen, 312:215–250, 1989.

[39] F. Delbaen and W. Schachermayer. A general version of the fundamental theorem

of asset pricing. Math. Annalen, 312:463–520, 1994.

[40] F. Delbaen and W. Schachermeyer. The Mathematics of Arbitrage. Springer, Hei-

delberg, 2006.

[41] P. Diggle. A kernel method for smoothing point process data. Applied Statistics,

34:138–147, 1985.
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[120] K.-I. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge Univer-

sity Press, Cambridge, 1999.

[121] K.-I. Sato. Additive processes and stochastic integrals. Illinois Journal of Mathe-

matics, 50:825–851, 2006.
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tic volatility models. Journal of Business and Economic Statistics, 24:450–469, 2006.

[129] E. Valkeila. On some properties of geoometric fractional Brownian motion. Preprint,

1999.

[130] O. Vasicek. An equilibrium characterization of the term structure. Journal of Fi-

nancial Economics, 5:177–188, 1977.

[131] A. E. D. Veraart and M. Winkel. Time change. In R. Cont, editor, Encyclopedia of

Quantitative Finance. Wiley, 2010.

[132] A. E. D. Veraat and L. A. M. Veraat. Stochastic volatility and stochastic leverage.

Annals of Finance, 2010. Forthcoming.

[133] P. Weber and B. Rosenow. Order book approach to price impact. Quantitative

Finance, 5:357–364, 2005.
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