
Optimizing Hierarchical Schedules for Improved
Control Performance

Harald Voit?, Reinhard Schneider?, Dip Goswami?, Anuradha Annaswamy†, Samarjit Chakraborty?
?TU Munich, Germany, †Massachusetts Institute of Technology, USA

Abstract—Embedded control systems typically consist of sev-
eral control loops, with different parts of each control application
being mapped onto different processors that communicate over
one or more communication buses. In such setups, the system
architecture and scheduling policies have a significant impact on
control performance. In this paper we show how to optimally
choose the parameters of hierarchical schedules on the commu-
nication bus in order to improve multiple control performance
metrics.

I. INTRODUCTION

As embedded systems become more complex and dis-
tributed – consisting of multiple processing units and commu-
nication buses – the gap between high-level control models
and their actual implementations seem to widen. Control en-
gineers are typically concerned with analyzing and simulating
controllers based on well-defined semantics of both the plant
and the controller being designed. Once a design is complete,
has been analyzed and simulated, it is the task of the embedded
systems engineer to come up with software implementations
(e.g., in C) of the different control blocks (e.g., from MATLAB
specifications) and implement the software on a hardware
architecture or platform. By platform we mean the hardware on
which the controller is implemented along with the operating
system layer between the hardware and the software.

Often, the platform architecture consists of multiple pro-
cessors connected by one or more communication buses.
Further, multiple control applications share such a platform
and need to be scheduled appropriately. A natural question
that arises in such a setting is: How does one quantify or
account for the semantic gap between the control models
and their implementations? This is important because many
of the assumptions on periodicity or zero-delay/jitter, that
are common for control models, no longer hold in real-life
implementations.

In this paper we consider multiple feedback controllers
being implemented on a platform consisting of multiple pro-
cessing units (PUs) that communicate over a shared bus. Each
controller is split into multiple tasks that are then mapped
onto different PUs. Hence, each PU consists of tasks from
different control applications, and tasks from different PUs
communicate over a single shared bus. Our goal is to develop
a systematic method for scheduling the different message
streams on the bus, in order to jointly maximize multiple
control performance metrics (e.g., those related to stability
cost, and transient and steady-state performance). Towards
this, we focus on hierarchical schedules where each control

application is allocated a Time Division Multiple Access
(TDMA) slot (in order to provide temporal isolation between
them), and message streams from the same controller are
scheduled using fixed priority within the allocated TDMA
slot. The problem is that of computing the values of the
different parameters of this hierarchical scheduler in order
to maximize control performance. Such parameters include
the TDMA cycle length and the different slot sizes (with the
priorities assumed to be constant).

It may be noted that our setup consists of multiple con-
trollers and multiple performance metrics. Hence, certain
choices of parameter values that improve the performance of
one controller or one metric might reduce that of another,
which leads to the design space being non-trivial. Further,
although control performance improves monotonically with
decreasing the delay experienced by the different message
streams (at least for the controllers we study here), the rate
of improvement is not constant. Hence, identifying the sweet
spot that leads to optimal control performance is in general
a non-trivial optimization problem (whose complexity would
depend on both the controllers, the performance metrics and
the underlying architecture).

For the platform architecture and scheduling policies studied
here, we derive a closed-form formulation of message delay,
as a function of the various scheduler parameters. This is
used in conjunction with three control performance metrics
in order to identify optimal scheduling parameters. Further,
we consider a parameterized joint performance metric, which
is a linear combination of the three different metrics. Our
simulation results show that the optimal choice of scheduler
parameters heavily depend on the parameters of the joint
performance metric. This illustrates the control-scheduler co-
design issue that is growing in importance as embedded
systems architectures become more complex and tunable.

The problem of bridging the gap between the semantics of
control models and that of the implementation platform has of
late attracted a lot of attention, for example in [1]-[9]. Ngheim
et al. in [1] and Yazarel et al. in [2] have quantified this exact
gap/error for linear controllers implemented on time-triggered
platforms. In [3], [4], the authors address the problem of co-
designing controllers and the underlying schedulers as in this
paper. In contrast to our work, where we derive closed-form
expressions of message delay from the scheduler parameters
and use these delay values to estimate control performance,
the authors of [3], [4] resort to simulation to estimate the
distribution of message delay values and use this distribution

as an input to the Jitterbug toolbox [5] to compute control
performance. Also, in [3] only one of the three performance
metrics that we study here is addressed. Related papers such as
[6]-[8] address the estimation of scheduler periods or priorities
with the aim of improving control performance. In cases, such
as in [7], analytical solutions have also been found. A delay
impulsive model is proposed in [9] to represent a distributed
control implementation, and is realized using a FlexRay ar-
chitecture. However, the realistic effects of a FlexRay based
implementation such as jitter and sporadic messages are not
addressed in [9]. Our contribution, compared to [1]-[9] is the
use of multiple control performance metrics and the use of
suitable approximations to account for the effects of message
delays. Further, we use a general model of the implementation
platform that enables us to compute the delays encountered
in heterogeneous architectures in a form that can be plugged
into our control performance model. Finally, while previous
studies were only concerned with relatively simple schedules,
our work shows how complex bus arbitration schemes – like
hierarchical schedules – may be optimized or improved control
performance.

The rest of the paper is organized as follows. We next
give a short overview of the feedback control systems studied
here, along with a description of our delay model (Section II).
This is followed by our analysis of communication architec-
tures, where we derive a closed-form expression for message
delay as a function of scheduler parameters and the timing
properties of incoming message streams (Section III). Next,
we propose our method for control-scheduling co-design, i.e.,
how to determine optimal scheduler parameters for specific
parameter valuations of the joint control performance metric
(Section IV). We then present our simulation results to illus-
trate our hypothesis – the need for controller- and performance
metric-specific architectures/schedulers (Section V) followed
by some directions for future work (Section VI).

II. FEEDBACK CONTROL SYSTEMS

Several engineering systems employ the use of automatic
control to improve their performance in terms of speed,
accuracy, cost, and efficiency. Typically, this requires the
use of sensors to monitor the system performance, actuators
to introduce corrections to the system behavior, a reference
command that indicates the desired behavior, and controllers
that compute the timing and magnitude of these corrections
(see Fig. 1 for a schematic). The field of control theory
and engineering is dedicated to the analysis and synthesis of
various control methods that determine the control structure
for a given system.

Controller Actuator System

Sensor

+
−

OutputReference
command

Fig. 1. Schematic Feedback Control System

A typical design procedure begins with the determination
of the underlying model of the system to be controlled. Many
physical systems can be described with ordinary differential
equations (ODE) in continuous time. These ODEs may be
based on conservation equations and constitutive relations.
In some cases, difference equations are used to describe the
system, and may be derived using a System-Identification
based methodology that consists of evaluating input-output
responses and determining a discrete-time system that best
fits these responses. Similar to the system-model, an actuator
model is determined as well. Once these models are derived,
a controller is designed using state-space [10], frequency-
domain [11], or geometric methods [12]. The success of the
control performance is not only determined by the accuracy of
the system models and the specific control method used, but
also – as described in the previous section – on the accuracy
of modeling the implementation architecture. In order to lead
towards an implementation platform that successfully meets
the requirements of a feedback control system, we also model
the effects of control implementation. This is addressed in
what follows.

As mentioned in the previous section, our platform ar-
chitecture consists of several processing elements connected
by a shared communication bus. Such architectures introduce
implementation errors of different kinds [13]. For the purposes
of our discussion here, we model the implementation errors
in the form of a delay and a disturbance (see Fig. 2) that
represent the effect of sampling, scheduling, discretization and
quantization errors. We analyze the control performance of the
feedback system in Fig. 2 in order to lead to a control-platform
co-design.

Sensor

Reference

command Actuator SystemController

Implementation

Disturbance

−

Delay
Output

Plant

+

+

Fig. 2. Schematic Feedback Control System with Time Delay

The two main properties that need to be addressed while
discussing Quality of Control are stability and performance.
Stability is concerned with the well-behavedness of the system
signals in the presence of feedback control. In particular, it is
desired that the system signals do not exceed a certain bound.
A stricter measure of stability is concerned with the regulation
of the underlying error signals to zero.

Closed-loop control performance objectives typically in-
clude tracking of a command signal in addition to rejecting
or minimizing the effects of disturbances, measurement noise,
and modeling errors. Optimizing various performance objec-
tives over the set of stabilizing controllers is the main thrust
of optimal control methods, such as L1, H2, and H∞ control.
Fundamental limits of closed-loop control performance for
general dynamic systems, for command following as well as

disturbance rejection, can be computed using Bode Sensitivity
Integrals [14], [15], [16]. For ease of exposition, we limit our
discussion in this paper to performance metrics that pertain
to stabilizing controllers that ensure satisfactory command
following for lower order systems.

III. COMMUNICATION ANALYSIS

We consider a platform architecture with multiple dis-
tributed control applications (see Fig. 3). The control ap-
plications are partitioned into a number of tasks that are
mapped onto different PUs. The PUs communicate via a
shared communication bus and run different tasks from one
or more control applications. Scheduling on the processors
and arbitration on the shared bus introduces delays in various
control signals. These delays are dependent on the arbitra-
tion/scheduling policy on the buses and on the PUs.

A. System Description

We now briefly describe the platform architecture, the
mapping of various control tasks on it, and the hierarchical
scheduling policy on the shared bus. For the ease of
illustration, this setup will form the basis of the techniques
we propose. However, they hold true for other setups as well.

Hardware/Software architecture: We consider three control
applications: controller 1, 2 and 3 shown in Fig. 4, 5 and
6. Each controller is connected to an actuator and a sensor.
The aim of each control application is to compute the
control input to the plant such that the closed-loop system
meets desired performance. Towards this, the controllers
read sensors values to determine the state of the closed-loop
system and compute commands based on the deviation from
the desired performance. Control applications are partitioned
into a number of tasks, which are mapped onto different PUs
connected via the communication bus. In our architecture
(see Fig. 3) PU1 hosts the tasks responsible for reading the
reference command from the user, PU2 hosts all tasks that
compute control commands, PU3 hosts the tasks responsible
for reading sensors, and the tasks responsible for providing
plant commands are mapped onto PU4.

Control applications: Control application 1 (Fig. 4) is parti-
tioned into four tasks: T1, T2, T3 and T4. Task T1 reads sensor
S1 and sends sensor signal m1 via the communication bus to
the task T3. Similarly, task T2 reads the reference command
from the user and sends the reference command m2 via the
communication bus to task T3. The control input is computed
in T3 using the messages m1 and m2. The processed output
of task T3 is sent via the communication bus to task T4. The
plant P1 receives the control input from the task T4. Fig. 4
(a) and (b) show the task graph and the closed-loop block
diagram for controller 1.

Control application 2 (Fig. 5) is partitioned into three tasks:
T5, T6 and T7. Task T5 reads the sensor S2 and sends the
sensor signal m5 via the communication bus to the task T6.
Controller task T6 computes the control command based on the

sensor feedback signal and the constant predefined reference
command. The task T6 sends the control command to task T7

via the communication bus. The plant P2 receives input signal
from the task T7. Fig. 5 (a) and (b) show the task graph and
the closed-loop block diagram for controller 2.

T2 T3

T1

T4

m1

m2 m3
Plant

T3 T4

Sensor

T1

T2

(a) (b)

m1

m2 m3+
-

Controller

Fig. 4. Controller 1: (a) The Task Graph (b) Closed-Loop Block Diagram

+
-

Controller Plant

T6 T7

Sensor

T5

(a) (b)

T6T5 T7
m5 m6

m5

m6
const.

Fig. 5. Controller 2: (a) The Task Graph (b) Closed-Loop Block Diagram

Plant

Controller T11

Sensor

T8

(a) (b)

T9

T8

T10 T11

m8

m10 T10T9

m8

m10

Fig. 6. Controller 3: (a) The Task Graph (b) Closed-Loop Block Diagram

Control application 3 (Fig. 6) is partitioned into four
tasks: T8, T9, T10 and T11. Task T8 reads the sensor S3

and sends the sensor signal m8 via the communication bus
to the task T9. Task T9 computes one part of the control
signal and sends the resulting command to the task T10.
Task T10 computes the control command m10 and sends it
via the communication bus to the task T11 which sends the
control command to the plant P3. Fig. 6 (a) and (b) show the
task graph and the closed-loop block diagram for controller 3.

Communication scheduling: The shared communication bus
follows a hierarchical TDMA/FP scheduling policy (Fig. 7).
At the top-level of the scheduler runs a TDMA scheduler,
i.e., the communication bandwidth is divided into equal cycles
of length c. The TMDA cycles are further divided into three
slots, i.e., s1, s2 and s3 which are assigned to the control
applications 1, 2 and 3. Therefore, control application i
(i=1, 2, 3) can only send input streams or messages in slot

FPS FPS

FPS
PU1

T2

Shared Communication Bus

T11

T1T8 T4T3

T9 T10

T5T6 T7

S2 S3 S1

P1 P3 P2
Sensor
cluster

Plant

ControllersReference
input

PU2

PU3

PU4

intra
User
input

Fig. 3. System Architecture With Three Distributed Control Applications

s1 s2 s3

m 1 , m2 , m3 m5 , m6 m8 , m10

fixed priority fixed priority

c = TDMA cycle length

fixed priority

Fig. 7. The Communication Bus: Hierarchical TDMA/FP Scheduler

si. For example, control application 1 can only access the
communication bus in s1. Further, all the streams or the
messages coming into/from the control application which are
transmitted via the communication bus follow a fixed priority
scheduler (FPS). For example, control application 1 exchanges
three messages among its various tasks: m1, m2 and m3.
These messages can only be transmitted during the slot s1.
If all the three messages are ready to be transmitted via s1

then first m1 gets access to the bus. Subsequently, m2 and
m3 are transmitted respectively.

B. Compositional timing analysis

In this section we will give an overview of the real-time
calculus (RTC) framework [17], [18], which is an analytical
method for analyzing performance properties of distributed
embedded real-time systems. Given several distributed appli-
cations that are mapped onto different processing and commu-
nication resources, e.g., in the architecture depicted in Fig. 3,
we are now interested in computing the maximum end-to-end
delay experienced by each of the control applications.

In the following, we refer to an abstract system represen-
tation (depicted in Fig. 8) to illustrate the applicability of
the timing analysis framework. The system consists of two
processing units PU1 and PU2 and a shared communication
medium. The processing units execute the control tasks T1, T2

and T3 and transmit the processed output over the shared bus.
The input of a task can be represented by an arrival pattern
A(t) of a data stream, i.e., sensor readings. The cumulative
function A(t) denotes the total number of events that arrive

s2

TDMA (B,c)

b1

b2

a1
‘‘

T1

PU1 (FPS)

a1

b

b‘

a2

a3

PU2

b2

b2‘

FP

FP

a2
‘‘

a3
‘‘

b

a1
‘

a2
‘

a3
‘

FP

BUS (TDMA/FP)

s1

T2

T3

Fig. 8. System With Hierarchical Bus Scheduling

0 p 2p 3p 4p 5p
0

1

2

3

4

5

∆

#e
ve

nt
s

αu(∆)

αl(∆)

0 p 2p 3p 4p 5p
0

1

2

3

4

5

6

∆

#e
ve

nt
s

αu(∆)

αl(∆)

2j

Fig. 9. a) Periodic Arrival Curves. b) Periodic With Jitter j.

during the time interval (0, t]. However, the number of events
that may arrive in any time interval of length ∆ that trigger
a task execution or a message transmission can be upper- and
lower-bounded by the pair of arrival curves α = (αu, αl).
Formally, we obtain the following mathematical inequality:

∀∆ ≥ 0, ∀ t ≥ 0 : αl(∆) ≤ A(∆ + t)−A(t) ≤ αu(∆) (1)

In other words, αu(∆) and αl(∆) denote the maximum and
minimum number of events that can arrive within any time
interval of length ∆. Thus, using this event model, we can
represent the timing properties of standard event models - like
periodic, periodic with jitter and sporadic - as well as arbitrary
arrival patterns by an appropriate choice of αu(∆) and αl(∆).
Fig. 9 (a) illustrates an example for the upper and lower arrival
curves representing a strictly periodic event stream with period
p. Fig. 9 (b) depicts a pair of arrival curves with period p and

jitter j, i.e., in a periodic sensor stream with jitter the sensor
samples arrive at an average time interval of p time units, but
can deviate from the ideal periodic arrival.
Similarly, we can model the available resource capacities on
a processor or a bus to process a task or transmit a message.
The cumulative function C(t) captures the number of events
that can be processed in (0, t]. The service available to a
task or message is upper- and lower-bounded by the pair of
service curves β = (βu, βl). Thus, the following mathematical
inequality hold true:

∀∆ ≥ 0, ∀ t ≥ 0 : βl(∆) ≤ C(∆ + t)− C(t) ≤ βu(∆) (2)

Hence, βu(∆) and βl(∆) denote the maximum and min-
imum number of events that can be processed within any
time interval of length ∆. The service curves can also be
expressed in terms of the maximum and minimum number of
resource units (e.g., processor cycles, execution times) that are
required to process an event within any ∆. For this purpose,
βu(∆) and βl(∆) are scaled with the execution requirement
demanded by a task or message due to each activation. When
running several tasks on a shared resource, e.g., T1 and T2 on
PU1, the bounds on the service available to the tasks using
this resource depend on the scheduling policy being used. On
PU1 the tasks are executed according to FPS. Hence, the full
service β is available to the highest priority task T1 to process
the input stream α1. Consequently, the remaining service
β′ after processing α1 serves as an input for the execution
of T2 processing α2. Further, the processed data streams
α′ = (αu

′
, αl

′
) and the remaining service β′ = (βu

′
, βl

′
)

can be computed by the following equations:

αu
′

= min
{(
αu ⊗ βu

)
� βl, βu

}
(3)

αl
′

= min
{(
αl � βu

)
⊗ βl, βl

}
(4)

βu
′

=
(
βu − αl

)
� 0 (5)

βl
′

=
(
βl − αu

)
⊗ 0 (6)

Let R := R ∪ {+∞,−∞} and F = {f : R+ → R | ∀s <
t, 0 ≤ f(s) ≤ f(t)}. The (min,+) convolution ⊗ and
deconvolution � operators are defined by: ∀f, g ∈ F and
∀t ∈ R+,(

f ⊗ g
)
(t) = inf

{
f(s) + g(t− s) | 0 ≤ s ≤ t

}(
f � g

)
(t) = sup

{
f(t+ u)− g(u) | u ≥ 0

}
The (max,+) convolution ⊗ and deconvolution � operators are
defined by: ∀f, g ∈ F and ∀t ∈ R+,(

f⊗g
)
(t) = sup

{
f(s) + g(t− s) | 0 ≤ s ≤ t

}(
f�g

)
(t) = inf

{
f(t+ u)− g(u) | u ≥ 0

}
Considering a set S ⊆ F , the supremum (sup) is defined by
the smallest U ∈ F such that x ≤ U , ∀x ∈ S. Similarly, the
infimum (inf) of S is the largest L ∈ F such that x ≥ L,
∀x ∈ S. Given αu(∆) and βl(∆) the maximum backlog b at

the input buffer, and the maximum delay d that is experienced
by the event stream α can be computed as follows:

b = sup
{
αu(∆)− βl(∆) | ∆ ≥ 0

}
(7)

d = sup
{

inf
{
τ ≥ 0 | αu(s) ≤ βl(s+ τ)

}
| s ≥ 0

}
(8)

Note that (7) and (8) denote the maximum vertical and
horizontal deviations between αu(∆) and βl(∆).

The processed data streams α1
′, α2

′ and α3
′ trigger mes-

sages to be transmitted on the shared bus according to a hier-
archical TDMA/FP scheduling policy. The top-level scheduler
is modeled as a TDMA resource with a total bandwidth of B
and a cycle length of c. Within every TDMA cycle the time
slot si is assigned to one control application. In Fig. 8, slot s1

is assigned to the data stream α1
′ whereas slot s2 is assigned

to α2
′ and α3

′. The service bounds for a TDMA resource can
be modeled as follows [19]:

βli = Bmax

{⌊
∆

c

⌋
si,∆−

⌈
∆

c

⌉
(c− si)

}
(9)

βui = Bmin

{⌈
∆

c

⌉
si,∆−

⌊
∆

c

⌋
(c− si)

}
(10)

During the time interval ∆ = (c − si) no service is
guaranteed to any data stream that is assigned to any slot si.
According to the hierarchical scheduling policy the service
available to the data streams assigned to any time slot si
is determined according to the FPS. The full service β1 is
available for transmitting the data stream α1

′. The input
streams α2

′ and α3
′ share slot s2 providing the service β2

where α2
′ is assigned a higher priority than α3

′. Thus, the
full service β2 is available to α2

′ while the remaining service
β2
′ is available for transmitting α3

′ on the bus. Now, the
output event streams α1

′′, α2
′′ and α3

′′ can serve again as an
input to further processing units, e.g., executing actuator tasks.

Considering the system in Fig. 8, the end-to-end delay
can be computed as the sum of the individual delays at the
different processing components (due to task processing and
bus communication) experienced by an input data stream,
e.g., the data stream α1 experiences a delay d1 due to task
processing of T1 and another delay d2 due to the message
transmission on the bus. Thus, using (8), the total delay
experienced by α1 is computed as τ = d1 + d2. Hence,
using the compositional performance model presented in this
section, we are able to compute the maximum end-to-end
delay τ experienced by any message along the path from
the sensor to the actuator, of any distributed control appli-
cation. For example, in Fig. 3 the worst case end-to-end
delay experienced by control application 3 is computed by
τ = dT8

+ dm8
+ dT9

+ dT10
+ dm10

+ dT11
.

IV. CO-DESIGN

A. Design space exploration

In the previous section, we discussed the analysis of timing
properties in distributed embedded systems, e.g., the maximum
end-to-end delay experienced by a data stream. Given an

architecture such as in Fig. 3, we are interested in exploring
every possible system configuration within a specified range of
interest. Towards this, we generate the system configurations
while varying the TDMA cycle length c and the slot size si
assigned to any control application Ci according to Alg. 1
(lines 1 and 2). Towards exploring all the possible system
configurations for a particular control application Ci, we vary
the slot size si that is assigned to this controller while keeping
the slot sizes for the other controllers Cj fixed (and equal to
the maximum size of the messages being transmitted in those
slots). For every such system configuration, we compute the
maximum end-to-end delay τ encountered by every control
applications (line 3) according to the timing analysis technique
described in Section III. If the delays encountered by all three
controllers are finite, we include the corresponding system
configuration into the set of feasible system configurations Ω
(lines 4 and 5). Therefore, at the end of the design space
exploration for a particular controller Ci, we evaluate a set of
feasible system configurations with corresponding TDMA bus
parameters.

Algorithm 1 Design space exploration of system configurations.
Require: Ci, Cj , cmin, cmax, smin, smax, stepc, steps

1: for c ∈ [cmin + n× stepc ≤ cmax], n ∈ [0, 1, 2...] do
2: for si ∈ [smin + k × steps ≤ smax], k ∈ [0, 1, 2...] do
3: τ = computeDelay(), ∀Ci, Cj

4: if τ ∈ [0,∞), ∀Ci, Cj then
5: add configuration to Ω //set of feasible configurations
6: else
7: discard configuration
8: end if
9: end for

10: end for

B. Performance Metrics
Typical measures of stability of a feedback system are gain

and delay margins. The latter is our focus here, using which
we define a stability cost function P0 as

P0 =
1

Lm
(11)

where Lm is the delay margin of the plant P with a controller
C. The delay margin Lm is the amount of time delay which
can be tolerated by the system before it gets unstable.

We select two different performance metrics, one that
quantifies transient performance and another that quantifies
steady-state performance, both in the context of following a
reference command. A measure of transient performance is
Peak Overshoot [11], and can be defined as follows: Defining
g(t) as the step response, and t0 is the first time-instant when
g(t) achieves its steady-state value gss, the peak overshoot
cost, denoted as P1, is defined as

P1(e) =

{
max(g(t)) for t > t0 if t0 exists
0 otherwise

(12)

A steady-state performance metric of command-tracking can
be defined using integral cost function of the tracking error.
Denoted as P2, this performance metric is defined as

P2 =

∫ ∞
0

e(t)2dt (13)

where e(t) is the tracking error, and is denoted as Cheap
Control [20].

Overall, a desired controller can be defined as one that
minimizes the cost function J defined as

J =

2∑
i=0

λiPi (14)

where λis are suitably chosen weights. It is clear from (14)
that equal values of λi imply an equal weighting in stability
and performance, while a larger value of λ2 (and λ3) relative
to λ1 implies a greater emphasis on transient (and steady-state)
performance. It should be noted that the above choices for per-
formance metrics are typical examples, and reflect measures
of stability and performance costs associated with command
tracking. Similar costs based on disturbance rejection, control-
energy, and modeling errors can also be included in J . A
typical cost function used in optimal control, for instance, not
only includes tracking error e, but also a function u2 to reflect
the actuation energy introduced for control [3].

C. Computation of Performance Metrics

We illustrate the properties of a feedback control system
described above through a specific example. We assume that
the plant in Fig. 1 can be described using a linear ordinary
differential equation with a transfer function P (s). The system
transfer function P (s) is given by

P (s) =
KP

s2 + s
(15)

and a controller-model

C(s) = K(s+ b)e−τs (16)

where τ > 0 is the time-delay due to computation and com-
munication. We consider a negative unit feedback structure.
The closed-loop transfer function is then given by

G(s) =
KPK(s+ b)e−τs

s2 + s+KPK(s+ b)e−τs
(17)

The delay margin Lm is determined by the phase of the
forward-loop system of G(s) at the crossover frequency, ωc,
where the forward-loop gain is unity. For the system given in
(15) and (16), this can be computed analytically as

ωc(K, b,KP) =(
−1

2
+
K2
PK

2

2

+
1

2

√
1− 2K2

PK
2 + 4K2

P b
2K2 +K4

PK
4
) 1

2

(18)

With ωc we can compute the phase margin ϕm

ϕm(K, b,KP) =

arctan
(
−1

2
(b− 1)(K2

PK
2 − 1 + ξ,

− 1

2
√

2

√
K2
PK

2 − 1 + ξ(K2
PK

2 + 2b− 1 + ξ)
)

+ π

(19)

where

ξ =
√

1 + 2K2
PK

2(0.5 ·K2
PK

2 + 2b2 − 1) (20)

is used for better readability. The delay margin is then given
by

Lm(K, b,KP) =
ϕm(K, b,KP)

ωc(K, b,KP)
(21)

and P0 as defined in (11) is consequently given by

P0(K, b,KP) =
ωc(K, b,KP)

ϕm(K, b,KP)
(22)

The determination of the peak overshoot P1, defined as in
(12) is done numerically. In order to obtain analytical results
for P2, the time delay in (16) is replaced by a 4th-order Padé
approximation given by

e−τs ≈ p4(−τ, s)

=
τ4s4 − 20τ3s3 + 180τ2s2 − 840τs+ 1680

τ4s4 + 20τ3s3 + 180τ2s2 + 840τs+ 1680

(23)

Using (23), approximate closed-loop transfer function G̃(s)
can be derived as

G̃(s) =
KPK(s+ b)p4(−τs)

s2 + s+KPK(s+ b)p4(−τs)
(24)

Using (24), which is an approximation of the controller
together with the system, the computation of P2 defined in
(13) can be carried out in a straightforward way. P2 can
be computed for general closed-loop systems using Bode
Sensitivity Integrals [20].

D. Optimal Co-design

Using the performance metrics computed above, we now
outline an optimization procedure that results in a minimal
J . This procedure will not only carry out an optimization
over all control parameters in C(s) but also an implementation
optimization over all possible configurations.

We represent the cost J in (14) using the notation Pjk,i
for the performance metrics, where index k = 0, 1, 2 cor-
responds to the three different performance metrics P0, P1,
and P2, i = 1, 2, 3, . . . , |Ω| represents the |Ω| feasible system
configurations, and j = 1, 2, 3, . . . ,m represents m copies of
the controller in the embedded system architecture. The goal
is to find a feasible configuration and a vector of controller
parameters, such that the overall cost J is minimized and
therefore the corresponding QoC is maximized. In order to
find this optimal value we consider the total cost P̄ji for a
given controller j and a configuration i, which is defined as

P̄ji (θj) =

2∑
k=0

λkPjk,i(θj) (25)

where θj represents the parameters of the controller j.
The total cost over all controllers, for a given configuration

i, denoted as P̃i(θj) is given by

P̃(θj) =

m∑
j=1

P̄ji (θ) (26)

The overall optimal cost can now be defined as

P∗(θ∗, i∗) = min
i=1,...,|Ω|
θ∈Γ

(P̃i(θ)) (27)

where P∗ is the minimum cost obtained for an optimal
configuration i∗ and optimal control parameter θ∗ and Γ
denotes the set of all feasible controller parameters.

In summary, for a plant given in (15) and controller in (16),
performance metrics P0, P1 and P2 can be computed using
(22), (12), and (13), respectively, for a given τ in an analytical
manner. It should also be noted that for the class of plants
as in (15), both performance metrics P1 and P2 deteriorate
monotonically with τ . P0 on the other hand is independent
of τ , and represents the delay margin. This implies that the
overall optimal cost P∗ represents the worst case performance
and that any configuration that yields a smaller set of delays
will only lead to an improved performance.

V. RESULTS

Given the system architecture shown in Fig. 3, we choose
sensor signals to be periodic and the remaining sensors to
be periodic with jitter. We assumed that S1 sends the sensor
reading periodically at an interval of 20 ms and that S2 and
S3 send the sensor streams periodically with periods 30 and
40ms respectively with jitters 6 and 2 ms. Our architecture
shown in Fig. 3 has 11 tasks mapped onto various PUs and are
executed according to FP schedulers. The execution demand
of the tasks are (in ms): T1 = 2; T2 = 2; T3 = 3; T4 = 3;
T5 = 1; T6 = 2; T7 = 4; T8 = 1; T9 = 2; T10 = 3 and T11 =
6. The 11 tasks generate 7 messages which are transmitted
via the shared communication bus according to a hierarchical
TDMA/FP scheduling policy. The transmission times of the
messages are (in ms): m1 = 4; m2 = 2; m3 = 2; m5 = 3;
m6 = 2; m8 = 2; m10 = 2.

For the design space exploration, we vary the TDMA cycle
length c from cmin = 10ms to cmax = 40ms in steps of
stepc = 5ms according to Alg.1. While varying the TDMA
cycle length, we also vary the slot size s1 of controller C1 we
are interested to optimize, while keeping the other two slot
sizes s2 and s3 fixed, i.e., we vary s1 from smin = 1 ms to
smax = (cmax − s2 − s3) in steps of steps = 0.5ms. Further,
we compute the corresponding maximum end-to-end delay τ
encountered by each controller and retain the feasible system
configurations where the delay is finite.

We explored 273 system configurations and retained
|Ω| = 15 feasible configurations out of them. For example,
with c = 15ms and s1 = 5ms (and s2 = 3ms; s3 = 2ms),
the delay encountered by the three controllers are (in ms):
τ1 = 80.0; τ2 = 99.0; τ3 = 113.0.

In order to carry out the optimal co-design outlined in
Section IV.D, we assumed that the plants corresponding to
tasks T4, T7, and T11 have a transfer function as in (15) with
Kp = 1000. The corresponding controllers in tasks T3, T6

and T9, T10 were assumed to have a transfer function

Cj(s) = Kj(s+ bj)e
−τjs, j = 1, 2, 3.

config. c s1 λk = 1
3

, λ0 = 1
21

, λk = 10
21

,
[ms] [ms] k = 0, 1, 2 k = 1, 2

1 10 3.5 1.5579 0.5662
2 10 4.0 1.5540 0.5671
3 10 4.5 1.5534 0.5675
4 10 5.0 1.5527 0.5664
5 15 5.0 1.5775 0.5913
6 15 5.5 1.5766 0.5908
7 15 6.0 1.5737 0.5882
8 15 6.5 1.5726 0.5883
9 15 7.0 1.5722 0.5885

10 15 7.5 1.5713 0.5877
11 15 8.0 1.5684 0.5869
12 15 8.5 1.5682 0.5867
13 15 9.0 1.5680 0.5864
14 15 9.5 1.5677 0.5859
15 15 10.0 1.5668 0.5846

TABLE I
COSTS P̃i, i = 1, . . . , 15 AND OPTIMAL COSTS P∗ (IN RED) FOR

DIFFERENT λk ’S

The delays τj , j = 1, 2, 3 are determined using the design
space exploration method outlined in Section IV.B. For each of
the i configurations 1 through 15, we index the corresponding
delays as τji , i = 1, . . . , 15. The optimal co-design now
consists of choosing P∗(θ∗, i∗) defined in (27). Each of these
τji is used as a parameter for (23) and (24). It was observed
that for all positive values of K and b, the system was stable.
We therefore chose Γ as the positive quadrant. Typical costs
Pjk,i are shown in Fig. 10 – 15, where i = 4 in Fig. 13 –
15 for k = 0, 1, 2, respectively, and i = 10 in Fig. 10 – 12,
for k = 0, 1, 2, respectively. For ease of simplicity we focus
on a subset of Γ in all the figures where the performance is
close to optimal. These figures show that the costs change as
a function of the controller parameters θ and the configuration
i and also that the sensitivity of these costs depends on the
costs themselves.

Computing P̃ji as given in (26) we get a range of costs for
two different sets of weighting factors λk = 1

3 , k = 0, 1, 2
and λ0 = 1

21 , λk = 10
21 , k = 1, 2, and is assembled in Table I.

The former λ-set weights all costs equally, whereas the latter
one emphasizes transient and steady-state performance.

config. c[ms] s1[ms] K1 b1 K2 b2 K3 b3

1 10 3.5 0.0032 1 0.0034 1 0.0030 1
4 10 5.0 0.002 1 0.002 1 0.002 1

TABLE II
OPTIMAL VALUES FOR c, s1 , Kj∗ AND bj∗ , j = 1, 2, 3

Table I shows that configuration 4 is optimal for λk = 1
3 ,

k = 0, 1, 2 and that configuration 1 is optimal for λ0 = 1
21 ,

λk = 10
21 , k = 1, 2 In Table II, the corresponding optimal

values of the controller parameters K and b are shown.

VI. CONCLUDING REMARKS

In this paper we proposed a scheme for optimizing the
parameters of a hierarchical bus scheduler in order to improve
various control performance metrics. We showed that the
choice of values for these parameters heavily depend on the
performance metrics used. As a part of future work, we plan to

2
4

6
8

10
12

14x 10
−3 0

2

4

6

8

10

0

2

4

6

8

10

b

K

P
0

Fig. 10. The cost P3
0,10

2
4

6
8

10
12

14x 10
−3 0

2

4

6

8

10

0

0.5

1

1.5

b

K

P
1

Fig. 11. The cost P3
1,10

2
4

6
8

10
12

14x 10
−3 0

2

4

6

8

10

0

5

10

15

b

K

P
2

Fig. 12. The cost P3
2,10

0
0.01

0.02
0.03

0.04
0.05 0

2

4

6

8

10

0

5

10

15

20

25

30

b

K

P
0

Fig. 13. The cost P1
0,4

0
0.01

0.02
0.03

0.04
0.05 0

2

4

6

8

10

0

0.5

1

1.5

b

K

P
1

Fig. 14. The cost P1
1,4

0
0.01

0.02
0.03

0.04
0.05 0

2

4

6

8

10

0

1

2

3

4

b

K

P
2

Fig. 15. The cost P1
2,4

extend these results to more general class of controllers (e.g.,
adaptive controllers).

VII. ACKNOWLEDGEMENT

This work was supported by the Technische Univer-
sität München - Institute for Advanced Study (TUM-IAS),
funded by the German Excellence Initiative and by Deutsche
Forschungsgemeinschaft (DFG) through the TUM Interna-
tional Graduate School of Science and Engineering (IGSSE).
Parts of this work were carried out when the first author was a
visiting student at the Laboratory for Information and Decision
Systems (LIDS) at the Massachusetts Institute of Technology,
and the fourth author was a Hans Fischer Senior Fellow at the
TUM-IAS.

REFERENCES

[1] T. Nghiem, G. J. Pappas, R. Alur, and A. Girard. Time-triggered
implementations of dynamic controllers. In Proc. 6th ACM & IEEE
International conference on Embedded software (EMSOFT), 2006.

[2] H. Yazarel, A. Girard, G. J. Pappas, and R. Alur. Quantifying the gap
between embedded control models and time-triggered implementations.
In Proc. 26th IEEE Real-Time Systems Symposium (RTSS), 2005.

[3] S. Samii, A. Cervin, P. Eles, and Z. Peng. Integrated scheduling and
synthesis of control applications on distributed embedded systems. In
Proc. Design, Automation & Test in Europe (DATE), 2009.

[4] S. Samii, P. Eles, Z. Peng, and A. Cervin. Quality-driven synthesis
of embedded multi-mode control systems. In 46th Design Automation
Conference (DAC), 2009.

[5] B. Lincoln and A. Cervin. Jitterbug: A tool for analysis of real-time
control performance. In Proc. 41st IEEE Conference on Decision and
Control (CDC), 2002.

[6] A. Cervin and T. Henningsson. Scheduling of event-triggered controllers
on a shared network. In 47th IEEE Conference on Decision and Control
(CDC), 2008.

[7] E. Bini and A. Cervin. Delay-aware period assignment in control
systems. In IEEE Real-Time Systems Symposium (RTSS), 2008.

[8] L. Palopoli, C. Pinello, A. L. Sangiovanni-Vincentelli, L. Elghaoui, and
A. Bicchi. Synthesis of robust control systems under resource con-
straints. In 5th International Workshop on Hybrid Systems: Computation
and Control (HSCC), 2002.

[9] P. Naghshtabrizi and J. Hespanha. Analysis of distributed control
systems with shared communication and computation resource. In Proc.
of the 2009 Amer. Contr. Conf., 2009.

[10] H. K. Khalil. Nonlinear Systems. Prentice Hall, 2002.
[11] R. C. Dorf and R. H. Bishop. Modern Control Systems. Addison Wesley,

1995.
[12] A. Isidori. Nonlinear Control Systems. Springer, Berlin, 1995.
[13] K. J. Åström and B. Wittenmark. Computer-Controlled Systems: Theory

and Design. Prentice Hall, 1990.
[14] I. M. Horowitz. Synthesis of Feedback Systems. Academic Press, New

York, 1963.
[15] G. C. Goodwin, S. F. Graebe, and M. E. Salgado. Control System Design.

Prentice Hall, 2001.
[16] Maria M. Seron, Julio H. Braslavsky, and Graham C. Goodwin. Fun-

damental Limitations in Filtering and Control. Springer, 1997.
[17] S. Chakraborty, S. Künzli, and L. Thiele. A general framework for

analysing system properties in platform-based embedded system designs.
In DATE, 2003.

[18] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for
scheduling hard real-time systems. In Proc. IEEE International Sym-
posium on Circuits and Systems (ISCAS), volume 4, pages 101–104,
2000.

[19] Ernesto Wandeler and Lothar Thiele. Optimal tdma time slot and
cycle length allocation for hard real-time systems. In ASP-DAC ’06:
Proceedings of the 2006 Asia and South Pacific Design Automation
Conference, pages 479–484, Piscataway, NJ, USA, 2006. IEEE Press.

[20] R.H. Middleton and J.H. Braslavsky. On the relationship between
logarithmic sensitivity integrals and limiting optimal control problems.
In Proceedings of the 39th IEEE Conference on Decision and Control,
volume 5, pages 4990–4995, 2000.

