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ABSTRACT 

 

To analyze the hypersonic separation process of a two-stage space transport vehicle, its 

aerodynamic characteristics are numerically simulated by the in-house software FLMNAV with 

different velocities of freestream, different angles of attack, different distances between two stages, 

and different separation velocities.  

Corresponding to the arranged experiments, three-dimensional models are set up with a detailed 

orbital stage and a carrier stage idealized by a flat plate. The initial body-fitted meshes are generated 

by software ICEMCFD, and their orthogonality and smoothness are improved further by the in-house 

software GRIDFLM. All of the Navier-Stokes equations are transformed into dimensionless 

curvilinear system. Characteristic boundary conditions are used.   

The numerical discretization is based on a finite-volume approximation. The modified AUSM 

and MUSCL schemes are applied to describe the inviscid flux terms and to catch the strong shock and 

boundary layer. The viscous flux vectors are discretized by the Chakravarthy method. Except in the 

region with strong shock and in the boundary layer with great velocity gradient, 2nd order accuracy in 

space discretization and 1st order accuracy in time discretization are achieved.  

Related with the inviscid flow, laminar flow and turbulent flow around the two-stage vehicle, 

most of the numerical results about the aerodynamic properties are compared with available 

experimental results. These results present good consistencies. Therefore, the FLMNAV is suitable 

for simulating the flow physics associated with the two-stage separation process. 

In the design environment, the numerical results point out that the separation process is 

dominated by the shock waves. At a suitable angle of attack, which should be greater than 2° in the 

beginning of the separation process, positive lift could be achieved. The influence of negative 

pitching moment in the whole separation process should be well controlled. 
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ZUSAMMENFASSUNG 

 

Zur Analyse des Separationsmanövers eines zweistufigen Raumtransporters im Hyperschall sind 

die aerodynamischen Eigenschaften durch die hauseigene Software FLMNAV mit unterschiedlichen 

Parametern, wie Anstellwinkeln, Abständen zwischen zwei Stufen, Geschwindigkeiten von 

Anströmung, und Trennungsgeschwindigkeiten, numerisch simuliert worden. 

Entsprechend den Experimenten sind dreidimensionale Modelle mit einem detaillierten Orbiter 

und einer Trägerstufe, idealisiert zu einer flachen Platte, gestaltet worden. Das erste strukturierte 

Rechennetz wurde von der Software ICEMCFD erzeugt. Ihre Orthogonalität und Glätte sind ferner 

durch die hauseigene Software GRIDFLM verbessert worden. Alle Navier-Stokes-Gleichungen 

wurden in dimensionslose krummlinige Systeme transformiert, unter Verwendung von 

charakteristischen Randbedingungen. 

Die numerische Diskretisierung basiert auf einem Finite-Volumen-Verfahren. Die modifizierte 

AUSM-Diskretisierung und MUSCL-Extrapolation wurden angewendet, um die reibungslosen 

Flüsse zu beschreiben und um die starken Verdichtungsstöße und die Grenzschichtbereiche zu 

erfassen. Die reibungsbehafteten Flüsse wurden durch die Chakravarthy Methode diskretisiert. Außer 

den Regionen mit starken Verdichtungsstößen und drastischen Veränderungen in der Grenzschicht, 

ist die Genauigkeit der Diskretisierung des Raums zweiter Ordnung und der Diskretisierung der Zeit 

erster Ordnung erreicht worden. 

Bezüglich der reibungslosen, der laminaren und der turbulenten Anströmung wurden die meisten 

numerischen Ergebnisse mit experimentellen Ergebnissen für zweistufige Raumtransporter 

verglichen. Beide Ergebnisse haben eine hohe Übereinstimmung. Daher ist die FLMNAV geeignet 

für die Simulation der Strömungsphysik mit dem zweistufigen Trennverfahren. 

Mit der numerischen Simulation der aerodynamischen Eigenschaften kann gezeigt werden, dass 

das Trennverfahren in der geplanten Umgebung von Stoßwellen dominiert wird. Durch einen 

geeigneten Anstellwinkel, der größer als 2° am Anfang der Trennung ist, kann ein positiver Auftrieb 

erreicht werden. Der Einfluss vom negativen Nickmoment sollte im ganzen Separationsmanöver 

richtig kontrolliert werden. 
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Nomenclatures 

 

Bold Latin Symbols:                   

 

F, G, H   mass flux in curvilinear and dimensionless coordinate system 

J    Jacobi matrix for the coordinates transformation 

L    reference length of the orbital stage 

L local    reference length of local span of the EOS  

P    source terms in grid smoothing 

Q     vector of state variables in curvilinear and dimensionless coordinate system;  

    source terms in grid smoothing 

R    right hand side of equation; source terms in grid smoothing 

S    surround surface of a control volume; the area value 

V    control volume; the volume value 

X
EOS, YEOS, ZEOS   axes of Cartesian coordinate system for EOS 

X
 T313

, Y
T313

, Z
T313   axes of Cartesian coordinate system in wind tunnel T-313 

 

If , Ig , Ih    inviscid mass flux in (dimensionless) Cartesian coordinate system 

Vf , Vg , Vh    viscous mass flux in (dimensionless) Cartesian coordinate system 

h    distance between the EOS and flat plate 

h move    distance of upward movement in unsteady case 

q     vector of state variables in Cartesian coordinate system 

r    coordinate vector 

 

 

Normal Latin Symbols: 

 

AUSM   Advection Upstream Splitting Method   

B-L model  Baldwin-Lomax model 

CAE   Computer-Aided Engineering  

CD    drag coefficient   

CFD    Computational Fluid Dynamics 

CFL    Courant - Friedrichs - Lewy number  

CL    lift coefficient 

CM    pitching moment coefficient 
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Cp    pressure coefficient 

D    drag 

DDN   geometry generator, sub-module of ICEMCFD 

DNS   Direct Numerical Simulation 

EOS   orbital stage of elliptical aerodynamic configuration  

SE     total energy density  

Euler      the numerical solution in inviscid flow 

Euler simulation  the numerical solution in inviscid flow 

Experiment  the measured results in corresponding experiment 

F    reference area 

F
r

    force vector 

FLMNAV  Navier-Stokes system solver developed by TUM and author 

FVM    Finite Volume Method 

GRIDFLM   mesh optimization software developed by TUM and author 

HEXA   mesh generator, sub-module of ICEMCFD 

I     unit tensor 

ICEMCFD  commercial geometry creating & meshing software  

ITAM   Institute of Theoretical and Applied Mechanics, Novosibirsk 

J     Jacobian determinant of transformation  

Kn    Knudsen number 

L    lift; length 

M    moment 

M ∞     Mach number of freestream 

MUSCL   Monotonic Upstream Scheme for Conservation Laws 

NA     Avogadro's number  

Navier-Stokes the numerical solution in viscous flow 

NS    Navier-Stokes, the numerical solution in viscous flow 

NS simulation the numerical solution in viscous flow 

Pr    Prandtl number 

tPr     turbulent Prandtl number 

R      specific gas constant 

RANS   Reynolds-Averaged Navier-Stokes 

Re    Reynolds number  

Re ∞    Reynolds number of freestream 

Re m    unit Reynolds number  

RWTH Aachen Rheinisch-Westfälische Technische Hochschule Aachen 

auxS    surface area of the auxiliary cell 

iS     projection of surface area on a plane perpendicular to i axis  



 

x 

T    temperature 

∞T     temperature of free-stream 

ijT ,     stress component 

TS     Sutherland’s constant 

TSTO   Two-Stage to Orbit  

U, V, W    contravariant velocity components on ξ , η , ς  axes  

UFVSM   Upwind Flux-Vector Splitting Method  

V∞    velocity of free-stream 

refV     reference velocity  

W    help vector in AUSM; eigenvector 

 

a    speed of sound in air 

a
r

    acceleration 

cp      specific heat at constant pressure  

cv    specific heat at constant volume 

Sd     infinitesimal surface of the control volume 

Vd     infinitesimal control volume 

e     specific internal energy  

zyx eee
rrr

,,   unit vectors of x, y, z axes 

f    force density 
ij

g      covariant metric coefficients with superscripts i,j=1,2,3 

k    coefficient of thermal conductivity 

redk     reduced frequency 

T

zyx nnnn ),,(=
r

  unit normal vector on a surface in Cartesian coordinates 

p    air pressure 

∞p     freestream pressure  

q&     rate of volumetric heat source  

∞q     dynamic pressure  

iq     heat transfer fluxes  

*
t     dimensionless time 

realt     physical time 

u, v, w    velocity components on x, y, z axes 

x,y,z   Cartesian coordinates 
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Greek Symbols: 

 

∆    increment of some physical properties 

∆α    increment of the angle of attack 

ζηξ ΛΛΛ ,,   eigenvalues of Jacobi matrix 

Φ     numerical dissipation coefficient  

 

α    angle of attack; parameter in AUSM for dissipation 

α0    initial angle of attack for a separation process 

maxα    maximal angle of attack 

β     scaling function in AUSM for dissipation 

γ      ratio of specific heats 

δ      parameter in AUSM for dissipation; thickness of the boundary layer 

ε     parameter in AUSM to suppress limiting of solution 

ζηξ ,,    curvilinear coordinates 

µ    coefficient of viscosity 

tµ     eddy viscosity  

Vµ     second coefficient of viscosity  

ρ      density 

∞ρ      freestream density 

τ     stress vector; phase or time development in numerical simulation 

τ      shear stress tensor   

ji ,τ     components of stress  

φ     any one of state variables 

ω     verticity; parameter in AUSM for dissipation 

σ     stress tensor   

nσ
r

    stress vector acting on the closed surface S 

 

 

Upper Indices: 

 

    tensor 

→    vector 

*     dimensionless variable 



 

xii 

 

I     index for inviscid flow  

Mod AUSM   index for modified AUSM  

T    matrix transformation  

V    index for viscous flow  

VL     index for van Leer formula 

 

n    n-th iteration of the time 

 

 

Lower Indices: 

 

∞     index for freestream 

0     variable on the boundary using a value in the last time step; 

    initial value for an unsteady process 

 

L    index for the left side 

Numer   Corresponding variable for numerical model 

R    index for the right side 

 

b    variable on the boundary 

i     variable on the inner point of the computing domain 

i,j,k    index for the grid point; different coordinates i, j, k = x, y, z  or ξ ,η ,ς    

inflow    variable takes the value of freestream in inflow 

2

1
+k    index for the point on the surface of a control cell 

m    variable on the mirror point 

n    normal direction of the surface 

outflow    variable takes the value of freestream in outflow 

ref    reference value 

 

 

Other Symbols: 

 

•     inner product  

×     vector product 

⊗     tensor product 

∇     gradient vector 

 0    zero vector 
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1  Introduction 

 

1.1  Background of Space Transportation and Separation Process 

 

 Flying as a bird in the sky was always the dream of mankind in ancient time. This dream was 

realized on December 17 in 1903 [68]. On that day, with a powered and heavier-than-air aircraft, 

Wright Brothers flied 12 seconds and 120 feet in their first flight. Since that historical moment 

aeronautics and its relative industries expand very rapidly. Already in the time of the Second World 

War, air forces have become the most powerful force and airplanes have been used as the most 

important traveling and transport vehicles in the world [3, 5, 68]. To provide more powerful engine 

than usual airplanes to enter the earth orbit and the outer space, on February 24, 1949, the first 

hypersonic flight was achieved by a multistage rocket in USA based on the German designed V-2 

missile. On April 12, 1961, the world’s first spaceship with pilot Gagarin was successfully launched 

into earth orbit by the Soviet Union [6]. With gradually maturated technique shown in these events, 

mankind flies more quickly, highly, and safely in the space. Nowadays, the space technique is already 

widely applied and becomes indispensable in many commercial and military activities as well as in 

our daily life. The most obvious examples could be easily found in the area of satellite navigation, 

satellite television, weather forecast, communication, geological exploration, and military 

reconnaissance. 

 

 
Figure 1.1: Typical flight mission of the two-stage space transportation system1. 

                                                                                                 
1  Picture refers to M. Mayrhofer und G. Sachs, „Aspekte der Flugbahn-Optimierung für zweistufige 

Raumtransportsysteme“, Seminar des Sonderforschungsbereichs 255, TUM, 12. Dez. 2002, pp89-102.  
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Even though the aeronautic and astronautic technologies become more sophistic, and mankind 

has already launched many space vehicles, it is still very expensive to send payloads into space. For 

example, it costs about 11000 US dollar per kilogram using the space shuttle or ARIANA rocket to 

carry payloads to the low earth orbit. To send satellites, machines, even people to orbit as cheaply as 

possible, many reusable space vehicle systems are developed [81].  

A type of two-stage to orbit (TSTO) system is researched by many countries. It consists of a 

carrier stage and an orbital stage and both stages are intended to be reused. Its whole flying mission is 

illustrated in Figure 1.1. The carrier stage is used to replace the launching rocket. It is designed to take 

off and to land horizontally as an ordinary airplane to fully make use of ordinary airport. The orbital 

stage is designed as a space shuttle. It is attached on the back of carrier stage before the separation 

process. At the separation altitude of about 35 kilometers, a strut mechanism from carrier stage raises 

the orbital stage up with a designed angle of attack. Flying at Mach number of about 6.8, the orbital 

stage separates from the carrier stage as shown in a series of simulative pictures embedded in Figure 

1.1. Next it climbs to an orbit around the earth by itself. After fulfilling its tasks, the orbital stage 

comes back to earth like the space shuttle. This type of TSTO could save much expenditure by 

reusing both carrier and orbiter many times. No new launching and landing bases should be built 

specially for these space vehicles.  

Some carriers directly make use of huge conventional transport aircrafts to carry the orbital stage. 

This type of carrier could save much developing cost and has been researched in AN 225 / Interim 

HOTOL (Horizontal Take-Off and Landing) by Great Britain, which is exhibited in Figure 1.2. It is 

also been investigated in MAKS system by Russia. However, the rarity of the air at very high altitude 

confines the flight of usual airplane. The drawback using a conventional aircraft as a carrier is that the 

orbital stage has to carry more fuel to arrive to the earth orbit. 

 

 

Figure 1.2: Conventional aircraft carrying an orbiter in the HOTOL model2.  

  

To carry the orbiter to a highest flight level with a maximal speed, some of the carriers are 

designed to equip with airbreathing hypersonic engines. They are studied in NASA Hyper-X program 

[35], in “Future European Space Transportation Investigations Program” (FESTIP) [57], in German 

development program “Technologies for Future Space Transport System” (Technologien für 

zukünftige Raumtransport-Systeme, TETRA) [16], and in France PREPHA program [63]. 

In Germany the TSTO models are developed originally according to the Sänger’s concept [31, 44, 
                                                                                                 
2 Photo from http://www.spacefuture.com/vehicles/designs.shtml. 
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56, 90] as shown in Figure 1.3. It is a two-stage vehicle with delta wings. The carrier stage is 

propelled by the airbreathing scramjet (supersonic combustion ramjet engines [5, 33]). Since this 

engine could combust the oxygen in the air, it could bring less fuel than rockets. Further it could 

propel the space vehicles to the height of about 35 km at Mach 6.8. In contrast, normal jet engines 

could not work properly in that attenuate air with scare oxygen. Usually the conventional airplanes 

could only reach the altitude of about 24 kilometers. 

 

 

Figure 1.3: Configuration of the orbital and carrier stages in Sänger’s concept. 

 

On March 27, 2004, the NASA’s second X-43A hypersonic research aircraft, equipped with an 

airbreathing scramjet, successfully flied at Mach 6.8. As shown in Figure 1.4, this flight was 

photographed at the altitude about 29 Kilometers. In a further flight on Nov. 16, 2004, its speed 

reached nearly Mach 10.  

  

Figure 1.4: NASA's X-43A hypersonic research aircraft propelled by an air-breathing scramjet3. 

 

The whole flight mission shown in Figure 1.1 is a very complex procedure. One of the most 

critical phases is its separation process. There is a collision possibility when two stages separate at the 

altitude of about 35 kilometers with a hypersonic speed of Mach 6.8. Before this separation process 

begins, the two stages are closely aligned. In Figure 1.5, the separation process is further animated 

through a series of position changes of the orbiter. That is, the orbiter rises up, changes its angle of 

attack, and separates from the carrier. Because the separation time is very short, there is usually no 

much time to manually adjust the separation maneuver. The aerodynamic properties, such as lift, drag, 
                                                                                                 
3 NASA photo from http://www.dfrc.nasa.gov/Gallery/Photo/X-43A/Large/EC04-0092-32.jpg. 
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and pitching moment, decide the separation maneuver. These properties are mainly affected by shock 

waves, by expansion waves, and by boundary layers [8, 50, 54, 62]. For a safe maneuver, we should 

clearly know how the aerodynamic properties of two stages behave in the whole separation process. 

 

 

Figure 1.5: A series of position changes of an orbiter in a separation process. 

 

1.2  Features of the Hypersonic Flight and Its Research Methods 

 

Flying at hypersonic speed leads to many different critical characteristics compared to the lower 

speed regime. The hypersonic speed means that a velocity possesses a very high Mach number which 

is conventionally higher than 5. It is usually related with the phenomena at high altitude. Furthermore, 

the hypersonic flow characterizes with lower density flow, thin shock layers, stronger entropy 

gradient layer, stronger viscous interaction, and very high temperature [46, 76]. More detailed 

characters of hypersonic flow are listed in Appendix J.  

By comparing to the environment at sea level [87], we illustrate the environment at the separation 

altitude. At sea level it is 1.2 kg/m3. At the height of about 35 kilometers, the density of the air is about 

8.2× 10-3 kg/m3. The air density at high altitude is only 0.68% of that at the sea level. The air density 

decreases with the increase of the altitude. Similarly, the air pressure is only 0.55% corresponding to 

the pressure at the sea level. The air temperature at the height of about 35 kilometers is about 

-36.10 °C. In Appendix K, detailed atmosphere properties related with different altitude in a steady 

state are presented and could be calculated by a short FORTRAN program.  

To describe hypersonic flights, different theoretical models have been set up and many 

experiments have been conducted. Theory and experiment are two basic research tools in fluid 

dynamics. Generally speaking, it is not easy to get an analytical solution from theoretical models. On 

the other side, the corresponding experiments are very expensive and very difficult to generate the 

exact environment of the hypersonic flight in space. In the mid-1960s, a successful numerical 

simulation of the hypersonic flow field about the blunt body returning to earth atmosphere [70, 94] set 

up a new era about computational fluid dynamics (CFD). CFD has become the “third dimension” [4] 

of fluid dynamics in comparison to the theoretical and experimental methods. Now it already 

becomes indispensable for the research, design, and optimization, because it reduces the cost of 
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development; it enables us to simulate the situation that could not be exactly achieved by experiments; 

it could investigate many different configurations in a short time; it could provide the detailed flow 

field information in the whole computational domain. Actually, the aerodynamics of space vehicle in 

hypersonic flow is researched with the synergistic combination of pure theoretical analysis with high 

abstraction, carefully designed experiments, and CFD supported by high performance computer.  

 

1.3  Relevant Research Works 

 

Already in 1968 Decker and Gera have studied two parallel re-entry bodies and determined the 

aerodynamic characteristics relating with the alignment and position of the two stages [25]. Bernot 

researched the separation between liquid-fuel tank and the shuttle in 1970’s [8]. Thereafter, Esch in 

1990 measured the force induced from separation process in hypersonic wind tunnels [31]. Also in 

1990, Mukovozov proposed an empirical method to determining the interference of the aerodynamic 

characteristics between fuel tank and the Buran vehicle during separation [71]. Schröder et al. divide 

the separation process into three flight phases and pointed out the pitching moment is the most 

susceptible coefficient in 1993 [82]. Brenner used an Euler program and gave a 3D numerical 

simulation of the vertical launched TSTO separation also in this year [14]. In 1995 Bonnefond et al. 

presented the aerodynamic interferences occurring in the separation of two winged stages [9, 10]. 

Weiland in 1996 indicated the complicated flow field in the gap between the both stages leading to 

aerodynamic and thermal loads [92]. The numerical simulations and experiments listed above show 

the early works related to some separation processes between two different objects.   

To thoroughly investigate the aerodynamic properties of the two stages and assure the safe 

separation of TSTO system, systematic investigations have been done in the project “Trans- 

atmospheric Flight Systems” in Collaborative Research Center 255 of Technische Universität 

München supported by the German Research Association (Deutsche Forschungsgemeinschaft). 

These researches begin from some simple geometry shapes, such as a delta-wing [40] or a blunt cone 

[39]. Some uses 2D geometries [24]. Accompanying the development of the numerical tools, the 

simulated geometries have been extended to simplified 3D models [11, 48, 51] and even complete 

two-stages [12, 13, 50, 69]. Besides the mathematical models are evolved from Euler equation system 

[26, 79] to Navier-Stokes 2D- [24] and 3D- [20, 48] equation systems, and even to turbulence 

equation system regarded here. Further, the description of the separation process is developed from a 

set of steady points [67, 99] to continuous unsteady processes [20-23, 28, 49, 80].  

Although the most important part of separation maneuver is actually an unsteady process [59, 60], 

it was only studied in inviscid flow or 2D case in viscous flow due to its complexity. Based on the 

results of Euler simulations, Rochholz et al. showed that the effects of unsteady flows during 

separation due to the shock interactions between the upper stage and lower stage are non-negligible 

[79, 80]. This indication is also supported by Cvrlje et al., who performed numerical simulations 

involving both roll- and yaw- motions of an orbital vehicle for different reduced frequencies [20-23]. 

Cvrlje also presented the effect of unsteady flows including laminar boundary layers on the 
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longitudinal motions of a 2D idealized two-stage hypersonic vehicle during separation [24]. For 

inviscid flow related with both the separation process and the vehicle returning to the atmosphere, 

some of the unsteady cases with complex geometry are given by Decker [26, 28]. Also with inviscid 

flow, the simulation works corresponding to the two complete geometries of TSTO system are mainly 

done by Moelyadi [50, 69]. Cvrlje has simulated three-dimensional EOS free flying in laminar flow at 

some small Mach numbers [20]. 

 

1.4  Thesis Outline 

 

As presented by the relevant research works, the separation process has not been thoroughly 

investigated, especially in context with a 3D TSTO geometry in laminar flow and in turbulent flow. 

To investigate these topics, simplified geometries are built in Chapter 2. As a theoretical preparation, 

a brief outline about the derivation of the differential equations, such as Euler equations, 

Navier-Stokes equations, and turbulence model, is presented to describe the separation process 

theoretically. Due to the complexity about the theoretical derivation, many details have been moved 

to Appendixes A-H. Based on a numerical method - Finite Volume Method, a solver FLMNAV 

mainly for hypersonic flow is developed. Special numerical techniques are used to capture the shock 

and distinguish the slip lines.  Except the above region they possess 2nd order spatial accuracy and are 

discussed in Chapter 3. The FLMNAV is written in Fortran 90 and could be executed on both super 

computer using UNIX system and on PC using window system. These differential equations are 

discretized on a structured body-fitted grid. Software ICEM CFD package is used as a pre-processor 

of FLMNAV, and graphic software Tecplot as the post-processor. Another in-house software – 

GRIDFLM, which is mentioned in Chapter 4, improves the orthogonality and smoothness of the 

mesh.  

Experiments are carefully arranged to study the separation process as described in Chapter 5. The 

carrier stage is idealized as a flat plate with a complex orbital stage, namely EOS (an abbreviation of 

ELAC’s Orbital Stage) [11]. The experimental results are obtained in the ITAM SB T-313 [54] wind 

tunnel tests and in TH2-D [37, 74] shock tunnel tests with Mach numbers of 4.05 and 7.9, respectively. 

These experiments are used to validate the numerical solver FLMNAV for the hypersonic flow in this 

thesis.  

Many steady and unsteady cases are numerically simulated for the TSTO space transportation 

system. The aerodynamic effects are analyzed in inviscid, laminar, and turbulent flow models. The 

investigations include three phases of the separation process as illustrated in Figure 1.5: The first 

phase describes TSTO vehicles flying with some fixed positions. This can be interpreted as the 

beginning of the separation or as approximating a dynamic separation process by some fixed 

positions. It is a steady case. The second phase describes the dynamic separation process. It consists 

of an unsteady case. The third phase shows the end of separation with the free flight of the orbiter.  

Using the same environment as in the arranged experiments, many cases are numerically 

simulated and compared with the experimental results. Related to Mach numbers, angles of attack, 
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and separation distances, these simulations have been sorted at Mach 4.05 in Chapter 6 and at Mach 

7.9 in Chapter 7. In Chapter 8, numerical predictions about the separation process of the TSTO are 

shown for steady and unsteady cases at Mach 6.8.  

Except the appendixes already mentioned above, some more topics about the basic aerodynamic 

definitions and a real gas model are listed in Appendixes I and L. The latter is referred as an 

improvement in the future work. 

Results from Chapters 6 – 8 clearly illustrate that a shock generated at the bow of the orbiter hits 

the carrier at first. Then the bow shock could rebound back and impinge again on the orbiter. Some 

expansions also appear in some regions. These shock systems strongly affect the aerodynamic 

properties of the two stages, such as pressure, density, and forces.  
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2  Physical and Mathematical Models 

  

To simulate the separation process, a simplified TSTO geometry model has been set up as shown 

in Figure 2.1 corresponding to a series of experiments [11, 38, 54]. The Navier-Stokes equation 

system is applied to describe the flow field around the two stages. To make closure of the equations, 

the calorically perfect gas model is added into the differential equation system. The influence of the 

laminar flow model has been investigated in this separation process. Due to the complex nature of 

boundary layers, the effect of inviscid flow is researched as a NS model simplification. A turbulence 

model is also applied because of the great Reynolds number in the separation process. To construct a 

well posed differential equation system, characteristic boundary conditions are used and simple initial 

conditions are assigned in time-developing procedures.  

 
Figure 2.1: The EOS and the flat plate in simulating the separation process. 

 

2.1  Geometry Models and Fluid Assumptions 

 

As a simplified geometric model for the TSTO space transport system, a detailed orbital stage 

EOS (the lower EOS configuration in Figure 2.1) is used while the carrier stage is modeled by an 

infinite flat plate (the bottom plate in Figure 2.1). The parameter h refers to the distance from X
EOS

- 

axis to the flat plate; L is the body length of the EOS. In the separation process the orbiter rises 

upwards and increases of the angle of attack. This procedure is also illustrated in Figure 2.1 by the 

simplified model. That is, the lower EOS configuration moves a distance h move  upwards, changes its 

angle of attack ∆ α, and finally arrives to the upper EOS configuration. 

Developed from the Sänger’s concept, the separation process will be arranged at an altitude of 35 

kilometers above the sea level. As listed in Appendix K, some important environment parameters in 

that altitude are referred as: the density of air ρ=0.0082 kg/m3, the pressure p=558.92 Pa, and 

temperature T=237.05 K. Related to the air characteristics, the mean free path could be calculated by 
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pNd

TR
l

A

pathfreemean
⋅⋅⋅⋅

⋅
=

22 π
, (2.1) 

where the universal gas constant R=8.314 J/(mol K), Avogadro's number NA= 6.022·1023
 1/mol, and 

the diameter of the air molecule d≈3·10-10 m. Consequently, the length of the mean free path 

=pathfreemeanl  1.46·10-5 m. Comparing with the designed length of the orbital stage L =28.8 m, the 

Knudsen number Kn is obtained by 

61051.0 −×==
L

pathfreemeanl
Kn . (2.2) 

Usually the air could be considered as a continuous fluid, if  

01.0≤Kn . (2.3) 

Therefore, at the altitude of 35 kilometers, the length of mean free path can be neglected comparing 

with the reference length of the orbiter. The molecules of the air are still dense enough to be 

considered as a continuous fluid, though the air density is already very small. The fluid continuum 

assumption is still acceptable in the investigation of the separation process. 

In the following chapters, the separation process is simulated in different freestreams with Mach 

numbers of 4.05, 6.8 and 7.9, respectively. The Prandtl number of the air Pr = 0.72. The Reynolds 

number Re is in the range of 2.19 610×  to 3.24 710× corresponding to different cases. Thereinafter, it 

is also assumed that the stress is linearly dependent on the rate of deformation. The entropy of the 

flow always increases. 

Because of its relatively small mass, the orbital stage is more sensitive to the aerodynamic 

interaction than the carrier stage. Hence, we mainly study the aerodynamic properties of the EOS. 

 

2.2  Navier-Stokes and Euler Equation Systems 

 

The full Navier-Stokes equation system is used to predict the fluid dynamics around the two 

stages. Based on the continuum assumption of the fluid and the assumption of viscosity, this partial 

differential equation system is derived from the conservation laws of mass, momentum, and energy. 

Its derivation is attributed to Navier and Stokes in 19 century. Actually the theoretical research began 

as early as in 1726. Sir Isaac Newton recognized that both air and water move in similar ways. He also 

presented the dynamic forces dependent on the fluid density, on the fluid velocity, and on the shape 

and size of the object. In 1755 Euler gave a mathematical formulation of the principle of conservation 

of mass in terms of a partial differential equation. Modeled the dissipative effects in viscous flows by 

Navier and Stokes, the Navier-Stokes differential equations are now the most general system to 

describe the movements and energy changes for Newtonian fluid. 

In Cartesian coordinates zyx ,, , with time t, the Navier-Stokes differential vector equation [20, 45] 

is given as: 
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with the state variable vector ( )T

SEwvu ,,,, ρρρρ=q , the density ρ , the velocity vector V
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ρ , and the specific internal energy e. Further p denotes the 

pressure. The inviscid flux vectors are given as: 
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The viscous flux vectors are determined by: 
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where  

xx qwvu
zxyxxx

−⋅+⋅+⋅=Π τττ ,  (2.7) 

yy qwvu
zyyyxy

−⋅+⋅+⋅=Π τττ , (2.8)  

zz qwvu
zzyzxz

−⋅+⋅+⋅=Π τττ , (2.9) 

and ijτ  is a stress component and iq  is the flux of heat transfer with subscripts zyxji ,,, = . 

The full Navier-Stokes equations still need the calorically perfect gas equation as a supplement. It 

describes the properties of specified gas as  

)](
2

[)1( 222
wvuEp S ++−⋅−=

ρ
γ , (2.10) 

where vp cc /=γ  as the ratio of specific heats. cv and cp are the specific heats at constant volume as 

well as at constant pressure, respectively. For the air at standard condition 4.1=γ . 

The Navier-Stokes equations are additionally transferred into dimensionless form. Then the 

results from the numerical simulation could be applied to other phenomena with same similarity 

parameters, instead of possessing only one confined instance. Most of important similarity 

parameters could also be abstracted from the non-dimensionalized Navier-Stokes equations. The 

dimensionless variables are defined as  
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,,,, ****
refrefrefref tttLzzLyyLxx ⋅=⋅=⋅=⋅=  (2.11) 

,,,, ****
refrefrefref VwwVvvVuu ⋅=⋅=⋅=⋅= ρρρ  (2.12) 

refSSrefrefref EEEpppTTT ⋅=⋅=⋅=⋅= **** ,,,µµµ . (2.13) 

The superscript * presents the dimensionless variable, and with subscript ref as the reference value. A 

detailed derivation of non-dimensionalization for the Navier-Stokes equation system is given in 

Appendix D. For the reason of simplification, the superscript * is omitted in the following sections 

and chapters. Thereafter all equations are considered using the dimensionless form.  

The geometrical shape of a body and its boundary layer play important roles in fluid dynamics. In 

order to describe the aerodynamic properties in the boundary layer and in its neighborhood more 

accurately, it is important that the mesh points are well distributed on the solid surface of the body. 

This body fitted mesh should not only describe the geometry exactly, but should also be easier to 

apply boundary conditions. Actually, it is much easier to make the mesh denser or sparser in the 

boundary layer or other domains by adjusting parameters in the meshing software, such as 

commercial software ICEM CFD, comparing to the meshing manipulation for the traditional 

rectangular meshes. 

 
Figure 2.2: Transformation from physical domain to computational domain. 

 

However, extra effort is needed to discretize the Navier-Stokes equations on the body fitted mesh. 

We transform the Navier-Stokes equations from the Cartesian coordinate system into the curvilinear 

form, and simultaneously transform the physical domain into computational domain. Figure 2.2 

shows a 2D-transformation example from the physical domain in Cartesian coordinates (x, y, t) to the 

computational domain in curvilinear coordinates ( τηξ ,, ). Hereby we see that a complex body fitted 

mesh is transformed into the traditional rectangular mesh system. 
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The 3-dimensional transformation from Cartesian coordinates (x, y, z, t) to curvilinear 

coordinates ( τζηξ ,,, ) is defined as: 

,τ=t  (2.14) 

),,,,( τζηξxx =   (2.15) 

),,,,( τζηξyy =   (2.16) 

).,,,( τζηξzz =   (2.17) 

The mathematical transformations defined by Eqs. (2.14) - (2.17) change the shape of geometry 

and the forms of Navier-Stokes equations. Their numerical accuracy plays a fundamental role in the 

numerical simulation.  

The dimensionless Navier-Stokes vector equation is written in curvilinear form as: 
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where the solution variables are 

qQ J= ( )T

SEwvuJ ,,,, ρρρρ= . (2.19) 

The inviscid flux terms are obtained as 
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where the contravariant velocities are given by 

,tzyx wvuU ξξξξ +++=  (2.23) 

,tzyx wvuV ηηηη +++=  (2.24) 
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,tzyx wvuW ζζζζ +++=  (2.25)   

and the viscous flux terms are expressed as  
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More details about the above inviscid and viscous flux terms as well as the curvilinear transformation 

are described in Appendix E. 

Mathematically the Navier-Stokes equation system (2.18) is a complex hybrid differential system. 

It represents elliptic, parabolic and hyperbolic characteristics corresponding to different cases. Some 

analytical solutions could be obtained only for extremely simplified cases. In Appendixes A - G, the 

complete Navier-Stokes equations are strictly derived in detail. Consequently, the definition of 

mathematical symbols, derivation of conservation equations, Navier-Stokes assumptions about stress 

and friction, dimensionless form, initial conditions and boundary conditions, which are used in this 

paper, could be found in these appendixes.  

When the viscosity of fluid is very small, the heat conductivity terms could be also neglected due 

to no dissipative phenomena [42, 43]. With these assumptions, the Euler equation system [61] can be 

directly derived from the above Navier-Stokes equations. So Euler equation system describes an ideal 

case with no friction in flow. According to the Prandtl’s boundary layer theory, the Euler equation 

system is suitable to depict the flows, which is located in the outside of the boundary layer and 

dominated by convective character. Actually, it is often used as an approximation and simplification 

of the Navier-Stokes equation system. 

As Euler equation system physically is a wave transfer system and it describes some quantities 

propagating along characteristic lines. Based on this character, some numerical methods have been 

proposed and the characteristic boundary conditions are derived. The Navier-Stokes equation system 

also utilizes this type of boundary conditions.  

Because Euler equation system needs not to describe the most difficult changes in very thin 

boundary layer, most of its solvers are sophisticatedly developed. These solvers use much less CPU 

time and memory space than the corresponding solvers for Navier-Stokes equation system. On the 

other hand, Navier-Stokes solvers directly use many techniques developed for Euler Solvers. 

 

2.3  Turbulence Model 

 

In the designed separation process, the corresponding Reynolds numbers range typically around 

the order of 107. Turbulent phenomena are of importance in the corresponding hypersonic flow field. 

It is generally characterized by a high irregular and full 3-dimensional flow including many vortices. 

Turbulent flow also causes rapid mixing and flow resistance. It increases heat transfer and enhances 
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the dissipation of energy. The smallest scale of turbulence is known as Kolmogorov microscale and 

generally much larger than the scale of the molecular mixing length. 

The most exact simulation about turbulent phenomena is the direct numerical simulation (DNS). 

It directly solves the Navier-Stokes equations with resolving all of the important motions contained in 

the flow. To simulate not only the largest eddies in large scale, but also the kinetic energy dissipation 

in the size of very small Kolmogorov microscale, the number of the grid points should be of the order 

of Re 4/9 610−⋅  as mentioned by Ferziger and Peric [32]. This means to distinguish the all vorticities in 

the TSTO separation process, the number of the grid points should be in order of about 109 1010 − . 

More computing work is further needed to simulate the unsteady separation, because the time step 

size is related to the grid size. This demand of computational effort of DNS is still out of the capacity 

of our computers. 

To overcome the unrealizability of DNS, many methods are developed using coarse meshes. Still 

describing most characteristics of the turbulent phenomena, some techniques, such as correlations, 

integral equations, averaged equations, two-point closures, and large eddy simulation, are used to 

reduce the computational effort. The simplest turbulence models are constructed by algebraic 

relations between the turbulence variables and the averaged flow quantities, i.e. zero equation models. 

In contrast, the complex models may involve one or more partial differential equations. They could 

account the effects of flow history, and etc. Turbulence models are usually developed from theoretical 

consideration supplemented with empirical relations. Developing an efficient and exact turbulence 

model is still one of the most difficult topics. 

Nowadays, there is still no general turbulence model that is suitable for all flow problems. As an 

algebraic turbulence model developed originally for aeronautical complicated flow, the Baldwin- 

Lomax turbulence model (B-L model) provides a convenient closure to the Reynolds-Averaged 

Navier-Stokes (RANS) equations [7]. Usually it could describe high-speed flows with high Reynolds 

number and with thin attached boundary layers. It has the same form as the Navier-Stokes equations 

and could be solved using relatively less CPU time. Because it is easy to understand and implement, it 

is still used in many CFD codes.  

Actually B-L model is a two-layer, algebraic, and eddy viscosity model. The viscosity in Navier- 

Stokes equations is replaced by the sum of viscosity tµµ +  in B-L model, where µ  is the original 

viscosity in Navier-Stokes equations and tµ  is an extra viscosity to include the microscale effect of 

the turbulent flow. Simultaneously, the heat conductivity k= pc ⋅ µ /Pr in Navier-Stokes equations is 

replaced by 







⋅

t

t

p + k=c
PrPr

µµ
, where turbulent Prandtl number tPr  is a ratio of eddy viscosity and 

eddy thermal diffusivity. 

In the region near the wall the Prandtl model is used to calculus the eddy viscosity. When a point 

is far away from the wall, this viscosity is determined by empirical functions and constants. The point 

distinguishing above two layers could be automatically calculated. Baldwin and Lomax also gave a 



 

15 

different empirical force function in the wake region. Degani and Schiff [29] improved and modified 

the calculation of normal distance ymax in B-L model. More details of the B-L model could be referred 

in the Appendix H. 

 

2.4  Boundary and Initial Conditions 

 

To solve the Navier-Stokes equations, appropriate initial and boundary conditions should be 

assigned. These boundaries confine the size of computational domain. To include every possible 

influence in the computational domain, in a simplest way, the boundaries could be selected far away 

from the simulated TSTO space vehicle. However, to reach a satisfied mesh resolution, a big 

computational domain results to a great number of computational nodes. A tremendous hardware 

resource is prerequisite. Therefore, deliberately chosen and well-designed boundaries are very 

important to realize a numerical simulation in practice. At least it could save much computing time 

and much expenditure for computer hardware. 

 
Figure 2.3: The wave transfer of disturbances in sub-/super- sonic flow. 

 

Theoretically, there is still no general mathematical rule about the boundary conditions, even for 

the Euler equations. However, we could assign boundary conditions for the Euler equations by 

considering the wave transfer of a small disturbance as shown in Figure 2.3. As pointed by Yang [96], 

the Euler equations describe propagating waves, which are undamped due to without diffusive terms. 

A disturbance travels in speed of sound a like concentric spheres in a fluid at rest. In a moving flow, 

the disturbance propagates with speed a as in still fluid superimposing the fluid movement in 

freestream. Consequently, the wave transfers in a sphere shape corresponding to a fixed time. In 

Figure 2.3(a) these spheres are tagged at different times in a subsonic flow, and obviously these 

spheres could reach any position in the space. One disturbance from any point in the flow field 
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influences the whole space. In a supersonic flow, because the flow velocity of the freestream is 

greater than the speed of sound, the disturbance could not travel upstream. The disturbance of one 

point transfers only in a Mach cone shown in Figure 2.3 (b). 

From the above analysis, it is concluded that a very big computing domain should be considered 

for the subsonic cases, because any disturbance from one point affects the other points in the whole 

flow field. The domain should be chosen so big, that the boundary condition on the far field should 

not affect or only very weakly affect the aerodynamic properties of the investigated space vehicle. In 

other words, the aerodynamic properties on the far field boundary should scarcely disturb the space 

vehicle. Because of the restricted capacity of the computer, only a suitable finite computing domain 

could be used in practice. Usually the distance from far field boundary to solid surface of the space 

vehicle is chosen about 6-12 times as long as the reference length. In these cases, all physical 

properties on all boundaries can be considered as in undisturbed flow.  

Also from Figure 2.3 (b), it is known that a disturbance in supersonic flow affects only the flow 

field downstream. This means the disturbance in the downstream does not influence backwards to a 

point in the upstream. Hence, a much smaller computing domain could be confined. The inflow could 

be simply assigned as freestream. The outflow boundary may be extrapolated from the inner points of 

the computing domain.  

On the solid surface, the flow movements are classified into two categories for our separation 

process: slip and non-slip boundary conditions. Since no flux should penetrate the solid surface, the 

normal component of the flow velocity against wall is zero. For viscous flow, tangential velocity is 

also zero on the wall, i.e. the non-slip boundary condition. For inviscid flow, tangential components 

of flow velocities are not zero and the flow slips along the wall. On the wall the used boundary 

condition about temperature is the adiabatic condition for the separation process. It assumes no heat 

transfers through the wall of the space vehicle. For the pressure on the wall, no gradient is usually 

considered.  

 

Figure 2.4: The boundary conditions for the flow in separation process. 
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To decrease grid nodes in the computing domain, the symmetry plane of a flying body is usually 

used as a boundary condition, which could reduce half of nodes. It is reasonable that the physical 

properties are also symmetric on two sides of this artificial cutting plane.  

As a summary of above discussions, the boundary conditions used in this thesis could be 

categorized into five groups. As shown in Figure 2.4, they are far field ( ABFE), inflow boundary 

( AEC), outflow boundary ( BFD), solid surface (the EOS surface and the flat plate 

CDFE), and symmetric surface ( ABDC).  

From mathematical point of view, a steady Euler equation system is a type of elliptic equation 

system in the area where Mach number is smaller than one. But in the area where Mach number is 

greater than one, it becomes hyperbolic equation system [76]. 

 In the numerical simulation, steady Euler and Navier-Stokes equation systems are usually 

approximated by unsteady procedures [84]. When a term related to time has been added, the steady 

Euler equation system has changed into an unsteady system. Its mathematical type has completely 

been changed from a type of elliptic or hyperbolic system into a type of hyperbolic - parabolic system. 

With suitable initial and boundary conditions, this differential equation system could be well posed 

and could be sophisticatedly solved.  

 Its initial conditions are usually taken the same state as in freestream or no movement in the 

whole computing domain. In a time-developing process, the influence of the inlet boundary condition 

transfers downwards gradually and the effect of the geometry comes out little by little. Finally a stable 

state should been achieved. Numerically this procedure corresponds to an iterative process.  

The above mentioned method of propagating waves for Euler equation system could be also 

applied for the Navier-Stokes equation system. However in the latter system, the propagating wave is 

already damped by the diffusive terms. The interaction between shock and boundary layer may affect 

the flows in whole domain even if in a hypersonic flow.  

The boundary conditions have been further generalized into the techniques of characteristic 

boundary conditions. The far field could be derived from the characteristic inflow and outflow 

boundary conditions. In Appendixes F and G, systematical derivation of characteristic method is 

presented and initial and characteristic boundary conditions are given in detail.  
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3  Numerical Method 

 

As one of the three methods in researching fluid dynamics, numerical simulation discretizes the 

differential equations into algebraic equations and solves them by using modern computers. A 

successful numerical method should be stable, convergent, and accurate in solving the Navier-Stokes 

equations. To simulate the separation process of a TSTO model numerically, extra robust and accurate 

numerical methods are required, because the numerical methods should distinguish all of hypersonic, 

supersonic, and subsonic flows around TSTO model as well as some special physical phenomena 

such as the strong shocks. 

Based on a finite volume method (FVM), the Navier-Stokes equation system (2.18) is discretized 

and transformed into a nonlinear algebraic vector equation. The time-dependent flow vector is 

calculated by using the Strang-type of fractional step [23, 55, 79]. The inviscid flux vectors are treated 

by the modified AUSM method (“Advection Upstream Splitting Method”) [77, 78]. The viscous flux 

vectors are discretized using the Gaussian integral theorem [19]. Second order accuracy in space for 

the smooth region and first order accuracy in time discretization is achieved.  

Using the above-mentioned methods, the in-house software “FLMNAV” is developed. It is a 

stable, shock-capturing, and accurate code. As common phenomena in gas dynamics, weak solutions 

and non-uniqueness of shock could be encountered. In the code FLMNAV non-physical rarefaction 

shock is excluded by the second law of thermodynamics, that is, entropy increases in any process. 

The entropy increase is realized by the explicit use of filter, by adding artificial dumping terms, and 

by use inherently dissipative numerical schemes [20, 26, and 79]. 

The FLMNAV could be also applied to solve the Euler equation system, which could be treated 

as a simplified case of the Navier-Stokes equation system by neglecting viscous terms. Similarly, as 

described in Chapter 2.3 and Appendix H, the B-L turbulence model only changes two coefficients of 

Navier-Stokes equation system. The same numerical methods could be directly used to the B-L model. 

Therefore, the numerical realization is discussed only for the Navier-Stokes equation system in the 

following sections. 

 

3.1  Basic Coordinate Transformation 

 

The transformation from Cartesian coordinate system (x, y, z, t) to curvilinear coordinate system 

( τζηξ ,,, ) is defined in Eqs. (2.14) - (2.17). Their corresponding differential transformation reads 
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. (3.1) 

This transformation matrix is called as the Jacobian matrix. It is composed of first order differentials 

about coordinates known as metrics. There is 
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Because the metrics are of basic importance and are often used in computing the transformation 

of the Navier-Stokes equation system from Cartesian coordinate system to curvilinear coordinate, it is 

important to calculate these components very exactly. However, the computer could only provide a 

limited numerical precision. If the computing error for these metrics could not be well controlled, the 

numerical solution will deviate from the exact solutions somewhat. 

In practice, these first order differentials about coordinates are not calculated directly from their 

original differential definitions, but derived from some general geometry shapes, that is, from the cell 

faces of control volumes. Corresponding to the hexagonal shape of the control volumes, the vectors 

of a cell face in the Cartesian coordinate system are defined by the coordinates of four vertices as 

below [19, 55]. 
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1364

1364

34161364 .         (3.3)  

 

Figure 3.1: Coordinate transformation and the definition of the cell face vector. 

The cell face vector 1364S  is defined for the four-vertices-surface 1364 in the Cartesian 

coordinate. As illustrated in Figure 3.1, it has three projection components on the planes that are 

perpendicular to x, y, z axes respectively. 6431 ,,, rrrr  present the vectors that begin from origin 

point of the Cartesian coordinate to the points 1, 3, 4, and 6 correspondingly. Though three points 
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could efficiently identify a plane, the above definition using four vertices in Eq. (3.3) could be applied 

in more general cases. It could define the face area of distorted meshes and allow faces collapse to an 

edge or even a point. From these cell face vectors, we get the components of the Jacobian matrix as 

1364
,,

2

1)( SJ
mlk

=∇⋅
−

ξ ,               (3.4) 

1472
,

2

1
,

)( SJ
mlk
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1
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)( SJ
mlk

=∇⋅
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ς ,               (3.6) 

where J=|J| is the determinant of the Jacobian matrix, and T

zyx
),,(

∂

∂

∂

∂

∂

∂
=∇ . Still using these cell 

face vectors, the cell control volume could be obtained as 

)()(
6

1
1847863685258712531472136481 rrSSSSSS −•+++++=−V .      (3.7) 

Usually in curvilinear system 1,1,1 =∆=∆=∆ ζηξ  are selected. Derived from Eq. (E.18) in 

Appendix E, the determinant of the Jacobian matrix is equal to the volume of the control cell, that is  

81−= VJ .                  (3.8) 

Referring Eqs. (E.12) and (E.13), the velocity of the cell face could be derived as 

zyxt zyx ξξξξ τττ −−−= .               (3.9) 

Combining Eqs. (3.4) and (3.9), we could also express the cell face velocities from the cell face vector 

as in the following 
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In the same way, we have the formulas for the other cell faces,  

τττη zSySxSJ zyx
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Combining Eqs. (3.4) - (3.6), (3.8), and (3.10) - (3.12), all elements of the Jacobian inverse matrix 

could be calculated by using the surface vectors and the volume of the control cell. 

 

3.2  Discretization in Time and Space 

 

The finite volume method is used to discretize the integral form of the Navier-Stokes equation 

system (2.18). Applying Gaussian integral theorem to that equation on every control volume V yields 
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where S is the surrounding surface of the control cell, and ξn , ηn , ςn are the components of the 

outward unit normal vectors on S. The integration form, Eq. (3.13), does not exclude discontinuities 

as the differential form (2.18) does. Theoretically it is more suitable in capturing discontinuities and 

shocks. Because the flux terms of the FVM are defined exactly on the cell surfaces, the flux, which 

flows outward from one surface of the control cell, flows into the same surface of another control cell. 

This keeps the flow conservation in the whole discretization region. FVM could be easily applied to 

very complex 3D geometries. Due to these advantages, a lot of efficient numerical methods and 

software are originated from the fundamental idea of the FVM [73]. FVM could accommodate itself 

to both structured and unstructured meshes. 

In this thesis, block-structured grid is used for the spatial discretization. The control volumes are 

very small cells and of hexahedral shapes. The state variables are discretized on the cell centers. If 

these variables locate on other positions, they will be calculated by suitable interpolations. 

To catch the characteristics in the hypersonic flight, the inviscid part and viscous part in Eq. (3.13) 

are spatially discretized using complex numerical techniques. They are discussed separately in the 

following subsections. At first, the temporal discretization is discussed here.  

Corresponding to a time-developing process, state variables are influenced by the inflow and 

outflow through a small cell iteratively. The time discretization with explicit method for the 

Navier-Stokes equation reads  

n
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,, VRQQ ⋅⋅∆−=+ τ ,            (3.14) 

where lower indices k, l, m are used to depict corresponding space points in curvilinear coordinate and 

upper index n means that a variable is at the n-th step of the time iteration. Further 
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n

mlk ,,V  is the volume value of the control cell and ξS , ηS , ςS  are the cell surface areas in the axis 

plane perpendicular to axis ςηξ ,,  respectively. When ,1,1 =∆=∆ ηξ and 1=∆ζ , the volume of 

control cell and the cell surface areas are all of one. 

The time step size could be selected as 

),min( ,,,,,,
V

mlk

I

mlkmlk CFL τττ ∆∆⋅=∆ ,            (3.16) 

where CFL  is the Courant-Friedrichs-Lewy number in range of (0, 1) especially for the explicit 

iteration [42, 43]. I

mlk ,,τ∆  and V

mlk ,,τ∆  are the time step sizes for inviscid and viscous flux 
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respectively. A great time step size may lead to overlooking of certain physical phenomena. In the 

worst case, it could even result to a nonphysical flow or a breakdown of the iteration process. 

Principally, mlk ,,τ∆  should be reciprocal to || ,, mlkV
r

. That is, the time span should be smaller, when 

fluid moves very quickly. In practice, it could be determined by the idea of the eigenvalues from the 

decoupled Euler equations [39] as listed in Appendixes F and G. Because the components of the 

inverse Jacobian matrix relate with those eigenvalues, some symbols depending on the metrics of J 

are defined at first: 

2/1222 )(|| zyx kkkk ++=∇ , with ςηξ ,,=k ,            (3.17) 

and 
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The time step sizes for inviscid flux are assigned as 
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Using the definition of (3.17), the velocity V
r

and the speed of sound a on the point (k, l, m), the terms 

in the above equation could be calculated by  
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The time step sizes for viscous flux are given as 
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After the time step size mlk ,,τ∆  is calculated according to Eqs. (3.16) - (3.26), Eq. (3.14) could be 
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solved iteratively and explicitly. This explicit scheme defined as above is relatively simple to 

implement. It is also very robust when a reasonable CFL is selected. All of numerical simulations 

performed in this paper use this explicit scheme.  

 

3.3  Modified AUSM and MUSCL Schemes for Inviscid Terms 

 

In the discretization, every state variable φ  is defined in the center of a control volume. As 

illustrated in the Figure 3.2, mlk ,,φ  and mlk ,,1+φ  are known on the cell centers. In the iteration process as 

presented in Eq. (3.15), the inviscid flux terms IF , IG , IH  on the cell surfaces are needed. 

Therefore, mlk ,,2/1+φ  is needed to be determined by mlk ,,φ  and mlk ,,1+φ . To present more influence from 

upstream, weighted functions usually incline to the upstream points. That is, mlk ,,2/1+φ  gets more 

information from mlk ,,φ . 

 
Figure 3.2: Upwind interpolation for inviscid term. 

 

The modified AUSM is used to catch the shocks and to describe the slip lines. This method has 

only first order spatial accuracy. To get high order spatial accuracy, MUSCL (Monotonic Upstream 

Scheme for Conservation Laws) extrapolation is used. 

 

3.3.1  Modified AUSM Scheme 

 

In 1992, Liou and Steffen proposed an AUSM (Advection Upstream Splitting Method) scheme 

[66]. Its main idea is to split the inviscid flux functions into convective and pressure terms separately. 

The former terms are associated with the flow speed, while the latter terms with the acoustic speed. 

This method is further developed by Radespiel and Kroll [77, 78]. They presented the modified 

AUSM as an efficient method for shocks and shear layers. It is a hybrid method combing the 

advantages of AUSM and Upwind Flux-Vector Splitting Method (UFVSM). The UFVSM originates 
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from van Leer [88, 89] and is often mentioned as van Leer scheme. It splits the flux vector into two 

parts on the cell surface. According to the local Mach number and its sign, a forward or backward 

difference method is used for the each part of the flux to achieve an upwind effect. The modified 

AUSM could automatically switch to one of two methods mentioned above. That is, in the region 

with shear and boundary layers as well as contact discontinuity, AUSM is used and exhibits relatively 

small dissipation and high resolution. In the region with intensive shock waves, the UFVSM is used 

to capture the shock sharply and cleanly.  

Because the three inviscid flux terms are composed of similar convective terms and pressure 

terms, to show the idea of the modified AUSM scheme, only one term of the inviscid flux term IF  

through a cell surface, which is perpendicular to the ξ  direction, is discussed subsequently. The terms 
IF  in η  and ς  directions as well as the other terms for IG , IH  could be discretized similarly.  

The inviscid flux term IF  is discretized on a cell surface (k+1/2, l, m) as shown in the Figure 3.2 

and its convective term and pressure term are separated as: 
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and from Eq. (E.32) in Appendix E, we present  
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where the total enthalpy ρ/)(H pES += , and J is the determinant of Jacobian matrix.  

The convective flux term c

/k 21+F  is equal to a sum of an average and a difference of the state 

variables on two sides of control volume in ξ  direction, which are weighted by advection Mach 

number 
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 and by a scalar dissipative term , l, mk 2/1+Φ  respectively. That is  
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The state variables in curvilinear coordinates are  
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where a is the speed of sound. The 
mlk

M
,,1

2

1
+

 in Eq. (3.29) could be determined with several different 
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ways. One of them is given by Liou and Steffen [66] as a combination of wave velocity +M  and 
−M on the cell (k, l, m) and (k+1, l, m) respectively. It is expressed as 
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mlk
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The Mach number +M  and −M  are given by Van Leer through a “Flux Vector Splitting” method in 

[88] as  
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The Mach number M is defined by  
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The dissipative term mlk ,,2/1+Φ  in Eq. (3.29) is introduced as a combination of numerical dissipation 

in van Leer scheme and in AUSM scheme: 
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where ω  is a parameter in [0, 1], and it is defined as 
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where mlkv ,,  and mlkv ,,1+  are two numerical dissipation parameters with a constant α =O(5). In the 

smooth region, where ω  tends to 1, 
mlk ,,

2

1
+

Φ  in equation (3.34) tends to AUSM scheme. In the 

vicinity of shocks where ω  approximates to 0, van Leer scheme is emphasized.   

The dissipation in van Leer scheme read 
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and the dissipation in AUSM scheme is expressed as 
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The dissipation parameter δ
~

 is introduced to reduce or to eliminate the smearing of the boundary 

layer on the normal direction of the wall [77, 78]. Usually this small parameter ranges in an interval 

(0,0.5). It is not a constant, but is given as 
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,,1,,1 ≤<= ++ δδβδ mlkmlk              (3.39) 

where β is a scaling function. It is determined by the cell metrics. Considering theξ -direction related 

with Eqs. (2.14) - (2.17), it is depicted as  
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This scaling function improves the damping behavior of AUSM especially when grid quality is worse. 

In the same time, it does not spoil the accuracy of AUSM for the boundary layer calculation. With Eqs. 

(3.29) - (3.40), we give a complete calculation procedure for the convective term c

, l, m/k 21+F  in Eq. 

(3.27). 
Similarly as Eq. (3.31), the pressure p on the cell surface (k+1/2, l, m) in Eq. (3.28) is defined as  
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where the terms for pressure on the cell center are given by a second-order weighted characteristic 

polynomial of velocity as 
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Then an exemplar calculation of inviscid flux term IF  on a cell surface is listed in formulas from 

Eqs. (3.27) - (3.43). It is noted that the flux terms discretized by the modified AUSM have only the 

first order spatial accuracy.  
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3.3.2  MUSCL Scheme 

 

In the numerical simulation about the separation process, the MUSCL scheme is used to get a 

high order spatial accuracy except in discontinuous regions such as strong shocks and viscous shear 

layers. Herein, the MUSCL scheme is a series of methods using different limiters. It uses sloped lines 

or nonlinear curves to approximate the state variables in each cell. This approximation approaches 

state variables on the cell surface with different left and right values. On the cell surface point 

(k+1/2,l,m) as shown in Figure 3.3, there are two values −
+ mlk ,,2/1φ  and +

+ mlk ,,2/1φ . The cell with the cell 

center (k, l, m) takes −
+ mlk ,,2/1φ  as its state variable on the cell surface. Similarly, the cell with the cell 

center (k+1,l,m) applies +
+ mlk ,,2/1φ  as its state variable on the cell surface.   

 

Figure 3.3: The left and right piecewise interpolation in a MUSCL scheme. 

 

The van Albada limiter has a second order accuracy in a MUSCL approach. Using this limiter in 

this thesis, the state variables of +W  and −W  in Eq. (3.29) do not use the piecewise constant 

approximation in Eq. (3.30), but are calculated in the smooth region as  

.,,,,,
2

)()(

2

1
22

22

,,,,2/1 pwvuformlkmlk ρφ
ε

εε
φφ =

⋅+∆+∆

∆+∆+∆+∆
+=

−+

+−−+−
+      (3.44)  

−
+ mlk ,,2/1φ  is the value of the flow variables on the left side of cell surface (k+1/2, l, m) using the φ  on 

(k-1, l, m), (k, l, m) and (k+1, l, m), where 

mlkmlk ,,,,1 φφ −=∆ ++ ,                (3.45) 

and  

mlkmlk ,,1,, −− −=∆ φφ .                (3.46) 
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The term ε  suppresses the limiting of the solution in regions where the flow is nearly constant. It is 

defined by  

)}(,)(max{ mod

,,
2

121 Mkkε
AUSM

mlk

n −Φ⋅∆⋅=
+

ξ ,           (3.47) 

where kk ξξξ −=∆ +1 , 1k  and 2k  are empirical constants of O(10) and of O(100) respectively. 

Further 32 << n . M  is the average of contravariant Mach numbers at (k, l, m) and (k+1, l, m). 
AUSM

mlk

mod

,,
2

1
+

Φ  is given in Eq. (3.38). 

As done as in Eqs. (3. 44) - (3.46), the state variables on the right side of element surface +
+ mlk ,,2/1φ  

could be analogously obtained by the state variables φ  on (k, l, m), (k+1, l, m) and (k+2, l, m) [39, 77, 

78]. 

 

3.4  Chakravarthy Scheme for Viscous Terms 

 

The viscous flux terms vF , vG , and vH  in Eq. (3.15) are composed of the derivatives of the 

state variables. In the numerical spatial discretization, these derivatives are also needed on the cell 

surface. According to the method of Chakravarthy [19], the derivatives are derived by the state 

variables, which are defined on the center of the control volume.  

These derivatives on the surface of the control volume are discretized by the Gaussian theorem 

again on an auxiliary cell like Figure 3.4. These derivatives could be presented by the state variables 

on the circumference points of the auxiliary cell. If some points, such as N and S, are not exactly on 

the center of the control volume as W and E, their state variables could be expressed by averages of 

the corresponding variables on the neighboring centers.  

 

 
Figure 3.4: Auxiliary cell and its neighborhood  

for derivative calculations of viscous flux terms. 
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To clearly show the above principle, the discretization is performed in 2D case. Let’s define the 

state variable φ  is one of Tvu ,,,ρ . As derived in Appendixes E and D, the strains and heat fluxes 

in the viscous flux terms vF , vG , and vH  depend on x, y, ηξ , ,φ , ξφ , ηφ , transformation matrix J, 

and its determinant J. The coordinates x, y, ηξ ,  could be given by the software of grid generation. φ  

could be obtained in every iterative step. All components in J as well as determinant J have been 

determined in Chapter 3.1. Subsequently, ξφ  and ηφ  are the remaining terms to be determined for the 

viscous flux terms vF , vG , and vH  in this section. 

In the discretization of Navier-Stokes equation system shown in Eq. (3.15), actually the 

numerical flux terms related with ξφ  and ηφ  are needed only on the position of cell surface (k+1/2, l). 

To calculate these derivatives of φ , 2D Gaussian integral theorem is used:  

l
l

dngdg∫ ∫ •=•∇
S

S ,               (3.48) 

where 
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
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n
n  is the outward normal vector of the line l, which encloses the area S. This formula is 

valid for any 2D vector g
r

. Substitute 







=

0

φ
g  into Eq. (3.48) yields 
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In the similar way another first order differential could be gotten as 

ξφφφ ηη d
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dn
S auxaux
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ll
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11

.            (3.50) 

Let’s note the corner points as NW, SW, SE, NE, and the middle points on the sideline as N, W, S, and 

E as shown in Figure 3.4. Assuming that the state variables φ  on the points N, W, S, and E are 

constants, we get the discretization of the first order differential on the cell surface (k+1/2, l) as 
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1 ,        (3.52) 

where idξ  and idη  (i=N, W, S, and E) could be presented by the coordinates ξ  and η   

NWSWWSENEE dd ξξξξξξ −=−= , ,            (3.53) 

SWSESNENWN dd ξξξξξξ −=−= , ,            (3.54) 

NWSWWSENEE dd ηηηηηη −=−= , ,            (3.55) 

SWSESNENWN dd ηηηηηη −=−= , .  (3.56) 



 

30 

The state variables Wφ  and Eφ  are already known in the previous iteration process, because the points 

W and E are exactly the points (k, l) and (k+1, l) on the cell centers, correspondingly. The state 

variables Nφ  and Sφ  could be calculated as  

)(
4

1
,11,1,1, lklklklkN ++++ +++≈ φφφφφ ,  (3.57) 

)(
4

1
1,1,1,1, −−++ +++≈ lklklklkS φφφφφ .  (3.58) 

For 3D case, the state variable φ  could be one of the wvu ,,,ρ , and T. The auxiliary cell 

includes 6 surfaces instead of 4 circumference lines as in 2D case. Further the areas used in 2D case 

are replaced by the volumes in 3D case respectively [20]. As Eq. (A.13) listed in Appendix A, a 3D 

Gaussian integral theorem is utilized as 
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The discretization is as  
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where S
r

 is the cell face vector, ),,( mlk nnnn
rrrr

=  is an outward unit normal vector always pointing 

outside. Some temporary middle points on the surface could be computed as 
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4  Computational Mesh 

 

The discretization procedure includes dividing physical domains into meshes and rewriting 

Navier-Stokes equation system numerically on these grid points. Discretizing the differentials with 

one- to two- order accuracy, algebraic equations relating with the state variables on the cell centers 

are generated by the numerical methods described in Chapter 3. The discretized solution should 

approximate the continuous solution of the NS equation on all grid points [94]. 

If the state variables are of highly nonlinear distribution or they change dramatically, some small 

discretization errors may be much magnified in the numerical calculation. Finally it could result a 

false solution. Discretization error usually could be reduced by decreasing the mesh size. In the ideal 

case, the numerical solution converges to the analytical solution when the mesh size tends to zero. 

However, using enormous grid points may accumulate the round-off error and burden the computer 

hardware resource. Actually a suitable mesh should be selected for a satisfied accuracy. The quality 

and the size of mesh could greatly affect the rate of convergence as well as the solution accuracy. 

In the separation process of the TSTO vehicle, because aerodynamic properties change 

significantly around the body surface, very dense mesh should be allocated around the body surface. 

The important aerodynamic properties should be clearly resolved there. Oppositely, the mesh points 

could be sparsely distributed in the less important region to reduce the grid points and the computing 

work. 

 
Figure 4.1: A comparison between rectangular Cartesian mesh and body-fitted mesh. 

 

4.1  Meshing Methods  

 

The shape of the space vehicle dominantly determines its aerodynamic properties. The simplest 

meshes with cuboids could not describe the solid surface of the space vehicle precisely, nor could 

they reasonably distribute grids according to the rate of the surface curving. A staircase-like 

approximation brings errors in the analysis of boundary layer as well as in the determination of the 

force. As an example in 2D case, Figure 4.1 shows a comparison between rectangular Cartesian mesh 

and the body-fitted mesh. Though the grids are distributed much denser using rectangular meshes, 
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their approximation to the shape of an airfoil looks still unreasonable. 

To use the simplicity of the Cartesian system and reduce the geometry error in Cartesian meshes, 

an adaptive mesh refinement is used to refine meshes around boundaries automatically [2, 100]. 

Recently an immersed boundary method is developed and it amends the geometry error in Cartesian 

meshes by adding extra forces, which is related to the geometry, into the right hand of the control 

equation systems [36, 75]. 

In contrast, non-uniformly distributed and body-fitted mesh is widely used in CFD. As shown in 

Figure 4.1, the grid points locate exactly on the body surface and the grid points are distributed more 

reasonable.  

The body-fitted mesh is not easier to generate. The meshing work is usually done with the help 

of some mesh generators. One of them is a software package ICEMCFD. Using one-to-one 

curvilinear mapping, the physical domain with body-fitted mesh in Cartesian coordinate system 

( tzyx ,,, ) is transformed into the computing domain in curvilinear coordinate system ( τςηξ ,,, ). The 

latter uses conventional meshes composed of cuboids. Simultaneously the Navier-Stokes equations 

should also be transformed to the computing domain by using the same curvilinear mapping. This 

transformation could refer to Appendix E.  

 

4.2  Basic Geometry and Initial Mesh 

 

In the following numerical simulations, the configuration of the simplified EOS is exactly the 

same as used in experiments, which will be illustrated in Chapter 5. CAE tool gives the basic points 

and lines of the EOS configuration. One sub-module in ICEMCFD, i.e. DDN, imports these points 

and lines and generates a series of contour lines, surfaces, and domains. It further defines the 

geometries of EOS, flat plate, inflow area, outflow area and far field. Based on these geometries, the 

mesh is created by a HEXA interface, which is also a sub-module of the ICEMCFD. With O-grid 

technique, HEXA divides computing domain into 12 blocks by splitting edges, faces and blocks. A 

desired point distribution could be easily assigned for all edges. The hexahedral elements are the 

basic components. The whole space of computational domain is bounded by its bottom plane (in 

another name: the flat plate), by the symmetry plane, by inflow and out flow plane, and by far fields. 

Figure 4.2 shows boundary lines of the computing domain, meshes on the symmetry plane, meshes on 

the flat plate and meshes on the plane of outflow. In side view, this computational region is a 

rectangular square. When looking along the flow direction, the lower part is the flat plate and the 

upper part is the far field. The far field shapes as a part of a circle to reduce the size of computing 

domain. Because we mainly consider the supersonic or hypersonic flows, the boundary on the far 

field usually transmits no or very less information backwards to the EOS. So we could choose the far 

field and the outflow plane much closer to the vehicles. In Figure 4.2 it is shown that a great number 

of nodes are distributed around the EOS surface, above the flat plate, and in the possible regions of 

shocks. These denser grids are used to capture the shocks and describe the changes in boundary layers. 

Further these domains are used to trigger the turbulence calculation. In order to simulate an unsteady 
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flow during the separation maneuver, mesh points around the orbital stage EOS move with its solid 

surface dynamically. The surface of the inflow, outflow, and the far field are fixed. Then the 

movements of the grid points between these two surfaces are proportional to the distances among 

them.  

 
Figure 4.2: Initial mesh at the symmetric plane,  

outflow plane, and flat plate generated by ICEMCFD. 

 

In this paper, four kinds of grids with different resolutions are presented to show their influence 

to the numerical solution: one with 404990 nodes referred to as coarse grid, another with 645807 

nodes referred to as standard grid, a third one with 1150142 nodes referred to as refined grid, and a 

fourth one with 1.8 million nodes referred to as much refined grid. The proportion of their node 

numbers is 1:1.6:2.8:4.5.  The first off-body grid line is fixed at a distance of 5 410 −× L for the coarse 

and standard grids, and at a distance of 10-5 L for the refined and much refined grids. The coarse grid 

is used only once for a mesh comparison, and the much refined grid only for turbulence models. All 

other simulations use the standard and refined grids in the following chapters. 

 

4.3  Orthogonalization and Smoothness 

 

According to Eberle et al. [30] and Fletcher [34] and Su [84], good meshes should fit the 

physical boundary. Orthogonally and smoothly distributed meshes also decrease the numerical error 

of metrics in coordinate transformation formulas.  

Because of some tapering configurations of the EOS, such as the geometry related with the 

stabilizer, the meshes generated from software HEXA are not smooth enough to fit our solver 

FLMNAV. Its quality affects the convergence greatly. To improve the distribution and orthogonality 

of the grid points, the meshes are further smoothed by our in-house software - GRIDFLM [27]. To get 

a new grid distribution in the original Cartesian coordinate system, this software redistributes grid 
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points by solving the system of Poisson vector equation [83, 86], 

(11
g r +ξξ P r ξ ) + (22

g r +ηη Q rη ) + (33
g r +ςς R r ς ) = 0,   (4.1)   

with r=[ zyx ,, ] T . ςηξ ,,  present curvilinear coordinates, and the contravariant coefficients 
332211 ,, ggg  are given by 

32233322
11 ggggg −= ,                (4.2)   

13311133
22 ggggg −= ,                (4.3)   

21122211
33 ggggg −= .               (4.4)   

The covariant metric coefficients 
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g  (i,j =1,2,3) read 
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Here two simplifications, TT zyxxxx ],,[:],,[ 321 =  and TTkkk ],,[:],,[ 321 ςηξ= , are used in Eq. (4.5). 

Discretizing Eq. (4.1), it yields 
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Figure 4.3: Point movement in the smoothing with source P. 

 

We use above formula to generate the new mesh iteratively. The source terms P, Q, and R are 

responsible for the motion of the grid lines and provide the distribution control of grid points. 

Consider a case with only one source P>0. The next n

mlkx ,,  is generated by the iteration according to 

Eq. (4.6). It moves closer to the point n

mlkx ,,1+ , because point n

mlkx ,,1+  is weighted more than the 
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points n

mlkx ,,1− . This point moving process is shown in Figure 4.3.  

In GRIDFLM, the source terms are initially calculated on the surfaces of every block. The source 

terms on the surface are given by  

11
gJ

ZYX zyx

⋅−

⋅+⋅+⋅
=

ξξξ
P ,               (4.7)   

22
gJ

ZYX zyx

⋅−

⋅+⋅+⋅
=

ηηη
Q ,              (4.8)   

33
gJ

ZYX zyx

⋅−

⋅+⋅+⋅
=

ςςς
R ,              (4.9)   

where 

ςςηηξξ xgxgxgX ⋅+⋅+⋅= 332211 ,             (4.10)   

ςςηηξξ ygygygY ⋅+⋅+⋅= 332211 ,             (4.11)   

ςςηηξξ zgzgzgZ ⋅+⋅+⋅= 332211 ,             (4.12)   

and the determinant of the Jacobi matrix is 

( ) ( ) ( )ζηζηξζηζηξζηζηξ xyyxzxzzxyyzzyxJ −+−−−= .      (4.13)   

These surface source terms are smoothly distributed into inner points of every block by Laplace 

algorithms 

P ξξ + P +ηη  P ςς  = 0,                 (4.14)   

Q ξξ + Q +ηη  Q ςς  = 0,                 (4.15)   

R ξξ + R +ηη  R ςς  = 0.                   (4.16)   

For very sharp geometry, special treatment for the source terms may be needed to avoid that grid 

points are moved into the solid body. In this thesis, mesh quality is greatly improved by the software 

GRIDFLM.     



 

36 

5  Experiments and Measurement Techniques 

 

As one of three research methods in studying fluid dynamics, experiments play a very important 

role. Even before 1903, Wright Brothers had done numerous experiments with controlled kites and 

gliders. However, most of the Wright Brothers’ success should be attributed to the experiments in 

their wind tunnel.  

The Buckingham PI theorem [5, 65] tells us that the two flow fields are dynamically similar, if 

the shapes of two solid surfaces are geometrically similar and their similarity parameters are same. In 

the aerodynamic experiments, when Mach numbers and Reynolds numbers in two flows are the same, 

and a small airplane model is geometrically similar to a real size airplane, then the measurement of 

the lift-, drag-, and moment- coefficients of the small model in wind tunnel could be directly applied 

to the real size airplane. This theorem based on the theory of the dimensional analysis is a very 

popular procedure and has already saved much time and expenditure for us [9, 91]. Nevertheless, it is 

still very difficult to generate a hypersonic flow with the needed Mach numbers and Reynolds number 

for the separation process in wind tunnels.  

With the agreements among the Collaborative Research Center SFB 255 in Technische 

Universität München, RWTH Aachen and ITAM SB RAS, many experiments are implemented to 

study the phenomena in the separation process. According to the types of tunnels, two different series 

of experiments are sorted here: one series was performed in a supersonic wind tunnel T-313 at ITAM 

SB RAS; the other series was performed in TH2-D, a hypersonic shock tunnel at RWTH Aachen. In 

these two tunnels steady flows corresponding with two Mach numbers, namely 4.05 and 7.9, are 

achieved for the simplified separation model with EOS and flat plate configuration. These results 

extend the knowledge on this class of complicated flows and provide good examples to verify the 

numerical software FLMNAV developed in TUM. The comparisons between numerical simulations 

and the corresponding experiments are given in Chapters 6 and 7. 

 

5.1  Wind Tunnel T-313 and Its Set-Up  

 

Located at ITAM (Institute of Theoretical and Applied Mechanics, Russian Academy of 

Sciences, Siberian Branch), Novosibirsk, Russia, the T-313 tunnel could generate the freestream of 

Mach 4.05. Many experimental results are obtained in T-313 tunnel for the simplified model EOS 

with flat plate [11, 54, 99]. They are achieved under conditions of temperature 297 K and unit 

Reynolds number of 6100.50 ×  1/m. These results are used as important references for the design of 

the TSTO vehicle and for the validation of the software FLMNAV.  

Shown in Figure 5.1, the wind tunnel T-313 in ITAM is a supersonic blow-down wind tunnel. Its 

important components include a gas holder, an input pipeline, two pressure adapters, a plenum 

chamber, a technological insert with different sizes of throats, a nozzle block, a pressure chamber 

with a test section, a supersonic diffuser, two ejectors, an output pipeline, a noise-damping chamber, 

an extra input pipeline, an electric heater, and a plane contour nozzle. The gasholder is made of 



 

37 

stainless steel and has a volume of 4400 m3. The dried air could be compressed up to 20 atmospheres 

in this gasholder. Making use of pressure difference, the compressed air generates a freestream with a 

high Mach number and blows down through the test section. When going through the ordinary input 

pipeline, the compressed air achieves in the test section up to Mach 4. When going through the extra 

input pipeline, the compressed air could reach Mach 5 or more. The electric heater makes the air 

warm to prevent air condensation. Adjusted by different inserts with different sizes of throats, the 

velocity of the freestream in the test section is controlled within the range of Mach 2 to Mach 7. 

 
Figure 5.1: T-313 tunnel and its sketch. 

Figure 5.2: The arrangements of the EOS and flat plate in T-313. 

 

As one of the most important components in the experiment, the test section is located in the 

pressure chamber. Its space is 2 meters long with a rectangular cross section of 0.6×0.6 square meters. 
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The EOS-plate model is arranged in this test section as shown in Figure 5.2. The flat plate is fixed on 

a guide. A vertical strut is connected to the base plate in the test section. This strut could adjust the 

distance between the EOS and the flat plate. The EOS is fixed by an arc-shaped suspension of a 

mechanical balance. 

An insert on the plate contains 100 pressure taps, which are composed of MID-100 pressure 

meters, to measure the pressure influence from shock waves and reflected shock waves from the EOS. 

The distance between two pressure taps is 3.5 mm along the flow direction. The insert with pressure 

taps are located on the flat plate and just under the symmetric line of the EOS. The experiment could 

be watched and photographed through the observation window. 

 

 
Figure 5.3: Front view of the EOS and flat plate in the test section of the wind tunnel. 

 

 

Figure 5.4: Side view of the EOS and flat plate looking from the observation window. 

 

Figure 5.3 is photographed from the inner side of the wind tunnel and gives a front-view of 

model installation. To show a side-view of the EOS-plate model, Figure 5.4 is taken from the 

observation window in the test section. 
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Figure 5.5: Internal six-component strain-gage balance I-210-348. 

 

As shown in Figure 5.5, an internal six-component strain-gage balance I-210-348 is used to 

measure all six components acting on the EOS model. This balance is connected to the tail sting and 

mounted in the tail part of the EOS with a shield. Along the X
 T313

, Y
T313

, Z
T313 axes shown in Figure 

5.6, its measurements about the three corresponding aerodynamic forces limit to 150 N, 90 N, and 

200 N, respectively. The maximum measurements about three aerodynamic moments, the rolling-, 

pitching-, and yawing- moments, are correspondingly 100 Nm, 250 Nm, and 100 Nm. The important 

aerodynamic coefficients could be calculated from those forces and moments.  

 

Figure 5.6: Coordinates and definitions for the configuration EOS and flat plate. 

 

The maximum allowable stagnation pressure is 1.18 MPa in this pressure chamber. A rather 

wide range of unit Reynolds numbers mRe  from 6109 × to 61060 ×  1/m is allowed in the test section 

of the wind tunnel.  

The duration of continuous operation could reach up to 10 minutes, if ejectors are switched off 

and the pressure in the plenum chamber is adjusted to its minimum for a given Mach number. When it 

requires a higher pressure in the plenum chamber or when it has to switch on the ejectors for low 
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Reynolds numbers, then the duration of the wind tunnel with desired air flow rate is usually no more 

than 3 minutes. In the test section, the relative root-mean-square deviations of the air velocity are less 

than 0.5 % from Mach 2 to Mach 4 and less than 1.0 % from Mach 5 to Mach 6.  

 

 

Figure 5.7: CCD camera JAI-CVMIORS and its attachments. 

 

 

Figure 5.8: PC-EYE1 and the visualization equipment. 

 

The airflow pattern was depicted by the gradients of the air density. It is visualized by a standard 

interference shadowgraph IAB-458. This IAB-458 instrument illustrates the air density by the optical 

difference of refraction, which is generated by the parallel beam of light travelling through the air. It 

is composed of a CCD camera JAI-CVMIORS, a special attachment device, and PC-EYE1 frame 

grabber. The CCD camera is a narrow-film camera and fixed on the attachment device as shown in 

Figure 5.7. The video signal from the CCD camera was transferred to a PC-EYE1 mounted in a 

computer. Together with a computer monitor, which is exhibiting a Schlieren picture, the 

visualization equipment is shown in Figure 5.8. In the experiment the upside of the EOS is arranged 

downwards, so its Schlieren picture looks top-down on the monitor.  
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Figure 5.9: Size and side view of the EOS model in T-313 tunnel. 

 

The EOS model was manufactured at ITAM with scale of 1:150 to the designed orbit stage. The 

size of the EOS model is constructed as shown in Figures 5.9 and 5.10.  

A standard code transfers all of the results with respect to the experimental coordinate system 

X
T313

, Y
T313

, Z
T313 to the results in the coordinate system X

EOS, YEOS, ZEOS. It also transfers the 

top-down manner to conventional manner, and the rotation center in experiment transfers in a similar 

way.  

 

 Figure 5.10: Size and top view of the EOS model in T-313 tunnel. 

 

5.2  Shock Tunnel TH2-D and Its Set-Up 

 

To acquire a hypersonic air flow, another series of experiments have been performed in the 

shock tunnel TH2-D of RWTH Aachen in Germany [38, 74]. The air stream in this tunnel is driven by 

a detonation of explosive gas. This kind of tunnels is especially suitable for the hypersonic space 

vehicles. The gas flow velocities could reach up to 4 km/s and stagnation temperatures could reach 

several thousand degrees in this tunnel. 
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 The shock tunnel structure is illustrated in Figure 5.11. As listed in this sketch, the tunnel 

TH2-D mainly consists of damping section, detonation section, diaphragm chambers, initiation tube, 

steel-enforced concrete wall, recoil absorbing system, low pressure section, tube/endwall section, a 

slender conical nozzle, test section, dump tank, and vacuum pumps.  

 

 

Figure 5.11: Sketch of shock tunnel TH2-D. 

 

 

Figure 5.12: Damping and detonation sections of TH2. 

 

The picture of damping and detonation sections of this tunnel is shown in Figure 5.12.  In Figure 

5.13 the low pressure and test sections are presented. The detonation sections and test sections are 

located in two different rooms. The tubes connecting most of the sections have an inner diameter of 

140 mm. After explosion, the air travels from the detonation section to the test section through these 

tubes. Its maximum working pressure is 150 MPa.  
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Figure 5.13: Low pressure and test sections of TH2. 

 

In the preparation, the detonation section is filled with an oxyhydrogen mixture diluted with 

argon or helium. Conventional air is used in the downstream and its pressure could be adjusted 

between 0.1 and 10 bars. The dump tank is evacuated and closed by another thin diaphragm. 

The detonative gas is ignited by an exploding wire located in the ignition tube. The subsequent 

detonation creates a high pressure between 100 and 1500 bar in the detonation section. The gas 

temperature is also very high. The high pressure bursts the diaphragm and drives the air to the test 

section. The relatively small central nozzle inlet reflects the shock wave and converts a high 

stagnation enthalpy into the energy, which accelerate the freestream additionally.  In the test section, 

the Mach number of the freestream distributes in the range from 6.6 to 7.9, and unit Reynolds number 

from 0.8 610×  to 7.9 610×  1/m. Due to the character of the explosive process, the usable airflow 

through test section sustains only in a very short time. The time interval for measurement is about 2 to 

8 milliseconds. 

  

Figure 5.14: Stiff six-component balance to measure force and moment. 

 

The high temperature and high pressure in the detonation section transfer to the other sections of 

the shock tunnel. The measurement equipment in the shock tunnel should work properly in a high 

temperature, high pressure and short-duration environment. Piezoelectric pressure transducers are 
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used as pressure sensors. One of them, Kistler 601 H, could record the pressure up to 1000 bar. 

A stiff 6-component-DMS-balance as presented in Figure 5.14 could measure the forces and 

moments acted on the EOS. It is made by intensified carbon-fiber plastic and provides high eigen- 

frequency to fit the small figuration of the EOS. A sting uses an acceleration compensation to avoid 

its vibrations.  

 

 

Figure 5.15: Experimental Schlieren picture of the EOS/flat plate configuration 

 at 7.90=∞M , 6
m 106.7Re ×= , 

o
0∆α = , and h/L = 0.0662. 

 

A Schlieren/shadow system consists of spherical mirrors 350 mm in diameter and 3.5 m in focal 

length. One of the black and white pictures is shown in Figure 5.15. Color Schlieren photographs as 

well as high-speed movie could be also taken. The typical time interval between two frames is 

8.5 microseconds.  

 
Figure 5.16: A construction chart of the EOS. 

  

 
Figure 5.17: Three lines, x = 0.6L, x = 0.75L, and y = 0  

on the lower surface of the EOS configuration. 
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The experimental EOS model is on the scale of 1:100 comparing to the designed model. It has 

the following sizes: reference length 288 mm, maximal body height 49 mm, middle height 48.6 mm, 

and half span 81 mm. The experimental equipment and its sizes are shown in Figures 5.16 and 5.17. 

The moment reference point locates on the middle point of the body length.  

As shown in Figure 5.17, the line x = 0.6L is an interception line between the lower surface of the 

EOS and the plane at x = 0.6L.  The lines with x = 0.75L and y = 0 are similarly defined and located 

on the lower surface of the EOS. Pressure sensors are equipped on these three lines. Pressure 

coefficients could be derived from these pressure measurements. In the following chapters, these 

three lines are quoted frequently to compare the experimental and numerical results. 

A photo of the EOS configuration is shown in Figure 5.18. Many experimental results about the 

separation model of the EOS and flat plate are achieved in the hypersonic flow at Mach 7.9 [37]. 

Some more important parameters in a series of experiments are given in the following: unit Reynolds 

number 6
m 106.7Re ×=  1/m, freestream temperature ∞T =180 K, freestream velocity ∞V =2120 m/s, 

freestream air pressure 27.2=∞p  kPa, and freestream density ∞ρ = 436 kg/m3.  

 

  
Figure 5.18: A photo of the EOS model for the TH2-D experiment. 
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6  Numerical Results Corresponding to the Experiments of ITAM 
 

To simulate the aerodynamic properties of an orbital stage and a carrier stage in the separation 

process, a series of experimental and numerical simulations have been arranged and performed. As 

described in Chapter 5.1, the experimental results are obtained at Mach 4.05 in the supersonic wind 

tunnel T-313 in ITAM SB RAS [11, 54]. Corresponding to these experiments, many numerical 

computations are accomplished in this chapter. Not as restricted as in the experiments, numerical 

simulations could describe all of the aerodynamic properties on any point in the whole computational 

domain. Nevertheless, the experimental results are used to verify the reliability of the in-house 

numerical software.  

The physical model in wind tunnel T-313 is built as in Chapter 5.1: the EOS and flat plate 

presenting a simplified model of orbital stage and carrier stage, Mach number of 4.05, Reynolds 

number per meter 6100.50 × , temperature 279 kelvins, the length of the EOS 0.192 meters, and the 

ratio of specific heats 1.4. These environmental parameters are utilized exactly in the following 

numerical simulations in this chapter.   

Using inviscid-, laminar-, and turbulent- flow models, the aerodynamic properties of the EOS 

and flat plate are analyzed in detail for both steady cases and unsteady cases. Four grids, which have 

been mentioned in Chapter 4.2 with different mesh points, are used in numerical simulations. Many 

numerical results are compared with the available experimental data.  

 
Figure 6.1:  Numerical solution presented by the relative density contours ∞ρρ /   

at 05.4=∞M , 6
m 100.50Re ×= , o0α =∆ , and h/L = 0.2562 (laminar flow and standard grid). 

 

6.1  Steady Inviscid and Laminar Flows 
 

As the carrier stage takes the orbital stage to the altitude for separation, the orbital stage is 

mechanically elevated from the carrier stage to a releasing position. The flow field in this releasing 

position is assumed as a steady state. To some extent, a series of steady states on different positions 
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could also be considered as an approximation of a continuous separation process on a series of 

discrete points.  

Thereinafter, four different flying postures of the simplified TSTO model are discussed in steady 

inviscid and laminar flows. They are corresponding to different angles of attack ∆α  and different 

distances h between the center of the EOS and the flat plate. Numerical convergence criterions are 

defined as that the relative changes of the density are smaller than 510− .  

For the steady laminar flow, Figure 6.1 shows a numerical solution of relative density contour 

∞ρρ /  on the symmetry plane, on the flat plate, on a slice which is a little above the flat plate, and on 

two slices which are perpendicular to the freestream direction. In this picture it is clearly presented 

the bow shock, the shock from the wing, the wake expansion region, and the viscous effect on the flat 

plate. The maximal compression about ∞ρρ /  is 5.1.  

The structures in inviscid flow are very similar as that in laminar flow, except the boundary layer. 

On an extra slice cutting the wing, Figure 6.2 shows the shock emanating from the wing and an 

evolution trace of the bow shock. The shock from the wing is weaker than the bow shock shown in 

Figure 6.1 and it is located behind the bow shock wave. These shocks hit the flat plate and are 

reflected by the flat plate to the rear part.   

 

Figure 6.2:  Shock emanating from the wing represented by the relative density contour ∞ρρ /   

at 05.4=∞M , o0α =∆ , and h/L = 0.2562 (inviscid flow and standard grid). 

 

As a synthesis of both the experimental data and the numerical results in laminar flow, in Figure 

6.3, a Schlieren picture is compared with the relative density distribution from the numerical 

simulation in the symmetry plane. Both the experimental and numerical results present the 

phenomena of the EOS bow shock, the reflected bow shock, the shock emanating from the wing 

leading edges, and the very thin boundary layer on the flat plate. The overall consistency between the 

numerical calculation and the experiment on the shock evolution, impingement point and reflection 

angle is visually very good.  
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Figure 6.3:  Comparison between Schlieren picture and numerical density distribution  

on symmetric plane using standard grid in laminar flow  

at 05.4=∞M , 6
m 100.50Re ×= , o0α =∆ , and h/L = 0.2562. 

 

Because the pressure taps are only amounted on the dotted line as shown in Figure 6.4, the 

validations for the numerical software are restricted on this line. It is an intersect line between the 

EOS symmetry plane and the flat pate. In the computing domain, x-axis has a same direction with 

freestream and ranges from -0.3507L to 1.4583L. The numerical pressure is presented in the 

x-direction only from 0 to 1.4583L. 

 
Figure 6.4: The positions of pressure taps in ITAM experiment. 

 

At first, the standard grid is used to calculate the case with o0α =∆  and h/L=0.1812. On the 

dotted line as shown in Figure 6.4, the corresponding pressure distribution shows a reasonable 

agreement between experimental and numerical data, referring to Figure 6.5.  

The first peak is caused by the impact from bow shock, which emanates from the blunt nose of 

the orbital stage. The highest peak of Euler simulation is lower with respect to the experimental 

reference data, but higher than its counterpart of the NS simulation. Furthermore, the Cp-slope of the 

Euler simulation is also gentler than that of experiment, but steeper than the one of the NS simulation. 
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The second peak in Figure 6.5 is mainly impinged by the shock from the wing. Numerical simulations 

predict this peak a little more upstream than that in experiment. The peak position from NS 

simulation is located a little bit upstream comparing to its counterpart of Euler simulation. Between 

these two peaks, there is a high terrace of pressure. It is an extend impact effect from the bow shock. 

Besides these two peaks, good consistence about the pressure coefficients is presented among these 

three different simulations on the other points, especially the consistence between experiment and NS 

simulation. Figure 6.5 also shows that the shock waves bring significant force acting on the flat plate. 

 

 
Figure 6.5: Comparison of measured and calculated pressure coefficients  

with the standard grid (645807 Nodes) for the dotted line shown in Figure 6.4,  

where 05.4=∞M , o0α =∆ , and h/L = 0.1812. 

 

 
Figure 6.6: Comparison of measured and calculated pressure coefficients 

with the refined grid (1150142 Nodes) on the dotted line shown in Figure 6.4, 

where 05.4=∞M , o0α =∆ , and h/L = 0.1812. 
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To account for the influence of the numerical grid, the standard grid has been refined mainly in 

X
EOS

-direction and within the boundary layer. This refined grid has 1.8 times nodes as many as the 

standard grid. Here it is used to simulate the same case just discussed above. Also on the dotted line as 

depicted in Figure 6.4, the distributions of the pressure coefficient are drawn in Figure 6.6 for the 

refined grid. Compared to Euler results, the first peak from NS simulation is higher than from Euler 

simulation. Its pressure coefficients show a better consistence with experimental results than the 

counterpart from Euler simulation. 

 

 
Figure 6.7: Pressure comparison of experimental data and NS simulations  

with standard and refined grids for the dotted line in Figure 6.4,  

where 05.4=∞M , 6
m 100.50Re ×= , o0α =∆ , and h/L = 0.1812. 

 

The influence of the spatial resolution is more clearly presented in Figure 6.7 for the same 

laminar flow. Directly comparing the experimental result with two numerical solutions related with 

standard and refined grids respectively, we see that the mesh refinement improves the 

distinguishability about the first pressure peak with an acute Cp-slope. There is not much difference 

for the other points 

Still using these two grids, comparison between Euler simulations and the experiment result is 

shown in Figure 6.8. Both Euler simulations are nearly the same. The solutions show almost no 

dependence with the mesh size any more. Consequently, the standard grid is already fine enough for 

the Euler simulation. A very fine mesh near the solid surface is not needed, when the separation 

process is simulated in inviscid flow.   

The second validation case is designed with o0α =∆ , and h/L=0.2562. Based on the same refined 

grid, the simulation results are shown in Figure 6.9. Two numerical impingement points of the bow 

shock on the flat plate are nearly the same, and their positions are a little bit downstream comparing to 

the experimental counterpart. For the wing shock, the impingement points from numerical solutions 

are located a little bit upstream again. In contrast to the locations between the above-mentioned two 

impingement points, NS simulation approaches experimental result closer than Euler simulation. 
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Comparing Figure 6.9 with Figures 6.7 and 6.8, we see, the heights of the pressure peaks are 

reciprocal to the distance between the EOS and the flat plate. The pressure coefficient with 

h/L=0.2562 is only about 63% of that with h/L=0.1812. 

 

 
Figure 6.8: Pressure comparison of experimental data and Euler simulations  

with standard and refined grids for the dotted line shown in Figure 6.4,  

where 05.4=∞M , o0α =∆ , and h/L = 0.1812. 

 

 
Figure 6.9: Comparison of measured and calculated pressure coefficients  

with the refined grid for the dotted line in Figure 6.4,  

where 05.4=∞M , o0α =∆ , and h/L = 0.2562. 

  

Figure 6.10 also presents the difference of NS simulations resulting from different mesh 

resolutions. Compared the influence with the standard grid once more, the numerical pressure peaks 

using refined grid are closer to that of experiment. Slope of the pressure coefficient in experiment is 

much steeper than in numerical simulations. Except the two peak regions, all of the pressure 

coefficients have a good conformity.  
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Figure 6.10: Pressure comparison between experimental data and NS simulations  

with standard and refined grids on the line shown in Figure 6.4,  

where 05.4=∞M , 6
m 100.50Re ×= , o0α =∆ , and h/L = 0.2562. 

 

 
Figure 6.11: Pressure comparison of experimental data and NS simulations  

with coarse grid (404990 nodes) for the line shown in Figure 6.4,  

where 05.4=∞M , 6
m 100.50Re ×= , o0α =∆ , and h/L = 0.2562. 

 

Additionally, the above case is also simulated using a coarse grid, which has nearly 2/3 times 

mesh points as many as the standard grid. As shown in Figure 6.11, the numerical solution fails to 

distinguish the second pressure peak induced from the shock of the wing. It presents a much smooth 

and smeared pressure peak there. This means, its mesh points are too less to precisely predict the 

shock peaks. Some important information could be lost when using this coarse grid. From the sense of 

the mesh convergence, its numerical solution is still far away in approaching to the theoretical 

solution. Therefore, the coarse grid will not be used any more in this thesis. 

Using the standard grid as shown in Figure 6.10, the two peaks of shocks could be depicted much 
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better than using the coarse grid as shown in Figure 6.11. Additionally, using the refined grid could 

capture a little more information for the pressure peaks than using the standard grid. However, it 

consumes much more computer time and resource. Further in inviscid flow, the mesh refinement 

improves the solution nearly nothing. There is no need to make a fine resolution especially in the 

neighborhood of the solid surfaces in inviscid flow. As a result of compromise between accuracy and 

amount of computing work, the standard grid is mostly used in this thesis. 

 

 
Figure 6.12: Comparison of measured and calculated pressure coefficients  

with the standard grid (645807 nodes) for the dotted line in Figure 6.4,  

where 05.4=∞M , o3α =∆ , and h/L = 0.1812. 

 

 
Figure 6.13: Comparison of measured and calculated pressure coefficients  

with the standard grid (645807 nodes) for the dotted line in Figure 6.4,  

where 05.4=∞M , o3α =∆ , and h/L = 0.2562. 

 

In the third and fourth cases, the steady separation processes are simulated with the angle of 

attack of 3°. Their separation distances between X
EOS

-axis and the flat plate are h/L=0.1812 and 

h/L=0.2562 respectively. In these cases only the standard grid is used. Figure 6.12 and 6.13 present 

also the pressure coefficient distributions on the dotted line as marked in Figure 6.4.  
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Compared to the case of o0α =∆  from Figure 6.5 to Figure 6.10, the impact points of the shocks 

on the flat plate are shifted downstream in the case of o3α =∆  as shown in Figure 6.12 and Figure 

6.13. Because the distance between the EOS nose and the flat plate increases, the strength of the 

pressure impinged by the bow shock tends to reduced. Contrarily, the wing moves closer to the flat 

plate and the impact strength from the shock of wing increases. Hence, the Cp values between the first 

peak and the second peak are of a same magnitude order in the case of o3α =∆ . In the fourth case 

with h/L=0.2562, the second pressure peak is even a little higher than the first peak. 

Contrasting Figure 6.5 to Figure 6.9 with different distances h/L=0.1812 and h/L=0.2562, we 

find that the impingement point is affected by the distances and by the shock structures. The detached 

bow shock form and its shock angle are the same. When the orbital stage is near to the carrier stage, 

the impingement point locates on forepart of the flat plate. When orbital stage separates away from 

carrier stage, the impingement point will move backwards. Accompanying the increase of separation 

distance, all impingement points could leave away from the carrier stage. Similar results can also be 

concluded by comparing Figure 6.12 with Figure 6.13, where o3α =∆ .  

The carrier stage in our model is much simplified as a flat plate. If it has a three-dimensional 

geometry, the shock structure will be more complicated. Not only the shock waves of orbital stage 

impinge to the carrier stage, but the shock waves of the carrier stage also impinge to the orbital stage 

in a similar way [50, 69].  

As described in Chapter 5.1, a six-component strain-gage balance is used to measure the forces 

and moments. These forces and moments could be converted into some important aerodynamic 

coefficients in separation process, such as the drag coefficients CD, lift coefficients CL and pitching 

moment coefficients CM. More details about their definitions and explanations could be referred to 

Appendix I. In the four cases discussed above, aerodynamic coefficients are also calculated in the 

FLMNAV solver for the simplified orbital stage - EOS around the rotation center (0.65, 0, 0). They 

are compared with the experimental results in Tables 6.1-6.4.    
 

 CD CL CM 
Navier-Stokes, standard grid 0.02872 -0.01076 -0.01082 
Navier-Stokes, refined grid 0.02942 -0.01051 -0.01071 

Experiment 0.02940 -0.01150 -0.00410 
Euler, standard grid 0.02788 -0.01358 -0.01093 
Euler, refined grid 0.02805 -0.01341 -0.01098 

Table 6.1:  Comparisons of measured and calculated aerodynamic coefficients for the EOS 

with 05.4=∞M , o0α =∆ , h/L = 0.1812, and rotation center (0.65, 0, 0). 

 
 CD CL CM 

Navier-Stokes, standard grid 0.02875 -0.01253 -0.01074 
Navier-Stokes, refined grid 0.02940 -0.01131 -0.01088 

Experiment 0.02990 -0.01200 -0.00590 
Euler, refined grid 0.02811 -0.01404 -0.01074 

Table 6.2:  Comparisons of measured and calculated aerodynamic coefficients for the EOS 

with 05.4=∞M , o0α =∆ , h/L = 0.2562, and rotation center (0.65, 0, 0). 
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Referring to the standard grid, an overall good consistence between numerical and experimental 

results is shown for drag and lift coefficients. The pitching moment coefficients have some extent 

deviations. When using the refined grid, drag coefficients shows the best approximation to the 

experiments. For all four cases, the drag coefficients from Euler simulations are smallest. NS 

simulations present a better consistence with experiments. The same situation happens for the lift, too. 

For pitching moment coefficients, the situation is mixed. Usually the numerical pitching moments 

rotate the EOS anticlockwise more forceful than the experimental pitching moments do. In cases with 
o3α =∆ , these coefficients CM from Euler simulations are closer to the measurements in experiments 

as shown in Tables 6.3-6.4.    

 

 CD CL CM 
Navier-Stokes, standard grid 0.02937 0.02804 -0.00961 

Experiment 0.02960 0.02640 -0.00750 
Euler, standard grid 0.02839 0.02463 -0.00918 

Table 6.3: Comparisons of measured and calculated aerodynamic coefficients for the EOS 

with 05.4=∞M , o3α =∆ , h/L = 0.1812, and rotation center (0.65, 0, 0). 

 
 CD CL CM 

Navier-Stokes, standard grid 0.02935 0.02659 -0.00963 
Experiment 0.03040 0.02930 -0.00620 

Euler, standard grid 0.02843 0.02464 -0.00914 
Table 6.4: Comparisons of measured and calculated aerodynamic coefficients for the EOS 

with 05.4=∞M , o3α =∆ , h/L = 0.2562, and rotation center (0.65, 0, 0). 

 

When the angle of attack is o0α =∆ , the lift- and pitching moment coefficients obtained by 

numerical and experimental results are all negative. This means that the whole EOS is drawn to the 

flat plate and the nose of the EOS is anticlockwise rotated to the flat plate due to the aerodynamic 

properties. Therefore, it is very important to set the orbital stage at a certain angle of incidence to 

achieve a positive lift when it is released from the carrier stage. Otherwise there is a danger of 

collision between the orbital and carrier stage when the separation process takes place. Even if the 

angle of attack increases to o3α =∆  and the lift coefficients become positive, the pitching moment 

coefficients are still negative. The decrease of ∆α  may result in the decrease of the lift. The negative 

pitching moment must be taken into account in the flight control system. 

 

6.2  Unsteady Inviscid and Laminar Flows 

 

After the orbital stage is released from the carrier stage, the orbital stage changes its angle of 

attack and leaves the carrier stage. Though the separation time lasts only from several milliseconds to 

several seconds, it is still a continuous maneuver [49, 50]. The aerodynamic forces separate the two 

stages. Comparing to experiment, numerical tools could simulate this unsteady separation process 

more freely and economically. This type of unsteady numerical simulation is much complex. It costs 

a lot of CPU time to achieve unsteady results.  
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In the following subsections, separation process is dissembled into two simple movements for 

the orbital stage, i.e. one pitching and one translation. The first only changes its angle of attack around 

its rotation center periodically. The second case raises the orbital stage merely upwards and 

downwards. Subsequently, complete unsteady separation maneuvers are also numerically simulated 

with different reduced frequencies. Moreover, everything is again arranged as the same as in ITAM 

experiments. The EOS/flat plate model replaces the designed two-stage model. The freestream is 

assumed as an inviscid or a laminar flow with 05.4=∞M . The ideal gas model is still used with the 

Pr = 0.72. It is assumed 6
m 100.50Re ×=  1/m for the viscous flow, and 297=∞T K. The adiabatic 

boundary condition is given for the solid surfaces of the EOS and the flat plate.  

 

6.2.1  Pitching Movement in Inviscid Flow 

 

 As shown in the steady cases discussed in section 6.1, the EOS with a small angle of attack has a 

negative pitching moment. It endangers both two stages in the separation process. Consider the 

influence from the angle of attack, a dynamic pitching movement of the EOS is investigated. It is 

designed that the EOS rotates around the rotation center (0.65, 0, 0.0536) in continuous developing 

cases. The pitching movement is defined as  

)sin(αα max redk⋅=∆ τ , (6.1) 

where α∆  is the change of the angle of attack and τ  is used to denoted as the phase development in 

numerical unsteady simulation. The freestream is modeled as an inviscid flow at 05.4=∞M . Some 

more physical characteristics are listed in Table 6.5. 

 

Maximal angle of attack [°] 2αmax =  

Reduced frequency redk =0.1 

Distance between the two stages h/L=0.2562 

Mean chord length [m] 661458.0, =Numericallµ  

Ratio of the specific heat 4.1=γ  

EOS length [m] 192.0=refL  

Specific gas constant [J/(kgK)]. 287=R  

Table 6.5: Physical parameters used in pitching movement. 

 

In the code FLMNAV, the dimensionless time is defined as: 

)(/ * ,
*

∞⋅= Mlt Numerical γτ µ .               (6.2) 

The real time could be derived in this environment as  

ref

ref

real
V

L
tt

*= .                 (6.3) 

Note that the reference velocity of the freestream refV  in the above formula is  
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refV =
∞

∞

⋅ M

V

γ
.                 (6.4) 

Combining Eqs. (6.2), (6.3), and (6.4), the real time in the pitching movement could be written in 

another form as  

∞∞ ⋅⋅⋅

⋅⋅
=

MT

Ll
t

refNumerical

real
R

,

γ

τ µ
.               (6.5) 

Substitute Eq. (6.5) into Eq. (6.1) yields the formula related to the real time as  

)
R

sin(αα
,

max red

refNumerical

real
k

Ll

MTt
⋅

⋅

⋅⋅⋅⋅
=∆ ∞∞

µ

γ
.           (6.6) 

In the above pitching movement, the angle of attack changes as a sinusoidal function with respect to 

time. 

 

  
a) Lift coefficient C L  b) Pitching moment coefficient C m  

Figure 6.14: Loop of lift- and pitching moment coefficients as function of α∆ . 

 

As shown in Figure 6.14a, when α∆  increases, the lift coefficient CL also increases. If α∆  

increases to the maximum value, CL achieves to the maximum value, too. When α∆  decreases, the 

lift coefficient CL just repeats the above process oppositely. Corresponding to a same value of α∆ , 

the lift coefficient C L with an increase tendency is mostly smaller than with a decrease tendency. But 

near the position with positive and negative maximal values of maxα , the lift coefficient C L with the 

increase tendency is slightly greater than that with the decrease of tendency. Only when α∆  is greater 

than about 1.3 degrees, the lift coefficient CL is greater than zero. A positive lift needed to separate the 

two stages. 

The change of the pitching moment coefficient CM is shown in Figure 6.14b. Its tendency is 

nearly the same as that for the lift coefficient, but all values are negative. The nose of the EOS turns 

down because of its negative pitching moments. This brings a trouble for the separation process. To 

avoid the EOS nose anticlockwise rotating down to the carrier stage, different rotation centers other 
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than (0.65, 0, 0.0536) should be chosen or auxiliary equipment is added to correct the pitching 

moment.  

 

6.2.2  Translation in Inviscid Flow 

 

As same as the pitching movement, translation is another simplified movement to describe the 

separation process. The EOS body moves upwards and downwards relative to the fixed flat plate 

periodically. Hereinafter, it is still assumed that 05.4=∞M  in the inviscid freestream. The other 

parameters are: the reduced frequency redk =1.0; the fixed angle of attack o3α0 =  and the change of 

separation distance defined as:  

)sin()( max redk⋅⋅= τ/Lh/Lh movemove ,  (6.7) 

where 075.0)( max =/Lhmove . The nearest distance between the two stages is h/L=0.1812. The 

definitions of h, L and moveh  could be referred to the Figure 2.1. As similar as the derivation to Eq. 

(6.6), the height of the translation also changes according to a sinusoidal curve corresponding to the 

physical time. 

 

 
a) Lift coefficient C L  

 
b) Pitching moment coefficient C m  

Figure 6.15: Loop of lift- and pitching moment coefficients as function of h move /L. 

 

Look at Figure 6.15a, when h move /L increases, the lift coefficient CL decreases at h move /L=0, until 

h move /L increase to the point 0.035. Afterwards, the lift coefficient CL increases. This process 

continues even when the EOS converts its moving direction and approaches the flat plate. The 

increase tendency stops till h move /L is at the position about -0.0065. Then CL comes into a decrease 

region again. Most of the lift coefficient CL is positive, except that h move /L ranges in [-0.024, 0.075], 

where the EOS moves upwards apart from the flat plate.  

As an example, we focus the case with h/L=0.1812 and o3α0 = , where h move /L=0. If the EOS is 
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moving upwards as shown in Figure 6.15a, the lift coefficient CL=-0.011 is negative in a decrease 

tendency. At the same position, its lift coefficient CL=0.061 is positive in an increase tendency, when 

the EOS is moving downwards. For the steady case as shown in Table 6.3, the lift coefficients 

CL=0.028 are approximately the average value of above two tendencies. Due to redk =1.0, the EOS 

translates very quickly. The lifts in unsteady case could deviate from the lift in steady case with a 

considerable magnitude.   

With a fixed angle of attack of o3 , as we have seen in the steady case, the lift is positive and tends 

to separate the two stages. However, moving continuously upwards leads a negative lift. Therefore, 

the separation speed should keep a moderate manner. On the other side, if the EOS moves downward 

to the flat plate, the positive lift will automatically try to stop this tendency. 

As shown in Figure 6.15b, a characteristic shape of “eight” in the pitch moment loop is clearly 

observed for motions at reduced frequency redk =1.0. The pitching moment coefficients CM for any 

height h move /L are negative. It becomes less negative with increasing height h move /L. But it becomes 

more negative with decreasing height h move /L. The pitching moment coefficients for both upwards 

and downwards moving are equal only at the position h move /L=0.02.  

 

6.2.3  Separation Process in Inviscid Flow 

 

Combining the pitching movement and the translation, we could describe a more complicated 

movement: a separation process with an arranged procedure. The fluid is considered as inviscid. The 

environment is as in the experiment of ITAM shown in Chapter 5.1. Further it is assumed that the 

initial distance between the two stages is h/L=0.1812; the initial angle of attack is o0α0 = , and the 

rotation center of the EOS is located at (0.65, 0, 0) at the beginning of the separation process. As 

drawn in Figure 2.1, the orbital stage continuously turns its nose clockwise and leaves the carrier 

stage in a short time. The separation distance is defined as  

))cos(1()( max redk⋅−⋅= τ/Lh/Lh movemove .            (6.8) 

Similarly the angle of attack changes as:  
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In the above equations (6.8) - (6.9), 1.0)( max =/Lhmove , ,5αmax
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and the angle of attack changes as:  
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Three different cases are numerically simulated corresponding to three different reduced 
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frequencies, redk  = 0.01, 0.1, and 1. They are used to scale different separation “velocities”.   

 

 

Figure 6.16: The dependency between distance /Lhmove and the real time treal 

in the unsteady separation processes with redk =0.01, 0.1, and 1. 

 

 

Figure 6.17: The dependency between the angle of attack α∆  and the real time treal 
in the unsteady separation process with redk = 1. 

  
In Eq. (6.10), the separation distance h move /L changes from 0 to 0.1 as a “one minus cosine” 

function of real time. When the separation distance reaches 0.1, as shown in Figure 6.16, the maximal 

time spans are 0.143E-1 seconds, 0.143E-2 seconds, and 0.143E-3 seconds corresponding to the 

reduced frequencies redk = 0.01, 0.1, and 1.0, respectively. With the same distance, the separation 

processes are assigned with different time intervals corresponding to different reduce frequencies. 

The separation velocity with redk = 0.1 is ten times faster than with redk = 0.01. This is also true when 

comparing the separation process with redk = 1 and with redk = 0.1. 

Like the separation distance, the angle of attack α∆  has the similar relation related to the real 
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time. To look at the quickest separation process clearly, Figure 6.17 contains only one curve 

corresponding to Eq. (6.11) with redk = 1. In this separation process, 0.143E-3 seconds are needed 

when the angle of attack turns 5 degrees. 

The lift coefficients related with three different reduced frequencies in the separation processes 

are shown in Figure 6.18a. For the greatest reduced frequency redk  = 1.0, the corresponding lift 

coefficient decreases at the beginning because the orbiter moves upward very quickly. Later it 

increases a little due to the increase of the angle of attack. In the other two cases, the lift coefficients 

increase steadily. The smaller the reduced frequency is, the larger the lift coefficient is. With small 

reduced frequency, the angle of attack plays an important role for the lift. All of the lift coefficients 

corresponding to the greatest reduced frequency redk =1.0 are negative, because the two stages 

separate too quickly and generate a suction effect between two stages. Corresponding to the other 

reduced frequencies redk = 0.1 and redk = 0.01, the lift coefficients become positive due to great angles 

of attack. The lifts are equal to zeros on h move /L =0.033 and h move /L =0.024 respectively. 

 

  

a) Lift coefficients C L  b) Pitching moment coefficients C m  

Figure 6.18: Lift- and pitching moment coefficients as function of h move /L  

for the unsteady separation processes. 
 

The pitching moment coefficients corresponding to the three different reduced frequencies are 

shown in Figure 6.18b. With the greatest reduced frequency redk  = 1.0, the pitching moment 

coefficient decreases at the beginning. Afterwards it increases accompanying with the increase of the 

separation distance. The pitching moment coefficients associated with the lower frequencies nearly 

decrease in the whole separation process. All of the pitching moment coefficients are negative. 

However, the magnitudes of the pitching moment coefficients change relatively small as shown in 

Figure 18b. 

According to comparisons about lift in Figure 6.18a, it is recommended that the two stages 

should be separated moderately with a lower reduced frequency. The nose of the EOS will be rotated 
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anticlockwise if no other control technique is applied. Furthermore, if the angle of attack becomes 

smaller, the lift will decrease. As a consequence, it is possible that the lift will become negative, too. 

This case must be adequately addressed in the control of the separation process.  

It is also suggested, that the EOS should be released with a given angle of attack, which is greater 

than the angle of attack corresponding to the zero point of the lift. Hence the lift could always be 

located in the positive zone in the separation process, even if the negative pitching moment turns the 

EOS nose downwards. 

 

 
a) at 1.58E-6 seconds.   

 
b) at 3.01E-5 seconds. 

 
c) at 5.86E-5 seconds. 

 
d) at 8.71E-5  seconds. 

Figure 6.19: Contour of relative density ∞ρρ /  at a reduced frequency of redk  = 1.0  

for the unsteady separation process in inviscid flow. 
 

The continuous separation process could be illustrated by a series of pictures in Figure 6.19 and 

Figure 6.20. The contours of relative density are shown on the symmetrical plane corresponding to 

two different reduced frequencies. The largest compression is concentrated on the bow region. The 

smallest densities are located in the wake region. In the region between the EOS and the flat plate, the 

gradient of density decreases accompanying the increase of the separation distance, especially in the 

neighborhood of the flat plate. 

Because the EOS moves very quickly with reduced frequency of redk  = 1, the relative density 

between EOS and flat plate presents a suction zone ahead of the bow shock wave as shown in Figure 

6.19. In the region above the EOS and before the bow shock wave, the relative density is squeezed. It 

appears at first at 5.86E-5 seconds. But with lower induced frequencies with redk  = 0.01, there are no 

such regions as shown in Figure 6.20. Except these two extra regions, the shock contours for all 

frequencies are very similar. At the beginning, the reflected shock wave hits the underside of the EOS, 

and later the impingement points move further downstream, until this point leaves the EOS. The 

impacts of the reflection shocks become weak accompanying the increase of the separation distance. 
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a) at 1.58E-4 seconds.   

 
b) at 3.01E-3 seconds. 

 
c) at 5.86E-3 seconds. 

 
d) at 8.71E-3 seconds. 

Figure 6.20: Contour of relative density ∞ρρ /  at a reduced frequency of redk  = 0.01  

for the unsteady separation process in inviscid flow. 

 

 
Figure 6.21: Comparison of lift coefficients using the standard grid  

in numerical simulations with 05.4=∞M , redk =0.01 and 6
m 100.50Re ×= . 

 

6.2.4  Separation Process in Laminar Flow 

 

Using the same parameters as in subsection 6.2.3 for inviscid flow, a continuous separation 

process is also simulated in laminar flow with 6
m 100.50Re ×=  1/m. Because of the computing 

expenditure and complexity in solving the full Navier-Stokes equations, a separation with the 

smallest reduced frequency redk =0.01 is simulated corresponding to a slow velocity. Its results are 

also compared to the results in Chapter 6.2.3 with the same reduced frequency.  



 

64 

As shown as in Figure 6.21, the lift coefficients CL for the EOS in both laminar and inviscid flows 

increase corresponding to the phase change τ . At the beginning part of the separation, all of them are 

negative, because the angle of attack is initially set to zero degree. From the point with τ =70.4 

(t=6.4E-3 seconds or α∆  about 2 degrees), the lift coefficients are greater than zero. The lift 

simulated in laminar flow is larger than that simulated in inviscid flow at the beginning part of the 

separation. However, the lift in laminar flow is surpassed by the lift in inviscid flow at about the 

8.38E-3 seconds.  
 

 
Figure 6.22: Comparison of pitching moment coefficients using the standard grid  

in numerical simulations with 05.4=∞M , redk =0.01 and 6
m 100.50Re ×= . 

 

 
Figure 6.23: Comparison of drag coefficients using the standard grid  

in numerical simulations with 05.4=∞M , redk =0.01 and 6
m 100.50Re ×= . 

 

In Figure 6.22, the pitching moment coefficients Cm in two flows change with a similar tendency 

as the lift coefficients CL in Figure 6.21. All Cm are negative. Accompanying the increase of the 
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distance, the reflected shock impinges weakly on the rear part of the EOS. Subsequently, the 

coefficients Cm become less negative in the separating process. 

In Figure 6.23, the drag coefficients show a little different tendency. Both drags obtained from 

Euler simulation and from the NS simulation decrease until τ =69.2. The physical time is of about 

6.3E-3 seconds. Thereafter, both drags increase nearly simultaneously. As in the steady cases, the 

drag coefficients in laminar flow are always greater than that in inviscid flow.  

Analyzing the numerical unsteady simulation about the separation maneuver, we see that the 

tendencies of the dynamic properties in both laminar and inviscid flows show good consistency. They 

present, that the orbital stage has negative lifts as well as a negative pitching moments, when 

operating at a very small angle of attack. Accompanying with the increases of angle of attack and 

separation distance, lift also increases. In the same time, the pitching moment always tends to turn the 

nose of the EOS down. With the increase of the cross area in the freestream direction, drag changes its 

tendency from decrease to increase. These results agree with the prediction made in the steady 

simulations of section 6.1. Therefore, the separation maneuver should set a given incidence angle at 

the beginning to achieve a positive lift. The negative pitching moment must be carefully considered 

or controlled via the flap system. 
 

6.3  Free Orbital Stage at 05.4=∞M  

 

As the third phase in the end of separation process, a free flying orbital stage is simulated at 

05.4=∞M , o0α =∆ , and rotation center (0.65, 0, 0) as the same as in the experiment. This phase is 

calculated using both laminar and inviscid flows and further validated by the experimental results. 

 

 CD CL CM 

Navier-Stokes, standard grid  0.02895 -0.01423 -0.01040 
Experiment  0.03000 -0.01450 -0.00500 

Euler, standard grid  0.02810 -0.01396 -0.01062 
Table 6.6:  Comparisons of measured and calculated aerodynamic coefficients 

for the free EOS stage with 05.4=∞M  and rotation center (0.65, 0, 0). 

 

The lift and drag forces as well as the pitching moment coefficients obtained from the experiment, 

from the Euler simulation and from the NS simulation are listed in Table 6.6. The lift coefficients and 

pitching moment coefficients are still negative at the angle of attack of o0α =∆ . The drag coefficient 

of the Euler simulation is smaller than that of the NS simulation, because inviscid flow lacks friction 

effect.  

Simulating the dynamic properties at laminar flow, Figure 6.24 shows a contour plot of the 

relative density on the symmetric plane. The bow shock structures about orbital stage are clearly 

presented. Its maximal value of relative density is ∞ρρ / =4.99. Because there are no reflected shocks 

coming from carrier stage, the rear part and the wake region of the EOS are not interfered by 

aforementioned shocks any more. 
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Figure 6.24: Numerical solution of relative density ∞ρρ /  

at 05.4=∞M , 6
m 100.50Re ×= , o0α =∆  in laminar flow. 

  

  CD CL CM 

h/L = 0.1812  0.02872 -0.01076 -0.01082 

h/L = 0.2562  0.02875 -0.01253 -0.01074 

h/L = infinity  0.02895 -0.01423 -0.01040 
Table 6.7:  Comparisons of measured and calculated aerodynamic coefficients for different h/L 

with 05.4=∞M , 6
m 100.50Re ×= , and rotation center (0.65, 0, 0) in laminar flow. 

 

In Table 6.7, the dynamic properties in laminar flow are collected with different distances 

between the EOS and the flat plate. They are from h/L=0.1812 to h/L=0.2562, and to infinity. The 

numerical results are extracted from the Tables 6.1, 6.2, and 6.6 with the standard grid. The changes 

of the dynamic properties come from the interference effects between the two stages. 

With the increase of the distance between two stages, the lift coefficients decrease, because the 

intensity of the reflected shocks hitting on the lower side of the EOS decreases. In contrast to the lift 

in the case with h/L=0.1812, the lift of free orbital stage decreases about 32%. With increasing 

distance h/L, the impingement points of the shocks reflected by the flat plate move downstream and 

finally do not hit on the undersurface of the EOS any more. The pitching moment coefficient of the 

free flying orbital stage becomes larger.  The drag forces increase very slightly and are nearly the 

same. This results from the pressure decrease behind the tail region, because the impact of the 

reflected shock on this region becomes weaker and weaker. 

         

6.4  Influence of Turbulent Flow 

 

To describe the nature of irregularity, diffusivity, and vorticity in turbulent flow, different models 

have been proposed by Reynolds, Prandtl, Baldwin and Lomax, and etc. Many of milestone works 

and the detailed B-L model are referred in Appendix H.  

As a simplest example, the development of the turbulent flow in boundary layer above a flat plate 

is shown in Figure 6.25. It is composed of the three development processes: laminar flow zone, 
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transition zone, and turbulent flow zone. Comparing the whole flow region, the boundary layer near 

the flat plate is very thin. It was pointed out by Prandtl that the boundary layer plays a very important 

role in the research about friction and heat transfer. 

 

 
Figure 6.25: The laminar flow and turbulent flow over a flat plate. 

 

In Figure 6.25, the thickness of the boundary layer δ  is defined as the distance from the surface 

to the point where velocity ∞⋅= VV 99.0 . Due to theoretically complexity, the determination of δ  is 

discussed only for some flows with simple geometries. The theoretical thickness formulas of the 

boundary layer over a flat plate [52, 72] are listed in Table 6.8.  
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Table 6.8: Formula describing the thickness of the boundary layer above a flat plate. 

 

Following the Prandtl’s boundary layer theory, Blasius derived the first boundary layer thickness 

about incompressible laminar flow in his dissertation. The formulas in Table 6.8 present the factors, 

which mainly affect the development of the boundary layer. Including the Reynolds number, the 

boundary layer of compressible flow is further related with the Mach number eM  on the outer edge 

of the velocity boundary layer, with Prandtl number Pr , and with the fraction of temperatures 

between the wall and the outer edge of thermal boundary 
e

w

T

T
. Comparing with incompressible flow, 

the temperature of gas rises more slowly in a compressible flow. This phenomenon results in the 

decrease of density and increase of viscosity in the boundary layer. With the increase of friction effect 

and expansion of fluid in the neighbor region of wall, δ  is thicker than that in a similar 

incompressible flow. Its thickness is proportional to the square of Mach number in hypersonic flow. 

The separation process is simulated in turbulent flow by using the Baldwin and Lomax model, 

which is a two-layer, algebraic, and 0-equation model described in Chapter 2.3 and in Appendix H. It 
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is assumed that 05.4=∞M , 6
m 100.50Re ×=  1/m, o0α =∆ , and h/L = 0.2562. A much refined grid 

with 1.8 million mesh points is used to show the effect of the boundary layer. 

 

 
Figure 6.26: Velocity distribution on the symmetry plane with a much refined grid 

at 05.4=∞M , 6
m 100.50Re ×= , o0α =∆ , and h/L = 0.2562. 

 

In Figure 6.26, the region painted with yellow color has a velocity, which is smaller than 99% of 

the non-disturbed velocity ∞V . Comparing the whole flow region, the boundary layer in the 

neighborhood of the flat plate is very thin before the bow shock reaches the flat plate. In the further 

downstream region, the boundary layer in the neighborhood of the flat plate is affected very much by 

the shock waves. The yellow region around the EOS body does not mainly result from the boundary 

layer, but from the effect of the bow shock and from the effect of the wake. The velocity becomes 

smaller after it crosses the bow shock and also in the wake region. The numerical thickness of the 

boundary layer, which is located above the flat plate and just before the impingement point from the 

bow shock, could be roughly approximated by the simple thickness formula for the incompressible 

turbulent flow. 

 

 
Figure 6.27: Contour of relative density ∞ρρ /  at 

05.4=∞M , 6
m 100.50Re ×= , o0α =∆ , and h/L = 0.2562 in turbulent flow. 
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The contour of relative density ∞ρρ /  is presented for the turbulence flow field in Figure 6.27. 

Except demonstrating a thicker boundary layer above the flat plate than in laminar flow, it also 

presents some traces of a weak compression, which starts from the beginning of the flat plate. The 

weak compression is located in a relative wide upstream region before the bow shock and below the 

EOS. It belongs to a kind of very weak oblique shock, which is generated by the slope of the boundary 

layer above the flat plate. Because this slope of boundary layer is composed of gas instead of solid 

material, the generated oblique shock is quantitatively much weaker. The relative density ∞ρρ /  in 

this weak compression is around 1.03.  

 

 CD CL CM 

Laminar flow with refined grid 0.0294 -0.0113 -0.0109 
Experiment 0.0299 -0.0120 -0.0059 

Turbulent Flow with much refined grid 0.0308 -0.0106 -0.0101 
Table 6.9:  Comparison of aerodynamic coefficients for the EOS with  

05.4=∞M , 6
m 100.50Re ×= , h/L = 0.2562, o0α =∆ , and rotation center (0.65, 0, 0). 

 

The aerodynamic coefficients are listed in Table 6.9. Comparing to NS simulation drags 

increases about 5%. The lift in the turbulent flow becomes greater than that in other flows. The 

pitching moment coefficient in turbulent flow is closer to the one in laminar flow. 
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7  Numerical Results Corresponding to the Experiments of RWTH 

 

To further study the aerodynamic properties in the separation process and to validate the 

numerical software, some experimental and numerical simulations have been also performed in a 

hypersonic flow at 9.7=∞M . This Mach number is chosen due to the available flow conditions in 

the shock tunnel TH2-D for the separation process.  

In the numerical investigations, the hypersonic flow is considered as a laminar flow. The inviscid 

flow is also researched as means of simplification and comparison. As the same environment as in the 

experiment of RWTH shown in Chapter 5.2, the following parameters are used: freestream 

temperature 180=∞T  K, rotation center at (0.5, 0, 0), angle of attack of o
0∆α = , and unit Reynolds 

number 6
m 106.7Re ×=  1/m for the laminar flow. The idealized carrier stage and orbital stage are 

still defined as shown in Figure 2.1. It is again assumed that the calorically perfect gas model is valid 

with Prandtl number Pr = 0.72. Adiabatic boundary conditions are adopted around the solid surfaces 

of the EOS and the flat plate.  

Corresponding to the experiments, three different cases are studied corresponding to different 

separation distances with h/L = 0.1812, 0.0812, and 0.0662. The standard grid with 645807 nodes is 

still used. The numerical and experimental results are compared on the three lines as defined in Figure 

5.17. Often used for comparisons hereinafter, the lengths of local wingspan LocalL  are listed here 

corresponding to the x-coordinates. When x = 0.6 L, the measured local span LocalL =0.15812 L. For x 

= 0.75 L, correspondingly LocalL =0.228065 L.  

 

7.1  Comparison between 05.4=∞M  and 9.7=∞M  

 

In Chapter 6, the supersonic separation process with Mach number of 4.05 has been investigated 

in detail. In this section, the hypersonic flow fields at 9.7=∞M  are simulated and further compared 

with the results in the last chapter. To obtain the freestream flow at higher Mach number in the 

experiment, much complicated equipment is needed as described in Chapter 5.2.  

Due to stronger viscous interaction as described in Appendix J, it is clear in Figure 7.1 that the 

boundary layer of the flat plate is quite thick. There is an extra weak compression layer above the 

boundary layer. It is a weak oblique shock wave generated by the boundary layer slope above the flat 

plate. It originates from the beginning of the flat plate, passes through the shrink part between the 

EOS and the flat plate, and intersects with the bow shock. After impinging on the bow shock, it 

further affects the aerodynamic properties on the low side of EOS. This weak shock is much thicker 

than the boundary layer.  

This compression layer has not clearly appeared in the laminar flow field with the smaller Mach 

number 4.05, but already appears in the turbulence model as shown in Figure 6.27. There are two 

strong interaction zones between shocks and boundary layer of the flat plate. The interaction between 

boundary layers and bow shocks may affect whole flow field. These phenomena result in very 
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difficult convergences in numerical iteration.  

 

Figure 7.1:  Contours of relative density for 9.7=∞M  and h/L = 0.1812 in laminar flow. 

 

 

Figure 7.2:  Comparison of shock waves between different Mach numbers  

at h/L = 0.1812 on the symmetry plane in laminar flow. 

 

As a comparison of numerical simulations, Figure 7.2 shows that the bow shock with Mach 7.9 is 

stronger than that with Mach 4.05, the latter we have discussed in Chapter 6 in detail. Their maximal 

values about the compression of the density ∞ρρ /  are 6.5 and 5.1, respectively. Consequently, the 

contour lines of the relative density are denser for the case of high Mach number. The shock angle 
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between freestream direction and the shock wave with Mach 7.9 is smaller than the angle with Mach 

4.05. The shock impingement point on the flat plate with Mach 7.9 moves further rearwards than that 

with Mach 4.05. The positions of the impingement points are labeled with two vertical lines in Figure 

7.2. In the case with Mach 4.05, the shock reflected by the flat plate hits the rear part of the EOS. But 

in the case with Mach 7.9, the reflected shock impacts the wake region apart away from the tail of the 

EOS. Developing above the EOS body, the bow shock with Mach 7.9 hits the vertical stabilizer of the 

EOS. A strongly compressed zone appears in this region. In the case with Mach 4.05, the bow shock is 

still far away from this vertical stabilizer. It is also very obvious that the boundary layer in the flow 

with Mach 7.9 is much thicker than that with Mach 4.05, especially the boundary layer above the flat 

plate.  

 

Figure 7.3:  Comparison between Schlieren picture and calculated relative density ∞ρρ /  

on the symmetry plane with 9.7=∞M , o
0∆α = , and  h/L = 0.1812. 

 

7.2  Pressure Distribution for h/L = 0.1812 

 

Corresponding to the experiment with Mach 7.9 and h/L = 0.1812 as arranged in Chapter 5.2, a 

Schlieren picture for steady case is shown in Figure 7.3 (c). It describes the density gradient for the 

EOS flow field. In the same picture, Figure 7.3 (a) and (b) are the numerical results computing in 

laminar flow or inviscid flow respectively. They illustrate the contours of relative density ∞ρρ /  on 

the symmetry plane. Referring to the line “D”, all of them show nearly same positions of 
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impingement points on the flat plate. Due to no boundary layer, the shock impingement point could 

be found easily on the flat plate in inviscid flow. For the Schlieren picture and numerical result in 

laminar flow, the impingement points could not been distinguished very clearly. Due to the 

interaction between bow shock and the boundary layer on the flat plate, the bow shock impingement 

points separate with the reflection points somewhat in pictures (a) and (c). The influence of the 

boundary layer and the compression between the EOS and flat plate perturb the bow shocks. The 

weak shock waves generated from the beginning of the flat plate are labeled as “E” in Figure 7.3 (c) 

and “F” in Schlieren picture 7.3 (a). Their intersections with the bow shock could be clearly seen in 

the region under the EOS. These weak shock waves could be clearly depicted with pressure 

magnitude subsequently. For the flow field with this great Mach number, the given length of the flat 

plate could affect the aerodynamic field of the EOS.  

In Figure 7.3 (a), the shock from the wing in laminar flow shows only some weak traces in the 

rear part on the symmetry plane. In inviscid flow, there is nearly no trace in Figure 7.3 (b). The reason 

is that the shock from the wing is generated a little away from the symmetry plane. It could not show 

much relevant information in Figure 7.3 (a) and (b). On the other hand, since the Schlieren picture 

overlaps all traces from a 3D picture, the shock from the wing could also been clearly observed in 

Figure 7.3 (c), though it is not located on the symmetry plane. 

 
Figure 7.4:  Comparison of measured and calculated pressure coefficients on the lower surface 

of the EOS with y = 0 at 9.7=∞M , o
0∆α = , and  h/L = 0.1812. 

 

A detailed comparison about the pressure coefficients is presented in Figure 7.4. These 

coefficients Cp are selected on the line with y = 0 as shown in Figure 5.17. It refers to a line on the 

lower surface of the EOS from the bow to the tail part. On the place close to the nose of EOS, which 

is corresponding to the region with x/L around zero, these coefficients Cp are much greater than that 

on the other points. This phenomenon is presented in all numerical and experimental simulations. 

These big pressures come from the compression of bow shock. With the increase of x/L, the influence 

of the bow shock becomes weak and the Cp becomes smaller. Comparing to the experimental results, 
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the NS simulation shows a better consistence with the experimental data. It even describes a small 

increase of pressure at x/L=0.55. Correspondingly, there is a similar area of increased Cp in 

experiment. This region of pressure increase mainly results from the weak shock wave stating from 

the beginning of the flat plate. There is no local pressure increase in inviscid flow, because of its lack 

of boundary layer. The Euler simulation is nearly the same as the NS simulation for the bow shock 

region. For the downstream, the inviscid solution underestimates the pressure comparing to both NS 

simulation and the experimental counterpart. Since there is an expansion region with low-pressure 

behind the EOS tail, both numerical solutions show negative pressure coefficients when a point is 

near the tail of the EOS.  

 
Figure 7.5:  Comparison of measured and calculated pressure coefficients on the lower surface 

of EOS with x = 0.6L at 9.7=∞M , o
0∆α = , and  h/L = 0.1812. 

 

On the line with x = 0.6L as shown in Figure 5.17, all of the numerical and experimental results 

on the pressure distribution show good consistency in Figure 7.5. That line is positioned also on the 

lower surface of the EOS and cut the wing perpendicularly to the free steam direction. Considering 

the points on the wing, the pressure coefficient is affected by a shock generated from the wing leading 

edge. The closer the point to the leading edge of the wing is (i.e. y/L local→1), the bigger its pressure 

coefficient becomes. The magnitude of the measured pressure in most of the points is smaller than 

that of the numerical pressure in laminar flow, but bigger than that of the numerical pressure in 

inviscid flow. 

In Figure 7.6 referring to the line as shown in Figure 5.17 with x = 0.75 L, which is also a line 

located on the lower surface of the EOS, three different simulations about pressure are presented. The 

pressure coefficient decreases a little bit, when the point is near the symmetry plane (i.e. y/L local→0. 

After the shock from the wing becomes more dominant, the pressure coefficients start to increase. 

Similarly as on the line with x = 0.6L, most of the pressure coefficients of the NS simulation are 

bigger than the experimental pressure coefficients on this line, except on some points which are very 

near the wing leading edge. Again the Euler simulations underestimate the pressure when comparing 

with the NS simulations as well as with experimental results. 
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Figure 7.6:  Comparison of measured and calculated pressure coefficients on the lower surface 

of the EOS with x=0.75L at 9.7=∞M , o
0∆α = , and h/L = 0.1812. 

 

 

Figure 7.7:  Comparison between Schlieren picture and calculated relative density ∞ρρ /   

in inviscid flow on the symmetry plane with 9.7=∞M , o
0∆α = , and h/L = 0.0812. 

 

7.3  Pressure Distribution for h/L = 0.0812 

 

Considering the flow with the same flow environment as in last section, the orbital stage EOS is 

located closer to the flat plate with a smaller separation distance of h/L = 0.0812. The aerodynamic 

properties change more dramatically in this situation. The impingement points on the flat plate and on 

the lower surface of the EOS are shown in Figure 7.7. A good consistence can be detected by 

comparing the positions of the points A, B with A ' , B ' . The EOS bow shock reflected at the flat plate 

hits the lower surface of the EOS at B or B '  respectively, and another reflected shock from the flat 

plate hits the tail flow region only a little downstream. 



 

76 

The Euler and the NS simulations can be further compared with the experiment about their 

pressure coefficients. On the line with y = 0, which is the symmetry line along the under surface of the 

EOS shown in Figure 5.17, the pressure is again dominantly influenced by the bow shock. In Figure 

7.8, the pressures coefficients show very great magnitude corresponding to very small x/L. After the 

bow shock wave propagates away from the EOS, the pressure coefficients become smaller. The bow 

shock hits the flat plate and is reflected back to the lower side of the EOS again. Correspondingly, the 

pressure coefficients in the impingement region become great. Further downstream, the reflected 

shock wave is detached from the EOS in another time, and the pressure coefficients become smaller 

again. Comparing to other two solutions, the Euler simulation presents a good consistency relative to 

the impingement points, but it underestimates the pressure again in most of the points, except in the 

region near the impingement point with x/L ≈ 0.43. Simulating the same case but in laminar flow, the 

pressure distribution demonstrates similar tendency. The pressure coefficients obtained in laminar 

flow are always greater than that in inviscid flow. The experimental results are nearly located on the 

middle position of the two numerical simulations.    

 

 
Figure 7.8:  Comparison of measured and calculated pressure coefficients on the lower surface 

of the EOS with y = 0 at 9.7=∞M , o
0∆α = , and h/L = 0.0812. 

 

Along the line of the EOS lower surface shown in Figure 5.17 with x = 0.6L, pressures 

coefficients are presented in Figure 7.9. The bow shock reflected by the flat plate impinges again on 

the lower surface of the EOS. This impingement point is afore the point with y = 0 and x = 0.6L. In 

the upstream of the line x = 0.6L, the shock is already reflected away by the lower surface of EOS. 

The pressure coefficients retains small. The pressure coefficients acquired numerically in inviscid 

flow are nearly equal the experimental ones. NS simulations are always a little bit bigger than others 

in this case. When y/L local  increases, the corresponding point approximates to the region, which is hit 

by the reflected bow shock. The pressure increases a little. In the region near the leading edge of the 

wing, the shock from the wing gives more influence and the pressure rises very much when 

y/L local→1. 
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Figure 7.9:  Comparison of measured and calculated pressure coefficients on the lower surface 

of the EOS with x = 0.6L at 9.7=∞M , o
0∆α = , and h/L = 0.0812.  

 

Figure 7.10 presents a comparison of numerical and experimental pressure coefficients on the 

line shown in Figure 5.17 with x = 0.75L. The main characteristics about the pressure are like the case 

with x = 0.60L that has just been discussed above. The same tendency keeps well for the numerical 

and the experimental pressure coefficients. The biggest difference happens on the wing tip. The 

experimental pressure is the biggest. The NS simulation ranks the second. The Euler simulation is 

smaller than the others. 

 
Figure 7.10:  Comparison of measured and calculated pressure coefficients on the lower surface 

of the EOS with x = 0.75L at 9.7=∞M , o
0∆α = , and h/L = 0.0812.  

 

7.4  Pressure Distribution for h/L = 0.0662 

 

When the separation distance h/L tends to very small, the flow field between these two stages 

becomes more complicated. For the case with h/L = 0.0662, the shock and the boundary layer are 
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confined in a very small space, in which they interfere with each other. The bow shock is reflected 

many times between the two stages. The lines labeled from A to E in Figure 7.11 mark some 

important shock characteristics in the two pictures. The bow shock is generated from the position 

label with the A line and impinges on the flat plate at the B line. The interval BC near the flat plate is 

an interference region between shock and boundary layer. The D line labels the impingement point 

from the reflected bow shock. The E line shows the impacting point from the shock of the wing on the 

flat plate. After the shock is reflected by the EOS lower surface at the position labeled as D, its further 

development already becomes blurred in the experiment. The shock from the wing is still strong and 

exhibits a clear trace in impinging the flat plate in the Schlieren picture. However, there is not such a 

pronounced trace on the symmetry plane shown by the numerical results in laminar flow. 

 

 
Figure 7.11:  Comparison between Schlieren picture and calculated relative density ∞ρρ /   

on the symmetry plane, where 9.7=∞M , 6
m 106.7Re ×= , o

0∆α = , and h/L = 0.0662. 

 

The shock structure is quantitatively analyzed further by some measured and calculated pressure 

data. In Figure 7.12, the pressures vary dramatically because of the influence from the shocks. On the 

line shown in Figure 5.17 with y = 0, the pressure coefficient is around 1.0 due to the bow shock when 

x/L is close to the bow of the EOS. When x/L increases, the shock is spread away from the EOS and 

the pressure coefficient decreases to the interval from 0.012 to 0.025, up to the point x/L = 0.2. 

Thereafter, the first reflected shock develops and hits the EOS. Its impingement point is at x/L = 0.29. 

This is the position labeled as the line D in Figure 7.11. All numerical and experimental pressure 

coefficients exhibit a “jump” at this point, especially the Euler simulations. The numerical pressure 

coefficients reach the levels from 0.06 to 0.065. As a comparison, the experimental pressure 

coefficient is about 0.04. Downstream from this point, all pressure coefficients decrease very rapidly, 

due to the shock deflected from the EOS. The second shock reflected by the flat plate affects the 

pressure on the lower surface of the EOS differently. Both numerical simulations predict the second 

pressure peaks more upstream than that measured in the experimental results. The strength of the 

second reflected shock is weaker than the first one, because much of the shock energy has been lost. 
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The numerical pressure coefficients Cp range from 0.028 to 0.04. After two times hitting on the lower 

side of EOS, the shock is already very weak and all pressure coefficients decrease to levels less than 

0.012. Along the symmetry line, experimental results are again roughly the average value of Euler 

and NS simulations on most points. However, this picture presents the biggest lift differences among 

the different simulations in this thesis.   
 

 
Figure 7.12:  Comparison of measured and calculated pressure coefficients on the lower surface 

of the EOS with y = 0 at 9.7=∞M , o
0∆α = , and h/L = 0.0662.  

  

 
Figure 7.13:  Comparison of measured and calculated pressure coefficients on the lower surface 

of the EOS with x = 0.6 L at 9.7=∞M , o
0∆α = , and h/L = 0.0662.  

 

Consider the pressure distribution on the line as shown in Figure 5.17 with x = 0.6 L. In this case 

the line is located in the region between two reflected impinging waves. When y/L local  is small, as 

depicted in Figure 7.13, the pressure coefficients are smaller than 0.04. When y/L local  increases, the 

pressure changes only a little, until the points are near the region of the wing leading edge. After 



 

80 

y/L local  is greater than 0.75, the pressure coefficients are mainly affected by the shock from the wing. 

The greater the distance from the symmetry plane y/L local  is, the greater the pressure coefficient is. 

The maximum of Cp in the NS simulation reaches 0.43. The corresponding Cp in Euler simulation is 

0.35. Near the leading edge of the wing, the Euler simulation fluctuates to a certain extent.   

On another line with x = 0.75L, the situation is similar as on the line with x = 0.60L, except in the 

region near the wing leading edge. As shown in Figure 7.14, the greatest pressure coefficient Cp from 

the NS simulation is 0.28, which is closer to the experimental result 0.39 compared to Cp=0.19 from 

the Euler simulation. For the other points, a satisfying agreement is shown among these three 

simulations. 

 
Figure 7.14:  Comparison of measured and calculated pressure coefficients on the lower surface 

of the EOS with x = 0.75 L at 9.7=∞M , o
0∆α = , and h/L = 0.0662.  

 

7.5  Aerodynamic Coefficient Comparisons  

 

Compare three cases with h/L = 0.1812, 0.0812, and 0.0662. The numerical pressure coefficients 

obtained in NS simulation are greater than the corresponding experimental values. The corresponding 

coefficients in Euler simulation usually are the smallest. The pressure distribution of NS simulations 

is smoother than its counterpart of the Euler simulations. Their aerodynamic properties show good 

tendencies. However, the pressures are compared only on some points of the lower surface of the EOS 

in the last sections. 

Except those pressure coefficients, the coefficients of lift, drag, and pitching moment at the same 

environment as discussed in sections 7.2, 7.3, and 7.4 are calculated and listed in Table 7.1. The 

rotation center is defined as (0.5, 0, 0). In this table the drag decreases with the increase of the 

distance h/L in laminar flow. Comparatively, this phenomenon does not appear in inviscid flow. With 

Mach number of 7.9, the lift is positive for a very small distance h/L. But with the increment of the 

distance, both NS and Euler simulations present a decrement of the lift. The lift in laminar flow is 

greater than that in inviscid flow. The pitching moment shows an increasing tendency accompanied 
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by the increase of the distance h/L. Nevertheless, all of them are negative.   

 

 CD CL CM 
Navier-Stokes, h/L = 0.0662 0.0265 0.00934 -0.0111 
Navier-Stokes, h/L = 0.0812 0.0260 0.00242 -0.00935 
Navier-Stokes, h/L = 0.1812 0.0235 -0.00925 -0.00748 

Euler, h/L = 0.0662 0.0220 0.00329 -0.01048 
Euler, h/L = 0.0812 0.0216 -0.00701 -0.00791 
Euler, h/L = 0.1812 0.0218 -0.01619 -0.00519 

Table 7.1:  Calculated aerodynamic coefficients for EOS  

with 9.7=∞M , o
0∆α = , and rotation center (0.5, 0, 0). 

 

 Applying the results of Table 7.1 to the separation maneuver with angle of attack of zero, we get 

that aerodynamic lift may support the stage separation at very small distances. But this effect is 

reduced with increasing distance. The negative pitching moment coefficients mean that the head of 

the EOS turns down to the flat plate. The same situation has been also presented in the cases with 

Mach 4.5. Compared to the case with the same distance h/L = 0.1812 and M ∞ = 4.05, the drag 

coefficients CD are nearly the same. The lift coefficient CL at Mach 7.9 becomes a little greater and 

the pitching moment coefficients CM are a little bit greater, too.  

 

 
Figure 7.15: The contour of the relative density ∞ρρ /  

at 9.7=∞M , o
0∆α =  in laminar flow. 

 

7.6  Free Orbital Stage at 9.7=∞M  

 

As the last phase in the end of the separation process, the free orbital stage EOS is studied herein. 

Figure 7.15 shows a steady flight of the free orbital stage at Mach 7.9 in laminar flow. There is no 

reflected bow shock any more. It is simulated also in inviscid flow. Both results of the aerodynamic 

properties in laminar and inviscid flows are gathered in Table 7.2. The biggest difference is 6.8% 
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about the pitching moment. Recalling the results in Chapter 6.3, the maximal value about relative 

density ∞ρρ /  in the case with 05.4=∞M  is 4.99. In the case with 9.7=∞M , the relative density is 

6.32. Its lift and pitching movement coefficients are still negative with the angle of attack o
0∆α = . 

Further its lift is smaller than that with 05.4=∞M . The drag coefficient at 9.7=∞M  is smaller than 

in the case with 05.4=∞M , because the pressure in the rear part of the EOS becomes greater with a 

bigger Mach number. It should be pointed out, that the environments in these two cases are different. 

The definitions of the rotation center are also different. Though the Mach number plays a decisive 

role for separation process, the above comparison could be only considered as some reference. 
 

 CD CL CM 

Navier-Stokes, standard grid  0.02316 -0.01598 -0.00484 
Euler, standard grid  0.02177 -0.01600 -0.00517 

Table 7.2:  Comparisons of measured and calculated force- and moment- coefficients  
for the EOS with 9.7=∞M  and rotation center (0.5, 0, 0). 
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8  Prediction of the Aerodynamic Properties at Mach 6.8 

 

Recalling to the original design, the TSTO should be separated at the altitude of 35 kilometers 

with Mach 6.8. Obviously, it is of the most importance that the aerodynamic properties in the 

separation process are analyzed in this designed environment. 

Constricted by the experimental equipment, neither has a continuous separation process been 

measured, nor has an exact designed environment been generated in wind tunnel.  

Contrarily, in numerical simulation supported even by a personal computer, the environment for 

the separation process at the altitude of 35 kilometers with Mach 6.8 could be reproduced. Actually, 

only environmental parameters in mathematical equations should be simply adjusted, though 

numerical techniques are greatly challenged in simulating this hypersonic flow.  

In the designed environment, the separation process is intensively and numerically simulated in 

the following sections. Based on the data of US standard atmosphere at the altitude of 35 kilometers 

above the sea level, the air temperature is –36.1 °C, the air pressure 5600 Pa, and the air density 

0.0082 kg/m 3 . As same as in numerical simulations in Chapters 6 and 7, the ratio of specific heats is 

still assumed as constant, namely 4.1=γ . As designed in project SFB 255, the length of the EOS is 

taken as 28.8 meters. Two other standard values at sea level are: dynamic viscosity 0µ =1.7894 510−×  

kg/( sm ⋅ ) and temperature 0T =288.15 K. At the altitude of 35 kilometers, it can be derived that the 

dynamic viscosity of the freestream is 1.531 510−×  kg/( sm ⋅ ), the sonic speed in air is 309 m/s, and 

the unit Reynolds number is 6
m 1012.1Re ×=  1/m. Further the Reynolds number 7103.24Re ×= . 

The formulas and calculations of these basic parameters are listed in Appendixes D and K.  

Several different scenarios have been designed to analyze the separation process. They are 

simulated numerically related with different separation distances, as well as different angles of attack. 

The flow is dealt as an inviscid flow, or a laminar flow, or as well as turbulent flow to show the 

influences of the different physical models. Except steady cases, a continuous separation in inviscid 

flow is also simulated. 

 

8.1  Shock Structure Analysis 

 

In the separation process, we have already seen its shock structures at Mach 4.05 in Chapter 6 and 

at Mach 7.9 in Chapter 7. It has been shown that the shock structures greatly affect the forces acting 

on the EOS. Subsequently we analyze the shock structures and their developments at Mach 6.8 in the 

designed separation process. 

 

8.1.1  Structure of EOS Bow Shock 

 

As described in Chapters 6 and 7, the most important shock is generated at the nose of the EOS. 

To understand the aerodynamic characteristics of this bow shock more clearly, the aerodynamic field 
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in front of the EOS nose is investigated in detail. An example is shown in Figure 8.1 at 8.6=∞M  in 

laminar flow. To avoid much influence from the boundary layer and relevant shock waves generated 

by the flat plate, it is firstly assumed that the separation distance between EOS and flat plate is a little 

away from flat plate and namely h/L = 0.1812. 

 

 
Figure 8.1: Relative density contour ∞ρρ /  in front of the nose of the EOS 

at 8.6=∞M , 6
m 1012.1Re ×= , °=∆ 0α  in laminar flow. 

 
Describing with relative density ∞ρρ / , a very strong gradient of density is presented across the 

shock layer in front of the EOS nose. The shock layer is compressed very closely to the surface of the 

EOS nose. The bow shock detaches from the blunt EOS nose and has a curved shape. The detachment 

distance is estimated about 0.0024L. In the following three pictures, the bow shock is depicted using 

different contours and different numerical techniques. 

In Figure 8.2, the shock structure is illustrated with a contour of the relative pressure ∞pp / . It 

illustrates the same curved bow shock pattern as in shown Figure 8.1. Through the shock layer, the 

pressure increases dramatically before the nose of the EOS.  

 The air compression could be quantitatively expressed by the maximal value of the relative 

density and the relative pressure. In the above numerical simulation, we have the maximal value in 

front of the EOS nose as 

=
∞ρ

ρ
5.86,  (8.1) 

and  

=
∞p

p
59.14.                  (8.2)  

These numerical results could be affirmed by the theory of fluid mechanics in some extent. Using the 

formulas describing the normal shock [5, 96] as well as the parameters listed in the beginning in this 

chapter, its maximal values could be calculated as: 



 

85 

2

2

)1(2

)1(

∞

∞

∞ −+

+
=

M

M

γ

γ

ρ

ρ
=5.4, (8.3) 

and 

1

)1(2
1

2

+

−
+= ∞

∞ γ

γ M

p

p
=54,  (8.4) 

where ρ  and p  present the values behind the normal shock and the ratio of specific heats 4.1=γ .  

 

 
Figure 8.2: Relative pressure contour ∞pp /  in front of the nose of the EOS 

at 8.6=∞M , 6
m 1012.1Re ×= , °=∆ 0α  in laminar flow. 

 

The relative differences between numerical and theoretical results about ∞ρρ /  and ∞pp /  in 

Eqs. (8.1) - (8.4) are around 10%. Both ratios of ( ∞ρρ / ):( ∞pp / ) are about 1:10 and nearly the same. 

It should be pointed out, that the normal shock theory estimates the bow shock in front of the EOS 

nose only approximately due to the blunt nose.  

On the other hand, the maximal value about temperature in numerical simulation is 

overestimated comparing to real situation. In Eq. (2.10) the calorically perfect gas model is used. The 

ratio of specific heats is always assumed as a constant. This assumption leads to that the temperature 

increases very quickly in the cases with hypersonic flows. Actually this constant ratio of specific 

heats is greater than it should be in real case. Another overestimated factor is that the boundary 

condition around EOS nose is assumed adiabatic in the numerical computation. However, the 

aerodynamic properties are mainly emphasized in this thesis. The thermodynamic model mainly 

describes the heat convection and heat conduction effect. To get more accurate temperatures in the 

regions before the EOS nose as well as the shock standoff distance, a real gas model should replace 

the calorically perfect gas model [18, 64, 93]. As the temperature is much higher than 800 K, some 

non-ideal gas models could precisely describe the relationship among temperature, pressure, and 

density [15]. An example of the real gas model could be referred in Appendix L. 
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Figure 8.3: Contour of Mach number before the nose of the EOS 

at 8.6=∞M , 6
m 1012.1Re ×= , °=∆ 0α  in laminar flow. 

 

As another different presentation in describing the same flow field, contour lines related to Mach 

number are shown in Figure 8.3. Simulated still in laminar flow, the boundary layer around the EOS 

nose is shown clearly in this picture. The subsonic zone located on the nose head is also depicted. The 

Mach numbers decreases very quickly across the shock layer. Thereafter, the air velocities increase 

along the EOS surface downward, which is a little away from the boundary layer. Rapidly they 

become supersonic again.   

 

Figure 8.4: Contour of Mach number before the nose of the EOS 
at 8.6=∞M , °=∆ 0α  in inviscid flow. 

 

Compare the result in laminar flow with the result in inviscid flow. The fields of Mach number 

are much different in front of the EOS nose, since different boundary conditions about velocity are 
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assumed on the EOS surface. In Figure 8.4, the Mach lines do not stretch to the downstream in 

inviscid flow, but directly connect with the surface of the EOS nose. In the outside of the boundary 

layer, the aerodynamic properties are nearly the same in both flows. Because of the viscous boundary 

layer and high Mach number, the field of Mach number in laminar flow changes much dramatically. 

 

8.1.2  Shock Structures Dependent on Distances between the Two Stages 

 

As discussed before, the contour plots of relative density ∞ρρ /  in inviscid stream could more 

clearly illustrate the shock impingement points, on which shock structures impact great force to the 

two stages. In the following example, the hypersonic flow field is simulated with the separation 

distance h/L = 0.1812 using the inviscid flow model at first. 

After the bow shock emanates from the nose of the EOS, it travels downstream. In Figure 8.5, the 

bow shock expands rearwards somewhat like a curved cone around the body of the EOS with a thin 

shock layer. A part of the bow shock wave goes upwards and hits the stabilizer. Subsequently, a 

combination of bow shock and the shock originating at the stabilizer is generated. Similarly, a part of 

the bow shock strikes the wings. A superposition of the bow shock and the shock at the leading edge 

of the wing travels continuously to downstream. 

 

Figure 8.5: Contour of relative density ∞ρρ /  at 8.6=∞M , 

h/L = 0.1812, and °=∆ 0α  in inviscid flow. 

 

 The most important part of the bow shock affecting the separation process goes downwards and 

hits the flat plate. The strongest impact on the flat plate occurs on the point, where the impingement of 

the bow shock superimposes the impingement of the shock from the wing on the flat plate. The 
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impingement points are usually located on the rear part of the flat plate. The shocks are reflected by 

the flat plate further to the rear part of the EOS. Accompanying the compressions, expansions also 

happen in some domains near the boundary of the EOS body, especially in the wake zone. In Figure 

8.5 there is no boundary layer due to the characteristics of inviscid flow.  

Because of the importance of the boundary layer, laminar freestream is used in Figure 8.6 to 

compare the above results. Except the boundary layers, the main shock structures are nearly the same 

as in Figure 8.5. Due to the streamline shape of the EOS, the boundary layer around the EOS is 

compressed very close to the surface of the EOS. It is very thin layer in contrast to the length of the 

EOS.  The boundary layer structure could not be distinguished very clearly in Figure 8.6. As a result 

of the interaction between the bow shock and the boundary layer, the impingement and reflection 

points on the flat plate are a little separated. Its maximal magnitude of the relative density ∞ρρ /  on 

the flat plate is weaker than that in inviscid flow. The boundary layer above the flat plate and a weak 

shock wave are formed from the beginning of the flat plate. In this case the beginning position of the 

flat plate has some effects to the formation of the shock structures. A weak shock wave generated in 

the beginning of the flat plate could be hardly noticeable with this legend. 

 

 

Figure 8.6: Contour of relative density ∞ρρ /  at 8.6=∞M , 6
m 1012.1Re ×= , 

h/L = 0.1812, and °=∆ 0α  in laminar flow. 

 

As a different contour presentation of the same numerical solution in laminar flow, a contour of 

Mach number is shown in Figure 8.7. Comparing with Figure 8.6, the most obvious difference 

between the shock structures in two pictures is on the solid surface, especially above the flat plate. 

There are intensive changes of Mach number in the zone near the solid surface. The boundary layers 

in Figure 8.7 could be observed more clearly on the symmetry plane. Because Mach number is always 

zero on the surface of the flat plate, there is no possible to distinguish the impingement points. 
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However, the interaction between boundary layer and the bow shock above the flat plate could be 

identified on the bottom of the symmetry plane.  

 
Figure 8.7: Contour of Mach number at 8.6=∞M , 6

m 1012.1Re ×= ,  

h/L = 0.1812, and °=∆ 0α  in laminar flow.  
 

As another presentation of shock structure, the contour plot of relative pressure ∞pp /  is used in 

Figure 8.8. Both shock structures and the impingement points are clearly depicted also in laminar 

flow. On the flat plate, the strongest pressure impact appears behind of the EOS. It results from a 

combination of the bow shock and the shock from the wing. 

 

Figure 8.8: The contour of the relative pressure ∞pp /  

at h/L = 0.1812, 8.6=∞M , 6
m 1012.1Re ×= , °=∆ 0α  in laminar flow. 
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Including the cases with h/L = 0.1812 discussed just above, a series of steady separation 

processes are numerically investigated at Mach 6.8, corresponding to different separation distances 

from h/L = 0.0662 to infinity. To analyze the relation between shock and distance more clearly, the 

angles of attack are set to zero. Describing the contours of relative density ∞ρρ / , the shock 

structures are studied using inviscid flow in Figures 8.9.a and laminar flow in Figures 8.9.b, 

respectively. 

 

Euler simulations NS simulations 

  

  

  

Figure 8.9 (1-3): The contour of the relative density ∞ρρ /  with 

different separation distances at 8.6=∞M , °=∆ 0α  in laminar and inviscid flows. 

a.1) h/L = 0.0662; in inviscid flow b.1) h/L = 0.0662; in laminar flow 

a.3) h/L = 0.1812; in inviscid flow b.3) h/L = 0.1812; in laminar flow 

a.2) h/L = 0.0812; in inviscid flow b.2) h/L = 0.0812; in laminar flow 
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Euler simulations NS simulations 

  

  
Figure 8.9 (4-5): The contour of the relative density ∞ρρ /  with 

different separation distances at 8.6=∞M , °=∆ 0α  in laminar and inviscid flows. 

 

The cases with h/L=0.0662 and h/L=0.0812 are labeled as a.1, b.1, a.2, and b.2 in Figure 8.9. 

The shocks reflected from the flat plate hit the lower surface of EOS more than two times. Part of the 

bow shock develops downwards and hits the flat plate. Thereafter, it is reflected upwards to the lower 

side of the EOS. After it hits the EOS lower surface, it is reflected again to the flat plate. The shock 

waves rebound in this way further. When the 2nd reflected shock from the flat plate strikes the lower 

surface of the EOS, it is already located on the rear part between the EOS and the flat plate. It 

becomes very weak and its further developing direction has not much difference comparing to the 

freestream. However, it still affects the expansion region behind the tail of the EOS.  

When the separation distance h/L increases, the positions of the impingement points of the bow 

shock move rearwards. The number of reflected shock waves decreases. When the distance h/L is 

greater than 0.1812, such as for a.3, b.3, a.4, and b.4 in Figures 8.9, the impingement points of the 

reflected shockwave have already moved to the wake zone. The reflected shock could not reach the 

EOS body any more. The upwards reflected shock only progresses in the flow field behind the EOS 

tail. This tendency continues, until the two stages are separated with an enough distance. 

Subsequently, there is no reflected shock wave to affect the flow fields. The two flow fields around 

a.5) Free Stage; in inviscid flow 

a.4) h/L = 0.2562; in inviscid flow b.4) h/L = 0.2562; in laminar flow 

b.5) Free Stage; in laminar flow 
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the two stages do not interfere with each other anymore. They develop as shown in a.5 and b.5.  

For the laminar cases, the boundary layers above the flat plate could well be distinguished in 

Figure 8.9.b. They interact with the bow shock in this thin layer and make the impingement points 

somewhat blurred. It also affects the expansion zones. Especially it results in difference of the wake 

zone. There are also very weak traces of the shock waves generated from the beginning of the flat 

plate in the pictures b.1 and b.2. They hit the region of EOS nose. The shock waves generated from 

the beginning of the flat plate become much weaker. There are nearly no traces in the pictures from 

b.3 to b.5. This means, the weak shock is not only dependent on the Mach number, but also depends 

on the distance between two stages. 

Because the distances between EOS and flat plate confine the transfer of the shock wave, 

different distances h/L result in different shock structures. They affect the distributions of 

aerodynamic forces and pitching moment. In the next sections, the exact magnitudes of pressures 

affected by the shock waves are discussed corresponding to different distances h/L. 

 

8.1.3  Shock Structures Dependent on Mach Numbers 

 

The numerical simulations with Mach 4.05 in Chapter 6 and with Mach 7.9 in Chapter 7 have 

shown satisfied consistencies with the available experimental results. Due to the lack of experimental 

data, the simulation at Mach 6.8 is analyzed by comparing the numerical results with these of the two 

other Mach numbers in the above mentioned chapters.  

Figure 8.10 illustrates a comparison of shock structures among the three Mach numbers, which 

are of Mach 4.05, 6.8, and 7.9 respectively. The contour lines of the relative density ∞ρρ /  are shown 

on the same symmetry plane with h/L = 0.1812 in laminar flow, but with different Reynolds numbers 

due to the different freestream velocities and with different viscosities.  

Compare the bow shocks of EOS. The contour lines of relative density ∞ρρ / with 8.6=∞M  are 

denser than those with 05.4=∞M , but sparser than those with 9.7=∞M . This means that the 

maximal value of the relative density in flow field with Mach number 6.8 is just between its 

counterparts with Mach 7.9 and with Mach 4.05. The impingement point of the bow shock on the flat 

plate with Mach 6.8 (refer the line b) is also between the impingement points with Mach 4.05 (refer 

the line a) and with Mach 7.9 (refer the line c). The bow shock with Mach 4.05 reflects to the rear 

parts of the EOS, but with Mach 6.8 and Mach 7.9 the reflected bow shocks have already been moved 

to the expansion parts behind the EOS tail. The pressure in the wake region becomes greater with 

increasing Mach numbers. At Mach 6.8, there is no reflected shock hitting the lower surface of the 

EOS. Consequently, there is no obvious pressure increment to affect the lift and pitching moment on 

that lower surface for h/L = 0.1812.  

At Mach 7.9, the length selections of the flat plate already apparently affect the development of 

the bow shock. Its bow shock is clearly intersected by a weak shock generated from the beginning of 

the flat plate. There are nearly no trace for the corresponding shock wave in the other two cases with 

h/L = 0.1812. The boundary layer on the flat plate with Mach 6.8 is a little thicker than that with 
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Mach 4.05, but much thinner than that with Mach 7.9. The interaction between the boundary layer on 

flat plate and the shock waves could affect the aerodynamic properties of the EOS. 

 

 
Figure 8.10:  Comparison of shock waves in laminar flows  

at h/L = 0.1812 with different Mach numbers. 

 

From these comparisons one can conclude that the shapes of bow shocks, the impingement points 

of the bow shock on the flat plate, and the formation of the boundary layers are all closely related with 

the Mach numbers. These dependencies are in nonlinear manner. 

 

8.1.4  Shock Structures Dependent on Angles of Attack 

 

As shown for the cases with Mach 4.05 and with Mach 7.9, the angles of attack of the EOS also 

affect the shock structure significantly. The shock structures of Mach 6.8 with angle of attack 0° and 

3° degrees are discussed mostly in inviscid flow. It is assumed that the rotation center is on the point 

(0.65, 0, 0).  

The separation distance is firstly set to h/L = 0.1812. Concentration on the flow field of the 

symmetry plane with angles of attack of 0° and 3°, a comparison of shock structure is shown in Figure 

8.11. With angle of attack 3°, the nose of the EOS rises up and its tail approaches to the flat plate. 
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Referring to the line b, its bow shock under EOS hits the flat plate much more downstream than in the 

case with angle of attack 0° (referring the line a). With angle of attack 3°, the bow shock on the upper 

side leaves away from the stabilizer and the wake zone moves closer to the flat plate. The reflected 

shock of the flat plate influences the wake zone a little more than for the case with angle of attack of 

0°. 

 
Figure 8.11:  Comparison of shock waves in inviscid flow between different angles of attack  

with h/L = 0.1812, 8.6=∞M , and rotation center (0.65, 0, 0).  

. 

 
Figure 8.12:  Comparison of shock waves in inviscid flow between different angles of attack  

with h/L = 0. 2562, 8.6=∞M , and rotation center (0.65, 0, 0). 
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Another example is shown in Figure 8.12. The impingement points of bow and wing shocks 

move much more rearward with a greater angle of attack, when the separation distance is h/L = 

0.2562. The reflection of the shock from the flat plate nearly does not affect the movement of the EOS 

anymore, because these reflections are too far away from the tail of the EOS. 

Figure 8.13 shows a further comparison between inviscid and laminar flows. With distance h/L = 

0.2562 and angle of attack of 3°, the shocks and their reflections transfer nearly in the same way. The 

difference between Euler and NS simulation is only in the boundary layer and the wake region. The 

boundary layer is already thin in the upper picture of Figure 8.13. The line a labels the impingement 

points for both cases. The reflection point of the bow shocks in laminar flow is a little bit separate 

with the impingement point once more.  

 

 

Figure 8.13:  Comparison of shock waves between laminar and inviscid flow with 

°=∆ 3α , h/L = 0.2562, 8.6=∞M , and rotation center (0.65, 0, 0). 

 
8.1.5  Shock Structures on 3D EOS Surface 

 

Until now most of the shock structures are shown on the symmetry plane in the computing 

domain. Few are also shown on the sectional planes parallel or perpendicular to the freestream. In this 

section, the distribution of the relative density ∞ρρ / is directly described on the whole surface of the 

EOS. The separation distance h/L is chosen as 0.0662 or 0.2562. The shock influence on the EOS 

surface is presented by contour plots. Avoiding that the shock structure is blurred by the thin 

boundary layer on the EOS surface, inviscid flow cases are first selected. It is assumed that the angle 

of attack o
0∆α = .  
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As depicted before, shock waves emanate from the EOS nose like a cone. The transfers of the 

shock waves are affected by the postures of the EOS and the flat plate. With a small separation 

distance between the two stages, shock waves could be reflected many times between two surfaces of 

the two stages.  

 
Figure 8.14: Shock structure illustrated by the relative density ∞ρρ /   

on the upper part of the EOS with h/L = 0.0662,  °=∆ 0α  in inviscid flow. 
 

On the upper part of the EOS in Figure 8.14, we could find the air compressions on the nose of 

the EOS, on the leading edge of the wing, and on the vertical stabilizer. These great air compressions 

spread their influence to their neighborhood on the EOS surface. Due to the character of the EOS 

geometry, the other regions mainly belong to the expansion zones. Obviously, there is no other impact 

on the upper part of the EOS.  

 

 
Figure 8.15: Shock structure illustrated by the relative density ∞ρρ /   

on the lower part of the EOS with h/L = 0.0662,  °=∆ 0α  in inviscid flow. 
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On the lower part of the EOS surface, the air is mainly compressed also in the region of the EOS 

nose and on the leading edge of the wing. Some reflected shocks by the flat plate also hit on the lower 

surface of the EOS. These reflected shock waves are described as the first and the second reflected 

shocks in Figure 8.15, in which we adjust the contour level more sensitive to the small relative density. 

These two induced compressions could be seen as two regions of increased density. They spread from 

the symmetry line of the EOS lower surface to the lower surface of the two wings. The first reflected 

bow shock nearly superimposes with the shock of the wing. For the second reflected shock wave, the 

middle part is weaker than the part directly under the wing. This middle part is purely generated by 

the wave, which is originated from the reflections of the bow shock. It becomes already very weak. 

The part under the wing is a combination of the reflected bow shock and the shock from the wing. The 

impingement points of the second reflected shock stretched to the most rear part under the wing. 

There is still a nearly imperceptible third hitting on the middle part of the lower surface of the EOS. 

Its trace is already very blurred in this picture. 

With the increase of the distance between the EOS and the flat plate, the impingement points of 

the first reflected shock wave move rearwards, until the first reflected shock could not hit the lower 

side of the EOS any more. This is the case with the separation distance h/L=0.2562. In Figure 8.16, 

we only see some spreads of air compression from higher density area to lower density area in the 

neighbourhood of bow nose and the leading edge of the wing.  

 

 
Figure 8.16: Shock structure illustrated by the relative density ∞ρρ /   

on the lower part of the EOS with h/L = 0.2562,  °=∆ 0α  in inviscid flow. 

 

Corresponding to the traces of the reflected waves for inviscid flow as shown in Figure 8.15 and 

8.16, there are similar numerical results in laminar flows. Their traces are much blurred because they 

are interfered by the boundary layer. To illustrate the 3rd shock structure at the distance h/L=0.0662, 

the contour legend is also adjusted in Figure 8.17. There are also three visible areas of reflected 

shocks. However, the weak trace of the relative density ∞ρρ /  in laminar flow does not mean that the 

pressure caused by the reflected shock is smaller than that in inviscid flow. Contrarily, the impact 
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pressure in laminar flow is usually slightly greater than or equal to the corresponding pressure in 

inviscid flow on these impingement points.  

 

 

Figure 8.17: Shock structure illustrated by the relative density ∞ρρ /   

on the lower part of the EOS with h/L = 0.0662,  °=∆ 0α  in laminar flow. 

 

8.2  Pressure Coefficients Related to Shock Structures 

 

In the above sections, the shock structures have been intuitionally depicted in the computing 

domain related to different physical characters, different maneuvers, and different numerical models. 

Because the aerodynamic interaction affects the pressure distribution mainly on the lower surface of 

the EOS, the pressure distribution is quantitatively analyzed on this lower surface. Correspondingly, 

the impact of the shock wave is interpreted by a peak magnitude of the pressure coefficients. As the 

manner in Chapter 7, the pressure coefficients are also plotted along the lines defined in Figure 5.17 

for different separation distances h/L, though there is no experiment to verify those numerical results. 

The environment is assumed the same as that in section 8.1, that is, 8.6=∞M , 6
m 1012.1Re ×= , and 

°=∆ 0α . 

At first, the same case as in Figure 8.9.a.1 and 8.9.b.1 with the smallest distance h/L = 0.0662 is 

quantitatively discussed. Herein, the pressure distribution on the lower surface of the EOS is depicted 

in Figure 8.18. Simulated with both inviscid and laminar freestreams, the pressure coefficients are 

plotted along the line described in Figure 5.17 with y = 0. Euler and NS simulations show good 

similarity relating to the impacts of the reflected shocks. They present almost the same peak 

magnitudes caused by the 1st and 2nd reflected shocks. Their peaks about pressure coefficients reach 

0.07 and 0.033. Except these two peaks, the pressure coefficients of Euler simulation are always 

smaller than those of NS simulation. All of their pressure coefficients are greater than zero. Though 

the impingement point in laminar flow is blurred in the contour picture of the relative density in the 
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last section, the peak of the pressure in laminar flow is not smaller than that in inviscid flow. Around 

the point x=0.875, there is a weak trace of the third pressure peak, which originates from the bow 

shock reflected by the flat plate for the third time.  

 

 
Figure 8.18: Pressure coefficients using laminar and inviscid flows on the lower surface  

of the EOS with y = 0, 8.6=∞M , °=∆ 0α , and h/L = 0.0662. 

 

 
Figure 8.19: Shock development illustrated at h/L = 0.0662 in inviscid flow with  

(a) the contour of relative density ∞ρρ /  on the symmetry plane;  

(b) pressure distribution on the line shown in Figure 5.17 with y = 0. 
 

To analyze the shock structure and the surface pressure distribution more closely, a direct 

comparison along the lower side of the EOS is presented in Figure 8.19 for inviscid flow. On the 
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symmetry plane, Figure 8.19 (a) shows the flow field above the flat plate and below the EOS lower 

surface. Its size in vertical direction is much magnified to illustrate the shock structure in this thin 

zone more clearly. Figure 8.19 (b) is the same picture as Figure 8.18, but excluding the NS simulation. 

This picture is compressed a little in vertical direction. Both pictures keep the same coordinate in x/L 

direction. By comparing Figure 8.19 (a) and Figure 8.19 (b), it is shown how the pressure coefficients 

on the lower side of the EOS depend closely on the shock structure. When the shock wave leaves EOS, 

the pressure coefficient will decrease. Contrarily, the pressure coefficient will increase, when the 

shock wave is reflected by the flat plate and heads to the lower surface of the EOS. In both Figure 

8.19 (a) and Figure 8.19 (b), three reflected shocks exactly correspond to the three peaks of the 

surface pressure. The strength of the shock is directly expressed by the magnitude of the pressure 

coefficient. The first reflected shock is the strongest, then the second. The third reflected shock is very 

weak. Its associated third pressure peak is very flat. When a shock is reflected back, its magnitude of 

the pressure peak approximately remains less than half of its earlier peak magnitude. In Figure 8.19 

(b), the peak magnitudes related with three impingements are approximately 0.071, 0.033, and 0.011, 

respectively. 

 

 
Figure 8.20: The relative pressure ∞pp /  on the symmetry plane in inviscid flow,  

where 8.6=∞M , °=∆ 0α , and h/L = 0.0662. 

 

Except the shock influences, there is still another small disturbance. That is the first small 

increase of pressure coefficients in Figure 8.19 (b), for the x/L in the interval (0.06, 0.08). At a small 

distance h/L = 0.0662, the region between the lower side of the EOS and the flat plate forms a very 

narrow inlet for freestream. The small disturbance comes from an air compression in this narrow 

channel. To observe the pressure change in the head part of Figure 8.9.a.1, the region around the nose 

is magnified in Figure 8.20. The legend about the relative pressure is adjusted to the level [1.6, 1.7]. 

The contour of ∞pp /  between the bow shock and the lower surface of the EOS shows a weak 

compression trace.  

In Chapters 6 and 7, we usually use the relative density ∞ρρ /  to express the shock structures, 
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because it could clearly illustrate the density gradient as the Schlieren picture does. Using the relative 

pressure ∞pp /  to describe the flow fields, some examples in this chapter have clearly shown the 

shock structures. Their traces do not be smeared by the influence of the boundary layer on the solid 

surface as the cases using the relative density. It is a valuable expression in the force analysis for the 

separation process.  

 
Figure 8.21: The relative pressure ∞pp /  on the lower surface of the EOS  

in inviscid flow with 8.6=∞M , °=∆ 0α , and h/L = 0.0662. 

 

Still for the case with separation distance h/L = 0.0662 in inviscid flow, the pressure distribution 

is illustrated on the half part of the lower surface of the symmetric EOS geometry in Figure 8.21. To 

show the same shock structure illustrated by the relative density ∞ρρ /  in Figure 8.15, the legend 

about the relative pressure ∞pp /  is adjusted to the range [0, 0.08]. Then the impact of the three 

reflected shock waves on the lower side of the EOS surface could be noticeable with this very 

sensitive contour legend. Nevertheless, the hitting trace from the third reflected bow shock is still 

very blurred. As a drawback of the sensitive legend, the relative pressures are always be painted with 

a same colour, when relative pressures are great than 0.08.  

In Figure 8.21, it illustrates that the biggest pressures appear also in the regions on the bow nose 

of the EOS, on the leading edge of wing, and on the neighbor regions of these direct compressions. In 

other regions, the magnitude values of the pressure coefficients are much smaller. Their impacts 

caused by the three reflected shock structures are also much weak comparing to the effects induced by 

these direct compressions.  

As in Chapter 7, the pressures are quantitatively analyzed again on the other two lines as shown 

in Figure 5.17 with x = 0.6L and x = 0.75L. These two lines are vertical to the direction of freestream 

and located on the lower side of EOS. In Figure 8.21 it is shown that pressure coefficients on these 

two lines are very much affected by the second reflected shock wave and the compression zone of the 

wing. Accompanying the increase of y/Local, Cp decreases when y/Local leaves the region 

influenced by the second reflected shock wave. Thereafter, Cp increases when y/Local approaches to 

the compression zone of the wing. This tendency is exactly described with the pressure magnitude on 

the line with x=0.6L in Figure 8.22. When y/Local is in the value of 0 to 0.2, this area is influenced by 

the second reflected shock. From 0.2 to 0.625, it corresponds to a region between the two shock 
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impacts. From 0.625 to 1 the region is affected by the first reflected shock wave as well as by the 

shock from the wing. For laminar flow, similar results are presented also in Figure 8.22. 

 

 
Figure 8.22: Pressure coefficient comparison between Euler and NS simulations  

on the lower surface of the EOS with x = 0.60L for the case of h/L = 0.0662.   
 

 

Figure 8.23: Pressure coefficient comparison between Euler and NS simulations 

on the lower surface of the EOS with x = 0.75L for the case of h/L = 0.0662. 

 

On the line with x=0.75L the dependence of the pressure on the shock structure is more complex 

as shown in Figure 8.21 and in Figure 8.23. The section begins at the region affected by the second 

reflected shock. The magnitude of the pressure is about 2/3 times as great as the one in the 

corresponding point at x=0.6L. Then the cross section intersects the middle part of the wing, where 

the shock from the wing and the second reflected shock interfere with each other in a wide region. 

Since the second reflected shock and its interference with the wing shock are already weak, no strong 
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fluctuations occur. The superposition of the interference decreases the pressure magnitude. It forms a 

very shallow region between the impingement points of first and second reflected shocks. In Figure 

8.23, the line with x=0.75L crosses this shallow region, when y/Local is in the range from 0.2 to 0.62. 

After leaving this region, the influence on the surface pressure is again dominated by the shock from 

the wing and its coefficient reaches 0.25. 

When the two stages are separated further away, the shock waves as well as its reflected waves 

travel a longer distance before they reach a solid surface and are reflected. Their impingement points 

move downwards. Subsequently, the numbers of the pressure peaks decrease on the lower surface of 

the EOS.  

 

Figure 8.24: Comparison of pressure coefficients between Euler and NS simulations  
on the lower surface of the EOS with y= 0  

for the cases of h/L = 0.0812, 0.1812, 0.2562, and infinity. 
 

Consider the pressure distribution on the line with y= 0 at different separation distances h/L = 

0.0812, 0.1812, 0.2562. Because of bow shock, the biggest pressure achieves in the region of the EOS 

nose. When x/L leaves the EOS nose, the pressure coefficients decrease significantly as shown in 

Figure 8.24. In other respects, accompanying the increase of the separation distance h/L, the 

impingement points on the lower surface of EOS shift downstream. As a result, these impingement 

points could shift out of the lower surface of the EOS. The number of pressure peaks could become 

less. The shock dissipates more energy when it passes through a longer separation distance. Hence, 

the shock impact on the lower surface of the EOS with greater separation distances h/L is weaker than 

that with smaller separation distance. With great distances h/L =0.1812, 0.2562, and infinity, the 

influence of the reflected shocks becomes very weak. Their pressures on the line with y= 0 shows 

smooth decease when x/L > 0.05.  

For h/L ≥  0.1812, the contour of the pressure coefficients on the line with y=0 are nearly 

overlapped with different distances. To show the pressure change more clearly in Figure 8.24, only 

one Euler simulation and one NS simulation are presented.  
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For the case h/L = 0.0812, there are still two pressure peaks generated by the reflected shocks. 

The magnitude of the pressure peak is about 0.05, which remains 70% of the pressure strength 

comparing to the case with h/L = 0.0662. The magnitude of second peak is only 0.014. It attenuates 

much more and remains only 42% of the pressure peak value comparing to the case of h/L = 0.0662. 

For both inviscid and laminar flows, these pressure changes are synthesized quantitatively in Figure 

8.25. Simultaneously, the first and second impingement positions with h/L = 0.0812 shift in the x/L 

direction about 0.13 and 0.32 downwards also comparing to the case of h/L = 0.0662. 

 

 
Figure 8.25: The diminishment of pressure peaks generated by two reflected shocks  

on the lower surface of the EOS with y= 0 for the cases of h/L = 0.0662 and 0.0812. 

 

 
Figure 8.26: The distribution of the pressure on the lines with x = 0.6 and x = 0.75 

for the case of h/L = 0.1812 in inviscid flow. 

 

Also shown in Figure 8.24, pressure peaks induced from reflected shocks do not exist anymore, 

when the separation distance h/L ≥  0.1812. In these cases, the separation distances are already too 

far away and the reflected shocks do not hit the EOS lower surface any more. They have been already 

depicted in Figure 8.9 as a series of two dimensional pictures. In Figure 8.26 with h/L = 0.1812, the 

great pressures are induced only by the air compressions directly from the EOS geometry, such as the 

EOS nose and the wing edge. Around these regions, compression spreads somewhat to their 

neighboured regions. There is no trace of the reflected bow shock on the lower surface of EOS.  

On the line with x/L=0.6 in Figure 8.27, the distributions of the pressure coefficients are plotted 

at different distances respectively. For the case with h/L = 0.0812, there is a pressure increase 

between the point with y/Local = 0.3 and the point with y/Local = 0.8. The highest local peak is in the 
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range from 0.05 to 0.07 corresponding to viscous and inviscid flows.  

 

 

Figure 8.27: Comparison of pressure coefficients among Euler and NS simulations  

on the lower surface of the EOS at x = 0.60L  

for the cases of h/L = 0.0812, 0.1812, 0.2562, infinity. 

 

  
Figure 8.28: The distribution of the pressure on the lines with x = 0.6 and x = 0.75 

for the case of h/L = 0.0812 in inviscid flow. 

 

We could better understand the Figure 8.27 by referring to Figure 8.28. With h/L = 0.0812, the 

impingement point from the first reflected shock moves downstream and does not overlap with the 

shock from the wing. The line with x/L=0.6 intersects the region with pressure peak generated by the 

first reflected shock. Therefore, there are two local areas of reduced pressure and an extra local region 

with increased pressure. The first local area of reduced pressure is very flat. 

Back to the Figure 8.27, when h/L ≥  0.1812, there is no trace of reflected shock on the lower 

surface of the EOS, and all solutions are nearly identical. On the whole line with x/L=0.6, their 

pressure magnitudes are smaller comparing to that with smaller separation distances. Once more, one 

Euler simulation and one NS simulation are shown to present all overlapped solutions.  
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Similarly, along the line with x/L=0.75 in Figure 8.29, there is a pressure increase again with the 

smaller distance h/L = 0.0812 in inviscid flow. In contrast to Figure 8.28, this line crosses the region 

influenced by the first reflected shock. The magnitude of this peak is about one third of corresponding 

value in the line x/L=0.6. In laminar flow, the first reflected shock is already very weak and its 

impingement point is already connected with the shock of the wing. In Figure 8.29, the NS simulation 

shows a smooth increase of the pressure, and there is nearly no clear trace of the first reflected shock.  

 

 
Figure 8.29: Comparison of pressure coefficients among Euler and NS simulations on the 

lower surface of the EOS at x = 0.75L for the cases of h/L = 0.0812, 0.1812, 0.2562, infinity. 

 

When h/L ≥  0.1812. All solutions are nearly identical. In addition, most of the pressure 

coefficients are negative, because these points on the line with x/L=0.75 already belong to the 

expansion zone. Pressure coefficients increase significantly in the vicinity of y/Local=1. This point is 

located on the leading edge of the wing. These pressure increments come purely from the air 

compression by wing geometry. There is no contribution from the impact of reflected shocks.  

Figures 8.24, 8.27 and 8.29 illustrate the pressure distribution for both in inviscid flow and in 

laminar flow with distance h/L = 0.0812, 0.1812, 0.2562, and infinity. Some numerical differences 

between Euler simulation and NS simulation are exhibited with distance h/L ≤  0.0812. When h/L ≥  

0.1812, NS simulations and Euler simulations are nearly identical. With these great separation 

distances, the flat plate and its reflection do not influence the pressure on the lower surface of the EOS 

practically. The NS simulations usually are smoother than Euler simulations. The Euler simulations 

show traces of the shock waves clearly.  

Though there is no impingement from reflected shock for h/L ≥  0.1812, the bow shock could 

directly hit the flat plate. This direct impact actually plays a more important role for the carrier stage. 

On the other hand, if considering a three-dimensional carrier stage, the bow shock or the shock from 

the wing from carrier stage may directly strike the orbital stage. Therefore, distances with h/L ≥  

0.1812 are still very important for the separation process with a complete carrier model. It changes the 
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pressure distribution of the orbital stage as well as its aerodynamic characteristics.  

 

8.3  Aerodynamic Coefficients  
 

The shock structures have been intensively and also quantitatively analyzed in the above sections. 

Related with these shocks, the aerodynamic properties, such as pressure, density and velocity, have 

been illustrated in the computing domain, especially for the lower side of the EOS. Except the bow 

shock and the shock from the wing, the reflected shock waves bring the strongest pressure impacts on 

the TSTO vehicles.  
 

 CD CL CM 
Navier-Stokes, Free EOS 0.02270 -0.01616 -0.00905 

Navier-Stokes, h/L = 0.2562 0.02263 -0.01626 -0.00908 
Navier-Stokes, h/L = 0.1812 0.02262 -0.01571 -0.00928 
Navier-Stokes, h/L = 0.0812 0.02315 -0.00064 -0.00998 
Navier-Stokes, h/L = 0.0662 0.02399 0.00985 -0.01059 

Euler, Free EOS 0.02259 -0.01615 -0.00915 
Euler, h/L = 0.2562 0.02261 -0.01638 -0.00917 
Euler, h/L = 0.1812 0.02246 -0.01624 -0.00906 
Euler, h/L = 0.0812 0.02245 -0.00285 -0.01018 
Euler, h/L = 0.0662 0.02286 0.00754 -0.01068 

Table 8.1:  Numerical lift-, drag- and pitching moment- coefficients for the EOS  
with 8.6=∞M , °=∆ 0α , and rotation center (0.65, 0, 0). 

 

To predict the movement of the two stages in the separation process with Mach 6.8, the forces 

and moments, which summarize the pressures and the stresses around the whole surface of the orbital 

stage, are of most importance. Corresponding to different separation distances h/L between the EOS 

and the flat plate, the numerical drag-, lift-, and pitching moment- coefficients are tabulated for 

laminar and inviscid flows in Table 8.1. 

 

 
Figure 8.30: Drag coefficients dependent on the separation distances  

at 8.6=∞M  and °=∆ 0α . 
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To see the relationship associated with different distances h/L more clearly, the drag coefficients 

CD are extracted firstly from Table 8.1 and shown visually in the Figure 8.30. These coefficients 

decrease in laminar flow when h/L increases to 0.1812. For inviscid flow the drags decrease only 

when h/L extends from 0.0662 to 0.0812. Thereafter, they increase from 0.0812 to 0.1812. After 

h/L ≥ 0.2562, they become nearly constant for both laminar and inviscid flows. The drag coefficients 

in inviscid flow are smaller than the corresponding values in laminar flow.  

In the same way, the lift coefficients CL are depicted in Figure 8.31. The lift coefficients in 

laminar flow are greater than those in inviscid flow. When the separation distances h/L increase, both 

lift coefficients decrease dramatically until h/L=0.1812. When h/L is between 0.1812 and 0.2562, 

lifts change only slightly. For h/L ≥ 0.2562, the lift coefficients become nearly constant, too. 

 

 
Figure 8.31: Lift coefficients dependent on the separation distances  

at 8.6=∞M  and °=∆ 0α . 

 

 
Figure 8.32:  Pitching moment coefficients dependent on the separation distances  

at 8.6=∞M , °=∆ 0α , and rotation center (0.65, 0, 0). 

 

For different separation distances h/L, Figure 8.32 presents the tendency of the pitching moment 

coefficients for the EOS. For laminar flow, the pitching moment increases when the distance h/L 
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increases, until h/L is greater than 0.2562. Then the pitching moment also becomes constant. The 

pitching moments from Euler simulations behave in a similar tendency, but with a little vibration. All 

of the pitching moments are negative. It means that the EOS is turned around the rotation center 

(0.65,0,0) in anticlockwise manner.  

As it was shown in section 8.1 and 8.2, the shock structure affects pressure distribution on the 

lower surface of the EOS only when h/L is in the range of 0.0662 – 0.0812. When h/L ≥0.1812, the 

reflected shock waves do not obviously affect the pressure on the lower surface of the EOS. This 

leads to a nearly constant lift as shown in Figure 8.31. However, the drag and pitching moment have 

still some changes as presented in Figures 8.30 and 8.32. These phenomena could be attributed to the 

changes of the aerodynamic properties in the wake zone of the EOS.  

Compare the aerodynamic coefficients in the cases with Mach 4.05, Mach 6.8 and Mach 7.9. 

Assuming the angle of attack °=∆ 0α  and separation distance h/L = 0.1812, Table 8.2 collects these 

coefficients for both laminar and inviscid flows. In laminar flow, the drag at Mach 6.8 is the smallest. 

Its lift is also the smallest. For the angle of attack °=∆ 0α , all the lift coefficients and the pitching 

moment coefficients with the three Mach numbers are negative. This means, if the separation process 

is set with the initial condition °=∆ 0α  and distance h/L = 0.1812, the EOS is pushed downwards 

and the nose of the EOS is turned anticlockwise at all these Mach numbers. The similar results could 

be obtained also for inviscid flow. Therefore, the initial condition with °=∆ 0α  should not be 

adopted for the EOS. It should be pointed out, that the rotation centers are defined differently in the 

above three cases. Their operating temperatures are also inconsistent.   

 

 CD CL CM 
Navier-Stokes, 05.4=∞M  0.02872 -0.01076 -0.01082 

Navier-Stokes, 8.6=∞M  0.02262 -0.01571 -0.00928 

Navier-Stokes, 9.7=∞M  0.02347 -0.00925 -0.00748 

Euler, 05.4=∞M  0.02788 -0.01358 -0.01093 

Euler, 8.6=∞M  0.02246 -0.01624 -0.00906 

Euler, 9.7=∞M  0.02183 -0.01619 -0.00519 

Table 8.2:  Numerical lift-, drag-, and pitching moment coefficients  
for the EOS with  °=∆ 0α  and h/L = 0.1812. 

 
 CD CL CM 

h/L = 0.1812 0.02177 0.01081 -0.00697 
h/L = 0.2562 0.02189 0.01015 -0.00674 

Table 8.3:  Numerical lift-, drag-, and pitching moment- coefficients for the EOS 
with  °=∆ 3α , 8.6=∞M , and the rotation center (0.65, 0, 0) in laminar flow. 

 

Only changing the angle of attack to °=∆ 3α , the lift converts to a positive coefficient in Table 

8.3. The drag becomes smaller and the pitching moment tends to less negative.  

When the separation distance increases further from h/L = 0.1812 to h/L = 0.2562, the lift 

becomes a bit smaller shown also in Table 8.3, but it still remains positive. Oppositely, the drag 
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becomes greater. Only the pitching moment is improved to be less negative. These results support the 

assertion that the orbital stage should be released around °=∆ 3α . 

 
8.4  Comparison with Mach 4.05 in Designed Environment 

 

To discuss the influence of separation velocity in the same environment, another steady case is 

investigated at the altitude of 35 km. The TSTO vehicles fly at a Mach number of 4.05, instead of the 

Mach number of 6.8. The other environment parameters are the same as those listed in the beginning 

of this chapter. It could be derived that 6
m 1067.0Re ×=  1/m. In the following numerical simulation, 

the separation process is considered in both laminar and inviscid flows with °=∆ 0α , and h/L = 

0.0662. 

 

 
Figure 8.33: Contour of relative density ∞ρρ /   

with  °=∆ 0α , 05.4=∞M , and h/L = 0.0662 in inviscid flow. 

 

 
Figure 8.34: Contour of relative density ∞ρρ /   

with  °=∆ 0α , 05.4=∞M , and h/L = 0.0662 in laminar flow. 

 
The contour plots of relative density ∞ρρ /  are used to illustrate the shock structures on the 

symmetry plane. In Figure 8.33 three impingements of the reflected bow shock on the lower surface 

of the EOS could be clearly seen in the inviscid flow. The shock angle between bow shock and the 

freestream is greater than that for the case with Mach 6.8. The flow field structures for the laminar 
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case are similarly presented in Figure 8.34. The most important aerodynamic properties are gathered 

in Table 8.4. The drag coefficients with Mach number of 4.05 are bigger than those with Mach 

number of 6.8. This is attributed to the different shock influences on the pressure field in the tail 

region. As expected, the drag coefficients in laminar flow are bigger than that in the inviscid flow.  

 

 CD CL CM 
Navier-Stokes, 05.4=∞M  0.02933 0.03657 -0.01472 

Euler, 05.4=∞M  0.02821 0.03531 -0.01485 

Navier-Stokes, 8.6=∞M  0.02399 0.00985 -0.01059 

Euler, 8.6=∞M  0.02286 0.00754 -0.01068 

Table 8.4:  Numerical lift-, drag-, and pitching moment- coefficients for the EOS 

with  °=∆ 0α , and h/L = 0.0662. 

 

Compare Figure 8.35 with Figure 8.18. With a greater shock angle, the bow shock passes through 

a short path to hit the flat plate. The shock dissipates its energy relatively little with a shorter path. In 

the same way, the impact on the lower surface of the EOS by the reflected shocks at Mach 4.05 

dissipates less energy than the case at Mach 6.8. Then the peaks of the pressure coefficients at Mach 

4.05 are much bigger than their counterparts at Mach 6.8. Its impingement points move upwind along 

the EOS lower side. The three pressure peaks at 05.4=∞M  are located on x/L =0.22, 0.43, and 0.66, 

respectively. Their correspond magnitudes of pressure coefficient peaks are 0.098, 0.061, and 0.052. 

In the case with 8.6=∞M , x/L = 0.26, 0.56, 0.89 and the magnitudes of pressure peaks are 0.070, 

0.033, and 0.018 correspondingly. Its force components in the direction perpendicular to the 

freestream at Mach 4.05 are greater comparing to the case at Mach 6.8. 

 

 
Figure 8.35: Pressure coefficients using laminar and inviscid flows  

on the lower surface of the EOS with y = 0, 05.4=∞M , °=∆ 0α , and h/L = 0.0662. 

 
The lift coefficients at 05.4M =∞  are three times larger than those at 8.6M =∞ . The pitching 

moment coefficients with a small Mach number are more negative than those at a big Mach number. 
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Further, the pitching moment coefficients in laminar flow are greater than their counterparts in 

inviscid flow. 

 

8.5  Turbulence Simulation 

 

In the separation process at Mach 6.8, the Reynolds number for the orbital stage 7103.24Re ×= . 

It is already big enough to induce turbulent flows. Using the B-L turbulence model, a steady case for 

h/L = 0.1812 is simulated with the much refined grid (1.15 million nodes) at °=∆ 0α . 

In Figure 8.36, the development of shock waves is described by the relative density on the 

symmetry plane. Because of the boundary layer and the big viscous effect, the shock waves on the 

upper side of the EOS become not very straight. They show some vorticity characteristics.  

 

 
Figure 8.36: Contour of relative density ∞ρρ /  using B-L model  

with the much refined grid, °=∆ 0α , 8.6=∞M , and h/L = 0.1812. 

 

On the lower side of the EOS, the flow field between the EOS and the flat plate becomes more 

complex. A weak shock wave is clearly generated from the beginning of the flat plate. It is a very 

weak oblique shock wave above the boundary layer and further intersects with the bow shock waves. 

Its compression ratio of the density ∞ρρ /  is about 1.09 in a relative wide region. In Chapter 6.4, this 

value is 1.03 at Mach 4.05 also in a turbulence model. However, it is still weaker than ∞ρρ /  of 1.29 

in the case for laminar flow at Mach 7.9. Though this shock wave is still weak, the beginning position 

of the flat plate decides its intersection point to the bow shock and affects the aerodynamic results of 

the EOS. 

The influence of the boundary layer on the flat plate becomes much bigger than the cases with 

laminar flow. The main reflected shock does not impinge lower surface of the EOS, but hits the wake 

zone. This increases the pressure and density in tail region.  

In Table 8.5, the drag coefficient CD simulated by the B-L model increases about 18% comparing 
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to that of the laminar model. That means that the friction in turbulent flow is much stronger than in 

laminar flow. Correspondingly, the lift coefficient CL in turbulent flow increases about 20% and the 

pitching moment coefficient CM changes less than 1%. 

 

 CD CL CM 
Navier-Stokes, standard grid 0.02262 -0.01571 -0.00928 

Euler, standard grid 0.02246 -0.01624 -0.00906 
B-L model, much refined grid 0.02633 -0.01191 -0.00929 

Table 8.5:  Numerical lift-, drag-, and pitching moment- coefficients for the EOS  
with °=∆ 0α , 8.6=∞M , and h/L = 0.1812. 

 
8.6  Unsteady Separation Process 

 

For inviscid flow at Mach number of 6.8, an unsteady separation maneuver is simulated in the 

designed environment at the altitude of 35 km as described in the beginning of this chapter. More 

parameters about unsteady separation process are listed in Table 8.6. 

 

Initial distance h/L =0.0662 
End distance h/L =0.2562 

Initial angle of attack o00 =α  

Maximal angle of attack o5max =α  

Reduced frequency redk =0.01 

EOS length [m]  28.8=refL  

Table 8.6:  The parameters describing the unsteady process. 
 

 
Figure 8.37: The separation distance /Lhmove  corresponding to τ  

in the unsteady separation process with redk =0.01. 

 

As discussed in section 6.2.3, the orbital stage is raised by a mechanical support mechanism from 

the carrier stage. At a proper position it will be released. This process could be described by the 
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simplified model as: the EOS is moved upwards turning its nose clockwise. The rotation center of the 

EOS is located at (0.65, 0, 0) at the beginning. Thereafter, the rotation center is fixed on the same 

position of the EOS, which is moving upwards. These changes of separation distance /Lhmove and of 

the angle of attack α corresponding to the dimensionless time τ are depicted in Figures 8.37 and 8.38, 

respectively. Their dependences are the same formulas as in Eqs. (6.8) and (6.9). 

 

 
Figure 8.38: The angle of attack ∆α [°] corresponding to the dimensionless time τ  

in the unsteady separation process with redk =0.01. 

 

 

Figure 8.39: Lift coefficients in the separation process as function of /Lhmove   

for the unsteady separation process in inviscid flow. 
 

When the separation distance /Lhmove increases, the space between the two stages becomes large 

and the flow field expands compared to the initial stage. The compression on the lower side of the 

EOS turns out to be weaker than before. As a result, the lift decreases from a positive value of 0.0075 
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to a negative value as described in Figure 8.39. This decrease tendency is converted until /Lhmove  is 

greater than 0.048. With the further increase of the angle of attack, the lift starts to increase. After the 

angle is greater than 2 degrees, the lift is positive again. This corresponds to the separation distance 

/Lhmove =0.077. Since this point, the lift keeps positive. 

 

 
Figure 8.40: Pitching moment coefficients as function of /Lhmove   

for the unsteady separation process in inviscid flow. 
 

In Figure 8.40, the pitching moment always has negative values. It is harmful to the separation 

process, because it turns the nose of the orbital stage to the carrier stage and decreases the angle of 

attack. Consequently, it results in a decrease of lift. However, it shows that the absolute values of the 

pitching moment coefficients are very small. Accompanying the increase of distance /Lhmove , it 

becomes less negative. 

 

Figure 8.41: Drag coefficients C D  as function of /Lhmove   

for the unsteady separation process in inviscid flow. 
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 The drag coefficient fluctuates less than 7% for the whole separation process. Figure 8.41 

presents a drag minimum corresponding to the angle of attack of 2.2 degrees or corresponding to the 

position /Lhmove =0.083. The drag is dominated by the increase of the cross area relative to the 

freestream and by the transition of the pressure field on the tail region. 

At ∞M =6.8, the relation between the separation distance /Lhmove  and the physical time realt  is 

presented in Eq. (6.10). Their dependences are visually shown in Figure 8.42. The distance /Lhmove  

starts from zero to 0.19 corresponding to the total separation distance h/L from 0.0662 to 0.2562. It 

runs 1.426 seconds in the real environment. Similarly, the relation between the angle of attack and the 

physical time is described in Eq. (6.11). 

 

 
Figure 8.42: Separation distance /Lhmove  corresponding to time t real  [s] 

 in the unsteady separation process with redk =0.01 and 8.6=∞M . 

 

In Figure 8.43, a series of pictures are selected from the continuous separation process. They 

illustrate the development of the shock structure in this unsteady process. Every two pictures lapses 

with an interval of 0.23 seconds.  

When the time refers to 0 second, it is the same picture as the steady case described in section 

8.1.5 with h/L = 0.066. On the symmetrical plane there are three impingement points on the lower 

surface of the EOS, which are related to the reflected shocks. This three-impingement-structure 

sustains only to the next picture in Figure 8.43.  

In the third picture of Figure 8.43, it is obvious only two reflected shock structures. Merely one 

reflected shock hits on the lower surface of the EOS in the fourth picture. From the fifth, the 

impingement point moves further downstream to the wake region. The reflected shock affects the 

pressure distribution weakly on the lower surface of the EOS. Nevertheless, they still affect the 

pressure distribution in the tail region. These influences could change the magnitude of the drag and 

the pitching moment.   

From the above analysis about the lift for the EOS/flat plate model, we could conclude that the 
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orbital stage should be released with the angle of attack greater than 2 degrees, and its corresponding 

distance between the EOS and the flat plate is h/L=0.1432. Before this point, a strut system should 

hold two stages together. It adjusts the orbital stage to a desired posture, and finally releases the 

orbital stage. 

 
 

1) at 0 seconds 

 
 

2) at 0.23 seconds 

 
 

3) at 0.46 seconds 

 
 

4) at 0.70 seconds 

 
 

5) at 0.93 seconds 

 
 

6) at 1.16 seconds 

 
 

7) at 1.39 seconds 

 
Used Parameters: 

8.6M =∞  

height=35 [Km] 
=∞T -36.1 [°C] 

EOS Length = 28.8 [m] 

redk =0.01 

inviscid flow 

Figure 8.43: Shock structure in the designed separation environment  

at 35-kilometer altitudes in inviscid flow. 

 

Though the release position could be selected to possess a positive lift, there is still a danger that 

the lift goes into a negative zone when the angle of attack becomes smaller. This danger originates 

from that the bow nose is turned anticlockwise by the negative pitching moment. To overcome the 
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negative pitching moment, the angle of attack could be chosen large enough. Consequently, the lift 

will not fall into negative zone in the whole separation process, even if the negative pitching moment 

could alter the angle of attack to be smaller. Another possibility is installing some extra equipment, 

such as elevator, flaps, and etc. The auxiliary equipment will revise the negative pitching moment.  
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9  Conclusion 

 
To study the aerodynamic properties of the TSTO vehicle in separation processes, the software 

FLMNAV is developed especially for hypersonic flow. Corresponding to the experiments performed 

in the supersonic wind tunnel T-313 at ITAM SB RAS and in the hypersonic shock tunnel TH2-D at 

RWTH Aachen, a series of separation processes have been numerically simulated. The experimental 

results are used not only to analyze the separation process, but also to validate the software FLMNAV. 

Though there is no experimental data for the designed environment, it is still numerically researched 

that the TSTO vehicle separates at Mach 6.8 and at a height of 35 kilometers above the sea level. 

The Navier-Stokes equation system is used to describe the separation process. Its numerical 

discretization associated with FLMNAV is based on the finite-volume approximation. The modified 

AUSM and MUSCL schemes are applied for the convection terms. The modified AUSM is a 

combined method of Advection Upstream Splitting Method and Upwind Flux-Vector Splitting 

Method. According to the characteristics of shock and slip line, the software could be inclined to 

UFVSM or AUSM automatically. The modified AUSM is good at catching the strong shock and 

describing boundary layers. The first order of spatial accuracy is achieved in the regions with strong 

shocks and in boundary layers with dramatic changes of the aerodynamic properties. The second 

order of spatial accuracy could be reached in the other regions. The diffusive flux vectors are 

discretized by the Chakravarthy method, which is of the 2nd order accuracy in space. The time 

discretization possesses the 1st order accuracy. 

To benefit from the body-fitted mesh, the Cartesian coordinate system must be transformed into 

curvilinear system. All of the equations and the boundary conditions must be also transformed. 

Characteristic boundary conditions are applied for the Navier-Stokes equation system. Time-develop 

technique is also utilized to obtain the solution of steady cases. The steady solutions not only assign 

the initial values for the unsteady cases, but also provide most of the information for the aerodynamic 

design. Numerical iteration techniques are applied to solve these steady and unsteady separation 

cases.  

The initial geometry and body-fitted meshes are generated by the software package ICEMCFD, 

and their orthogonality and smoothness are further improved by the in-house software GRIDFLM. 

According to the characteristics of supersonic and hypersonic flows, a very compact computational 

domain around the orbital stage is confined to save computational effort. Four grids with different 

resolution are utilized in the numerical simulations. 

The aerodynamic properties are studied with a variety of Mach numbers, angles of attack, and 

separation distances between carrier and orbiter. In different simulations the carrier stages are 

idealized as flat plates and the orbital stages are considered as the EOS geometries, which are delta 

wing space vehicles. The inviscid, laminar, and turbulent models are investigated to show the 

influence of different flows.  

Comparing to the available experiments performed in wind tunnel T-313 and in tunnel TH2-D, 

the computational results agree well with the experimental results in most of the cases, especially for 
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the cases at Mach 4.05. The numerical methods mentioned above are suitable to simulate the flow 

physics associated with the two-stage separation process. It also indicates that the code FLMNAV can 

provide aerodynamic properties in describing the separation process with an acceptable accuracy.  

In majority, the NS simulations approach the experimental data closer than Euler simulations. 

The contour of the relative density in inviscid flow presents very clear shock structures between the 

two stages. The pressures generated by the shock waves in laminar flow are usually greater than that 

in inviscid flow. The turbulent flow results in a much thicker boundary layer as well as an increased 

drag of the orbital stage at Mach 6.8. 

In the case with high Mach number 7.9 as well as turbulent flow, radical changes of the physical 

properties between the two stages lead to a very slow numerical convergence. The convergence 

depends significantly on the mesh quality. If the solution system is sorted with the expenditure of 

computing time, then Baldwin-Lomax turbulent model spends the most CPU time. The Navier- 

Stokes system and the Euler system rank the second and the third. The software FLMNAV still needs 

to be improved, when it is applied for cases with higher Mach number, with turbulent flow, with 

complex geometry, as well as with unsteady process.  

All of the numerical and experimental results illustrate that a bow shock is formed around the 

blunt nose of the orbital stage. The greatest relative density in this bow shock can be compressed to a 

magnitude of about 6.5 times as great as that of the freestream at the Mach 7.9. The shock wave 

stretched somewhat like a curved cone to the downstream. Its lower part hits the upper surface of the 

carrier stage, and then is reflected back to the lower surface of the orbital stage. With a small 

separation distance, the shock waves may rebound many times between the two stages. Assuming 

that the separation distance h/L is smaller than 0.0662, the lower surface of the EOS is hit three times 

by the shock waves reflected from the lower stage for the case of Mach 6.8. These impacts yield 

pressure peaks on the impingement points. Therefore, the shock waves dominate the lift and pitching 

moment of the orbital stage remarkable. In the wake zone of the orbital stage, the fluid expands very 

much. The shock waves reflected by the carrier stage could hit the wake region. It could change the 

pressure distribution in this wake region significantly. The boundary layer becomes thicker, when the 

Mach number of the freestream increases. The great friction on the flat plate in the viscous flow forms 

a slope of boundary layer. It could result to a weak oblique shock wave at a great Mach number. This 

shock wave stretches downwards and further intersects the bow shock wave. The shock structures 

could be altered by a different beginning position of the flat plate. This is also true even if considering 

the separation at a small Mach number, but for turbulent flow. 

For a very small separation distance between the two stages, the lift coefficients are positive for 

the orbital stage. The lift decreases with the increase of the separation distance. It could even become 

negative with a greater distance. The angle of attack also influences the aerodynamic properties 

dramatically. When the angle of attack of the orbital stage is bigger than 2 degrees, the lift coefficients 

could be positive. Unfortunately, the pitching moment coefficients are always negative in all 

investigated cases. When the EOS moves closer to the flat plate, the lift coefficient will increase. 

Consequently, the aerodynamic force tends to separate the two stages automatically. But the pitching 
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moment coefficient becomes more negative in this process. This means that the nose of the orbital 

stage may turn down to the carrier stage and decrease the angle of attack. Therefore, it is very 

important to set the orbital stage at a certain angle of attack to achieve a positive lift when carrier 

releases the orbiter. In the separation process, the negative pitching moment should not turn the nose 

down to an angle, with which the lift becomes negative.  

It is suggested that a strut system fixes the orbital stage to carrier stage. It raises the orbital stage 

to the starting separation position with an angle of attack greater than 2 degrees with a moderate 

separate velocity. This incidence should assure that the lift would not become negative in the whole 

separation process, although the negative pitching moment may reduce that angle. Some carefully 

designed elevators, flaps or other equipment could be used to adjust the pitching moment. By setting 

these apparatuses properly, the whole orbital stage may obtain a suitable pitching moment 

characteristics. Together with a positive lift, two stages could be separated safely by the aerodynamic 

properties in the designed environment. 
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APPENDICES 

A  Vector Operation 

 

The Navier-Stokes equation system, the Euler equation system, the turbulence model, and their 

boundary conditions involve high level of generality and high degree of abstraction. To express them 

clearly and shortly, vectors and tensors are intensively used in this thesis. Their definitions and 

operations are collected in this section as some useful mathematical tools.  

In Cartesian orthogonal coordinate system, the unit vectors of x, y, z axes are defined as 

zyx eee
rrr

,, , respectively. Any two vectors a
r

 and b
r

 in this coordinate system could be expressed as 

T

zyxzzyyxx aaaeaeaeaa ),,(=⋅+⋅+⋅=
rrrr

, (A.1) 

and  

T

zyxzzyyxx bbbebebebb ),,(=⋅+⋅+⋅=
rrrr

.           (A.2) 

Given the angleθ  between a
r

 and b
r

, the scalar product between two vectors is defined as  

θcos|||| ⋅⋅=⋅+⋅+⋅=• bababababa zzyyxx

rrrr
,          (A.3) 

where zzyyxx iiiiiii ⋅+⋅+⋅=||
r

, for i = a, b. 

Related with the area of the parallelogram based with the above two vectors, the vector product is 

presented as 
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n
r

 is a unit vector perpendicular to the plane containing a
r

 and b
r

. Its direction could be determined 

by the right-hand rule. The tensor product of a
r

 and b
r

 is given as  
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It is also convenient that the Del operator is used as a vector in the derivation  

T

zyx
),,(

∂

∂

∂

∂

∂

∂
=∇ .                (A.6) 

The similar operations as Eqs. (A.3) and (A.4) with gradient operator are listed as shown below: 
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Physically Eqs. (A.7) and (A.8) describe divergence and vorticity in flow field, respectively. Given a 

three-dimensional tensor as  
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The inner product between a tensor and a vector is 
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As an extension of Eq. (A.7), the inner product between a gradient operator and a tensor is  
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That is the diffusive term in Navier-Stokes equation. Subsequently, a useful identical formula below 

could be easily derived:  

bababa T
rrrrrr

⋅∇•+⋅•∇=⊗•∇ )()()]([ . (A.12) 

In a closed surface S and volume V, Gauss theorem can be written as below for any smooth 

vector function g
r

, 

∫ ∫ ⋅•=•∇
V S

S V dngdg
rrr

.               (A.13) 

More generally a vector form is  

SV
SV

dnd
T ⋅•=⋅•∇ ∫∫

r
σσ )( ,              (A.14) 

where n
r

 is an outward unit normal vector on the surface S. The above Gaussian theorems are used to 

discretize convection and diffusion terms in the finite volume method.  
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B  Conservation Equations 

 

In fluid dynamics, the conservation laws [65, 84] describe the equilibrium effects of internal 

sources and fluxes crossing boundary surfaces. They completely determine a fluid system by adding 

few extra specifications about the nature of the fluid. 

 

B.1  Mass Conservation Equations 

 

With the Eulerian view, a control volume V for our observation is fixed. In a small time period 

t∆ , the net mass decrement, which flows out of the volume V through its closed surface S, could be 

calculated as 

∫ ∆⋅⋅•
S

S tdnV
rr

ρ ,  (B.1) 

where n
r

 is the outward unit normal vector on the infinitesimal surface Sd . V
r

 is the fluid velocity 
and ρ  is the density. The net increment of the mass in the volume V in a small time period t∆ is 

td
t

td
t

∆⋅
∂

∂
≈∆⋅

∆

∆
∫∫ VV
VV

ρρ
.   (B.2)  

In most aerodynamic cases, it is usually assumed that there is no source term. The pure mass flowing 

out through the closed surface is equal to the decrement of the mass in the whole volume. The 

conservation of the mass could be obtained from Eqs. (B.1) and (B.2) as 

td
t

tdnV ∆⋅
∂

∂
−=∆⋅• ∫∫ VS

VS

ρ
ρ

rr
. (B.3) 

Using Gauss’s theorem by substituting Vg
rr

ρ=  into Eq. (A.13) yields 

( ) VS
VS

dVdnV ∫∫ •∇=•
rrr

ρρ .              (B.4) 

The conservation law of mass is rewritten as 
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r
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ρ
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Because V is an arbitrary volume, its differential equation in conservation form is presented as 

( ) 0=•∇+
∂

∂
V

t

r
ρ

ρ
.  (B.6) 

The total differential operator is defined as  

( )
Dt

D
V

t
≡∇•+

∂

∂ r
.                (B.7) 

The non-conservation form of Eq. (B.6) is expressed as 

0=•∇+ V
Dt

D r
ρ

ρ
.                (B.8) 
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B.2  Momentum Conservation Equations 

 

The conservation equation of the momentum can be derived from Newton’s 2nd law 

tVmF ∂∂= /)(
rr

. With the Lagrangian view, let’s follow with a movement of a given infinitesimal 

fluid element Vd . In a very small time interval t∆ , the force acting on the fluid element could be 

considered as a constant and presented as 

Vdf ⋅
r

ρ ,                  (B.9) 

where f
r

denotes the body force per unit mass acting on the fluid element. The force acting on an 

arbitrary volume V is integrated as  

V
V

df ⋅∫
r

ρ .                  (B.10) 

Similarly, the net surface force in time t is expressed as 

S
S

dn ⋅∫σ
r

,                  (B.11) 

where nn

rr
•= σσ : . σ  is a stress tensor. nσ

r
 is a stress vector acting on the closed surface S, n

r
 is still 

the outward unit normal vector. Since we follow a moving element, the mass has not been changed in 

the small time interval t∆ . The acceleration of the flow element is  

Dt

VD
d

Dt

VD
m

Dt

VmD )()()(
rrr

⋅⋅== Vρ .            (B.12) 

Hence, the whole acceleration on the given arbitrary volume V is  

∫ ⋅
V

Vd
Dt

VD )(
r

ρ .                 (B.13) 

From the Newton’s 2nd law we have  

∫ ⋅
V

Vd
Dt

VD )(
r

ρ ∫∫ ⋅+⋅=
VS

VS dfdn

rr
ρσ .            (B.14) 

Applying Gauss theorem Eq. (A.14) to the first term in the right hand side of the above equation, 

VSS
VSS

ddnd
T

n ⋅•∇=⋅•=⋅ ∫∫∫ )( σσσ
rr

.            (B.15) 

Substituting Eq. (B15) into Eq. (B.14), the conservation law of the momentum in integral form is 

derived for any volume V as 

∫∫ ⋅+•∇=⋅
VV

VV dfd
Dt

VD T ])[(
r

r

ρσρ .            (B.16) 
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Finally the conservation law of the momentum in differential equation form is as 

f
Dt
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r

r
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Due to 
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D
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the non-conservation form of Eq. (B.17) is derived as 
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For the aerodynamic separation process, it is assumed that the body force acting on the orbital 

stage 0=f
r

. Using the continuity equation (B.8) and the identity (A.12), the momentum vector 

equation is written in the conservation form as 

TT
VV

t

V
)()]([

)(
σρ

ρ
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∂

∂ rr
r

.            (B.20) 

 

B.3  Energy Conservation Equations 

 

Again we use the Langrangian view. The body force does a work on a fluid element moving at a 

velocity V
r

 in a small time period t∆  

∫ ∆⋅•
V

V tdVf
rr

ρ .                (B.21) 

The work resulting from the surface force is expressed as  

tdVn ∆⋅•∫ S
S

r
σ .                 (B.22) 

Using Fourier’s heat transfer theorem [101], we get the work done by the thermal conduction  

td
n

T
k ∆⋅

∂

∂
∫ S
S

,                 (B.23) 

where T is the temperature and k  is the coefficient of the heat conductivity. Volumetric heating is 

related with a rate of volumetric heat source 
.

q  as 

tdq ∆⋅∫ V
V

.

ρ .                 (B.24) 

The net increment of energy can be obtained as 

V
V
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V
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D




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
+∫ 2

|| 2
r

ρ ,  (B.25) 

where e=c v T . e is specific internal energy, c v  as specific heat at constant volume.  
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Assuming that the energy exchanges only between mechanic energy and heat energy, we use the 

first law of thermodynamics, that is, the energy is conserved, to combine Eqs. (B.21) - (B.25). 
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The integrations on the surface are changed to the integrations on the volumes using the Gauss 

theorem: 
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After substituting Eqs. (B.27) and (B.28) into Eq. (B.26),  
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The differential equation form of the energy conservation could be expressed as 
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Using Eq. (B.6), the conservation form of the energy conservation is  
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According to the total energy density )
2

||
(:

2

e
V

ES +=

r

ρ , the body force 0=f
r

, and heat source 

0=
.

q , the conservation form for the separation process is simplified as 
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C  Navier-Stokes Equations 

 

Though the awareness of the conservation laws is already one of the greatest achievements in 

science, it is still not enough to completely describe the dynamic properties of a fluid. The stress 

tensor σ  in the conservation laws is still unknown. In Navier-Stokes equations [20, 45], the stresses 

σ  are related to the deformation rates of the fluid elements linearly. Added the equation of state as 

well as proper initial and boundary conditions, the Navier-Stokes system becomes completely closed 

for the state variables.  

 

C.1  Stress Tensor 

 

In Figure C.1, a small tetrahedron with a volume V has three coordinate planes with areas xS , 

yS , zS , and an inclined surface with an area S . The latter has the orientation T

zyx nnnn ),,(=
r

 with 

SSn ii /=  (i=x, y, z). On these three coordinate planes and inclined surface we define stresses on 

different planes as iτ
r

 (i=x, y, z) and τ
r

 correspondingly.  

 
Figure C.1: The stresses acting on a tetrahedron in an orthogonal coordinate system. 

 

The body force acting on this element is  

V⋅f
r

ρ .                  (C.1) 

The surface traction is expressed as  

zzyyxx SSSS ⋅−⋅−⋅−⋅ ττττ
rrrr

.             (C.2) 

Using again the Newton’s second law to the small tetrahedron yields  

=⋅ V
dt

Vd
r

ρ V⋅f
r

ρ + zzyyxx SSSS ⋅−⋅−⋅−⋅ ττττ
rrrr

.        (C.3) 
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The above equation can be rewritten as  

=⋅− Sf
dt

Vd
V/)(

r
r

ρρ SSSS zzyyxx /)( ⋅+⋅+⋅− ττττ
rrrr

.        (C.4) 

When the tetrahedron shrinks to one point, SV/  is an infinitesimal. Accordingly any stress could be 

expressed by  

zzyyxxzzyyxx nnnSSSS ⋅+⋅+⋅=⋅+⋅+⋅= τττττττ
rrrrrrr

/)( .       (C.5) 

The stress vector iτ
r

 (i=x, y, z) can be expressed by three orthogonal unit vectors zyx eee
rrr

,, ,  

jij

x, y, zj

i eT
rr

⋅= ∑
=

,τ ,   (i=x, y, z),               (C.6) 

where ijT ,  is a stress component that acts on the plane perpendicular with vector je
r

 and its direction 

along the vector ie
r

. Substitute Eq. (C.6) into Eq. (C.5), we have  

j
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τττ ,         (C.7) 

where )(iτ
r

 (i=x, y, z) are the components of τ
r

 on x, y, z axes. In vector form the above equation is 
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The stress tensor is obtained as  
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and the stress vector in Eq. (C.8) can be abbreviated as  

n
rr

•= στ .                  (C.10) 

 

C.2  Symmetrical Stress Matrix 

  

Consider a two-dimensional case for simplicity. The stresses are distributed as shown in Figure 

C.2. They generate a torque around axis z  

xzyTTM yxyxz ∆⋅∆⋅∆⋅∆+⋅= ])2[( ,, yzxTT xyxy ∆⋅∆⋅∆⋅∆+⋅− ])2[( ,, .     (C.11)  

Using the principle of angular momentum, we have  

dt

d
yxzyxM z

z

ω
ρ )(

12

1 22 ∆+∆⋅∆⋅∆⋅∆= .           (C.12) 
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Combining  Eqs. (C.11) and (C.12), and dividing the equation by zyx ∆⋅∆⋅∆ , we obtain  

yxyx TT ,,2 ∆+⋅ =∆−⋅− xyxy TT ,,2
dt

d
yx zω

ρ )(
12

1 22 ∆+∆ .    (C.13) 

 

 
Figure C.2: Stresses and their directions in x-y plane. 

 

Let x∆  and y∆ converge to zero and use the continuity of stress,  

xyyx TT ,, = .                     (C.14) 

In the similar way, it could be derived that   

xzzx TT ,, = ,  zyyz TT ,, = .                   (C.15) 

Then the stress matrix is symmetric:  

( ) σσ =
T

.                  (C.16) 

 

C.3  Navier-Stokes and Euler Equations 

Related with shear stress tensor and pressure, the stress tensor σ  in Eq. (B.19) could be 

expressed as 

τσ +−= Ip .                     (C.17) 

Here p is the pressure, I  a unit tensor, and τ  a symmetric tensor of viscous shear stress.  

 
Figure C.3: Relationship among viscosity µ , stress τ , and velocity u 

 in viscous and inviscid flows confined by two plates. 
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The Navier-Stokes equations could be used to describe the flow field of the Newtonian fluid, in 

which the stress components are linearly proportional to the strain rates [61, 98]. In nature, most of 

common fluids belong to this type of fluid, such as water, air, gasoline, oil, etc. Relations among 

coefficient of (dynamic) viscosity µ , stress τ  and the flow velocities u between two flat plates are 

shown by two special examples in Figure C.3. In the left picture, the plates do not affect the 

movement of inviscid fluid and 0=τ . On the right side, viscous effect leads to a linear distribution of 

velocity. Stress τ  is a constant there.     

The components of the stress could be generally expressed as  
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where Vµ  is the volume-expanding coefficient. u, v, w are the components of the velocity vector V
r

 

projected on x, y, z axes. The coefficient of dynamic viscosity of the ideal gas µ  could be accurately 

determined by Sutherland’s law: 
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where the Sutherland’s constant sT = 110.4 K. At any point in the air, when its temperature T is known, 

we could derive its coefficient of viscosity by using the reference viscosity 0µ  and temperature 0T . 

As a reference point at the sea level, 5
0 107894.1 −⋅=µ sPa ⋅ , and 15.2880 =T  K. The deviation of 

the Sutherland’s law is less than 10% with 0 < T < 555 K and pressure < 3.45 MPa. 

 It is assumed that the average of three normal stresses in σ  on any point is just equal to its 

pressure p. This leads to the Stokes hypothesis in the Navier-Stokes equations: 

0=Vµ .                   (C.22) 

Substituting equations (C.17) - (C.22) into the conservation forms of the momentum Eq. (B.20) 

and energy conservation laws Eq. (B.32), separating inviscid and viscous terms, neglecting the 

gravity force as well as the volumetric heating, the conservation form of the Navier-Stokes equation 

for the separation process is abbreviated as 
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with the vector of the state variables ( )T

SEwvu ,,,, ρρρρ=q , the density ρ , the velocity vector 
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V
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=(u, v, w)T, the total energy density )
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ρ , and the specific internal energy e. The 

inviscid flux terms are: 
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and viscous flux terms: 
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Further there are  

xx qwvu
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where the fluxes of heat transfer iq  ( zyxi ,,= ) are given as  
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In Navier-Stokes equations, we have five equations but with six unknowns Twvu ,,,,ρ , and p. 

Let us consider calorically perfect gas and add the equation of state, finally the Navier-Stokes 

equation system becomes closed. The equation of state is in the form of 

TRp ρ= ,                   (C.33) 

where a specific gas constant for the dry air 287=R  (N⋅m)/(kg⋅K). For a calorically perfect gas, the 
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specific heat at constant volume cv and the specific heat at constant pressure cp are further postulated 

as constants. It is also satisfied that 

Tce v= ,                  (C.34) 

and  

Rcc vp =− .                  (C.35) 

Defining vp cc /=γ  as the ratio of specific heats, the equation of state Eq. (C.33) is rewritten as  

)](
2

[)1( 222
wvuEp S ++−⋅−=

ρ
γ ,            (C.36) 

where γ  is usually equal to constant 1.4 for the air. 

The conservation equations of the momentum with Navier-Stokes stresses are composed of 

second order partial differential equations. For the unknowns V
r

and SE , they are parabolic equations, 

but they are changed into elliptic equations for steady cases. The conservation equation of mass is a 

first order partial differential equation. For the unknown ρ , it is hyperbolic equation. The coupled 

system of the Navier-Stokes equation is a hybrid differential system. For steady case it is an elliptic- 

hyperbolic system, and for unsteady case it is a parabolic-hyperbolic system. 

Euler equations can be directly derived from Navier-Stokes equations by assuming that the 

viscosity of fluid is equal to zero. That is, the shear stress tensor in Navier-Stokes equations is 

neglected. Because Prandtl number depends on the physical character of the fluid, it is approximately 

a constant. For the air in our code FLMNAV, the Prandtl Number is given as   

72.0Pr =
⋅

=
k

c pµ
,                (C.37) 

and 

k  = 1.39 pc⋅⋅ µ , with =pc 1000 J/( KKg ⋅ ).          (C.38) 

The thermal conductivity could be also neglected, when viscosity tends to zero.  

Mathematically, the Euler equation system is an elliptic system in the area of steady subsonic 

flow, but a hyperbolic system in the area of steady supersonic flow. For the unsteady case, it is a 

parabolic-hyperbolic system. It is used to describe the flow at high Reynolds numbers and small 

thermal conductivity, which is usually away from the solid surfaces. Comparing with the 

Navier-Stokes system, the Euler system could be realized with much less computing work. 
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D  Nondimensionlization  

 

A dimensionless Navier-Stokes equation system could be applied much widely [47, 65]. Some 

similarity parameters, such as Reynolds number and Mach number, could be originated from the 

dimensionless forms. We define the variables with superscript * as the dimensionless variables, and 

with subscript ref as the reference values for the non-dimensional from. The transformations are: 

,,,, ****
refrefrefref tttLzzLyyLxx ⋅=⋅=⋅=⋅=        (D.1) 

,,,, ****
refrefrefref VwwVvvVuu ⋅=⋅=⋅=⋅= ρρρ        (D.2) 

,,,, ****
refSSrefrefref EEEpppTTT ⋅=⋅=⋅=⋅= µµµ       (D.3) 

where refL  is the length of the EOS. In the code FLMNAV, most of referential parameters are related 

to the corresponding values in freestream, which are labeled with a subscript ∞ .  
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25.0)1/( refrefref VMpE ⋅⋅+−= ∞γ .            (D.7) 

Some important dimensionless numbers are defined as following: the Reynolds number  
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the speed of sound in the air  

∞∞ ⋅⋅−=⋅⋅= TcTRa p)1(γγ ,                (D.9) 

and the Mach number 

a

V
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∞ = .                   (D.10) 

Using equations from (D.1) to (D.7), the continuity equation is transformed into 
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Furthermore, the x-, y-, z- components of the momentum equations are as follows: 
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In the above Eqs. (D.12) - (D.14), the dimensionless stresses are expressed as 
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The energy equation has the following dimensionless form: 
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where the viscous terms are listed in the following 
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and the dimensionless heat conductions are given as 
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It is more clearly that an infinitesimal viscosity *µ  or an infinite ∞Re  in Eqs. (D.15) - (D.17) and 
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(D.22) - (D.24) leads the dimensionless stresses and heat conductions away in inviscid flow.  

With the state variable vector ( )T
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q , the above equations are 
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The superscript “*” denoting the dimensionless quantities will be omitted in the following 

appendixes and also in the chapters after Chapter 2.2. We always consider the non-dimensional form 

in this thesis unless it is specially specified.  
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E  Curvilinear Transformation 

 

To simplify the implementation of boundary conditions and to enhance the efficiency and 

accuracy of numerical schemes, the physical space in Cartesian coordinates (x, y, z, t) is transformed 

into the computational space in curvilinear coordinates ),,,( τζηξ . Correspondingly, the Navier- 

Stokes equation is also transformed in the following sections [45, 84]. 

 

E.1  Coordinate Transformation 

 

Let’s define the transformation from ),,,( τζηξ  coordinates into coordinates (x, y, z, t) as: 

,τ=t                    (E.1) 
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The inverse transformation can be written as: 
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Substituting Eq. (E.9) into Eq. (E.10), one concludes  
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Equation (E.11) transfers the metrics to be calculated in ),,,( τζηξ  coordinates as 

( ) ( ) ( )ζηζηζηζηζηζη ξξξ xyyxJzxxzJyzzyJ zyx −=−=−= −−− 111 ,, ,    (E.12) 

( ) ( ) ( )[ ]ζηηζτηζζητζηηζτξ yxyxzzxzxyzyzyxJt −+−+−= −1 ,      (E.13) 
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( ) ( ) ( )ξζξζζξζξζξζξ ηηη xyyxJxzzxJzyyzJ zyx −=−=−= −−− 111 ,, ,    (E.14) 

( ) ( ) ( )[ ]ξζζξτζξξζτςζζξτη yxyxzzxzxyzyzyxJt −+−+−= −1 ,      (E.15) 

( ) ( ) ( )ηξηξξµξηηξηξ ζζζ xyyxJxzzxJyzzyJ zyx −=−=−= −−− 111 ,, ,    (E.16) 

( ) ( ) ( )[ ]ηξξητξηηξτηξξητζ yxyxzzxzxyzyzyxJt −+−+−= −1 ,      (E.17) 

where the Jacobian determinant of transformation J is defined by  
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In unsteady process, tξ , tη , and tς  are the velocities of moving meshes. The practical calculations of 

the metrics iβ  τζηξβ ,,,( =  and i = x, y, z, t), which is used in software FLMNAV, have been 

discussed in Chapter 3.1.  

The chain rule of partial differentiation transfers the derivatives in the Cartesian coordinates to 

the derivatives in the curvilinear coordinates 
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E.2  Dimensionless and Curvilinear NS Equations  

 

Using formulas (E.19) - (E.22), the Navier-Stokes vector equation (D.25) could be written in 

curvilinear system as 
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Eqs. (E.13), (E.15), and (E.17) lead to a helpful identity 
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Multiplying the Jacobian determinant of transformation J to two sides of the equation Eq. (E.23), 

and using Eqs. (E.12) - (E.17) and (E.24), the non-conservation form of Navier-Stokes equation Eq. 

(E.23) could be reorganized into a conservation form: 
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The solution variables qQ J= ( )T

SEwvuJ ,,,, ρρρρ= and the inviscid terms as 
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The contravariant velocities are given as   

,tzyx wvuU ξξξξ +++=                (E.29) 

,tzyx wvuV ηηηη +++=               (E.30) 

tzyx wvuW ζζζζ +++= .              (E.31) 

Associate Eqs. (E.26) - (E.31) with (D.26) - (D.27). The dimensionless superscripts “*” in the latter 

equations are neglected. Then we have 
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In the same way, viscous terms are expressed as 
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After reorganizing 
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where 
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In the curvilinear system, the stresses are presented as 
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The heat conduct terms are rewritten as 
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Finally we rewrite the conservation form of the dimensionless Navier-Stokes vector equation in 

curvilinear coordinate as: 
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F  Quasi-Linear Euler Equations 

 

From Eq. (E.52), the non-conservation form of Euler equation system [79] can be derived as: 
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We define 
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and 
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Multiplying 1−M  on the left side of equation Eq. (F.1), we obtain 
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it could be proved that  

( ) ( )ξξ kMKM -1 =⋅⋅ ,  ( ) ( )ηη kMKM -1 =⋅⋅ ,  ( ) ( )ζς kMKM -1 =⋅⋅ .    (F.9) 

Finally, the non-conservation form of the Euler vector equation is obtained as  
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The above vector equation Eq. (F.10) is widely used to determine the characteristic boundary 

conditions. 
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G  Initial and Boundary Conditions 

 

Initial and boundary conditions are needed to solve Navier-Stokes equation systems. There exists 

still no general initial and boundary conditions suitable for any Navier-Stokes system. There are six 

state variables. They are three dimensional velocity components, density, temperature, and pressure. 

From the state equation, anyone of them could be derived by the others.  

In this thesis, a steady flow is simulated by an unsteady process. Its initial values are assigned as 

the same as in freestream in all computing domain. Usually this assumption should not affect the 

solution, but may affect the convergent speed. 

Using quasi-linear Euler equations, characteristic boundary conditions [21, 40, 95] are derived in 

this chapter. They are applied for both Euler equations and Navier-Stokes equations.  

 

G.1  Characteristic Variables 

 

Characteristic boundary conditions are derived from the non-conservation form of the Euler 

vector equation (F.10). It is assumed that the flow is one-dimension locally. To simplifying the 

derivation, the speed of sound is noted as 
ρ

γ p
a = . It is further abbreviated that 
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We also define 

( )































−−

−−

−−

=

22000
2

~

2

~
0

~~
2

~

2

~
~

0
~

2

~

2

~
~~

0

~~~

:

aa

kk
kk

kk
kk

kk
kk

kkk

k

zz
xy

yy

xx

xx

yz

zyx

σσ

σσ

P ,           (G.2)  

where 
k

k
k i

i
∇

=:
~

,  for ςηξ ,,=k , and i = x, y, z. We get its inverse matrix 
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Given the diagonal eigenvalue matrix as: 
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the matrix k ( )ξ , k ( )η , k ( )ς  in non-conservation form Eq. (F.10) can be transformed as:  

( ) ( ) ( ) ( )ξξξξ -1PPk ⋅⋅= Λ , ( ) ( ) ( ) ( )ηηηη -1PPk ⋅⋅= Λ , ( ) ( ) ( ) ( )ςςςς -1PPk ⋅⋅= Λ .  (G.5) 

Assuming one-dimensional flow along the characteristic line, substituting Eq. (G.5) into Eq. (F.10), 

and multiplying ( )k
-1

P  on the left, we obtain 
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The variables ρ  and a  in ( )k
-1

P  are locally constants on the boundary as 0ρ  and 0a , respectively. 

Hence, ( )k
-1

P  is also a constant matrix. Defining the characteristic vector as 

( ) ( ) qPW
-1 ⋅= kk : ,                (G.7) 

we obtain the characteristic vector equation as 
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In one-dimensional form, that is  
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Their eigenvalues are  

)()()()( 321 kkwkvkukkkk tzyx θλλλ ≡+++=== ,         (G.10) 
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kakk ∇⋅+= )()(4 θλ ,                (G.11)

 
kakk ∇⋅−= )()(5 θλ .                (G.12) 

The contravariant velocity )(kθ  presents the velocity of fluid minus the velocity of moving meshes. 

With these eigenvalues for l=1,·· · ,5, the characteristic curves are the lines τλ )(kk l+ =constant, 

along which the eigenvectors ( )kWl  are conserved, where the characteristic variables ( )kWl

 
are also 

called Riemann invariants. With ςηξ ,,=k , they are given by 
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The variables on the boundary with subscript 0 take their corresponding values in the last time step. 
The signs of the eigenvalues decide the propagation direction of their eigenvectors.  

 

G.2  Boundary Conditions for Inflow and Outflow  

 

In numerical simulations, the grids are fixed on the boundaries of the computing domain. The 

mesh velocity is usually neglected on these boundaries. Therefore, 0| =btk  for ςηξ ,,=k . In 

Cartesian system (x, y, z), assuming normal direction of the boundary surface with increase k is ( )ke
r

, 

and TwvuV ),,(=
r

, then 

( ) ( ) ( ) ( ) ( ) ||321 kkeVkkkk ∇⋅•====
rr

θλλλ ,           (G.18) 

kakeVk ∇+•= ))(()(4

rr
λ ,              (G.19)

 
kakeVk ∇−•= ))(()(5

rr
λ .              (G.20) 

Using the above formulas, the sign of the eigenvalues could be determined by the direction and 

magnitude of the inflow V
r

as well as the direction of ( )ke
r

. Any boundary apart away from solid 

surfaces could use one of the listed boundary conditions: subsonic inflow, subsonic outflow, 
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supersonic inflow, and supersonic outflow.  

For the subsonic inflow case, the inflow and ( )ke
r

 have the same directions in Figure G.1. The 

eigenvalues ,0)()()( 321 >== kkk λλλ ,0)(4 >kλ and .0)(5 <kλ  Then the first to fourth characteristic 

invariant variables are transferred along the direction of the inflow and the fifth is transferred 

oppositely as: 

[ ] [ ]inflow11 )()( kWkW
b

= ,               (G.21) 

[ ] [ ]inflow22 )()( kWkW
b

= ,                 (G.22) 

[ ] [ ]
inflow33 )()( kWkW

b
= ,                 (G.23)

 

[ ] [ ]inflow44 )()( kWkW
b

= ,                 (G.24)

 

[ ] [ ]
ib

kWkW )()( 55 = .                 (G.25)  

 
Figure G.1: The directions of k  and inflow for the inlet boundary condition. 

 

When the directions of inflow and ( )ke
r

 are not the same, three eigenvalues are equal and satisfy 

0)()()( 321 <== kkk λλλ . The other eigenvalues keep their sign as 0)(4 >kλ , and 0)(5 <kλ . The 

first three characteristic invariant variables are transferred still along the direction of the inflow and 

the fourth and fifth changed their directions as: 

[ ] [ ]
ib

kWkW )()( 44 = ,                 (G.26)

 

[ ] [ ]
inflow55 )()( kWkW

b
= .               (G.27)

 

On the inflow boundary, Jacobian matrixes and the components of area vectors xkJ ⋅ , ykJ ⋅ , zkJ ⋅  

could be assumed as constants. Substituting Eqs. (G.13) - (G.17) into Eqs. (G.21) - (G.27), we get the 

inflow boundary condition for the state variables on the boundary point b, 
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The options with positive sign in equations (G.28) - (G.32) refer that both the inflow direction and 

coordinate increasing direction are the same (cf. Figure G.1), and the options with minus sign refer 

oppositely.  

For the subsonic out flow, we consider two cases that the outwards flow direction is the same as 

the direction of )(ke
r

 and the outwards flow direction is opposite to the direction of )(ke
r

. The first 

three invariants transferred always towards the outflow direction. We have  
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When the out flow direction is the same as the direction of ( )ke
r

,  
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[ ] [ ]
outflow55 )()( kWkW

b
= .                (G.37) 

When directions are opposite,
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Nearly the same form as the inflow conditions, this yields the outflow boundary conditions
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The difference about the boundary condition between inflow and outflow is: five characteristic 

conditions must be given for the inflow, but only one characteristic condition is needed to be given for 

the outflow, and the other four conditions could be given by extrapolation from the computing 

domain. Four state variables in outflow boundary (G.40) are needed. 

The pressure could be determined in a different form. Considering no reflected outflow through 

far field, the pressure could be given as   
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Using Eq. (G.45) to replace Eq. (G.40) for the outflow boundary condition, no state variable is needed 

any more in the far field. 

For the supersonic cases, the velocity of the inflow (or outflow) V
r

is greater than the sound 

velocity. All of the eigenvalues )(kjλ  (j=1,·· · ,5) have the same sign derived from Eqs. (G.18) - 

(G.20). In these cases, the characteristic variables are always transferred in the flow direction. Not like 

the subsonic cases, its pressure on the boundary does not be affected by the downstream. All of the 

state variables bp , bu , bv , bw , bρ  on the boundary simply take the upstream values. That means that 

the five extra boundary conditions are needed for the inflow, but no extra boundary conditions are 

needed for the outflow. The boundary condition for the outflow can be gotten from the extrapolation 

of the computing domain. 

 

G.3  Euler Impermeable Boundary Conditions 

 

In the curvilinear coordinate system, the body surfaces are usually perpendicular to the k, where 

ςηξ or,or,=k . The contravariant velocity on the solid surface should be zero on the normal 

direction ( )ke
r

 referring to Eq. (G.10). That is 

0)()()()( 321 ≡+++==== tzyx kwkvkukkkkk θλλλ ,       (G.46) 

and 

0)(4 >∇= kakλ ,                 (G.47)

 
0)(5 <∇−= kakλ .                 (G.48) 

Depending on the signs of these eigenvalues, the transfer of the characteristic variables on the 

boundary can be determined as following: 

[ ] [ ]
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kWkW )()( 11 = ,                (G.49) 

[ ] [ ] ,)()( 22 ib
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[ ] [ ] ,)()( 33 ib
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When ( )ke
r

 direction is pointing away from the solid surface as shown in Figure G.2.a, i.e. 

0)()( >⋅ kekj

r
λ , the fourth characteristic variable is used, 

[ ] [ ]
ib

kWkW )()( 44 = .                 (G.52) 

Otherwise, the fifth characteristic variable is used when ( )ke
r

 direction goes into the solid surface as 

shown in Figure G.2.b. 

[ ] [ ]
ikbk WW 5,5, = .                 (G.53) 

                         

  
(a) k leaves away from solid surface (b) k goes into solid surface 

Figure G.2: The direction of k  for the boundary condition of solid surface. 

 

There are five boundary conditions to determine five state variables. Three of them are taken 

from Eqs. (G.49) - (G.51), one from Eq. (G.52) or (G.53), and the fifth from 0)( ≡kθ . Finally, we get 

the boundary condition on the solid surface for the state variables: 
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( )tbiziyixyib kwkvkukkvv
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+++−= ,            (G.57) 

( )tbiziyixzib kwkvkukkww
~~~~~

+++−= .            (G.58) 

 

G.4  Navier-Stokes Impermeable Boundary Conditions  

 

In the Navier-Stokes equations, the contravariant velocity )(kθ  should be zero in all three 

directions ( )ke
r

 on the solid surface 

0|)(|)( ≡+++= btzyxb kwkvkukkθ ,  for ςηξ ,,=k .        (G.59) 



 

162 

Neumann boundary condition is used for pressure  

0| =b
dn

dp
.                   (G.60) 

Isothermal or adiabatic condition is specified as the boundary condition for temperature,  

isothermb TT || = , or 0| =b
dn

dT
.              (G.61) 

There are five boundary conditions from Eqs. (G.59) - (G.60) to determine five state variables.  

 

G.5  Symmetric Boundary Conditions 

 

Numerically the state variables are defined on the center of every cell. Mirror points for the 

numerical calculation are introduced to achieve symmetry boundary conditions. They are located on 

the other side of the boundary as shown in Figure G.3. The state variables on the mirror point is often 

given as 

ibm ||2| ψψψ −= ,                (G.62) 

where ψ  may take one of the contravariant velocities )(kθ  ( ςηξ or,or,=k ), or pressure p, or 

temperature T, or density ρ. 

Symmetry boundary conditions are used to save computing work. The state variables are nearly 

the same between the inner point and the mirror point, except the component of the velocity, which is 

perpendicular to the symmetry surface. This velocity component on the mirror point has a different 

sign compared to the inner point. 

 

Figure G.3: The positions of mirror points for the symmetric boundary condition. 



 

163 

H  Baldwin-Lomax Turbulence Model 

 

Already in 1895 Osborne Reynolds began his research about the irregularity or chaotic nature in 

turbulent flow. He derived a time-averaged Navier-Stokes equation system. Later his followers added 

higher order correlations about fluctuating quantities of flow variables. They also used semi- 

empirical mathematical models to form a close solvable equation system [1, 17]. 

 
Figure H.1: The mean free path length l in the turbulent flow. 

 

In 1925 Prandtl introduced the concept of the mixing-length model to explain the turbulent flow. 

As shown in Figure H.1, fluid particle agglomerations collide and transfer their momentum, when 

they move in y-direction across a mean free path length l. Based on Prandtl’s work, the algebraic or 

zero-equation models were further developed: the viscous damping correction by Van Driest in 1956, 

eddy viscosity and mixing-length concept by Cebeci and Smith in 1974.  

In 1978, Baldwin and Lomax improved those models with a practical computing of mixing 

length and got satisfied numerical results in comparisons with experiments of Mach number from 

0.756 to 2.85 [7]. They replace the viscosity µ  in the Navier-Stokes equations with the sum of 

viscosity tµµ + , where tµ  is an extra viscosity related to turbulence, namely eddy viscosity. 

Correspondingly, the coefficient of the heat conductivity is replaced by: 
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where the turbulent Prandtl number tPr  is 0.9 for the air in B-L model. For other fluids, it usually 

ranges from 0.6 to 1.0. Actually, it is a ratio of eddy viscosity and eddy thermal diffusivity.  

The main task of the Baldwin-Lomax (B-L) Model is to determine the eddy viscosity tµ  related 

with Reynolds stress. It is actually a two-layer algebraic 0-equation model. In the layer near the wall, 

the Prandtl model is used. In the outer layer, tµ  is determined by empirical functions and constants. 

Baldwin and Lomax give  
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where crossovery  is the smallest distance from the surface where ( )
innertµ  is equal to ( )

outertµ . In the 

inner layer, tµ  is determined by mean vorticity as  

( ) ωρµ 2
l

innert = ,                 (H.3) 

where the magnitude of the vorticity vector for three dimensional flows ω  is given by 
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The mean free path length is gotten from mean flow characteristics  

( )[ ]++−−⋅⋅= Ayykl /exp1 ,               (H.5) 

where 4.0,26 ==+ kA . y is the normal distance from the wall. From the notation in the law of the 

wall, the dimensionless wall coordinate  
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where the lower indices w means the point on the wall. Proportional to the gradient of flow velocity 

parallel to the wall parallelV , the wall shear stress 
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When a point locates in the outer layer, the eddy viscosity is determined as  

( ) )(yFFCK KLEBWAKECPoutert ⋅⋅⋅⋅= ρµ ,            (H.8) 

where the Clauser constant 0168.0=K , and 6.1=CPC . The wake function is 

)/,min( 2
MAXDIFMAXWKMAXMAXWAKE FuYCFYF ⋅⋅⋅= .         (H.9) 

A Van-Driest damping function is given as 

[ ])/exp(1)( ++−−⋅⋅= AyyyF ω .             (H.10) 

Eq. (H.10) is used to determine MAXY  and MAXF . MAXY  is a normal distance at which maximum force 

MAXF  achieves.  

The Klebanoff intermittency function is given as  
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The difference between maximum and minimum of total velocity in the profile is define as  

( ) ( )MINMAXDIF wvuwvuU
222222 ++−++= .          (H.12) 

In the wake region, the Van-Driest damping function is defined specifically as 



 

165 

ω⋅= yyF )( ,                 (H.13) 

and  

( )MAXDIF wvuU 222 ++= .              (H.14) 

The other used constants in the above B-L model are given as 

25.0,3.0 == WKKLEB CC .               (H.15) 

 When eddy viscosity tµ  is very small, it will be totally neglected. That is 

( ) ∞<= µµµ 14,0
maxtt if               (H.16) 

Furthermore, Degani and Schiff found there may be more than one maximum solution for Ymax. 

The first Ymax usually shows less diffusive in Eq. (H.8). The second Ymax should be used, if it exists. 
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I  Dimensionless Aerodynamic Coefficients 

 

In aerodynamics, dimensionless force and moment coefficients are used to evaluate the dynamic 

properties of a flying body. The most important coefficients for the separation process are the lift 

coefficient CL, the pitching moment coefficient CM, and the drag coefficient CD [5, 53].  

CL=
Fq ⋅∞

L
,                  (I.1) 

CM=
µlFq ⋅⋅∞

M
,                 (I.2) 

CD=
Fq ⋅∞

D
,                  (I.3) 

where L, M, D are the lift, pitching moment, and drag respectively. F is a reference area, and µl  is 

the mean chord length.  

 

Figure I.1: The sizes of the EOS geometries. 

 

In Figure I.1, two geometries of EOS are compared. The ITAM EOS is the definition of 

experimental geometry of ITAM. Its whole surface area =ITAMF 0.010644 2m ; the mean chord 

length ITAMl ,µ =0.1270 m; the EOS length ITAMEOSL , =0.192 m; the span ITAMS = 1080.0 m.  

For convenience, the lower index “Numer” denotes a corresponding variable for the numerical 

model. The numerical EOS geometry is presented with the colored picture in the lower side of Figure 

I.1. Its EOS length is =NumerEOSL , 1. The scale factor from experimental definition to numerical 

computation is  

208.5
,

,

, ==
ITAMEOS

NumerEOS

NumerITAM
L

L
f .             (I.4) 
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We could derive that the surface area FNumer = 0.288737. The mean chord length is 661458.0, =Numerlµ , 

and the span SNumer = 0.5625. Actually we only simulate half EOS, which is divided by the symmetric 

plane. For the half EOS, FNumer = 0.1443685 and SNumer = 0.28125. 

By the density ∞ρ  and velocity ∞V , the dynamic pressure is determined in freestream as 

∞q = 2

2

1
∞∞Vρ .                 (I.5)  

The pressure coefficient is expressed as 

pC = 
∞

∞−

q

pp
.                   (I.6) 

The lift and drag are calculated by the integration of the pressure and stresses along the body surface. 

The pitching moment is yielded by the integration of the moment on the whole body surface at a 

given rotation center around the y-axis [52, 58, 59].  

From the Buckingham PI theorem in dimensional analysis, the aerodynamic coefficients for our 

separation process could be mainly determined by three dynamic similarity parameters: Reynolds 

number ∞Re , Mach number ∞M , and the angle of attack α  related with a similar geometry. They are 

CL=f1 ),,( α∞∞ MRe ,                (I.7) 

CM=f2 ),,( α∞∞ MRe ,                (I.8) 

CD=f3 ),,( α∞∞ MRe .                (I.9) 

As seen in experiments, very small EOS configurations are used in wind tunnels to simulate the 

real orbital stage. When they possess the same similarity parameters, such as ∞Re , ∞M , and α , their 

CL, CM, and CD are correspondingly the same. The forces between model and prototype are 

proportional with a constant scale factor. Using CL, CM, and CD gotten from an arranged experiment, 

we could derive lift L, pitching moment M, and drag D for the orbital stage in the environment at the 

altitude of 35 kilometers above the sea level. 

In the aerodynamic research, it is appropriate using the dimensionless force coefficients and 

moment coefficients other than using the forces and moments directly.  
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J  Characteristics of the Hypersonic Flow 

 

Conventionally the hypersonic flow is usually related with the astronautic phenomena and used 

to describe that vehicles fly at a high Mach number (greater than 5). The hypersonic flow is 

characterized as following [6]:  

1) Sparse air and thin shock layers. The density decreases with the increase of the flight altitude 

above the sea level. The continuum assumption is challenged at high altitude. The shock layer is 

defined as the volume between the body and shock wave. The higher the Mach number is, the thinner 

the shock layer becomes. The ratio of the density before shock to the density after shock in our 

separation process is usually around the order of 1/7 to 1/5.  

2) Strong entropy gradient layer. The stronger the shock is, the greater the entropy increases. 

From Crocco’s theorem we have the relationship between vorticity and entropy layer: 

STVV ∇⋅−=×∇× )(
rr

,               (J.1) 

with the flow velocity V
r

, the vorticity V
r

×∇ , the temperature T , and entropy S . In stronger entropy 

gradient layer, S∇  is greater. Consequently, the vorticity is stronger. 

3) Strong viscous interaction. The boundary layer thickness δ  above a flat plate could be 

described as  

δ ∝
x

M

Re

2
∞ ,                  (J.2) 

where ∞M  is the Mach number in freestream and xRe  is a local Reynolds number. With a higher 

Mach number, the boundary layer is thicker.  

4) High temperature. When the space vehicle comes back into atmosphere, the air is compressed 

and fractionized. A large amount of kinetic energy is transformed into the internal energy of the air. 

Then high temperature appears in the parts of blunt-nose, the leading edge of the wing, and the 

contour of engine.  
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K  Standard Atmosphere Properties 

 

The earth retains the air from sea level up to 10000 kilometers by the gravity force. According to 

physical properties, the atmosphere is divided into several layers by the altitude. Troposphere: from 

sea level to 11 km accompanying a temperature decrease; stratosphere: from 11 km to 50 km and 

warming up with height; mesosphere: from 50 km to 85 km and cooling down with height; 

thermosphere: from 85 km to 640-800 km, and exosphere: from the top of thermosphere to 22000 km. 

In the last two layers the particles separate very far away and their temperatures increase when 

altitude is higher up. The usual commercial flight is located in the troposphere. Special jet airplane 

could reach a height of about 24 km; weather balloons can rise to about 30 km; the designed 

separation altitude of TSTO vehicle is 35 km. Those three examples are located in the stratosphere. 

The space vehicle reentry to the atmosphere usually means that the vehicle comes back into the 

atmosphere at the altitude of 120 km. Higher than 120 km, the gas is hardly noticeable. The nominal 

circular orbit is at the altitude of about 300 km. 

 

 

K.1  US Standard Atmosphere 1976 

 

Based on the data collected by rocket and satellite as well as perfect gas theory, the model of the 

U.S. Standard Atmosphere was first established in 1953 by the U.S. Committee on Extension to the 

Standard Atmosphere (COESA). It is further revised in 1958, 1962, 1966, and 1976 [87]. It is an 

average, piece-wise continuous, mid-latitude profile of the earth's atmosphere. The characteristics of 

air used in this thesis are cited from the latest version.  

 

 
Figure K.1: The changes of air properties in the lower part of the earth’s atmosphere4. 

 

As a function of altitude from sea level to 1000 km, these atmospheric properties include 

temperature, pressure, density, acceleration caused by gravity, pressure scale height, number density, 
                                                                                                 
4 Picture refers to http://en.wikipedia.org/wiki/File:Us_standard_atmosphere_model.png. 
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mean particle speed, mean collision frequency, mean free path length, mean molecular weight, sound 

speed, dynamic viscosity, kinematical viscosity, and thermal conductivity. The altitude resolution 

varies from 0.05 km at low altitudes to 5 km at high altitudes. 

Some important properties in the lower layer of the earth’s atmosphere are shown in Figure K.1. 

Accompanying the increase of the altitude, the pressure and density always decrease. The 

temperature fluctuates somewhat in different atmosphere layers. There is a tropopause in the 

connection part of the troposphere and stratosphere. It describes a relative stable atmosphere from 11 

km to 20 km and its air temperature keeps nearly a constant around 217 K. Similarly, there is a stable 

stratopause in the connection part between the stratosphere and mesosphere. Its temperature is around 

270 K. 

It is assumed that the temperature is 288.15 K and the air pressure is 101325 Pa at the mean sea 

level (height = 0 km). It is further assumed that the relative humidity is zero throughout the 

atmosphere. The U.S. Standard Atmosphere is divided into two different parts: the lower atmosphere 

below altitude of 86 km and the upper atmosphere from 86 to 1000 km. In Table K.1 the pressure, 

temperature, and density in the lower atmosphere till 35 km are computed by a FORTRAN code listed 

in section K.2.  

  

------------------------------------------------------------------------------------------- 

LOWER LAYER of STANDARD ATMOSPHERE  

          --- FROM U.S. STANDARD ATMOSPHERE, 1976  

 

      Height        Pressure     Temperature       DENSITY 

     [METERS]         [hPa]        [DEG C]         [KG/M3] 

         0.00      1013.2500        15.00         1.224999 

      1000.00       898.7457         8.50         1.111642 

      2000.00       794.9521         2.00         1.006490 

      3000.00       701.0854        -4.50         0.909121 

      4000.00       616.4023       -11.00         0.819129 

      5000.00       540.1991       -17.50         0.736115 

      6000.00       471.8103       -24.00         0.659697 

      7000.00       410.6074       -30.50         0.589501 

      8000.00       355.9981       -37.00         0.525167 

      9000.00       307.4246       -43.50         0.466348 

     10000.00       264.3627       -50.00         0.412706 

     11000.00       226.3206       -56.50         0.363918 

     12000.00       193.3041       -56.50         0.310828 

     13000.00       165.1041       -56.50         0.265483 

     14000.00       141.0180       -56.50         0.226753 

     15000.00       120.4457       -56.50         0.193674 
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     16000.00       102.8746       -56.50         0.165420 

     17000.00        87.8668       -56.50         0.141288 

     18000.00        75.0484       -56.50         0.120676 

     19000.00        64.1001       -56.50         0.103071 

     20000.00        54.7489       -56.50         0.088035 

     21000.00        46.7789       -55.50         0.074874 

     22000.00        39.9979       -54.50         0.063727 

     23000.00        34.2243       -53.50         0.054280 

     24000.00        29.3049       -52.50         0.046267 

     25000.00        25.1102       -51.50         0.039466 

     26000.00        21.5309       -50.50         0.033688 

     27000.00        18.4746       -49.50         0.028777 

     28000.00        15.8629       -48.50         0.024599 

     29000.00        13.6296       -47.50         0.021042 

     30000.00        11.7187       -46.50         0.018012 

     31000.00        10.0823       -45.50         0.015429 

     32000.00         8.6802       -44.50         0.013225 

     33000.00         7.4823       -41.70         0.011262 

     34000.00         6.4612       -38.90         0.009609 

     35000.00         5.5892       -36.10         0.008214 

------------------------------------------------------------------------------------------- 

Table K.1: Some important air properties in the standard atmosphere  

                          at the height from sea level till 35 km. 

 

K.2  FORTRAN Program for Standard Atmosphere 

 

 A short and practical code5 is listed below. It calculates the air properties not only till 35 km as 

shown in Table K.1, but it could also simulate the whole lower layer. 

 
! 

!------------------- Main Program ----------------------      

!                                                                         

 PROGRAM STANDARD_ATMOSPHERE       

 ! Calculate the pressure, temperature,  

 ! and density as a function of altitude    

 ! till to 84852.0 [m] 

 

 IMPLICIT NONE  

                                                            

 ! The pressure will be calculated from sea level to Km_Number 

 INTEGER :: Km_Number=35   ! It should be smaller than 85 

 

                                                                                                 
5 Code refers to http://dss.ucar.edu/libraries/meteorology/stdatm76.f. 



 

172 

 REAL :: Pressure,Altitude,Temperature_Deg_C,Density 

 

 ! loop variable 

 INTEGER :: I   

 

1002 FORMAT("LOWER LAYER of STANDARD ATMOSPHERE ", /1x, & 

   6X,'   --- FROM U.S. STANDARD ATMOSPHERE, 1976 ',/) 

1007 FORMAT(1X,F12.2,3x,F12.4,3x,F10.2,3x,F14.6) 

1008 FORMAT(1X,'     Height        Pressure     Temperature       DENSITY') 

1009 FORMAT(1X,'    [METERS]         [hPa]        [DEG C]         [KG/M3]') 

 

 ! Open output file 

 OPEN(188, FILE="US_STANDARD_ATMOSPHERE_1976.txt") 

 

 ! Write the title 

 WRITE(188,1002)   

 ! Write variable name                                                                

 WRITE(188,1008)  

 ! Write unit 

 WRITE(188,1009)  

 

 ! Loop from 0 to Km_Number [km]                                 

 DO I= 0,Km_Number 

 

  Altitude=I*1000 ! Altitude [m] 

  ! Call subroutine which calculate the pressure, temperature,  

  ! and density as a function of altitude 

  CALL STDZ2P(Pressure,Altitude, 0, Temperature_Deg_C, Density)                                        

 

  ! Output 

  WRITE (188,1007) Altitude,Pressure,Temperature_Deg_C,Density 

 

 ENDDO 

                                                                   

 CLOSE(188)    

                                                   

 END PROGRAM STANDARD_ATMOSPHERE 

! 

!----------------- Subroutine ------------------------      

!                                                                         

      SUBROUTINE STDZ2P(P,H1,L,TCENT,RHO)                                        

! 

! COMPUTES PRESSURE, TEMPERATURE, AND DENSITY VALUES FROM INPUT HEIGHTS 

!  BASED ON US STANDARD ATMOSPHERE, 1976 

!  VALUES NOT VALID ABOVE 84852 M. 

! 

! INPUT 

!       H1    - HEIGHT IN FEET OR METERS 

!       L     - UNITS FLAG - 0=METERS, 1=FEET 

! OUTPUT 

!       P     - PRESSURE IN MB 

!       TCENT - TEMPERATURE IN DEG C 

!       RHO   - DENSITY IN KG/M3 

! 

      DIMENSION HBASE(10),HTOP(10),TB(10),GRAD(10),ABS(10) 

      DIMENSION PB(11),RB(10) 

      DATA HBASE/ 0.,1.1E4,2.E4,3.2E4,4.7E4,5.1E4,7.1E4,3*84852.0/ 

      DATA HTOP /1.1E4,2.E4,3.2E4,4.7E4,5.1E4,7.1E4,4*84852.0/ 

      DATA TB / 15.,2*-56.5,-44.5,2*-2.5,-58.5,3*-86.2/ 

      DATA GRAD/-.0065,0.,.001,.0028,0.,-.0028,-.002,3*0./ 

      DATA CHECK/0./                                                             

!     H1 IS ALTITUDE, IF IN METERS SET L .LE. 0.  IF IN FEET SET L .GE. 1        

!     P IS PRESSURE IN MB.  TCENT IS TEMP CELSIUS.  RHO IS DENSITY IN KG/M**3    
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!        

                                                                        

      IF(CHECK.NE.0.) GO TO 16                                                   

      ABSZ = 273.15                                                              

      PZERO=1013.250                                                             

      G=980.665                                                                  

      R = 83143200./28.9644                                                      

      PB(1) = PZERO                                                              

      DO 3  I=1,8                                                                

      ABS(I) = TB(I) + ABSZ                                                      

    3 CONTINUE                                                                   

       DO 15  I=1,8                                                              

      IF (GRAD(I) .EQ. 0)  GO TO 10                                              

!  HERE FOR TEMP GRADIENT NOT ZERO                                               

    5 PB(I+1) = PB(I)*((ABS(I+1)/ABS(I))**(100.*G/(-GRAD(I)*R)))                 

      GO TO 12                                                                   

!  HERE FOR TEMP GRADIENT ZERO                                                   

   10 PB(I+1) = PB(I)*2.7182818**((-100.*G/(R*ABS(I)))*(HTOP(I)-HBASE(I) ))                                                                      

   12 RB(I) = 1000.*PB(I)/(R*ABS(I)) * 1000.                                     

   15 CONTINUE                                                                   

      CHECK=10.                                                                  

   16 CONTINUE                                                                   

!                                                                                

      IF(L<1) GO TO 30                                                       

!                                                                                

      H = H1*.3048                                                               

      GO TO 4                                                                    

30    H = H1                                                                     

4     CONTINUE                                                                   

!  FIND THE ATMOSPHERIC LAYER WE ARE IN                                          

   35 DO 55  I = 1,8                                                             

      IF  (H .GT. HBASE(I+1)) GO TO 55                                           

   37 IF (GRAD(I)) 39,43,39                                                      

!  TEMP GRADIENT NOT ZERO                                                        

   39 P= PB(I)*((H-HBASE(I))*GRAD(I)/ABS(I)+1)**(-100.*G/(GRAD(I)*R))            

      GO TO 45                                                                   

!  ISOTHERMAL LAYER                                                              

   43 P= PB(I)*EXP((H-HBASE(I))*(-G)/(.01*R*ABS(I)))                             

   45 T = ABS(I) + GRAD(I)*(H-HBASE(I))                                          

      TCENT = T - ABSZ                                                           

      RHO = 1.E6* P/(R*T)     

                                                    

      RETURN    

 

! WRITE INFORMATION WHEN H IS TOO HIGH                                                                  

   55 CONTINUE              

 OPEN(189, FILE="Height_Out_of_Range.txt", POSITION="APPEND")                                                      

      WRITE(189,98)H 

98    FORMAT(' STDATM -  ALTITUDE OUT OF RANGE, H>84852[km] ',F12.2,//) 

 CLOSE(189)  

   

      END SUBROUTINE STDZ2P  
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L  Real Gas Effect 

 

Using the calorically perfect gas model, the temperature in hypersonic flows is overestimated. To 

predict the temperature more exactly, the real gas model should be used. It considers chemical 

reaction, dissociation, and ionization among N2, O2, NO, N, and O [6, 15].  

When space vehicle flies at a very high Mach number, a great amount of kinetic energy is 

converted into internal energy of the gas across the strong shock wave. It results to a very high 

temperature. Intense frictional dissipation within the hypersonic boundary layer releases a lot of heat 

and can lead to chemical reaction. If the temperature of the shock layer is high enough, the air emits 

and absorbs radiation. For our TSTO, the maximal temperature on the blunt nose, the front of the 

wing, and the contour of the scramjet engine are estimated as 1300 °C, 1200 °C, and 1350 °C, 

respectively. Since the highest temperature in the separation process is less than 2000 K, the 

dissociation of O2 and its chemical reaction could be neglected.  

When a temperature of gas is less than 800 K, the vibration energy of the molecules is not 

significant. With a low pressure, the air could be still considered as a calorically perfect gas and the 

state equation is given in Eq. (C.36), where the ratio of specific heats 
v

p

c

c
=γ  is constant. 

If the temperature is raised over 800 K, but less than 2000 K, the vibration energy of the 

molecules becomes significant. The excitation of vibration degrees of freedom causes the specific 

heats dependent on temperature. In NASA-Ames, the calorically perfect gas model is replaced by real 

gas model with a similar mathematical form  
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The variable γ~  is calculated in a “curve fit routine” to replace the constant ratio of specific heats at 

high temperature.  
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where e is the specific internal energy. In this real gas model, the speed of sound in air a  is further 

superseded by 
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The constants iA (i=1,·· · ,16) and ε21, BB , ρ3B  are given in Mollier-fit routines [41, 85].  

 


