
Near-Optimal Constant-Time Admission Control for DM Tasks
via Non-Uniform Approximations

Alejandro Masrur and Samarjit Chakraborty
Institute for Real-Time Computer Systems, TU Munich, Germany

{Alejandro.Masrur, Samarjit.Chakraborty}@rcs.ei.tum.de

Abstract—Admission control decisions involve determining
whether a new task can be accepted by a running system such
that the new task and the already running tasks all meet their
deadlines. Since such decisions need to be taken on-line, there is
a strong interest in developing fast and yet accurate algorithms
for different setups. In this paper, we propose a constant-time
admission control test for tasks that are scheduled under the
Deadline Monotonic (DM) policy. The proposed test approximates
the execution demand of DM tasks using a configurable number
of linear segments. The more segments are used, the higher the
running time of the test. However, a small number of segments
normally suffice for a near-optimal admission control. The main
innovation introduced by our test is that approximation segments
are distributed in a non-uniform manner. We can concentrate
more segments for approximating critical parts of the execution
demand and reduce the number of segments where this does
not change significantly. In particular, the tasks with shorter
deadlines dominate the worst-case response time under DM and,
hence, these should be approximated more accurately for a better
performance of the algorithm. In contrast to other constant-time
tests based on well-known techniques from the literature, our
algorithm is remarkably less pessimistic and allows accepting a
much greater number of tasks. We evaluate this through detailed
experiments based on a large number of synthetic tasks and a
case study.

I. INTRODUCTION

In dynamic real-time systems, such as interactive computer
games, virtual worlds, multimedia/communication servers,
etc., a new task may arrive at any time. Such an arriving
task needs then to be admitted or rejected on-line according to
whether it can be feasibly scheduled or not. As a consequence,
these systems require admission control tests with fast but also
predictable running times.

In this paper, we propose an admission control test for real-
time tasks scheduled under the Deadline Monotonic (DM)
policy on a single processor. The test we propose has constant
complexity, i.e., testing whether a new task can be feasibly
scheduled does not depend on the number of tasks currently
running in the system. The proposed test can also be combined
with a bin-packing heuristic such as First Fit (FF) [1] to
consider partitioned DM on identical processors. In this case,
an arriving task is assigned once to a processor and remains
its whole lifetime on that processor.

We consider the case where deadlines (di) are less than
or equal to task periods or the minimum separation between
any two consecutive jobs (pi). In particular, deadlines less
than periods are associated with demanding Quality of Service
(QoS) constraints of many of the applications mentioned
above. For example, in case of an interactive computer game
over a network, each game packet needs to be processed
well before the arrival of the next packet. Here, a task is a

new network connection or a user joining the game, which if
accepted results in a sequence of network packets (jobs).

As already mentioned, tasks are scheduled under the DM
policy. DM assigns fixed priorities to tasks according to their
deadlines: the shorter the deadline, the higher the priority
assigned to the task. In contrast to dynamic priorities, fixed-
priority scheduling policies are normally supported by com-
mercial real-time operating systems and, hence, they are more
relevant from a practical point of view. In addition, DM
constitutes the optimal priority assignment for di ≤ pi [2].

Exact pseudo-polynomial schedulability tests are already
known for fixed priorities and di ≤ pi, e.g., [3], [4] and
[5]. Although a high accuracy is always desirable, these tests
are often not eligible for admission control. The reason for
this is that the running time of such a pseudo-polynomial
test depends not only on the number of tasks, but also on
task parameters, like periods, execution times, etc. Hence, it
is difficult to precisely bound such a running time in an on-
line setting where the task set is constantly changing. Although
the complexity of the admission control problem is the one of
testing schedulability for only one new task in the system, an
exact schedulability test still results in a pseudo-polynomial
admission control test.

Additionally, all exact schedulability tests require tasks to
be sorted according to decreasing priority, i.e., increasing
deadlines under DM. Of course, it is possible to sort tasks
on-line as they arrive. This way, when a new task arrives, we
only need to add it to a sorted list. However, if a new task
is added to the system, using an exact schedulability test also
implies retesting all already accepted lower-priority tasks. This
leads to additional delay and may be impractical, particularly,
for a large number of tasks.

Polynomial-time approximation schemes have also been
proposed [6], [7] for the known exact schedulability test [3],
[4]. Nevertheless, these techniques also require tasks to be
sorted according to priorities and have the same problem as
the exact schedulability test. That is, if a new task is added to
the system, all already admitted tasks with lower priority will
have to be retested.

On the other hand, we can adapt utilization bounds obtained
for Rate Monotonic (RM) to the case of DM and di ≤ pi. As
discussed later, we can use, for example, the Liu and Layland
bound [8] with very little modification. An admission control
test based on this bound presents constant complexity O(1),
however, it becomes extremely pessimistic as the number of
accepted tasks grows.

The more recent load test [9] improves the accuracy when
taking admission control decisions in constant time. This



test has a better performance than the other constant-time
algorithms and allows reducing the number of rejections.
However, the accuracy of this test is still poor when compared
to the known exact test.

Our contributions: From the above discussion, we know that
an admission control test incurs great pessimism in order to
achieve constant complexity. However, a constant complexity
results in fast and predictable running times and is desirable
because of the on-line nature of the problem. To overcome
this predicament, we introduce here a new admission control
test that leads to a substantial improvement in the accuracy,
while it retains constant complexity.

The test presented in this paper makes use of the concept
of loading factor. The loading factor was originally defined
for Earliest Deadline First (EDF) as the ratio between the
maximum execution demand within a given time interval
divided by the length of this interval [10]. Although this
concept is still applicable here, we will have to adapt its
definition to the case of DM.

Later we define the loading factor of a DM task as the ratio
between its worst-case response time divided by its deadline.
The proposed test computes an upper bound on the loading
factor of all the already running tasks and the new one. Clearly,
if this upper bound is less than or equal to 1, the worst-case
response time of every task in the system does not exceed its
respective deadline and, hence, the new task can be admitted.

To obtain such an upper bound on the loading factor, we
need to compute the worst-case response time of each task
in the system which is known to have pseudo-polynomial
complexity [3], [4]. However, in this paper, we present an
approximation technique that makes a constant complexity
possible. The presented technique consists in partitioning
the time line into non-overlapping intervals. Our test first
accommodates an arriving task into one of these intervals
according to its deadline. The resulting worst-case response
time and, thus, the loading factor are then approximated by
linear segments.

Our main observation in this paper is that the distribution
of intervals over the time line has a big influence on the
test’s performance. As tasks with higher priority preempt the
others, they have a bigger impact on the response time of the
whole task set. As a consequence, approximating the execution
demand of these tasks more accurately results in a better esti-
mation of the worst-case response time of lower priority tasks.
According to this, we use more segments to approximate the
execution demand of tasks with shorter deadlines, since these
have higher priority under DM. In a similar way, the execution
demand of tasks with longer deadlines is approximated with
fewer segments. These tasks have lower priority under DM
and, consequently, less influence on the worst-case response
time of other tasks.

This paper is organized as follows. After a survey of related
work and a description of the task model and notation, we
analyze the use of known techniques to design constant-time
admission control tests in Section IV. The theoretical back-

ground for the proposed test is presented in Section V, whereas
Section VI introduces and explains the proposed admission
control test. In Section VII, we present a detailed comparison
between the proposed admission control algorithm and well-
known schedulability tests from the literature. To conclude this
paper, Section VIII summarizes the most important aspects of
our work.

II. RELATED WORK

A number of sufficient tests have been proposed for RM. As
shown later, these can be modified to derive admission control
tests for the DM policy as well.

Liu and Layland [8] obtained a utilization bound for RM
considering preemptive, independent, periodic real-time tasks
and di = pi. A better test for RM and di = pi was proposed
independently by Liu [11] and by Bini et al. [12], [13]. Bini
et al. called this test hyperbolic bound and proved that it
improves the acceptance ratio over the utilization bound of
Liu and Layland by a factor of

√
2 for a large number of

tasks. A similar test was also proposed by Oh et al. [14] to
be used in task allocation problems.

Other sufficient schedulability tests have also been proposed
for RM and di = pi. For example, Kuo and Mok [15]
presented a bound that exploits the fact that 100% utilization is
possible under RM when tasks have harmonic periods. Further,
Burchard et al. [16] presented another utilization bound that
varies not only with the number of tasks but also with a
factor quantifying how close tasks are to having harmonic
periods. For arbitrary deadlines, Lehoczky [17] proposed an
RM utilization bound that depends on the number of tasks and
on the ratio di

pi
that is assumed to be the same for all tasks.

Joseph and Pandya [18] analyzed the problem of finding
response times for fixed-priority tasks, from which they de-
rived an exact pseudo-polynomial schedulability test. Further,
Lehoczky et al. [3] presented an exact schedulability test also
with pseudo-polynomial complexity for the case of RM and
di = pi. In [4], Audsley et al. improved Lehoczky’s exact
schedulability test by observing that tasks’ worst-case response
time can be found in an iterative manner. Further, Audsley
et al. considered deadlines less than or equal to periods and
other priority assignments. More recently, Bini and Buttazzo
presented a tunable schedulability test [5] for di ≤ pi and
fixed priorities. Bini and Buttazzo’s test allows configuring
complexity versus acceptance ratio for the testing. In [6],
Fisher and Baruah proposed a polynomial-time approxima-
tion scheme for the known exact schedulability test [3], [4].
Further, Bini and Baruah presented an efficient technique for
estimating the worst-case response time of fixed-priority tasks
in polynomial time [7].

As previously discussed, the exact tests as well as the
known approximation techniques require tasks to be sorted
according to priorities. If a new task is added to the system, all
already accepted lower-priority tasks will have to be retested.
In this case, the running time of the an admission control test
increases as the number of accepted tasks grows in the system.



III. TASK MODEL, DEFINITIONS AND NOTATION

For the reason that we are concerned with the admission
control problem, our task set changes dynamically at runtime.
A new task may arrive to and a running task may leave
the system from time to time. At a given time instant t,
when a new task Tnew arrives, T denotes the set of all tasks
currently in the system plus Tnew. Since tasks may run under
a partitioned scheme on identical processors, we use Tl to
denote any arbitrary subset of l tasks from T running on a
given processor.

Once a task is accepted, it generates jobs sporadically as
long as it remains active in the system. In our previous example
consisting of a networked computer game, an arriving task
stands for a connection request to the game server, which if
admitted produces a sequence of sporadic packets or jobs.
We further assume that tasks are independent and run fully
preemptively under DM.

Each task Ti in Tl is characterized by its relative deadline
di, its worst-case execution time ei and by its minimum
inter-release time pi, i.e., the minimum separation between
two consecutive activations/jobs of Ti. As already mentioned,
relative deadlines di are assumed to be less than or equal to
the respective minimum inter-release times pi for all tasks.
The ratio ui = ei

pi
is known as task utilization and the sum of

all ui is the processor utilization U =
∑l

i=1
ei

pi
.

If the worst-case response time of a task Tj ∈ Tl is less
than its deadline dj , then Tj is schedulable under DM. This
can be computed in the following manner [4]:

t(c+1) = ej +
∑

Ti∈HP (j)

⌈
t(c)

pi

⌉
ei, (1)

where HP (j) ⊂ Tl denotes the subset of tasks with higher
priority than Tj (i.e., for every Ti in HP (j), di ≤ dj must hold
under the DM policy). Thus,

∑
Ti
d t(c)

pi
eei where Ti ∈ HP (j)

results in the execution demand of higher priority jobs.
Eq. (1) can be solved iteratively starting from t(1) = ej and

until t(c+1) = t(c) is satisfied for some c ≥ 1. For a processor
utilization U ≤ 1, t(c+1) converges to the worst-case response
time of Tj which we denote by wj . Clearly, if wj > dj holds,
Tj misses its deadline. As a result, the iterative computation
of t(c+1) in Eq. (1) can be stopped if t(c+1) exceeds dj .

Eq. (1) assumes the critical instant [8], i.e., that jobs of all
tasks in HP (j) are released together with Tj . In this paper,
without loss of generality, the simultaneous release of jobs of
all tasks is assumed to happen at time t = 0.

As stated above, the concept of loading factor was originally
defined for EDF [10] as the ratio of the maximum execution
demand in a given time interval divided by the length of this
interval. In this paper, we adapt this concept to the case of the
DM policy, for which we introduce the following definition.

DEFINITION 1 The loading factor of a task Tj scheduled
under the Deadline Monotonic policy is given by the ratio

between the worst-case response time divided by the deadline
of Tj and will be denoted by: ρj = wj

dj
.

Clearly, Tj’s worst-case response time wj and, hence, its
loading factor ρj depend on the execution demand of tasks
with higher priority than Tj . However, for the sake of sim-
plicity, the notation adopted in this paper (i.e., wj and ρj)
does not reflect this dependency.

IV. CONSTANT-TIME TESTS FOR DM

The utilization bound of Liu and Layland [8] can be adapted
to DM as follows:

n∑
i=1

ei

di
≤ n(21/n − 1). (2)

Note that here periods pi have been replaced by the respec-
tive deadlines di to reflect the DM rather than the RM policy.
The validity of Eq. (2) for DM follows from the validity of
Liu and Layland’s bound for RM and the fact that di ≤ pi

holds for all tasks.
Similarly, the hyperbolic bound [11], [12], [13] may be

modified to (with pi being replaced by di):

n∏
i=1

(
1 +

ei

di

)
≤ 2. (3)

As we consider the case where tasks do not have harmonic
periods, the test of Kuo and Mok [15] reduces to the hyperbolic
bound. Further, although the utilization bounds of Burchard et
al. [16] and of Lehoczky [17] can also be used in the above
manner, our experiments with a large number of synthetic task
sets show that the test given by Eq. (3) is the least pessimistic.
That is, while all the mentioned tests are safe, Eq. (3) accepts
more schedulable task sets.

All these tests can be used to perform a constant-time
admission control for DM tasks, i.e., the testing time for a
new task does not depend on the number of currently running
tasks. In addition, the more recent load test can also be used
to derive a constant-time admission control for DM [9]:

n∑
i=1

max
(

ei

di
,

2ei

pi + ei

)
≤ 1. (4)

It can further be proven that the load test is less pessimistic
than the adapted hyperbolic bound of Eq. (3) in the case that
di ≤ pi+ei

2 holds for all tasks [9]. Additionally, considering a
uniform distribution of deadlines in [ei, pi], our experimental
results show that the load test yields a better accuracy than
any other known constant-time test for admission control,
particularly, as the number of accepted tasks increases in the
system. However, the accuracy of the load test is rather poor
when compared with the exact test.



V. THEORETICAL BACKGROUND

The test proposed in this paper computes an upper bound on
the loading factor of the task set Tl composed of all already
running tasks and Tnew on a given processor. By definition, if
the maximum loading factor of Tl does not exceed 1, Tl is
schedulable, i.e., adding Tnew does not produce any deadline
miss. As a result, Tnew can be assigned to the considered
processor.

The first lemma gives an upper bound on the loading factor
of any task Tj that belongs to Tl. We then apply this lemma
to obtain an upper bound on the loading factor of the whole
task set Tl as discussed later in this section.

LEMMA 1 Let Tl be a subset of T. If any task Tj ∈ Tl is
schedulable, its loading factor ρj is upper bounded as follows:

ρj ≤
ej

dj
+

∑
Ti∈HP (j)

max
(

ei

di
,

2ei

pi + ei

)
,

where HP (j) ⊂ Tl is the set of tasks with higher priority
than Tj .

Proof: The following equation holds for wj :

wj = ej +
∑

Ti∈HP (j)

⌈
wj

pi

⌉
ei. (5)

This results by replacing t(c+1) and t(c) by wj in Eq. (1).
Each term dwj

pi
eei stands for the execution demand within wj

of a higher-priority Ti. Since Tj’s loading factor ρj is given
by wj

dj
, we have:

ρj =
ej

dj
+

∑
Ti∈HP (j)

⌈
wj

pi

⌉
ei

dj
. (6)

For wj ≤ pi,
d

wj
pi
eei

dj
= ei

dj
holds. As Ti has higher priority

than Tj , di ≤ dj also holds. As a result, ei

dj
≤ ei

di
is true.

On the other hand, if
d

wj
pi
eei

dj
= (ki+1)ei

dj
holds, wj is strictly

larger than kipi where ki ≥ 1 is an integer number. Apart from
the ki jobs released within kipi time units, one extra job of
Ti interferes with Tj and, hence, wj ≥ kipi + ei must hold
since Tj cannot interrupt any higher-priority task. As Tj ∈
Tl is schedulable, wj ≤ dj is true and we have:

d
wj
pi
eei

dj
=

(ki+1)ei

dj
≤ (ki+1)ei

wj
≤ (ki+1)ei

kipi+ei
. Now, we prove that (ki+1)ei

kipi+ei

is less than or equal to 2ei

pi+ei
:

(ki + 1)ei

kipi + ei
≤ 2ei

pi + ei
,

ki + 1 ≤ 2
(

(ki − 1)pi

pi + ei
+ 1

)
. (7)

Since ei ≤ pi, pi+ei ≤ 2pi holds. Hence, 2
(

(ki−1)pi

2pi
+ 1

)
≤

2
(

(ki−1)pi

pi+ei
+ 1

)
also holds. As 2

(
(ki−1)pi

2pi
+ 1

)
= ki + 1,

Eq. (7) is true. Hence,
d

wj
pi
eei

dj
≤ (ki+1)ei

kipi+ei
≤ 2ei

pi+ei
holds.

We can see that, independently of the value of wj ,
d

wj
pi
eei

dj
≤

max
(

ei

di
, 2ei

pi+ei

)
holds always. Finally, ρj in Eq. (6) is upper

bounded by ej

dj
+

∑
Ti

max
(

ei

di
, 2ei

pi+ei

)
where Ti belongs to

HP (j).

The following lemma proves that the bound given by
Lemma 1 is safe. That is, if Tj is not schedulable, the bound
of Lemma 1 is always greater than 1.

LEMMA 2 Let Tl be a subset of T. If any task Tj ∈ Tl is
not schedulable, the following must hold:

ej

dj
+

∑
Ti∈HP (j)

max
(

ei

di
,

2ei

pi + ei

)
> 1,

where HP (j) ⊂ Tl is the set of tasks with higher priority
than Tj .

Proof: Since Tj is not schedulable, the first job of Tj

misses its deadline at the critical instant. Let us denote by
ŵj the execution demand in [0, dj ]. Hence, if Tj is not
schedulable, ŵj is greater than dj . Dividing ŵj by dj , we
obtain:

ŵj

dj
=

ej

dj
+

∑
Ti∈HP (j)

ddj

pi
eei

dj
> 1. (8)

For dj ≤ pi,
d

dj
pi
eei

dj
= ei

dj
holds. The condition ei

dj
≤ ei

di

also holds, since di is less than or equal to dj under DM.

Further, if dj > pi,
d

dj
pi
eei

dj
= (ki+1)ei

dj
holds for an integer

number ki ≥ 1. If dj ≥ kipi+ei also holds, then from Eq. (8):

ej

dj
+

∑
Ti∈HP (j)

(ki + 1)ei

kipi + ei
≥ ej

dj
+

∑
Ti∈HP (j)

ddj

pi
eei

dj
> 1.

We know from the proof of Lemma 1 that (ki+1)ei

kipi+ei
≤ 2ei

pi+ei

holds and, hence, the lemma holds true in this case.
Now, we analyze the case where dj > pi and dj <kipi + ei

as shown in Figure 1. Tj is here the task with the lowest
priority, so it can only run when no higher-priority task
executes. This means that Tj finishes executing at ŵj as
depicted in Figure 1. Hence, ŵj > kipi+ei holds and therefore

ŵj

kipi+ei
> 1 also holds:

ŵj

kipi + ei
=

ej

kipi + ei
+

∑
Ti∈HP (j)

ddj

pi
eei

kipi + ei
> 1.

Since dj < kipi + ei,
ej

dj
>

ej

kipi+ei
and we have:

ej

dj
+

∑
Ti

(k+1)ei

kipi+ei
>

ŵj

kipi+ei
> 1 where Ti ∈ HP (j). Again,

from the proof of Lemma 1, we know that (ki+1)ei

kipi+ei
≤ 2ei

pi+ei

holds. As a consequence, ej

dj
+

∑
Ti

max
(

ei

di
, 2ei

pi+ei

)
>1 holds

always true and the lemma follows.



Figure 1. Tj finishes executing at ŵj

LEMMA 3 Let Tl be a subset of T. For any two tasks Ti and
Tj that belong to Tl, where Ti has higher priority than Tj , it

always holds that
⌈ dj

pi

⌉
ei

dj
≤ max

(
ei

di
, 2ei

pi+ei

)
.

Proof: This lemma follows immediately from the above
discussion of Lemma 1 and Lemma 2.

Lemma 1 gives an upper bound on the loading factor ρj

of a task Tj . Based on Lemma 1, it is possible to design an
admission control test which is then equivalent to the load
test of Eq. (4) [9]. However, as discussed before, this is too
pessimistic compared to the exact test [3], [4].

In what follows, we consider a more accurate way of
obtaining an upper bound on ρj . If Tj is schedulable ρj =
wj

dj
≤ 1 and, hence, wj ≤ dj holds. As a result, we have that

ρj ≤ ej

dj
+

∑
Ti

d
dj
pi
eei

dj
also holds, where Ti ∈ HP (j) and

HP (j) ⊂ Tl is the set of tasks with higher priority than Tj .
Further, we can apply Lemma 3 for one or more Ti ∈ HP (j)
and obtain an upper bound on ρj which we denote by ρ̂j .
Clearly, for any ρ̂j , the following holds:

ej

dj
+

∑
Ti∈HP (j)

⌈
dj

pi

⌉
ei

dj
≤ ρ̂j ≤

ej

dj
+

∑
Ti∈HP (j)

max
(

ei

di
,

2ei

pi + ei

)
.

(9)

If Tj is not schedulable, ρj ≥ ej

dj
+

∑
Ti

⌈ dj
pi

⌉
ei

dj
> 1 holds.

Hence, according to Eq. (9), ρ̂j is also greater than 1, i.e., ρ̂j

is a safe bound.
Now, we are in the position of defining ρ̂l(tx) as the

maximum ρ̂j among all Tj ∈ Tl for which dj ∈ [tx, tx+1):

ρ̂l(tx) = max
Tj∈Tl|tx≤dj<tx+1

(ρ̂j) .

Here tx and tx+1 are given points in time, where tx < tx+1

holds and x is a positive integer number.
The concept of ρ̂l(tx) gives an upper bound on the loading

factor within [tx, tx+1). Hence, computing ρ̂l(tx) for consec-
utive intervals along the time line allows approximating the
loading factor by pieces. We further denote by ρ̂l the maximum
among all piecewise approximations ρ̂l(tx) for 0 < tx <∞,
i.e., the maximum loading factor among all Tj ∈ Tl:

ρ̂l = max
0≤tx<∞

(
ρ̂l(tx)

)
.

Computing the maximum loading factor ρ̂l by pieces ρ̂l(tx)
increases the accuracy of the proposed approximation. The
following two lemmas are concerned with the successive

computation of ρ̂l(tx) as a new task arrives and constitute
the basis of the proposed admission control test in this paper.

LEMMA 4 For Tl−1 ⊂ T, let ρ̂l−1(tx) be the maximum ρ̂j

(defined in Eq. (9)) among all Tj in Tl−1, for which dj is
in the interval [tx, tx+1). If any task Tnew is added to Tl−1,
where tx ≤ dnew < tx+1, the loading factor in [tx, tx+1) of
the resulting subset Tl is bounded above by:

ρ̂l(tx) = ρ̂l−1(tx) + max
(

enew

dnew
,

2enew

pnew + enew

)
.

Proof: Clearly, adding Tnew with tx ≤ dnew < tx+1

to Tl−1 changes the loading factor of the system. Notice
that, since the loading factor of any DM task is given by
its worst-case response time over its deadline, Tnew does not
affect the loading factor of higher-priority tasks, i.e., tasks with
shorter deadlines. As a consequence, Tnew can only increase
the loading factor for t ≥ dnew. Further, let us assume that
the resulting maximum loading factor within [tx, tx+1) occurs
for a Tj with deadline dj . Again, dj is any possible deadline
in [dnew, tx+1). Denoting by wnew

j Tj’s worst-case response
time after adding Tnew to the system, the following equation
holds true: wnew

j = ej +
∑

Ti
dwnew

j

pi
eei + dwnew

j

pnew
eenew. Here,

Ti ∈ HP (j) and HP (j) stands for all tasks in Tl−1 with
higher priority than Tj . Considering that Tj is schedulable (i.e.,
wnew

j ≤ dj), Tj’s resulting loading factor ρnew
j is bounded

above: ρnew
j ≤ ej

dj
+

∑
Ti

d
dj
pi
eei

dj
+

d
wnew

j
pnew

eenew

dj
.

By definition, we can replace the first two terms of this
inequality by ρ̂l−1(tx). Applying then Lemma 1, we obtain
ρnew

j ≤ ρ̂l−1(tx) + max
(

enew

dnew
, 2enew

pnew+enew

)
and the lemma

follows.
If Tj is not schedulable, notice that ρnew

j ≥ ej

dj
+∑

Ti

d
dj
pi
eei

dj
+

d
wnew

j
pnew

eenew

dj
> 1 holds, so the bound ρ̂l−1(tx)

given in this lemma is safe.

LEMMA 5 For Tl−1 ⊂ T, let ρ̂l−1(tx) be the maximum ρ̂j

(defined in Eq. (9)) among all Tj in Tl−1, for which dj is
in the interval [tx, tx+1). If any task Tnew is added to Tl−1,
where tx+1 > tx ≥ dnew, the loading factor of the resulting
subset Tl in [tx, tx+1) is bounded above by:

ρ̂l(tx) = ρ̂l−1(tx) + max
(

kenew

tx
,
(k + 1)enew

tk

)
,

where k is given by d tx

pnew
e and tk = kpnew.

Proof: Adding Tnew to the system modifies the loading
factor for t ≥ dnew, since Tnew has influence on the worst-case
response times of lower-priority tasks, i.e., tasks with longer
deadlines. Now, let us assume that the resulting maximum
loading factor within [tx, tx+1), occurs for a Tj with dj , where
dj is any possible deadline in [tx, tx+1). Denoting by ρnew

j

Tj’s loading factor after adding Tnew, the following equation

holds true: ρnew
j = ej

dj
+

∑
Ti

d
wnew

j
pi

eei

dj
+

d
wnew

j
pnew

eenew

dj
where



Ti ∈ HP (j). Considering that Tj is schedulable (i.e., wnew
j ≤

dj), Tj’s resulting loading factor ρnew
j is bounded above:

ρnew
j ≤ ρ̂l−1(tx) +

⌈
dj

pnew

⌉
enew

dj
. (10)

As we are interested in finding ρ̂l(tx), i.e., an upper bound
on the maximum loading factor in [tx, tx+1), we first consider

the case where dj = tx holds: ρnew
j ≤ ρ̂l−1(tx)+ d tx

pnew
eenew

tx
,

where d tx

pnew
e was denoted by k in this lemma. Removing the

ceiling function in Eq. (10) and reordering, we obtain:

ρnew
j ≤ ρ̂l−1(tx) +

enew

dj
+

enew

pnew
. (11)

From Eq. (11), we know that the smallest possible dj results
in an upper bound on the loading factor. However, we do not
need to compute Eq. (11) until tk = kpnew for k = d tx

pnew
e.

This is because the loading factor for jobs in (tx, tk) cannot
exceed the one at tx. Replacing dj by tk in (11), we proceed to
obtain: ρnew

j ≤ ρ̂l−1(tx) +
enew+tk

enew
pnew

tk
. Taking into account

that tk is equal to kpnew, we finally obtain: ρnew
j ≤ ρ̂l−1(tx)+

(k+1)enew

kpnew
.

Thus, ρ̂l(tx) (i.e., the resulting upper bound on the max-
imum loading factor in [tx, tx+1)) is given by ρ̂l−1(tx) +
max

(
kenew

tx
, (k+1)enew

tk

)
.

On the other hand, if Tj is not schedulable after adding
Tnew (i.e., wnew

j > dj), ej +
∑

Ti
ddj

pi
eei + d dj

pnew
eenew > dj

holds where Ti ∈ HP (j). As a result, the bound ρ̂l−1(tx)
given in this lemma is safe.

VI. THE PROPOSED TEST

In this section, we introduce a test based on lemmas 4
and 5. Our test computes the maximum loading factor, which
is produced on a given processor by the task set Tl of all
already running tasks and Tnew. Now, if the maximum loading
factor does not exceed 1, the new task Tnew can be feasibly
accommodated on the considered processor.

To calculate the maximum loading factor on a given pro-
cessor, our algorithm partitions the time line into b + 1 non-
overlapping intervals where b is a positive integer number.
This way, we can approximate the execution demand, the
worst-case response time and, hence, the loading factor of
tasks in Tl. Clearly, the quality of the approximation depends
on the number of intervals/segments we use. However, more
segments result in a longer running time of the algorithm.

Figure 2 illustrates the approximation technique for uniform
intervals and b = 2, i.e., the time axis is divided into three; t1
and t2 are the lower bounds of the second and third intervals
respectively.

Accommodating an arriving task into one of these intervals
according to its deadline dnew allows for more accuracy in
computing the maximum loading factor generated by Tl on
the processor. This procedure can be interpreted as restricted
sorting of tasks according to deadlines such that we can

Figure 2. Approximation technique for the maximum loading factor

compute tlen; //see explanation below

if dnew ≥ tb

ρ̂l(b + 1) = ρ̂l(b + 1) + max
(

enew
dnew

, 2enew
pnew+enew

)
;

5: else

tx = tb;

for i = 0 to b

if tx ≤ dnew

ρ̂l(b−i+1) = ρ̂l(b−i+1)+max
(

enew
dnew

, 2enew
pnew+enew

)
;

10: break;

else

k = d tx
pnew

e;
tk = kpnew;

ρ̂l(b−i+1) = ρ̂l(b−i+1)+max
(

kenew
tx

,
(k+1)enew

tk

)
;

15: end

compute tx; //see explanation below

end

end

20: if max1≤ i≤ b+1(ρ̂l(i)) > 1

return("not schedulable");

else

return("schedulable");

end

Figure 3. Admission control based on Lemma 4 and 5

retain constant complexity. The execution demand used for
computing the worst-case response time is then approximated
by b + 1 slopes. These slopes are given by the maximum
loading factors in each of the intervals. In Figure 2, we have
three slopes: ρ̂l(0) which is the maximum loading factor in
[0, t1), ρ̂l(t1) in [t1, t2) and ρ̂l(t2) in the interval [t2,∞). The
maximum between ρ̂l(0), ρ̂l(t1) and ρ̂l(t2) gives an upper
bound on the loading factor of all tasks executing on the
processor.

Figure 3 shows the pseudo-code of the proposed test for
admission control. The parameters b and tb can be tuned to
achieve a desired accuracy/running time. Here, b determines
the number of intervals/segments used for the approximation
and tb is the lower bound of the last interval. We discuss how
to select these parameters later.

Non-uniform approximations: The distribution of approx-
imation segments along the time line can be adjusted to a
particular application. In practice, it is not unusual to know
a probability distribution according to which we can partition



the time line more efficiently. For example, if deadlines were
normally distributed, almost 70% of all deadlines will be
greater than dmean−σ and less than dmean+σ. Here, dmean is
the mean and σ is the standard deviation of the normal distri-
bution. As a result, using a constant number of approximation
segments b, it is more meaningful to concentrate more of these
segments within [dmean−σ, dmean+σ] than distributing them
uniformly along the time line.

In this paper, deadlines are considered to be uniformly dis-
tributed in [0, dmax] with dmax being the maximum possible
deadline. Further, we study two variants of the algorithm of
Figure 3. The first variant consists in distributing intervals
uniformly over the time line such that the first b intervals
starting at t = 0 have the same length tlen and the last interval
covers the remaining time axis up to infinity. In our second
variant, intervals have non-uniform lengths. The first interval
starts at t = 0 and is tlen time units long. The second interval
here is 2tlen long, the third 3tlen and so on until the b-th
interval which has a length of b× tlen time units. Here again,
the last interval extends to infinity.

Whereas the use of uniform-length intervals is more
intuitive and based on the fact that deadlines are assumed
to have a uniform distribution, non-uniform-length intervals
lead to a more accurate approximation as shown later. Using
non-uniform-length intervals as suggested above allows us to
increasingly concentrate more segments for approximating
tasks with shorter deadlines. Since these tasks have higher
priority under DM, they have bigger impact on the total
execution demand of the whole task set and dominate the
worst-case response times of tasks with larger deadlines. As
a result, approximating the execution demand of tasks with
shorter deadlines using more segments increases the accuracy
of the proposed algorithm.

Computing tlen: The value of tlen computed at line 1 of
Figure 3 clearly depends on the algorithm’s variant. In the first
variant, tlen is the length of the approximation intervals (which
are here uniform). This variant uses b intervals of length tlen,
so tlen is given by tb

b .
The second variant uses intervals with non-uniform (i.e.,

increasing) lengths. Here, tlen is the length of the first interval
starting at t = 0. As mentioned above, the second interval is
twice as long as the first one, the third interval has three times
the length of the first interval and so on. In this case, tlen can
be easily obtained by tb

c with c = b2+b
2 .

Now, for an arriving Tnew, if dnew ≥ tb holds, we can
apply Lemma 4 at line 4 to compute the maximum loading
factor ρ̂l(b + 1) = ρ̂l(tb), i.e., Tl’s maximum loading factor
in [tb,∞). As dnew ≥ tb holds, adding Tnew does not change
the loading factor for all other intervals whose bounds are less
than tb.

On the other hand, if dnew is less than tb, we need to find
out in which interval the new deadline dnew fits. For this
purpose, we iterate over all intervals from line 7 to 17. The
variable tx adopts the value of the lower bounds of intervals
starting from tx = tb (i.e., from the last interval) until the

condition tx ≤ dnew is fulfilled. Tnew is going to change
the loading factor in all intervals for which tx >dnew holds.
Lemma 5 can be used to compute the maximum loading
factor in these intervals—see Figure 3 lines 11 to 15. The
values k and tk required by Lemma 5 are computed at lines
12 and 13 respectively, whereas Tl’s maximum loading factor
in the (b− i + 1)-th interval is obtained at line 14 where i is
the variable of the for-loop. In order to make the pseudo-code
more intuitive, we use a slightly different nomenclature in
Figure 3. Namely, ρ̂l(tx) of Lemma 5 is given by ρ̂l(b−i+1),
i.e., we use the index b − i + 1 instead of the lower bound
tx to denote the loading factor of the (b − i + 1)-th
interval. Once the condition tx ≤ dnew is satisfied, we
apply Lemma 4 at line 9 to estimate the maximum loading
factor in the corresponding interval and exit the loop at line 10.

Computing tx: After each iteration, the next value of tx is
computed at line 16. In case of uniform intervals, this is tx =
tx − tlen and, for non-uniform-length intervals, this is tx =
tx− (b− i)× tlen where 0 ≤ i ≤ b is the variable of the loop.

If the maximum loading factor in all the time intervals
is not greater than 1 at line 20, Tl is schedulable on the
processor and the new task Tnew can be accepted (otherwise,
this algorithm rejects Tnew). Clearly, if Tnew is rejected, its
loading factor should not be added to the system’s loading
factor (this can be achieved using temporal variables to
compute the loading factor with Tnew, which values are only
then committed if Tnew is accepted).

A task leaving the system: The system’s loading factor also
changes when a task Told leaves. In this case, the algorithm
of Figure 3 needs little modification. We need again to
compute the loading factor component of the leaving task:
max

(
eold

dold
, 2eold

pold+eold

)
or max

(
keold

tx
, (k+1)eold

tk

)
depending

on the interval in which dold is contained. Finally, instead of
summing this as for Tnew in Figure 3 (lines 4, 9 and 14),
Told’s loading factor component has to be subtracted from
the maximum loading factor in the corresponding interval.

Complexity of the algorithm: The proposed admission con-
trol test has a constant complexity. That is, its running time
for accepting/rejecting a new task does not depend on the
number of tasks currently executing in the system. However,
the running time of this algorithm increases linearly with the
number of segments b + 1 used to approximate the loading
factor. As a result, the complexity of the proposed algorithm
is given by O(b + 1). As discussed above, b is a constant that
can be adjusted to achieve a desired accuracy/running time
ratio.

VII. EXPERIMENTAL RESULTS

In this section, we present experimental results comparing
the proposed admission control algorithm with approaches
from the literature. The accuracy/acceptance ratio of tests
is measured using the percentage of schedulable task sets
that they are able to accept on a single processor. Although
we are concerned with the admission control problem, i.e.,
a new task should be admitted in a running system, the



0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

utilization [%]

%
 sc

he
du

la
bl

e 
ta

sk
 se

ts

 

 

non−uni., b=20

uni., b=20

uni., b=5

uni., b=10

non−uni., b=5

non−uni., b=10

Figure 4. Schedulability versus utilization for 100 tasks: b

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

utilization [%]

%
 sc

he
du

la
bl

e 
ta

sk
 se

ts

 

 

uni., tb=1/2dmax

uni., tb=2/3dmax

uni., tb=dmax

non−uni., tb=1/2dmax

non−uni., tb=2/3dmax

non−uni., tb=dmax

Figure 5. Schedulability versus utilization for 100 tasks: tb

experimental results with synthetic tasks are presented in the
form of whether an entire task set is schedulable or not. This
way, if a given task set of l tasks is schedulable, it means
that adding an l-th task to the set of l− 1 tasks was possible.

Selecting b and tb: The proposed test can be configured by
means of b and tb where b + 1 is the number of intervals
used for computing the maximum loading factor and tb is the
lower bound of the last interval. We analyze the previously
considered two variants of this algorithm. The first variant has
uniform intervals in [0, tb] while the second variant has non-
uniform intervals whose lengths increase as we move from
t = 0 towards tb. Clearly, the values of b and tb have influence
on both these variants. Let us consider Figure 4 illustrating
the performance of the two variants for sets of 100 tasks and
different values of b.

As shown in Figure 4, a bigger value of b, i.e., considering
more linear segments for the approximation, increases the
accuracy/acceptance ratio of the algorithm. Additionally, for
the same b, the variant featuring non-uniform-length intervals
(denoted by non-uni.) outperforms the variant with uniform
intervals (denoted by uni.). For comparing our test with those
from the literature, we configure both variants with b = b0.1lc
being l the number of tasks expected to be active at the same
time in the system (e.g., if l = 100 as in Figure 4, we choose
b = 10). This value of b results in an acceptable accuracy
for the testing and, at the same time, it does not considerably
increase the running time of the algorithm.

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

utilization [%]

%
 sc

he
du

la
bl

e 
ta

sk
 se

ts

 

 

hyperbolic
 test

Liu & Layland
test

load test

uniform
intervals

non−uniform
 intervals

exact test

Figure 6. Schedulability vs. utilization for 50 tasks

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

utilization [%]

%
 sc

he
du

la
bl

e 
ta

sk
 se

ts

 

 

exact test

Liu & Layland
test

load test
non−uniform

 intervalsuniform
intervals

hyperbolic
 test

Figure 7. Schedulability vs. utilization for 100 tasks

Figure 5 shows the influence of tb on the accuracy of the
proposed test. Again, the two variants are taken into account.
Clearly, since tb is the lower bound of the last interval, this
should never be greater than dmax, where dmax is the longest
possible deadline in the system. Assuming a constant b, if we
select tb to be smaller than dmax, we can concentrate more
segments in the lower part of the time line, which increases the
accuracy for approximating higher-priority tasks. On the other
hand, as we do not know the exact values of the deadlines, we
cannot be sure that concentrating more intervals in this region
leads to the desired accuracy. Further, the smaller tb, the more
deadlines are going to fit in the last interval [tb,∞), which
again decreases the accuracy of the approximation. In general,
considering synthetic task sets with a uniform distribution, a
small tb improves the accuracy for lower utilization ranges at
the cost of a worse acceptance ratio for higher utilizations—
see Figure 5. For our comparison, we choose tb = dmax

for both variants since it allows a better accuracy at higher
utilizations.

A. Synthetic Task Sets

We compare the proposed test with other constant-time tests
based on approaches from the literature such as the hyperbolic
bound of Eq. (3) and the Liu and Layland test of Eq. (2).
Our experimental results with a large number of synthetic task
sets have shown that the hyperbolic bound of Eq. (3) is less
pessimistic than the other approaches from the literature [15],
[16], [17] which we then do not include in the figures here.



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

20

40

60

80

100

di / pi

%
 sc

he
du

la
bl

e 
ta

sk
 se

ts

 

 

exact test

uniform
intervals

non−uniform
 intervals

hyperbolic
 test

Liu & Layland
test

load test

Figure 8. Schedulability vs. deadline/period ratio for 50 tasks

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

20

40

60

80

100

di / pi

%
 sc

he
du

la
bl

e 
ta

sk
 se

ts

 

 

exact test

uniform
intervals

hyperbolic
 test

load test

Liu & Layland
test

non−uniform
 intervals

Figure 9. Schedulability vs. deadline/period ratio for 100 tasks

We also consider the more recent load test shown in Eq. (4)
and the known exact test [3], [4] in this comparison. Note
that the load test is equivalent to the proposed algorithm in
this paper for which a b = 0 is selected (i.e., the case where
only one approximation segment/interval is used). The exact
test is the only one without constant complexity when used
for admission control, however, it serves as a reference in
this comparison.

Schedulability versus utilization: For schedulability curves
with respect to the utilization, we first generated a random
set of task utilizations ui with UUniFast [19], [20]. Then,
we obtained periods pi using a uniform distribution in [0, 1]
and computed ei = uipi. The relative deadlines di were also
generated using a uniform distribution in [ei, pi]. Additionally,
we increased the utilization gradually in 24 uniform steps
generating each time 10,000 different task sets.

Figure 6 shows the percentage of accepted task sets for
the different algorithms and 50 tasks per set as the processor
utilization grows. We use b = 5 and tb = dmax as stated
above for the considered variants of the proposed algorithm.
While the Liu and Layland, the hyperbolic and the load test
become pessimistic for processor utilizations beyond 20%, the
two variants of the proposed test have a better acceptance ratio
for utilizations of up to 60%.

In the case of 100 tasks per set, we use b = 10 and
tb = dmax just as explained before. Figure 7 illustrates the
acceptance ratio of the different algorithms for 100 tasks per

admission 
control

AMD
K6-2E

AMD
K6-2E

accepted

arriving tasks
rejected

Real-time Multimedia Platform

AMD
K6-2E

AMD
K6-2E

AMD
K6-2E

AMD
K6-2E

AMD
K6-2E

AMD
K6-2E

Figure 10. Setup for a real-time multimedia server

set. Again, the test of Liu and Layland, the hyperbolic and the
load test are very pessimistic for processor utilizations over
20%. On the other hand, the two variants of the proposed test
outperform the other constant-time algorithms for utilizations
of up to 60%.

The propose algorithm with non-uniform intervals shows an
accuracy that is closer to that of the exact test for utilizations
in the range of (0, 60%). This test allows admitting around
60% more task sets compared with the other constant-time
tests in the range 30% to 50% utilization (as shown in
Figure 6 and Figure 7).

Schedulability versus di

pi
: For schedulability curves with re-

spect to the deadline/period ratio di

pi
, we considered a processor

utilization of 40% (i.e., U = 0.4) and used UUniFast [19],
[20] to obtain a set of task utilizations ui. Again, the periods
were obtained with a uniform distribution in [0, 1] and the
execution times were computed just as before ei = uipi.
The relative deadlines here are computed with the previously
obtained value of pi and according to the desired ratio di

pi
. The

ratio di

pi
was increased gradually in 24 uniform steps with each

time 10,000 different task sets.
Figure 8 shows the percentage of accepted task sets for the

algorithms and 50 tasks as di

pi
grows from 0 to 0.4. Here, we

use b = 5 and tb = dmax for the variants of the proposed
algorithm. Figure 9 illustrates the acceptance ratio versus di

pi

of the different algorithms for 100 tasks per set. For this, the
variants of the proposed algorithm feature b = 10 and tb =
dmax.

In this comparison and for small values of di

pi
, the proposed

algorithm shows (in both its variants) a similar performance
to that of the exact test. The load test (i.e., the case b = 0)
is pessimistic up to di

pi
= 0.2 and then it behaves similar to

the exact test. On the other hand, the Liu and Layland and the
hyperbolic test remain pessimistic for deadlines di < 0.35pi.

B. Case Study

In this section, we compare algorithms in the context of
a case study. The presented case study consists of a real-
time multimedia server where requests from clients (tasks)
are constantly arriving and have to be accommodated or
rejected on-line. The multimedia server in question features
eight processors. Under normal operation, only four of the
processors are in active mode, while the other four remain in



Task description pi di ei

Matrix arithmetic 0.3176 0.0257 0.0009
Fast Fourier Transform 0.0192 0.0030 0.0016
Inverse FFT 0.0526 0.0055 0.0015
Compress JPEG 1.2821 0.1519 0.0560
Decompress JPEG 5.7866 0.4939 0.0450
High-pass gray-scale filter 0.5015 0.0494 0.0110
RGB to CYMK conversion 0.1073 0.0155 0.0077
RGB to YIQ conversion 0.0771 0.0208 0.0160
Image rotation 0.3597 0.0301 0.0021
Autocorrelation (sine) 0.0138 0.0014 0.0004

Table I
TASK POOL BASED ON E3S: PARAMETERS IN SECONDS

sleep mode and can be activated if necessary according to the
computation demand. Our platform has identical AMD K6-2E
processor operating at 400 Mhz. A partitioned DM scheduling
is used, i.e., once a task is assigned to a processor, it remains
on that processor (task migration is not allowed). Figure 10
illustrates our setup for the high-end multimedia server.

Here, the different algorithms are combined with the First
Fit (FF) heuristic to achieve a feasible allocation of tasks to
processors. This way, the Liu and Layland test, the hyperbolic
and the load test are compared with the proposed admission
control test. We consider the two variants of this algorithm
with uniform and non-uniform intervals respectively. For both
these variants, we set b = 5 and tb = dmax where dmax is
the maximum deadline that we expect for an arriving task. As
before, we include the known exact pseudo-polynomial test
in this comparison. This latter is the only test with pseudo-
polynomial complexity and acts here as a reference.

In order to obtain realistic tasks, we make use of the Embed-
ded Systems Synthesis Benchmarks Suite (E3S) [21], which is
based on embedded processor and task information from the
Embedded Microprocessor Benchmark Consortium (EEMBC).
We first created a task pool with tasks typically encountered in
high-end multimedia applications such as autocorrelation, Fast
Fourier Transform, compressing/decompressing JPEG, high-
pass gray-scale filter, etc. Table I shows a brief description of
tasks in the mentioned task pool together with their parameters
(minimum inter-release time pi, relative deadline di and worst-
case execution time ei).

An arbitrary task from this pool can arrive at any time to the
multimedia server triggered by a client request. When a new
task arrives, the admission control tests have to accept or reject
it according to whether they can find a feasible allocation in
one of the processors or not.

Figure 11 shows the number of tasks that the different
admission control tests are able to accept when four processors
are in active mode. The Liu and Layland and the hyperbolic
test can accept around 10 incoming tasks after which they
become pessimistic and start rejecting further requests. The
load test allows accepting 10 more tasks than the previous
tests. The variant of the proposed test consisting of uniform
intervals can accept up to 45 before starting to reject almost
all further requests. Our algorithm with non-uniform interval
lengths admits approximately 55 tasks and is only 10 tasks
below the acceptance curve of the exact test.

1 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

number of arriving tasks

nu
m

be
r o

f a
cc

ep
te

d 
ta

sk
s

 

 

exact test

uniform intervals

hyperbolic
 test

Liu & Layland test

load test

non−uniform intervals

Figure 11. Accepted vs. arriving tasks: 4 processors

1 20 40 60 80 100 120 140 160 180 200
10−4

10−3

10−2

10−1

100

number of arriving tasks

ru
nn

in
g 

tim
e 

[s
]

 

 

exact test

uniform & non−uniform
intervals

Liu & Layland
 test

load testhyperbolic
 test

Figure 12. Running time vs. arriving tasks: 4 processors

Figure 12 shows the running times of algorithms as a
function of the number of arriving tasks for the case of
four active processors. The proposed test (for both uniform
and non-uniform intervals) and the other constant-time tests
require around 1 to 2 orders of magnitude less time than the
solution based on the exact test. The proposed test is here
approximately half an order of magnitude slower than the other
constant-time tests.

The performance of the admission control algorithms is
shown in Figure 13 for the case where eight processors are in
active mode. Clearly, the number of accepted tasks increases
because more computation capacity is available. However, the
test of Liu and Layland and the hyperbolic bound accept only
around 20 tasks. The load test accommodates 10 tasks more
than these previous tests. Our proposed test with uniform
intervals allows admitting around 80 tasks before getting
pessimistic. On the other hand, the test with non-uniform
intervals is able to accommodate approximately 100. This is
around 20 requests less than the exact test, but, in contrast to
the exact test, our test has constant complexity.

In Figure 14, the running times versus the number of
arriving tasks are depicted for the case of eight processors
in active mode. Again, the admission control based on the
exact test still requires around 2 orders of magnitude additional
running time than the constant-time algorithms, whereas the
proposed test takes half an order of magnitude longer than the
other constant-time tests.



1 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

140

number of arriving tasks

nu
m

be
r o

f a
cc

ep
te

d 
ta

sk
s

 

 

exact test

Liu & Layland test

hyperbolic
 test load test

uniform intervals

non−uniform intervals

Figure 13. Accepted vs. arriving tasks: 8 processors

1 50 100 150 200 250 300 350 400
10−4

10−3

10−2

10−1

100

number of arriving tasks

ru
nn

in
g 

tim
e 

[s
]

 

 

uniform & non−uniform
intervals

load test

exact test

hyperbolic
 testLiu & Layland

 test

Figure 14. Running time vs. arriving task: 8 processors

VIII. CONCLUDING REMARKS

In this paper, we presented an admission control test with
constant complexity for the Deadline Monotonic (DM) policy
and the case di ≤ pi. Although we can adapt techniques
from the literature to derive constant-time tests for this setup,
the proposed test is less pessimistic and allows accepting
considerably more tasks with the same complexity.

The test we propose computes the maximum loading factor
generated by all already running tasks and the new task on
a given processor. We defined the loading factor of a DM
task as the ratio between the task’s worst-case response time
divided by its deadline. If the maximum loading factor on the
considered processor does not exceed 1, the task set with the
new task is schedulable and the new task can be accepted.

In addition, the proposed test partitions the time line into in-
tervals, such that the maximum loading factor is approximated
by linear segments. The number of intervals determines the
number of segments and, hence, the quality of the approxima-
tion. However, more segments lead to a longer running time
of the algorithm.

We analyzed two variants of this test. The first one is based
on uniform intervals, i.e., b intervals of the same length in
[0, tb] where the parameter tb can be selected according to
the expected deadlines. On the other hand, the second variant
consists of non-uniform intervals with gradually increasing
lengths in [0, tb]. In both these variants, the (b+1)-th interval
extends from tb to infinity.

For a given b, our experiments show that the variant with
non-uniform intervals yields a better acceptance ratio. This
result demonstrates that the accuracy of our approximation
technique does not only depend on the number of segments
used, but also on their distribution along the time line. Hence,
a better accuracy can be obtained through better distributing
approximation segments. Finally, as future work, we plan to
use previous information about task parameters such as prob-
abilistic distributions to improve approximation techniques.

REFERENCES

[1] D. Johnson, Near-Optimal Bin Packing Algorithms. Cambridge, USA:
Massachusetts Institute of Technology (MIT), Department of Mathemat-
ics, 1973, ph.D. Thesis.

[2] J.-T. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic, real-time tasks,” in Performance Evaluation,
vol. 2, 1982, pp. 237–250.

[3] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algo-
rithm: exact characterization and average case behavior,” in Proceedings
of the Real-Time Systems Symposium, December 1989, pp. 166–171.

[4] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings, “Ap-
plying new scheduling theory to static priority pre-emptive scheduling,”
Software Engineering Journal, vol. 8, no. 5, pp. 284–292, September
1993.

[5] E. Bini and G. Buttazzo, “Schedulability analysis of periodic fixed
priority systems,” IEEE Transactions on Computers, vol. 53, no. 11,
pp. 1462–1473, November 2004.

[6] N. Fisher and S. Baruah, “A fully polynomial-time approximation
scheme for feasibility analysis in static-priority systems with arbitrary
relative deadlines,” in Proceedings of the 17th Euromicro Conference on
Real-Time Systems, July 2005, pp. 117–126.

[7] E. Bini and S. Baruah, “Efficient computation of response time bounds
under fixed-priority scheduling,” in Proceedings of the 15th conference
on Real-Time and Network Systems, March 2007.

[8] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in
hard real-time environments,” Journal of the Association for Computing
Machinery, vol. 20, no. 1, pp. 40–61, 1973.

[9] A. Masrur, S. Chakraborty, and G. Färber, “Constant-time admission
control for deadline monotonic tasks,” in Proceedings of the DATE
Conference on Design, Automation and Test in Europe, March 2010,
pp. 220–225.

[10] J. Stankovic, M. Spuri, K. Ramamritham, and G. Buttazzo, Deadline
Scheduling for Real-Time Systems: EDF and Related Algorithms. Dor-
drecht, The Netherlands: Kluwer, 1998.

[11] J. Liu, Real-Time Systems. New Jersey, USA: Prentice Hall, 2000.
[12] E. Bini, G. Buttazzo, and G. Buttazzo, “A hyperbolic bound for the rate

monotonic algorithm,” in Proceedings of the 13th Euromicro Conference
on Real-Time Systems, June 2001.

[13] E. Bini and G. Buttazzo, “Rate monotonic analysis: the hyperbolic
bound,” IEEE Transactions on Computers, vol. 52, no. 7, pp. 933–942,
July 2003.

[14] Y. Oh and S. Son, “Allocating fixed-priority periodic tasks on multipro-
cessor systems,” Real-Time Systems, vol. 9, no. 3, pp. 207–239, 1995.

[15] T.-W. Kuo and A. Mok, “Load adjustment in adaptive real-time sys-
tems,” in Proceedings of the 12th IEEE Real-Time Systems Symposium,
December 1991, pp. 160–170.

[16] A. Burchard, J. Liebeherr, Y. Oh, and S. Son, “New strategies for
assigning real-time tasks to multiprocessor systems,” IEEE Transactions
on Computers, vol. 44, no. 12, pp. 1429–1442, 1996.

[17] J. Lehoczky, “Fixed priority scheduling of periodic task sets with
arbitrary deadlines,” in Proceedings of the 11th IEEE Real-Time Systems
Symposium, December 1990, pp. 201–209.

[18] M. Joseph and P. Pandya, “Finding response times in a real-time system,”
The Computer Journal, vol. 29, no. 5, pp. 390–395, 1986.

[19] E. Bini and G. Buttazzo, “Biasing effects in schedulability measures,” in
Proceedings of the 16th Euromicro Conference on Real-Time Systems,
June-July 2004.

[20] E. Bini and G. Buttazzo, “Measuring the performance of schedulability
tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, 2005.

[21] http://ziyang.eecs.umich.edu/∼dickrp/e3s/.


